Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server to Aurora PostgreSQL
Migration Playbook

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server to Aurora PostgreSQL Migration Playbook: Microsoft SQL
Server 2019 to Amazon Aurora PostgreSQL Migration Playbook

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Services or capabilities described in Amazon Web Services documentation might vary by Region. To
see the differences applicable to the China Regions, see Getting Started with Amazon Web Services
in China (PDF).

https://docs.amazonaws.cn/en_us/aws/latest/userguide/services.html
https://docs.amazonaws.cn/en_us/aws/latest/userguide/services.html
https://docs.amazonaws.cn/en_us/aws/latest/userguide/aws-ug.pdf#services

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Table of Contents

OVEIVIBW ..ceeeeeniiiiiiiiinneeeesss 1
Tables of Feature ComPatibilityccceeeeieeeeeee ettt aaan 2
Feature Compatibility LEGENA ...ttt st te st s ve e e e se e s et e aestesaans 2
Amazon SCT and Amazon DMS Automation Level Legendccoeoeeeeeeeeceeceeceeceneceeeeeeeenes 3
Migration toOlS aNd SEIVICESccccciiiiiiieeeeneeiiiiiieeieiiinneeessssssssssssessesssass 5
Amazon Schema Conversion TOOL OVEIVIEWcc.coeeiiieierieieciectesesese e e e e setesaestessesse s e s e esnesaesaessenns 5
Download the SOftware and DIIVELS ...ttt e ettt e s be e s e sesnennan 6
CoNFIGUIE AMAZON SCT ...ttt te e te e e e e e e st e st e st e s tesbasse s s e e s esaesaebestasansassasssensesaansansan 6
Create @ New MiIgration PrOJECT ...ttt sttt sae s e e s sre s e e s ssesssaessaeessnessnesssnesnnas 7
Amazon SCT Action Code INAEX OVEIVIEWc.ccueceeeeeeieieietectestese e eeeeeseeaesaesaessessessesssesaeaesseseans 11
CrEALING TABLES ..ttt st st e st e et e e e e et et e st e st e s be s s e s saesaeneeneentantensansanes 12
DAt@ TYPES ettt ettt et e s s re e s s a e s e e s s b s s e e s s ae e s e aa e s e a e e s a e e e e s e e e s aaessnaaeenaasensas 13
COLLALIONS ettt et et e e e e e e st e st e st et e s s e b e e seesa e s e e st e s et e tasensasseeseeseennensantans 14
PIVOT QNd UNPIVOT ...ttt seste st ssesaest et s e ssestesessessessssassessesassassessesessassensesessessessssans 15
TOP @NA FETCH .ottt ettt et s sa et s s s et et s st e st e e s b e s et saasba st esassassesaesassansensons 15
CUPSOIS oieeteeeeeetesertee st e st e s stessaeeestessseesaessseesssessseesssessseasssaessaesssessseasssessseesstessseesssessseesssesssessssessseesseens 16
FLOW CONLIOL .ttt ettt e te s te st esae st e e e e et et et e s se e s e e sassaeseassansessansasanseesesnnenaanes 17
TranSaCtioN ISOLALION ...ecieieeeeeeee ettt a et et e s be s ae e e e e e e et e tesasanes 18
SEOrEA PrOCEAUIES ...ttt ettt ettt st e e te e e e e s et et e st e s se s s e e sassaesa e s asaatasassassessesnsenaanes 19
THIGGEES ettt ettt es e e s ste s e e e s ste e st e s saesesa e s sbeesataesse s saessae e seasssassaesssaesstesssessseessseesstesssensseesssensseens 20
MERGE ...ttt ettt st et e st st s st et e e s b e st et e e s s et et e s et e st e s e b et et s ae st et e seese b et esetentesatas 21
QUETY HINES ettt ettt s re e st e e sae e s e e s sae s s b e s saa e s saesssaessbessaeesssasssaesssassseesssessnes 21
FULLETEXE SANCH ettt ettt ettt et e st e e s e e e e e e e et e st e tasbessassassneseannanean 22
INAEXES .ottt ettt et et e te st e st e e e e e et et et et et e s s esseessessessastesansassasseesaesae st antentetantessaesaennentan 22
PArtitiONING .eeeeeiiieeeeecct ettt ssae s re s a e e s e e s ae e st e e s a e e s ae s aa e st e e ba e b e e aa e e e e aaeesaesraennas 24
BACKUP ettt ettt s e e e a et st e st e et et e se e s e e e e e et e tenbe b aeaaereeaeentensentantan 25
YO] YT V=T G\ F= 1 ARSI 25
GIAPKN ettt et et st et e st e st e e e e e et et e b et e b e b e e reeaa e st et et et e tentessasseeseereensentantans 26
SQL SEIVEE AGENT ...ttt ettt s st e s ste s st e s sae e sstessae s st e sssesssaessessssessssasssesssessssessssessaessseans 26
SEIVICE BIOKET ..ttt ettt st st e st et e s e e e et et et e st e s s e s seesaeseena e st esaestassansassassassaensantans 27
XML ettt ettt ettt st ettt et s et et e s et et e b et e e e R et et e e e R et et e R e b et e seeteae et e tentens 27
CONSEFAINTS ittt ettt e st e s st e s se e s b e e sae e s ae s sa e s s aesaeesssessaesssassseesssessseesssessseesssensses 28
LINKEA SEIVELS ...ttt stestesteste s e e e e e e s e s e st e st e s b e s sassa e s s e se e e e s e tassastassasseesaesesssensansansansan 29

SYNONYIMIS «.ceeitiieeiteeteesteertesseessteesstessaessseessesssaesssesssaesssessstesssesssaesssessstesssessssessseesssessssesssessseessaesssannns 29

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Amazon Database Migration SErvice OVEIVIEWccceeeeieeerieciesieceseeeeeesee e ssesaesaessesses e ssneeenns 29
Migration Tasks Performed by AmMazon DMS ...ttt 30
HOW AMAZON DMS WOTKS ...couerueiiirienieirinentetsiesteteessesteesessessssessestesessassessesessessessssassensesessessessssans 31
LateST UPALES ..ttt a ettt e b e e e e e e et e s ae st e aeeaeeseennenaanes 32
Amazon RDS 0N OULPOSES OVEIVIEWceeiieiiiiieitecteeieestesseecetessressseessaessssesssesssaessssesssesssesssasssssesseans 33
HOW £ WOTKS <.ttt ettt ettt st ettt et s sbe st st s s e b e e s sasa et e e sansesanas 33
AMAZON RDS PrOXY OVEIVIEWuiieviiiiiinieisteniteestensessseessseeseesssessssesssesssessssessssesssesssessssessssssssesssassssssns 34
Amazon RDS ProXy BENEFILS ...ttt a ettt ae s as 35
HOW AmMAzon RDS ProXy WOIKSceccueeiecieiereeeeeeeeeeeesetestestessesseseesssssesessessessessassessessssssensansens 36
AMAzon AUIrOra SErverless V1 OVEINVIEWccccicirererieenenieisenienteessessesseessessesessessessesessessessssassessesens 36
HOW 0 PrOVISION ..ttt sttt sttt e b e st st b e st e et s b e st esae s snesnenis 38
ANSIT SQL ccrririiienniiiinniennnnnnnssssssessssssssesss 41
Case sensitivity differences for ANSI SQL ...ttt sae e ste e e se e e e s eaesaesaenaans 41
CoNSEraiNts FOr ANSI SQL ettt e re e cse e e cse e sasesbesssseesseesssessss e sseenssesssesseesssenn 42
SQL SEIVEE USQQE ...ueiiiiiiiieieicteeieesteesteestessteesseessseesssesssessssessssesssesssessssessssesssessssesssessssesssessseesssesses 43
POSTGreSQL USQQE ..ottt ettt s te st s saessat s saessseessaessseasssesssaesssesssessssesssaesssassseesssesssassnees 47
SUMIMAIY ettt eete st e st e e sttestessae e st e s st ssstesssaessaessseasssesssaesssessseesssessssesstessseesssessseesssessseesssensses 53
Creating tables fOr ANSI SQL ..ttt ettt ste et e e e se e s e s et e sae st e s s e s saesa e e esnenaenes 54
SQL SEIVEE USQQE ...euiiiiiiiieieiciteeteesteesteestessteesstesssessssesssessssessssssssesssessssessssssssessssesssessssesssessssssssessses 55
POSTGreSQL USQQEooeiiieiiieetecierit ettt st s see s st ssaesssaessae s s st esssesssaesssasssessssessssssssassssesssesssaennees 58
SUIMIMAIY ettt eete st e st e s sttestessae e st e s saesssaesssaessaessseasssessssesssessseesssesssesstessseesssessseesseessseesseensses 64
Common table expressions fOr ANSI SQL ...ttt re s s e s sa e e s s 65
SQL SEIVEE USQQE ...uuiiiiiiiiieieiteeieesteesteestessaessseessseesssesssessssessssesssesssessssessssesssessssesssessssesssessssesssessnes 65
POSTGreSQL USQQE ..ottt st te et e e ssae s seessaeesaesssaessaessseasssesssaesssesssessssesssaesssassssasssesssassnees 69
Data types fOr ANSI SQL ...ttt e stesteste s e e e s e e e et e e e s aestesbessa e ssaesaeaesaassansansansanes 73
SQL SEIVEE USQQE ...uviiiiiiiiieieieeeieestessteesrtessteesseesssessssesssesssaessssssssesssessssessssssssessssesssessssesssessssesssesnes 73
POSTGreSQL USQQE ..ottt st te et e e ssae s seessaeesaesssaessaessseasssesssaesssesssessssesssaesssassssasssesssassnees 75
SUMIMAIY ettt eete st e st e s steestessae e st e e ssesssaesssaessaessaeasssesssaesssessseesssessssesseessseasssessseesseessseessaenses 82
Derived tables fOr ANSI SQL ...ttt et e ere e seessseesseessbesssessseessessseesssesssesssaes 83
SQL SEIVEE USQQE ...uuiiiiiiiiieieicteeieesteesteestessaeestesssessssesssesssaessssssssesssessssessssssssessssesssessssesssesssessssesnes 83
POSTGreSQL USQQE ..ottt et e ste st e s seessatesaessseesstessseesssesssaesssasssessssesssassssassssesssesssassnees 83
GROUP BY fOr ANSI SQL c.eoiiieieirieietrestentsesiest et sestesteestestesessessessssessesssssssassesassessessesassensessesessensesenns 84
SQL SEIVEE USQQE ...ueiiieiiiiieieiciteeiteestessteestessaeesstesssessssesssessssessssssssesssessssessssesssessssesssessssesssessssssssessnes 84
POSTGreSQL USQQE ..ottt ettt este st e s saessatesaessseesaessaeasssesssaesssasssessssesssessssassssasssesssassnees 88
SUMIMAIY ceetiiiiieieeieeeteesteete st e st e s steesaessse e st e s st ssssesssaessaessseasssesssaesssassseesssessssesstessseesssessseesssessseesssenses 91
Table JOIN fOr ANSI SQL ..ottt sttt re sttt e e sse st e e sseste e ssasse s e e ssasaesassasseness 92

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
SQL SEIVEE USQQE ...ueiiiiiiiiieieiieeeieestessteestesstessseesssesssesssessssessssssssesssessssessssssssessssesssessssesssesssessssesnes 92
POSTGreSQL USQQEcoeiiieiieeeiteete sttt st ssre e s seessatesaesssaessaessaeesssesssaesssassseasssesssaesssassssesssesssaesnees 98
SUMIMAIY ceetieittieteeieeeteesrtesteesteestesste s st e s saessstesssasssaasssessssesssesssaesssessstesssessseesssessseesssessseesssessseessesssaens 101

Temporal tables fOr ANSI SQL ...ttt e te st e e e e e e e e e e st e ae s e saessassnennans 101
SQL SEIVEN USQQE ...ueiiiiieiiiciieieesteetesstessteestesssessssessseesssessssssssessssssssesssessssesssessssessssssssessssesssesssesns 102
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 104

VIEWS FOr ANSI SQL ..ttt et cb e e ae e s be e bt e esae s ss e sabeessssessesssesaseessesasesssesaseessens 104
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 104
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 108
SUMIMAIY ceetieittieteeieeeteesrtesteesteestesste s st e s saessstesssasssaasssessssesssesssaesssessstesssessseesssessseesssessseesssessseessesssaens 110

Window funNctions fOr ANSI SQL ...ttt cee e eae e sreese e ssesaseessseenseesssesanes 111
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 111
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 114

ToSQL ceiiiiiiirnnnnnnneneecsessneneesss 118

Service Broker functionality fOr T-SQL ..ottt e e sa e sae e aan 119
SQL SEIVEN USQQE ...ueiiiiieiiiciiieiterteeitesstessteestesssessssesssessssessssssssessssssssessssssssessssssssessssssssessssssssesssesns 119
POSTGreSQL USQQE ..ottt st s sre st e s sae s st e sssesssaesssessseessesssaesssessssesssesssaesssessseesssansns 123

SQL Server cast and conVert fOr T-SQL ...ttt eaecsaeesrecssseeseesssesseesseens 123
SQL SEIVEN USQQE ...ueiieiieiiieiiieitesteestesste st estesssesssaessseesssessssssssessssssssessssssssesssessssessssssssessssssssesssesns 124
POSTGreSQL USQQEoneiiiiiieeeteteeieestee e st e ssressreessse s st e sssesssaesssessseesssesssaesssessssssssesssaesssesssnesssannns 125
SUMIMAIY ceetieittieteetteeteerteesteeseeesteestessseessaessstesssesssaasssessssesssesssassssassstesssessseesssessseesssessseesssessseesssesssaens 127

Common Language RUNtiMe fOr T-SQL ..ottt stesaesae e e e e s s eaesaeaens 127
SQL SEIVEN USQQE ...uuiiiiieiiiiieitesteeitesseessteestesssesssessseesssessssssssessssesssessssssssessssssssessssssssessssesssesssesns 128
POSTGreSQL USQQEoeiiiiieeeiteteeiecstee st e s sre st e s sae s st e s ssessseesssessaaesssesssaesssessssssssessssesssessseesssannns 128

(@] 1Y uTo) I (o] g Y ©] RS R 129
SQL SEIVEN USQQE ...uuiiiiieiiiiieitesteeitesseessteestesssesssessseesssessssssssessssesssessssssssessssssssessssssssessssesssesssesns 130
POSTGreSQL USQQEoeiiiiieeeiteteeiecstee st e s sre st e s sae s st e s ssessseesssessaaesssesssaesssessssssssessssesssessseesssannns 132
SUMIMAIY ceetieittieteetteeteerteesteeseeesteestessseessaessstesssesssaasssessssesssesssassssassstesssessseesssessseesssessseesssessseesssesssaens 136

(@050 o o] S Y ©] TSR 137
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 138
POSTGreSQL USQQE ...coneiiiiiieeititertecstee st st s ste st e s sae s st e s ssessseesssessseessesssaesssesssessssesssaesssessseesssannne 139
SUMIMAIY eetieitieteeieeeteerteesteeseeeste s st e s e e s ste s st e s sesssaesssessseesssesssassssassssesssessseesssessseesssessseesssessseesssesssanns 144

Date and time fuNCtions fOr T=-SQL ...ttt e csae e ae e eare e s e sbeesressneennns 145
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 146
POSTGreSQL USQQE ..ottt st ste st e s sae s st e s ssesssaesssessaaesssesssaesssesssassssessssesssesssnesssannns 148
SUMIMAIY eetieitieteeieeeteerteesteeseeeste s st e s e e s ste s st e s sesssaesssessseesssesssassssassssesssessseesssessseesssessseesssessseesssesssanns 150

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
String fUNCLIONS FOr T=-SQL oottt te et e st e st e saesseese e e e e e a e e e aanaansans 150
SQL SEIVEN USQQE ...ueiiiiiriiiciieiteeteesresstesiteestesssessssessseesssessssssssessssssssesssessssessssssssessssssssessssssssesssessns 151
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 154
SUMIMAIY ceetieittieteeieeeteesrtesteesteestesste s st e s saessstesssasssaasssessssesssesssaesssessstesssessseesssessseesssessseesssessseessesssaens 157
Databases and Sschemas fOr T=-SQL ...ttt e e eas e s e ese e sseesseessasnsees 158
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 158
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 160
DYNAmiC SQL fOr T-SQL .ottt et et et et e te st e stesse e e e s e e et et e bessesassassassassaenaensanean 162
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 163
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 166
SUMIMAIY eetieittieteeieeeteestt et eeseeeste s st s st e s sae s s st esssesssaasssessseasssesssaesssassstesssessseesssessseesssessseesssessseesssesssenns 168
I =1 3= [o oY O oY Y ©] R 169
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 170
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 174
SUMIMAIY cetieittieteeiteeete et eseesseeesteestessseeesaessstesssasssaasssessssesssesssaesssassstesssessseesssessseesssessseesssessseessesssenns 180
SYNONYMS FOF T=SQL ettt ettt te e st e e e s e e e e s e st e st e st e sessessasseesaassessassansasassnssesnaans 181
SQL SEIVEN USQQE ...ueiiiiieiiiciiieiterteeitesstessteestesssessssesssessssessssssssessssssssessssssssessssssssessssssssessssssssesssesns 181
POSTGreSQL USQQE ..ottt ste st e ssre st e s sae s s st e sssessseesssessaeesssesssaesssessssssssesssaesssesssnesssannns 183
Delete and update from fOr T-SQL ...ttt saesaesaeste s e s e s aesaennans 184
SQL SEIVEN USQQE ...ueiieiieiiicieeieesteeitesseessseestesssessssesssessssessssssssessssesssessssssssesssessssesssessssessssssssesssassns 185
POSTGreSQL USQQEoneiiiiiieeeteteeieestee e st e ssressreessse s st e sssesssaesssessseesssesssaesssessssssssesssaesssesssnesssannns 187
SUMIMAIY ceetieittieteetteeteerteesteeseeesteestessseessaessstesssesssaasssessssesssesssassssassstesssessseesssessseesssessseesssessseesssesssaens 190
Stored procedures fOr T-SQL ...ttt eee e et et steste s e s e e e e e e s e s e saebessassessessasnaensanean 190
SQL SEIVEN USQQE ...uuiiiiieiiiiieitesteeitesseessteestesssesssessseesssessssssssessssesssessssssssessssssssessssssssessssesssesssesns 190
POSTGreSQL USQQEoeiiiiieeeiteteeiecstee st e s sre st e s sae s st e s ssessseesssessaaesssesssaesssessssssssessssesssessseesssannns 194
SUMIMAIY ceetieittieteetteeteerteesteeseeesteestessseessaessstesssesssaasssessssesssesssassssassstesssessseesssessseesssessseesssessseesssesssaens 198
Error handling fOr T-SQL ...ttt ettt e sae st s e e e e e e e e s e saesaessessassae e e s ennanaansans 200
SQL SEIVEN USQQE ...ueiieiieiiiiiieitesteesiesseessteestesssessssessseesssessssssssessssesssesssessssessssssssessssssssessssesssesssesns 200
POSTGreSQL USQQE ...coneiiiiiieeititertecstee st st s ste st e s sae s st e s ssessseesssessseessesssaesssesssessssesssaesssessseesssannne 205
SUMIMAIY eetieitieteeieeeteerteesteeseeeste s st e s e e s ste s st e s sesssaesssessseesssesssassssassssesssessseesssessseesssessseesssessseesssesssanns 207
FLOW CONEIOL FOI ToSQL ittt et cte e eb e sateebsssssessssessssesssssssesnsessssesnssesssesnns 208
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 209
POSTGreSQL USQQE ..ottt st ste st e s sae s st e s ssesssaesssessaaesssesssaesssesssassssessssesssesssnesssannns 211
SUMIMAIY eetieitieteeieeeteerteesteeseeeste s st e s e e s ste s st e s sesssaesssessseesssesssassssassssesssessseesssessseesssessseesssessseesssesssanns 213
FUll-text SEArCh FOr T=SQL ..ottt ettt cstr s re e s e s saeesbeesssesseessseesssesssessssesssesnsrens 214
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 215

Vi

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
POSTGreSQL USQQEoneiiiiiteeetiteriecstee st esste st e s sae s st e s ssessseesssessaeesssesssaesssessssssssessssesssessssesssannns 218
SQL server graph features for T-SQL ...ttt e e sa e e s s s 221
SQL SEIVEE USQQE ...ueiiuiiiiiiciieitesteeiesseessteestesssesssaessseesssessssssssessssesssessssssssesssessssessssssssessssssssesssesns 222
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 224
JSON anNd XML fOr T-SQL ..ueeiiirieiiirienteirerteteesestetseste st et sse st et sseste st e e s e stesassassesaesassessessssessassesassans 224
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 224
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 227
SUMIMAIY ceetieittieteeieeeteesrtesteesteestesste s st e s saessstesssasssaasssessssesssesssaesssessstesssessseesssessseesssessseesssessseessesssaens 232
MEIGE TOI T-SQL ettt e e e e e e et et et e b e st e st e sseese s s ess e s et estensassassaeseesaessassansensansansans 232
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 233
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 236
Pivot and unpivot fOr T-SQL ...ttt re s e s e e e e e et e st e st e s sassa e e e e ennassansans 237
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 237
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 241
TrQQEIS FOI T=SQL ettt et e s e st e e s e e s et et e s b e besse e e e se e s e esa e sesasassassasseensanes 244
SQL SEIVEN USQQE ...ueiiiiieiiiciiieiterteeitesstessteestesssessssesssessssessssssssessssssssessssssssessssssssessssssssessssssssesssesns 245
POSTGreSQL USQQE ..ottt st s sre st e s sae s st e sssesssaesssessseessesssaesssessssesssesssaesssessseesssansns 248
SUMIMAIY eetieitiieteeteeteerrteete et e stesstessseesstessstesssasssaasssessssesssessseesssassstesssessseesssessssesssessseesssessseessesssenns 252
TOP FEECH FOr T=SQL .ttt e st e e e e e et et e s be st e bessa e e e seesaeaanbansansan 253
SQL SEIVEN USQQE ...ueiieiieiiicieeieesteeitesseessseestesssessssesssessssessssssssessssesssessssssssesssessssesssessssessssssssesssassns 254
POSTGreSQL USQQEoneiiiiiieeeteteeieestee e st e ssressreessse s st e sssesssaesssessseesssesssaesssessssssssesssaesssesssnesssannns 256
SUMIMAIY ceetieittieteetteeteerteesteeseeesteestessseessaessstesssesssaasssessssesssesssassssassstesssessseesssessseesssessseesssessseesssesssaens 259
User-defined functions fOr T=SQL ...ttt cssresreesar e esneesssesseesesssseessesanees 260
SQL SEIVEN USQQE ...uuiiiiieiiiiieitesteeitesseessteestesssesssessseesssessssssssessssesssessssssssessssssssessssssssessssesssesssesns 260
POSTGreSQL USQQEoeiiiiieeeiteteeiecstee st e s sre st e s sae s st e s ssessseesssessaaesssesssaesssessssssssessssesssessseesssannns 264
User-defined types fOr T-SQL ..ttt e ettt s e sresse e e e s e st et e aanes 264
SQL SEIVEN USQQE ...uuiiiiieiiiiieitesteeitesseessteestesssesssessseesssessssssssessssesssessssssssessssssssessssssssessssesssesssesns 265
POSTGreSQL USQQEoeiiiiieeeiteteeiecstee st e s sre st e s sae s st e s ssessseesssessaaesssesssaesssessssssssessssesssessseesssannns 268
Identity and seqUENCES FOr T=-SQL ..ottt e e e e sa et estesaessessessn e e ennens 270
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 271
POSTGreSQL USQQE ...coneiiiiiieeititertecstee st st s ste st e s sae s st e s ssessseesssessseessesssaesssesssessssesssaesssessseesssannne 276
SUMIMAIY eetieitieteeieeeteerteesteeseeeste s st e s e e s ste s st e s sesssaesssessseesssesssassssassssesssessseesssessseesssessseesssessseesssesssanns 281
CoNFIGUIAtioN ...cceeeeeiiiiiiiiiiiiiiieeeeeneiiiiiieeeeeetesssssssssssssssssssessnee 283
CONFIGUIING UPGIAAES ...ttt ste e e e s e e e e et e ae st e sesse s e e sa e e e s et e bessassassassaeseensensansansansanes 283
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 284
UPGrade iN-PLACE ..ottt ettt te s te e e e et e e e st e st e s b e st a s e s seesa e s e s esansatansassassnenean 284

vii

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
POSTGreSQL USQQEoneiiiiiteeetiteriecstee st esste st e s sae s st e s ssessseesssessaeesssesssaesssessssssssessssesssessssesssannns 285
SUMIMAIY ceetieittieteeieeeteesrtesteesteestesste s st e s saessstesssasssaasssessssesssesssaesssessstesssessseesssessseesssessseesssessseessesssaens 289

Configuring SESSION OPLIONScviieieieeeceeeetete et e et e e testeste s e e e e e e e e e e sesbesaessessessaennanes 290
SQL SEIVEN USQQE ...ueiiiiieiiiciieieesteetesstessteestesssessssessseesssessssssssessssssssesssessssesssessssessssssssessssesssesssesns 291
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 293
SUMIMAIY ceetieittieteeieeeteesrtesteesteestesste s st e s saessstesssasssaasssessssesssesssaesssessstesssessseesssessseesssessseesssessseessesssaens 295

Configuring database OPLIONSc.cceceeiiieceeeer ettt sae st s ae s s e e nnenes 296
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 297
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 298

CoNfIQUIING SEIVEN OPLIONSeeeieieieteeeeeeteteteteste e e e e e s e s e testesaesse e e e e e s e e e saestessassassassesnnasaaneans 298
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 299
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 300

High availability and diSaster reCOVErYccciiiiimmmmnnnciiiiiciiiiinnneeessnessssssccesssssssssssssssssssssssassns 305

Backup and reStore dESIGN ...ttt ettt re e a e sttt e st e e e e naennan 305
SQL SEIVEN USQQE ...ueiiiiieiiiciiieiterteeitesstessteestesssessssesssessssessssssssessssssssessssssssessssssssessssssssessssssssesssesns 306
POSTGreSQL USQQE ..ottt st ssressseessae s st e sssesssaesssessaeesssesssaesssesssessssessssesssessssesssannns 309
SUMIMAIY oetieitiieteeiteeeteerttestesseeestesste s s e e s stessstesssasssaasssesssaesssesssaesssassstesssessseesssessseesssessseesssessseessesssenns 315

High availability @SSENTIALS ...c.ecueeeeeeeeeeee ettt s ae st e st e s s e s e nesaenan 319
SQL SEIVEN USQQE ...ueiieiieiiieiiieitesteestesste st estesssesssaessseesssessssssssessssssssessssssssesssessssessssssssessssssssesssesns 320
POSTGreSQL USQQEoneiiiiiieeeteteeieestee e st e ssressreessse s st e sssesssaesssessseesssesssaesssessssssssesssaesssesssnesssannns 325
SUMIMAIY ceetieittieteetteeteerteesteeseeesteestessseessaessstesssesssaasssessssesssesssassssassstesssessseesssessseesssessseesssessseesssesssaens 331

INAEXES eeveerererrenneennnnnnnnnnennmnnniieiiiitiiiieeeeeesseesses 332

SQL SEIVEN USQQEoieiiiiieieeteeieecttesteesetestesssessstessaeessesssessssessseesssessssssssessssesssesssessssesssessssesssessssesses 332
CLUSEEIEA INAEXES ..ottt ste sttt st et s s b et et ssa st et e e sastesassassessenassansessesansans 333
NON-CLUSTErEA INAEXES ..ttt ettt sttt st te st e e sse st e s s e sbe st e e ssassasassansan 334
Filtered Indexes and CoOVEriNg INAEXESccueceeieeeeieieieeetectecte e e s e stesaesae s e sse e s eaesnens 335
Indexes On CoMPULEd COLUMINSouieeiiiiieteceeeeeee ettt ste e e e e e e et e stesaesaessessa e e s e enaeaenes 335

POSEGIrESQL USQQE ..ottt st sttt e s et s e e s sae e st e s sae s s e e s saeessaesssesssaesseessaasssessssesssassssessseennes 337
CLUSTEE TABLE ettt ettt sttt s s b et e s e sbe st e e sb et enassansensenasanseneen 337
B-ErEE INAEXES ...veeeeeeetetetrertet ettt ettt st ettt et s st e st et s e st e e s se st et esassassestesansansesansn 338
Column and Multiple Column Secondary INAEXEScceeerereeeeeecreceececeree e 339
Expression Indexes and Partial INAEXEScceeeeeeeeeeieceeeece ettt sa e s 339
PArtial INAEXES ..ottt ettt et s b et e s e st et e sbesa e e sse st e st esessessenassassensenans 340
BRIN INAEXES ...ttt ettt sae st st e st et s e st et e e s b et et ssa st et esessessesassessenassessensensesansensenens 341

SUMMIAIY ettt et este e st e s te s s st e stesssaessaesssaessse s saesssassssasssesssaesssassstesssessssessseesstesssesssaessseesseessanns 341

[\ = T = Lo [T 0 = oS 343

viii

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
SQL Server Agent and POStGreSQL ...ttt ete e sresteste s e e e e ste st e saesaesse e e seeaenaan 343
SQL SEIVEN USQQE ...ueiiiiiriiiciieiteeteesresstesiteestesssessssessseesssessssssssessssssssesssessssessssssssessssssssessssssssesssessns 344
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 344
ALEIEING FEALUIES ..ttt ettt et e st e st s e e e e e e et e st e st e sasseesaeseessensansansansan 344
SQL SEIVEN USQQE ...ueiiiiieiiiciieieesteetesstessteestesssessssessseesssessssssssessssssssesssessssesssessssessssssssessssesssesssesns 344
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 346
Database Mail FEALUIEScov ittt st et a et s e sae st et et s e saasaeneen 349
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 350
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 353
ETL FEATUIES .ottt ettt et ettt s sa e sttt s s et et s e s be st e e e sesbe st esasbansensssansassasans 358
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 359
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 361
EXPOrt and imMPoOrt FEALUIES ...ttt ettt s e s e e e b s ae b ae s 366
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 366
POSTGreSQL USQQE ..ottt st ssressseessae s st e sssesssaesssessaeesssesssaesssesssessssessssesssessssesssannns 368
SUMIMAIY ettt et et e sseeestesstesssaesssessstesssasssaasssessssesssesssaesssassstesssessseesssessseesssessseesssessseesssesssenns 371
VIEWING SEIVEE LOGS ..ottt rte st et e ste s e e e e e et e saesae st e st e s se e e esa e e et et asessassassaesaeseensansanes 371
SQL SEIVEN USQQE ...ueiiiiieiiiciiieiterteeitesstessteestesssessssesssessssessssssssessssssssessssssssessssssssessssssssessssssssesssesns 372
POSTGreSQL USQQE ..ottt sre st e s sressseessae s st e sssessseessessaeessesssaesssessssssssessssesssesssnesssannns 373
MAINTENANCE PLANS ...ttt e et e e et et esbe st e st e s s e s se e s et et esbetassassasseesaensaseessansanes 375
SQL SEIVEN USQQE ...uuiiiiieiiiiieitesteeitesseessteestesssesssessseesssessssssssessssesssessssssssessssssssessssssssessssesssesssesns 376
POSTGreSQL USQQEoneiiiiiieeeteteeieestee e st e ssressreessse s st e sssesssaesssessseesssesssaesssessssssssesssaesssesssnesssannns 378
SUMIMAIY ceetieittieteetteeteerteesteeseeesteestessseessaessstesssesssaasssessssesssesssassssassstesssessseesssessseesssessseesssessseesssesssaens 380
MORNTEOIING FEATUIES ...ttt s e ettt sa e s ba s e se e e e sa e e e s e tessansanes 381
SQL SEIVEN USQQE ...uuiiiiieiiiiieitesteeitesseessteestesssesssessseesssessssssssessssesssessssssssessssssssessssssssessssesssesssesns 382
POSTGreSQL USQQEoeiiiiieeeiteteeiecstee st e s sre st e s sae s st e s ssessseesssessaaesssesssaesssessssssssessssesssessseesssannns 385
RESOUICE GOVEINOT FEALUIESocuveieteteeteeteeeetetete et e st et estesaesse s e e e e e e e e saesaesaassessasseenaennanes 386
SQL SEIVEN USQQE ...ueiieiieiiiiiieitesteesiesseessteestesssessssessseesssessssssssessssesssesssessssessssssssessssssssessssesssesssesns 387
POSTGreSQL USQQE ...coneiiiiiieeititertecstee st st s ste st e s sae s st e s ssessseesssessseessesssaesssesssessssesssaesssessseesssannne 389
LINKEA SEIVELS ..ottt ettt sttt sa et sttt s b et e s b et et s s et et s sasae st e st esansantesassansensssanes 394
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 394
POSTGreSQL USQQE ..ottt st e s ste s st e s sae s st e ssse s saesssessaeessesssaesssesssassssessssesssessseesssannns 397
SCHPLING TEATUIES ...ttt ettt s e e s e e e st et et e st e s sasbeeseesaeneesaensansensansan 399
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 399
POSTGreSQL USQQE ..ottt st ste st e s sae s st e s ssesssaesssessaaesssesssaesssesssassssessssesssesssnesssannns 401
Performance tUNINGiiiiiiiiiiiiiieeeneeiiiiiieiitittseesss 404

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
TUNING FUN PLANS ettt e e e e et et et e st e st e st e s s e s e e e e e essessassansessansassessaesesnsensensansans 404
SQL SEIVEN USQQE ...ueiiiiiriiiciieiteeteesresstesiteestesssessssessseesssessssssssessssssssesssessssessssssssessssssssessssssssesssessns 405
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 406
Query hints and Plan GUIAES ...ttt e e et ae s e st s s s e s s e aennens 409
SQL SEIVEN USQQE ...ueiiiiieiiiciieieesteetesstessteestesssessssessseesssessssssssessssssssesssessssesssessssessssssssessssesssesssesns 410
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 413
MaNAGING STATISTICS ..eeeeiieiiecee ettt s e e s te s re e s sae e saa e s sbesssaessaesssaassnesnaenns 414
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 414
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 416
SUMIMAIY ceetieittieteeieeeteesrtesteesteestesste s st e s saessstesssasssaasssessssesssesssaesssessstesssessseesssessseesssessseesssessseessesssaens 419
PRYSICAl SEOrQge ...ciiiiiieereneniiiiiiiiiiiiineeennsneississecesssasas 420
Columnstore index fUNCLIONALILY ...coveeueeueeieeeeeee ettt aenens 420
SQL SEIVEN USQQE ...ueiieiieiiiiiieiteeteeiesstesteestesssesssessseesssesssessssessssssstessssssssessssssssesssessssesssessssesssesns 421
POSTGreSQL USQQE ..ottt st e sressseessae s st e sssesssaesssessaaesssesssaesssesssessssessssesssessssesssannns 421
Indexed VIEW FUNCLIONALILY ...c.ooueeieeeeee ettt ettt s ae e e saesaesaenans 421
SQL SEIVEN USQQE ...ueiiiiieiiiciiieiterteeitesstessteestesssessssesssessssessssssssessssssssessssssssessssssssessssssssessssssssesssesns 422
POSTGreSQL USQQE ..ottt st s sre st e s sae s st e sssesssaesssessseessesssaesssessssesssesssaesssessseesssansns 423
SUMIMAIY eetieitiieteeteeteerrteete et e stesstessseesstessstesssasssaasssessssesssessseesssassstesssessseesssessssesssessseesssessseessesssenns 424
Partitioning databases ...ttt st et aanaans 426
SQL SEIVEN USQQE ...ueiieiieiiicieeieesteeitesseessseestesssessssesssessssessssssssessssesssessssssssesssessssesssessssessssssssesssassns 427
POSTGreSQL USQQEoneiiiiiieeeteteeieestee e st e ssressreessse s st e sssesssaesssessseesssesssaesssessssssssesssaesssesssnesssannns 429
SUMIMAIY ceetieittieteetteeteerteesteeseeesteestessseessaessstesssesssaasssessssesssesssassssassstesssessseesssessseesssessseesssessseesssesssaens 444
SECUNITY ceiiiiiiiieennneniiiiiieiiiitiensesssssssssssseesssnssssss 445
Column encryption for Aurora POStGreSQL ...ttt ettt e e a e aan 445
SQL SEIVEN USQQE ...uuiiiiieiiiiieitesteeitesseessteestesssesssessseesssessssssssessssesssessssssssessssssssessssssssessssesssesssesns 446
POSTGreSQL USQQEoeiiiiieeeiteteeiecstee st e s sre st e s sae s st e s ssessseesssessaaesssesssaesssessssssssessssesssessseesssannns 448
Data control language for Aurora POSEGreSQL ... iiiiecieeeeececee ettt eesaenens 450
SQL SEIVEN USQQE ...ueiieiieiiiiiieitesteesiesseessteestesssessssessseesssessssssssessssesssesssessssessssssssessssssssessssesssesssesns 450
POSTGreSQL USQQE ...coneiiiiiieeititertecstee st st s ste st e s sae s st e s ssessseesssessseessesssaesssesssessssesssaesssessseesssannne 451
Transparent data encryption Aurora POStGreSQL ...ttt 455
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 455
POSTGreSQL USQQE ..ottt st e s ste s st e s sae s st e ssse s saesssessaeessesssaesssesssassssessssesssessseesssannns 456
Users and roles for Aurora POStGreSQL ... iiieieieeciecececee ettt saestesvesse e e e sa e s e s saasaanns 461
SQL SEIVEN USQQE ...ueiieiieiiiciieitesteesiesstessteestesssesssessseesssessssssssesssessssesssessssessssssssessssssssessssssssesssesns 461
POSTGreSQL USQQE ..ottt st ste st e s sae s st e s ssesssaesssessaaesssesssaesssesssassssessssesssesssnesssannns 462
SUMIMAIY eetieitieteeieeeteerteesteeseeeste s st e s e e s ste s st e s sesssaesssessseesssesssassssassssesssessseesssessseesssessseesssessseesssesssanns 464

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server 2018 deprecated features Listcccceiiiiiiiiiiiinnennnnnniiisccccnninnnsesssssssssssssscssssssssaesss 466
Migration QUICK iPsS c.eeeecciiiiiieiiiiiinnnmennnsiiiiineceinneesesssssssssssssssessass 467
MANAGEMENT ...ttt s st e st e s st e st e s sae e st e s aeestessaeessaesssaessaesssesssaessseessaesssessssessseesseesssennn 467

xi

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Migration guide overview

The first section of this document provides an overview of Amazon Schema Conversion Tool
(Amazon SCT) and the Amazon Database Migration Service (Amazon DMS) tools for automating
the migration of schema, objects and data. The remainder of the document contains individual
sections for the source database features and their Aurora counterparts. Each section provides a
short overview of the feature, examples, and potential workaround solutions for incompatibilities.

You can use this playbook either as a reference to investigate the individual action codes generated
by Amazon SCT, or to explore a variety of topics where you expect to have some incompatibility
issues. When using Amazon SCT, you may see a report that lists Action codes, which indicates some
manual conversion is required, or that a manual verification is recommended. For your convenience,
this Playbook includes an Amazon SCT Action Code Index section providing direct links to the
relevant topics that discuss the manual conversion tasks needed to address these action codes.
Alternatively, you can explore the Tables of Feature Compatibility section that provides high-level
graphical indicators and descriptions of the feature compatibility between the source database and
Aurora. It also includes a graphical compatibility indicator and links to the actual sections in the
playbook.

The Migration Quick Tips section provides a list of tips for administrators or developers who have
little experience with Aurora (PostgreSQL or MySQL). It briefly highlights key differences between
the source database and Aurora that they are likely to encounter.

Note that not all of the source database features are fully compatible with Aurora or have simple
workarounds. From a migration perspective, this document doesn't yet cover all source database
features and capabilities.

This database migration playbook covers the following topics:

» Migration Tools and Services

o ANSI SQL

- T-SQL

« High Availability and Disaster Recovery

« Configuration

+ Indexes

+ Management

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Performance Tuning

Physical Storage

Security
SQL Server 2018 Deprecated Features List

Migration Quick Tips

Disclaimer

The various code snippets, commands, guides, best practices, and scripts included in this document
should be used for reference only and are provided as-is without warranty. Test all of the code,
commands, best practices, and scripts outlined in this document in a non-production environment
first. Amazon and its affiliates are not responsible for any direct or indirect damage that may occur
from the information contained in this document.

Tables of Feature Compatibility

Feature Compatibility Legend

Automation level icon Description

Very high compatibility. None or minimal

E @ E g E low-risk and low-effort rewrites needed.

High compatibility. Some low-risk rewrites
E @ E g needed, easy workarounds exist for incompati

ble features.

Medium compatibility. More involved low-
E @ E medium risk rewrites needed, some redesign

may be needed for incompatible features.

Low compatibility. Medium to high risk

@ @ rewrites needed, some incompatible features

Tables of Feature Compatibility 2

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Automation level icon

S

Description

require redesign and reasonable-effort
workarounds exist.

Very low compatibility. High risk and/or
high-effort rewrites needed, some features
require redesign and workarounds are
challenging.

Not compatible. No practical workarounds
yet, may require an application level architect
ural solution to work around incompatibilities.

Amazon SCT and Amazon DMS Automation Level Legend

Automation level icon

SO
S Q
SO

S ©

Description

Full automation. Amazon SCT performs fully
automatic conversion, no manual conversion
needed.

High automation. Minor, simple manual

conversions may be needed.

Medium automation. Low-medium complexit
y manual conversions may be needed.

Low automation. Medium-high complexity
manual conversions may be needed.

Amazon SCT and Amazon DMS Automation Level Legend

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Automation level icon Description

Very low automation. High risk or complex
@ manual conversions may be needed.

No automation. Not currently supported by
Amazon SCT, manual conversion is required
for this feature.

Amazon SCT and Amazon DMS Automation Level Legend 4

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Migration tools and services overview

This topic provides conceptual content about migrating from Microsoft SQL Server 2019 to
Amazon Aurora PostgreSQL. It introduces you to the Amazon Schema Conversion Tool (Amazon
SCT) and Amazon Database Migration Service (Amazon DMS), explaining how these tools can
streamline your database migration process. The content covers various aspects of the migration,
including schema conversion, data transfer, and handling different database features. It also
touches on related services like Amazon RDS on Outposts, Amazon RDS Proxy, and Amazon
Aurora Serverless v1, providing a comprehensive overview of the Amazon database ecosystem. By
understanding these concepts, you can better plan and execute your database migration strategy,
anticipate potential challenges, and leverage Amazon tools and services to ensure a smooth
transition to Aurora PostgreSQL.

Topics

+« Amazon Schema Conversion Tool overview

+« Amazon SCT Action Code Index overview

« Amazon Database Migration Service overview

« Amazon RDS on Outposts overview

» Amazon RDS Proxy overview

« Amazon Aurora Serverless v1 overview

Amazon Schema Conversion Tool overview

You can use the Amazon Schema Conversion Tool (Amazon SCT) to streamline the migration of
your Microsoft SQL Server 2019 database to Amazon Aurora PostgreSQL. This powerful Java utility
automates the conversion of most database objects, significantly reducing manual effort in the
migration process. By following the step-by-step instructions provided, you can connect to your
source and target databases, analyze the schema objects, and generate a comprehensive migration
assessment report. The tool offers valuable insights into potential conversion challenges and
provides detailed recommendations for addressing them.

The Amazon Schema Conversion Tool (Amazon SCT) is a Java utility that connects to source and
target databases, scans the source database schema objects (tables, views, indexes, procedures, and
so on), and converts them to target database objects.

Amazon Schema Conversion Tool overview 5

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

This section provides a step-by-step process for using Amazon SCT to migrate an SQL Server
database to an Aurora PostgreSQL database cluster. Since Amazon SCT can automatically migrate
most of the database objects, it greatly reduces manual effort.

We recommend to start every migration with the process outlined in this section and then use
the rest of the Playbook to further explore manual solutions for objects that couldn’t be migrated
automatically. For more information, see Schema Conversion Tool user guide.

® Note

This walkthrough uses the Amazon DMS Sample Database. You can download it from
GitHub.

Download the Software and Drivers

Download and install Amazon SCT from the Schema Conversion Tool user guide.

Download the Microsoft SQL Server and PostgreSQL drivers.

Find other supported drivers in the Schema Conversion Tool user guide.

Configure Amazon SCT

1. Start Amazon Schema Conversion Tool (Amazon SCT).
2. Choose Settings and then choose Global settings.
3. On the left navigation bar, choose Drivers.

4. Enter the paths for the SQL Server and PostgreSQL drivers downloaded in the first step.

Download the Software and Drivers 6

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
https://github.com/aws-samples/aws-database-migration-samples
https://docs.amazonaws.cn/SchemaConversionTool/latest/userguide/CHAP_Installing.html
https://docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver15#72
https://jdbc.postgresql.org/download
https://docs.amazonaws.cn/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Global settings O X
Logging Driver settings
File path)
Oracle driver path Browse
Drivers
Microsoft SQL Server driver path CASCT\Microsoft JDBC Driver 7.2 for SQL Server\sgljdbe_7.2\enulmssql-jdbe-7.2.2,jre11 jar Erowse
Performance and memory
SQL Server Windows Authentication library Browse
VM options
MySQL driver path Erowse
Assessment Report
e o = PostgreSQL driver path CASCT\postgresgl-42.2.19 jar Erowse
Security Teradata drivers path Browse
MNaotifications Amazon Redshift driver path Erowse
Tree view Metezza driver path Browse
Greenplum driver path Browse
Vertica driver path Erowse
DB2 driver path Browse
MariaDB driver path Browse
SAP ASE (Sybase ASE) driver path Erowse
Snowflake driver path Browse

5. Choose Apply and then OK.

Create a New Migration Project

OK

Cancel

1. Choose File, and then choose New project wizard. Alternatively, use the keyboard shortcut Ctrl

+W.

2. Enter a project name and select a location for the project files. For Source engine, choose
Microsoft SQL Server, and then choose Next.

3. Enter connection details for the source SQL Server database and choose Test connection to

verify. Choose Next.

4. Select the schema or database to migrate and choose Next.

The progress bar displays the objects that Amazon SCT analyzes. When Amazon SCT completes the

analysis, the application displays the database migration assessment report. Read the Executive

summary and other sections. Note that the information on the screen is only partial. To read the

Create a New Migration Project

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

full report, including details of the individual issues, choose Save to PDF at the top right and open

the PDF document.

Create a new database migration project

Step 1. Choose a source

Step 2. Connect to the source database

Step 3. Choose a schema

Step 4. Run the database migration assessment

Step 5. Choose a target

Database Switch Assessment

Executive summary

& Saveto CSV

O X

J5 Save to PDF

Auto or minimal changes Complex actions
Target platform Conversion Storage objects Code objects
Storage objects| Code objects actions Objects | Conversion | Objects | Conversion
count actions count actions
Amazon RDS 21 11 1 5 z 2 5
for MySQL (81%) (85%) (19%) (15%)
Amazon Aurora 21 1 . 5 5 2 5
(MySQL compatible) (81%) (85%) (19%) (15%)
Amazon RDS 23 12 6 3 3 1]
for PostareSQL (B8%) (929%) (12%) (896)
Amazon Aurora 23 12 6 3 3 1]
(PostgreSQL compatible) (88%) (92%) (12%) (8%)
Amazon RDS 21 1 " 5 z 2 Z
for MariaDB (81%) (85%) (19%) (15%)
. 12 7 14 6

Amazon Redshift 30 14 4

(46%) (54%) (54%) (46%)

0 5 0 0

Amazon Glue 0 0 0

(0%) (10096) (0%) (0%)
Babelfish for 18 1 0 8 3 2 5
Aurora PostareSQL (69%) (85%) (31%) (15%)

Previous MNext Cancel

Scroll down to the Database objects with conversion actions for Amazon Aurora (PostgreSQL

compatible) section.

Create a New Migration Project

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Schema
(2: 2/0/0/00

Table
(62 B/0/040)

Constraint
(4: 4/0,/0/00

Type
(23 0720400

10096

Sequence
(s 700400

Synonym
(2: 0/0/0/2)

10096

Table Type
(21 0/0/072)

100%

Xml schema collection
(1: 070/0/7)

B Objects automatically converted B Cbjects with simple actions
B objects with medium-complexity actions] Objects with complex actions

Scroll further down to the Detailed recommendations for Amazon Aurora (PostgreSQL
compatible) migrations section.

Database objects with conversion actions for Amazon Aurora (PostgreSQL compatible)

Of the total 26 database storage object(s) and 13 database code object(s) in the source database, we identified 23 (88%) database storage object(s) and
12 (92%) database code object(s) that can be converted to Amazon Aurcra (PostgreSOL compatible) automatically or with minimal changes.

We found 1 encrypted object(s).

3 (12%) database storage object(s) require 3 complex user action(s) to complete the conversion.

1 (8%) database code object(s) require 1 complex user action(s) to complete the conversion,

Return to Amazon SCT and choose Next. Enter the connection details for the target Aurora

PostgreSQL database and choose Finish.

When the connection is complete, Amazon SCT displays the main window. In this interface, you can
explore the individual issues and recommendations discovered by Amazon SCT.

Create a New Migration Project 9

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Choose the schema, open the context (right-click) menu, and then choose Create report to create a
report tailored for the target database type. You can view this report in Amazon SCT.

The progress bar updates while the report is generated.
Amazon SCT displays the executive summary page of the database migration assessment report.

Choose Action items. In this window, you can investigate each issue in detail and view the
suggested course of action. For each issue, drill down to view all instances of that issue.

Choose the database name, open the context (right-click) menu, and choose Convert schema.
Make sure that you uncheck the sys and information_schema system schemas. Aurora
PostgreSQL already has an information_schema schema.

This step doesn’t make any changes to the target database.

On the right pane, Amazon SCT displays the new virtual schema as if it exists in the target
database. Drilling down into individual objects displays the actual syntax generated by Amazon
SCT to migrate the objects.

Choose the database on the right pane, open the context (right-click) menu, and choose either
Apply to database to automatically run the conversion script against the target database, or
choose Save as SQL to save to an SQL file.

¥ Amazon Aurora (PostgreSQL compatible)

T

¥ == postgres@pg-playbooks-instance-1.crv77o85ivBn.eu-central-1

¥ || & Schemas [1]

| L Fareign ¢ O Load schema
¥ [| S Server Le ¥ Hide schema

v | e Contex D Refresh from database

v | SQL Scrip Apply to database

& Save as SOL

[Apply extension pack

We recommend saving to an SQL file because you can verify and QA the converted code. Also, you
can make the adjustments needed for objects that couldn’t be automatically converted.

For more information, see the Schema Conversion Tool user guide.

Create a New Migration Project 10

https://docs.amazonaws.cn/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Amazon SCT Action Code Index overview

This topic provides reference information for the automation levels and action codes used by
Amazon Schema Conversion Tool (Amazon SCT) when migrating from Microsoft SQL Server
2019 to Amazon Aurora PostgreSQL. You can use this information to understand the degree of
automation available for various database objects and features during the migration process.

The following table shows the icons we use to describe the automation levels of Amazon Schema
Conversion Tool (Amazon SCT) and Amazon Database Migration Service (Amazon DMS).

Automation level icon Description

Full automation. Amazon SCT performs fully

@ @ @ @ @ automatic conversion, no manual conversion

needed.

High automation. Minor, simple manual

@ @ @ @ conversions may be needed.

Medium automation. Low-medium complexit

@ @ @ y manual conversions may be needed.

Low automation. Medium-high complexity

@ @ manual conversions may be needed.

Very low automation. High risk or complex
@ manual conversions may be needed.

No automation. Not currently supported by
Amazon SCT, manual conversion is required
for this feature.

Amazon SCT Action Code Index overview 11

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The following sections list the Amazon Schema Conversion Tool Action codes for topics that are
covered in this playbook.

® Note

The links in the table point to the Microsoft SQL Server topic pages, which are immediately
followed by the PostgreSQL pages for the same topics.

Creating Tables

SLOQ

Amazon SCT automatically converts the most commonly used constructs of the CREATE TABLE
statement as both SQL Server and Amazon Aurora PostgreSQL-Compatible Edition (Aurora
PostgreSQL) support the entry level American National Standards Institute (ANSI) compliance.
These items include table names, containing security schema or database, column names, basic
column data types, column and table constraints, column default values, primary, UNIQUE, and
foreign keys. Some changes may be required for computed columns and global temporary tables.

For more information, see Creating Tables.

Action code Action message

7659 If you use recursion, make sure that table
variables in your source database and
temporary tables in your target database have
the same scope.

7665 PostgreSQL doesn't support FILESTREAM
clauses. Amazon SCT skips FILESTREAM
clauses in the converted code.

7678 Amazon SCT replaced computed columns with
regular columns in the converted code.

Creating Tables 12

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Action code

7679
7680
7812

7835

Data Types

SOQ

Action message

Amazon SCT replaced computed columns with
triggers in the converted code.

PostgreSQL doesn't support global temporary
tables.

Make sure that you remove the temporary
table before the end of the function.

PostgreSQL doesn't support CREATE TABLE
statements with the AS FileTable option.

Data type syntax and rules are very similar between SQL Server and Aurora PostgreSQL and most
are converted automatically by Amazon SCT. Note that date and time handling paradigms are
different for SQL Server and Aurora PostgreSQL and require manual verification or conversion. Also
note that due to differences in data type behavior between SQL Server and Aurora PostgreSQL,
manual verification and strict testing are highly recommended.

For more information, see Data Types.

Action code

7657

7658

7662

Action message

PostgreSQL doesn't support the hierarchy
id data type.

PostgreSQL doesn't support the sql_varia
nt data type.

PostgreSQL doesn’t support the geography
data type.

Data Types

13

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Action code

7664

7690

7706

7707

7708

7773

7775

Collations

Action message

PostgreSQL doesn't support the geometry
data type.

PostgreSQL doesn't support table types.

Amazon SCT can’t convert the declaration of a
variable of the unsupported %s data type.

Amazon SCT can't convert the usage of a
variable of the unsupported %s data type.

Amazon SCT can't convert the usage of the
unsupported %s data type.

Amazon SCT can't convert arithmetic
operations with dates.

Converted code might lose accuracy compared
to the source code.

The collation paradigms of SQL Server and Aurora PostgreSQL are significantly different. Amazon
SCT can't migrate collations automatically to PostgreSQL.

For more information, see SQL Server Collations and PostgreSQL Encoding.

Action code

7646

Action message

Amazon SCT can't convert collations.

Collations

14

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PIVOT and UNPIVOT

Aurora PostgreSQL version 10 doesn’t support PIVOT and UNPIVOT clauses. Amazon SCT can't
automatically convert PIVOT and UNPIVOT clauses.

For more information, see PIVOT and UNPIVOT.

Action code Action message

7905 PostgreSQL doesn’t support PIVOT clauses for
SELECT statements.

7906 PostgreSQL doesn't support UNPIVOT clauses
for SELECT statements.

TOP and FETCH

SOQ

Aurora PostgreSQL supports the non-ANSI compliant but popular with other engines LIMIT...
OFFSET operator for paging results sets. Amazon SCT can't automatically convert some options
such as WITH TIES. These options require manual conversion.

For more information, see SQL Server TOP and FETCH and PostgreSQL LIMIT and OFFSET.

Action code Action message

7605 PostgreSQL doesn't support the WITH TIES
argument in TOP clauses.

7796 PostgreSQL doesn't support TOP clauses in
UPDATE statements.

PIVOT and UNPIVOT 15

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbo

ok

Action code

7798

7799

Cursors

SO

Action message

PostgreSQL doesn't support TOP clauses in
DELETE statements.

PostgreSQL doesn't support TOP clauses in
INSERT operators.

PostgreSQL has PL/pgSQL cursors that enable you to iterate business logic on rows read from

the database. They can encapsulate the query and read the query results a few rows at a time.

All access to cursors in PL/pgSQL is performed through cursor variables, which are always of the
refcursor data type. There are specific options which aren't supported for automatic conversion

by Amazon SCT.

For more information, see Cursors.

Action code

7637

7639

7700

7701

Action message
PostgreSQL doesn't support global cursors.
PostgreSQL doesn't support dynamic cursors.

Amazon SCT can't convert the KEYSET option
because PostgreSQL doesn’t support changing
the membership and order of rows for cursors.

Amazon SCT doesn’t convert the FAST_FORW
ARD option because this is a default option
for cursors in PostgreSQL.

Cursors

16

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Action code

7702

7704
7705

7803

Flow Control

terkieRe

Action message

Amazon SCT doesn’t convert the READ_ONLY
option because this is a default option for
cursors in PostgreSQL.

PostgreSQL doesn’t support the OPTIMISTI
C option for cursors.

PostgreSQL doesn't support the TYPE_WARN
ING option for cursors.

PostgreSQL doesn't support the FOR UPDATE
option.

Although the flow control syntax of SQL Server differs from Aurora PostgreSQL, Amazon SCT
can convert most constructs automatically including loops, command blocks, and delays. Aurora
PostgreSQL doesn’t support the GOTO and WAITFOR TIME commands, which require manual

conversion.

For more information, see SQL Server Flow Control and PostgreSQL Control Structures.

Action code

7628

7691

7801

Action message
PostgreSQL doesn’'t support GOTO statements.

PostgreSQL doesn't support the WAITFOR
TIME feature.

Make sure that your table isn't locked by an
open cursor.

Flow Control

17

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Action code
7802
7810
7821
7826

7827

Transaction Isolation

terkieRe

Action message

Make sure that you delete the table that you
created within the procedure before the end
of the procedure.

PostgreSQL doesn't support SET NOCOUNT
OFF statements.

Amazon SCT can't convert the WAITFOR
operator with a variable.

Amazon SCT can’t convert the default value of

the DateTime variable.

Amazon SCT can't convert default values.

Aurora PostgreSQL supports the four transaction isolation levels specified in the SQL:92 standard:
READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE, all of which
are automatically converted by Amazon SCT. Also, Amazon SCT converts BEGIN / COMMIT and

ROLLBACK commands that use slightly different syntax. Manual conversion is required for named,

marked, and delayed durability transactions that aren't supported by Aurora PostgreSQL.

For more information, see Transactions.

Action code

7807

Action message

Amazon SCT can't convert the transaction
management command. PostgreSQL doesn’t
support explicit transaction management
commands such as BEGIN TRAN, SAVE TRAN
in functions.

Transaction Isolation

18

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Stored Procedures

SLOQ

Aurora PostgreSQL stored procedures provide very similar functionality to SQL Server stored
procedures. You can automatically convert them with Amazon SCT. Manual conversion is required
for procedures that use RETURN values and some less common EXECUTE options such as the
RECOMPILE and RESULTS SETS.

For more information, see Stored Procedures.

Action code Action message

7640 PostgreSQL doesn't support EXECUTE
statements with the WITH RECOMPILE
option.

7641 PostgreSQL doesn’'t support EXECUTE

statements with the RESULT SETS
UNDEFINED option.

7642 PostgreSQL doesn’'t support EXECUTE
statements with the RESULT SETS NONE
option.

7643 PostgreSQL doesn’'t support EXECUTE

statements with the RESULT SETS
DEFINITION option.

7672 PostgreSQL doesn’t support EXECUTE
statements that run a character string.

7695 PostgreSQL doesn't support support the call
of a procedure as a variable.

7800 PostgreSQL doesn't support result sets in the
SQL Server style.

Stored Procedures 19

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Action code

7830
7838

7839

Triggers

terkieie

Action message

Amazon SCT can't convert arithmetic
operations with the CASE operand.

Amazon SCT can't convert EXECUTE
statements with LOGIN or USER options.

Converted code might not work correctly
because of parameter names.

Aurora PostgreSQL supports BEFORE and AFTER triggers for INSERT, UPDATE, and DELETE.
However, Aurora PostgreSQL triggers differ substantially from SQL Server's triggers. You can
migrate the most common use cases with minimal code changes.

For more information, see Triggers.

Action code

7809

7832

7909

Action message

PostgreSQL doesn't support INSTEAD OF
triggers on tables.

Amazon SCT can’t convert INSTEAD OF
triggers on views.

Amazon SCT can't convert UPDATE(column)
or COLUMNS_UPDATED statements.

Triggers

20

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

MERGE

Aurora PostgreSQL version 10 doesn’t support MERGE statements. Amazon SCT can’t automatically
convert these statements. Manual conversion is straightforward in most cases.

For more information, see MERGE.

Action code Action message

7915 Converted code might produce different
results compared to the source code. Make
sure that the constraint includes the %s
column.

7916 Amazon SCT can’'t emulate the MERGE
statement using the INSERT ON CONFLICT
statement.

Query Hints

teiieHRe

You can use Amazon SCT to convert basic query hints such as index hints, except for data
manipulation language (DML) statements. Note that specific optimizations used for SQL Server
may be completely inapplicable to a new query optimizer. Amazon recommends to start migration
testing with all hints removed. Then, selectively apply hints as a last resort if other means such

as schema, index, and query optimizations have failed. Plan guides aren’t supported by Aurora
PostgreSQL.

For more information, see SQL Server Query Hints and Plan Guides and PostgreSQL DB Query
Planning.

MERGE 21

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Action code Action message
7823 PostgreSQL doesn't support table hints in
DML statements.

Full-Text Search

Migrating full-text indexes from SQL Server to Aurora PostgreSQL requires a full rewrite of the
code that deals with both creating, managing, and querying full-text indexes. Amazon SCT can't
automatically convert these statements.

For more information, see Full-Text Search.

Action code Action message
7688 PostgreSQL doesn't support FREETEXT
predicates.
Indexes

SO

Basic non-clustered indexes, which are the most commonly used type of indexes are automatically
migrated by Amazon SCT. In addition, filtered indexes, indexes with included columns, and some
SQL Server specific index options can't be migrated automatically and require manual conversion.

For more information, see Indexes.

Full-Text Search 22

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Action code

7675

7681

7682

7781

7782

7783

7784

7785

7786

7787

7788

7789

7790

Action message

PostgreSQL doesn’t support ASC and DESC
sorting options for constraints.

PostgreSQL doesn't support clustered indexes.

PostgreSQL doesn't support the INCLUDE
option in indexes.

PostgreSQL doesn't support the PAD_INDEX
option in indexes.

PostgreSQL doesn't support the SORT_IN_T
EMPDB option in indexes.

PostgreSQL doesn't support the IGNORE_DU
P_KEY option in indexes.

PostgreSQL doesn't support the STATISTIC
S_NORECOMPUTE option in indexes.

PostgreSQL doesn't support the STATISTIC
S_INCREMENTAL option inindexes.

PostgreSQL doesn't support the DROP_EXIS
TING optioninindexes.

PostgreSQL doesn't support the ONLINE
option in indexes.

PostgreSQL doesn't support the ALLOW_ROW
_LOCKS option in indexes.

PostgreSQL doesn't support the ALLOW_PAG
E_LOCKS option in indexes.

PostgreSQL doesn't support the MAXDOP
option in indexes.

Indexes

23

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Action code

7791

Partitioning

terkieRe

Action message

PostgreSQL doesn't support the DATA_COMP
RESSION option inindexes.

Aurora PostgreSQL uses table inheritance, some of the physical aspects of partitioning in

SQL Server don't apply to Aurora PostgreSQL. For example, the concept of file groups and
assigning partitions to file groups. Aurora PostgreSQL supports a much richer framework for table
partitioning than SQL Server, with many additional options such as hash partitioning, and sub

partitioning.

For more information, see SQL Server Partitioning and PostgreSQL Partitions or Table Inheritance.

Action code

7910

7911

7912

7913

7914

Action message

PostgreSQL doesn’t support NULL columns for
partitioning.

PostgreSQL doesn't support foreign keys
referencing partitioned tables.

PostgreSQL doesn’t support foreign key
references from partitioned tables to other
tables.

PostgreSQL doesn't support LEFT partition
ing.

Converted code might produce different
results compared to the source code.

Partitioning

24

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Starting from version 11, PostgreSQL supports NULL columns for partitioning. In this case, you can
ignore the action item with the 7910 code and use NULL columns for partitioning in your target
tables.

Backup

Migrating from a self-managed backup policy to a Platform as a Service (PaaS) environment such
as Aurora PostgreSQL is a complete paradigm shift. You don't need to worry about transaction
logs, file groups, disks running out of space, and purging old backups. Amazon Relational Database
Service (Amazon RDS) provides guaranteed continuous backup with point in time restore up to 35
days. Therefore, Amazon SCT doesn't automatically convert backups.

For more information, see Backup and Restore.

Action code Action message

7903 PostgreSQL doesn't support functionality
similar to SQL Server Backup.

SQL Server Mail

Aurora PostgreSQL doesn't provide native support for sending emails from the database.

For more information, see Database Mail.

Action code Action message

7900 PostgreSQL doesn’t support functionality
similar to SQL Server Database Mail.

Backup 25

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Graph

Amazon SCT doesn't convert graph database capabilities.

For more information and potential workarounds, see SQL Server Graph and PostgreSQL Apache
AGE Extension.

Action code Action message
7931 Amazon SCT can't convert SQL Graph tables.
7932 Amazon SCT can't convert DML constructs of

SQL Graph databases.

SQL Server Agent

Aurora PostgreSQL doesn’t provide functionality similar to SQL Server Agent as an external, cross-
instance scheduler. However, Aurora PostgreSQL provides a native, in-database scheduler. It is
limited to the cluster scope and can't be used to manage multiple clusters. Therefore, Amazon SCT
can't automatically convert Agent jobs and alerts.

For more information, see SQL Server Agent and PostgreSQL Scheduled Lambda.

Action code Action message

7902 PostgreSQL doesn't support functionality
similar to SQL Server Agent.

Graph 26

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Service Broker
Aurora PostgreSQL doesn't provide a compatible solution to the SQL Server Service Broker.
However, you can use DB Links and Amazon Lambda to achieve similar functionality.
For more information, see SQL Server Service Broker Essentials.
Action code Action message
7901 PostgreSQL doesn’t support functionality

similar to SQL Server Service Broker.

XML

SO

The XML options and features in Aurora PostgreSQL are similar or almost identical to SQL Server
XPATH and XQUERY functions. PostgreSQL doesn't support FOR XML clause, the walkaround for

that is using string_agg instead. In some cases, it might be more efficient to use JSON instead of
XML.

For more information, see JSON and XML.

Action code Action message

7816 PostgreSQL doesn't support methods for the
XML data type.

7817 PostgreSQL doesn't support the FOR XML

PATH option in SQL queries.

Service Broker 27

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Action code

7920

7924

Constraints

SLOQ

Action message

PostgreSQL doesn't support EXPLICIT mode
with FOR XML.

PostgreSQL doesn’t support XPath queries
that return multiple elements.

Constraints feature is almost fully automated and compatible between SQL Server and Aurora

PostgreSQL. The differences are: missing SET DEFAULT and check constraint with sub-query.

For more information, see SQL Server Constraints and PostgreSQL Table Constraints.

Action code

7606

7675

7825

7915

Action message

PostgreSQL doesn't support foreign keys that
reference partitioned tables.

PostgreSQL doesn’'t support ASC and DESC
sorting options for constraints.

Amazon SCT removed the default value of the
DateTime column.

Converted code might produce different
results compared to the source code. Make
sure that the constraint includes the %s
column.

Constraints

28

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Linked Servers

terkieRe

Aurora PostgreSQL supports remote data access from the database. Connectivity between schemas
is trivial, but connectivity to other instances require an extension installation.

For more information, see SQL Server Linked Servers and PostgreSQL DBLink and FDWrapper.

Action code Action message

7645 PostgreSQL doesn't support running pass-thro
ugh commands on linked servers.

Synonyms

teiieHRe

Aurora PostgreSQL supports synonyms. If synonyms refer to tables, views, or functions, you can
replace them with views or functions to wrap those. It becomes more challenging when synonyms
refer to other objects.

For more information, see SQL Server Synonyms and PostgreSQL Views, Types, and Functions.

Action code Action message

7792 PostgreSQL doesn't support synonyms.

Amazon Database Migration Service overview

This topic provides conceptual information about Amazon Database Migration Service (Amazon
DMS). It introduces you to the capabilities and benefits of Amazon DMS for migrating databases to
Amazon quickly and securely

Linked Servers 29

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The Amazon Database Migration Service (Amazon DMS) helps you migrate databases to Amazon
quickly and securely. The source database remains fully operational during the migration,
minimizing downtime to applications that rely on the database. The Amazon Database Migration
Service can migrate your data to and from most widely-used commercial and open-source
databases.

The service supports homogenous migrations such as Oracle to Oracle as well as heterogeneous
migrations between different database platforms such as Oracle to Amazon Aurora or Microsoft
SQL Server to MySQL. You can also use Amazon DMS to stream data to Amazon Redshift,

Amazon DynamoDB, and Amazon S3 from any of the supported sources, which are Amazon
Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, SAP ASE, SQL Server, IBM DB2 LUW, and
MongoDB, enabling consolidation and easy analysis of data in a petabyte-scale data warehouse.
The Amazon Database Migration Service can also be used for continuous data replication with high
availability.

For Amazon DMS pricing, see Database Migration Service pricing.

For all supported sources for Amazon DMS, see Sources for data migration.

For all supported targets for Amazon DMS, see Targets for data migration.

Migration Tasks Performed by Amazon DMS

In a traditional solution, you need to perform capacity analysis, procure hardware and software,
install and administer systems, and test and debug the installation. Amazon DMS automatically
manages the deployment, management, and monitoring of all hardware and software needed
for your migration. You can start your migration within minutes of starting the Amazon DMS
configuration process.

With Amazon DMS, you can scale up (or scale down) your migration resources as needed to match
your actual workload. For example, if you determine that you need additional storage, you can
easily increase your allocated storage and restart your migration, usually within minutes. On the
other hand, if you discover that you aren't using all of the resource capacity you configured, you
can easily downsize to meet your actual workload.

Amazon DMS uses a pay-as-you-go model. You only pay for Amazon DMS resources while you
use them as opposed to traditional licensing models with up-front purchase costs and ongoing
maintenance charges.

Migration Tasks Performed by Amazon DMS 30

https://www.amazonaws.cn/dms/pricing
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_Source.html
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_Target.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Amazon DMS automatically manages all of the infrastructure that supports your migration server
including hardware and software, software patching, and error reporting.

Amazon DMS provides automatic failover. If your primary replication server fails for any reason, a
backup replication server can take over with little or no interruption of service.

Amazon DMS can help you switch to a modern, perhaps more cost-effective database engine

than the one you are running now. For example, Amazon DMS can help you take advantage of

the managed database services provided by Amazon RDS or Amazon Aurora. Or, it can help you
move to the managed data warehouse service provided by Amazon Redshift, NoSQL platforms
like Amazon DynamoDB, or low-cost storage platforms like Amazon S3. Conversely, if you want to
migrate away from old infrastructure but continue to use the same database engine, Amazon DMS
also supports that process.

Amazon DMS supports nearly all of today’s most popular DBMS engines as data sources, including
Oracle, Microsoft SQL Server, MySQL, MariaDB, PostgreSQL, Db2 LUW, SAP, MongoDB, and
Amazon Aurora.

Amazon DMS provides a broad coverage of available target engines including Oracle, Microsoft
SQL Server, PostgreSQL, MySQL, Amazon Redshift, SAP ASE, Amazon S3, and Amazon DynamoDB.

You can migrate from any of the supported data sources to any of the supported data targets.
Amazon DMS supports fully heterogeneous data migrations between the supported engines.

Amazon DMS ensures that your data migration is secure. Data at rest is encrypted with Amazon
Key Management Service (Amazon KMS) encryption. During migration, you can use Secure Socket
Layers (SSL) to encrypt your in-flight data as it travels from source to target.

How Amazon DMS Works

At its most basic level, Amazon DMS is a server in the Amazon Cloud that runs replication software.
You create a source and target connection to tell Amazon DMS where to extract from and load to.
Then, you schedule a task that runs on this server to move your data. Amazon DMS creates the
tables and associated primary keys if they don't exist on the target. You can pre-create the target
tables manually if you prefer. Or you can use Amazon SCT to create some or all of the target tables,
indexes, views, triggers, and so on.

The following diagram illustrates the Amazon DMS process.

How Amazon DMS Works 31

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Amazon Cloud Technologies

Amazon DMS

!;I Replication Instance
O O & O 6

Source Replication Task Target

S
ouree Endpoint Endpoint

Database

Target
Database

Latest Updates

Amazon DMS is continuously evolving and supporting more and more options, find some of the
latest updates following:

 Support for full-load with change data capture (CDC) and CDC-only tasks running against Oracle
source tables created using the CREATE TABLE AS statement.

« New MySQL version Amazon DMS now supports MySQL version 8.0 as a source except when the
transaction payload is compressed.

» Support for Amazon Secrets Manager integration. You can store the database connection details
(user credentials) for supported endpoints securely in Amazon Secrets Manager. You can then
submit the corresponding secret instead of plain-text credentials to Amazon DMS when you
create or modify an endpoint. Amazon DMS then connects to the endpoint databases using the
secret. For more information, see Using secrets to access Database Migration Service endpoints.

» Support for Oracle extended data types for source and target.
» Support for TLS 1.2 for MySQL endpoints.
o Support for TLS 1.2 for SQL Server endpoints.

For a complete guide with a step-by-step walkthrough including all the latest notes for migrating
SQL Server to Aurora MySQL with Amazon DMS, see Migrating a SQL Server Database to Amazon
Aurora MySQL.

Latest Updates 32

https://docs.amazonaws.cn/dms/latest/userguide/CHAP_Security.html#security_iam_secretsmanager
https://docs.amazonaws.cn/dms/latest/sbs/chap-sqlserver2aurora.html
https://docs.amazonaws.cn/dms/latest/sbs/chap-sqlserver2aurora.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information about Amazon DMS, see What is Database Migration Service? and Best
practices for Database Migration Service.

Amazon RDS on Outposts overview

This topic provides conceptual information about Amazon RDS on Outposts, a service that extends
Amazon RDS capabilities to on-premises environments. You can learn about how this service
enables you to run fully managed databases in your own data centers or co-location facilities,
offering low-latency access to local systems and data processing capabilities.

(® Note

This topic is related to Amazon Relational Database Service (Amazon RDS) and isn't
supported with Amazon Aurora.

Amazon RDS on Outposts is a fully managed service that offers the same Amazon infrastructure,
Amazon services, APls, and tools to virtually any data center, co-location space, or on-premises
facility for a truly consistent hybrid experience. Amazon RDS on Outposts is ideal for workloads
that require low latency access to on-premises systems, local data processing, data residency, and
migration of applications with local system inter-dependencies.

When you deploy Amazon RDS on Outposts, you can run Amazon RDS on premises for low latency
workloads that need to be run in close proximity to your on-premises data and applications.
Amazon RDS on Outposts also enables automatic backup to an Amazon Region. You can manage
Amazon RDS databases both in the cloud and on premises using the same Amazon Management
Console, APIs, and CLI. Amazon RDS on Outposts supports Microsoft SQL Server, MySQL, and
PostgreSQL database engines, with support for additional database engines coming soon.

How It Works

Amazon RDS on Outposts lets you run Amazon RDS in your on-premises or co-location site. You
can deploy and scale an Amazon RDS database instance in Outposts just as you do in the cloud,
using the Amazon console, APIs, or CLI. Amazon RDS databases in Outposts are encrypted at rest
using Amazon KMS keys. Amazon RDS automatically stores all automatic backups and manual
snapshots in the Amazon Region.

Amazon RDS on Outposts overview 33

https://docs.amazonaws.cn/dms/latest/userguide/Welcome.html
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_BestPractices.html
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_BestPractices.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

~

A
& = Tl -

ey, - .
||_ * (: T _—: R:I |"-L — . A
Amazon RDS I Llj I I:_-_ _,.j A
L L/ J L P,
E ; Amazon 53 1.deploys RDS in your 2. Manage your RDS 3. Backups and
O Premises site database in Cutposts snapshots are
using a secure using the Console, CLI, automatically stored
connection and APls, Databases in the Region
@»ﬂ KMS are encrypted using KMS

This option is helpful when you need to run Amazon RDS on premises for low latency workloads
that need to be run in close proximity to your on-premises data and applications.

For more information, see Amazon Outposts Family, Amazon RDS on Outposts, and Create Amazon

RDS DB Instances on Outposts.

Amazon RDS Proxy overview

This topic provides conceptual topic about Amazon RDS Proxy, a fully managed database proxy
service for Amazon RDS. It introduces the key benefits and functionality of RDS Proxy, explaining
how it improves application scalability, resilience, and security.understand the purpose and
advantages of using Amazon RDS Proxy in their database architecture.

Amazon RDS Proxy is a fully managed, highly available database proxy for Amazon Relational
Database Service (RDS) that makes applications more scalable, more resilient to database failures,
and more secure.

Many applications, including those built on modern server-less architectures, can have many open
connections to the database server, and may open and close database connections at a high rate,
exhausting database memory and compute resources. Amazon RDS Proxy allows applications

to pool and share connections established with the database, improving database efficiency

Amazon RDS Proxy overview 34

https://www.amazonaws.cn/outposts
https://www.amazonaws.cn/rds/outposts
https://www.amazonaws.cn/blogs/aws/new-create-amazon-rds-db-instances-on-aws-outposts
https://www.amazonaws.cn/blogs/aws/new-create-amazon-rds-db-instances-on-aws-outposts

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

and application scalability. With Amazon RDS Proxy, fail-over times for Aurora and Amazon RDS
databases are reduced by up to 66%. You can manage database credentials, authentication,
and access through integration with Amazon Secrets Manager and Amazon Identity and Access
Management (IAM).

You can turn on Amazon RDS Proxy for most applications with no code changes. You don’t need
to provision or manage any additional infrastructure. Pricing is simple and predictable: you pay
for each vCPU of the database instance for which the proxy is enabled. Amazon RDS Proxy is now
generally available for Aurora MySQL, Aurora PostgreSQL, Amazon RDS for MySQL, and Amazon
RDS for PostgreSQL.

Amazon RDS Proxy Benefits

« Improved application performance. Amazon RDS proxy manages a connection pooling which
helps with reducing the stress on database compute and memory resources that typically occurs
when new connections are established and it is useful to efficiently support a large number and
frequency of application connections.

 Increase application availability. By automatically connecting to a new database instance while
preserving application connections Amazon RDS Proxy can reduce fail-over time by 66%.

« Manage application security. Amazon RDS Proxy also enables you to centrally manage database
credentials using Amazon Secrets Manager.

« Fully managed. Amazon RDS Proxy gives you the benefits of a database proxy without requiring
additional burden of patching and managing your own proxy server.

o Fully compatible with your database. Amazon RDS Proxy is fully compatible with the protocols
of supported database engines, so you can deploy Amazon RDS Proxy for your application
without making changes to your application code.

 Available and durable. Amazon RDS Proxy is highly available and deployed over multiple
Availability Zones (AZs) to protect you from infrastructure failure.

Amazon RDS Proxy Benefits 35

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

How Amazon RDS Proxy Works

—
%

A\ i =~
S I~
’ P N R
.‘.\! - '.‘; I"‘- e l
-3 ¥ i \J A
Client Applications RDS Proxy RDS Database
Your application is pointed RDS Proxy sits between RDS Proxy pools and shares
to the RDS Proxy endpoint your application and database DB connections, improving
to efficiently manage database efficiency and
DB connections application scalability

For more information, see Amazon RDS Proxy for Scalable Serverless Applications and Amazon
RDS Proxy.

Amazon Aurora Serverless v1 overview

This topic provides conceptual information about Amazon Aurora Serverless. It introduces Aurora
Serverless as an on-demand autoscaling configuration for Amazon Aurora, explaining how it
automatically adjusts compute capacity based on application needs.

Amazon Aurora Serverless version 1 (v1) is an on-demand autoscaling configuration for Amazon
Aurora. An Aurora Serverless DB cluster is a DB cluster that scales compute capacity up and down
based on your application’s needs. This contrasts with Aurora provisioned DB clusters, for which
you manually manage capacity. Aurora Serverless v1 provides a relatively simple, cost-effective
option for infrequent, intermittent, or unpredictable workloads. It is cost-effective because it
automatically starts up, scales compute capacity to match your application’s usage, and shuts
down when it's not in use.

To learn more about pricing, see Serverless Pricing under MySQL-Compatible Edition or
PostgreSQL-Compatible Edition on the Amazon Aurora pricing page.

Aurora Serverless v1 clusters have the same kind of high-capacity, distributed, and highly available
storage volume that is used by provisioned DB clusters. The cluster volume for an Aurora Serverless
v1 cluster is always encrypted. You can choose the encryption key, but you can't disable encryption.
That means that you can perform the same operations on an Aurora Serverless v1 that you can on
encrypted snapshots. For more information, see Aurora Serverless v1 and snapshots.

Aurora Serverless v1 provides the following advantages:

How Amazon RDS Proxy Works 36

https://www.amazonaws.cn/blogs/aws/amazon-rds-proxy-now-generally-available
https://www.amazonaws.cn/rds/proxy
https://www.amazonaws.cn/rds/proxy
https://www.amazonaws.cn/rds/aurora/pricing

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Simpler than provisioned. Aurora Serverless v1 removes much of the complexity of managing
DB instances and capacity.

» Scalable. Aurora Serverless v1 seamlessly scales compute and memory capacity as needed, with
no disruption to client connections.

» Cost-effective. When you use Aurora Serverless v1, you pay only for the database resources that
you consume, on a per-second basis.

« Highly available storage. Aurora Serverless v1 uses the same fault-tolerant, distributed storage
system with six-way replication as Aurora to protect against data loss.

Aurora Serverless v1 is designed for the following use cases:

 Infrequently used applications. You have an application that is only used for a few minutes
several times for each day or week, such as a low-volume blog site. With Aurora Serverless v1,
you pay for only the database resources that you consume on a per-second basis.

» New applications. You're deploying a new application and you're unsure about the instance
size you need. By using Aurora Serverless v1, you can create a database endpoint and have the
database automatically scale to the capacity requirements of your application.

 Variable workloads. You're running a lightly used application, with peaks of 30 minutes to
several hours a few times each day, or several times for each year. Examples are applications for
human resources, budgeting, and operational reporting applications. With Aurora Serverless v1,
you no longer need to provision for peak or average capacity.

« Unpredictable workloads. You're running daily workloads that have sudden and unpredictable
increases in activity. An example is a traffic site that sees a surge of activity when it starts raining.
With Aurora Serverless v1, your database automatically scales capacity to meet the needs of the
application's peak load and scales back down when the surge of activity is over.

» Development and test databases. Your developers use databases during work hours but don't
need them on nights or weekends. With Aurora Serverless v1, your database automatically shuts
down when it's not in use.

« Multi-tenant applications. With Aurora Serverless v1, you don't have to individually manage
database capacity for each application in your fleet. Aurora Serverless v1 manages individual
database capacity for you.

This process takes almost no time and since the storage is shared between nodes Aurora can scale
up or down in seconds for most workloads. The service currently has autoscaling thresholds of

Amazon Aurora Serverless v1 overview 37

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

1.5 minutes to scale up and 5 minutes to scale down. That means metrics must exceed the limits
for 1.5 minutes to trigger a scale up or fall below the limits for 5 minutes to trigger a scale down.
The cool-down period between scaling activities is 5 minutes to scale up and 15 minutes to scale
down. Before scaling can happen the service has to find a “scaling point” which may take longer
than anticipated if you have long-running transactions. Scaling operations are transparent to the
connected clients and applications since existing connections and session state are transferred

to the new nodes. The only difference with pausing and resuming is a higher latency for the first
connection, typically around 25 seconds. You can find more details in the documentation.

= Amazon Cloud Technologies

Router fleet Warm pool of Amazon Aurora
DB capacity
K A ==
| 08 '8 (5
sy (=]
Application DB Storage
K A -
o]) O y= =
¢ N (=]
Application DB Storage
LR E z ﬁ
0 &
X €N (=
DB Storage
Application

How to Provision

Log in to your Management Console, choose Amazon RDS , and then choose Create database.

On Engine options, for Engine versions, choose Show versions that support Serverless v2.

How to Provision 38

https://eu-central-1.console.aws.amazon.com/rds/home?#databases:

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Engine options

Engine type Info

© Amazon Aurora MySQL MariaDB
+
25 &
PostgreSQL Oracle Microsoft SQL Server

ORACLE Egb g(f)dL Server

Edition
Amazon Aurora MySQL-Compatible Edition
© Amazon Aurora PostgreSQL-Compatible Edition

Engine version Info
View the engine versions that support the following database features.

¥ Hide filters

@ show versions that support Serverless v2
Offers instance scaling for even the most demanding workloads.

(® show versions that support the Babelfish for PostgreSQL feature

Makes possible faster, cheaper, and lower-risk migrations from Microsoft SQL Server to Aurora PostgreSQL.

Available versions (1/22) Info

Aurora PostgreSQL (Compatible with PostgreSQL 13.6) v

Choose the capacity settings for your use case.

How to Provision 39

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Capacity settings
This billing estimate is based on published prices. Leam more [A
Minimum Aurora capacity units Info Maximum Aurora capacity units Info
2 ACU v 64 ACU v
4 GiB RAM 122 GiB RAM

For more information, see Amazon Aurora Serverless, Aurora Serverless MySQL Generally Available,

and Amazon Aurora PostgreSQL Serverless Now Generally Available.

How to Provision 40

https://www.amazonaws.cn/rds/aurora/serverless
https://www.amazonaws.cn/blogs/aws/aurora-serverless-ga/
https://www.amazonaws.cn/blogs/aws/amazon-aurora-postgresql-serverless-now-generally-available

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Migrating ANSI SQL features

This topic provides conceptual content comparing various database features and functionalities
between Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can gain valuable
insights into the similarities and differences in areas such as object naming conventions, SQL
constraints, table creation, Common Table Expressions (CTEs), data type compatibility, derived
tables, grouping operations, join operations, temporal tables, views, and window functions.
Understanding these concepts is crucial for database administrators and developers planning a
migration from SQL Server to Aurora PostgreSQL. By familiarizing yourself with these comparisons,
you can anticipate potential challenges, make informed decisions about database migration
strategies, and ensure a smooth transition of your database operations and applications to the new
PostgreSQL environment.

Topics

» Case sensitivity differences for ANSI SQL

o Constraints for ANSI SQL

» Creating tables for ANSI SQL

o Common table expressions for ANSI SQL

« Data types for ANSI SQL

» Derived tables for ANSI SQL

« GROUP BY for ANSI SQL

« Table JOIN for ANSI SQL

« Temporal tables for ANSI SQL

« Views for ANSI SQL

« Window functions for ANSI SQL

Case sensitivity differences for ANSI SQL

This topic provides reference information on handling object name case sensitivity when migrating
from Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL. You can use this information to
ensure proper naming conventions and avoid potential conflicts during the migration process.

Case sensitivity differences for ANSI SQL 41

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Object name case sensitivity might be different for SQL Server and PostgreSQL. By default, SQL
Server names are case insensitive. However, you can create a case sensitive SQL Server database by
changing the COLLATION property. In PostgreSQL, object names are case insensitive.

By default, the Amazon Schema Conversion Tool (Amazon SCT) uses object names in lowercase
for PostgreSQL. If your source code includes objects with identical names in different case, make
sure that you keep unique names in your converted code. You can enclose object names in double
quotation marks or change the names manually.

In addition to this, you can use Amazon Database Migration Service transformation actions to
change schema, table, and column names to lowercase. For more information, see Transformation

rules and actions.

To use an uppercase name, enclose object names with double quotation marks. The following code
example shows how to create the EMPLOYEES table in uppercase.

CREATE TABLE "EMPLOYEES" (
EMP_ID NUMERIC PRIMARY KEY,
EMP_FULL_NAME VARCHAR(6@) NOT NULL,
AVG_SALARY NUMERIC NOT NULL);

The following PostgreSQL command creates the employees table in lowercase.

CREATE TABLE EMPLOYEES (
EMP_ID NUMERIC PRIMARY KEY,
EMP_FULL_NAME VARCHAR(6@) NOT NULL,
AVG_SALARY NUMERIC NOT NULL);

If you don't use double quotation marks, then PostgreSQL creates objects with lowercase names.
To create, query, or manage PostgreSQL database objects with names in uppercase or mixed case,
use double quotation marks.

Constraints for ANSI SQL

This topic provides reference information about SQL constraints in both Microsoft SQL Server
and Amazon Aurora PostgreSQL. You can understand the similarities and differences in constraint
implementation between these two database systems. The topic covers various types of
constraints, including check, unique, primary key, and foreign key constraints, as well as cascaded
referential actions and indexing requirements.

Constraints for ANSI SQL 42

https://docs.amazonaws.cn/dms/latest/userguide/CHAP_Tasks.CustomizingTasks.TableMapping.SelectionTransformation.Transformations.html
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_Tasks.CustomizingTasks.TableMapping.SelectionTransformation.Transformations.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level
Constraints The SET DEFAULT

@ @ E E @ @@@@ - option is missing.

Check constraint with
subquery.

SQL Server Usage

Column and table constraints are defined by the SQL standard and enforce relational data
consistency. You can use four types of SQL constraints: check, unique, primary key, and foreign key.

Check Constraints

Check constraints enforce domain integrity by limiting the data values stored in table columns.
They are logical Boolean expressions that evaluate to one of the following three values: TRUE,
FALSE, and UNKNOWN.

CHECK (<Logical Expression>)

(® Note

Check constraint expressions behave differently than predicates in other query clauses. For
example, in a WHERE clause, a logical expression that evaluates to UNKNOWN is functionally
equivalent to FALSE and the row is filtered out. For check constraints, an expression that
evaluates to UNKNOWN is functionally equivalent to TRUE because the value is permitted by
the constraint.

You can assign multiple check constraints to a column. Also, you can apply a single check constraint
to multiple columns. In this case, it works as a table-level check constraint.

In ANSI SQL, check constraints can't access other rows as part of the expression. In SQL Server, you
can use user-defined functions in constraints to access other rows, tables, or databases.

SQL Server Usage 43

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Unique Constraints

You can use unique constraints for all candidate keys. A candidate key is an attribute or a set of
attributes or columns that uniquely identify each row in the relation (table data).

UNIQUE [CLUSTERED | NONCLUSTERED] (<Column List>)

Unique constraints guarantee that no rows with duplicate column values exist in a table.

A unique constraint can be simple or composite. Simple constraints are composed of a single
column. Composite constraints are composed of multiple columns. A column may be a part of
more than one constraint.

According to the ANSI SQL standard, you can have multiple rows with NULL values for unique
constraints. However, in SQL Server, you can use a NULL value only for a single row. You can use a
NOT NULL constraint in addition to a unique constraint to address this limitation.

To improve the efficiency, SQL Server creates a unique index to support unique constraints.
Otherwise, every INSERT and UPDATE would require a full table scan to verify that the table
doesn’t include duplicates. The default index type for unique constraints is non-clustered.

Primary Key Constraints

A primary key is a candidate key serving as the unique identifier of a table row. Primary keys might
consist of one or more columns. All columns that comprise a primary key must also have a NOT
NULL constraint. Tables can have one primary key.

PRIMARY KEY [CLUSTERED | NONCLUSTERED] (<Column List>)

The default index type for primary keys is a clustered index.
Foreign Key Constraints

Foreign key constraints enforce domain referential integrity. Similar to check constraints, foreign
keys limit the values stored in a column or set of columns.

FOREIGN KEY (<Referencing Column List>)
REFERENCES <Referenced Table>(<Referenced Column List>)

SQL Server Usage 44

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Foreign keys reference columns in other tables, which must be either primary keys or have unique
constraints. The set of values that you can use for the referencing table is the set of values that
exist in the referenced table.

Although the columns referenced in the parent table are indexed because they have either a
primary key or unique constraint, no indexes are automatically created for the referencing columns
in the child table. A best practice is to create appropriate indexes to support joins and constraint
enforcement.

Foreign key constraints impose DML limitations for the referencing child and parent tables. The
purpose of a constraint is to guarantee that no orphan rows, which don’t have corresponding
matching values in the parent table exist in the referencing table. The constraint limits INSERT
and UPDATE to the child table and UPDATE and DELETE to the parent table. For example, you can't
delete an order having associated order items.

Foreign keys support Cascading Referential Integrity (CRI). You can use CRI to enforce constraints
and define action paths for DML statements that violate the constraints. There are four CRI
options:

« NO ACTION. When the constraint is violated due to a DML operation, an error is raised and the
operation is rolled back.

« CASCADE. Values in a child table are updated with values from the parent table when they are
updated or deleted along with the parent.

o SET NULL. All columns that are part of the foreign key are set to NULL when the parent is
deleted or updated.

o SET DEFAULT. All columns that are part of the foreign key are set to their DEFAULT value when
the parent is deleted or updated.

You can customize these actions independently of others in the same constraint. For example, a
cascading constraint may have CASCADE for UPDATE, but NO ACTION for DELETE.

Examples

Create a composite non-clustered primary key.

CREATE TABLE MyTable
(

SQL Server Usage 45

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Coll INT NOT NULL,

Col2 INT NOT NULL,

Col3 VARCHAR(20) NULL,

CONSTRAINT PK_MyTable

PRIMARY KEY NONCLUSTERED (Coll, Col2)
);

Create a table-level check constraint.

CREATE TABLE MyTable

(

Coll INT NOT NULL,

Col2 INT NOT NULL,

Col3 VARCHAR(20) NULL,

CONSTRAINT PK_MyTable

PRIMARY KEY NONCLUSTERED (Coll, Col2),
CONSTRAINT CK_MyTableCollCol2

CHECK (Col2 >= Coll)

Iy

Create a simple non-null unique constraint.

CREATE TABLE MyTable

(

Coll INT NOT NULL,

Col2 INT NOT NULL,

Col3 VARCHAR(20) NULL,

CONSTRAINT PK_MyTable

PRIMARY KEY NONCLUSTERED (Coll, Col2),
CONSTRAINT UQ_Col2Col3

UNIQUE (Col2, Col3)

)8

Create a foreign key with multiple cascade actions.

CREATE TABLE MyParentTable

(

Coll INT NOT NULL,

Col2 INT NOT NULL,

Col3 VARCHAR(20) NULL,

CONSTRAINT PK_MyTable

PRIMARY KEY NONCLUSTERED (Coll, Col2)

SQL Server Usage 46

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

);

CREATE TABLE MyChildTable

(

Coll INT NOT NULL PRIMARY KEY,

Col2 INT NOT NULL,

Col3 INT NOT NULL,

CONSTRAINT FK_MyChildTable_MyParentTable
FOREIGN KEY (Col2, Col3)

REFERENCES MyParentTable (Coll, Col2)

ON DELETE NO ACTION

ON UPDATE CASCADE

);

For more information, see Unique Constraints and Check Constraints and Primary and Foreign Key

Constraints in the SQL Server documentation.

PostgreSQL Usage
PostgreSQL supports the following types of table constraints:

« PRIMARY KEY.

« FOREIGN KEY.

« UNIQUE.

« NOT NULL.

e EXCLUDE (unique to PostgreSQL).

Similar to constraint declaration in SQL Server, you can create constraints inline or out-of-line
when you specify table columns in PostgreSQL.

You can specify PostgreSQL constraints using CREATE TABLE or ALTER TABLE. Constraints on
views aren't supported.

Make sure that you have the CREATE and ALTER privileges on the table for which you create
constraints. For foreign key constraints, make sure that you have the REFERENCES privilege.

Primary Key Constraints

« Uniquely identify each row and can't contain NULL values.

PostgreSQL Usage 47

https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Use the same ANSI SQL syntax as SQL Server.

» You can create primary key constraints on a single column or on multiple columns (composite
primary keys) as the only primary key in a table.

» Creating a primary key constraint automatically creates a unique B-Tree index on the column or
group of columns marked as the primary key of the table.

» You can generate constraint names automatically by PostgreSQL or explicitly specified during
constraint creation.

Create an inline primary key constraint with a system-generated constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),

EMAIL VARCHAR(25));

Create an inline primary key constraint with a user-specified constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC CONSTRAINT PK_EMP_ID PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25));

Create an out-of-line primary key constraint.

CREATE

CREATE TABLE EMPLOYEES(
EMPLOYEE_ID NUMERIC,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25)),
CONSTRAINT PK_EMP_ID PRIMARY KEY (EMPLOYEE_ID));

Add a primary key constraint to an existing table.

ALTER TABLE SYSTEM_EVENTS

PostgreSQL Usage 48

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

ADD CONSTRAINT PK_EMP_ID PRIMARY KEY (EVENT_CODE, EVENT_TIME);
Drop the primary key.

ALTER TABLE SYSTEM_EVENTS DROP CONSTRAINT PK_EMP_ID;

Foreign Key Constraints

» Enforce referential integrity in the database. Values in specific columns or a group of columns
must match the values from another table or column.

« Creating a foreign key constraint in PostgreSQL uses the same ANSI SQL syntax as SQL Server.
» You can create foreign key constraints in-line or out-of-line during table creation.
« Use the REFERENCES clause to specify the table referenced by the foreign key constraint.

« When specifying REFERENCES in the absence of a column list in the referenced table, the
primary key of the referenced table is used as the referenced column or columns.

« A table can have multiple foreign key constraints.

» Use the ON DELETE clause to handle foreign key parent record deletions such as cascading
deletes.

» Foreign key constraint names are generated automatically by the database or specified explicitly
during constraint creation.

ON DELETE Clause

PostgreSQL provides three main options to handle cases where data is deleted from the parent
table and a child table is referenced by a FOREIGN KEY constraint. By default, without specifying
any additional options, PostgreSQL uses the NO ACTION method and raises an error if the
referencing rows still exist when the constraint is verified.

« ON DELETE CASCADE. Any dependent foreign key values in the child table are removed along
with the referenced values from the parent table.

« ON DELETE RESTRICT. Prevents the deletion of referenced values from the parent table and
the deletion of dependent foreign key values in the child table.

e ON DELETE NO ACTION. Performs no action (the default). The fundamental difference between

RESTRICT and NO ACTION is that NO ACTION allows the check to be postponed until later in
the transaction; RESTRICT doesn't.

PostgreSQL Usage 49

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

ON UPDATE Clause

Handling updates on FOREIGN KEY columns is also available using the ON UPDATE clause, which
shares the same options as the ON DELETE clause:

« ON UPDATE CASCADE.
« ON UPDATE RESTRICT.
« ON UPDATE NO ACTION.

Create an inline foreign key with a user-specified constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25),
DEPARTMENT_ID NUMERIC REFERENCES DEPARTMENTS(DEPARTMENT_ID));

Create an out-of-line foreign key constraint with a system-generated constraint name.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25),
DEPARTMENT_ID NUMERIC,
CONSTRAINT FK_FEP_ID
FOREIGN KEY(DEPARTMENT_ID) REFERENCES DEPARTMENTS(DEPARTMENT_ID));

Create a foreign key using the ON DELETE CASCADE clause.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25),
DEPARTMENT_ID NUMERIC,
CONSTRAINT FK_FEP_ID
FOREIGN KEY(DEPARTMENT_ID) REFERENCES DEPARTMENTS(DEPARTMENT_ID)

PostgreSQL Usage

50

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

ON DELETE CASCADE);

Add a foreign key to an existing table.

ALTER TABLE EMPLOYEES ADD CONSTRAINT FK_DEPT
FOREIGN KEY (department_id)
REFERENCES DEPARTMENTS (department_id) NOT VALID;

ALTER TABLE EMPLOYEES VALIDATE CONSTRAINT FK_DEPT;

ON UPDATE Clause

« Ensure that values in a column, or a group of columns, are unique across the entire table.
» PostgreSQL unique constraint syntax is ANSI SQL compatible.

« Automatically creates a B-Tree index on the respective column, or a group of columns, when
creating a UNIQUE constraint.

o If duplicate values exist in the column, for which you create the unique constraint, the operation
fails and returns an error message.

« Unique constraints in PostgreSQL accept multiple NULL values. This behavior is similar to SQL
Server.

» You can use system-generated or explicitly specified naming for unique constraints.

Create an inline unique constraint ensuring uniqueness of values in the email column.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20),
LAST_NAME VARCHAR(25),
EMAIL VARCHAR(25) CONSTRAINT UNIQ_EMP_EMAIL UNIQUE,
DEPARTMENT_ID NUMERIC);

CHECK Constraints

» Enforce that values in a column satisfy a specific requirement.
» Check constraints in PostgreSQL use the same ANSI SQL syntax as SQL Server.

» Can only be defined using a Boolean data type to evaluate the values of a column.

PostgreSQL Usage 51

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Check constraints naming can be system-generated or explicitly specified by the user during
constraint creation.

Check constraints are using Boolean data type, therefore you can't use subqueries in the check
constraint. To use this feature, you can create a Boolean function that will check the query results
and return TRUE or FALSE values accordingly.

NOT NULL Constraints

» Enforce that a column can't accept NULL values. This behavior is different from the default
column behavior in PostgreSQL where columns can accept NULL values.

« NOT NULL constraints can only be defined inline during table creation.

» You can explicitly specify names for NOT NULL constraints when used with a CHECK constraint.

Define two not null constraints on the FIRST_NAME and LAST_NAME columns. Define a check
constraint with an explicitly user-specified name to enforce not null behavior on the EMAIL
column.

CREATE TABLE EMPLOYEES (
EMPLOYEE_ID NUMERIC PRIMARY KEY,
FIRST_NAME VARCHAR(20) NOT NULL,
LAST_NAME VARCHAR(25) NOT NULL,
EMAIL VARCHAR(25) CONSTRAINT CHK_EMAIL
CHECK(EMAIL IS NOT NULL));

SET Constraints Syntax

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

PostgreSQL provides controls for certain aspects of constraint behavior:

« DEFERRABLE | NOT DEFERRABLE. Using the PostgreSQL SET CONSTRAINTS statement. You can
define constraints as:

« DEFERRABLE. Allows you to use the SET CONSTRAINTS statement to set the behavior of

constraint checking within the current transaction until transaction commit.

« IMMEDIATE. Constraints are enforced only at the end of each statement. Note that each
constraint has its own IMMEDIATE or DEFERRED mode.

PostgreSQL Usage 52

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« NOT DEFERRABLE: This statement always runs as IMMEDIATE and isn't affected by the SET
CONSTRAINTS command.

o VALIDATE CONSTRAINT |NOT VALID.

o VALIDATE CONSTRAINT. Validates foreign key or check constraints only that were previously
created as NOT VALID. This action performs a validation check by scanning the table to ensure
all records satisfy the constraint definition.

« NOT VALID. You can use this type only for foreign key or check constraints. When specified,
new records aren’t validated with the creation of the constraint. Only when the VALIDATE
CONSTRAINT state is applied is the constraint state enforced on all records.

Using Existing Indexes During Constraint Creation

PostgreSQL can add a new primary key or unique constraints based on an existing unique index.
PostgreSQL includes all index columns in the constraint. When you create constraints using this
method, the index is owned by the constraint. If you delete the constraint, then PostgreSQL deletes
the index.

Use an existing unique index to create a primary key constraint.

CREATE UNIQUE INDEX IDX_EMP_ID ON EMPLOYEES(EMPLOYEE_ID);

ALTER TABLE EMPLOYEES
ADD CONSTRAINT PK_CON_UNIQ PRIMARY KEY USING INDEX IDX_EMP_ID;

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora PostgreSQL
Check constraints CHECK CHECK

Unique constraints UNIQUE UNIQUE

Primary key constraints PRIMARY KEY PRIMARY KEY
Foreign key constraints FOREIGN KEY FOREIGN KEY

Summary 53

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature SQL Server Aurora PostgreSQL

Cascaded referential actions NO ACTION, CASCADE, SET RESTRICT, CASCADE, SET

NULL, SET DEFAULT NULL, NO ACTION
Indexing of referencing Not required N/A
columns
Indexing of referenced PRIMARY KEY or UNIQUE PRIMARY KEY or UNIQUE
columns

For more information, see Constraints, SET CONSTRAINTS, and ALTER TABLE in the PostgreSQL
documentation.

Creating tables for ANSI SQL

This topic provides reference information comparing the creation of tables in Microsoft SQL
Server 2019 and Amazon Aurora PostgreSQL. You can understand the similarities and differences
in table creation syntax, features, and capabilities between these two database systems. The
topic highlights key aspects such as table and column naming, data types, constraints, and auto-
generated values.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Creating Tables Auto generated value
@ @ @ @ @ @ @ column is different
. Can't use physical
attribute ON. Missing
table variable and
memory-optimized
table.

Creating tables for ANSI SQL 54

https://www.postgresql.org/docs/13/ddl-constraints.html
https://www.postgresql.org/docs/13/sql-set-constraints.html
https://www.postgresql.org/docs/13/sql-altertable.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

ANSI Syntax Conformity

You can create tables in SQL Server using the CREATE TABLE statement and conform to the ANSI/
ISO entry level standard. The basic features of CREATE TABLE are similar for most relational
database management engines and are well defined in the ANSI/ISO standards.

In its most basic form, the CREATE TABLE statement in SQL Server is used to define:

« Table names, the containing security schema, and database.
o Column names.

« Column data types.

e Column and table constraints.

o Column default values.

« Primary, candidate (UNIQUE), and foreign keys.

T-SQL Extensions

SQL Server extends the basic syntax and provides many additional options for the CREATE TABLE
or ALTER TABLE statements. The most often used options are:

« Supporting index types for primary keys and unique constraints, clustered or non-clustered, and
index properties such as FILLFACTOR.

« Physical table data storage containers using the ON <File Group> clause.
« Defining IDENTITY auto-enumerator columns.

« Encryption.

o Compression.

« Indexes.

For more information, see Data Types, Column Encryption, and Databases and Schemas.

Table Scope

SQL Server provides five scopes for tables

SQL Server Usage 55

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Standard tables are created on disk, globally visible, and persist through connection resets and
server restarts.

« Temporary tables are designated with the "# " prefix. They are persisted in TempDB and are
visible to the run scope and any sub-scopes where they were created. Temporary tables are
cleaned up by the server when the run scope terminates and when the server restarts.

» Global temporary tables are designated by the "## " prefix. They are similar in scope to
temporary tables, but are also visible to concurrent scopes.

« Table variables are defined with the DECLARE statement, not with CREATE TABLE. They are
visible only to the run scope where they were created.

« Memory-optimized tables are special types of tables used by the In-Memory Online Transaction
Processing (OLTP) engine. They use a non-standard CREATE TABLE syntax.

Creating a Table Based on an Existing Table or Query

In SQL Server, you can create new tables based on SELECT queries as an alternate to the CREATE
TABLE statement. You can use a SELECT statement that returns a valid set with unique column
names to create a new table and populate data.

SELECT INTO is a combination of DML and DDL. The simplified syntax for SELECT INTO is shown
following.

SELECT <Expression List>

INTO <Table Name>

[FROM <Table Source>]

[WHERE <Filter>]

[GROUP BY <Grouping Expressions>...];

When you create a new table using SELECT INTO, the only attributes created for the new table
are column names, column order, and the data types of the expressions. Even a straight forward
statement such as™ SELECT * INTO <New Table> FROM <Source Table>" doesn't copy constraints,
keys, indexes, identity property, default values, or any other related objects.

TIMESTAMP Syntax for ROWVERSION Deprecated Syntax

The TIMESTAMP syntax synonym for ROWVERSION has been deprecated as of SQL Server 2008R2
in accordance with Deprecated Database Engine Features in SQL Server 2008 R2.

SQL Server Usage 56

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Previously, you could use either the TIMESTAMP or the ROWVERSION keywords to denote a special
data type that exposes an auto-enumerator. The auto-enumerator generates unique eight-byte
binary numbers typically used to version-stamp table rows. Clients read the row, process it, and
check the ROWVERSION value against the current row in the table before modifying it. If they are
different, the row has been modified since the client read it. The client can then apply different
processing logic.

Note that when migrating to Aurora PostgreSQL using the Amazon Schema Conversion Tool,
neither ROWVERSION nor TIMESTAMP are supported. You must add customer logic, potentially in
the form of a trigger, to maintain this functionality.

Syntax

Simplified syntax for CREATE TABLE is shown following.

CREATE TABLE [<Database Name>.<Schema Name>].<Table Name> (<Column Definitions>)
[ON{<Partition Scheme Name> (<Partition Column Name>)];

<Column Definition>:

<Column Name> <Data Type>

[CONSTRAINT <Column Constraint>

[DEFAULT <Default Value>]]

[IDENTITY [(<Seed Value>, <Increment Value>)]
[NULL | NOT NULL]

[ENCRYPTED WITH (<Encryption Specifications>)
[<Column Constraints>]

[<Column Index Specifications>]

<Column Constraint>:

[CONSTRAINT <Constraint Name>]

{{PRIMARY KEY | UNIQUE} [CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = <Fill Factor>]

| [FOREIGN KEY]

REFERENCES <Referenced Table> (<Referenced Columns>)]

<Column Index Specifications>:
INDEX <Index Name> [CLUSTERED | NONCLUSTERED]
[WITH(<Index Options>]

SQL Server Usage 57

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples

Create a basic table.

CREATE TABLE MyTable

(

Coll INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL

);

Create a table with column constraints and an identity.

CREATE TABLE MyTable

(

Coll INT NOT NULL PRIMARY KEY IDENTITY (1,1),
Col2 VARCHAR(20) NOT NULL CHECK (Col2 <> ''),
Col3 VARCHAR(100) NULL

REFERENCES MyOtherTable (Col3)

bE

Create a table with an additional index.

CREATE TABLE MyTable

(

Coll INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
INDEX IDX_Col2 NONCLUSTERED

by

For more information, see CREATE TABLE (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

As SQL Server, Aurora PostgreSQL provides ANSI/ISO syntax entry level conformity for CREATE
TABLE and custom extensions to support Aurora PostgreSQL specific functionality.

In its most basic form, and very similar to SQL Server, the CREATE TABLE statement in Aurora
PostgreSQL is used to define:

« Table names containing security schema and/or database.

PostgreSQL Usage 58

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Column names.

Column data types.

Column and table constraints.

Column default values.

Primary, candidate (UNIQUE), and foreign keys.

Starting with PostgreSQL 12 support for generated columns has been added. Generated columns
can be either calculated from other columns values on the fly or calculated and stored.

CREATE TABLE tst_gen(
n NUMERIC,
n_gen GENERATED ALWAYS AS (n*0.01)

);

Aurora PostgreSQL Extensions

Aurora PostgreSQL extends the basic syntax and allows many additional options to be defined as
part of the CREATE TABLE or ALTER TABLE statements. The most often used option is in-line
index definition.

Table Scope

Aurora PostgreSQL provides two table scopes:

« Standard tables are created on disk, visible globally, and persist through connection resets and
server restarts.

« Temporary tables are created using the CREATE GLOBAL TEMPORARY TABLE statement. A
TEMPORARY table is visible only to the session that creates it and is dropped automatically when
the session is closed.

Creating a Table Based on an Existing Table or Query

Aurora PostgreSQL provides two ways to create standard or temporary tables based on existing
tables and queries: CREATE TABLE <New Table> LIKE <Source Table>and CREATE TABLE
.. AS <Query Expression> .

PostgreSQL Usage 59

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE TABLE <New Table> LIKE <Source Table> creates an empty table based on the
definition of another table including any column attributes and indexes defined in the original
table.

CREATE TABLE .. AS <Query Expression> isvery similarto SELECT INTO in SQL Server.
You can use this query to create a new table and populate data in a single step.

The following code example creates a new empty table based on the definition of the SourceTable
table.

CREATE TABLE SourceTable(Coll INT);

INSERT INTO SourceTable VALUES (1);

CREATE TABLE NewTable AS SELECT Coll AS Col2 FROM SourceTable;
INSERT INTO NewTable (Col2) VALUES (2);

SELECT * FROM NewTable;
Col2

1

2

Converting TIMESTAMP and ROWVERSION Columns

The following code example shows how you can use SQL server to provide an automatic
mechanism for stamping row versions for application concurrency control.

CREATE TABLE WorkItems

(
WorkItemID INT IDENTITY(1,1) PRIMARY KEY,

WorkItemDescription XML NOT NULL,

Status VARCHAR(1@) NOT NULL DEFAULT ('Pending'),
-- other columns...

VersionNumber ROWVERSION

);

The VersionNumber column automatically updates when a row is modified. The actual value is
meaningless. Just the fact that it changed is what indicates a row modification. The client can now
read a work item row, process it, and ensure no other clients updated the row before updating the
status.

PostgreSQL Usage 60

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT @WorkItemDescription = WorkItemDescription,
@Status = Status,

@VersionNumber = VersionNumber

FROM WorkItems

WHERE WorkItemID = @WorkItemID;

EXECUTE ProcessWorkItem @wWorkItemID, @WorkItemDescription, @Status OUTPUT;

IF (
SELECT VersionNumber
FROM WorkItems
WHERE WorkItemID = @WorkItemID
) = @VersionNumber;
EXECUTE UpdateWorkItems @WorkItemID, 'Completed'; -- Success
ELSE
EXECUTE ConcurrencyExceptionWorkItem; -- Row updated while processing

In Aurora PostgreSQL, you can add a trigger to maintain the updated stamp for each row.

CREATE OR REPLACE FUNCTION IncByOne()

RETURNS TRIGGER

AS $%

BEGIN
UPDATE WorkItems SET VersionNumber = VersionNumber+l
WHERE WorkItemID = OLD.WorkItemID;

END; $$

LANGUAGE PLPGSQL;

CREATE TRIGGER MaintainWorkItemVersionNumber
AFTER UPDATE OF WorkItems

FOR EACH ROW
EXECUTE PROCEDURE IncByOne();

For more information, see Triggers.

Syntax

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table_name ([

{ column_name data_type [COLLATE collation] [column_constraint [...]]
| table_constraint
| LIKE source_table [like_option ...] }

PostgreSQL Usage 61

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
L; oca |
1)
[INHERITS (parent_table [, ... 1)]

[PARTITION BY { RANGE | LIST } ({ column_name | (expression) } [COLLATE collation
] [opclass 1 [, ... 1) 1]

[WITH (storage_parameter [= value] [, ... 1) | WITH OIDS | WITHOUT OIDS]

[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]

[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table_name

OF type_name [(

{ column_name [WITH OPTIONS] [column_constraint [...] 1]

| table_constraint }

[, ... 1

)]

[PARTITION BY { RANGE | LIST } ({ column_name | (expression) } [COLLATE collation
] [opclass 1 [, ... 1) 1]

[WITH (storage_parameter [= value] [, ... 1) | WITH OIDS | WITHOUT OIDS]

[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]

[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS]
table_name

PARTITION OF parent_table [(

{ column_name [WITH OPTIONS] [column_constraint [...]]

| table_constraint }

[, ... 1]

)] FOR VALUES partition_bound_spec

[PARTITION BY { RANGE | LIST } ({ column_name | (expression) } [COLLATE collation
] [opclass 1 [, ... 1) 1]

[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]

[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]

[TABLESPACE tablespace_name]

The column_constraint is:

[CONSTRAINT constraint_name]

{ NOT NULL |

NULL |

CHECK (expression) [NO INHERIT] |
DEFAULT default_expr |

PostgreSQL Usage 62

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |

UNIQUE index_parameters |

PRIMARY KEY index_parameters |

REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE action] [ON UPDATE action] }

[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

The table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |

UNIQUE (column_name [, ...]) index_parameters |
PRIMARY KEY (column_name [, ...]) index_parameters |
EXCLUDE [USING index_method] (exclude_element WITH operator [, ...])

index_parameters
[WHERE (predicate)] |
FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ... 1) 1]

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action] [ON UPDATE
action] }

[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]
The 1like_optionis:

{ INCLUDING | EXCLUDING } { COMMENTSDEFAULTS | CONSTRAINTS | DEFAULTS | IDENTITY |
INDEXES | STATISTICS | STORAGE |COMMENTS | ALL }

The partition_bound_spec is:

IN ({ numeric_literal | string_literal | TRUE | FALSE | NULL } [, ...1) |

FROM ({ numeric_literal | string_literal | TRUE | FALSE | MINVALUE | MAXVALUE } [,
.1

TO ({ numeric_literal | string_literal | TRUE | FALSE | MINVALUE | MAXVALUE } [,
.1

The index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[WITH (storage_parameter [= value] [, ... 1) 1]
[USING INDEX TABLESPACE tablespace_name]

The exclude_element in an EXCLUDE constraint is:

PostgreSQL Usage 63

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

{ column_name | (expression) } [opclass] [ASC | DESC] [NULLS { FIRST | LAST } 1]

Examples

Create a basic table.

CREATE TABLE MyTable

(

Coll INT PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
by

Create a table with column constraints.

CREATE TABLE MyTable

(

Coll INT PRIMARY KEY,

Col2 VARCHAR(20) NOT NULL
CHECK (Col2 <> '),

Col3 VARCHAR(100) NULL
REFERENCES MyOtherTable (Col3)

);
Summary
Feature SQL Server Aurora PostgreSQL
ANSI compliance Entry level Entry level
Auto generated enumerator IDENTITY SERIAL
Reseed auto generated value DBCC CHECKIDENT N/A
Index types CLUSTERED or NONCLUSTE See Indexes.
RED
Physical storage location ON <File Group> Not supported
Temporary tables #TempTable CREATE TEMPORARY TABLE

Summary 64

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature SQL Server Aurora PostgreSQL

Global temporary tables ##GlobalTempTable CREATE GLOBAL
TEMPORARY TABLE

Table variables DECLARE @Table Not supported

Create table as query SELECT.. INTO CREATE TABLE... AS
Copy table structure Not supported CREATE TABLE.. LIKE
Memory-optimized tables Supported N/A

For more information, see CREATE TABLE in the PostgreSQL documentation.

Common table expressions for ANSI SQL

This topic provides reference information about Common Table Expressions (CTEs) in both SQL
Server and PostgreSQL. It explains that CTEs are part of the ANSI SQL standard and are used to
simplify queries and improve readability by defining temporary views or derived tables. The topic
highlights the similarities between SQL Server and PostgreSQL implementations of CTEs, including
their support for recursive functionality.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A Use RECURSIVE
@ @ E E @ @ @ @ @ @ keyword for recursive
CTE queries.

SQL Server Usage

Common Table Expressions (CTE) are part of the ANSI standard since SQL:1999, simplify queries
and make them more readable by defining a temporary view, or derived table, that a subsequent

Common table expressions for ANSI SQL 65

https://www.postgresql.org/docs/13/sql-createtable.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

query can reference. You can use SQL Server CTEs as the target of DML modification statements.
They have similar restrictions as updateable views.

SQL Server CTEs provide recursive functionality in accordance with the ANSI 99 standard. Recursive

CTEs can reference themselves and re-run queries until the data set is exhausted, or the maximum
number of iterations is exceeded.

CTE Syntax

WITH <CTE NAME>
AS

(

SELECT

)

SELECT ...

FROM CTE

Recursive CTE Syntax

WITH <CTE NAME>

AS (

<Anchor SELECT query>

UNION ALL

<Recursive SELECT query with reference to <CTE NAME>>
)

SELECT ... FROM <CTE NAME>...

Examples

Create and populate an Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
)2

INSERT INTO OrderItems (OrderID, Item, Quantity)

SQL Server Usage 66

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

VALUES

(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Define a CTE to calculate the total quantity in every order and then join to the Orderltems table to
obtain the relative quantity for each item.

WITH AggregatedOrders

AS

(SELECT OrderID, SUM(Quantity) AS TotalQty
FROM OrderItems

GROUP BY OrderID

)

SELECT 0.0rderID, O.Item,

0.Quantity,

(0.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O

INNER JOIN

AggregatedOrders AS AO

ON 0.0rderID = AO.OrderlID;

The preceding example produces the following results.

OrderID Item Quantity PercentOfOrder
1 M8 Bolt 100 100.0000000000
2 M8 Nut 100 100.0000000000
3 M8 Washer 100 33.3333333300
3 M6 Washer 200 66.6666666600

Using a recursive CTE, create and populate the Employees table with the DirectManager for
each employee.

CREATE TABLE Employees

(

Employee VARCHAR(5) NOT NULL PRIMARY KEY,
DirectManager VARCHAR(5) NULL

);

INSERT INTO Employees(Employee, DirectManager)

SQL Server Usage 67

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

VALUES

('John', 'Dave'),
('Jose', 'Dave'),
('Fred', 'John'),
('Dave', NULL);

Use a recursive CTE to display the employee-management hierarchy.

WITH EmpHierarchyCTE AS
(
-- Anchor query retrieves the top manager
SELECT @ AS LVL,
Employee,
DirectManager
FROM Employees AS E
WHERE DirectManager IS NULL
UNION ALL
-- Recursive query gets all Employees managed by the previous level
SELECT LVL + 1 AS LVL,
E.Employee,
E.DirectManager
FROM EmpHierarchyCTE AS EH
INNER JOIN
Employees AS E
ON E.DirectManager = EH.Employee
)
SELECT *
FROM EmpHierarchyCTE;

The preceding example produces the following results.

LVL Employee DirectManager

0 Dave NULL
1 John Dave
1 Jose Dave
2 Fred John

For more information, see Recursive Queries Using Common Table Expressions in the SQL Server
documentation.

SQL Server Usage 68

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms186243(v=sql.105)?redirectedfrom=MSDN

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL Usage

PostgreSQL conforms to the ANSI SQL-99 standard and implementing CTEs in PostgreSQL is
similar to SQL Server.

CTE is also known as WITH query. This type of query helps you to simplify long queries, it is similar
to defining temporary tables that exist only for the running of the query. The statement in a WITH
clause can be a SELECT, INSERT, UPDATE, or DELETE, and the WITH clause itself is attached to a
primary statement that can also be a SELECT, INSERT, UPDATE, or DELETE.

CTE Syntax

WITH <CTE NAME>
AS

(

SELECT OR DML

)
SELECT OR DML
Recursive CTE

Recursive CTE Syntax

WITH RECURSIVE <CTE NAME>

AS (

<Anchor SELECT query>

UNION ALL

<Recursive SELECT query with reference to <CTE NAME>>

)
SELECT OR DML

Examples

Create and populate an Orderltems table.

CREATE TABLE OrderItems

(

OrderID INT NOT NULL,

Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,

PostgreSQL Usage 69

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Washer', 100);

Create a CTE.

WITH DEPT_COUNT
(DEPARTMENT_ID, DEPT_COUNT) AS (
SELECT DEPARTMENT_ID, COUNT(*) FROM EMPLOYEES GROUP BY DEPARTMENT_ID)
SELECT E.FIRST_NAME ||' '|| E.LAST_NAME AS EMP_NAME,
D.DEPT_COUNT AS EMP_DEPT_COUNT
FROM EMPLOYEES E JOIN DEPT_COUNT D USING (DEPARTMENT_ID) ORDER BY 2;

PostgreSQL provides an additional feature when using a CTE as a recursive modifier. The following
example uses a recursive WITH clause to access its own result set.

WITH RECURSIVE t(n) AS (
VALUES (0)
UNION ALL
SELECT n+1 FROM t WHERE n < 5)
SELECT * FROM t;

WITH RECURSIVE t(n) AS (
VALUES (0)

UNION ALL

SELECT n+1 FROM t WHERE n < 5)

SELECT * FROM t;

Note that using the SQL Server example will get undesired results.

PostgreSQL Usage 70

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Define a CTE to calculate the total quantity in every order and then join to the Orderltems table to
obtain the relative quantity for each item.

WITH AggregatedOrders
AS
(SELECT OrderID, SUM(Quantity) AS TotalQty
FROM OrderItems
GROUP BY OrderID
)
SELECT 0.0rderID, O.Item,
0.Quantity,
(0.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O
INNER JOIN
AggregatedOrders AS AO
ON 0.0rderID = AO.OrderlID;

The preceding example produces the following results.

OrderID Item Quantity PercentOfOrder
1 M8 Bolt 100 100

2 M8 Nut 100 100

3 M8 Washer 100 0

3 M6 Washer 200 0

This is because when you divide INT by INT, you get a round result. If you use another data
type such as DECIMAL, there will be no problem. To fix the current issue, cast the columns using
::decimal.

AS
(SELECT OrderID, SUM(Quantity) AS TotalQty
FROM OrderItems
GROUP BY OrderID
)
SELECT 0.0rderID, O.Item,
0.Quantity,
trunc((0.Quantity::decimal / AO.TotalQty::decimal)*100,2) AS PercentOfOrder
FROM OrderItems AS O
INNER JOIN
AggregatedOrders AS AO
ON 0.0rderID = AO0.OrderID;

PostgreSQL Usage 71

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The preceding example produces the following results.

OrderID Item
M8 Bolt

1

2
3
3

M8 Nut
M8 Was
M6 Was

her
her

Quantity PercentOfOrder

100
100
100
200

100
100
33.33
66.66

Unlike in SQL Server, for RECURSIVE WITH query, use the RECURSIVE keyword in PostgreSQL.

Use a recursive CTE to display the employee-management hierarchy.

WITH RECURSIVE EmpHierarchyCTE AS

(

-- Anchor query retrieves the top manager
SELECT @ AS LVL,
Employee,

DirectManager

FROM Employees AS E

WHERE DirectManager IS NULL

UNION ALL

-- Recursive query gets all Employees managed by the previous level
SELECT LVL + 1 AS LVL,
E.Employee,
E.DirectManager

FROM EmpHierarchyCTE AS EH

INNER JOIN
Employees AS E
ON E.DirectManager

)

SELECT *
FROM EmpHierarchyCTE;

EH.Employee

The preceding example produces the following results.

LVL

N R RS

Employee
Dave
John
Jose
Fred

DirectManager

Dave
Dave
John

PostgreSQL Usage

72

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

For more information, see WITH Queries (Common Table Expressions) in the PostgreSQL

documentation.

Data types for ANSI SQL

This topic provides reference information about data type compatibility between Microsoft SQL
Server 2019 and Amazon Aurora PostgreSQL. You can use this information to understand how
various SQL Server data types map to their PostgreSQL equivalents during migration

Feature compatibi
lity

SEEE

SQL Server Usage

Amazon SCT / Amazon SCT action Key differences
Amazon DMS code index
automation level

Data Types Syntax and handling
@ {{:j} @ @ differences.

In SQL Server, each table column, variable, expression, and parameter has an associated data type.

SQL Server provides a rich set of built-in data types as summarized in the following table.

Category

Numeric

String and Character

Temporal

Binary

Large Object (LOB)

Data types

BIT, TINYINT, SMALLINT, INT, BIGINT,
NUMERIC, DECIMAL, MONEY, SMALLMONEY ,
FLOAT, REAL

CHAR, VARCHAR, NCHAR, NVARCHAR

DATE, TIME, SMALLDATETIME , DATETIME,
DATETIME2 , DATETIMEOFFSET

BINARY, VARBINARY

TEXT, NTEXT, IMAGE, VARCHAR(MAX) ,
NVARCHAR(MAX) , VARBINARY (MAX)

Data types for ANSI SQL

73

https://www.postgresql.org/docs/13/queries-with.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Category Data types

Cursor CURSOR

GUID UNIQUEIDENTIFIER

Hierarchical identifier HIERARCHYID

Spatial GEOMETRY, GEOGRAPHY

Sets (table type) TABLE

XML XML

Other specialty types ROW VERSION, SQL_VARIANT

You can create custom user defined data types using T-SQL, and the .NET Framework. Custom data
types are based on the built-in system data types and are used to simplify development. For more
information, see User-Defined Types.

TEXT, NTEXT, and IMAGE Deprecated Data Types

The TEXT, NTEXT, and IMAGE data types have been deprecated as of SQL Server 2008R2. For more
information, see Deprecated Database Engine Features in SQL Server 2008 R2 in the SQL Server
documentation.

These data types are legacy types for storing BLOB and CLOB data. The TEXT data type was used to
store ASCII text CLOBS, the NTEXT data type to store UNICODE CLOBS, and IMAGE was used as a
generic data type for storing all BLOB data. In SQL Server 2005, Microsoft introduced the new and
improved VARCHAR (MAX), NVARCHAR(MAX), and VARBINARY(MAX) data types as the new BLOB
and CLOB standard. These new types support a wider range of functions and operations. They also
provide enhanced performance over the legacy types.

If your code uses TEXT, NTEXT or IMAGE data types, Amazon SCT automatically converts them to
the appropriate Aurora PostgreSQL BYTEA data type. Also, Amazon SCT converts TEXT and NTEXT
data types to LONGTEXT and IMAGE to LONGBLOB. Make sure you use the proper collations. For
more information, see the SQL Server Collations and PostgreSQL Encoding.

SQL Server Usage 74

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Examples
Define table columns.

CREATE TABLE MyTable

(

Coll AS INTEGER NOT NULL PRIMARY KEY,

Col2 AS NVARCHAR(10@) NOT NULL

);
Define variable types.

DECLARE @MyXMLType AS XML,

@MyTemporalType AS DATETIME2

DECLARE @MyTableType

AS TABLE

(

Coll AS BINARY(16) NOT NULL PRIMARY KEY,

Col2 AS XML NULL

);
For more information, see Data types (Transact-SQL) in the SQL Server documentation.
PostgreSQL Usage
PostgreSQL provides multiple data types equivalent to certain SQL Server data types. The
following tables include the full list of PostgreSQL data types.
Character data types

SQL Server data type SQL Server data type PostgreSQL identical PostgreSQL

characteristic compatibility corresponding data
type
CHAR Fixed length 1-8,000 Yes CHAR
VARCHAR Variable length Yes VARCHAR

1-8,000

PostgreSQL Usage 75

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

SQL Server data type

NCHAR

NVARCHAR

Numeric data types

SQL Server data type

BIT

TINYINT

SMALLINT
INT, INTEGER
BIGINT
NUMERIC
DECIMAL

MONEY

SQL Server data type
characteristic

Fixed length 1-4,000

Variable length
1-4,000

SQL Server data type
characteristic

First 8 BIT column
will consume 1 byte,
9 to 16 BIT columns
will be 2 bytes, and
so on.

8-bit unsigned
integer, O to 255

16-bit integer
32-bit integer
64-bit integer
Fixed-point number
Fixed-point number

64-bit currency
amount

PostgreSQL identical
compatibility

Yes

Yes

PostgreSQL identical
compatibility

Yes

No

Yes
Yes
Yes
Yes
Yes

Yes

PostgreSQL
corresponding data

type
CHAR (n)

VARCHAR (n)

PostgreSQL
corresponding data

type

BIT

SMALLINT

SMALLINT
INT, INTEGER
BIGINT
NUMERIC
DECIMAL

MONEY

PostgreSQL Usage

76

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server data type

SMALLMONEY

FLOAT

REAL

Temporal data types

SQL Server data type

DATE

TIME

SMALLDATETIME

DATETIME

DATETIME2

DATETIMEOFFSET

SQL Server data type
characteristic

32-bit currency
amount

Floating-point
number

Single-precision
floating-point
number

SQL Server data type
characteristic

Date (year, month
and day)

Time (hour, minute,
second and fraction)

Date and time

Date and time with
fraction

Date and time with
fraction

Date and time with
fraction and time
zone

PostgreSQL identical
compatibility

No

Yes

Yes

PostgreSQL identical
compatibility

Yes

Yes

No

No

No

No

PostgreSQL
corresponding data

type
MONEY

FLOAT

REAL

PostgreSQL
corresponding data

type
DATE

TIME

TIMESTAMP(0)

TIMESTAMP(3)

TIMESTAMP(p)

TIMESTAMP(p) WITH
TIME ZONE

PostgreSQL Usage

77

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Binary data types

SQL Server data type

BINARY

VARBINARY

LOB data types

SQL Server data type

TEXT

NTEXT

IMAGE

VARCHAR(MAX)

NVARCHAR(MAX)

SQL Server data type
characteristic

Fixed-length byte
string

Variable length
1-8,000

SQL Server data type
characteristic

Variable-length
character data up to
2GB

Variable-length
Unicode UCS-2 data
up to 2 GB

Variable-length
character data up to
2 GB

Variable-length
character data up to
2GB

Variable-length
Unicode UCS-2 data
up to 2 GB

PostgreSQL identical
compatibility

No

No

PostgreSQL identical

compatibility

Yes

No

No

Yes

No

PostgreSQL
corresponding data

type

BYTEA

BYTEA

PostgreSQL
corresponding data

type

TEXT

TEXT

BYTEA

TEXT

TEXT

PostgreSQL Usage

78

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

SQL Server data type

VARBINARY(MAX)

Spatial data types

SQL Server data type

GEOMETRY

GEOGRAPHY

SQL_VARIANT

Other data types

SQL Server data type

XML
UNIQUEIDENTIFIER

HIERARCHYID

SQL Server data type
characteristic

Variable-length
character data up to
2GB

SQL Server data type
characteristic

Euclidean (flat)
coordinate system

Round-earth
coordinate system

Maximum length of
8016

SQL Server data type
characteristic

XML data
16-byte GUID (UUID)

Approximately 5
bytes

PostgreSQL identical
compatibility

No

PostgreSQL identical
compatibility

Yes

Yes

No

PostgreSQL identical
compatibility

Yes
No

No

PostgreSQL
corresponding data

type

BYTEA

PostgreSQL
corresponding data

type

GEOMETRY

GEOGRAPHY

No equivalent

PostgreSQL
corresponding data

type
XML
CHAR(16)

VARCHAR (n)

PostgreSQL Usage

79

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
SQL Server data type SQL Server data type PostgreSQL identical PostgreSQL
characteristic compatibility corresponding data
type
ROWVERSION 8 bytes No TIMESTAMP(p)

PostgreSQL Character Column Semantics

PostgreSQL only supports CHAR for column size semantics. If you define a field as VARCHAR (10),
PostgreSQL can store 10 characters regardless of how many bytes it takes to store each non-
English character. VARCHAR(n) stores strings up to n characters, not bytes, in length.

Migration of SQL Server Data Types to PostgreSQL Data Types

You can use Amazon Schema Conversion Tool (Amazon SCT) for automatic migration and
conversion of SQL Server tables and data types.

Examples

To demonstrate Amazon SCT capability for migrating SQL Server tables to their PostgreSQL
equivalents, a table containing columns representing the majority of SQL Server data types was
created and converted using Amazon SCT.

Source SQL Server compatible DDL for creating the DATATYPES table

CREATE TABLE "DataTypes"(
"BINARY_FLOAT" REAL,
"BINARY_DOUBLE" FLOAT,
"BLOB" VARBINARY(4000),
"CHAR" CHAR(10),
"CHARACTER" CHAR(10),
"CLOB" VARCHAR(4000),
"DATE" DATE,

"DECIMAL" NUMERIC(3,2),
"DOUBLE_PRECISION" FLOAT(52),
"FLOAT" FLOAT(3),

"INTEGER" INTEGER,

"LONG" TEXT,

"NCHAR" NCHAR(10),

"NUMBER" NUMERIC(9,9),

PostgreSQL Usage 80

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

"NUMBER1" NUMERIC(9,0),

"NUMERIC" NUMERIC(9,9),

"RAW" BINARY(10),

"REAL" FLOAT(52),

"SMALLINT" SMALLINT,

"TIMESTAMP" TIMESTAMP,
"TIMESTAMP_WITH_TIME_ZONE" DATETIMEOFFSET(5),
"VARCHAR" VARCHAR(10),

"VARCHAR2" VARCHAR(10),

"XMLTYPE" XML

);

Target PostgreSQL compatible DDL for creating the DATATYPES table migrated from SQL Server
with Amazon SCT.

CREATE TABLE IF NOT EXISTS datatypes(
binary_float real DEFAULT NULL,
binary_double double precision DEFAULT NULL,
blob bytea DEFAULT NULL,
char character(10) DEFAULT NULL,
character character(1@) DEFAULT NULL,
clob text DEFAULT NULL,
date TIMESTAMP(@) without time zone DEFAULT NULL,
decimal numeric(3,2) DEFAULT NULL,
dec numeric(3,2) DEFAULT NULL,
double_precision double precision DEFAULT NULL,
float double precision DEFAULT NULL,
integer numeric(38,0) DEFAULT NULL,
long text DEFAULT NULL,
nchar character(10) DEFAULT NULL,
number numeric(9,9) DEFAULT NULL,
numberl numeric(9,0) DEFAULT NULL,
numeric numeric(9,9) DEFAULT NULL,
raw bytea DEFAULT NULL,
real double precision DEFAULT NULL,
smallint numeric(38,0) DEFAULT NULL,
timestamp TIMESTAMP(5) without time zone DEFAULT NULL,
timestamp_with_time_zone TIMESTAMP(5) with time zone DEFAULT NULL,
varchar character varying(1@0) DEFAULT NULL,
varchar?2 character varying(1@) DEFAULT NULL,
xmltype xml DEFAULT NULL
)
WITH (

PostgreSQL Usage 81

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

0IDS=FALSE
);

Summary

Amazon SCT converts all incompatible data types.

SQL Server CREATE TABLE command:

CREATE TABLE scttest(
SMALLDATETIMEcol SMALLDATETIME,
datetimecol DATETIME,
datetime2col DATETIME?2,
datetimeoffsetcol DATETIMEOFFSET,
binarycol BINARY,

varbinarycol VARBINARY,

ntextcol NTEXT,

imagecol IMAGE,

nvarcharmaxcol NVARCHAR(MAX),
varbinarymaxcol VARBINARY(MAX),
uniqueidentifiercol UNIQUEIDENTIFIER,
hierarchyiDcol HIERARCHYID,
sql_variantcol SQL_VARIANT,
rowversioncol ROWVERSION);

The equivalent command that was created by Amazon SCT:

CREATE TABLE scttest(

smalldatetimecol TIMESTAMP WITHOUT TIME ZONE,
datetimecol TIMESTAMP WITHOUT TIME ZONE,
datetime2col TIMESTAMP(6) WITHOUT TIME ZONE,
datetimeoffsetcol TIMESTAMP(6) WITH TIME ZONE,
binarycol BYTEA,

varbinarycol BYTEA,

ntextcol TEXT,

imagecol BYTEA,

nvarcharmaxcol TEXT,

varbinarymaxcol BYTEA,

uniqueidentifiercol UUID,

hierarchyidcol VARCHAR(8000),

sql_variantcol VARCHAR(8000),

rowversioncol VARCHAR(8000) NOT NULL);

Summary 82

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information, see System Columns and Data Types in the PostgreSQL documentation, and

Schema Conversion Tool Documentation.

Derived tables for ANSI SQL

This topic provides reference information about derived tables in SQL Server and PostgreSQL,
focusing on their compatibility in the context of migrating from Microsoft SQL Server 2019 to
Amazon Aurora PostgreSQL. You can understand how derived tables function similarly in both
database systems, enabling you to write complex join queries.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

SE888 soesd

N/A

SQL Server Usage

SQL Server implements derived tables as specified in ANSI SQL:2011. Derived tables are similar to
CTEs, but the reference to another query is used inside the FROM clause of a query.

This feature enables you to write more sophisticated, complex join queries.

Examples

SELECT name, salary, average_salary
FROM (SELECT AVG(salary)
FROM employee) AS workers (average_salary), employee
WHERE salary > average_salary
ORDER BY salary DESC;

For more information, see FROM clause plus JOIN, APPLY, PIVOT (Transact-SQL) in the SQL Server
documentation.

PostgreSQL Usage

PostgreSQL implements derived tables and is fully compatible with SQL Server derived tables.

Derived tables for ANSI SQL 83

https://www.postgresql.org/docs/13/ddl-system-columns.html
https://www.postgresql.org/docs/13/datatype.html
https://docs.amazonaws.cn/SchemaConversionTool/index.html
https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples

SELECT name, salary, average_salary
FROM (SELECT AVG(salary)
FROM employee) AS workers (average_salary), employee
WHERE salary > average_salary
ORDER BY salary DESC;

For more information, see Table Expressions in the PostgreSQL documentation.

GROUP BY for ANSI SQL

This topic provides reference information about migrating from Microsoft SQL Server 2019

to Amazon Aurora PostgreSQL, focusing on GROUP BY, CUBE, ROLLUP, and GROUPING SETS
functionalities. You can use this guide to understand the similarities and differences between these
database systems when working with aggregate functions and grouping operations.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

SESgE ©BBEB

N/A

SQL Server Usage

GROUP BY is an ANSI SQL query clause used to group individual rows that have passed the WHERE
filter clause into groups to be passed on to the HAVING filter and then to the SELECT list. This
grouping supports the use of aggregate functions such as SUM, MAX, AVG, and others.

Syntax

ANSI compliant GROUP BY Syntax.

GROUP BY
[ROLLUP | CUBE]
<Column Expression> ...n

GROUP BY for ANSI SQL 84

https://www.postgresql.org/docs/13/queries-table-expressions.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

[GROUPING SETS (<Grouping Set>)...n

Backward compatibility syntax.

GROUP BY
[ALL J <Column Expression> ...n
[WITH CUBE | ROLLUP]

The basic ANSI syntax for GROUP BY supports multiple grouping expressions, the CUBE and
ROLLUP keywords, and the GROUPING SETS clause; all used to add super-aggregate rows to the
output.

Up to SQL Server 2008 R2, the database engine supported a legacy, proprietary syntax (not
ANSI Compliant) using the WITH CUBE and WITH ROLLUP clauses. These clauses added super-
aggregates to the output.

Also, up to SQL Server 2008 R2, SQL Server supported the GROUP BY ALL syntax, which was used
to create an empty group for rows that failed the WHERE clause.

SQL Server supports the following aggregate functions: AVG, CHECKSUM_AGG, COUNT, COUNT_BIG,
GROUPING, GROUPING_ID, STDEV, STDEVP, STRING_AGG, SUM, MIN, MAX, VAR, VARP.

Examples

Legacy CUBE and ROLLUP Syntax

CREATE TABLE Orders

(
OrderID INT IDENTITY(1,1) NOT NULL
PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

I

INSERT INTO Orders(Customer, OrderDate)
VALUES ('John', '20180501'), ('John', '20180502'), ('John', '20180503'),
('Jim', '20180501'), ('Jim', '20180503'), ('Jim', '20180504')

SELECT Customer,
OrderDate,

SQL Server Usage 85

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

COUNT(*) AS NumOrders
FROM Orders AS O

GROUP BY Customer,

WITH ROLLUP

OrderDate

The preceding example produces the following results.

Customer
Jim

Jim

Jim

Jim

John
John
John
John
NULL

OrderDate
2018-05-01
2018-05-03
2018-05-04
NULL
2018-05-01
2018-05-02
2018-05-03
NULL

NULL

NumOrders

O W R PR WR R

The rows with NULL were added as a result of the WITH ROLLUP clause and contain super
aggregates for the following:

« All orders for Jim and John regardless of OrderDate.

« A super aggregated for all customers and all dates.

Using CUBE instead of ROLLUP adds super aggregates in all possible combinations, not only in

GROUP BY expression order.

SELECT Customer,
OrderDate,
COUNT(*) AS NumOrders

FROM Orders AS O

GROUP BY Customer,

WITH CUBE

OrderDate

The preceding example produces the following results.

Customer
Jim

John
NULL

OrderDate

2018-05-01
2018-05-01
2018-05-01

NumOrders
1
1
2

SQL Server Usage

86

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

John
NULL
Jim

John
NULL
Jim

NULL
NULL
Jim

John

2018-05-02
2018-05-02
2018-05-03
2018-05-03
2018-05-03
2018-05-04
2018-05-04
NULL

NULL

NULL

W WO R RLRNR R R R

Four additional rows were added by the CUBE. They provide super aggregates for every date for all

customers that were not part of the ROLLUP results in the preceding example.

Legacy GROUP BY ALL

Use the Orders table from the previous example.

SELECT Customer, OrderDate, COUNT(*) AS NumOrders
FROM Orders AS O
WHERE OrderDate <= '20180503'

GROUP BY ALL Customer,

OrderDate

The preceding example produces the following results.

Customer
Jim

John
John

Jim

John

Jim

OrderDate

2018-05-01
2018-05-01
2018-05-02
2018-05-03
2018-05-03
2018-05-04

NumOrders

S R R R PR R

Warning: Null value is eliminated by an aggregate or other SET operation.

The last row failed the WHERE clause and was returned as an empty group as indicated by the
warning for the empty COUNT(*) = 0.

Use GROUPING SETS

The following query uses the ANSI compliant GROUPING SETS syntax to provide all possible

aggregate combinations for the Orders table, similar to the result of the CUBE syntax. This syntax

requires specifying each dimension that needs to be aggregated.

SQL Server Usage

87

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT Customer, OrderDate, COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY GROUPING SETS (

(Customer, OrderDate),

(Customer),

(OrderDate),

O

The preceding example produces the following results.

Customer OrderDate NumOrders

Jim 2018-05-01 1
John 2018-05-01 1
NULL 2018-05-01 2
John 2018-05-02 1
NULL 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
NULL 2018-05-03 2
Jim 2018-05-04 1
NULL 2018-05-04 1
NULL NULL 6
Jim NULL 3
John NULL 3

For more information, see Aggregate Functions (Transact-SQL) and SELECT - GROUP BY- Transact-
SQL in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) supports the basic ANSI
syntax for GROUP BY and also supports GROUPING SETS CUBE, and ROLLUP.

In Aurora PostgreSQL, you can use ROLLUP and ORDER BY clauses in the same query, but the
syntax is different from SQL Server. There is no WITH clause in the statement.

SELECT Customer, OrderDate, COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY ROLLUP (Customer, OrderDate)

PostgreSQL Usage 88

https://docs.microsoft.com/en-us/sql/t-sql/functions/aggregate-functions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The main difference is the need to move from writing the column to GROUP BY after the ROLLUP.

For the CUBE option, it's the same change.

SELECT Customer, OrderDate, COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY CUBE (Customer, OrderDate);

For the GROUPING SET, use the following query.

SELECT Customer, OrderDate, COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY GROUPING SETS (
(Customer, OrderDate),
(Customer),
(OrderDate),
O
);

For more information, see Table Expressions in the PostgreSQL documentation.

Syntax

SELECT <Select List>
FROM <Table Source>
WHERE <Row Filter>
GROUP BY
[ROLLUP | CUBE | GROUPING SETS]
<Column Name> | <Expression> | <Position>

Migration Considerations
The GROUP BY functionality exists except for the ALL option.

Convert every query to use the column name after the GROUP BY option, such as CUBE, ROLLUP, or
CUBE.

Examples

Rewrite SQL Server WITH CUBE modifier for migration.

CREATE TABLE Orders

PostgreSQL Usage 89

https://www.postgresql.org/docs/13/queries-table-expressions.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

OrderID serial NOT NULL
PRIMARY KEY,

Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

);

INSERT INTO Orders(Customer, OrderDate)
VALUES ('John', '20180501'), ('3John', '20180502'), ('John', '20180503'),
('Jim', '20180501'), ('Jim', '20180503'), ('Jim', '20180504');

SELECT Customer, OrderDate, COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY CUBE (Customer, OrderDate);

The preceding example produces the following results.

Customer OrderDate NumOrders

Jim 2018-05-01 1
Jim 2018-05-03 1
Jim 2018-05-04 1
Jim NULL 3
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
John NULL 3
NULL NULL 6
NULL 2018-05-01 2
NULL 2018-05-02 1
NULL 2018-05-03 2
NULL 2018-05-04 1

Rewrite SQL Server GROUP BY ALL for migration.

SELECT Customer, OrderDate, COUNT(*) AS NumOrders
FROM Orders AS O

WHERE OrderDate <= '20180503'

GROUP BY Customer, OrderDate

UNION ALL -- Add the empty groups

SELECT DISTINCT Customer, OrderDate, 0

FROM Orders AS O

PostgreSQL Usage

90

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

WHERE OrderDate > '20180503';

The preceding example produces the following results.

Customer OrderDate NumOrders
Jim 2018-05-01 1
Jim 2018-05-03 1
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
Jim 2018-05-04 O
Summary

The following table shows similarities, differences, and key migration considerations.

SQL Server feature

MAX, MIN, AVG, COUNT,
COUNT_BIG

CHECKSUM_AGG

GROUPING, GROUPING_ID

STDEV, STDEVP, VAR, VARP

STRING_AGG

WITH ROLLUP

Aurora PostgreSQL feature

MAX, MIN, AVG, COUNT

N/A

GROUPING

STDDEV, STDDEV_POP ,
VARIANCE, VAR_POP

STRING_AGG

ROLLUP

Comments

In Aurora PostgreSQL, COUNT
returns a BIGINT and is
compatible with SQL Server
COUNT and COUNT_BIG .

Use a loop to calculate
checksums.

Reconsider the query logic
to avoid having NULL groups
that are ambiguous with the
super aggregates.

Rewrite keywords only.

Remove WITH and change the
columns names to be after
the ROLLUP keyword.

Summary

91

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server feature Aurora PostgreSQL feature Comments

WITH CUBE CUBE Remove WITH and change the
columns names to be after
the CUBE keyword.

GROUPING SETS GROUPING SETS

For more information, see Aggregate Functions in the PostgreSQL documentation.

Table JOIN for ANSI SQL

This topic provides reference information about join operations in SQL Server and their
compatibility with Amazon Aurora PostgreSQL. You can understand how different types of joins,
such as INNER JOIN, OUTER JOIN, CROSS JOIN, and APPLY operations, are supported or need to be
rewritten when migrating from SQL Server to Aurora PostgreSQL.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

89888 @vee commes, CROSS.

APPLY and OUTER
APPLY aren't
supported.

SQL Server Usage

ANSI JOIN

SQL Server supports the standard ANSI join types.

« <Set A> CROSS JOIN <Set B>.Resultsin a Cartesian product of the two sets. Every JOIN
starts as a Cartesian product.

Table JOIN for ANSI SQL 92

https://www.postgresql.org/docs/10/functions-aggregate.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

<Set A> INNER JOIN <Set B> ON <Join Condition>. Filters the Cartesian product to
only the rows where the join predicate evaluates to TRUE.

o <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition>. Adds to the INNER JOIN all
the rows from the reserved left set with NULL for all the columns that come from the right set.

o <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition> Adds to the INNER JOIN
all the rows from the reserved right set with NULL for all the columns that come from the left
set.

e <Set A> FULL OUTER JOIN <Set B> ON <Join Condition>. Designates both sets as
reserved and adds non-matching rows from both, similar toa LEFT OUTER JOIN and a RIGHT
OUTER JOIN.

APPLY

SQL Server also supports the APPLY operator, which is somewhat similar to a join. However, APPLY
operators enable the creation of a correlation between <Set A>and <Set B> such that <Set

B> may consist of a sub query, a VALUES row value constructor, or a table valued function that is
evaluated for each row of <Set A> where the <Set B> query can reference columns from the
current row in <Set A>. This functionality isn't possible with any type of standard JOIN operator.

There are two APPLY types:

« <Set A> CROSS APPLY <Set B>.Similar to a CROSS JOIN in the sense that every row from
<Set A>is matched with every row from <Set B>.

« <Set A> OUTER APPLY <Set B>.Similartoa LEFT OUTER JOIN in the sense that rows from
<Set A> arereturned even if the sub query for <Set B> produces an empty set. In that case,
NULL is assigned to all columns of <Set B>.

ANSI SQL 89 JOIN

Up until version 2008R2, SQL Server also supported the old-style JOIN syntax including LEFT and
RIGHT OUTER JOIN.

The ANSI syntax for a CROSS JOIN operator was to list the sets in the FROM clause using commas
as separators.

SELECT * FROM Tablel,

SQL Server Usage 93

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Table2,
Table3...

To perform an INNER JOIN, you only needed to add the JOIN predicate as part of the WHERE
clause.

SELECT * FROM Tablel,
Table?2
WHERE Tablel.Columnl = Table2.Columnl

Although the ANSI standard didn't specify outer joins at the time, most RDBMS supported them
in one way or another. T-SQL supported outer joins by adding an asterisk to the left or the right of
equality sign of the join predicate to designate the reserved table.

SELECT * FROM Tablel,
Table2
WHERE Tablel.Columnl *= Table2.Columnl

To perform a FULL OUTER JOIN, asterisks were placed on both sides of the equality sign of the
join predicate.

As of SQL Server 2008R2, outer joins using this syntax have been deprecated. For more
information, see Deprecated Database Engine Features in SQL Server 2008 R2 in the SQL Server

documentation.

(@ Note

Even though INNER JOIN using the ANSI SQL 89 syntax is still supported, they are highly
discouraged due to being notorious for introducing hard-to-catch programming bugs.

Syntax

CROSS JOIN

FROM <Table Source 1>
CROSS JOIN
<Table Source 2>

SQL Server Usage 94

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)?redirectedfrom=MSDN

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

-- ANSI 89
FROM <Table Source 1>,
<Table Source 2>

INNER / OUTER JOIN

FROM <Table Source 1>
[{ INNER | { { LEFT | RIGHT | FULL } [OUTER] } }] JOIN
<Table Source 2>
ON <JOIN Predicate>

-- ANSI 89
FROM <Table Source 1>,
<Table Source 2>
WHERE <Join Predicate>
<Join Predicate>:: <Table Source 1 Expression> | = | *= =% *=* <Table Source 2

Expression>

APPLY

FROM <Table Source 1>
{ CROSS | OUTER } APPLY

<Table Source 2>
<Table Source 2>:: <SELECT sub-query> | <Table Valued UDF> | <VALUES clause>

Examples

Create the Orders and Items tables.

CREATE TABLE Items

(
Item VARCHAR(20) NOT NULL
PRIMARY KEY
Category VARCHAR(20) NOT NULL,
Material VARCHAR(20) NOT NULL

);

INSERT INTO Items (Item, Category, Material)
VALUES

SQL Server Usage 95

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

('M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
('M8 Nut', 'Metric Nuts', 'Stainless Steel'),

('M8 Washer', 'Metric Washers', 'Stainless Steel'),

('3/8" Bolt', 'Imperial Bolts', 'Brass')

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL
REFERENCES Items(Item),
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
e

INSERT INTO OrderItems (OrderID, Item, Quantity)

VALUES

(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200)

INNER JOIN

SELECT *
FROM Items AS I
INNER JOIN
OrderItems AS 0I
ON I.Item = OI.Item;
-- ANSI SQL 89
SELECT *
FROM Items AS I,
OrderItems AS 0I
WHERE I.Item = OI.Item;

LEFT OUTER JOIN

Find Items that were never ordered.

SELECT I.Item
FROM Items AS I
LEFT OUTER JOIN

SQL Server Usage

96

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

OrderItems AS OI

ON I.

Item = OI.Item

WHERE OI.OrderID IS NULL;

-- ANSI SQL 89

SELECT
FROM

(

Item

SELECT I.Item, 0.0rderID

FROM

Items AS I,

OrderItems AS 0OI
WHERE I.Item *= OI.Item
) AS LeftJoined
WHERE LeftJoined.OrderID IS NULL;

FULL OUTER JOIN

CREATE
CREATE

INSERT
VALUES

INSERT
VALUES

SELECT
FROM T1

TABLE T1(Coll INT, CO012 CHAR(2));
TABLE T2(Coll INT, CO012 CHAR(2));

INTO T1 (Coll, Col2)
(1, 'A"), (2,'B");

INTO T2 (Coll, Col2)
(2,'BB'), (3,'CC");

*

FULL OUTER JOIN

T2
ON T1

.Coll = T2.Coll;

The preceding example produces the following results.

Coll (CO0l2 Coll cCO12

1 A NULL NULL
2 B 2 BB
NULL NULL 3 cc

For more information, see FROM clause plus JOIN, APPLY, PIVOT (Transact-SQL) in the SQL Server
documentation.

SQL Server Usage

97

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) supports all types of joins in
the same way as SQL Server.

o <Set A> CROSS JOIN <Set B>.Resultsin a Cartesian product of the two sets. Every JOIN
starts as a Cartesian product.

o <Set A> INNER JOIN <Set B> ON <Join Condition>. Filters the Cartesian product to
only the rows where the join predicate evaluates to TRUE.

« <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition>. Adds tothe INNER JOIN all
the rows from the reserved left set with NULL for all the columns that come from the right set.

e <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition> Adds to the INNER JOIN
all the rows from the reserved right set with NULL for all the columns that come from the left
set.

o <Set A> FULL OUTER JOIN <Set B> ON <Join Condition>. Designates both sets as
reserved and adds non-matching rows from both, similartoa LEFT OUTER JOIN and a RIGHT
OUTER JOIN.

PostgreSQL doesn't support APPLY options. You can replace them with INNER JOIN LATERAL
and LEFT JOIN LATERAL.

Syntax

FROM
<Table Source 1> CROSS JOIN <Table Source 2>
| <Table Source 1> INNER JOIN <Table Source 2>
ON <Join Predicate>
| <Table Source 1> {LEFT|RIGHT|FULL} [OUTER] JOIN <Table Source 2>
ON <Join Predicate>

Migration Considerations

For most JOIN statements, the syntax should be equivalent and no rewrites should be needed.
Find the differences following.

o ANSI SQL 89 isn't supported.

PostgreSQL Usage 98

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« FULL OUTER JOINand OUTER JOIN using the pre-ANSI SQL 92 syntax aren't supported, but
you can use workarounds.

« CROSS APPLY and OUTER APPLY aren’t supported. You can rewrite these statements using
INNER JOIN LATERAL and LEFT JOIN LATERAL.

Examples

Create the Orders and Items tables.

CREATE TABLE Items
(
Item VARCHAR(20) NOT NULL
PRIMARY KEY
Category VARCHAR(20) NOT NULL,
Material VARCHAR(20) NOT NULL
);

INSERT INTO Items (Item, Category, Material)
VALUES

('M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
('M8 Nut', 'Metric Nuts', 'Stainless Steel'),

('M8 Washer', 'Metric Washers', 'Stainless Steel'),
('3/8" Bolt', 'Imperial Bolts', 'Brass')

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL
REFERENCES Items(Item),
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
e

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200)

PostgreSQL Usage 99

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

INNER JOIN

SELECT *

FROM Items AS I
INNER JOIN
OrderItems AS 0OI
ON I.Item = OI.Item;

LEFT OUTER JOIN

Find Items that were never ordered.

SELECT Item
FROM Items AS I
LEFT OUTER JOIN
OrderItems AS 0OI
ON I.Item = OI.Item
WHERE OI.OrderID IS NULL;

FULL OUTER JOIN

CREATE TABLE T1(Coll INT, CO012 CHAR(2));
CREATE TABLE T2(Coll INT, COl12 CHAR(2));

INSERT INTO T1 (Coll, Col2)
VALUES (1, 'A'), (2,'B');

INSERT INTO T2 (Coll, Col2)
VALUES (2,'BB'), (3,'CC");

SELECT *

FROM T1

FULL OUTER JOIN

T2

ON T1.Coll = T2.Col1;

The preceding example produces the following results.

Coll COl2 Coll coO012
1 A NULL NULL
2 B 2 BB

PostgreSQL Usage

100

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
NULL NULL 3 de
Summary
The following table shows similarities, differences, and key migration considerations.
SQL Server feature Aurora PostgreSQL feature Comments
INNER JOIN with ON clause Supported.
or commas.
OUTER JOIN with ON clause. Supported.
OUTER JOIN with commas. Not supported. Requires T-SQL rewrite post
SQL Server 2008R2.
CROSS JOIN or using Supported.
commas.
CROSS APPLY and OUTER Not supported. Rewrite required.
APPLY.

For more information, see Controlling the Planner with Explicit JOIN Clauses and Joins Between

Tables in the PostgreSQL documentation.

Temporal tables for ANSI SQL

This topic provides reference information about temporal database tables in Microsoft SQL Server
and their compatibility with Amazon Aurora PostgreSQL. You can understand the functionality of
temporal tables in SQL Server, including their use of DATETIME2 columns and querying methods.
The topic also explains common scenarios where temporal tables are useful for tracking data
change history.

Summary 101

https://www.postgresql.org/docs/13/explicit-joins.html
https://www.postgresql.org/docs/13/tutorial-join.html
https://www.postgresql.org/docs/13/tutorial-join.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A
SRS

SQL Server Usage

Temporal database tables were introduced in ANSI SQL 2011. T-SQL began supporting system
versioned temporal tables in SQL Server 2016.

Each temporal table has two explicitly defined DATETIME2 columns known as period columns. The
system uses these columns to record the period of availability for each row when it is modified.

An additional history table retains the previous version of the data. The system can automatically
create the history table, or a user can specify an existing table.

To query the history table, use FOR SYSTEM TIME after the table name in the FROM clause and
combine it with the following options:

ALL — all changes.
CONTAINED IN — change is valid only within a period.

AS OF — change was valid somewhere in a specific period.

BETWEEN — change was valid from a time range.

Temporal Tables are mostly used when to track data change history as described in the following
scenarios.

Anomaly Detection

Use this option when searching for data with unusual values. For example, detecting when a
customer returns items too often.

CREATE TABLE Products_returned

(
ProductID int NOT NULL PRIMARY KEY CLUSTERED,

SQL Server Usage 102

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

)

ProductName varchar(6@) NOT NULL,

return_count INT NOT NULL,

ValidFrom datetime2(7) GENERATED ALWAYS AS ROW START NOT NULL,
ValidTo datetime2(7) GENERATED ALWAYS AS ROW END NOT NULL,
PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)

WITH(SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.ProductHistory,

DATA_CONSISTENCY_CHECK = ON))

Query the Product table and run calculations on the data.

SELECT

ProductlId,

LAG (return_count, 1, 1)

over (partition by ProductId order by ValidFrom) as PrevValue,
return_count,

LEAD (return_count, 1, 1)

over (partition by ProductId order by ValidFrom) as NextValue ,
ValidFrom, ValidTo from Product

FOR SYSTEM_TIME ALL

Audit

Track changes to critical data such as salaries or medical data.

CREATE TABLE Employee

(

)

EmployeeID int NOT NULL PRIMARY KEY CLUSTERED,

Name nvarchar(6@) NOT NULL,

Salary decimal (6,2) NOT NULL,

ValidFrom datetime2 (2) GENERATED ALWAYS AS ROW START,
ValidTo datetime2 (2) GENERATED ALWAYS AS ROW END,
PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)

WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.EmployeeTrackHistory));

Use FOR SYSTEM_TIME ALL to retrieve changes from the history table.

SELECT * FROM Employee

FOR SYSTEM_TIME ALL WHERE
EmployeeID = 1000 ORDER BY ValidFrom;

SQL Server Usage

103

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Other Scenarios
Additional scenarios include the following:

« Fixing row-level corruption.
» Slowly changing dimension.

« Over time changes analysis.

For more information, see Temporal tables in the SQL Server documentation.

PostgreSQL Usage

PostgreSQL provides an extension for supporting temporal tables, but it's not supported by
Amazon Aurora. A workaround will be to create table triggers to update a custom history table to
track changes to data. For more information, see Triggers.

Views for ANSI SQL

This topic provides reference information about migrating views from Microsoft SQL Server
2019 to Amazon Aurora PostgreSQL. You can understand the similarities and differences in view
functionality between these two database systems, which is crucial for planning and executing a
successful migration. The topic covers basic view concepts, usage patterns, and specific features
like indexed views, partitioned views, and updateable views.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A PostgreSQL doesn't

@ @ @ E @ @ @ @ support indexed and

partitioned views.

SQL Server Usage

Views are schema objects that provide stored definitions for virtual tables. Similar to tables, views
are data sets with uniquely named columns and rows. With the exception of indexed views, view

PostgreSQL Usage 104

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

objects don't store data. They consist only of a query definition and are reevaluated for each
invocation.

Views are used as abstraction layers and security filters for the underlying tables. They can JOIN
and UNION data from multiple source tables and use aggregates, window functions, and other SQL
features as long as the result is a semi-proper set with uniquely identifiable columns and no order
to the rows. You can use distributed views to query other databases and data sources using linked
servers.

As an abstraction layer, a view can decouple application code from the database schema. You

can change the underlying tables without the need to modify the application code as long as

the expected results of the view don't change. You can use this approach to provide backward
compatible views of data.

As a security mechanism, a view can screen and filter source table data. You can perform
permission management at the view level without explicit permissions to the base objects,
provided the ownership chain is maintained. For more information, see Overview of SQL Server

Security.

View definitions are evaluated when they are created and aren't affected by subsequent changes to
the underlying tables. For example, a view that uses SELECT * doesn’t display columns that were
added later to the base table. Similarly, if a column was dropped from the base table, invoking the
view results in an error. Use the SCHEMABINDING option to prevent changes to base objects.

Modifying Data Through Views

Updatable Views can both select and modify data. Updatable views meet the following conditions:

« The DML targets only one base table.

« Columns being modified must be directly referenced from the underlying base tables. Computed
columns, set operators, functions, aggregates, or any other expressions aren't permitted.

o If aview is created with the CHECK OPTION, rows being updated can't be filtered out of the view
definition as the result of the update.

Special View Types

SQL Server provides three types of specialized views:

SQL Server Usage 105

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/overview-of-sql-server-security
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/overview-of-sql-server-security

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

» Indexed views. These views are also known as materialized views or persisted views. Indexed
vires are standard views that have been evaluated and persisted in a unique clustered index,
much like a normal clustered primary key table. Each time the source data changes, SQL Server
re-evaluates the indexed views automatically and updates them. Indexed views are typically used
as a means to optimize performance by pre-processing operators such as aggregations, joins, and
others. Queries needing this pre-processing don't have to wait for it to be reevaluated on every
query run.

« Partitioned views rejoin horizontally partitioned data sets from multiple underlying tables, each
containing only a subset of the data. The view uses a UNION ALL query where the underlying
tables can reside locally or in other databases (or even other servers). These types of views are
called Distributed Partitioned Views (DPV).

» System views access server and object meta data. SQL Server also supports a set of standard
INFORMATION_SCHEMA views for accessing object meta data.

Syntax

CREATE [OR ALTER] VIEW [<Schema Name>.] <View Name> [(<Column Aliases>])]
[WITH [ENCRYPTION][SCHEMABINDING][VIEW_METADATA]]

AS <SELECT Query>

[WITH CHECK OPTIONI[;]

Examples

The following example creates a view that aggregates items for each customer.

CREATE TABLE Orders

(
OrderID INT NOT NULL PRIMARY KEY,
OrderDate DATETIME NOT NULL
DEFAULT GETDATE()

I

CREATE TABLE OrderItems

(
OrderID INT NOT NULL
REFERENCES Orders(OrderID),
Item VARCHAR(20) NOT NULL,

SQL Server Usage 106

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)

);

CREATE VIEW SalesView

AS

SELECT 0O.Customer,
OI.Product,

SUM(CAST(0I.Quantity AS BIGINT)) AS TotalItemsBought

FROM Orders AS O
INNER JOIN
OrderItems AS 0OI
ON 0.0rderID = 0I.0rderlID;

The following example creates an indexed view that pre-aggregates items for each customer

CREATE VIEW SalesViewIndexed
AS
SELECT O.Customer,
OI.Product,
SUM_BIG(OI.Quantity) AS TotalItemsBought
FROM Orders AS O
INNER JOIN
OrderItems AS 0OI
ON 0.0rderID = 0I.0rderlID;

CREATE UNIQUE CLUSTERED INDEX IDX_SalesView
ON SalesViewIndexed (Customer, Product);

The following example creates a partitioned view.

CREATE VIEW dbo.PartitioneView
WITH SCHEMABINDING

AS

SELECT *

FROM Tablel

UNION ALL

SELECT *

FROM Table2

UNION ALL

SELECT *

SQL Server Usage

107

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

FROM Table3

For more information, see Views, Modify Data Through a View, and CREATE VIEW (Transact-SQL) in
the SQL Server documentation.

PostgreSQL Usage

The basic form of views is similar between PostgreSQL and SQL Server. A view defines a stored
query based on one or more physical database tables that runs every time the view is accessed.

More complex option such as indexed views or partitioned views aren’t supported, and may require
a redesign or might application rewrite.

® Note

For Amazon Relational Database Service (Amazon RDS), starting with PostgreSQL 13, you
can rename view columns using ALTER VIEW command. This option helps DBAs avoid
dropping and recreating the view to change a column name.

Use the following syntax to rename a column name in a view: ALTER VIEW [IF
EXISTS] name RENAME [COLUMN] column_name TO new_column_name.

For PostgreSQL versions lower than 13, you can change the column name in a view using
the ALTER TABLE command.

PostgreSQL View Privileges

To create a view, make sure that you grant SELECT and DML privileges on the base tables or views
to your role or user. For more information, see GRANT in the PostgreSQL documentation.

PostgreSQL View Parameters

CREATE [OR REPLACE] VIEW

When you re-create an existing view, make sure that the new view has the same column structure
as generated by the original view. The column structure includes column names, column order,
and data types. It is sometimes preferable to drop the view and use the CREATE VIEW statement
instead.

hr=# CREATE [OR REPLACE] VIEW VW_NAME AS

PostgreSQL Usage 108

https://docs.microsoft.com/en-us/sql/relational-databases/views/views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/views/modify-data-through-a-view?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql?view=sql-server-ver15
https://www.postgresql.org/docs/13/sql-grant.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT COLUMNS
FROM TABLE(s)
[WHERE CONDITIONS];

hr=# DROP VIEW [IF EXISTS] VW_NAME;

In the example preceding, the IF EXISTS parameter is optional.
WITH [CASCADED | LOCAL] CHECK OPTION

DML INSERT and UPDATE operations are verified against the view-based tables to ensure new rows
satisfy the original structure conditions or the view-defining condition. If a conflict is detected, the
DML operation fails.

e LOCAL. Verifies the view without a hierarchical check.

« CASCADED. Verifies all underlying base views using a hierarchical check.

Running DML Commands On Views

PostgreSQL simple views are automatically updatable. No restrictions exist when performing

DML operations on views. An updatable view may contain a combination of updatable and non-
updatable columns. A column is updatable if it references an updatable column of the underlying
base table. If not, the column is read-only and an error is raised if an INSERT or UPDATE statement
is attempted on the column.

Syntax

CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name [(column_name
Lo) 1]

[WITH (view_option_name [= view_option_value] [, ... 1) 1
AS query
[WITH [CASCADED | LOCAL] CHECK OPTION]

Examples

The following example creates and updates a view without the CHECK OPTION parameter.

CREATE OR REPLACE VIEW VW_DEP AS
SELECT DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID

PostgreSQL Usage 109

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

FROM DEPARTMENTS

WHERE LOCATION_ID=1700;

view VW_DEP created.

UPDATE VW_DEP SET LOCATION_ID=1600;

21 rows updated.

The following example creates and updates a view with the LOCAL CHECK OPTION parameter.

CREATE OR REPLACE VIEW VW_DEP AS
SELECT DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID

FROM DEPARTMENTS

WHERE LOCATION_ID=1700
WITH LOCAL CHECK OPTION;

view VW_DEP created.

UPDATE VW_DEP SET LOCATION_ID=1600;

SQL Error: ERROR: new row violates check option for view "vw_dep"

Summary

Feature

Indexed views
Partitioned views
Updateable views
Prevent schema conflicts
Triggers on views

Temporary Views

SQL Server

Supported

Supported

Supported
SCHEMABINDING option
INSTEAD OF

CREATE VIEW #View..

Aurora PostgreSQL
N/A

N/A

Supported

N/A

INSTEAD OF

CREATE [OR REPLACE]
[TEMP] [TEMPORARY]
VIEW

Summary

110

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature SQL Server Aurora PostgreSQL
Refresh view definition sp_refreshview /ALTER ALTER VIEW
VIEW

For more information, see Views and CREATE VIEW in the PostgreSQL documentation.

Window functions for ANSI SQL

This topic provides reference information comparing window functions in Microsoft SQL Server
and PostgreSQL, which is valuable for database migration projects. You can gain insights into the
similarities and differences between these two database systems' analytical capabilities. The topic
highlights the types of window functions available in SQL Server, including ranking, aggregate, and
analytic functions, and compares them to PostgreSQL's window function support.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

SESEE sBess

N/A

SQL Server Usage

Window functions use an OVER clause to define the window and frame for a data set to be
processed. They are part of the ANSI standard and are typically compatible among various SQL
dialects. However, most RDBMS don't yet support the full ANSI specification.

Window functions are a relatively new, advanced, and efficient T-SQL programming tool. They are
highly utilized by developers to solve numerous programming challenges.

SQL Server currently supports the following window functions:

» Ranking functions: ROW_NUMBER, RANK, DENSE_RANK, and NTILE.

« Aggregate functions: AVG, MIN, MAX, SUM, COUNT, COUNT_BIG, VAR, STDEV, STDEVP,
STRING_AGG, GROUPING, GROUPING_ID, VAR, VARP, and CHECKSUM_AGG.

Window functions for ANSI SQL 111

https://www.postgresql.org/docs/13/tutorial-views.html
https://www.postgresql.org/docs/13/sql-createview.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Analytic functions: LAG, LEAD, FIRST_Value, LAST_VALUE, PERCENT_RANK,
PERCENTILE_CONT, PERCENTILE_DISC, and CUME_DIST.

» Other functions: NEXT_VALUE_FOR. For more information, see Sequences and ldentity.

Syntax

<Function()>

OVER

(

[<PARTITION BY clause>]
[<ORDER BY clause>]

[<ROW or RANGE clause>]
)

Examples
The following example creates and populates an Orderltems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Locking Nut', 300);

The following example uses a window ranking function to rank items based on the ordered
quantity.

SELECT Item,
Quantity,
RANK() OVER(ORDER BY Quantity) AS QtyRank

SQL Server Usage 112

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

FROM OrderItems;

The preceding example produces the following results.

Item Quantity QtyRank
M8 Bolt 100 1
M8 Nut 100 1
M8 Washer 200 3
M6 Locking Nut 300 4

The following example uses a partitioned window aggregate function to calculate the total
quantity for each order. This statement doesn't use a GROUP BY clause.

SELECT Item,
Quantity,
OrderID,
SUM(Quantity)

OVER (PARTITION BY OrderID) AS TotalOrderQty

FROM OrderItems;

The preceding example produces the following results.

Item Quantity QtyRank TotalOrderQty
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

The following example uses an analytic LEAD function to get the next largest quantity for the

order.

SELECT Item,
Quantity,
OrderlID,
LEAD(Quantity)

OVER (PARTITION BY OrderID ORDER BY Quantity) AS NextQtyOrder

FROM OrderItems;

The preceding example produces the following results.

SQL Server Usage

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Item Quantity OrderID NextQtyOrder
M8 Bolt 100 1 NULL
M8 Nut 100 2 NULL
M8 Washer 200 3 300
M6 Locking Nut 300 3 NULL

For more information, see SELECT - OVER Clause (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

PostgreSQL refers to ANSI SQL analytical functions as window functions. They provide the same

core functionality as SQL Server analytical functions. Window functions in PostgreSQL operate on

a logical partition or window of the result set and return a value for rows in that window.

From a database migration perspective, you should examine PostgreSQL window functions by type
and compare them with the equivalent SQL Server window functions to verify compatibility of

syntax and output.

(@ Note

Even if a PostgreSQL window function provides the same functionality of a specific SQL
Server window function, the returned data type may be different and require application

changes.

PostgreSQL provides support for two main types of window functions: aggregation functions and

ranking functions.

PostgreSQL Window Functions by Type

Function type
Aggregate

Ranking

Related functions
avg, count, max, min, sum, string_agg

row_number , rank, dense_rank ,
percent_rank , cume_dist , ntile,
lag, lead, first_value , last_value ,
nth_value

PostgreSQL Usage

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

PostgreSQL Window Functions

PostgreSQL window function

Count

Max

Min

Avg

Sum

rank()
row_number()
dense_rank()
percent_rank()
cume_dist()
ntile()

lag()

lead()
first_value()

last_value()

Returned data type
bigint

numeric, string, date/time,
network or enum type

numeric, string, date/time,
network or enum type

numeric, double, otherwise
same data type as the
argument

bigint, otherwise same data
type as the argument

bigint

bigint

bigint

double

double

integer

Same type as value
Same type as value
Same type as value

Same type as value

Compatible syntax
Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

PostgreSQL Usage

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples

The following example uses he PostgreSQL rank() function.

SELECT department_id, last_name, salary, commission_pct,
RANK() OVER (PARTITION BY department_id

ORDER BY salary DESC, commission_pct) "Rank"

FROM employees WHERE department_id = 80;

DEPARTMENT_ID LAST_NAME SALARY COMMISSION_PCT Rank

80 Russell 14000.00 0.40 1
80 Partners 13500.00 0.30 2
80 Errazuriz 12000.00 .30 3

The returned formatting for certain numeric data types is different.

The following example calculates the total salary for the department 80.

SELECT SUM(salary)
FROM employees WHERE department_id = 80;

SUM(SALARY)
39500.00

The following example creates and populates an Orderltems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
by

INSERT INTO OrderItems (OrderID, Item, Quantity) VALUES
(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Locking Nut', 300);

PostgreSQL Usage 116

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The following example uses a window ranking function to rank items based on the ordered
quantity.

SELECT Item, Quantity, RANK()
OVER(ORDER BY Quantity) AS QtyRank
FROM OrderItems;

Item Quantity QtyRank
M8 Bolt 100 1
M8 Nut 100 1
M8 Washer 200 3
M6 Locking Nut 300 4

The following example uses a partitioned window aggregate function to calculate the total
quantity for each order. This statement doesn’t use a GROUP BY clause.

SELECT Item, Quantity, OrderID, SUM(Quantity)
OVER (PARTITION BY OrderID) AS TotalOrderQty
FROM OrderItems;

Item Quantity OrderID TotalOrderQty
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

The following example uses an analytic LEAD function to get the next largest quantity for the
order.

SELECT Item, Quantity, OrderID, LEAD(Quantity)
OVER (PARTITION BY OrderID ORDER BY Quantity) AS NextQtyOrder
FROM OrderItems;

Item Quantity OrderID NextQtyOrder
M8 Bolt 100 1 NULL
M8 Nut 100 2 NULL
M8 Washer 200 3 300
M6 Locking Nut 300 3 NULL

For more information, see Window Functions in the PostgreSQL documentation.

PostgreSQL Usage 117

https://www.postgresql.org/docs/13/tutorial-window.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Migrating T-SQL features

This topic provides conceptual content comparing various features and functionalities between
Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can gain valuable insights into the
differences and similarities between these two database systems, which is crucial for planning and
executing a successful migration. The content covers a wide range of topics, including data types,
cursors, stored procedures, error handling, full-text search, and more. By understanding these
concepts, database administrators and developers can anticipate challenges, identify potential
workarounds, and make informed decisions when transitioning their databases and applications
from SQL Server to Aurora PostgreSQL. This knowledge enables smoother migrations and helps
maintain data integrity and functionality in the new PostgreSQL environment.

Topics

 Service Broker functionality for T-SQL

e SQL Server cast and convert for T-SQL

o Common Language Runtime for T-SQL

e Collations for T-SQL
e Cursors for T-SQL

« Date and time functions for T-SQL

 String functions for T-SQL

» Databases and schemas for T-SQL

o Dynamic SQL for T-SQL

« Transactions for T-SQL

« Synonyms for T-SQL

o Delete and update from for T-SQL

» Stored procedures for T-SQL
o Error handling for T-SQL

e Flow control for T-SQL

e Full-text search for T-SQL

» SQL server graph features for T-SQL
« JSON and XML for T-SQL

118

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

» Merge for T-SQL

» Pivot and unpivot for T-SQL

» Triggers for T-SQL

» Top fetch for T-SQL

o User-defined functions for T-SQL
o User-defined types for T-SQL

« Identity and sequences for T-SQL

Service Broker functionality for T-SQL

This topic provides reference information about migrating from Microsoft SQL Server 2019's
Service Broker functionality to Amazon Aurora PostgreSQL. You can understand the challenges and
alternatives available when moving from SQL Server's native messaging and queuing capabilities
to Aurora PostgreSQL, which doesn't offer a direct equivalent. The topic explores how you can
achieve similar functionality using a combination of Amazon services, including DB Links, Amazon
Lambda, and Amazon SQS.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Service Broker Use Amazon Lambda

for similar functiona
lity.

SQL Server Usage

SQL Server Service Broker provides native support for messaging and queuing applications.
Developers use Server Broker to create complex applications that use the database engine
components to communicate between several SQL Server databases. Developers can use Service
Broker to easily build distributed and more reliable applications.

Benefits of using messaging queues:

» Decouple dependencies between applications by communicating through messages.

Service Broker functionality for T-SQL 119

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

» Scale out your architecture by moving queues or message processors to separate servers as
needed.

« Maintain individual parts with a minimal impact to the end users.
« Control when the messages are processed, for example, off-peak hours.

» Process queued messages on multiple servers or processes or threads.

The following sections describe the Service Broker commands.
CREATE MESSAGE TYPE

The following example creates a message with name and structure.

CREATE MESSAGE TYPE message_type_name
[AUTHORIZATION owner_name]
[VALIDATION = { NONE
| EMPTY
| WELL_FORMED_XML
| VALID_XML WITH SCHEMA COLLECTION schema_collection_name
11
L]

For more information, see CREATE MESSAGE TYPE (Transact-SQL) in the SQL Server documentation.

CREATE QUEUE

The following example creates a queue to store messages.

CREATE QUEUE <object>
[WITH
[STATUS = { ON | OFF } [, 1 1
[RETENTION = { ON | OFF } [, 11
[ACTIVATION (

[STATUS = { ON | OFF } , 1]
PROCEDURE_NAME = <procedure> ,
MAX_QUEUE_READERS = max_readers ,
EXECUTE AS { SELF | 'user_name' | OWNER }
YL, 11

[POISON_MESSAGE_HANDLING (
[STATUS = { ON | OFF } 1) 1

SQL Server Usage 120

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-message-type-transact-sql?view=sql-server-2017

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

[ON { filegroup | [DEFAULT] } 1]
L]

<object> ::=

{

[database_name. [schema_name] . | schema_name.]
queue_name

<procedure> ::=

{

[database_name. [schema_name] . | schema_name.]
stored_procedure_name

For more information, see CREATE QUEUE (Transact-SQL) in the SQL Server documentation.

CREATE CONTRACT

The following example specifies the role and what type of messages a service can handle.

CREATE CONTRACT contract_name
[AUTHORIZATION owner_name]
({ { message_type_name | [DEFAULT] }
SENT BY { INITIATOR | TARGET | ANY }
}L,...n]1)
L]

For more information, see CREATE CONTRACT (Transact-SQL) in the SQL Server documentation.

CREATE SERVICE

The following example creates a named Service Broker for a specified task or set of tasks.

CREATE SERVICE service_name
[AUTHORIZATION owner_name]
ON QUEUE [schema_name. Jqueue_name
[(contract_name | [DEFAULTI[L ,...n 1) 1]

[;]

For more information, see CREATE SERVICE (Transact-SQL) in the SQL Server documentation.

SQL Server Usage 121

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-queue-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-contract-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-service-transact-sql?view=sql-server-2017

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

BEGIN DIALOG CONVERSATION

The following example starts the interaction between Service Brokers.

BEGIN DIALOG [CONVERSATION] @dialog_handle
FROM SERVICE initiator_service_name
TO SERVICE 'target_service_name'

[, { 'service_broker_guid' | 'CURRENT DATABASE' }]
[ON CONTRACT contract_name]
[WITH

[{ RELATED_CONVERSATION = related_conversation_handle

| RELATED_CONVERSATION_GROUP = related_conversation_group_id }]
[[, 1 LIFETIME = dialog_lifetime]
[[, 1 ENCRYPTION = { ON | OFF } 1 1]
[]

For more information, see BEGIN DIALOG CONVERSATION (Transact-SQL) in the SQL Server
documentation.

WAITFOR(RECEIVE TOP(1))

The following example specifies that a code block has to wait until one message is received.

[WAITFOR (1]
RECEIVE [TOP (n) 1]
<column_specifier> [,...n]
FROM <queue>
[INTO table_variable]
[WHERE { conversation_handle = conversation_handle
| conversation_group_id = conversation_group_id }]
L)1 [, TIMEOUT timeout]
[;1]

<column_specifier> ::=

{*
{ column_name | [] expression } [[AS] column_alias]
column_alias = expression

I
I
}L,...n 1]

<queue> ::=
{

[database_name . [schema_name] . | schema_name .]

SQL Server Usage 122

https://docs.microsoft.com/en-us/sql/t-sql/statements/begin-dialog-conversation-transact-sql?view=sql-server-2017

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

queue_name

For more information, see RECEIVE (Transact-SQL) in the SQL Server documentation.

You can combine all of the preceding commands to achieve your architecture goals.

For more information, see Service Broker in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) doesn't provide a compatible
solution to the SQL Server Service Broker. However, you can use DB Links and Amazon Lambda to
achieve similar functionality.

You can combine Amazon Lambda with Amazon SQS to reduce costs and remove some loads from
the database into the Amazon Lambda and Amazon Simple Queue Service (Amazon SQS). This will
be much more efficient. For more information, see Using Lambda with Amazon SQS.

For example, you can create a table in each database and connect each database with a DB link to
read the tables and process the data. For more information, see DB Links.

You can also use Amazon Lambda to query a table from the database, process the data, and insert
it to another database (even another database type). This approach is the best option for moving
workloads out of the database to a less expensive instance type.

For even more decoupling and reducing workloads from the database, you can use Amazon SQS
with Lambda.

For more information, see Database Mail.

SQL Server cast and convert for T-SQL

This topic provides reference information about data type conversion and casting in Amazon
Aurora PostgreSQL compared to Microsoft SQL Server. You can understand the similarities and
differences between the CAST and CONVERT functions in both database systems. The topic
explains how Aurora PostgreSQL supports the CAST function similarly to SQL Server, while also
offering additional flexibility through custom casts and the CREATE CAST command.

PostgreSQL Usage 123

https://docs.microsoft.com/en-us/sql/t-sql/statements/receive-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/sql-server-service-broker?view=sql-server-2017
https://docs.amazonaws.cn/lambda/latest/dg/with-sqs.html

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Feature compatibi Amazon SCT /
lity Amazon DMS
automation level

SE8E SO

SQL Server Usage

Amazon SCT action

code index

N/A

Key differences

CONVERT is used
only to convert
between collations.
CAST uses different
syntax.

The CAST and CONVERT functions are commonly used to convert one data type to another. CAST

and CONVERT behave mostly the same and share the same topic in MSDN. They have the following

differences:

« CAST is part of the ANSI-SQL specification, but CONVERT isn't.

« CONVERT accepts an optional style parameter used for formatting.

For more information, see Date and Time styles in the SQL Server documentation.

Conversion Matrix

For a list of available conversion data types, see Implicit conversions in the SQL Server

documentation.

Syntax

-- CAST Syntax:

CAST (expression AS data_type [(length) 1)

-- CONVERT Syntax:

CONVERT (data_type [(length)] , expression [, style])

Examples

The following example casts a string to int and int to decimal.

SQL Server Usage

124

https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#date-and-time-styles
https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017#implicit-conversions

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT CAST('23' AS int) AS [int], CAST(23 AS decimal(1@, 2)) AS [decimal];

The following example converts string to int and int to decimal.

SELECT CONVERT(int, '23') AS [int], CONVERT(decimal(1@, 2), 23) AS [decimall;

For these two preceding examples, the result looks as shown following.

int decimal
23 23.00

The following example converts a date with option style input (109 - mon dd yyyy
hh:mi:ss:mmmAM (or PM)).

SELECT CONVERT(nvarchar(30), GETDATE(), 109);

Jul 25 2018 5:20:10.8975085PM

For more information, see CAST and CONVERT (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) provides the same CAST
function as SQL Server for conversion between data types. It also provides a CONVERSION function,
but it isn't equivalent to SQL Server CONVERT. PostgreSQL CONVERSION is used to convert
between character set encoding.

CREATE A CAST defines a new cast on how to convert between two data types.
Cast can be EXPLICITLY or IMPLICIT.

The behavior is similar to SQL Server’s casting, but in PostgreSQL, you can also create your own
casts to change the default behavior. For example, checking if a string is a valid credit card number
by creating the CAST with the WITHOUT FUNCTION clause.

CREATE CONVERSION is used to convert between encoding such as UTF8 and LATIN. If CONVERT is
currently in use in SQL Server code, rewrite it to use CAST instead.

PostgreSQL Usage 125

https://docs.microsoft.com/en-us/sql/t-sql/functions/cast-and-convert-transact-sql?view=sql-server-2017

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

® Note

Not all SQL Server data types are supported on Aurora PostgreSQL, besides changing the
CAST or CONVERT commands, you might need to also change the source of the target data
type. For more information, see Data Types.

Another way to convert between data types in PostgreSQL will be to use the : : characters. This
option is useful and can make your PL/pgSQL code look cleaner and simpler, see the following

examples.

Syntax

CREATE CAST (source_type AS target_type)
WITH FUNCTION function_name (argument_type [, ...]) [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
WITHOUT FUNCTION [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
WITH INOUT [AS ASSIGNMENT | AS IMPLICIT]

Examples
The following example converts a numeric value to float.
SELECT 23 + 2.0;

or

SELECT CAST (23 AS numeric) + 2.0;

The following example converts a date with format input ('mon dd yyyy hh:mi:sssmmmAM (or
PM)).

SELECT TO_CHAR(NOW(), '"Mon DD YYYY HH:MI:SS:MSAM');

Jul 25 2018 5:20:10.8975085PM

PostgreSQL Usage 126

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

The following example uses the : : characters.

SELECT '2.35'::DECIMAL + 4.5 AS results;

results
6.85

Summary

Option

Explicit CAST

Explicit CONVERT

SELECT CAST('23.7' AS
varchar) AS int

Convert to a specific date
format: 'mon dd yyyy
hh:mi:ss:mmmAM'

SQL Server

SELECT CAST('23.7' AS
varchar) AS int

SELECT CONVERT
(VARCHAR, '23.7"')

Implicit casting

SELECT CONVERT(n
varchar (30),
GETDATE(), 109)

Aurora PostgreSQL

SELECT CAST('23.7' AS
varchar) AS int

Need to use CAST:

SELECT 23 + 2.0 SELECT
23 + 2.0

SELECT TO_CHAR(N
Ow(), 'Mon DD YYYY
HH:MI:SS:MSAM')

For more information, see CREATE CAST, Type Conversion, and CREATE CONVERSION in the

PostgreSQL documentation.

Common Language Runtime for T-SQL

This topic provides reference information about migrating Microsoft SQL Server's Common

Language Runtime (CLR) objects to Amazon Aurora PostgreSQL. You can understand the

differences in functionality between SQL Server’s CLR capabilities and alternatives. The topic

explains that while Aurora PostgreSQL doesn’t support .NET code directly, it offers Perl as an

alternative for creating similar database objects.

Summary

127

https://www.postgresql.org/docs/13/sql-createcast.html
https://www.postgresql.org/docs/13/typeconv.html
https://www.postgresql.org/docs/13/sql-createconversion.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level
N/A Migrating CLR objects
@ requires a full code

rewrite.

SQL Server Usage

SQL Server provides the capability of implementing .NET objects in the database using the
Common Runtime Library (CLR). The CLR enables development of functionality that would be
complicated using T-SQL.

The CLR provides robust solutions for string manipulation, date manipulation, and calling external
services such as Windows Communication Foundation (WCF) services and web services.

You can create the following objects with the EXTERNAL NAME clause:

e Procedures. For more information, see CLR Stored Procedures in the SQL Server documentation.

« Functions. For more information, see Create CLR Functions in the SQL Server documentation.

« Triggers. For more information, see Create CLR Triggers in the SQL Server documentation.

» Types. For more information, see CLR User-Defined Types in the SQL Server documentation.

» User-defined aggregate functions. For more information, see CLR User-Defined Aggregates in

the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) doesn’t support .NET code.
However, you can create Perl functions. In this case, convert all C# code to PL/pgSQL or PL/Perl.

To use PL/Perl language, install the Perl extension:

CREATE EXTENSION plperl;

SQL Server Usage 128

https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/clr-stored-procedures?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/create-clr-functions?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/create-clr-triggers?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-types/clr-user-defined-types?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-objects-user-defined-functions/clr-user-defined-aggregates?view=sql-server-2017

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

After you install the Perl extension, you can create functions using Perl code. Specify plperl in the
LANGUAGE clause.

You can create the following objects with Perl:

Functions.

Void functions or procedures.

Triggers.

Event Triggers.

Values for session level.

Examples

The following example creates a function that returns the greater value of two integers.

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$

if ($_[0]1 > $_[1]1) { return $_[0]; }
return $_[1];
$$ LANGUAGE plperl;

For more information, see PL/Perl — Perl Procedural Language in the PostgreSQL documentation.

Collations for T-SQL

This topic provides reference information about collations and character sets in Microsoft SQL
Server 2019 and Amazon Aurora PostgreSQL, highlighting their differences and similarities. You
can gain insight into how these database systems handle string management, sorting rules, and
character encoding. The topic explores the various levels at which collations can be defined in SQL
Server, from server-level to expression-level, and contrasts this with PostgreSQL's approach.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Collations UTF16, NCHAR, and

E @ E NVARCHAR data types

aren't supported.

Collations for T-SQL 129

https://www.postgresql.org/docs/13/plperl.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

SQL Server collations define the rules for string management and storage in terms of sorting, case
sensitivity, accent sensitivity, and code page mapping. SQL Server supports both ASCIl and UCS-2
UNICODE data.

UCS-2 UNICODE data uses a dedicated set of UNICODE data types denoted by the prefix N: Nchar
and Nvarchar. Their ASCII counterparts are CHAR and VARCHAR.

Choosing a collation and a character set has significant implications on data storage, logical
predicate evaluations, query results, and query performance.

To view all collations supported by SQL Server, use the fn_helpcollations function:

SELECT * FROM sys.fn_helpcollations()

Collations define the actual bitwise binary representation of all string characters and the
associated sorting rules. SQL Server supports multiple collations down to the column level. A
table may have multiple string columns that use different collations. Collations for non-UNICODE
character sets determine the code page number representing the string characters.

UNICODE and non-UNICODE data types in SQL Server aren’t compatible. A predicate or data
modification that introduces a type conflict is resolved using predefined collation precedence rules.
For more information, see Collation Precedence.

Collations define sorting and matching sensitivity for the following string characteristics:

Case

Accent

Kana

Width

Variation selector

SQL Server uses a suffix naming convention that appends the option name to the collation name.
For example, the collation Azeri_Cyrillic_100_CS_AS_KS_WS_SC, is an Azeri-Cyrillic-100 collation
that is case-sensitive, accent-sensitive, kana type-sensitive, width-sensitive, and has supplementary
characters.

SQL Server Usage 130

https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-precedence-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server supports three types of collation sets:

« Windows collations use the rules defined for collations by the operating system locale where
UNICODE and non-UNICODE data use the same comparison algorithms.

« Binary collations use the binary bit-wise code for comparison. Therefore, the locale doesn't
affect sorting.

« SQL Server collations provide backward compatibility with previous SQL Server versions. They
aren't compatible with the windows collation rules for non-UNICODE data.

You can define collations at various levels:

» Server-level collations determine the collations used for all system databases and is the default
for future user databases. While the system databases collation can't be changed, you can
specify an alternative collation as part of the CREATE DATABASE statement.

« Database-level collations inherit the server default unless the CREATE DATABASE statement
explicitly sets a different collation. This collation is used as a default for all CREATE TABLE and
ALTER TABLE statements.

« Column-level collations can be specified as part of the CREATE TABLE or ALTER TABLE
statements to override the default collation setting of your database.

» Expression-level collations can be set for individual string expressions using the COLLATE
function. For example, SELECT * FROM MyTable ORDER BY StringColumn COLLATE
Latinl_General_CS_AS.

SQL Server supports UCS-2 UNICODE only.

SQL Server 2019 adds support for UTF-8 for import and export encoding, and as database-level
or column-level collation for string data. Support includes PolyBase external tables, and Always
Encrypted when not used with Enclaves. For more information, see Collation and Unicode Support.

Syntax

CREATE DATABASE <Database Name>
[ON <File Specifications>]
COLLATE <Collation>

[WITH <Database Option List> J;

SQL Server Usage 131

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE TABLE <Table Name>

(

<Column Name> <String Data Type>

COLLATE <Collation> [<Column Constraints>]...
I

Examples

The following example creates a database with a default Bengali_100_CS_Al collation.

CREATE DATABASE MyBengaliDatabase
ON
(NAME = MyBengaliDatabase_Datafile,
FILENAME = 'C:\Program Files\Microsoft SQL Server-\MSSQL13.MSSQLSERVER\MSSQL\DATA
\MyBengaliDatabase.mdf', SIZE = 100)
LOG ON
(NAME = MyBengaliDatabase_Logfile,
FILENAME = 'C:\Program Files\Microsoft SQL Server-\MSSQL13.MSSQLSERVER\MSSQL\DATA
\MyBengaliDblog.1ldf', SIZE = 25)
COLLATE Bengali_100_CS_AI;

The following example creates a table with two different collations.

CREATE TABLE MyTable

(

Coll CHAR(10) COLLATE Hungarian_100_CI_AI_SC NOT NULL PRIMARY KEY,
COL2 VARCHAR(100) COLLATE Sami_Sweden_Finland_100_CS_AS_KS NOT NULL
);

For more information, see Collation and Unicode support in the SQL Server documentation.

PostgreSQL Usage

PostgreSQL supports a variety of different character sets, also known as encoding, including
support for both single-byte and multi-byte languages. The default character set is specified when
initializing a PostgreSQL database cluster with initdb. Each individual database created on the
PostgreSQL cluster supports individual character sets defined as part of database creation.

PostgreSQL Usage 132

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

® Note

For Amazon Relational Database Service (Amazon RDS), starting with PostgreSQL 13, the
Windows version now supports obtaining version information for collations or ordering
rules from the operating system.

When you query the collation in PostgreSQL running on Windows, prior to version 13 there wasn't
any value to reflect the OS collation version. For example, for PostgreSQL version 11 running on
Windows, the result is shown following:

CREATE COLLATION german (provider = libc, locale = 'de_DE');
CREATE COLLATION

select oid,collname,collversion from pg_collation
where collprovider='c' and collname='german';

oid collname collversion
16394 german
(1 row)

select pg_collation_actual_version (16394);

pg_collation_actual_version
(1 row)

For PostgreSQL version 13 running on Windows, the result is shown following:

CREATE COLLATION german (provider = libc, locale = 'de_DE');
CREATE COLLATION

select oid,collname,collversion from pg_collation

where collprovider='c' and collname='german';

oid collname collversion
32769 german 1539.5,1539.5
(1 row)

select pg_collation_actual_version (32769);

PostgreSQL Usage 133

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

pg_collation_actual_version
1539.5,1539.5
(1 row)

Clients can use all supported character sets. However, some client-side only characters aren’t
supported for use within the server.

Unlike SQL Server, PostgreSQL doesn't natively support an NVARHCHAR data type and doesn’t
provide support for UTF-16.

Type Function Implementation level

Encoding Defines the basic rules on Database
how alphanumeric character
s are represented in binary
format. For example, Unicode
encoding.

Locale A superset that includes Table-Column
LC_COLLATE and LC_CTYPE
among others. For example,
LC_COLLATE defines how
strings are sorted and must
be a subset supported by the
database encoding.

Examples

The following example creates a database named test01 which uses the Korean EUC_KR Encoding
the and the ko_KR locale.

CREATE DATABASE test@1 WITH ENCODING 'EUC_KR' LC_COLLATE='ko_KR.euckr'
LC_CTYPE="ko_KR.euckr' TEMPLATE=templateO;

The following example shows how to view the character sets configured for each database by
querying the system catalog.

PostgreSQL Usage 134

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

select datname, datcollate, datctype from pg_database;

Changing Character Sets or Encoding

In-place modification of the database encoding isn't recommended nor supported. Instead, export
all data, create a new database with the new encoding, and import the data.

Export the data using the pg_dump utility.
pg_dump mydbl > mydbl_export.sql
Rename or delete a database.

ALTER DATABASE mydbl TO mydbl_backup;

Create a new database using the modified encoding.

CREATE DATABASE mydbl_new_encoding WITH ENCODING 'UNICODE' TEMPLATE=template0;

Import data using the pg_dump file previously created. Verify that you set your client encoding to
the encoding of your old database.

PGCLIENTENCODING=0LD_DB_ENCODING psql -f mydbl_export.sql mydbl_new_encoding

The client_encoding parameter overrides the use of PGCLIENTENCODING.
Client-Server Character Set Conversions

PostgreSQL supports conversion of character sets between servers and clients for specific character
set combinations as described in the pg_conversion system catalog.

PostgreSQL includes predefined conversions. For more information, see Available Character Set

Conversions in the PostgreSQL documentation.
You can create a new conversion using the SQL command CREATE CONVERSION.
Examples

The following example creates a conversion from UTF8 to LATIN1 using the custom myfuncl
function.

PostgreSQL Usage 135

https://www.postgresql.org/docs/13/static/multibyte.html#MULTIBYTE-TRANSLATION-TABLE
https://www.postgresql.org/docs/13/static/multibyte.html#MULTIBYTE-TRANSLATION-TABLE

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfuncl;

The following example configures the PostgreSQL client character set.

psql \encoding SJIS

Method 2

SET CLIENT_ENCODING TO 'value';

View the client character set and reset it back to the default value.

SHOW client_encoding;

RESET client_encoding;

Table Level Collation

PostgreSQL supports specifying the sort order and character classification behavior on a per-
column level.

Example

Specify specific collations for individual table columns.

CREATE TABLE testl (coll text COLLATE "de_DE", col2 text COLLATE "es_ES");

Summary
Feature SQL Server Aurora PostgreSQL
View database character set SELECT collation_name select datname,

FROM sys.databases; pg_encoding_to_cha
r(encoding),
datcollate, datctype
from pg_database;

Summary 136

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature SQL Server Aurora PostgreSQL
Modify the database RECRATE the database « Export the database.
character set « Drop or rename the
database.

+ Re-create the database with
the desired new character
set.

« Import database data from
the exported file into the
new database.

Character set granularity Database Database
UTF8 Supported Supported
UTF16 Supported Not Supported
NCHAR or NVARCHAR data Supported Not Supported
types

For more information, see Character Set Support in the PostgreSQL documentation.

Cursors for T-SQL

This topic provides reference information about cursor compatibility between Microsoft SQL
Server 2019 and Amazon Aurora PostgreSQL. It introduces the concept of cursors and their role in
database operations, explaining how they allow developers to work with result sets sequentially.
The topic compares cursor functionality in SQL Server and PostgreSQL, highlighting similarities
and differences in syntax and usage.

Cursors for T-SQL 137

https://www.postgresql.org/docs/13/multibyte.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Cursors Different cursor
@ @ E @ {@} @ options.

SQL Server Usage

A set is a fundamental concept of the relation data model from which SQL is derived. SQL is a
declarative language that operates on whole sets, unlike most procedural languages that operate
on individual data elements. A single invocations of an SQL statements can return a whole set or
modify millions of rows.

Many developers are accustomed to using procedural or imperative approaches to develop
solutions that are difficult to implement using set-based querying techniques. Also, operating on
row data sequentially may be a more appropriate approach in certain situations.

Cursors provide an alternative mechanism for operating on result sets. Instead of receiving a table
object containing rows of data, applications can use cursors to access the data sequentially, row-
by-row. Cursors provide the following capabilities:

Positioning the cursor at specific rows of the result set using absolute or relative offsets.

Retrieving a row, or a block of rows, from the current cursor position.

Modifying data at the current cursor position.

Isolating data modifications by concurrent transactions that affect the cursor’s result.

T-SQL statements can use cursors in scripts, stored procedures, and triggers.

Syntax

DECLARE <Cursor Name>

CURSOR [LOCAL | GLOBAL]
[FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]

SQL Server Usage 138

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

FOR <SELECT statement>
[FOR UPDATE [OF <Column List>11[;]

FETCH [NEXT | PRIOR | FIRST | LAST | ABSOLUTE <Value> | RELATIVE <Value>]
FROM <Cursor Name> INTO <Variable List>;

Examples

Process data in a cursor.

DECLARE MyCursor CURSOR FOR
SELECT *
FROM Tablel AS T1
INNER JOIN
Table2 AS T2
ON T1.Coll = T2.Col1;
OPEN MyCursor;
DECLARE @VarCursorl VARCHAR(20);
FETCH NEXT
FROM MyCursor INTO @VarCursorl;
WHILE @@FETCH_STATUS = 0
BEGIN
EXEC MyPRocessingProcedure
@InputParameter = @VarCursorl;
FETCH NEXT
FROM product_cursor INTO @VarCursorl;
END

CLOSE MyCursor;
DEALLOCATE MyCursor ;

For more information, see SQL Server Cursors and Cursors (Transact-SQL) in the SQL Server

documentation.

PostgreSQL Usage

Similar to T-SQL Cursors in SQL Server, PostgreSQL has PL/pgSQL cursors that you can use to
iterate business logic on rows read from the database. They can encapsulate the query and read
the query results a few rows at a time. All access to cursors in PL/pgSQL is performed through
cursor variables, which are always of the refcursor data type.

PostgreSQL Usage 139

https://docs.microsoft.com/en-us/sql/relational-databases/cursors?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Examples

Declare a Cursor

The following table includes the DECLARE . . CURSOR options that are Transact-SQL extended
syntax have no equivalent in PostgreSQL.

SQL Server option

FORWARD_ONLY

STATIC

KEYSET

DYNAMIC

FAST_FORWARD

SCROLL_LOCKS

OPTIMISTIC

Use

Defining that FETCH NEXT is
the only supported fetching
option.

Cursor will make a temporary
copy of the data.

Determining that membershi
p and order of rows in the
cursor are fixed.

Cursor will reflect all data
changes made on the selected
rows.

Will use FORWARD_ONLY
and READ_ONLY to optimize
performance.

Determine that positioned
updates or deletes made by
the cursor are guaranteed to
succeed.

Determine that positioned
updates or deletes made by

Comments

Using FOR LOOP might be
a relevant solution for this
option.

For small data sets temporary
tables can be created and
declare a cursor that will
select these tables.

N/A

Default for PostgreSQL.

N/A

N/A

N/A

PostgreSQL Usage

140

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server option Use Comments
the cursor will not succeed if

the rows has been updated.

TYPE_WARNING Will send warning messages N/A
to the client if the cursor is
implicitly converted from the
requested type.

Declare a Cursor in PL/pgSQL to be used with any query. The variable c1 is unbounded because it
isn't bound to any particular query.

DECLARE cl refcursor;

Declare a Cursor in PL/pgSQL with a bounded query.

DECLARE c2 CURSOR FOR SELECT * FROM employees;

Declare a Cursor with a parametrized bound query:

» The id variable is replaced by an integer parameter value when the cursor is opened.
« When declaring a Cursor with SCROLL specified, the Cursor can scroll backwards.

« If NO SCROLL is specified, backward fetches are rejected.

DECLARE c3 CURSOR (varl integer) FOR SELECT * FROM employees where id = varl;

Declare a backward-scrolling compatible Cursor using the SCROLL option.
» SCROLL specifies that rows can be retrieved backwards. NO SCROLL specifies that rows can't be
retrieved backwards.

» Depending upon the complexity of the run plan for the query, SCROLL might create performance
issues.

« Backward fetches aren’t allowed when the query includes FOR UPDATE or FOR SHARE.

PostgreSQL Usage 141

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

DECLARE c3 SCROLL CURSOR FOR SELECT id, name FROM employees;

Open a Cursor
The OPEN command is fully compatible between SQL Server and PostgreSQL.

Open a cursor variable that was declared as unbound and specify the query to run.

OPEN c1 FOR SELECT * FROM employees WHERE id = emp_id;

Open a Cursor variable that was declared as Unbound and specify the query to run as a string
expression. This approach provides greater flexibility.

OPEN c1 FOR EXECUTE format('SELECT * FROM %I WHERE coll = $1', tabname) USING keyvalue;

You can insert parameter values into the dynamic command with format() and USING. For
example, the table name is inserted into the query with format (). The comparison value for coll
is inserted with a USING parameter.

Open a Cursor that was bound to a query when the cursor was declared and was declared to take
arguments.

DO $$
DECLARE
c3 CURSOR (varl integer) FOR SELECT * FROM employees where id = varl;
BEGIN
OPEN c3(varl := 42);
END$$;

For the c3 cursor, supply the argument value expressions.

If the cursor wasn't declared to take arguments, you can specify the arguments outside the cursor.

DO $%
DECLARE

varl integer;

c3 CURSOR FOR SELECT * FROM employees where id = varl;
BEGIN

varl := 1;

OPEN c3;

PostgreSQL Usage 142

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

END$$;

Fetch a Cursor

Use the following syntax to fetch a cursor.

FETCH [direction [FROM | IN]] cursor_name

The following table shows additional PostgreSQL options as a direction for the FETCH command.

PostgreSQL option Use

ALL Get all remaining rows
FORWARD Same as NEXT
FORWARD (n) Fetch the next n rows
FORWARD ALL Same as ALL
BACKWARD Same as PRIOR
BACKWARD (n) Fetch the prior n rows
BACKWARD ALL Fetch all prior rows

The PL/pgSQL FETCH command retrieves the next row from the cursor into a variable.

Fetch the values returned from the c3 cursor into a row variable.

DO $$

DECLARE
c3 CURSOR FOR SELECT * FROM employees;
rowvar employees%ROWTYPE;

BEGIN

OPEN c3;

FETCH c3 INTO rowvar;
END$$;

Fetch the values returned from the c3 Cursor into two scalar data types.

PostgreSQL Usage 143

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

DO $$
DECLARE
c3 CURSOR FOR SELECT id, name FROM employees;
emp_id integer;
emp_name varchar;
BEGIN
OPEN c3;
FETCH FROM c3 INTO emp_id, emp_name;
END$$;

PL/pgSQL supports a special direction clause when fetching data from a cursor using the NEXT,
PRIOR, FIRST, LAST, ABSOLUTE count, RELATIVE count, FORWARD, or BACKWARD arguments.
Omitting direction is equivalent to specifying NEXT. For example, fetch the last row from the cursor
into the declared variables.

DO $%

DECLARE
c3 CURSOR FOR SELECT id, name FROM employees;
emp_id integer;
emp_name varchar;

BEGIN
OPEN c3;
FETCH LAST FROM c3 INTO emp_id, emp_name;
END$$;
Summary
Feature SQL Server Aurora PostgreSQL
IR Spiens [FORWARD_ONLY | SCROLL] [BINARY 1 [INSENSITI
[STATIC | KEYSET | VE][[NOIJ
DYNAMIC | FAST_FORW SCROLL] CURSOR [{ WITH
ARD] | WITHOUT } HOLD]

[READ_ONLY | SCROLL_LO
CKS | OPTIMISTIC]

Updateable cursors DECLARE CURSOR... FOR DECLARE cur_name

UPDATE CURSOR... FOR UPDATE

Summary 144

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Feature

Cursor declaration

Cursor open

Cursor fetch

Cursor close

Cursor deallocate

Cursor end condition

For more information, see FETCH in the PostgreSQL documentation.

SQL Server

DECLARE CURSOR

OPEN

FETCH NEXT | PRIOR |
FIRST | LAST | ABSOLUTE
| RELATIVE

CLOSE

DEALLOCATE

@RFETCH_STATUS system
variable

Date and time functions for T-SQL

Aurora PostgreSQL

DECLARE cur_name CURSOR

OPEN

FETCH [direction [FROM
| IN J] cursor_name

The direction can be empty
or one of the following

: NEXT, PRIOR, FIRST,
LAST, ABSOLUTE count,
RELATIVE count, count,
ALL FORWARD, FORWARD
count, FORWARD ALL,
BACKWARD, BACKWARD
count, BACKWARD ALL.

CLOSE

Same effect as CLOSE (not
required)

Not supported

This topic provides reference information about date and time functions in PostgreSQL compared
to Microsoft SQL Server, which is valuable for database administrators and developers migrating
from SQL Server to Amazon Aurora PostgreSQL. You can understand the differences in function

Date and time functions for T-SQL

145

https://www.postgresql.org/docs/13/sql-fetch.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

names, syntax, and behavior between the two database systems when working with temporal data.
The topic highlights key date and time functions, their equivalents across platforms, and offers
guidance on handling potential compatibility issues.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Data T PostgreSQL is usi
8gge8 ©see diffrent function

names.

SQL Server Usage

Date and Time Functions are scalar functions that perform operations on temporal or numeric
input and return temporal or numeric values.

System date and time values are derived from the operating system of the server on which SQL
Server is running.

This section doesn’t address time zone considerations and time zone aware functions. For more
information about time zone handling, see Data Types.

Syntax and Examples

The following table includes the most commonly used date and time functions.

Function Purpose Example Result Comments
GETDATE and Return a SELECT 2018-04-05
GETUTCDATE datetime value GETDATE() 15:53:01.380

that contains the
current local or
UTC date and
time.

SQL Server Usage 146

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Function

DATEPART, DAY,
MONTH, and
YEAR

DATEDIFF

DATEADD

CAST and
CONVERT

Purpose

Return an
integer value
representing
the specified
DATEPART of a
specified date.

Returns an
integer value

of DATEPART
boundaries that
are crossed
between two
dates.

Returns a
datetime value
that is calculate
d with an offset
interval to

the specified
DATEPART of a
date.

Converts
datetime values
to and from
string literals
and to and from
other datetime
formats.

Example

SELECT
MONTH(GET
DATE()),
YEAR(GETD
ATE())

SELECT
DATEDIFF(
DAY,
GETDATE()

, EOMONTH(G
ETDATE()))

SELECT
DATEADD(D
AY, 25,
GETDATE())

SELECT CAST
(GETDATE(

) AS DATE)
SELECT
CONVERT
(VARCHAR(
20),
GETDATE(),
112)

Result

4,2018

25

2018-04-30
15:55:52.147

2018-04-05
20180405

Comments

How many days
left until end of
the month.

Default date
format. Style
112 (I1SO) with
no separtors.

SQL Server Usage

147

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information, see Date and Time functions in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) provides a very rich set of

scalar date and time functions; more than SQL Server.

While some of the functions appear to be similar to those in SQL Server, the functionality is
significantly different. Take extra care when migrating temporal logic to Aurora PostgreSQL

paradigms.

Functions and Definition

PostgreSQL function
AGE
CLOCK_TIMESTAMP
CURRENT_DATE
CURRENT_TIME

CURRENT_TIMESTAMP

DATE_PART
DATE_TRUNC
EXTRACT
ISFINITE

JUSTIFY_DAYS

JUSTIFY_HOURS

Function definition

Subtract from current_date .
Current date and time.

Current date.

Current time of day.

Current date and time (start of current
transaction).

Get subfield (equivalent to extract).
Truncate to specified precision.

Get subfield.

Test for finite interval.

Adjust interval so 30-day time periods are
represented as months.

Adjust interval so 24-hour time periods are
represented as days.

PostgreSQL Usage

148

https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql?view=sql-server-ver15#DateandTimeFunctions

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL function

JUSTIFY_INTERVAL

LOCALTIME
MAKE_DATE

MAKE_INTERVAL

MAKE_TIME

MAKE_TIMESTAMP

MAKE_TIMESTAMPTZ

NOW
STATEMENT_TIMESTAMP

TIMEOFDAY

TRANSACTION_TIMESTAMP

TO_TIMESTAMP

Function definition

Adjust interval using justify_days and
justify_hours , with additional sign
adjustments.

Current time of day.
Create date from year, month and day fields.

Create interval from years, months, weeks,
days, hours, minutes and seconds fields.

Create time from hour, minute and seconds
fields.

Create timestamp from year, month, day, hour,
minute, and seconds fields.

Create timestamp with time zone from year,
month, day, hour, minute, and seconds fields.
If the time zone isn't specified, the current
time zone is used.

Current date and time.
Current date and time.

Current date and time (like clock_timestamp,
but as a text string).

Current date and time.

Convert Unix epoch (seconds since 1970-01-0
1 00:00:00+00) to timestamp.

PostgreSQL Usage

149

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Summary

SQL Server function

GETDATE, CURRENT_TIMESTAMP

GETUTCDATE

DAY, MONTH, and YEAR

DATEPART
DATEDIFF
DATEADD

CAST and CONVERT

Aurora PostgreSQL function

NOW, CURRENT_DATE , CURRENT_TIME ,
CURRENT_TIMESTAMP

current_timestamp at time zone
'utc'

EXTRACT(DAY/MONTH/YEAR FROM
TIMESTAMP timestamp_value)

EXTRACT, DATE_PART
DATE_PART
+ INTERVAL 'X days/months/years'

CAST

For more information, see Date/Time Functions and Operators in the PostgreSQL documentation.

String functions for T-SQL

Compare string function compatibility between Microsoft SQL Server 2019 and Amazon Aurora
PostgreSQL. Gain insights into how various string functions in SQL Server map to their PostgreSQL
equivalents, which is crucial for database migration projects. The information highlights supported
functions, unsupported ones, and alternative approaches in PostgreSQL.

Feature compatibi Amazon SCT /
lity Amazon DMS
automation level

SBEB ©8LY

Amazon SCT action Key differences

code index

N/A Syntax and option
differences.

Summary

150

https://www.postgresql.org/docs/13/functions-datetime.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

String functions are typically scalar functions that perform an operation on string input and return
a string or a numeric value.

Syntax and Examples

The following table includes the most commonly used string functions.

Function Purpose Example Result Comments
ASCII and Convert an ASCII SELECT ASCII 65 Returns a
UNICODE or UNICODE ('A") numeric integer
character to value.
its ASCII or

UNICODE code.

CHAR and NCHAR Convert SELECT ‘A Numeric integer
between ASCII CHAR(65) value as input.
or UNICODE
code to a string
character.

CHARINDEX Find the starting SELECT 2 Returns a

and PATINDEX position of one CHARINDEX numeric integer
string expression ('ab', 'xa value.

or string pattern bcdy"')
within another
string expressio

n.
CONCAT and Combine SELECT 'ab’, 'a,b'
CONCAT_WS multiple string CONCAT

input expressio ('a','b")

ns into a single , CONCAT_WS

string with, (',','a",

or without, 'b')

SQL Server Usage 151

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Function

LEFT, RIGHT,
and SUBSTRING

LOWER and
UPPER

LTRIM, RTRIM,
and TRIM

STR

REVERSE

Purpose

a separator
character (WS).

Return a partial
string from
another string
expressio

n based on
position and
length.

Return a

string with all
characters in
lower or upper
case. Use for
presentation
or to handle
case insensitive
expressions.

Remove leading
and trailing
spaces.

Convert a
numeric value to
a string.

Return a string
in reverse order.

Example

SELECT LEFT
('abs',2)

, SUBSTRIN

G ('abcd',?2
,2)

SELECT
LOWER('AB
cd')

SELECT LTRIM
('abc d ")

SELECT
STR(3.141
5927,5,3)

SELECT
REVERSE('
abcd')

Result

labI' lbcl

'‘abcd'

'abcd'

3.142

'dcba’

Comments

Numeric
expressions as
input.

SQL Server Usage

152

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Function Purpose Example Result Comments
REPLICATE Return a string SELECT ‘abcabcabc’
that consists of REPLICATE
Zero or more ('abc', 3)
concatena
ted copies of
another string
expression.
REPLACE Replace all SELECT ‘axyd'
occurrencesofa REPLACE("
string expression abcd',
with another. 'bc', 'xy')
STRING_SP Parse a list of SELECT 12 STRING_SP
LIT values with a * FROM LIT isa table-
separator and STRING_SP valued function.
return a set of LIT('1,2"'
all individual ,', ") AS Xo
elements.
STRING_AGG Return a string SELECT 1'ab' 2'c
that consists of STRING_AG
concatenated G(C,
string values in ',') FROM
row groups. VALUES(1,
‘a'), (1,
'b'),
(2,'c") AS X

(ID,C) GROUP
BY I

For more information, see String Functions (Transact-SQL) in the SQL Server documentation.

SQL Server Usage

153

https://docs.microsoft.com/en-us/sql/t-sql/functions/string-functions-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL Usage

Most of SQL Server string functions are supported in PostgreSQL, there are few which aren't:

« UNICODE returns the integer value of the first character as defined by the Unicode standard. If
you will use UTF8 input, ASCII can be used to get the same results.

« PATINDEX returns the starting position of the first occurrence of a pattern in a specified
expression, or zeros if the pattern isn't found, there is no equivalent function for that but you can
create the same function with the same name so it will be fully compatible.

Some of the functions aren’t supported but they have an equivalent function in PostgreSQL that
you can use to get the same functionality.

Some of the functions such as regular expressions don't exist in SQL Server and may be useful for
your application.

Syntax and Examples

The following table includes the most commonly used string functions.

PostgreSQL function Function definition

CONCAT Concatenate the text representations of all the
arguments: concat('a', 1) - al.Also,
can use the (]|) operators: select 'a' ||

"I/ 'b'>ab.

LOWER or UPPER Returns char, with all letters lowercase or
uppercase: lower ('MR. Smith') - mr.
smith.

LPAD or RPAD Returns exprl, left or right padded to length

n characters with the sequence of character
sinexpr2: LPAD('Log-1',10,'@e') -
@@@@@Log-1.

PostgreSQL Usage 154

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL function

REGEXP_REPLACE

REGEXP_MATCHES or SUBSTRING

REPLACE

LTRIM or RTRIM

SUBSTRING

Function definition

Replace substrings matching a POSIX regular
expression: regexp_replace('John',
'[hn]."', '1") - Jo1.

Return all captured substrings resulting from
matching a POSIX regular expression against
the string:

REGEXP_MATCHES ('http://www.aws.com/
products', '(http://[[: alnum:]]+
/)

Theresultis {http://www.aws.com/}
You can use the following example

SUBSTRING ('http://www.aws.com/produc
ts', '(http://[[: alnum:]]+.*/)")

The result is http://www.aws.com/

Returns char with every occurrence of search
string replaced with a replacement string:

replace ('abcdef', 'abc', '123') -

123def.

Remove the longest string containing only

characters from characters (a space by default)

from the start of string: 1trim('zzzyaws',
'xyz') - aws.

Extract substring: substring ('John
Smith', 6 ,1)-S.

PostgreSQL Usage

155

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL function

TRIM

ASCII

LENGTH

Function definition

Remove the longest string containing only
characters from characters (a space by default)
from the start, end, or both ends: trim

(both from 'yxJohnxx', 'xyz') -
John.

Returns the decimal representation in the
database character set of the first character of
char: ascii('a') - 97.

Return the length of char: length ('John
S.')->7.

To create the PATINDEX function, use the following code snippet. Note the O means that the
expression doesn't exist so the first position will be 1.

CREATE OR REPLACE FUNCTION "patindex"("pattern" VARCHAR, "expression'" VARCHAR)

RETURNS INT AS $BODY$
SELECT COALESCE(STRPOS($2, (
SELECT(REGEXP_MATCHES($2,'(' ||
REPLACE(REPLACE(TRIM($1, '%'), 'S%'
[l '), 'i'))[1] LIMIT 1)),0);
$BODY$ LANGUAGE 'sql' IMMUTABLE;

1
7’

SELECT patindex('Lo%', 'Long String');

patindex
1

SELECT patindex('S%rin%', 'Long String'
patindex
8

SELECT patindex('%g_S%', 'Long String'
patindex
4

);

);

.*?l)’ l_l’ l.l)

PostgreSQL Usage

156

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Summary

SQL Server function Aurora PostgreSQL function

ASCII ASCII

UNICODE For UTF8 inputs, you can use only ASCII.
CHAR and NCHAR CHR

CHARINDEX POSITION

PATINDEX See examples

CONCAT and CONCAT_WS CONCAT and CONCAT_WS

LEFT, RIGHT, and SUBSTRING LEFT, RIGHT, and SUBSTRING

LOWER and UPPER LOWER and UPPER

LTRIM, RTRIM and TRIM LTRIM, RTRIM and TRIM

STR TO_CHAR

REVERSE REVERSE

REPLICATE LPAD

REPLACE REPLACE

STRING_SPLIT regexp_split_to_array orregexp_sp

lit_to_table
STRING_AGG STRING_AGG

For more information, see String Functions and Operators in the PostgreSQL documentation.

Summary 157

https://www.postgresql.org/docs/13/functions-string.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Databases and schemas for T-SQL

This topic provides reference information comparing database and schema structures between
Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can gain insights into how these
database management systems handle logical containers for security and access control. The topic
explores the similarities and differences in how databases, schemas, and objects are organized and
referenced in both systems.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

SEE8E ©BOoB

N/A

SQL Server Usage

Databases and schemas are logical containers for security and access control. Administrators can
grant permissions collectively at both the databases and the schema levels. SQL Server instances
provide security at three levels: individual objects, schemas (collections of objects), and databases
(collections of schemas). For more information, see Data Control Language.

(@ Note

In previous versions of SQL server, the term user was interchangeable with the term
schema. For backward compatibility, each database has several built-in security schemas
including guest, dbo, db_datareaded, sys, INFORMATION_SCHEMA, and others. Most
likely, you don’t need to migrate these schemas.

Each SQL Server instance can host and manage a collection of databases, which consists of SQL
Server processes and the Master, Model, TempDB, and MSDB system databases.

The most common SQL Server administrator tasks at the database level are:

» Managing physical files: add, remove, change file growth settings, and re-size files.

Databases and schemas for T-SQL 158

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Managing filegroups: partition schemes, object distribution, and read-only protection of tables.
» Managing default options.

» Creating database snapshots.

Unique object identifiers within an instance use three-part identifiers: <Database name>.<Schema
name>.<Objectname>.

The recommended way to view database object meta data, including schemas, is to use the ANSI
standard information schema views. In most cases, these views are compatible with other ANSI-
compliant Relational Database Management Systems (RDBMS).

To view a list of all databases on the server, use the sys.databases table.
Syntax

Simplified syntax for CREATE DATABASE.

CREATE DATABASE <database name>

[ON [PRIMARY] <file specifications>[,<filegroup>]
[LOG ON <file specifications>

[WITH <options specification>] ;

Simplified syntax for CREATE SCHEMA.

CREATE SCHEMA <schema name> | AUTHORIZATION <owner name>;

Examples

The following example adds a file to a database and creates a table using the new file.

USE master;

ALTER DATABASE NewDB
ADD FILEGROUP NewGroup;

ALTER DATABASE NewDB

SQL Server Usage 159

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

ADD FILE (
NAME = 'NewFile',
FILENAME = 'D:\NewFile.ndf',
SIZE = 2 MB

)
TO FILEGROUP NewGroup;

USE NewDB;
CREATE TABLE NewTable

(
Coll INT PRIMARY KEY

)
ON NewGroup;

SELECT Name
FROM sys.databases
WHERE database_id > 4;

The following example creates a table within a new schema and database.

USE master
CREATE DATABASE NewDB;

USE NewDB;
CREATE SCHEMA NewSchema;

CREATE TABLE NewSchema.NewTable

(
NewColumn VARCHAR(20) NOT NULL PRIMARY KEY

);

This example uses default settings for the new database and schema.

For more information, see sys.databases (Transact-SQL), CREATE SCHEMA (Transact-SQL), and
CREATE DATABASE in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) supports both the CREATE
SCHEMA and CREATE DATABASE statements.

PostgreSQL Usage 160

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-schema-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-transact-sql?view=sql-server-ver15&tabs=sqlpool

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

As with SQL Server, Aurora PostgreSQL does have the concept of an instance hosting multiple
databases, which in turn contain multiple schemas. Objects in Aurora PostgreSQL are referenced as
a three-part name: <database>.<schema>.<object>.

A schema is essentially a namespace that contains named objects.

When database is created, it is cloned from a template.
Syntax

Syntax for CREATE DATABASE.

CREATE DATABASE name

[[WITH J [OWNER [=] user_name]

[TEMPLATE [=] template]

ENCODING [=] encoding]
LC_COLLATE [=] lc_collate]
LC_CTYPE [=] lc_ctype]
TABLESPACE [=] tablespace_name]
ALLOW_CONNECTIONS [=] allowconn]
CONNECTION LIMIT [=] connlimit]
IS_TEMPLATE [=] istemplate]]

| e B e B e B e B e O s B |

Syntax for CREATE SCHEMA.

CREATE SCHEMA schema_name [AUTHORIZATION role_specification] [schema_element
[... 11

CREATE SCHEMA AUTHORIZATION role_specification [schema_element [...]]

CREATE SCHEMA IF NOT EXISTS schema_name [AUTHORIZATION role_specification]

CREATE SCHEMA IF NOT EXISTS AUTHORIZATION role_specification

where role_specification can be:
user_name | CURRENT_USER | SESSION_USER

Migration Considerations

Unlike SQL Server, Aurora PostgreSQL doesn't support the USE command to specify the
default database or schema for missing object qualifiers. To use a different database, use a new
connection, obtain the required permissions, and refer to the object using the database name.

For applications using a single database and multiple schemas, the migration path is the same and
requires fewer rewrites because two-part names are already being used.

PostgreSQL Usage 161

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Query the postgres.pg_catalog.pg_database table to view databases in Aurora PostgreSQL.

SELECT datname, datcollate, datistemplate, datallowconn
FROM postgres.pg_catalog.pg_database;

datname datcollate datistemplate datallowconn

template® en_US.UTF-8 true false

rdsadmin en_US.UTF-8 false true

templatel en_US.UTF-8 true true

postgres en_US.UTF-8 false true
Examples

The following example creates a new database.

CREATE DATABASE NewDatabase;

The following example creates a schema for user testing.

CREATE SCHEMA AUTHORIZATION joe;

The following example creates a schema, a table and a view.

CREATE SCHEMA world_flights
CREATE TABLE flights (flight_id VARCHAR(1@), departure DATE, airport VARCHAR(30))
CREATE VIEW us_flights AS
SELECT flight_id, departure FROM flights WHERE airport='United States';

For more information, see CREATE DATABASE and CREATE SCHEMA in the PostgreSQL
documentation.

Dynamic SQL for T-SQL

This topic provides reference information on migrating dynamic SQL functionality from Microsoft
SQL Server 2019 to Amazon Aurora PostgreSQL. You can use this guide to understand how to
adapt your dynamic SQL queries and commands when transitioning to PostgreSQL. The topic
explains the differences in syntax and execution methods between the two database systems,
offering practical examples for running SELECT queries, DML commands, and DDL statements
dynamically in PostgreSQL.

Dynamic SQL for T-SQL 162

https://www.postgresql.org/docs/13/sql-createdatabase.html
https://www.postgresql.org/docs/13/sql-createschema.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level
N/A Different paradigm

@ @ @ @ @ @ @ and syntax require

rewriting the
application.

SQL Server Usage

Dynamic SQL is a feature that helps minimize hard-coded SQL. The SQL engine optimizes code,
which leads to less hard parses.

Developers can use dynamic SQL to construct and run SQL queries at run time as a string, using
some logic in SQL to construct varying query strings, without having to pre-construct them during
development.

There are two options for running dynamic SQL: use the EXECUTE command or the
sp_executesql function.

EXECUTE Command

Use this option to run a command string within a T-SQL block, procedure, or function. You can also
use the EXECUTE command with linked servers. You can define metadata for the result set using
the WITH RESULT SETS options.

For parameters, use either the value or @parameter_name=value.

(® Note

Make sure that you validate the structure of the string command before running it with the
EXECUTE command.

Syntax

The following example shows the SQL Server syntax that runs a stored procedure or function.

SQL Server Usage 163

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

[{ EXEC | EXECUTE }]
{
[ereturn_status =]
{ module_name [;number] | @emodule_name_var }
[[eparameter =] { value
| @variable [OUTPUT]
| [DEFAULT]
}
]
L,...n]
[WITH <execute_option> [,...n]]

The following example shows the SQL Server syntax that runs a character string.

{ EXEC | EXECUTE }
({ estring_variable | [N J'tsql_string' } [+ ...n])
[AS { LOGIN | USER } = ' name ']

[;]

The following example shows the SQL Server syntax that runs a pass-through command against a
linked server.

{ EXEC | EXECUTE }
({ estring_variable | [N] 'command_string [2 J' } [+ ...n]
[{, { value | @variable [OUTPUT 1 } 3} [...n 1 1]

)
[AS { LOGIN | USER } = ' name ']
[AT linked_server_name]

;]

<execute_option>::=

{
RECOMPILE
| { RESULT SETS UNDEFINED }
| { RESULT SETS NONE }
| { RESULT SETS (<result_sets_definition> [,...n]) }
}

<result_sets_definition> ::=

{

SQL Server Usage 164

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

{ column_name
data_type
[COLLATE collation_name]
[NULL | NOT NULL] }
[,...n]
)
| AS OBJECT
[db_name . [schema_name] . | schema_name .]
{table_name | view_name | table_valued_function_name }
| AS TYPE [schema_name.]table_type_name
| AS FOR XML

Example

The following example shows how to use EXECUTE to run a tsql_string function with a variable.

DECLARE @scm_name sysname;
DECLARE @tbl_name sysname;
EXECUTE ('DROP TABLE ' + @scm_name + '.' + @tbl_name + ';');

The following example shows how to use EXECUTE AS USER to switch context to another user.

DECLARE @scm_name sysname;
DECLARE @tbl_name sysname;
EXECUTE ('DROP TABLE ' + @scm_name + '.' + @tbl_name + ';') AS USER = 'SchemasAdmin';

The following example shows how to use EXECUTE with a result set.

EXEC GetMaxSalByDeptID 23
WITH RESULT SETS

(
([Salary] int NOT NULL)

);

sp_executesql System Stored Procedure

This option runs a T-SQL command or block that you can run several times and build dynamically.
You can also use this option with embedded parameters.

SQL Server Usage 165

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Syntax

The following example shows the sp_executesql syntax for SQL Server, Azure SQL Database,
Azure SQL Data Warehouse, and Parallel Data Warehouse.

sp_executesql [@stmt =] statement

[
{ , [@eparams =] N'@parameter_name data_type [OUT | OUTPUT][,...n 1' }
{, [eparaml =] 'valuel' [,...n] }
]
Example

The following example shows how to use sp_executesql to run a SELECT statement.

EXECUTE sp_executesql
N'SELECT * FROM HR.Employees
WHERE DeptID = @DID',
N'@DID int',
@ID = 23;

For more information, see sp_executesql (Transact-SQL) and EXECUTE (Transact-SQL) in the SQL
Server documentation.

PostgreSQL Usage

The PostgreSQL EXECUTE command prepares and runs commands dynamically. The EXECUTE
command can also run DDL statements and retrieve data using SQL commands. Similar to SQL
Server, you can use the PostgreSQL EXECUTE command with bind variables.

Converting SQL Server dynamic SQL to PostgreSQL requires significant efforts.
Examples

The following example runs a SQL SELECT query with the table name as a dynamic variable using
bind variables. This query returns the number of employees under a manager with a specific ID.

DO $$DECLARE

Tabname varchar(30) := 'employees';
num integer := 1;

cnt integer;

PostgreSQL Usage 166

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-executesql-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/execute-transact-sql?view=sql-server-2017

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

BEGIN

EXECUTE format('SELECT count(*) FROM %I WHERE manager = $1', tabname)
INTO cnt USING num;

RAISE NOTICE 'Count is % int table %', cnt, tabname;

END$$;

’

The following example runs a DML command; first with no variables and then with variables.

DO $$DECLARE

BEGIN

EXECUTE 'INSERT INTO numbers (a) VALUES (1)';

EXECUTE format('INSERT INTO numbers (a) VALUES (%s)', 42);
END$$;

4

(® Note

%s formats the argument value as a simple string. A null value is treated as an empty
string. %I treats the argument value as an SQL identifier and double-quotes it if necessary.
It is an error for the value to be null.

The following example runs a DDL command.

DO $$DECLARE

BEGIN

EXECUTE 'CREATE TABLE numbers (num integer)';
END$$;

.
’

For more information, see String Functions and Operators in the PostgreSQL documentation.

Prepare

Using a PREPARE statement can improve performance of reusable SQL statements.

The PREPARE command can receive a SELECT, INSERT, UPDATE, DELETE, or VALUES statement
and parse it with a user-specified qualifying name so you can use the EXECUTE command later
without the need to re-parse the SQL statement for each run.

PostgreSQL Usage 167

https://www.postgresql.org/docs/13/functions-string.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« When using PREPARE to create a prepared statement, it will be viable for the scope of the
current session.

« If a DDL command is run on a database object referenced by the prepared SQL statement, the
next EXECUTE command requires a hard parse of the SQL statement.

Example

Use PREPARE and EXECUTE commands together. The SQL command is prepared with a user-
specified qualifying name. You can run the SQL command several times8 without the need for re-
parsing.

PREPARE numplan (int, text, bool) AS

INSERT INTO numbers VALUES($1, $2, $3);
EXECUTE numplan(10@, 'New number 100', 't');
EXECUTE numplan(101, 'New number 101', 't');
EXECUTE numplan(102, 'New number 102', 'f');
EXECUTE numplan(103, 'New number 103', 't');

Summary
Functionality SQL Server dynamic SQL PostgreSQL EXECUTE and
PREPARE
Run SQL with resultsand bind e) ppe gsal int; EXECUTE format('select
variables EXECUTE getSalary @sal salary
OUTPUT; from employees
WHERE %I = $1°',
col_name)
INTO amount USING
col_val;
R.un DMI_‘ with variables and DECLARE @amount int EXECUTE format('UPDATE
bind variables DECLARE @col_val int employees SET salary =
DECLARE @col_name salary
carchar(70) + $1 WHERE %I = $2°',
DECLARE @sqglCommand col_name) USING amount,
varchar(1000) col_val;

Summary 168

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Functionality SQL Server dynamic SQL PostgreSQL EXECUTE and

PREPARE

SET @sqlCommand =

'"UPDATE employees SET

salary=salary'

+ @amount + ' WHERE

' + @col_name + '=' +

@col_val
EXECUTE (@sqglCommand)

Run DDL EXECUTE ('CREATE TABLE EXECUTE 'CREATE TABLE
link_emp (idempl link_emp (idempl
integer, idemp2 integer, idemp2
integer);'); integer)';

Run anonymous block BEGIN ... END; DO $ BEGIN ... END$$;

$DECLARE

For more information, see Basic Statements in the PostgreSQL documentation.

Transactions for T-SQL

This topic provides reference information about transaction handling in Microsoft SQL Server
and Amazon Aurora PostgreSQL, focusing on their similarities and differences. It explores the
fundamental principles of database transactions, including ACID properties and isolation levels,
and how they are implemented in both database systems. The topic compares the default
behaviors, syntax variations, and supported features for managing transactions in SQL Server and
PostgreSQL.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Transaction Isolation Nested transactions
@ @ E @ @ @ aren't supported and

Transactions for T-SQL 169

https://www.postgresql.org/docs/13/plpgsql-statements.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

syntax differences for
initializing a transacti
on.

SQL Server Usage

A transaction is a unit of work performed on a database and typically represents a change in the
database. Transactions serve the following purposes:

« Provide units of work that enable recovery from logical or physical system failures while keeping
the database in a consistent state.

« Provide units of work that enable recovery from failures while keeping a database in a consistent
state when a logical or physical system failure occurs.

« Provide isolation between users and programs accessing a database concurrently.

Transactions are an all-or-nothing unit of work. Each transactional unit of work must either
complete, or it must rollback all data changes. Also, transactions must be isolated from other
transactions. The results of the view of data for each transaction must conform to the defined
database isolation level.

Database transactions must comply with ACID properties.

« Atomic — Transactions are all or nothing. If any part of the transaction fails, the entire
transaction fails and the database remains unchanged.

There are exceptions to this rule. For example, some constraint violations, for ANSI definitions,
should not cause a transaction rollback.

« Consistent — All transactions must bring the database from one valid state to another valid
state. Data must be valid according to all defined rules, constraints, triggers, and so on.

« Isolation — Concurrent run of transactions must result in a system state that would occur if
transactions were run sequentially.

SQL Server Usage 170

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

There are several exceptions to this rule based on the lenience of the required isolation level.

» Durable — After a transaction commits successfully and is acknowledged to the client, the
engine must guarantee that its changes are persisted in the event of power loss, system crashes,
or any other errors.

By default, SQL Server uses the auto commit or implicit transactions mode set to ON. Every
statement is treated as a transaction on its own unless a transaction was explicitly defined. This
behavior is different than other engines like Oracle where, by default, every DML requires an
explicit COMMIT statement to be persisted.

Syntax

The following examples show the simplified syntax for the commands defining transaction
boundaries.

Define the beginning of a transaction.

BEGIN TRAN | TRANSACTION [<transaction name>]

Commit work and the end of a transaction.

COMMIT WORK | [TRAN | TRANSACTION [<transaction name>]]

Rollback work at the end of a transaction.

ROLLBACK WORK | [TRAN | TRANSACTION [<transaction name>]]

SQL Server supports the standard ANSI isolation levels defined by the ANSI/ISO SQL standard
(SQL92).

Each level provides a different approach for managing the concurrent run of transactions. The main
purpose of a transaction isolation level is to manage the visibility of changed data as seen by other
running transactions. Additionally, when concurrent transactions access the same data, the level of
transaction isolation affects the way they interact with each other.

+ Read uncommitted — A current transaction can see uncommitted data from other transactions.
If a transaction performs a rollback, all data is restored to its previous state.

SQL Server Usage 171

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

» Read committed — A transaction only sees data changes that were committed. Therefore,
dirty reads aren't possible. However, after issuing a commit, it would be visible to the current
transaction while it's still in a running state.

« Repeatable read — A transaction sees data changes made by the other transactions only after
both transactions issue a commit or are rolled back.

 Serializable — This isolation level is the strictest because it doesn’t permit transaction
overwrites of another transaction’s actions. Concurrent run of a set of serializable transactions is
guaranteed to produce the same effect as running them sequentially in the same order.

The main difference between isolation levels is the phenomena they prevent from appearing. The
three preventable phenomena are:

» Dirty reads — A transaction can read data written by another transaction but not yet
committed.

» Non-repeatable or fuzzy reads — When reading the same data several times, a transaction can
find the data has been modified by another transaction that has just committed. The same query
ran twice can return different values for the same rows.

« Phantom or ghost reads — Similar to a non-repeatable read, but it is related to new data
created by another transaction. The same query ran twice can return different numbers of
records.

The following table summarizes the four ANSI/ISO SQL standard (SQL92) isolation levels and
indicates which phenomena are allowed or disallowed.

Transaction isolation Dirty reads Non-repeatable Phantom reads
level reads

Read uncommitted Allowed Allowed Allowed

Read committed Disallowed Allowed Allowed
Repeatable read Disallowed Disallowed Allowed
Serializable Disallowed Disallowed Disallowed

SQL Server Usage 172

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

There are two common implementations for transaction isolation:

» Pessimistic isolation or locking — Resources accessed by a transaction are locked for the
duration of the transaction. Depending on the operation, resource, and transaction isolation
level, other transactions can see changes made by the locking transaction, or they must wait for
it to complete. With this mechanism, there is only one copy of the data for all transactions, which
minimizes memory and disk resource consumption at the expense of transaction lock waits.

» Optimistic isolation (MVCC) — Every transaction owns a set of the versions of the resources
(typically rows) that it accessed. In this mode, transactions don’t have to wait for one another
at the expense of increased memory and disk utilization. In this isolation mechanism, there is a
chance that conflicts will arise when transactions attempt to commit. In case of a conflict, the
application needs to be able to handle the rollback, and attempt a retry.

SQL Server implements both mechanisms. You can use them concurrently.

For optimistic isolation, SQL Server introduced two additional isolation levels: read-committed
snapshot and snapshot.

Set the transaction isolation level using SET command. It affects the current run scope only.

SET TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ |
SNAPSHOT | SERIALIZABLE }

Examples

The following example runs two DML statements within a serializable transaction.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN TRANSACTION;
INSERT INTO Tablel
VALUES (1, 'A');
UPDATE Table2
SET Columnl = 'Done’
WHERE KeyColumn = 1;
COMMIT TRANSACTION;

For more information, see Transaction Isolation Levels (ODBC) and SET TRANSACTION ISOLATION
LEVEL (Transact-SQL) in the SQL Server documentation.

SQL Server Usage 173

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL Usage

As with SQL Server, the same ANSI/ISO SQL (SQL92) isolation levels apply to PostgreSQL, but with
several similarities and some differences.

Transaction isolation Dirty reads Non-repeatable Phantom reads

level reads

Read uncommitted Permitted but not Permitted Permitted
implemented

Read committed Not permitted Permitted Permitted

Repeatable read Not permitted Not permitted Permitted but not

implemented
Serializable Not permitted Not permitted Not permitted

PostgreSQL technically supports the use of any of the four transaction isolation levels, but only
three can practically be used. The Read-Uncommitted isolation level serves as read-committed.

The way the repeatable-read isolation-level is implemented doesn't allow for phantom reads,
which is similar to the Serializable isolation-level. The primary difference between repeatable-
read and serializable is that serializable guarantees that the result of concurrent transactions are
precisely the same as if they were run serially, which isn't always true for repeatable-reads.

Starting with PostgreSQL 12, you can add the AND CHAIN option to COMMIT or ROLLBACK
commands to immediately start another transaction with the same parameters as preceding
transaction.

Multiversion Concurrency Control

In PostgreSQL, the multiversion concurrency control (MVCC) mechanism allows transactions to
work with a consistent snapshot of data ignoring changes made by other transactions that have
not yet committed or rolled back. Each transaction sees a snapshot of accessed data accurate to its
run start time regardless of what other transactions are doing concurrently.

PostgreSQL Usage 174

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Isolation Levels

PostgreSQL supports the read-committed, repeatable reads, and serializable isolation levels. Read-
committed is the default isolation level.

« Read-committed — The default PostgreSQL transaction isolation level. It prevents sessions from
seeing data from concurrent transactions until it is committed. Dirty reads aren’'t permitted.

« Repeatable read — Queries can only see rows committed before the first query or DML
statement was run in the transaction.

» Serializable — Provides the strictest transaction isolation level. The Serializable isolation level
assures that the result of the concurrent transactions will be the same as if they run serially. This
isn't always the case for the repeatable read isolation level.

Setting Isolation Levels in Aurora PostgreSQL

You can configure isolation levels at several levels.

« Session level.
« Transaction level.

« Instance level using Aurora parameter groups.

Syntax

SET TRANSACTION transaction_mode [...]
SET TRANSACTION SNAPSHOT snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [...]

where transaction_mode is one of:
ISOLATION LEVEL {

SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED

}
READ WRITE | READ ONLY [NOT] DEFERRABLE

Examples

The following example configures the isolation level for a specific transaction.

PostgreSQL Usage 175

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

The following example configures the isolation level for a specific session.

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Use the following example to view the current isolation level.

SELECT CURRENT_SETTING('TRANSACTION_ISOLATION'); -- Session
SHOW DEFAULT_TRANSACTION_ISOLATION; -- Instance

You can use parameter groups to modify instance-level parameters for Aurora PostgreSQL. For
example, you can alter the default_transaction_isolation parameter using the Amazon
Console or the Amazon CLI. For more information, see Working with parameter groups.

Comparison table of relevant database features related to transactions

Database feature SQL Server PostgreSQL

AutoCommit Off Autocommit is turned off by
default, however, some client
tools like psql and more are
setting this to ON by default.

Check your client tool
defaults or run the following
command to check current
configuration in psql:

\echo :AUTOCOMMIT .

MVCC Yes Yes

Default isolation level Read-committed Read-committed

Supported isolation levels REPEATABLE READ, Repeatable reads, serializable,
READ COMMITTED, READ read-only

PostgreSQL Usage 176

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html#USER_WorkingWithParamGroups.Modifying

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Database feature

Configure session isolation

levels

Configure transaction
isolation levels

SQL Server

UNCOMMITTED, SERIALIZA

BLE

Yes

Yes

Read-Committed Isolation Level

X1

SELECT employee_id,
salary
FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 24000.00

begin;
UPDATE employees
SET salary=27000

WHERE employee_id=100;

SELECT employee_id,
salary
FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 27000.00

TX2

select employee_id,
salary from
EMPLOYEES

where employee_id=100;

employee_id salary
100 24000.00

begin;

set transaction

isolation level
read committed;

SELECT employee_id,
salary
FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 24000.00

PostgreSQL

Yes

Yes

Comment

Same results returned from
both sessions.

TX1 starts a transaction and
performs an update. TX2
starts a transaction with read-
committed isolation level.

TX1 will see the modified
results while TX2 sees the
original data.

PostgreSQL Usage

177

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

X1

Commit;

SELECT employee_id,
salary

FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 29000.00

Serializable Isolation Level

TX1

SELECT employee_id,
salary

FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 24000.00

begin;

UPDATE employees

SET salary=27000
WHERE employee_id=100;

TX2

UPDATE employees
SET salary=29000
WHERE employee_id=100;

Commit;

SELECT employee_id,
salary

FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 29000.00

TX2

SELECT employee_id,
salary

FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 24000.00

begin;

set transaction
isolation level
serializable;

Comment

Waits because TX2 is blocked
by TX1.

TX1 issues a commit, and the
lock is released.

TX2 issues a commit.

Both queries return the
updated value.

Comment

Same results returned from
both sessions.

TX1 starts a transaction and
performs an update. TX2
starts a transaction with
isolation level of serializable.

PostgreSQL Usage

178

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

X1

SELECT employee_id,
salary
FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 27000.00

Commit;

SELECT employee_id,
salary
FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 27000.00

TX2

SELECT employee_id,
salary
FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 24000.00

update employees
set salary=29000

where employee_id=100;

ERROR: couldn't serialize
access due to concurrent
update.

Commit;
ROLLBACK

SELECT employee_id,
salary
FROM EMPLOYEES

WHERE employee_id=100;

employee_id salary
100 27000.00

Comment

TX1 will see the modified
results while TX2 sees the
original data.

Waits because TX2 is blocked
by TX1.

TX1 issues a commit, and the
lock is released.

TX2 received an error
message.

TX2 trying to issue a commit
but receives a rollback
message, the transaction
failed due to the serializable
isolation level.

Both queries return the value
updated according to TX1.

PostgreSQL Usage

179

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Summary

Transaction property
Default isolation level

Initialize transaction syntax

Default isolation mechanism

Commit transaction

Rollback transaction

Set autocommit off/on

ANSI isolation

MVCC

Nested transactions

SQL Server
READ COMMITTED

BEGIN TRAN or TRANSACTI
ON

Pessimistic lock based

COMMIT
[WORK| TRAN| TRANSACTI
ON]

ROLLBACK [WORK |[TRAN |
TRANSACTION]

SET IMPLICIT_TRANSACTI
ONS OFF | ON

REPEATABLE READ |
READ COMMITTED |
READ UNCOMMITTED |
SERIALIZABLE

SNAPSHOT and READ
COMMITTED SNAPSHOT

Supported, view level with
@e@trancount

Aurora PostgreSQL
READ COMMITTED

SET TRANSACTION

Lock based for writes,
consistent read for selects

COMMIT

[WORK | TRANSACTION]

ROLLBACK [WORK |
TRANSACTION]

SET AUTOCOMMIT { = |
TO } { ON | OFF }

REPEATABLE READ |
READ COMMITTED |
READ UNCOMMITTED |
SERIALIZABLE

READ COMMITTED SNAPSHOT

Not Supported

For more information, see Transactions, Transaction Isolation, and SET TRANSACTION in the

PostgreSQL documentation.

Summary

180

https://www.postgresql.org/docs/13/tutorial-transactions.html
https://www.postgresql.org/docs/13/transaction-iso.html
https://www.postgresql.org/docs/13/sql-set-transaction.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Synonyms for T-SQL

This topic provides reference information about the differences in synonym functionality between
Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can understand how SQL Server
uses synonyms as alternative identifiers for database objects and how this feature is not directly
supported in PostgreSQL. The topic explains the purpose and benefits of synonyms in SQL Server,
such as providing an abstraction layer and simplifying the use of four-part identifiers for remote
instances.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A PostgreSQL doesn't
@ @ support synonymes.
There is an available
workaround.

SQL Server Usage

Synonyms are database objects that serve as alternative identifiers for other database objects. The
referenced database object is called the base object and may reside in the same database, another
database on the same instance, or a remote server.

Synonyms provide an abstraction layer to isolate client application code from changes to the name
or location of the base object.

In SQL Server, synonyms are often used to simplify the use of four-part identifiers when accessing
remote instances.

For example, the table A resides on the server A, and the client application accesses it directly. For
scale out reasons, the table A needs to be moved to the server B to offload resource consumption
on the server A. Without synonyms, the client application code must be rewritten to access the
server B. Instead, you can create a synonym called Table A and it will transparently redirect the
calling application to the server B without any code changes.

You can create synonyms for the following objects:

Synonyms for T-SQL 181

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Assembly (CLR) stored procedures, table-valued functions, scalar functions, and aggregate
functions.

» Replication-filter-procedures.
» Extended stored procedures.

e SQL scalar functions, table-valued functions, inline-tabled-valued functions, views, and stored
procedures.

» User-defined tables including local and global temporary tables.

Syntax

CREATE SYNONYM [<Synonym Schema>] . <Synonym Name>
FOR [<Server Name>] . [<Database Name>] . [Schema Name>] . <Object Name>

Examples

The following example creates a synonym for a local object in a separate database.

CREATE TABLE DB1.Schemal.MyTable

(

KeyColumn INT IDENTITY PRIMARY KEY,
DataColumn VARCHAR(20) NOT NULL

);

USE DB2;
CREATE SYNONYM Schema2.MyTable
FOR DB1l.Schemal.MyTable

The following example creates a synonym for a remote object.

-- On ServerA

CREATE TABLE DB1.Schemal.MyTable

(

KeyColumn INT IDENTITY PRIMARY KEY,
DataColumn VARCHAR(2@) NOT NULL

);

-- On Server B
USE DB2;
CREATE SYNONYM Schema2.MyTable

SQL Server Usage 182

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

FOR ServerA.DBl.Schemal.MyTable;

The example preceding assumes a linked server named ServerA exists on Server B that points to
Server A.

For more information, see CREATE SYNONYM (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

SQL Server synonyms are often used to give another name for an object. PostgreSQL doesn’t
provide a feature comparable to SQL Server Synonyms. However, you can achieve similar
functionality by using a few PostgreSQL objects.

Amazon SCT converts different source databases into one target database. Each source database
becomes a schema in the new target database. Amazon SCT adds the name of the source schemas
as a prefix to the name of the target database schema. If you migrate several databases as part of
one migration project, then you can avoid using synonyms because all converted objects are in the
same database.

This lack of functionality in PostgreSQL adds a manual dimension to the migration process of SQL
Server synonyms. Make sure that your database user has privileges on the base object and the
relevant PostgreSQL options.

Examples

To create a synonym of a table in PostgreSQL, use views.

The first step is to create a table that will be used as the base object, and on top of it, a view that
will be used as synonym.

CREATE TABLE target_db_name.DB1l_Schemal.MyTable

(
KeyColumn NUMERIC PRIMARY KEY,

DataColumn VARCHAR(20) NOT NULL
);

CREATE VIEW target_db_name.DB2_Schema2.MyTable_Syn
AS SELECT * FROM target_db_name.DB1_Schemal.MyTable

For more information, see Views.

PostgreSQL Usage 183

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-synonym-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

To create a synonym of a user-defined type in PostgreSQL, another user-defined type should be
used to wrap the source type.

The first step is to create the user-defined type that will be used as the base object, and on top of
it, a user-defined type that will be used as the synonym.

CREATE TYPE DB1l.Schemal.MyType AS (
ID NUMERIC,
name CHARACTER VARYING(100));

CREATE TYPE DB2.Schema2.MyType_Syn AS (
udt DB1l.Schemal.MyT);

For more information, see User-Defined Types.

To create a synonym for a function in PostgreSQL, another function should be used to wrap the
source type.

As before, the first step is to create the function that will be used as the base object. And then, on
top of it, create a function that will be used as the synonym.

CREATE OR REPLACE FUNCTION DB1.Schemal.MyFunc (P_NUM NUMERIC)
RETURNS numeric AS $$
begin
RETURN P_NUM * 2;
END; $$
LANGUAGE PLPGSQL;

CREATE OR REPLACE FUNCTION DB2.Schema2.MyFunc_Syn (P_NUM NUMERIC)
RETURNS numeric AS $$
begin
RETURN DB1.Schemal.MyFunc(P_NUM);
END; $%
LANGUAGE PLPGSQL;

For more information, see User-Defined Functions.

Delete and update from for T-SQL

This topic provides reference information about feature compatibility between Microsoft SQL
Server 2019 and Amazon Aurora PostgreSQL, specifically focusing on DELETE and UPDATE

Delete and update from for T-SQL 184

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

statements with JOINs. You can understand the differences in syntax and functionality when
migrating from SQL Server to Aurora PostgreSQL. The topic highlights that while SQL Server
supports an extended syntax for DELETE and UPDATE statements with additional FROM clauses,
Aurora PostgreSQL has limitations in this area.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A PostgreSQL doesn't
@ @ @ @@@ support DELETE ..
FROM from_list
. Rewrite to use
subqueries.

SQL Server Usage

SQL Server supports an extension to the ANSI standard that allows using an additional FROM clause
in UPDATE and DELETE statements.

You can use this additional FROM clause to limit the number of modified rows by joining the table
being updated, or deleted from, to one or more other tables. This functionality is similar to using a
WHERE clause with a derived table sub-query. For UPDATE, you can use this syntax to set multiple
column values simultaneously without repeating the sub-query for every column.

However, these statements can introduce logical inconsistencies if a row in an updated table is
matched to more than one row in a joined table. The current implementation chooses an arbitrary
value from the set of potential values and is non-deterministic.

Syntax

UPDATE <Table Name>

SET <Column Name> = <Expression> ,...
FROM <Table Source>

WHERE <Filter Predicate>;

DELETE FROM <Table Name>

SQL Server Usage 185

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

FROM <Table Source>
WHERE <Filter Predicate>;

Examples

The following example deletes customers with no orders.

CREATE TABLE Customers
(
Customer VARCHAR(20) PRIMARY KEY

);

INSERT INTO Customers VALUES
('John'),
('Jim'),
('Jack")

CREATE TABLE Orders

(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

);

INSERT INTO Orders (OrderID, Customer, OrderDate) VALUES

(1, 'Jim', '20180401'),
(2, 'Jack', '20180402');

DELETE FROM Customers
FROM Customers AS C

LEFT OUTER JOIN

Orders AS O

ON O.Customer = C.Customer
WHERE 0.0rderID IS NULL;

SELECT *
FROM Customers;

Customer

SQL Server Usage

186

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Jim
Jack

The following example updates multiple columns in Orders based on the values in
OrderCorrections.

CREATE TABLE OrderCorrections

(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

);

INSERT INTO OrderCorrections
VALUES (1, '3Jack',6 '20180324');

UPDATE O
SET Customer = OC.Customer,
OrderDate = 0C.OrderDate
FROM Orders AS O
INNER JOIN
OrderCorrections AS 0C
ON 0.0rderID = 0C.OrderID;

SELECT *
FROM Orders;

Customer OrderDate
Jack 2018-03-24
Jack 2018-04-02

For more information, see UPDATE (Transact-SQL), DELETE (Transact-SQL), and FROM clause plus
JOIN, APPLY, PIVOT (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

Aurora PostgreSQL doesn’t support the DELETE. . FROM syntax, but it support the UPDATE FROM
syntax.

PostgreSQL Usage 187

https://docs.microsoft.com/en-us/sql/t-sql/queries/update-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/delete-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Syntax

[WITH [RECURSIVE] with_query [, ...] 1]
UPDATE [ONLY] table_name [* 1 [[AS] alias]
SET { column_name = { expression | DEFAULT } |
(column_name [, ...]) = ({ expression | DEFAULT } [, ...1) |
(column_name [, ...]) = (sub-SELECT)
YL, o...]
[FROM from_list]
[WHERE condition | WHERE CURRENT OF cursor_name]
[RETURNING * | output_expression [[AS] output_name] [, ...] 1]

Migration Considerations

You can rewrite the DELETE statements as subqueries. Place the subqueries in the WHERE clause.
This workaround is simple and, in most cases, easier to read and understand.

Examples

The following example deletes customers with no orders.

CREATE TABLE Customers
(

Customer VARCHAR(20) PRIMARY KEY
);

INSERT INTO Customers
VALUES

('John"),

('Jim"),

('Jack")

CREATE TABLE Orders

(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

);

INSERT INTO Orders (OrderID, Customer, OrderDate)
VALUES

PostgreSQL Usage 188

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

(1, 'Jim', '20180401'),
(2, 'Jack', '20180402');

DELETE FROM Customers
WHERE Customer NOT IN (
SELECT Customer
FROM Orders

);
SELECT * FROM Customers;

Customer
Jim
Jack

The following example updates multiple columns in Orders based on the values in
OrderCorrections

CREATE TABLE OrderCorrections

(
OrderID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
OrderDate DATE NOT NULL

);

INSERT INTO OrderCorrections
VALUES (1, 'Jack',6 '20180324');

UPDATE orders
SET Customer = 0OC.Customer,
OrderDate = 0C.OrderDate
FROM Orders AS O
INNER JOIN
OrderCorrections AS 0C
ON 0.0rderID = 0C.OrderID;

SELECT *
FROM Orders;

Customer OrderDate
Jack 2018-03-24
Jack 2018-04-02

PostgreSQL Usage 189

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Summary
The following table identifies similarities, differences, and key migration considerations.
Feature SQL Server Aurora PostgreSQL
Join as part of DELETE DELETE FROM .. FROM Not available. Rewrite to use
WHERE clause with a sub-
query.
Join as part of UPDATE UPDATE .. FROM UPDATE .. FROM

For more information, see DELETE and UPDATE in the PostgreSQL documentation.

Stored procedures for T-SQL

This topic provides reference information about the compatibility and differences between stored
procedures in Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can use this guide
to understand the key distinctions in syntax, security contexts, parameter handling, and supported
features when migrating stored procedures from SQL Server to Aurora PostgreSQL.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Stored Procedures Syntax and option

@ @ E @ @ @ @ differences.

SQL Server Usage

Stored procedures are encapsulated, persisted code modules that you can run using the EXECUTE
T-SQL statement. They may have multiple input (IN) and output (OUT) parameters. Table-valued
user-defined types can be used as input parameters. IN is the default direction for parameters, but
OUT must be explicitly specified. You can specify parameters as both IN and OUT.

Summary 190

https://www.postgresql.org/docs/13/sql-delete.html
https://www.postgresql.org/docs/13/sql-update.html

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server allows you to run stored procedures in any security context using the EXECUTE AS
option. You can explicitly recompile them for every run using the RECOMPILE option. You can

encrypt them in the database using the ENCRYPTION option to prevent unauthorized access to the

source code.

SQL Server provides a unique feature that allows you to use a stored procedure as an input to an

INSERT statement. When using this feature, only the first row in the data set returned by the stored

procedure is evaluated.

Syntax

CREATE [OR ALTER] { PROC | PROCEDURE } <Procedure Name>

[<Parameter List>

[WITH [ENCRYPTION]|[RECOMPILE]|[EXECUTE AS ...

AS {

[BEGIN]

<SQL Code Body>

[END 1 3L
Examples

Create and run a stored procedure

The following example creates a simple parameterized stored procedure to validate the basic

format of an email.

CREATE PROCEDURE ValidateEmail

@Email VARCHAR(128), @IsValid BIT = @ OUT
AS

BEGIN

IF @Email LIKE N'%@%' SET @IsValid =1
ELSE SET @IsValid = 0

RETURN @IsValid

END;

The following example runs this stored procedure.

DECLARE @IsValid BIT

EXECUTE [ValidateEmail]

@Email = 'X@y.com', @IsValid = @IsValid OUT;
SELECT @IsValid;

SQL Server Usage

191

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

-- Returns 1

EXECUTE [ValidateEmail]
@Email = 'Xy.com', @IsValid = @IsValid OUT;
SELECT @IsValid;

-- Returns 0

The following example creates a stored procedure that uses RETURN to pass an error value to the
application.

CREATE PROCEDURE ProcessImportBatch
@BatchID INT

AS

BEGIN

BEGIN TRY

EXECUTE Stepl @BatchID

EXECUTE Step2 @BatchID

EXECUTE Step3 @BatchID

END TRY

BEGIN CATCH

IF ERROR_NUMBER() = 235

RETURN -1 -- indicate special condition
ELSE

THROW -- handle error normally

END CATCH

END

Using a table-valued input parameter

The following example creates and populates an Orderltems table.

CREATE TABLE OrderItems(
OrderID INT NOT NULL,

Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)

SQL Server Usage 192

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

VALUES

(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

The following example creates a table-valued type for the OrderItem table-valued parameter.

CREATE TYPE OrderItems
AS TABLE
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
by

The following example creates a procedure to process order items.

CREATE PROCEDURE InsertOrderItems
@0rderItems AS OrderItems READONLY
AS
BEGIN
INSERT INTO OrderItems(OrderID, Item, Quantity)
SELECT OrderlID,
Item,
Quantity
FROM @OrderItems
END;

The following example populates the table-valued variable and passes the data set to the stored
procedure.

DECLARE @OrderItems AS OrderItems;

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])
VALUES

(1, 'M8 Bolt', 100),

(1, 'M8 Nut', 100),

(1, M8 Washer, 200);

EXECUTE [InsertOrderItems]

SQL Server Usage 193

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

@0rderItems = @OrderItems;

(3 rows affected)

Item Quantity
1 M8 Bolt 100
2 M8 Nut 100

3 M8 Washer 200

INSERT... EXEC Syntax

INSERT INTO <MyTable>
EXECUTE <MyStoredProcedure>;

For more information, see CREATE PROCEDURE (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

PostgreSQL version 10 provides support for both stored procedures and stored functions using the
CREATE FUNCTION statement. To emphasize, only the CREATE FUNCTION is supported by the
procedural statements used by PostgreSQL version 10. The CREATE PROCEDURE statement isn't
supported.

PL/pgSQL is the main database programming language used for migrating from SQL Server T-SQL
code. PostgreSQL supports these additional programming languages, also available in Amazon
Aurora PostgreSQL:

« PL/pgSQL
e PL/Tcl
o PL/Perl

Use the show.rds.extensions command to view all available Amazon Aurora extensions.
PostgreSQL Create Function Privileges

To create a function, make sure that a user has the USAGE privilege on the language. When you
create a function, you can specify a language parameter as shown in the following examples.

Examples

The following example creates a new FUNC_ALG function.

PostgreSQL Usage 194

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE OR REPLACE FUNCTION FUNC_ALG(P_NUM NUMERIC)
RETURNS NUMERIC
AS $%
BEGIN
RETURN P_NUM * 2;
END; $%
LANGUAGE PLPGSQL;

The CREATE OR REPLACE statement creates a new function or replaces an existing function with
these limitations:

» You can't change the function name or argument types.

» The statement doesn’t allow changing the existing function return type.

« The user must own the function to replace it.

e The P_NUM INPUT parameter is implemented similar to SQL Server T-SQL INPUT parameter.

» The double dollar signs alleviate the need to use single-quoted string escape elements. With
the double dollar sign, there is no need to use escape characters in the code when using single
quotation marks. The double dollar sign appears after the keyword AS and after the function
keyword END.

» Use the LANGUAGE PLPGSQL parameter to specify the language for the created function.

The following example creates a function with PostgreSQL PL/pgSQL.

CREATE OR REPLACE FUNCTION EMP_SAL_RAISE

(IN P_EMP_ID DOUBLE PRECISION, IN SAL_RAISE DOUBLE PRECISION)
RETURNS VOID

AS $%

DECLARE

V_EMP_CURRENT_SAL DOUBLE PRECISION;

BEGIN

SELECT SALARY INTO STRICT V_EMP_CURRENT_SAL

FROM EMPLOYEES WHERE EMPLOYEE_ID = P_EMP_ID;

UPDATE EMPLOYEES SET SALARY = V_EMP_CURRENT_SAL + SAL_RAISE WHERE EMPLOYEE_ID =
P_EMP_ID;

RAISE DEBUG USING MESSAGE := CONCAT_WS('', 'NEW SALARY FOR EMPLOYEE ID: ', P_EMP_ID, '
IS ', (V_EMP_CURRENT_SAL + SAL_RAISE));

PostgreSQL Usage 195

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
EXCEPTION
WHEN OTHERS THEN
RAISE USING ERRCODE := '20001', MESSAGE := CONCAT_WS('', 'AN ERROR WAS ENCOUNTERED -',
SQLSTATE, ' -ERROR-', SQLERRM);
END; $%

LANGUAGE PLPGSQL;

select emp_sal_raise(200, 1000);

In the preceding example, you can replace the RAISE command with RETURN to inform the
application that an error occurred.

The following example creates a function with PostgreSQL PL/pgSQL.

CREATE OR REPLACE FUNCTION EMP_PERIOD_OF_SERVICE_YEAR (IN P_EMP_ID DOUBLE PRECISION)
RETURNS DOUBLE PRECISION

AS $$

DECLARE

V_PERIOD_OF_SERVICE_YEARS DOUBLE PRECISION;

BEGIN

SELECT

EXTRACT (YEAR FROM NOW()) - EXTRACT (YEAR FROM (HIRE_DATE))
INTO STRICT V_PERIOD_OF_SERVICE_YEARS

FROM EMPLOYEES

WHERE EMPLOYEE_ID = P_EMP_ID;

RETURN V_PERIOD_OF_SERVICE_YEARS;

END; $%

LANGUAGE PLPGSQL;

SELECT EMPLOYEE_ID,FIRST_NAME, EMP_PERIOD_OF_SERVICE_YEAR(EMPLOYEE_ID) AS
PERIOD_OF_SERVICE_YEAR
FROM EMPLOYEES;

There is a new behavior in PostgreSQL version 10 for a set-returning function, used by LATERAL
FROM clause.

PostgreSQL version 9.6 and lower

CREATE TABLE emps (id int, manager int);
INSERT INTO tab VALUES (23, 24), (52, 23), (21, 65);
SELECT x, generate_series(1,5) AS g FROM tab;

PostgreSQL Usage 196

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

id
23
23
23
23
23
52
52
52
52
52
21
21
21
21
21

u A WIDNPFPUPMMWNDNMNPEPOPMMOKDNDERELQ

PostgreSQL version 10 and higher

SELECT id, g FROM emps, LATERAL generate_series(1l,5) AS g;

id
23
23
23
23
23
52
52
52
52
52
21
21
21
21
21

ua AP WNPFPUPMPWRDNDNPEPEOOOMO®KDNDPREQ

In the preceding example, you can put the set-return function on the outside of the nested loop
join because it has no actual lateral dependency on emps table.

PostgreSQL Usage 197

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Summary

The following table summarizes the differences between stored procedures in SQL Server and

PostgreSQL.

Feature

General CREATE
syntax differences

Security context

SQL Server

CREATE PROC|PROC

EDURE

<Procedure Name>
@Parameterl

<Type>, ...n

AS

<Body>

{ EXEC |

{ CALLER | SELF |

EXECUTE } AS

OWNER
'user_name' }

Aurora PostgreSQL

CREATE [OR
REPLACE]
FUNCTION

<Function Name>
(Parameterl
<Type>, ...n)

AS $3%

<body>

SECURITY INVOKER
| SECURITY
DEFINER

Workaround

Rewrite stored
procedure creation
scripts to use
FUNCTION instead of
PROC or PROCEDURE

Rewrite stored
procedure creation
scripts to omit the AS
$$ pattern.

Rewrite stored
procedure parameter
s to not use the @
symbol in parameter
names. Add
parentheses around
the parameter
declaration.

For stored procedure
s that use an explicit
user name, rewrite
the code from
EXECUTE AS user
to SECURITY
DEFINER and
recreate the functions
with this user.

Summary

198

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature SQL Server Aurora PostgreSQL Workaround

For stored procedures
that use the CALLER
option, rewrite the
code to include
SECURITY INVOKER.

For stored procedure
s that use the SELF
option, rewrite the
code to SECURITY

DEFINER.
Encryption Use the WITH Not supported in
ENCRYPTION Aurora PostgreSQL.
option.

Parameter direction IN and OUT|OUTPU IN, OUT, INOUT, or Although the

T , by default OUT VARIADIC functionality of these
can be used as IN as parameters is the
well. same for SQL Server

and PostgreSQL,
rewrite the code for
syntax compliance.

Use OUT instead of
OUTPUT.

Use INOUT instead of
OUT for bidirectional
parameters.

Recompile Use the WITH Not supported in
RECOMPILE option. Aurora PostgreSQL.

Summary 199

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Feature SQL Server Aurora PostgreSQL Workaround
Table-valued Use declared table Use declared table
parameters type user-defined type user-defined

parameters. parameters.
Additional restricti Use BULK INSERT to Not supported in
ons load data from text Aurora PostgreSQL.

file.

For more information, see CREATE FUNCTION, PL/pgSQL — SQL Procedural Language, Procedural
Languages, and Query Language (SQL) Functions in the PostgreSQL documentation.

Error handling for T-SQL

This topic provides reference information about error handling in SQL Server and Amazon Aurora
PostgreSQL, focusing on the differences and similarities between the two systems. You can use
this knowledge to understand how error handling mechanisms in SQL Server translate to Aurora
PostgreSQL when migrating your database. The topic compares specific error handling features,
such as TRY...CATCH blocks and THROW statements, with their PostgreSQL equivalents.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A Different paradigm
@ @ @ @ @ and syntax will

require rewrite of
error handling code.

SQL Server Usage

SQL Server error handling capabilities have significantly improved throughout the years. However,
previous features are retained for backward compatibility.

Error handling for T-SQL 200

https://www.postgresql.org/docs/13/sql-createfunction.html
https://www.postgresql.org/docs/13/plpgsql.html
https://www.postgresql.org/docs/13/xplang.html
https://www.postgresql.org/docs/13/xplang.html
https://www.postgresql.org/docs/13/xfunc-sql.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Before SQL Server 2008, only very basic error handling features were available. RAISERROR was
the primary statement used for error handling.

Starting from SQL Server 2008, the extensive .NET-like error handling capabilities were added.
They included TRY..CATCH blocks, THROW statements, the FORMATMESSAGE function, and a set of
system functions that return metadata for the current error condition.

TRY...CATCH Blocks

TRY..CATCH blocks implement error handling similar to Microsoft Visual C# and Microsoft Visual C
++, TRY .. END TRY statement blocks can contain T-SQL statements.

If an error is raised by any of the statements within the TRY .. END TRY block, the run stops and
is moved to the nearest set of statements that are bounded by a CATCH .. END CATCH block.

BEGIN TRY

<Set of SQL Statements>

END TRY

BEGIN CATCH

<Set of SQL Error Handling Statements>
END CATCH

THROW

The THROW statement raises an exception and transfers run of the TRY .. END TRY block of
statements to the associated CATCH .. END CATCH block of statements.

Throw accepts either constant literals or variables for all parameters.

THROW [Error Number>, <Error Message>, < Error State>] [;]

Examples

The following example uses TRY..CATCH error blocks to handle key violations.

CREATE TABLE ErrorTest (Coll INT NOT NULL PRIMARY KEY);

BEGIN TRY

SQL Server Usage 201

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

BEGIN TRANSACTION
INSERT INTO ErrorTest(Coll) VALUES(1);
INSERT INTO ErrorTest(Coll) VALUES(2);
INSERT INTO ErrorTest(Coll) VALUES(1);
COMMIT TRANSACTION;
END TRY
BEGIN CATCH
THROW; -- Throw with no parameters = RETHROW
END CATCH;

(1 row affected)

(1 row affected)

(0 rows affected)

Msg 2627, Level 14, State 1, Line 7

Violation of PRIMARY KEY constraint 'PK__ErrorTes__ A259EE54D8676973'.

Can't insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

(® Note

Contrary to what many SQL developers believe, the values 1 and 2 are indeed inserted
into ExrrorTestTable in the preceding example. This behavior is in accordance with ANSI
specifications stating that a constraint violation should not roll back an entire transaction.

The following example uses THROW with variables.

BEGIN TRY

BEGIN TRANSACTION

INSERT INTO ErrorTest(Coll) VALUES(1);

INSERT INTO ErrorTest(Coll) VALUES(2);

INSERT INTO ErrorTest(Coll) VALUES(1);

COMMIT TRANSACTION;

END TRY

BEGIN CATCH

DECLARE @CustomMessage VARCHAR(1000),
@CustomError INT,
@CustomState INT;

SET @CustomMessage = 'My Custom Text ' + ERROR_MESSAGE();

SET @CustomError = 54321;

SET @CustomState = 1;

THROW @CustomError, @CustomMessage, @CustomState;

SQL Server Usage 202

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

END CATCH;

(0 rows affected)

Msg 54321, Level 16, State 1, Line 19

My Custom Text Violation of PRIMARY KEY constraint 'PK__ErrorTes_ A259EE545CBDBB9A'.
Can't insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

RAISERROR

The RAISERROR statement is used to explicitly raise an error message, similar to THROW. It causes
an error state for the run session and forwards run to either the calling scope or, if the error
occurred within a TRY .. END TRY block, to the associated CATCH .. END CATCH block.
RAISERROR can reference a user-defined message stored in the sys.messages system table or
can be used with dynamic message text.

The key differences between THROW and RAISERROR are:

» Message IDs passed to RAISERROR must exist in the sys.messages system table. The error
number parameter passed to THROW doesn't.

« RAISERROR message text may contain printf formatting styles. The message text of THROW
may not.

« RAISERROR uses the severity parameter for the error returned. For THROW, severity is always 16.

RAISERROR (<Message ID>|<Message Text>, <Message Severity>, <Message State>
[WITH option [<Option List>]])

The following example raises a custom error.
RAISERROR (N'This is a custom error message with severity 10 and state 1.', 10, 1)

FORMATMESSAGE

FORMATMESSAGE returns a sting message consisting of an existing error message in the
sys.messages system table, or from a text string, using the optional parameter list replacements.
The FORMATMESSAGE statement is similar to the RAISERROR statement.

FORMATMESSAGE (<Message Number> | <Message String>, <Parameter List>)

SQL Server Usage 203

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Error State Functions

SQL Server provides the following error state functions:

ERROR_LINE

« ERROR_MESSAGE

« ERROR_NUMBER

« ERROR_PROCEDURE
« ERROR_SEVERITY

« ERROR_STATE

. @@ERROR

The following example uses error state functions within a CATCH block.

CREATE TABLE ErrorTest (Coll INT NOT NULL PRIMARY KEY);

BEGIN TRY;
BEGIN TRANSACTION;
INSERT INTO ErrorTest(Coll) VALUES(1);
INSERT INTO ErrorTest(Coll) VALUES(2);
INSERT INTO ErrorTest(Coll) VALUES(1);
COMMIT TRANSACTION;
END TRY
BEGIN CATCH
SELECT ERROR_LINE(),
ERROR_MESSAGE(),
ERROR_NUMBER(),
ERROR_PROCEDURE(),
ERROR_SEVERITY(),
ERROR_STATE(),
@@Error;
THROW;
END CATCH;

6

Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE543C8912D8'. Can't insert
duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

2627

SQL Server Usage 204

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

NULL
14

1
2627

(1 row affected)

(1 row affected)

(0 rows affected)

(1 row affected)

Msg 2627, Level 14, State 1, Line 25

Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE543C8912D8'. Can't insert
duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

For more information, see RAISERROR (Transact-SQL), TRY...CATCH (Transact-SQL), and THROW
(Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) doesn't provide native
replacement for SQL Server error handling features and options, but it has many comparable
options.

To trap the errors, use the BEGIN. . EXCEPTION.. END. By default, any error raised in a PL/
pgSQL function block stops running and the surrounding transaction. You can trap and recover
from errors using a BEGIN block with an EXCEPTION clause. The syntax is an extension to the
normal syntax for a BEGIN block.

Syntax

[<<label>>]
[DECLARE
declarations]
BEGIN
statements
EXCEPTION
WHEN condition [OR condition ...] THEN
handler_statements
[WHEN condition [OR condition ...] THEN
handler_statements

-]

PostgreSQL Usage 205

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/raiserror-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/throw-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/throw-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
END;
For the preceding example, condition is related to the error or the code. For example:
e WHEN interval_field_overflow THEN..
o WHEN SQLSTATE '22015' THEN..
For all error codes, see PostgreSQL Error Codes in the PostgreSQL documentation.
Throw errors
You can use the PostgreSQL RAISE statement to throw errors. You can combine RAISE with
several levels of severity including:
Severity Usage
DEBUG1..DEBUG5 Provides successively more detailed informati
on for use by developers.
INFO Provides information implicitly requested by
the user.
NOTICE Provides information that might be helpful to
users.
WARNING Provides warnings of likely problems.
ERROR Reports an error that caused the current
command to abort.
LOG Reports information of interest to administr
ators. For example, checkpoint activity.
FATAL Reports an error that caused the current
session to abort.
PANIC Reports an error that caused all database

sessions to abort.

PostgreSQL Usage 206

https://www.postgresql.org/docs/13/errcodes-appendix.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples

The following example uses RAISE DEBUG, where DEBUG is the configurable severity level.

SET CLIENT_MIN_MESSAGES = 'debug';

DO $$

BEGIN

RAISE DEBUG USING MESSAGE := 'hello world';
END $$;

DEBUG: hello world
DO

The following example uses the client_min_messages parameter to control the level of
messages sent to the client. The default is NOTICE. Use the 1og_min_messages parameter to
control which message levels are written to the server log. The default is WARNING.

SET CLIENT_MIN_MESSAGES = 'debug';

The following example uses EXCEPTION. .WHEN..THEN inside BEGIN and END block to handle
dividing by zero violations.

CREATE TABLE ErrorTest (Coll INT NOT NULL PRIMARY KEY);

INSERT INTO employee values ('John',10);
BEGIN
SELECT 5/0;
EXCEPTION
WHEN division_by_zero THEN
RAISE NOTICE 'caught division_by_zero';
return 0;
END;

Summary

The following table identifies similarities, differences, and key migration considerations.

Summary 207

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

SQL Server error handling feature Aurora PostgreSQL equivalent
TRY .. END TRY and CATCH .. END CATCH

Inner
blocks BEGIN

EXCEPTION WHEN ... THEN

END
THROW and RAISERROR RAISE
FORMATMESSAGE RAISE [level] 'format' or ASSERT
Error state functions GET STACKED DIAGNOSTICS
Proprietary error messages in sys.messa RAISE

ges system table

For more information, see Error Handling, Errors and Messages, and When to Log in the PostgreSQL

documentation.

Flow control for T-SQL

This topic provides reference information comparing flow control constructs between Microsoft
SQL Server and Amazon Aurora PostgreSQL. You can use this information to understand the
similarities and differences in flow control mechanisms when migrating from SQL Server to
Aurora PostgreSQL. The topic outlines various flow control commands available in both systems,
highlighting where direct equivalents exist and suggesting alternatives where they don't.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Flow Control PostgreSQL doesn't
@ @ E E @ @ @ support GOTO and

WAITFOR TIME.

Flow control for T-SQL 208

https://www.postgresql.org/docs/13/ecpg-errors.html
https://www.postgresql.org/docs/13/plpgsql-errors-and-messages.html
https://www.postgresql.org/docs/13/runtime-config-logging.html#GUC-LOG-MIN-MESSAGES

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

Although SQL Server is a mostly declarative language, it does support flow control commands,
which provide run time dynamic changes in script run paths.

Before SQL/PSM was introduced in SQL:1999, the ANSI standard didn't include flow control
constructs. Therefore, there are significant syntax differences among RDBMS engines.

SQL Server provides the following flow control keywords.

« BEGIN.. END — Define boundaries for a block of commands that are run together.

« RETURN — Exit a server code module (stored procedure, function, and so on) and return control
to the calling scope. You can use RETURN <value> to return an INT value to the calling scope.

 BREAK — Exit WHILE loop run.
« THROW — Raise errors and potentially return control to the calling stack.
e CONTINUE — Restart a WHILE loop.

e TRY.. CATCH — Error handling. For more information, see Error Handling.

e« GOTO label — Moves the run point to the location of the specified label.
« WAITFOR — Delay.
o IF.. ELSE — Conditional flow control.

« WHILE <condition> — Continue looping while <condition> returns TRUE.

(@ Note

WHILE loops are commonly used with cursors and use the system variable
@@FETCH_STATUS to determine when to exit. For more information, see Cursors.

Examples

The following example demonstrates a solution for running different processes based on the
number of items in an order.

Create and populate an Orderltems table.

CREATE TABLE OrderItems
(

SQL Server Usage 209

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

OrderID INT NOT NULL,

Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)

);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200);

Declare a cursor for looping through all Orderltems and calculating the total quantity for each
order.

DECLARE OrderItemCursor CURSOR FAST_FORWARD
FOR
SELECT OrderID,
SUM(Quantity) AS NumItems
FROM OrderItems
GROUP BY OrderID
ORDER BY OrderID;

DECLARE @0rderID INT, @NumItems INT;

-- Instantiate the cursor and loop through all orders.
OPEN OrderItemCursor;

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems

WHILE @@Fetch_Status = 0
BEGIN;
IF @NumItems > 100
PRINT 'EXECUTING LogLargeOrder - '
+ CAST(@OrderID AS VARCHAR(5))
+ ' ' + CAST(@NumItems AS VARCHAR(5));
ELSE
PRINT 'EXECUTING LogSmallOrder - '
+ CAST(@OrderID AS VARCHAR(5))
+ ' ' + CAST(@NumItems AS VARCHAR(5));

SQL Server Usage 210

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems;
END;

-- Close and deallocate the cursor.

CLOSE OrderItemCursor;
DEALLOCATE OrderItemCursor;

For the preceding example, the result looks as shown following.

EXECUTING LogSmallOrder - 1 100
EXECUTING LogSmallOrder - 2 100
EXECUTING LoglLargeOrder - 3 200

For more information, see Control-of-Flow in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) provides the following flow
control constructs:

e« BEGIN.. END — Define boundaries for a block of commands that are run together.

o CASE — Run a set of commands based on a predicate (not to be confused with CASE
expressions).

e IF.. ELSE — Perform conditional flow control.
e ITERATE — Restart a LOOP or WHILE statement.

» LEAVE — Exit a server code module such as stored procedure, function, and so on and return
control to the calling scope.

« LOOP — Loop indefinitely.
o REPEAT.. UNTIL — Loop until the predicate is true.
e RETURN — Terminate the run of the current scope and return to the calling scope.

e WHILE — Continue looping while the condition returns TRUE.

Examples

The following example demonstrates a solution for running different logic based on the number
of items in an order. It provides the same functionality as the example for SQL Server flow control.

PostgreSQL Usage 211

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/control-of-flow?view=sql-serverver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

However, unlike the SQL Server example ran as a batch script, Aurora PostgreSQL variables can
only be used in stored routines such as procedures and functions.

Create and populate an Orderltems table.

CREATE TABLE OrderItems

(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)

);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200);

Create a procedure to declare a cursor and loop through the order items.

CREATE OR REPLACE FUNCTION P()
RETURNS numeric
LANGUAGE plpgsql

AS $function$

DECLARE
done int default false;
var_OrderID int;
var_NumlItems int;
OrderItemCursor CURSOR FOR SELECT OrderID, SUM(Quantity) AS NumItems
FROM OrderItems
GROUP BY OrderID
ORDER BY OrderID;

BEGIN

OPEN OrderItemCursor;

LOOP
fetch from OrderItemCursor INTO var_OrderID, var_NumItems;

EXIT WHEN NOT FOUND;

IF var_NumItems > 100 THEN
RAISE NOTICE 'EXECUTING LoglLargeOrder - %s',6var_OrderID;
RAISE NOTICE 'Num Items: %s', var_NumlItems;

PostgreSQL Usage 212

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

ELSE
RAISE NOTICE 'EXECUTING LogSmallOrder - %s',var_OrderID;
RAISE NOTICE 'Num Items: var_NumItems;
END IF;
END LOOP;
done = TRUE;
CLOSE OrderItemCursor;
END; $function$

[1
%s',

Summary

While there are some syntax differences between SQL Server and Aurora PostgreSQL flow
control statements, most rewrites should be straightforward. The following table summarizes the
differences and identifies how to modify T-SQL code to support similar functionality in Aurora
PostgreSQL PL/pgSQL.

Command SQL Server Aurora PostgreSQL
BEGIN..END Define command block Define command block
boundaries. boundaries.
RETURN Exit the current scope and Exit a stored function and
return to caller. Supported return to caller.
for both scripts and stored
code such as procedures and
functions.
BREAK Exit WHILE loop run EXIT WHEN
THROW Raise errors and potentially Raise errors and potentially
return control to the calling return control to the calling
stack. stack.
TRY..CATCH Error handling. Error handling. For more
information, see Error
Handling.
GOTO Move run to a specified label Consider rewriting the flow

logic using either CASE

Summary

213

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Command SQL Server Aurora PostgreSQL

statements or nested stored
procedures. You can use
nested stored procedures to
circumvent this limitation
by separating code sections
and encapsulating them

in sub-procedures. Use

IF <condition> EXEC
<stored procedure>
instead of GOTO.

WAITFOR Delay pg_sleep. For more
information, see Date/Time
Functions and Operators in

the PostgreSQL documenta

tion.
IF.. ELSE Conditional flow control. Conditional flow control.
WHILE Continue running while Continue running while
condition is true. condition is true.

For more information, see Control Structures in the PostgreSQL documentation.

Full-text search for T-SQL

This topic provides reference information about full-text search capabilities in Microsoft SQL
Server and PostgreSQL, which is relevant to migrating from SQL Server 2019 to Amazon Aurora
PostgreSQL. It explains the differences in how these database systems implement full-text search
functionality, including index creation, query syntax, and performance optimization techniques.

Full-text search for T-SQL 214

https://www.postgresql.org/docs/13/static/functions-datetime.html
https://www.postgresql.org/docs/13/static/functions-datetime.html
https://www.postgresql.org/docs/13/plpgsql-control-structures.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level
Full-Text Search Different paradigm
@ @ and syntax require

rewriting the
application.

SQL Server Usage

SQL Server supports an optional framework for running full-text search queries against character-
based data in SQL Server tables using an integrated, in-process full-text engine and a fdhost.exe
filter daemon host process.

To run full-text queries, create a full-text catalog. This catalog in turn may contain one or more
full-text indexes. A full-text index is comprised of one or more textual columns of a table.

Full-text queries perform smart linguistic searches against full-text indexes by identifying words
and phrases based on specific language rules. The searches can be for simple words, complex
phrases, or multiple forms of a word or a phrase. They can return ranking scores for matches or
hits.

Full-Text Indexes

You can create a full-text index on one of more columns of a table or view for any of the following
data types:

e CHAR — Fixed size ASCII string column data type.

e VARCHAR — Variable size ASCII string column data type.

« NCHAR — Fixed size UNICODE string column data type.

« NVARCHAR — Variable size UNICODE string column data type.

o TEXT — ASCII BLOB string column data type. This data type is deprecated.

« NTEXT — UNICODE BLOB string column data type. This data type is deprecated.
« IMAGE — Binary BLOB data type. This data type is deprecated.

SQL Server Usage 215

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

e XML — XML structured BLOB data type.
« VARBINARY(MAX) — Binary BLOB data type.
o FILESTREAM — File-based storage data type.

For more information, see Data Types.

You can use the CREATE FULLTEXT INDEX statement to create full-text indexes. A full-text index
may contain up to 1024 columns from a single table or view.

When you create full-text indexes on BINARY type columns, you can store documents such as
Microsoft Word as a binary stream and parse them correctly by the full-text engine.

Full-Text Catalogs

Full-text indexes are contained within full-text catalog objects. A full-text catalog is a logical
container for one or more full-text indexes, You can use a full-text catalog to collectively
administer them as a group for tasks such as back-up, restore, refresh content, and so on.

You can use the CREATE FULLTEXT CATALOG statement to create full-text catalogs. A full-text
catalog may contain zero or more full-text indexes and is limited in scope to a single database.

Full-Text Queries

After you create and populate a full-text catalog and index, you can run full-text queries against
these indexes to query for:

« Simple term match for one or more words or phrases.

» Prefix term match for words that begin with a set of characters.

» Generational term match for inflectional forms of a word.

» Proximity term match for words or phrases that are close to another word or phrase.
» Thesaurus search for synonymous forms of a word.

» Weighted term match for finding words or phrases with weighted proximity values.

Full-text queries are integrated into T-SQL and use the following predicates and functions:

o CONTAINS predicate.
o FREETEXT predicate.

SQL Server Usage 216

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

e CONTAINSTABLE table-valued function.
« FREETEXTTABLE table-valued function.

(@ Note

Don't confuse full-text functionality with the LIKE predicate, which is used for pattern
matching only.

Updating Full-Text Indexes

By default, full-text indexes are automatically updated when the underlying data is modified,
similar to a normal B-tree or columnstore index. However, large changes to the underlying data
may inflict a performance impact for the full-text indexes update because it is a resource intensive
operation. In these cases, you can disable the automatic update of the catalog and update it
manually, or on a schedule, to keep the catalog up to date with the underlying tables.

(@ Note

You can monitor the status of the full-text catalog by using the
FULLTEXTCATALOGPROPERTY (<Full-text Catalog Name>, 'Populatestatus')
function.

Examples

The following example creates a product review table.

CREATE TABLE ProductReviews

(
ReviewID INT NOT NULL
IDENTITY(1,1),
CONSTRAINT PK_ProductReviews PRIMARY KEY(ReviewID),
ProductID INT NOT NULL
/*REFERENCES Products(ProductID)*/,
ReviewText VARCHAR(4000) NOT NULL,
ReviewDate DATE NOT NULL,
UserID INT NOT NULL
/*REFERENCES Users(UserID)*/

SQL Server Usage 217

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

);

INSERT INTO ProductReviews

(ProductID, ReviewText, ReviewDate, UserID)

VALUES

(1, 'This is a review for product 1, it is excellent and works as expected', '20180701',
2),

(1, 'This is a review for product 1, it isn't that great and failed after two

days', '20180702', 2),

(2, 'This is a review for product 3, it has exceeded my expectations. A+++',6 '20180710',
2);

The following example creates a full-text catalog for product reviews.

CREATE FULLTEXT CATALOG ProductFTCatalog;

The following example creates a full-text index for product reviews.

CREATE FULLTEXT INDEX

ON ProductReviews (ReviewText)
KEY INDEX PK_ProductReviews

ON ProductFTCatalog;

The following example queries the full-text index for reviews containing the word excellent.

SELECT *
FROM ProductReviews
WHERE CONTAINS(ReviewText, 'excellent');

ReviewID ProductID ReviewText

ReviewDate UserID
1 1 This is a review for product 1, it is excellent and works as
expected 2018-07-01 2

For more information, see Full-Text Search in the SQL Server documentation.

PostgreSQL Usage

You can use full-text indexes to speed up textual searches performed against textual data by using
the full-text @@ predicate.

PostgreSQL Usage 218

https://docs.microsoft.com/en-us/previous-versions/sql/2014/relational-databases/search/full-text-search?view=sql-server-2014&viewFallbackFrom=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

You can create full-text indexes on almost any column data type. It depends on the operator class
used when the index is created. You can query all classes from the pg_opclass table. Also, you
can define the default values.

The default class uses index tsvector data types. The most common use is to create one column
with text or other data type, and use triggers to convert it to a tsvector.

There are two index types for full-text searches: GIN and GiST.

GIN is slower when building the index because it is complete and doesn’t have false positive
results, but it's faster when querying.

You can improve the GIN performance on creation by increasing the maintenance_work_mem
parameter.

When you create GIN indexes, you can combine them with these parameters:

« fastupdate puts updates on the index on a waiting list so they will occur in VACUUM or related
scenarios. The default value is ON.

e gin_pending_list_limit: the maximum size of a waiting list in KB. The default value is 4MB.

You can't use GIN as composite index (multi columns) unless you add the btree_gin extension
(which is supported in Amazon Aurora).

CREATE EXTENSION btree_gin;
CREATE INDEX reviews_idx ON reviews USING GIN (title, body);

Full-Text Search Functions
Boolean search

You can use to_tsquery(), which accepts a list of words is checked against the normalized
vector created with to_tsvector (). To do this, use the @@ operator to check if tsquery matches
tsvector. For example, the following statement returns t because the column contains the word
boy. This search also returns t for boys but not for boyser.

SELECT to_tsvector('The quick young boy jumped over the fence')
@@ to_tsquery('boy');

Operators search

PostgreSQL Usage 219

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The following example shows how to use the AND (&), 0R (|),and NOT (!) operators.

SELECT to_tsvector('The quick young boy jumped over the fence')
@@ to_tsquery('young & (boy | gquy) & !girl');

Phase search

When using to_tsquery, you can also search for a similar term if you replace boy with boys and
add the langauge to be used.

SELECT to_tsvector('The quick young boy jumped over the fence')
@@ to_tsquery('english', 'young & (boys | gquy) & !girl');

Search words within a specific distance. In the following example, - is equal to 1. These examples
return true.

SELECT to_tsvector('The quick young boy jumped over the fence') @@
to_tsquery('young <-> boy'),
to_tsvector('The quick young boy jumped over the fence') ee@
to_tsquery('quick <3> jumped');

Migration Considerations

Migrating full-text indexes from SQL Server to Aurora PostgreSQL requires a full rewrite of the
code that addresses creating, managing, and querying of full-text searches.

Although the Aurora PostgreSQL full-text engine is significantly less comprehensive than SQL
Server, it is also much simpler to create and manage, and it is sufficiently powerful for most
common, basic full-text requirements.

You can create a text search dictionary. For more information, see CREATE TEXT SEARCH
DICTIONARY.

For more complex full-text workloads, use Amazon CloudSearch, a managed service that makes
it simple and cost-effective to set up, manage, and scale an enterprise grade search solution.
Amazon CloudSearch supports 34 languages and advanced search features such as highlighting,
autocomplete, and geospatial search.

Currently, there is no direct tooling integration with Aurora PostgreSQL. Therefore, create a custom
application to synchronize the data between Amazon RDS instances and the CloudSearch service.

PostgreSQL Usage 220

https://www.postgresql.org/docs/13/sql-createtsdictionary.html
https://www.postgresql.org/docs/13/sql-createtsdictionary.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information, see Amazon CloudSearch.

Examples

CREATE TABLE ProductReviews

(
ReviewID SERIAL PRIMARY KEY,
ProductID INT NOT NULL
ReviewText TEXT NOT NULL,
ReviewDate DATE NOT NULL,
UserID INT NOT NULL

);

INSERT INTO ProductReviews

(ProductID, ReviewText, ReviewDate, UserID)

VALUES

(1, 'This is a review for product 1, it is excellent and works as expected',
'20180701', 2),

(1, 'This is a review for product 1, it isn't that great and failed after two days',
'20180702', 2),

(2, 'This is a review for product 3, it has exceeded my expectations. A+++',
'20180710', 2);

The following example creates a full-text search index.

CREATE INDEX gin_idx ON ProductReviews USING gin (ReviewText gin_trgm_ops);

You can use gin_trgm_ops to index a TEXT data type.

The following example queries the full-text index for reviews containing the word excellent.

SELECT * FROM ProductReviews where ReviewText @@ to_tsquery('excellent');

For more information, see Full Text Search and Additional Features in the PostgreSQL

documentation.

SQL server graph features for T-SQL

This topic provides reference information about graph database capabilities in Microsoft SQL
Server 2019 and their potential migration to Amazon Aurora PostgreSQL. You can understand

SQL server graph features for T-SQL 221

https://www.amazonaws.cn/cloudsearch/
https://www.postgresql.org/docs/13/textsearch.html
https://www.postgresql.org/docs/13/textsearch-features.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

the fundamental concepts of graph databases, including nodes, edges, and their unique features
for modeling complex relationships. The topic explores how SQL Server implements graph
functionality, offering examples of creating graph tables and performing queries.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A No native support.
@ @ Rewriting the
application is
required.

SQL Server Usage

SQL Server offers graph database capabilities to model many-to-many relationships. The graph
relationships are integrated into Transact-SQL and receive the benefits of using SQL Server as the
foundational database management system.

A graph database is a collection of nodes or vertices and edges or relationships. A node represents
an entity. For example, a person or an organization. An edge represents a relationship between the
two nodes that it connects. For example, this can be likes or friends. Both nodes and edges may

have properties associated with them. Here are some features that make a graph database unique:

Edges or relationships are first class entities in a Graph Database and can have attributes or
properties associated with them.

A single edge can flexibly connect multiple nodes in a Graph Database.

You can express pattern matching and multi-hop navigation queries easily.

You can express transitive closure and polymorphic queries easily.

A relational database can achieve anything a graph database can. However, a graph database
makes it easier to express certain kinds of queries. Also, with specific optimizations, certain queries
may perform better. Your decision to choose either a relational or graph database is based on
following factors:

SQL Server Usage 222

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

» Your application has hierarchical data. You can use the HierarchyID data type to implement
hierarchies, but it has some limitations. For example, it doesn’t allow you to store multiple
parents for a node.

» Your application has complex many-to-many relationships. As application evolves, new
relationships are added.

» You need to analyze interconnected data and relationships.

SQL Server 2017 adds new graph database capabilities for modeling graph many-to-many
relationships. They include the new CREATE TABLE syntax for creating node and edge tables, and
the keyword MATCH for queries. For more information, see Graph processing with SQL Server and
Azure SQL Database.

The following example creates SQL Server graph tables.

CREATE TABLE Person (ID INTEGER PRIMARY KEY, Name VARCHAR(100), Age INT) AS NODE;
CREATE TABLE friends (StartDate date) AS EDGE;

A new MATCH clause is introduced to support pattern matching and multi-hop navigation through
the graph. The MATCH function uses ASCll-art style syntax for pattern matching. The following
example uses the MATCH function.

-- Find friends of John

SELECT Person2.Name

FROM Person Personl, Friends, Person Person2
WHERE MATCH(Personl-(Friends)->Person2)

AND Personl.Name = 'John';

SQL Server 2019 adds ability to define cascaded delete actions on an edge constraint in a graph
database. Edge constraints enable users to add constraints to their edge tables, thereby enforcing
specific semantics and also maintaining data integrity. For more information, see Edge constraints

in the SQL Server documentation.

In SQL Server 2019, graph tables now have support for table and index partitioning. For more
information, see Partitioned Tables and Indexes in the SQL Server documentation.

SQL Server Usage 223

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL Usage

Currently, PostgreSQL doesn't provide native Graph Database feature, but it is possible to
implement some of them using recursive CTE queries or serializing graphs to regular relations.

JSON and XML for T-SQL

This topic provides reference information about XML and JSON support in SQL Server and
PostgreSQL, which is relevant for migrating from Microsoft SQL Server 2019 to Amazon Aurora
PostgreSQL. You can understand the similarities and differences in how these database systems
handle semi-structured data formats. The topic explores the native support for XML and JSON in
both SQL Server and PostgreSQL, including data types, functions, and indexing capabilities.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

XML Syntax and option
@ @ @ E @@@ differences, similar
functionality.
PostgreSQL doesn't
have a FOR XML
clause.

SQL Server Usage

JavaScript Object Notation (JSON) and eXtensible Markup Language (XML) are the two most
common types of semi-structured data documents used by a variety of data interfaces and NoSQL
databases. Most REST web service APIs support JSON as their native data transfer format. XML

is an older, more mature framework that is still widely used. It provides many extensions such as
XQuery, name spaces, schemas, and more.

The following example is a JSON document:

[{

"name": "Robert",

PostgreSQL Usage 224

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
"age": "28"
o Aq
"name": "James",
"age": "71"
"lastname": "Drapers"

]

The following example is the XML counterpart of the preceding example.

<?xml version="1.0" encoding="UTF-16" ?>
<root>
<Person>
<name>Robert</name>
<age>28</age>
</Person>
<Person>
<name>James</name>
<age>71</age>
<lastname>Drapers</lastname>
</Person>
</root>

SQL Server provides native support for both JSON and XML in the database using the familiar and
convenient T-SQL interface.

XML Data

SQL Server provides extensive native support for working with XML data including XML Data Types,
XML Columns, XML Indexes, and XQuery.

XML Data Types and Columns
In SQL Server, you can use the following data types to store XML data:

« The Native XML Data Type uses a BLOB structure but preserves the XML Infoset, which consists
of the containment hierarchy, document order, and element/attribute values. An XML typed
document may differ from the original text; white space is removed and the order of objects
may change. XML Data stored as a native XML data type has the additional benefit of schema
validation.

» You can use an Annotated Schema (AXSD) to distribute XML documents to one or more tables.
Hierarchical structure is maintained, but element order isn't.

SQL Server Usage 225

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

» You can use CLOB or BLOB such as VARCHAR(MAX) and VARBINARY (MAX) to store the original
XML document.

XML Indexes

In SQL Server, you can create PRIMARY and SECONDARY XML indexes on columns with a native XML
data type. You can create secondary indexes for PATH, VALUE, or PROPERTY, which are helpful for
various types of workload queries.

XQuery

SQL Server supports a subset of the W3C XQUERY language specification. You can run queries
directly against XML data and use them as expressions or sets in standard T-SQL statements.

The following example uses the XQuery language specification.

DECLARE @XMLVar XML = '<Root><Data>My XML Data</Data></Root>';
SELECT @XMLVar.query('/Root/Data');

Result: <Data>My XML Data</Data>

JSON Data

SQL Server doesn't support a dedicated JSON data type. However, you can store JSON documents
in an NVARCHAR column. For more information about BLOBS, see Data Types.

SQL Server provides a set of JSON functions. You can use these functions for the following tasks:

Retrieve and modify values in JSON documents.

Convert JSON obijects to a set (table) format.

Use standard T-SQL queries with converted JSON objects.

Convert tabular results of T-SQL queries to JSON format.

The functions are:

e ISJISON — Tests if a string contains a valid JSON string. Use in WHERE clause to avoid errors.

e JSON_VALUE — Retrieves a scalar value from a JSON document.

SQL Server Usage 226

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« JSON_QUERY — Retrieves a whole object or array from a JSON document.
« JSON_MODIFY — Modifies values in a JSON document.

o OPENJSON — Converts a JSON document to a SET that you can use in the FROM clause of a T-
SQL query.

You can use the FOR JSON clause of SELECT queries to convert a tabular set to a JSON document.
Examples

The following example creates a table with a native typed XML column.

CREATE TABLE MyTable

(
XMLIdentifier INT NOT NULL PRIMARY KEY,

XMLDocument XML NULL
);

The following example queries a JSON document.

DECLARE @JSONVar NVARCHAR(MAX);

SET @JSONVar = '{"Data":{"Person":[{"Name":"John"}, {"Name":"Jane"},
{"Name" :"Maria"}1}}"';

SELECT JSON_QUERY(@JSONVar, '$.Data');

For more information, see JSON data in SQL Server and XML Data (SQL Server) in the SQL Server
documentation.

PostgreSQL Usage

PostgreSQL provides native JSON Document support using the JSON data types JSON and JSONB.

JSON stores an exact copy of the input text that processing functions must re-parse on each run. It
also preserves semantically-insignificant white space between tokens and the order of keys within
JSON objects.

JSONB stores data in a decomposed binary format causing slightly slower input performance due
to added conversion to binary overhead. But it is significantly faster to process, since no re-parsing
is needed on reads.

PostgreSQL Usage 227

https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Doesn't preserve white space.
« Doesn't preserve the order of object keys.

» Doesn't keep duplicate object keys. If duplicate keys are specified in the input, only the last value
is retained.

Most applications store JSON data as JSONB unless there are specialized needs. For more
information, see JSON Types in the PostgreSQL documentation.

To comply with the full JSON specification, database encoding must be set to UTF8. If the database
code page isn't set to UTF8, then non-UTF8 characters are allowed and the database encoding will
be non-compliant with the full JSON specification.

In PostgreSQL version 10 and higher, JSON and JSONB are compatible with full-text search.
Examples

Querying JSON data in PostgreSQL uses different syntax than SQL Server

The following example returns the JSON document stored in the emp_data column associated with
emp_id=1.

SELECT emp_data FROM employees WHERE emp_id = 1;

The following example returns all JSON documents stored in the emp_data column having a key
named address.

SELECT emp_data FROM employees WHERE emp_data ? ' address';

The following example returns all JSON items that have an address key or a hobbies key.

SELECT * FROM employees WHERE emp_data ?| array['address', 'hobbies'];

The following example returns all JSON items that have both an address key and a hobbies key.

SELECT * FROM employees WHERE emp_data ?& array['a', 'b'];

The following example returns the value of home key in the phone numbers array.

PostgreSQL Usage 228

https://www.postgresql.org/docs/13/static/datatype-json.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT emp_data ->'phone numbers'->>'home' FROM employees;

The following example returns all JSON documents where the address key is equal to a specified
value and return all JSON documents where address key contains a specific string (using like).

SELECT * FROM employees WHERE emp_data->>'address' = '1234 First Street, Capital City';
SELECT * FROM employees WHERE emp_data->>'address' like '%Capital City%';

The following example removes keys from JSON. You can remove more than one key in PostgreSQL
10 only.

select '{"id":132, "fname":"John", "salary":999999, "bank_account":1234}'::jsonb -
'{salary,bank_account}'::text[];

For more information, see JSON Functions and Operators in the PostgreSQL documentation.

Indexing and Constraints with JSONB Columns

You can use the CREATE UNIQUE INDEX statement to enforce constraints on values inside JSON
documents.

The following example creates a unique index that forces values of the address key to be unique.

CREATE UNIQUE INDEX employee_address_uq ON employees((emp_data->>'address')) ;

This index allows the first SQL insert statement to work and causes the second to fail.

INSERT INTO employees VALUES

(2, 'Second Employee','{ "address": "1234 Second Street, Capital City"}');

INSERT INTO employees VALUES

(3, 'Third Employee', '{ "address": "1234 Second Street, Capital City"}');

ERROR: duplicate key value violates unique constraint "employee_address_uq" SQL state:
23505 Detail: Key ((emp_data ->> 'address'::text))=(1234 Second Street, Capital City)
already exists.

For JSON data, PostgreSQL supports B-tree, hash, and Generalized Inverted Indexes (GIN). A GIN
index is a special inverted index structure that is useful when an index must map many values to a
row (such as indexing JSON documents).

PostgreSQL Usage 229

https://www.postgresql.org/docs/10/functions-json.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

When you use GIN indexes, you can efficiently and quickly query data using only the following
JSON operators: @>, ?, ?&, ?]|.

Without indexes, PostgreSQL is forced to perform a full table scan when filtering data. This
condition applies to JSON data and will most likely have a negative impact on performance since
Postgres has to step into each JSON document.

The following example creates an index on the address key of emp_data.

CREATE idx1_employees ON employees ((emp_data->>'address'));

The following example creates a GIN index on a specific key or the entire emp_data column.

CREATE INDEX idx2_employees ON cards USING gin ((emp_data->'tags'));
CREATE INDEX idx3_employees ON employees USING gin (emp_data);

XML Examples

PostgreSQL provides an XML data type for table columns. The primary advantage of using XML
columns, rather than placing XML data in text columns, is that the XML data is type checked when
inserted. Additionally, there are support functions to perform type-safe operations.

XML can store well-formed documents as defined by the XML standard or content fragments that
defined by the production XMLDecl. Content fragments can have more than one top-level element
or character node.

You can use IS DOCUMENT to evaluate whether a particular XML value is a full document or only a
content fragment.

The following example demonstrates how to create XML data and insert it into a table.

Insert a document, and then insert a content fragment. You can insert both types of XML data into
the same column. If the XML is incorrect (such as a missing tag), the insert fails with the relevant
error. The query retrieves only document records.

CREATE TABLE test (a xml);

insert into test values (XMLPARSE (DOCUMENT '<?xml version="1.0Q"?
><Series><title>Simpsons</title><chapter>...</chapter></Series>"'));

PostgreSQL Usage 230

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

insert into test values (XMLPARSE (CONTENT 'note<tag>value</tag><tag>value</tag>'));

select * from test where a IS DOCUMENT;

Converting XML data to rows was a feature added in PostgreSQL 10. This can be very helpful
reading XML data using a table equivalent.

CREATE TABLE xmldata_sample AS SELECT
xml $$
<ROWS>
<ROW id="1">
<EMP_ID>532</EMP_ID>
<EMP_NAME>John</EMP_NAME>
</ROW>
<ROW id="5">
<EMP_ID>234</EMP_ID>
<EMP_NAME>Carl</EMP_NAME>
<EMP_DEP>6</EMP_DEP>
<SALARY unit="dollars">10000</SALARY>
</ROW>
<ROW id="6">
<EMP_ID>123</EMP_ID>
<EMP_DEP>8</EMP_DEP>
<SALARY unit="dollars">5000</SALARY>
</ROW>
</ROWS>
$$ AS data;

SELECT xmltable.*
FROM xmldata_sample,
XMLTABLE('//ROWS/ROW'

PASSING data

COLUMNS id int PATH '@id',
ordinality FOR ORDINALITY,
"EMP_NAME" text,
"EMP_ID" text PATH 'EMP_ID',
SALARY_USD float PATH 'SALARY[@unit = "dollars"]',
MANAGER_NAME text PATH 'MANAGER_NAME' DEFAULT 'not specified');

id ordinality EMP_NAME EMP_ID salary_usd manager_name
1 1 John 532 not specified
5 2 Carl 234 10000 not specified

PostgreSQL Usage 231

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Summary

5000 not specified

The following table identifies similarities, differences, and key migration considerations.

Feature

XML and JSON native data
types.

JSON functions.

XML functions

XML and JSON indexes.

SQL Server

XML with schema collections.

IS_JSON, JSON_VALUE ,
JSON_QUERY , JSON_MODF
IY , OPEN_JSON , FOR
JSON.

XQUERY and XPATH,
OPEN_XML, FOR XML.

Primary and Secondary
PATH, VALUE and PROPERTY
indexes.

Aurora PostgreSQL

JSON.

A set of more than 20

dedicated JSON functions. For

more information, see JSON
Functions and Operators in

the PostgreSQL documenta
tion.

Many XML functions. For
more information, see XML
Functions in the PostgreSQ
L documentation. PostgreSQ
L doesn't have a FOR

XML clause. You can use
string_agg instead.

Supported.

For more information, see XML Type, XML Functions, JSON Types, and JSON Functions and

Operators in the PostgreSQL documentation.

Merge for T-SQL

This topic contains reference information comparing the MERGE statement in SQL Server with

equivalent functionality in PostgreSQL. You can understand the differences in feature compatibility

Summary

https://www.postgresql.org/docs/13/functions-json.html
https://www.postgresql.org/docs/13/functions-json.html
https://www.postgresql.org/docs/13/functions-xml.html
https://www.postgresql.org/docs/13/functions-xml.html
https://www.postgresql.org/docs/13/datatype-xml.html
https://www.postgresql.org/docs/13/functions-xml.html
https://www.postgresql.org/docs/13/datatype-json.html
https://www.postgresql.org/docs/13/functions-json.html
https://www.postgresql.org/docs/13/functions-json.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

between these database systems when migrating from Microsoft SQL Server 2019 to Amazon
Aurora PostgreSQL.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

MERGE Rewrite to use

@ @ E INSERT... ON

CONFLICT.

SQL Server Usage

MERGE is a complex, hybrid DML/DQL statement for performing INSERT, UPDATE, or DELETE
operations on a target table based on the results of a logical join of the target table and a source
data set.

MERGE can also return row sets similar to SELECT using the OUTPUT clause, which gives the calling
scope access to the actual data modifications of the MERGE statement.

The MERGE statement is most efficient for non-trivial conditional DML. For example, inserting data
if a row key value doesn't exist and updating the existing row if the key value already exists.

You can easily manage additional logic such as deleting rows from the target that don't appear in
the source. For simple, straightforward updates of data in one table based on data in another, it is
typically more efficient to use simple INSERT, DELETE, and UPDATE statements. You can replace
all MERGE functionality with INSERT, DELETE, and UPDATE statements, but not necessarily less
efficiently.

The SQL Server MERGE statement provides a wide range of functionality and flexibility and is
compatible with ANSI standard SQL:2008. SQL Server has many extensions to MERGE that provide
efficient T-SQL solutions for synchronizing data.

Syntax

MERGE [INTO] <Target Table> [AS] <Table Alias>]
USING <Source Table>
ON <Merge Predicate>

SQL Server Usage 233

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

[WHEN MATCHED [AND <Predicate>]
THEN UPDATE SET <Column Assignments...> | DELETE]

[WHEN NOT MATCHED [BY TARGET] [AND <Predicate>]

THEN INSERT [(<Column List>)]

VALUES

(<Values List>) | DEFAULT VALUES]
[WHEN NOT MATCHED BY SOURCE [AND <Predicate>]

THEN UPDATE SET <Column Assignments...> | DELETE]

OUTPUT

[<Output Clause>]

Examples

The following example performs a simple one-way synchronization of two tables.

CREATE
(
Coll
Col2

);

CREATE
(
Coll
Col2
)i

INSERT
VALUES

TABLE SourceTable

INT NOT NULL PRIMARY KEY,
VARCHAR(2@) NOT NULL

TABLE TargetTable

INT NOT NULL PRIMARY KEY,
VARCHAR(20) NOT NULL

INTO SourceTable (Coll, Col2)

(2, 'Source2'),
(3, 'Source3'),
(4, 'Sources4');

INSERT
VALUES

INTO TargetTable (Coll, Col2)

(1, 'Targetl'),
(2, 'Target2'),
(3, 'Target3');

MERGE INTO TargetTable AS TGT
USING SourceTable AS SRC ON TGT.Coll
WHEN MATCHED

SQL Server Usage

234

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED

THEN INSERT (Coll, Col2)

VALUES (SRC.Coll, SRC.Col2);

SELECT * FROM TargetTable;

For the preceding examples, the result looks as shown following.

Coll Col2

1 Targetl
2 Source?
3 Source3
4 Source4

Perform a conditional two-way synchronization using NULL for no change and DELETE from the

target when the data isn’t found in the source.

TRUNCATE TABLE SourceTable;
INSERT INTO SourceTable (Coll, Col2) VALUES (3, NULL), (4,
(5, 'Source5');

MERGE INTO TargetTable AS TGT
USING SourceTable AS SRC ON TGT.Coll = SRC.Coll
WHEN MATCHED AND SRC.Col2 IS NOT NULL

THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED

THEN INSERT (Coll, Col2)

VALUES (SRC.Coll, SRC.Col2)

WHEN NOT MATCHED BY SOURCE

THEN DELETE;

SELECT *
FROM TargetTable;

For the preceding examples, the result looks as shown following.

Coll Col2
3 Souzrce3
4 NewSource4

'NewSource4'),

SQL Server Usage

235

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

5 Source5

For more information, see MERGE (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

Currently, PostgreSQL version 10 doesn’t support the use of the MERGE command. As an
alternative, consider using the INSERT.. ON CONFLICT clause, which can handle cases where
insert clauses might cause a conflict, and then redirect the operation as an update.

Examples

The following example uses the ON ONFLICT clause.

CREATE TABLE EMP_BONUS (

EMPLOYEE_ID NUMERIC,

BONUS_YEAR VARCHAR(4),

SALARY NUMERIC,

BONUS NUMERIC,

PRIMARY KEY (EMPLOYEE_ID, BONUS_YEAR));

INSERT INTO EMP_BONUS (EMPLOYEE_ID, BONUS_YEAR, SALARY)
SELECT EMPLOYEE_ID, EXTRACT(YEAR FROM NOW()), SALARY
FROM EMPLOYEES
WHERE SALARY < 10000
ON CONFLICT (EMPLOYEE_ID, BONUS_YEAR)

DO UPDATE SET BONUS = EMP_BONUS.SALARY * 0.5;
SELECT * FROM EMP_BONUS;

employee_id bonus_year salary bonus

103 2017 9000.00 4500.000
104 2017 6000.00 3000.000
105 2017 4800.00 2400.000
106 2017 4800.00 2400.000
107 2017 4200.00 2100.000
109 2017 9000.00 4500.000
110 2017 8200.00 4100.000
111 2017 7700.00 3850.000
112 2017 7800.00 3900.000
113 2017 6900.00 3450.000
115 2017 3100.00 1550.000
116 2017 2900.00 1450.000
117 2017 2800.00 1400.000

PostgreSQL Usage 236

https://docs.microsoft.com/en-us/sql/t-sql/statements/merge-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

118 2017 2600.00 1300.000

Running the same operation multiple times using the ON CONFLICT clause doesn't generate an
error because the existing records are redirected to the update clause.

For more information, see INSERT and Unsupported Features in the PostgreSQL documentation.

Pivot and unpivot for T-SQL

This topic provides reference information about feature compatibility between Microsoft SQL
Server 2019 and Amazon Aurora PostgreSQL, specifically regarding the PIVOT and UNPIVOT
operators. You can understand the differences in functionality and learn how to adapt your SQL
queries when migrating from SQL Server to Aurora PostgreSQL.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

PIVOT and UNPIVOT Straightforward

@ @ @ rewrite to use

traditional SQL
syntax.

SQL Server Usage

PIVOT and UNPIVOT are relational operations used to transform a set by rotating rows into
columns and columns into rows.

PIVOT
The PIVOT operator consists of several clauses and implied expressions.

The anchor column isn't pivoted and results in a single row for each unique value, similar to GROUP
BY.

The pivoted columns are derived from the PIVOT clause and are the row values transformed into
columns. The values for these columns are derived from the source column defined in the PIVOT
clause.

Pivot and unpivot for T-SQL 237

https://www.postgresql.org/docs/13/sql-insert.html
https://www.postgresql.org/docs/13/unsupported-features-sql-standard.htm

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PIVOT Syntax

SELECT <Anchor column>,
[Pivoted Column 1] AS <Alias>,
[Pivoted column 2] AS <Alias>

...Nn

FROM
(<SELECT Statement of Set to be Pivoted>)
AS <Set Alias>

PIVOT

(
<Aggregate Function>(<Aggregated Column>)

FOR

[<Column With the Values for the Pivoted Columns Names>]
IN ([Pivoted Column 1], [Pivoted column 2] ...)

) AS <Pivot Table Alias>;

PIVOT Examples

The following example creates and populates the Orders table.

CREATE TABLE Orders

(
OrderID INT NOT NULL
IDENTITY(1,1) PRIMARY KEY,
OrderDate DATE NOT NULL,
Customer VARCHAR(20) NOT NULL

);

INSERT INTO Orders (OrderDate, Customer)
VALUES

('20180101', 'John'),

('20180201', 'Mitch'),

('20180102', 'John'),

('20180104', 'Kevin'),

('20180104', 'Larry'),

('20180104', 'Kevin'),

('20180104', 'Kevin');

The following example creates a simple PIVOT for the number of orders for each day. Days of
month from 5 to 31 are omitted for example simplicity.

SQL Server Usage 238

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT 'Number of Orders for Day' AS DayOfMonth,
(11, [21, [31, [4]1 /*...[31]1*/
FROM (
SELECT OrderID,
DAY(OrderDate) AS OrderDay
FROM Orders
) AS SourceSet
PIVOT
(
COUNT(OrderID)
FOR OrderDay IN ([1]1, [2]1, [3]1, [41 /*...[31]1*/)
) AS PivotSet;

For the preceding example, the result looks as shown following.

DayOfMonth 1 2 3 4 /*...[31]*%/
Number of Orders for Day 2 1 0 4

The result set is now oriented in rows against columns. The first column is the description of the
columns to follow.

PIVOT for number of orders for each day, for each customer.

SELECT Customer,
(11, [2]1, [31, [&4]1 /*...[31]*/
FROM (
SELECT OrderlID,
Customer,
DAY(OrderDate) AS OrderDay
FROM Ozrders
) AS SourceSet
PIVOT
(
COUNT(OrderID)
FOR OrderDay IN ([1]1, [2]1, [3]1, [4]1 /*...[31]1*/)
) AS PivotSet;

Customer 1 2 3 4
John 1 1 0 0
Kevin 2 0 0 3
Larry 0 0 0 1

SQL Server Usage 239

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Mitch 1 0 0 0

UNPIVOT

UNPIVOT is similar to PIVOT in reverse, but spreads existing column values into rows.

The source set is similar to the result of the PIVOT with values pertaining to particular entities
listed in columns. Because the result set has more rows than the source, aggregations aren't
required.

It is less commonly used than PIVOT because most data in relational databases have attributes in
columns; not the other way around.

UNPIVOT Examples

The following example creates and populates the pivot-like EmployeeSales table. This is most
likely a view or a set from an external source.

CREATE TABLE EmployeeSales
(
SaleDate DATE NOT NULL PRIMARY KEY,
John INT,
Kevin INT,
Mary INT
);

INSERT INTO EmployeeSales
VALUES

('20180101', 150, 0, 300),
('20180102', 0, 0, 0),
('20180103', 250, 50, 0),
('20180104', 500, 400, 100);

The following example unpivots employee sales for each date into individual rows for each
employee.

SELECT SaleDate,
Employee,
SaleAmount

FROM

(

SQL Server Usage 240

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT SaleDate, John, Kevin, Mary

FROM EmployeeSales
) AS SourceSet

UNPIVOT (

SaleAmount
FOR Employee IN (John, Kevin, Mary)

)AS UnpivotSet;

For the preceding example, the result looks as shown following.

SaleDate

2018-01-01
2018-01-01
2018-01-01
2018-01-02
2018-01-02
2018-01-02
2018-01-03
2018-01-03
2018-01-03
2018-01-04
2018-01-04
2018-01-04

Employee
John
Kevin
Mary
John
Kevin
Mary
John
Kevin
Mary
John
Kevin
Mary

SaleAmount

150
0
300
0

0

0
250
50
0
500
400
100

For more information, see FROM - Using PIVOT and UNPIVOT in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) doesn't support the PIVOT

and UNPIVOT relational operators.

You can rewrite the functionality of these operators to use standard SQL syntax, as shown in the
following examples.

PIVOT Examples

The following example creates and populates the Orders table.

CREATE TABLE Orders

(

OrderID SERIAL PRIMARY KEY,
OrderDate DATE NOT NULL,

PostgreSQL Usage

241

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-using-pivot-and-unpivot?view=sql-server-ver15&viewFallbackFrom=sqlserver-ver15

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Customer VARCHAR(20) NOT NULL
);

INSERT INTO Orders (OrderDate, Customer)
VALUES

('20180101', 'John'),

('20180201', 'Mitch'),

('20180102', 'John'),

('20180104', 'Kevin'),

('20180104', 'Larry'),

('20180104', 'Kevin'),

('20180104', 'Kevin');

The following example creates a simple PIVOT for the number of orders for each day. Days of

month from 5 to 31 are omitted for example simplicity.

SELECT 'Number of Orders for Day' AS DayOfMonth,

COUNT(CASE WHEN date_part('day', OrderDate) = 1 THEN 'OrderDate'

COUNT(CASE WHEN date_part('day', OrderDate) 2 THEN 'OrderDate’

COUNT(CASE WHEN date_part('day', OrderDate) 3 THEN 'OrderDate'

COUNT(CASE WHEN date_part('day', OrderDate) 4 THEN 'OrderDate’
gt o/xL L [31]%/

FROM Orders AS O;

For the preceding example, the result looks as shown following.

DayOfMonth 1 2 3 4 /*...[31]1*/
Number of Orders for Day 2 1 0 4

PIVOT for number of orders for each day, for each customer.

SELECT Customer,

COUNT(CASE WHEN date_part('day', OrderDate)

COUNT(CASE WHEN date_part('day', OrderDate)

COUNT(CASE WHEN date_part('day', OrderDate)

COUNT(CASE WHEN date_part('day', OrderDate)
gt o/xL L [31]%/

FROM Orders AS O

GROUP BY Customer;

1 THEN 'OrderDate’
2 THEN 'OrderDate'
3 THEN 'OrderDate'
4 THEN 'OrderDate'

For the preceding example, the result looks as shown following.

ELSE
ELSE
ELSE
ELSE

ELSE
ELSE
ELSE
ELSE

NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL

END)
END)
END)
END)

END)
END)
END)
END)

AS
AS
AS
AS

AS
AS
AS
AS

Illll’
Il2ll’
||3||’

Illll’
II2II’
||3||’

PostgreSQL Usage

242

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Customer 1 2 3 4
John 1 1 0 0
Kevin @ 0 0 3
Larry 0 0 0 1
Mitch 1 0 0 0
UNPIVOT Examples

The following example creates and populates the pivot-like EmployeeSales table. In real life this
will most likely be a view, or a set from an external source.

CREATE TABLE EmployeeSales
(
SaleDate DATE NOT NULL PRIMARY KEY,
John INT,
Kevin INT,
Mary INT
);

INSERT INTO EmployeeSales
VALUES

('20180101', 150, @, 300),
('20180102', 0, 0, 0),
('20180103', 250, 50, @),
('20180104', 500, 400, 100);

The following example unpivots employee sales for each date into individual rows for each
employee.

SELECT SaleDate, Employee, SaleAmount
FROM (
SELECT SaleDate,
Employee,
CASE
WHEN Employee 'John' THEN '3John'
WHEN Employee = 'Kevin' THEN 'Kevin'
WHEN Employee = 'Mary' THEN 'Mary'
END AS SaleAmount
FROM EmployeeSales as emp
CROSS JOIN
(

PostgreSQL Usage 243

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

SELECT 'John' AS Employee
UNION ALL

SELECT

'Kevin'

UNION ALL

SELECT

'Mary'

) AS Employees
) AS UnpivotedSet;

For the preceding example, the result looks as shown following.

SaleDate Employee SaleAmount
2018-01-01 John 150
2018-01-01 Kevin]
2018-01-01 Mary 300
2018-01-02 3John 0
2018-01-02 Kevin 0
2018-01-02 Mary 0
2018-01-03 3John 250
2018-01-03 Kevin 50
2018-01-03 Mary 0
2018-01-04 3John 500
2018-01-04 Kevin 400
2018-01-04 Mary 100
Triggers for T-SQL

This topic provides reference information about migrating triggers from Microsoft SQL Server
2019 to Amazon Aurora PostgreSQL. It compares the trigger functionality between the two
database systems, highlighting similarities and differences in syntax, scope, and usage. You'll gain

insights into how triggers work in both environments, including their types, execution phases, and

management capabilities.

Feature compatibi

lity

SEE88

Amazon SCT /
Amazon DMS
automation level

Horkerkiey

Amazon SCT action
code index

Triggers

Key differences

Syntax and option
differences, similar
functionality.

Triggers for T-SQL

244

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

Triggers are special types of stored procedures that run automatically in response to events. They
are most commonly used for Data Manipulation Language (DML).

SQL Server supports AFTER, FOR, and INSTEAD OF triggers, which you can create on tables and
views (AFTER and FOR are synonymous). SQL Server also provides an event trigger framework
at the server and database levels that includes Data Definition Language (DDL), Data Control
Language (DCL), and general system events such as login.

(® Note

SQL Server doesn't support FOR EACH ROW triggers in which the trigger code is run once
for each row of modified data.

Trigger Run

AFTER triggers runs after DML statements complete run. INSTEAD OF triggers run code in place of
the original DML statement. You can create AFTER triggers on tables only. You can create INSTEAD
OF triggers on tables and views.

You can create only one INSTEAD OF trigger for any given object and event. When multiple AFTER
triggers exist for the same event and object, you can partially set the trigger order by using the
sp_settriggerorder system stored procedure. You can use it to set the first and last triggers to
be run, but not the order of others.

Trigger Scope

SQL Server supports statement level triggers only. The trigger code runs once for each statement.
The data modified by the DML statement is available to the trigger scope and is saved in two
virtual tables: INSERTED and DELETED. These tables contain the entire set of changes performed
by the DML statement that caused trigger run.

SQL Server triggers always run within the transaction of the statement that triggered the run. If
the trigger code issues an explicit ROLLBACK, or causes an exception that mandates a rollback, the
DML statement is also rolled back. For INSTEAD OF triggers, the DML statement doesn’t run and
doesn't require a rollback.

SQL Server Usage 245

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Examples
Use a DML trigger to audit invoice deletions
The following examples demonstrate how to use a trigger to log rows deleted from a table.

Create and populate the Invoices table.

CREATE TABLE Invoices

(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL

);

INSERT INTO Invoices (InvoiceID,Customer,TotalAmount)
VALUES

(1, 'John', 1400.23),

(2, 'Jeff', 245.00),

(3, 'James', 677.22);

Create the InvoiceAuditLog table.

CREATE TABLE InvoiceAuditlog
(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL,
DeleteDate DATETIME NOT NULL DEFAULT (GETDATE()),
DeletedBy VARCHAR(128) NOT NULL DEFAULT (CURRENT_USER)

);

Create an AFTER DELETE trigger to log deletions from the Invoices table to the audit log.

CREATE TRIGGER LogInvoiceDeletes

ON Invoices

AFTER DELETE

AS

BEGIN

INSERT INTO InvoiceAuditlLog (InvoiceID, Customer, TotalAmount)
SELECT InvoicelD,

SQL Server Usage

246

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Customer,

TotalAmount
FROM Deleted
END;

Delete an invoice.

DELETE FROM Invoices
WHERE InvoiceID = 3;

Query the content of both tables.

SELECT *

FROM Invoices AS I
FULL OUTER JOIN
InvoiceAuditLog AS IAG

ON I.InvoiceID = IAG.InvoicelD;

For the preceding example, the result looks as shown following.

InvoiceID Customer TotalAmount

DeletedBy

1 John 1400.23
NULL

2 Jeff 245.00
NULL

NULL NULL NULL
Domain/JohnCortney

Create a DDL trigger

InvoiceID Customer TotalAmount DeleteDate

NULL NULL NULL
NULL NULL NULL
James 677.22 20180224 13:02

Create a trigger to protect all tables in the database from accidental deletion.

CREATE TRIGGER PreventTableDrop
ON DATABASE FOR DROP_TABLE

AS

BEGIN

RAISERROR ('Tables can't be dropped in this database', 16, 1)

ROLLBACK TRANSACTION
END;

SQL Server Usage

247

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Test the trigger by attempting to drop a table.

DROP TABLE [Invoices];
GO

The system displays the following message explaining that the Invoices table can't be dropped:

Msg 50000, Level 16, State 1, Procedure PreventTableDrop, Line 5 [Batch Start Line 56]
Tables Can't be dropped in this database.

Msg 3609, Level 16, State 2, Line 57

The transaction ended in the trigger. The batch has been aborted.

For more information, see DML Triggers and DDL Triggers in the SQL Server documentation.

PostgreSQL Usage
Triggers provide much of the same functionality as SQL Server:

« DML triggers run based on table related events, such as DML.

« Event triggers run after certain database events, such as running DDL commands.

Unlike SQL Server triggers, PostgreSQL triggers must call a function. They don't support
anonymous blocks of PL/pgSQL code as part of the trigger body. The user-supplied function is
declared with no arguments and has a return type of trigger.

PostgreSQL DML Triggers
PostgreSQL triggers can be fired BEFORE or AFTER a DML operation.

» They run before the operation is attempted on a row.
» Before constraints are checked and the INSERT, UPDATE, or DELETE is attempted.

« If the trigger runs before or instead of the event, the trigger can skip the operation for the
current row or change the row being inserted (for INSERT and UPDATE operations only).

« Triggers can run after the operation was completed, after constraints are checked, and the
INSERT, UPDATE, or DELETE command completed. If the trigger runs after the event, all
changes, including the effects of other triggers, are visible to the trigger.

PostgreSQL triggers can run INSTEAD OF a DML command when created on views.

PostgreSQL Usage 248

https://docs.microsoft.com/en-us/sql/relational-databases/triggers/dml-triggers?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/ddl-triggers?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

PostgreSQL triggers can run FOR EACH ROW affected by the DML statement or FOR EACH
STATEMENT running only once as part of a DML statement.

When fired

BEFORE

BEFORE

AFTER

AFTER

INSTEAD OF

INSTEAD OF

Database event

INSERT, UPDATE,
DELETE

TRUNCATE

INSERT, UPDATE,
DELETE

TRUNCATE

INSERT, UPDATE,
DELETE

TRUNCATE

PostgreSQL Event Triggers

Row-Level trigger
(FOR EACH ROW)

Tables and foreign
tables

Tables and foreign
tables

Views

Statement-level
trigger (FOR EACH
STATEMENT)

Tables, views, and
foreign tables

Tables

Tables, views, and
foreign tables

Tables

An event trigger runs when a specific event associated with the trigger occurs in the database.
Supported events include dd1_command_start, ddl_command_end, table_rewrite, and

sql_drop.

o dd1l_command_start occurs before the run of a CREATE, ALTER, DROP, SECURITY LABEL,
COMMENT, GRANT, REVOKE, or SELECT INTO command.

» dd1l_command_end occurs after the command completed and before the transaction commits.

e sql_drop runs only for the DROP DDL command, before the dd1_command_end trigger runs.

For a full list of supported PostgreSQL event trigger types, see Event Trigger Firing Matrix in the
PostgreSQL documentation.

PostgreSQL Usage

249

https://www.postgresql.org/docs/10/event-trigger-matrix.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL CREATE TRIGGER Synopsis

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ... 1}
ON table_name
[FROM referenced_table_name]
[NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY DEFERRED] 1]
[REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name } [...]]
[FOR [EACH] { ROW | STATEMENT } 1]
[WHEN (condition)]
EXECUTE PROCEDURE function_name (arguments)

where event can be one of:

INSERT

UPDATE [OF column_name [, ... 1 1]
DELETE

TRUNCATE

(@ Note

REFERENCING is a new option since PostgreSQL 10. You can use it with AFTER trigger to
interact with the overall view of the OLD or the NEW TABLE changed rows.

Examples
Create a trigger

Create a trigger function that stores the run logic (this is the same as a SQL Server DML trigger).

CREATE OR REPLACE FUNCTION PROJECTS_SET_NULL()
RETURNS TRIGGER
AS $$
BEGIN
IF TG_OP = 'UPDATE' AND OLD.PROJECTNO != NEW.PROJECTNO OR
TG_OP = 'DELETE' THEN
UPDATE EMP
SET PROJECTNO = NULL
WHERE EMP.PROJECTNO = OLD.PROJECTNO;
END IF;
IF TG_OP = 'UPDATE' THEN RETURN NULL;

PostgreSQL Usage 250

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

ELSIF TG_OP = 'DELETE' THEN RETURN NULL;
END IF;
END; $$
LANGUAGE PLPGSQL;

CREATE FUNCTION

Create the trigger.

CREATE TRIGGER TRG_PROJECTS_SET_NULL
AFTER UPDATE OF PROJECTNO OR DELETE
ON PROJECTS

FOR EACH ROW

EXECUTE PROCEDURE PROJECTS_SET_NULL();

CREATE TRIGGER

Test the trigger by deleting a row from the PROJECTS table.

DELETE FROM PROJECTS WHERE PROJECTNO=123;
SELECT PROJECTNO FROM EMP WHERE PROJECTNO=123;

projectno
(0 rows)

Create a trigger

Create an event trigger function. This is the same as a SQL Server DDL System/Schema level
trigger, such as a trigger that prevents running a DDL DROP on objects in the HR schema.

Note that trigger functions are created with no arguments and must have a return type of
TRIGGER or EVENT_TRIGGER.

CREATE OR REPLACE FUNCTION ABORT_DROP_COMMAND()
RETURNS EVENT_TRIGGER
AS $$
BEGIN
RAISE EXCEPTION 'The % Command is Disabled', tg_tag;
END; $%
LANGUAGE PLPGSQL;

PostgreSQL Usage

251

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
CREATE FUNCTION
Create the event trigger, which runs before the start of a DDL DROP command.
CREATE EVENT TRIGGER trg_abort_drop_command
ON DDL_COMMAND_START
WHEN TAG IN ('DROP TABLE', 'DROP VIEW', 'DROP FUNCTION', 'DROP
SEQUENCE', 'DROP MATERIALIZED VIEW', 'DROP TYPE')
EXECUTE PROCEDURE abort_drop_command();
Test the trigger by attempting to drop the EMPLOYEES table.
DROP TABLE EMPLOYEES;
ERROR: The DROP TABLE Command is Disabled
CONTEXT: PL/pgSQL function abort_drop_command() line 3 at RAISE
Summary
Feature SQL Server Aurora PostgreSQL
DML Triggers Scope Statement level only FOR EACH ROW and FOR
EACH STATMENT
Access to change set INSERTED and DELETED OLD and NEW virtual one-row
virtual multi-row tables tables or the whole view of
changed rows
System event triggers DDL, DCL, and other event Event triggers
types
Trigger run phase AFTER and INSTEAD OF AFTER, BEFORE, and
INSTEAD OF
Multi-trigger run order Can only set first and Call function within a
last using sp_settri function
ggerorder

Summary 252

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Feature

Drop a trigger

Modify trigger code

Enable or disable a trigger

Triggers on views

SQL Server

DROP TRIGGER <trigger
name>;

Use the ALTER TRIGGER
statement

Use the ALTER TRIGGER
<trigger name> ENABLE;
and ALTER TRIGGER
<trigger name>
DISABLE;

INSTEAD OF triggers only

Aurora PostgreSQL

DROP TRIGGER <trigger
name>;

Modify function code

ALTER TABLE

INSTEAD OF triggers only

For more information, see Trigger Functions in the PostgreSQL documentation.

Top fetch for T-SQL

This topic provides reference information about feature compatibility between Microsoft SQL
Server 2019 and Amazon Aurora PostgreSQL, specifically focusing on result set limiting and
paging. You can understand how SQL Server's TOP and FETCH clauses compare to PostgreSQL's
LIMIT and OFFSET functionality. The topic explains the differences in syntax and capabilities,
helping you navigate the transition from SQL Server to Aurora PostgreSQL.

Feature compatibi Amazon SCT /

lity Amazon DMS code index
automation level

SEBEE QCOT

TOP and FETCH

Amazon SCT action Key differences

PostgreSQL doesn’t
support TOP.

Top fetch for T-SQL

253

https://www.postgresql.org/docs/13/plpgsql-trigger.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

SQL Server supports two options for limiting and paging result sets returned to the client. TOP is a
legacy, proprietary T-SQL keyword that is still supported due to its wide usage. The ANSI compliant
syntax of FETCH and OFFSET were introduced in SQL Server 2012 and are recommended for
paginating results sets.

TOP

The TOP (n) operator is used in the SELECT list and limits the number of rows returned to the
client based on the ORDER BY clause.

® Note

When TOP is used with no ORDER BY clause, the query is non-deterministic and may return
any rows up to the number specified by the TOP operator.

You can use TOP (n) with two modifier options:

« TOP (n) PERCENT is used to designate a percentage of the rows to be returned instead of a
fixed maximal row number 1imit (n). When you use PERCENT, n can be any value from 1-100.

« TOP (n) WITH TIES is used to allow overriding the n maximal number or percentage of rows
specified in case there are additional rows with the same ordering values as the last row.

If you use TOP (n) without WITH TIES and there are additional rows that have the same ordering
value as the last row in the group of n rows, the query is also non-deterministic because the last
row may be any of the rows that share the same ordering value.

Syntax

ORDER BY <Ordering Expression> [ASC | DESC J [,...n]
OFFSET <Offset Expression> { ROW | ROWS }
[FETCH { FIRST | NEXT } <Page Size Expression> { ROW | ROWS } ONLY]

Examples

The following example creates the Orderltems table.

SQL Server Usage 254

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE TABLE OrderItems

(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)

);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Locking Nut', 300);

The following example retrieves the 3 most ordered items by quantity.

-- Using TOP

SELECT TOP (3) *

FROM OrderItems

ORDER BY Quantity DESC;

-- USING FETCH

SELECT *

FROM OrderItems

ORDER BY Quantity DESC

OFFSET @ ROWS FETCH NEXT 3 ROWS ONLY;

For the preceding example, the result looks as shown following.

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100

The following example includes rows with ties.

SELECT TOP (3) WITH TIES *
FROM OrderItems
ORDER BY Quantity DESC;

SQL Server Usage 255

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For the preceding example, the result looks as shown following.

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

The following example retrieves half the rows based on quantity.

SELECT TOP (50) PERCENT *
FROM OrderItems
ORDER BY Quantity DESC;

For the preceding example, the result looks as shown following.

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200

For more information, see SELECT - ORDER BY Clause (Transact-SQL) and TOP (Transact-SQL) in
the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) supports the non-ANSI
compliant but popular with other engines LIMIT.. OFFSET operator for paging results sets.

The LIMIT clause limits the number of rows returned and doesn’t require an ORDER BY clause,
although that would make the query non-deterministic.

The OFFSET clause is zero-based, similar to SQL Server and used for pagination. OFFSET @ is the
same as omitting the OFFSET clause, as is OFFSET with a NULL argument.

Syntax

SELECT select_list
FROM table_expression

PostgreSQL Usage 256

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/top-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

[ORDER BY ...]
[LIMIT { number | ALL } 1 [OFFSET number]

Migration Considerations

You can use the LIMIT.. OFFSET syntax to replace the functionality of TOP(n) and FETCH...
OFFSET in SQL Server. It is automatically converted by the Amazon Schema Conversion Tool
(Amazon SCT) except for the WITH TIES and PERCENT modifiers.

To replace the PERCENT option, first calculate how many rows the query returns and then calculate
the fixed number of rows to be returned based on that number.

® Note

Because this technique involves added complexity and accessing the table twice, consider
changing the logic to use a fixed number instead of percentage.

To replace the WITH TIES option, rewrite the logic to add another query that checks for the
existence of additional rows that have the same ordering value as the last row returned from the
LIMIT clause.

(® Note
Because this technique introduces significant added complexity and three accesses to the
source table, consider changing the logic to introduce a tie-breaker into the ORDER BY
clause.

Examples

The following example creates the Orderltems table.

CREATE TABLE OrderItems

(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,

PostgreSQL Usage 257

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES

(1, 'M8 Bolt', 100),

(2, 'M8 Nut', 100),

(3, 'M8 Washer', 200),

(3, 'M6 Locking Nut', 300);

The following example retrieves the three most ordered items by quantity.

SELECT *

FROM OrderItems

ORDER BY Quantity DESC
LIMIT 3 OFFSET 0;

For the preceding example, the result looks as shown following.

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
1 M8 Bolt 100

The following example includes rows with ties.

SELECT *
FROM
(
SELECT *
FROM OrderItems
ORDER BY Quantity DESC
LIMIT 3 OFFSET 0
) AS X
UNION
SELECT *

FROM OrderItems
WHERE Quantity = (
SELECT Quantity
FROM OrderItems

PostgreSQL Usage 258

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

ORDER BY Quantity DESC
LIMIT 1 OFFSET 2

)
ORDER BY Quantity DESC

For the preceding example, the result looks as shown following.

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

The following example retrieves half the rows based on quantity.

CREATE or replace FUNCTION getOrdersPct(int) RETURNS SETOF OrderItems AS $$

SELECT * FROM OrderItems

ORDER BY Quantity desc LIMIT (SELECT COUNT(*)*$1/100 FROM OrderItems) OFFSET 0;

$$ LANGUAGE SQL;

SELECT * from getOrdersPct(50);
or
SELECT getOrdersPct(50);

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
Summary
SQL Server Aurora PostgreSQL
TOP (n) LIMIT n
TOP (n) WITH TIES Not supported
TOP (n) PERCENT Not supported
OFFSET... FETCH LIMIT.. OFFSET

Comments

See examples for workaround

See examples for workaround

Summary

259

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information, see LIMIT and OFFSET in the PostgreSQL documentation.

User-defined functions for T-SQL

This topic provides reference information about User-Defined Functions (UDFs) in SQL Server and
their compatibility with PostgreSQL. It introduces the types of UDFs supported in SQL Server,
including scalar functions, table-valued functions, and multi-statement table-valued functions.
The topic explains the characteristics of UDFs, such as their inability to modify database structures
or data outside their scope, and the distinction between deterministic and non-deterministic

functions.
Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index

automation level

N/A Syntax and option

@ @ E @@@ differences.

SQL Server Usage

User-Defined Functions (UDF) are code objects that accept input parameters and return either a
scalar value or a set consisting of rows and columns. You can use T-SQL or Common Language
Runtime (CLR) code to implement SQL Server UDFs.

(@ Note

This section doesn't cover CLR code objects.

Function invocations can't have any lasting impact on the database. They must be contained
and can only modify objects and data local to their scope (for example, data in local variables).
Functions aren't allowed to modify data or the structure of a database.

Functions may be deterministic or non-deterministic. Deterministic functions always return the
same result when you run them with the same data. Non-deterministic functions may return
different results each time they run. For example, a function that returns the current date or time.

User-defined functions for T-SQL 260

https://www.postgresql.org/docs/13/queries-limit.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server supports three types of T-SQL UDFs: Scalar Functions, Table-Valued Functions, and
Multi-Statement Table-Valued Functions.

SQL Server 2019 adds scalar user-defined functions (UDF) inlining. Inlining transforms functions
into relational expressions and embeds them in the calling SQL query. This transformation
improves the performance of workloads that take advantage of scalar UDFs. Scalar UDF inlining
facilitates cost-based optimization of operations inside UDFs. The results are efficient, set-oriented,
and parallel instead of inefficient, iterative, serial run plans. For more information, see Scalar UDF
Inlining in the SQL Server documentation.

Scalar User-Defined Functions

Scalar UDFs accept zero or more parameters and return a scalar value. You can use scalar UDFs in
T-SQL expressions.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...nl11)

RETURNS <Return Data Type>

[AS]

BEGIN

<Function Body Code>

RETURN <Scalar Expression>

END[;]

Examples

The following example creates a scalar function to change the first character of a string to upper
case.

CREATE FUNCTION dbo.UpperCaseFirstChar (@String VARCHAR(20))
RETURNS VARCHAR(20)

AS

BEGIN

RETURN UPPER(LEFT(@String, 1)) + LOWER(SUBSTRING(@String, 2, 19))
END;

SELECT dbo.UpperCaseFirstChar ('mIxEdCask');

SQL Server Usage 261

https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Mixedcase

User-Defined Table-Valued Functions

Inline table-valued UDFs are similar to views or a Common Table Expressions (CTE) with the added
benefit of parameters. You can use inline table-valued UDFs in FROM clauses as subqueries. Also,
you can join inline table-valued UDFs to other source table rows using the APPLY and OUTER
APPLY operators. In-line table-valued UDFs have many associated internal optimizer optimizations
due to their simple, view-like characteristics.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...nl11)

RETURNS TABLE

[AS]

RETURN (<SELECT Query>)[;]

Examples

The following example creates a table-valued function to aggregate employee orders.

CREATE TABLE Orders

(
OrderID INT NOT NULL PRIMARY KEY,
EmployeeID INT NOT NULL,
OrderDate DATETIME NOT NULL

);

INSERT INTO Orders (OrderID, EmployeelID, OrderDate)
VALUES

(1, 1, '20180101 13:00:05'),

(2, 1, '20180201 11:33:12'),

(3, 2, '20180112 10:22:35"');

CREATE FUNCTION dbo.EmployeeMonthlyOrders
(@EmployeeID INT)
RETURNS TABLE AS

SQL Server Usage 262

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

RETURN
(

SELECT EmployeelD,
YEAR(OrderDate) AS OrderYear,
MONTH(OrderDate) AS OrderMonth,
COUNT(*) AS NumOrders

FROM Orders AS O

WHERE EmployeeID = @EmployeelID

GROUP BY EmployeelD,

YEAR(OrderDate),
MONTH(OrderDate)
);
SELECT *

FROM dbo.EmployeeMonthlyOrders (1)

EmployeeID OrderYear OrderMonth NumOrders
1 2018 1 1
1 2018 2 1

Multi-Statement User-Defined Table-Valued Functions

Multi-statement table-valued UDFs, such as In-line UDFs, are also similar to views or CTEs with the
added benefit of parameters. You can use multi-statement table-valued UDFs in FROM clauses as
sub queries. Also, you can join multi-statement table-valued UDFs to other source table rows using
the APPLY and OUTER APPLY operators.

The difference between multi-statement UDFs and the inline UDFs is that multi-statement UDFs
aren't restricted to a single SELECT statement. They can consist of multiple statements including
logic implemented with flow control, complex data processing, security checks, and so on.

The downside of using multi-statement UDFs is that there are far less optimizations possible and
performance may suffer.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n1])

RETURNS <@Return Variable> TABLE <Table Definition>

[AS]

SQL Server Usage 263

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

BEGIN
<Function Body Code>
RETURN
END[;]

For more information, see CREATE FUNCTION (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

For more information, see Stored Procedures.

Syntax

CREATE [OR REPLACE] FUNCTION

name ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr] [, ...]1])
[RETURNS rettype

| RETURNS TABLE (column_name column_type [, ...]) 1]

{ LANGUAGE lang_name

| TRANSFORM { FOR TYPE type_name } [, ...]

| WINDOW

| IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF

| CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT

| [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER

| PARALLEL { UNSAFE | RESTRICTED | SAFE }

| COST execution_cost

| ROWS result_rows

| SET configuration_parameter { TO value | = value | FROM CURRENT }

| AS 'definition'

| AS 'obj_file', 'link_symbol'

}
[

WITH (attribute [, ...])]

User-defined types for T-SQL

This topic provides reference information about user-defined types in SQL Server and PostgreSQL,
which is valuable for database administrators and developers migrating from Microsoft SQL
Server 2019 to Amazon Aurora PostgreSQL. You can gain insight into how both database systems
implement custom data types, including their similarities and differences.

PostgreSQL Usage 264

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A Synt d opti
E8B8 QLo dferences,

SQL Server Usage

SQL Server user-defined types provide a mechanism for encapsulating custom data types and for
adding NULL constraints.

SQL Server also supports table-valued user-defined types, which you can use to pass a set of
values to a stored procedure.

User-defined types can also be associated to CLR code assemblies. Beginning with SQL Server
2014, memory optimized types support memory optimized tables and code.

(® Note

If your code uses custom rules bound to data types, Microsoft recommends discontinuing
the use of this deprecated feature.

All user-defined types are based on an existing system data types. They allow developers to reuse
the definition, making the code and schema more readable.

Syntax

The simplified syntax for the CREATE TYPE statement is shown following.

CREATE TYPE <type name> {
FROM <base type> [NULL | NOT NULL] | AS TABLE (<Table Definition>)}

User-Defined Types Examples

The following example creates a ZipCode scalar user-defined type.

SQL Server Usage 265

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE TYPE ZipCode
FROM CHAR(5)
NOT NULL

The following example uses this ZipCode type in a table.

CREATE TABLE UserLocations
(UserID INT NOT NULL PRIMARY KEY, ZipCode ZipCode);

INSERT INTO [UserLocations] ([UserID],[ZipCode]) VALUES (1, '94324');
INSERT INTO [UserLocations] ([UserID],[ZipCode]) VALUES (2, NULL);

The code in the preceding example displays the following error message indicating that NULL
values for ZipCode aren't allowed.

Msg 515, Level 16, State 2, Line 78

Can't insert the value NULL into column 'ZipCode', table 'tempdb.dbo.UserlLocations';
column does not allow nulls. INSERT fails.

The statement has been terminated.

Table-Valued Types Examples

The following example demonstrates how to create and use a table-valued types to pass a set of
values to a stored procedure.

Create the OrderItems table.

CREATE TABLE OrderItems
(
OrderID INT NOT NULL,
Item VARCHAR(20) NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY(OrderID, Item)
);

Create a table-valued type for the OrderItems table.

CREATE TYPE OrderItems
AS TABLE

(
OrderID INT NOT NULL,

SQL Server Usage

266

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Item VARCHAR(20) NOT NULL,

Quantity SMALLINT NOT NULL,

PRIMARY KEY(OrderID, Item)
);

Create the InsertOrderltems procedure. Note that the entire set of rows from the table-valued
parameter is handled with one statement.

CREATE PROCEDURE InsertOrderItems
@0rderItems AS OrderItems READONLY
AS
BEGIN
INSERT INTO OrderItems(OrderID, Item, Quantity)
SELECT OrderlID,
Item,
Quantity
FROM @OrderItems;
END

Instantiate the Orderltems type, insert the values, and pass it to a stored procedure.

DECLARE @OrderItems AS OrderItems;

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])
VALUES

(1, 'M8 Bolt', 100),

(1, 'M8 Nut', 100),

(1, M8 Washer, 200);

EXECUTE [InsertOrderItems] @OrderItems = @OrderItems;

(3 rows affected)

Select all rows from the Orderltems table.

SELECT * FROM OrderItems;

OrderID Item Quantity
1 M8 Bolt 100
1 M8 Nut 100
1 M8 Washer 200

SQL Server Usage 267

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information, see CREATE TYPE (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

Similar to SQL Server, PostgreSQL enables the creation of user-defined types using the CREATE
TYPE statement.

A user-defined type is owned by the user who creates it. If a schema name is specified, the type is
created under that schema.

PostgreSQL supports the creation of several different user-defined types: * Composite types store
a single named attribute attached to a data type or multiple attributes as an attribute collection.
In PostgreSQL, you can also use the CREATE TYPE statement standalone with an association to

a table. * Enumerated types (enum) store a static ordered set of values. For example, product
categories.

+

CREATE TYPE PRODUCT_CATEGORT AS ENUM
('Hardware', 'Software', 'Document');

« Range Types store a range of values, for example, a range of timestamps used to represent the
ranges of time of when a course is scheduled.

CREATE TYPE float8_range AS RANGE
(subtype = float8, subtype_diff = float8mi);

For more information, see Range Types in the PostgreSQL documentation.
» Base types are the system core types (abstract types) and are implemented in a low-level
language such as C.

« Array types support definition of columns as multidimensional arrays. You can create an array
column with a built-in type or a user-defined base type, enum type, or composite.

CREATE TABLE COURSE_SCHEDULE (
COURSE_ID NUMERIC PRIMARY KEY,
COURSE_NAME VARCHAR(60),
COURSE_SCHEDULES text[]);

For more information, see Arrays in the PostgreSQL documentation.

PostgreSQL Usage 268

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sql?view=sql-server-ver15
https://www.postgresql.org/docs/13/rangetypes.html
https://www.postgresql.org/docs/13/arrays.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Syntax

CREATE TYPE name AS RANGE (
SUBTYPE = subtype
[, SUBTYPE_OPCLASS = subtype_operator_class]
[, COLLATION collation]
[, CANONICAL = canonical_function]
[, SUBTYPE_DIFF = subtype_diff_function]

)
CREATE TYPE name (

INPUT = input_function,

OUTPUT = output_function
RECEIVE = receive_function]
, SEND = send_function]
, TYPMOD_IN = type_modifier_input_function]
, TYPMOD_OUT = type_modifier_output_function]
, ANALYZE = analyze_function]
, INTERNALLENGTH = { internallength | VARIABLE }]
, PASSEDBYVALUE]
, ALIGNMENT = alignment]
, STORAGE = storage]
, LIKE = like_type]
, CATEGORY = category]
, PREFERRED = preferred]
, DEFAULT = default]
, ELEMENT = element]
, DELIMITER = delimiter]
, COLLATABLE = collatable]

~

| e N e I e N e A e I s A e A e A e A e I e N e N e S e B e B |

Examples

The following example creates a user-defined type for storing an employee phone numbers.

CREATE TYPE EMP_PHONE_NUM AS (
PHONE_NUM VARCHAR(11));

CREATE TABLE EMPLOYEES (
EMP_ID NUMERIC PRIMARY KEY,
EMP_PHONE EMP_PHONE_NUM NOT NULL);

INSERT INTO EMPLOYEES VALUES(1, ROW('111-222-333'));

PostgreSQL Usage 269

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT a.EMP_ID, (a.EMP_PHONE).PHONE_NUM FROM EMPLOYEES a;

emp_id phone_num
1 111-222-333
(1 row)

The following example creates a PostgreSQL Object Type as a collection of Attributes for the
employees table.

CREATE OR REPLACE TYPE EMP_ADDRESS AS OBJECT (
STATE VARCHAR(2),
CITY VARCHAR(20),
STREET VARCHAR(20),
ZIP_CODE NUMERIC);

CREATE TABLE EMPLOYEES (
EMP_ID NUMERIC PRIMARY KEY,
EMP_NAME VARCHAR(1@) NOT NULL,
EMP_ADDRESS EMP_ADDRESS NOT NULL);

INSERT INTO EMPLOYEES
VALUES(1, '3John Smith',
('AL', 'Gulf Shores',6 '3033 Joyce Street',6 '36542'));

SELECT a.EMP_NAME,
(a.EMP_ADDRESS) .STATE,
(a.EMP_ADDRESS) .CITY,
(a.EMP_ADDRESS) .STREET,
(a.EMP_ADDRESS) .ZIP_CODE

FROM EMPLOYEES a;

emp_name state city street zip_code
John Smith AL Gulf Shores 3033 Joyce Street 36542

For more information, see CREATE TYPE and Composite Types in the PostgreSQL documentation.

Identity and sequences for T-SQL

This topic provides reference information comparing automatic enumeration features between
Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. It focuses on how these databases

Identity and sequences for T-SQL 270

https://www.postgresql.org/docs/13/sql-createtype.html
https://www.postgresql.org/docs/13/rowtypes.htm

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

handle sequence generation and identity columns, which are commonly used for creating surrogate
keys in relational database systems.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A Less options with
@ @ E @ @ @ SERIAL. Reseeding

needs to be rewritten

SQL Server Usage

Automatic enumeration functions and columns are common with relational database management
systems and are often used for generating surrogate keys.

SQL Server provides several features that support automatic generation of monotonously
increasing value generators.

o IDENTITY property of a table column.
« SEQUENCE objects framework.
e Numeric functions such as IDENTITY and NEWSEQUENTIALID.

Identity

The IDENTITY property is probably the most widely used means of generating surrogate primary
keys in SQL Server applications. Each table may have a single numeric column assigned as an
IDENTITY, using the CREATE TABLE or ALTER TABLE DDL statements. You can explicitly specify
a starting value and increment.

(® Note

The identity property doesn’t enforce uniqueness of column values, indexing, or any
other property. Additional constraints such as primary or unique keys, explicit index
specifications, or other properties must be specified in addition to the IDENTITY property.

SQL Server Usage 271

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The IDENTITY value is generated as part of the transaction that inserts table rows. Applications
can obtain IDENTITY values using the @@IDENTITY, SCOPE_IDENTITY, and IDENT_CURRENT
functions.

You can manage IDENTITY columns using the DBCC CHECKIDENT command, which provides
functionality for reseeding and altering properties.

Syntax

IDENTITY [(<Seed Value>, <Increment Value>)]

Examples

The following example creates a table with an IDENTITY column.

CREATE TABLE MyTABLE
(
Coll INT NOT NULL
PRIMARY KEY NONCLUSTERED IDENTITY(1,1),
Col2 VARCHAR(20) NOT NULL
)5

The following example inserts a row and retrieve the generated IDENTITY value.

DECLARE @LastIdent INT;

INSERT INTO MyTable(Col2)

VALUES('SomeString');

SET @LastIdent = SCOPE_IDENTITY()

The following example creates a table with a non-key IDENTITY column and an increment of 10.

CREATE TABLE MyTABLE
(
Coll VARCHAR(2@) NOT NULL
PRIMARY KEY,
Col2 INT NOT NULL
IDENTITY(1,10),
);

The following example creates a table with a compound primary key including an IDENTITY
column.

SQL Server Usage

272

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE TABLE MyTABLE

(
Coll VARCHAR(20) NOT NULL,
Col2 INT NOT NULL
IDENTITY(1,10),
PRIMARY KEY (Coll, Col2)

);

SEQUENCE

Sequences are objects that are independent of a particular table or column and are defined using
the CREATE SEQUENCE DDL statement. You can manage sequences using the ALTER SEQUENCE
statement. Multiple tables and multiple columns from the same table may use the values from one
or more SEQUENCE objects.

You can retrieve a value from a SEQUENCE object using the NEXT VALUE FOR function. For
example, a SEQUENCE value can be used as a default value for a surrogate key column.

SEQUENCE objects provide several advantages over IDENTITY columns:

» You can use SEQUENCE objects to obtain a value before the actual INSERT takes place.
» You can share value series among columns and tables.
« Easier management, restart, and modification of sequence properties.

« Allows assignment of value ranges using sp_sequence_get_range and not just per-row
values.

Syntax

CREATE SEQUENCE <Sequence Name> [AS <Integer Data Type>]
START WITH <Seed Value>
INCREMENT BY <Increment Value>;

ALTER SEQUENCE <Sequence Name>
RESTART [WITH <Reseed Value>]
INCREMENT BY <New Increment Value>;

Examples

The following example creates sequence and uses it for a primary key default.

SQL Server Usage 273

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE SEQUENCE MySequence AS INT START WITH 1 INCREMENT BY 1;
CREATE TABLE MyTable

(
Coll INT NOT NULL

PRIMARY KEY NONCLUSTERED DEFAULT (NEXT VALUE FOR MySequence),
Col2 VARCHAR(20) NULL
);

INSERT MyTable (Coll, Col2) VALUES (DEFAULT, 'cde'), (DEFAULT, 'xyz');
SELECT * FROM MyTable;

Coll Col2
1 cde
2 Xyz

Identity

SQL Server provides two sequential generation functions: IDENTITY and NEWSEQUENTIALID.

® Note
The IDENTITY function should not be confused with the IDENTITY property of a column.

You can use the IDENTITY function only in a SELECT .. INTO statement to insert IDENTITY
column values into a new table.

The NEWSEQUNTIALID function generates a hexadecimal GUID, which is an integer. While the
NEWID function generates a random GUID, the NEWSEQUENTIALID function guarantees that every
GUID created is greater (in numeric value) than any other GUID previously generated by the same
function on the same server since the operating system restart.

You can use NEWSEQUENTIALID only with DEFAULT constraints associated with columns having a
UNIQUEIDENTIFIER data type.

Syntax

IDENTITY (<Data Type> [, <Seed Value>, <Increment Value>]) [AS <Alias>]

SQL Server Usage 274

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

NEWSEQUENTIALID()

Examples

The following example uses the IDENTITY function as surrogate key for a new table based on an
existing table.

CREATE TABLE MySourceTable

(
Coll INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(1@) NOT NULL,
Col3 VARCHAR(10) NOT NULL

);

INSERT INTO MySourceTable
VALUES

(12, 'Stringl2', 'Stringl2'),
(25, 'String25', 'String25'),
(95, 'String95', 'String95');

SELECT IDENTITY(INT, 100, 1) AS SurrogateKey,
Col1l,
Col2,
Col3

INTO MyNewTable

FROM MySourceTable

ORDER BY Coll DESC;

SELECT *
FROM MyNewTable;

SurrogateKey Coll Col2 Col3

100 95 String95 String95
101 25 String25 String25
102 12 Stringl2 Stringl2

The following example uses NEWSEQUENTIALID as a surrogate key for a new table.

CREATE TABLE MyTable

SQL Server Usage 275

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

(
Coll UNIQUEIDENTIFIER NOT NULL

PRIMARY KEY NONCLUSTERED DEFAULT NEWSEQUENTIALID()
);

INSERT INTO MyTable
DEFAULT VALUES;

SELECT *
FROM MyTable;

Coll
9CC01320-C5AA-E811-8440-305B3A017068

For more information, see Sequence Numbers and CREATE TABLE (Transact-SQL) IDENTITY
(Property) in the SQL Server documentation.

PostgreSQL Usage

The PostgreSQL CREATE SEQUENCE command is mostly compatible with the SQL Server CREATE
SEQUENCE command. Sequences in PostgreSQL serve the same purpose as in SQL Server; they
generate numeric identifiers automatically. A sequence object is owned by the user that created it.

Sequence Parameters

o TEMPORARY or TEMP — PostgreSQL can create a temporary sequence within a session. Once the
session ends, the sequence is automatically dropped.

« IF NOT EXISTS — Creates a sequence. If a sequence with an identical name already exists, it is
replaced.

« INCREMENT BY — An optional parameter with a default value of 1. Positive values generate
sequence values in ascending order. Negative values generate sequence values in descending
sequence.

o START WITH— An optional parameter having a default of 1. It uses the MINVALUE for
ascending sequences and the MAXVALUE for descending sequences.

o MAXVALUE | NO MAXVALUE — Defaults are between 263 for ascending sequences and -1 for
descending sequences.

PostgreSQL Usage 276

https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

o« MINVALUE | NO MINVALUE — Defaults are between 1 for ascending sequences and -263 for
descending sequences.

e CYCLE|NO CYCLE — If the sequence value reaches MAXVALUE or MINVALUE, the CYCLE
parameter instructs the sequence to return to the initial value (MINVALUE or MAXVALUE). The
default is NO CYCLE.

e CACHE — In PostgreSQL, the NOCACHE isn't supported. By default, when the CACHE parameter
isn't specified, no sequence values are pre-cached into memory (equivalent to the SQL Server
NOCACHE parameter). The minimum value is 1.

« OWNED BY | OWNBY NON — Specifies that the sequence object is to be associated with a
specific column in a table. When dropping this type of sequence, an error is returned due to the
sequence/table association.

« AS data_type — This option is available in PostgreSQL version 10 and higher. To easily
determine the minimum and maximum values and also improve storage management, you can
select the data type for the sequence. The available data types are smallint, integer, and bigint.
The default data type is bigint.

Syntax

CREATE [TEMPORARY | TEMP] SEQUENCE [IF NOT EXISTS] name

[INCREMENT [BY] increment]

[MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
[START [WITH] start] [CACHE cache 1 [[NO] CYCLE]

[OWNED BY { table_name.column_name | NONE }]

Most SQL Server CREATE SEQUENCE parameters are compatible with PostgreSQL.
Examples

The following example creates a sequence.

CREATE SEQUENCE SEQ_1 START WITH 100
INCREMENT BY 1 MAXVALUE 99999999999 CACHE 20 NO CYCLE;

The following example drops a sequence.

DROP SEQUENCE SEQ_1;

PostgreSQL Usage 277

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

View sequences created in the current schema and sequence specifications.
SELECT * FROM INFORMATION_SCHEMA.SEQUENCES;

OR
\ds

The following example uses a PostgreSQL sequence as part of a CREATE TABLE and an INSERT
statement.

CREATE TABLE SEQ_TST

(COL1 NUMERIC DEFAULT NEXTVAL('SEQ_1') PRIMARY KEY, COL2 VARCHAR(30));
INSERT INTO SEQ_TST (COL2) VALUES('A');

SELECT * FROM SEQ_TST;

coll col2
100 A

Use the OWNED BY parameter to associate the sequence with a table.

CREATE SEQUENCE SEQ_1 START WITH 100 INCREMENT BY 1 OWNED BY SEQ_TST.COL1;

Query the current value of a sequence.

SELECT CURRVAL('SEQ_1);

Manually increment a sequence value according to the INCREMENT BY value.

SELECT NEXTVAL('SEQ_1'");
OR
SELECT SETVAL('SEQ_1', 200);

Alter an existing sequence.

ALTER SEQUENCE SEQ_1 MAXVALUE 1000000;

IDENTITY Usage

Starting from PostgreSQL 10, there is a new option called identity columns which is similar to
the SERIAL data type but more SQL standard compliant. The identity columns are slightly more
compatible compared to SQL Server identity columns.

PostgreSQL Usage 278

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

To create a table with identity columns, use the following statement:

CREATE TABLE emps (
emp_id INTEGER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
emp_name VARCHAR(35) NOT NULL);

INSERT INTO emps (emp_name) VALUES ('Robert');
INSERT INTO emps (emp_id, emp_name) VALUES (DEFAULT, 'Brian');

SELECT * FROM emps;

coll col2
1 Robert
2 Brian

In PostgreSQL, for SERIAL and IDENTITY, you can insert any value, so long as it won't violate the
primary key constraint. If the value violates the primary key constraint and you use the identity
column sequence value again, the following error might be raised:

SQL Error [23505]: ERROR: duplicate key value violates unique constraint
"emps_iden_pkey"
Detail: Key (emp_id)=(2) already exists.

SERIAL Usage

In PostgreSQL, you can create a sequence similar to the IDENTITY property supported by identity
columns. When you create a new table, the sequence is created through the SERIAL pseudo-type.
Other types from the same family are SMALLSERIAL and BIGSERIAL.

By assigning a SERIAL type to a column during table creation, PostgreSQL creates a sequence
using the default configuration and adds a NOT NULL constraint to the column. The newly created
sequence behaves like a regular sequence (incremented by 1) and no composite SERIAL option.

The following example uses SERIAL sequence.

CREATE TABLE SERIAL_SEQ_TST(COL1 SERIAL PRIMARY KEY, COL2 VARCHAR(10));

INSERT INTO SERIAL_SEQ_TST(COL2) VALUES('A');
SELECT * FROM SERIAL_SEQ_TST;

coll col2

PostgreSQL Usage 279

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

\ds

Schema Name Type Owner
public serial_seq_tst_coll_seq sequence pg_tst_db

The following example uses the PostgreSQL SERIAL pseudo-type with a sequence that is created
implicitly.

CREATE TABLE SERIAL_SEQ_TST(COL1 SERIAL PRIMARY KEY, COL2 VARCHAR(10));

\ds

Schema Name Type Owner
public serial_seq_tst_coll_seq sequence pg_tst_db

ALTER SEQUENCE SERIAL_SEQ_TST_COL1_SEQ RESTART WITH 100 INCREMENT BY 10;
INSERT INTO SERIAL_SEQ_TST(COL2) VALUES('A');

INSERT INTO SERIAL_SEQ_TST(COL1, COL2) VALUES(DEFAULT, 'B');

SELECT * FROM SERIAL_SEQ_TST;

coll col2
100 A
110 B

Use the ALTER SEQUENCE command to change the default sequence configuration in a SERIAL
column.

Create a table with a SERIAL column that uses increments of 10:

CREATE TABLE SERIAL_SEQ_TST(COL1 SERIAL PRIMARY KEY, COL2 VARCHAR(10));

ALTER SEQUENCE serial_seq_tst_coll_seq INCREMENT BY 10;

(® Note

The auto generated sequence’s name should be created with the following format:
TABLENAME_COLUMNNAME_seq.

PostgreSQL Usage 280

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Create a table with a compound primary key including a SERIAL column:

CREATE TABLE SERIAL_SEQ_TST
(COL1 SERIAL, COL2 VARCHAR(10), PRIMARY key (COL1,COL2));

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora PostgreSQL
Independent SEQUENCE CREATE SEQUENCE CREATE SEQUENCE
object

Automatic enumerator IDENTITY SERIAL or IDENTITY

column property

Reseed sequence value DBCC CHECKIDENT 1. Find sequence name:
pg_get_serial_sequ
ence('[table_name]
', '[serial_
field_name]')

2. SELECT SETVALSELECT
pg_get_serial_sequ
ence('table_name',
'person_id', 1,
false);

Column restrictions Numeric Numeric

Controlling seed and interval CREATE/ALTER SEQUENCE CREATE/ALTER SEQUENCE
values

Sequence setting initialization = Maintained through service ALTER SEQUENCE
restarts

Summary 281

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature SQL Server Aurora PostgreSQL
Explicit values to column Not allowed by default, SET Allowed
IDENTITY_INSERT ON
required

For more information, see CREATE SEQUENCE, Sequence Manipulation Functions, Numeric Types,
and CREATE TABLE in the PostgreSQL documentation.

Summary 282

https://www.postgresql.org/docs/13/sql-createsequence.html
https://www.postgresql.org/docs/13/functions-sequence.html
https://www.postgresql.org/docs/13/datatype-numeric.html
https://www.postgresql.org/docs/13/sql-createtable.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Configuration overview

This topic provides conceptual content comparing various aspects of Microsoft SQL Server 2019
and Amazon Aurora PostgreSQL in the context of database migration. You can gain insights into
the differences between these two database systems in terms of session options, system variables,
database options, features, and parameter configurations. The content explores how SQL Server
concepts translate to Aurora PostgreSQL, covering areas such as date and time handling, locking
mechanisms, transaction management, and query execution settings. By understanding these
equivalencies and differences, database administrators and developers can more effectively plan
and execute migrations from SQL Server to Aurora PostgreSQL, ensuring consistent functionality
and performance in the new environment. This knowledge facilitates a smoother transition
between the two database systems and helps in optimizing the Aurora PostgreSQL environment to
match familiar SQL Server behaviors.

Topics

Configuring upgrades

Configuring session options

Configuring database options

Configuring server options

Configuring upgrades

This topic provides reference information on upgrading database instances, comparing the
process for Microsoft SQL Server and Amazon Aurora PostgreSQL. You can use this information
to plan and execute database upgrades, whether you're working with on-premises SQL Server or
managed Aurora PostgreSQL in the cloud. The guide walks you through the necessary steps for
each platform, including prerequisites, upgrade procedures, and post-upgrade tasks.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A N/A N/A

Configuring upgrades 283

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

As a database administrator, from time to time a database upgrade is required. It can be either for
security fix, bugs fixes, compliance, or new database features.

You can plan the database upgrade to minimize the database downtime and risk. You can perform
an upgrade in-place or migrate to a new installation.

Upgrade in-place

With this approach, we are retaining the current hardware and OS version by adding the new SQL
Server binaries on the same server and then upgrade the SQL Server instance.

Before upgrading the database engine, review the SQL Server release notes for the intended target
release version for any limitations and known issues to help you plan the upgrade.

In general, these will be the steps to perform the upgrade:
Prerequisite steps

» Back up all SQL Server database files, so that you can restore them if required.

« Run the appropriate Database Console Commands (DBCC CHECKDB) on databases to be
upgraded to ensure that they are in a consistent state.

» Ensure to allocate enough disk space for SQL Server components, in addition to user databases.

» Disable all startup stored procedures as stored procedures processed at startup time might block
the upgrade process.

« Stop all applications, including all services that have SQL Server dependencies.

Steps for upgrade

 Install new software.

Fix issues raised.

Set if you prefer to have automatic updates or not.

Select products install to upgrade, this is the new binaries installation.

Monitor the progress of downloading, extracting, and installing the Setup files.

» Specify the instance of SQL Server to upgrade.

SQL Server Usage 284

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

» On the Select Features page, the features to upgrade will be preselected. The prerequisites
for the selected features are displayed on the right-hand pane. SQL Server Setup will install
the prerequisite that aren't already installed during the installation step described later in this
procedure.

» Review upgrade plan before the actual upgrade.

« Monitor installation progress.

Post upgrade tasks

» Review summary log file for the installation and other important notes.

» Register your servers.

Migrate to a new installation

This approach maintains the current environment while building a new SQL Server environment.
This is usually done when migrating on a new hardware and with a new version of the operating
system. In this approach migrate the system objects so that they are same as the existing
environment, then migrate the user database either using backup and restore.

For more information, see Upgrade Database Engine in the SQL Server documentation.

PostgreSQL Usage

After migrating your databases to Amazon Aurora PostgreSQL-Compatible Edition (Aurora
PostgreSQL), you will still need to upgrade your database instance from time to time, for the same
reasons you have done in the past, new features, bugs and security fixes.

In a managed service like Amazon Relational Database Service, the upgrade process is much easier
and simpler compared to the on-premises Oracle process.

To determine the current Aurora PostgreSQL version being used, use the following Amazon CLI
command:

aws rds describe-db-engine-versions --engine aurora-postgresql --query '*[].
[EngineVersion]' --output text --region your-AWS-Region

This can also be queried from the database, using the following queries:

PostgreSQL Usage 285

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-database-engine?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT AURORA_VERSION();

aurora_version
4.0.0

SHOW SERVER_VERSION;

server_version
12.4

For all Aurora and PostgreSQL versions mapping, see Amazon Aurora PostgreSQL releases and
engine versions in the User Guide for Aurora.

Amazon doesn’'t apply major version upgrades on Amazon Aurora automatically. Major version
upgrades contains new features and functionality which often involves system table and other
code changes. These changes may not be backward-compatible with previous versions of the
database so application testing are highly recommended.

Applying automatic minor upgrades can be set by configuring the Amazon Relational Database
Service (Amazon RDS) instance to allow it.

You can use the following Amazon CLI command on Linux to determine the current automatic
upgrade minor versions.

aws rds describe-db-engine-versions --engine aurora-postgresql | grep -A 1 AutoUpgrade|
grep -A 2 true |grep PostgreSQL | sort --unique | sed -e 's/"Description": "//g'

If no results are returned, there is no automatic minor version upgrade available and scheduled.

When enabled, the instance will be automatically upgraded during the scheduled maintenance
window.

For major upgrades, this is the recommended process:

» Have a version-compatible parameter group ready. If you are using a custom DB instance or DB
cluster parameter group, you have two options:

1. Specify the default DB instance, DB cluster parameter group, or both for the new DB engine
version.

2. Create your own custom parameter group for the new DB engine version.

PostgreSQL Usage 286

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Updates.20180305.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

® Note

If you associate a new DB instance or DB cluster parameter group as a part of the
upgrade request, make sure to reboot the database after the upgrade completes to
apply the parameters. If a DB instance needs to be rebooted to apply the parameter
group changes, the instance’s parameter group status shows pending-reboot. You can
view an instance's parameter group status in the console or by using a CLI command
such as describe-db-instances or describe-db-clusters.

o Check for unsupported usage:

1. Commit or roll back all open prepared transactions before attempting an upgrade. You
can use the following query to verify that there are no open prepared transactions on your
instance.

SELECT count(*) FROM pg_catalog.pg_prepared_xacts;

2. Remove all uses of the reg* data types before attempting an upgrade. Except for regtype
and regclass, you can't upgrade the reg* data types. The pg_upgrade utility can't persist
this data type, which is used by Amazon Aurora to do the upgrade. To verify that there are no
uses of unsupported reg* data types, use the following query for each database.

SELECT count(*) FROM pg_catalog.pg_class c, pg_catalog.pg_namespace n, pg_
catalog.pg_attribute aWHERE c.oid = a.attrelid

AND NOT a.attisdropped

AND a.atttypid IN ('pg_catalog.regproc'::pg_catalog.regtype,
'pg_catalog.regprocedure'::pg_catalog.regtype,
'pg_catalog.regoper'::pg_catalog.regtype,
'pg_catalog.regoperator'::pg_catalog.regtype,
'pg_catalog.regconfig'::pg_catalog.regtype,
'pg_catalog.regdictionary'::pg_catalog.regtype)

AND c.relnamespace = n.oid

AND n.nspname NOT IN ('pg_catalog', 'information_schema');

« Perform a backup. The upgrade process creates a DB cluster snapshot of your DB cluster during
upgrading.

« Upgrade certain extensions to the latest available version before performing the major version
upgrade. The extensions to update include the following:

1. pgRouting

PostgreSQL Usage 287

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

2. postGIS

» Run the following command for each extension that you are using.
ALTER EXTENSION PostgreSQL-extension UPDATE TO 'new-version'
If you are upgrading versions older than PostgreSQL 12, there are a few more steps. For more

information, see Upgrading the PostgreSQL DB engine for Aurora PostgreSQL in the User Guide for
Aurora.

You can perform the actual upgrade through the console or Amazon CLI.
Console

1. Sign in to the Amazon Management Console and choose RDS.

N

. In the navigation pane, choose Databases, and then choose the DB cluster that you want to
upgrade.

. Choose Modify. The Modify DB cluster page appears.
. For DB engine version, choose the new version.

. Choose Continue and check the summary of modifications.

o U1 A~ W

. To apply the changes immediately, choose Apply immediately. Choosing this option can cause
an outage in some cases. For more information, see Modifying an Amazon Aurora DB cluster in
the User Guide for Aurora.

7. On the confirmation page, review your changes. If they are correct, choose Modify Cluster to
save your changes. Or choose Back to edit your changes or Cancel to cancel your changes.

Amazon CLI

For Linux, macQOS, or Unix:

aws rds modify-db-cluster \
--db-cluster-identifier mydbcluster \
--engine-version new_version \
--allow-major-version-upgrade \
--no-apply-immediately

For Microsoft Windows:

PostgreSQL Usage 288

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.Modifying.html

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

aws rds modify-db-cluster ~

--db-cluster-identifier mydbcluster #

--engine-version new_version #

--allow-major-version-upgrade A

--no-apply-immediately

Summary

Phase

Prerequisite

Prerequisite

Prerequisite

Prerequisite

Prerequisite

Prerequisite

SQL Server Step

Perform an instance backup.

DBCC for consistent verificat
ion.

Validate disk size and free
space.

Disable all startup stored
procedures (if applicable).

Stop application and
connection.

Install new software and fix
prerequisites errors raised.

Aurora PostgreSQL

Run Amazon RDS instance
backup.

N/A

N/A

N/A

N/A

1. Remove all uses of the reg*
data types.

2. Upgrade certain extension
S.

3. Commit or roll back all
open prepared transacti
ons.

SELECT count(*) FROM

pg_catalog.pg_prep
ared_xacts;

Summary

289

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Phase SQL Server Step Aurora PostgreSQL
Prerequisite Select instances to upgrade. Select the right Amazon RDS
instance.
Prerequisite Review pre-upgrade N/A
summary.
Runtime Monitor upgrade progress. You can review from the
console.
Post-upgrade Results. You can review from the
console.
Post-upgrade Register server. N/A
Post-upgrade Test applications against the Test applications against the
new upgraded database. new upgraded database.
Production deployment Re-run all steps in a productio Re-run all steps in a productio
n environment. n environment.

For more information, see Upgrading the PostgreSQL DB engine for Aurora PostgreSQL in the User
Guide for Aurora.

Configuring session options

This topic provides reference information comparing session options and system variables between
Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can understand how SQL Server's
session options translate to system variables, which is crucial for database administrators and
developers migrating from SQL Server to Aurora PostgreSQL.

Configuring session options 290

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/USER_UpgradeDBInstance.PostgreSQL.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A SET options are
@ @ significantly different,
except for transaction
isolation control.

SQL Server Usage

Session options in SQL Server is a collection of run-time settings that control certain aspects of
how the server handles data for individual sessions. A session is the period between a login event
and a disconnect event or an exec sp_reset_connection command for connection pooling.

Each session may have multiple run scopes, which are all the statements before the GO keyword
used in SQL Server Management Studio scripts, or any set of commands sent as a single run batch
by a client application. Each run scope may contain additional sub-scopes. For example, scripts
calling stored procedures or functions.

You can set the global session options, which all run scopes use by default, using the SET T-SQL
command. Server code modules such as stored procedures and functions may have their own run
context settings, which are saved along with the code to guarantee the validity of results.

Developers can explicitly use SET commands to change the default settings for any session or for
an run scope within the session. Typically, client applications send explicit SET commands upon
connection initiation.

You can view the metadata for current sessions using the sp_who_system stored procedure and
the sysprocesses system table.

(® Note

To change the default setting for SQL Server Management Studio, choose Tools, Options,
Query Execution, SQL Server, Advanced.

SQL Server Usage 291

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Syntax

Syntax for the SET command:

SET

Category Setting

Date and time DATEFIRST | DATEFORMAT

Locking DEADLOCK_PRIORITY | SET LOCK_TIMEOUT

Miscellaneous CONCAT_NULL_YIELDS_NULL | CURSOR_CLOSE_ON_COMMIT | FIPS_FLAGGER | SET
IDENTITY_INSERT | LANGUAGE | OFFSETS | QUOTED_IDENTIFIER

Query Execution ARITHABORT | ARITHIGNORE | FMTONLY | NOCOUNT | NOEXEC |
NUMERIC_ROUNDABORT | PARSEONLY | QUERY_GOVERNOR_COST_LIMIT | ROWCOUNT | TEXTSIZE

ANSI ANSI_DEFAULTS | ANSI_NULL_DFLT_OFF | ANSI_NULL_DFLT_ON | ANSI_NULLS |
ANSI_PADDING | ANSI_WARNINGS

Execution Stats FORCEPLAN | SHOWPLAN_ALL | SHOWPLAN_TEXT | SHOWPLAN_XML | STATISTICS
I0 | STATISTICS XML | STATISTICS PROFILE | STATISTICS TIME

Transactions IMPLICIT_TRANSACTIONS | REMOTE_PROC_TRANSACTIONS | TRANSACTION
ISOLATION LEVEL | XACT_ABORT

For more information, see SET Statements (Transact-SQL) in the SQL Server documentation.

SET ROWCOUNT for DML Deprecated Setting

The SET ROWCOUNT for DML statements has been deprecated as of SQL Server 2008. For more
information, see Deprecated Database Engine Features in SQL Server 2008 R2 in the SQL Server

documentation.

For SSQL Server version 2008 R2 and lower, you could limit the number of rows affected by
INSERT, UPDATE, and DELETE operations using SET ROWCOUNT. For example, it is a common
practice in SQL Server to batch large DELETE or UPDATE operations to avoid transaction logging
issues.

The following example loops and deletes rows where ForDelete is set to 1, but only 5000 rows at
a time in separate transactions (assuming the loop isn’t within an explicit transaction).

SET ROWCOUNT 5000;
WHILE @@ROWCOUNT > @
BEGIN
DELETE FROM MyTable
WHERE ForDelete = 1;

SQL Server Usage 292

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

END

Starting from SQL Server 2012, SET ROWCOUNT is ignored for INSERT, UPDATE, and DELETE
statements. You can achieve the same functionality using TOP. You can convert TOP to the Aurora
PostgreSQL LIMIT.

For example, you can rewrite the preceding code as:

WHILE @@ROWCOUNT > 0
BEGIN
DELETE TOP (5000)

FROM MyTable

WHERE ForDelete = 1;
END

Amazon Schema Conversion Tool can convert this syntax automatically.
Examples

Use SET within a stored procedure.

CREATE PROCEDURE <ProcedureName>
AS
BEGIN
<Some non-critical transaction code>
SET TRANSACTION_ISOLATION_LEVEL SERIALIZABLE;
SET XACT_ABORT ON;
<Some critical transaction code>
END

Explicit SET commands affect their run scope and sub scopes. After the scope terminates and the
procedure code exits, the calling scope resumes its original settings used before the calling the
stored procedure.

For more information, see SET Statements (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) supports hundreds of Server
System Variables to control server behavior and the global and session levels.

PostgreSQL Usage 293

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL provides session-modifiable parameters that are configured using the SET SESSION
command. Configuration of parameters using SET SESSION will only be applicable in the
current session. To view the list of parameters that can be set with SET SESSION, you can query
pg_settings:

SELECT * FROM pg_settings where context = 'user';

Examples of commonly used session parameters:

« client_encoding configures the connected client character set.
« force_parallel_mode forces use of parallel query for the session.

e lock_timeout sets the maximum allowed duration of time to wait for a database lock to
release.

« search_path sets the schema search order for object names that aren’t schema-qualified.

« transaction_isolation sets the current Transaction Isolation Level for the session.

You can view Aurora PostgreSQL variables using the PostgreSQL command line utility, Amazon
Aurora database cluster parameters, Amazon Aurora database instance parameters, or SQL Server
interface system variables.

Converting from SQL Server 2008 SET ROWCOUNT for DML operations

The use of SET ROWCOUNT for DML operations is deprecated as of SQL Server 2008 R2. Code that
uses the SET ROWCOUNT syntax can't be converted automatically.

You can either rewrite the code to use TOP before running Amazon SCT, or manually change it
afterward.

Consider the example that is used to batch DELETE operations in SQL Server using TOP:

WHILE @@ROWCOUNT > 0
BEGIN

DELETE TOP (5000)

FROM MyTable

WHERE ForDelete = 1;
END

You can rewrite the preceding example to use the Aurora PostgreSQL LIMIT clause:

PostgreSQL Usage 294

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

WHILE row_count() > @ LOOP

DELETE FROM num_test
WHERE ctid IN (
SELECT ctid
FROM num_test
LIMIT 10)

END LOOP;

Examples

Change the time zone of the connected session.

SET SESSION DateStyle to POSTGRES, DMY;
SET

SELECT NOW();
now
Sat 09 Sep 11:03:43.597202 2017 UTC

(1 row)

SET SESSION DateStyle to ISO, MDY;
SET

SELECT NOW();
now

2017-09-09 11:04:01.3859+00
(1 row)

Summary

The following table summarizes commonly used SQL Server session options and their
corresponding Aurora PostgreSQL system variables.

Category SQL Server Aurora PostgreSQL
Date and time DATEFIRST Use DOW in queries
Date and time DATEFORMAT DateStyle

Summary 295

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Category
Locking

Transactions

Transactions

Query run

Query run

Query run

Query run

Run stats

Miscellaneous

Miscellaneous

For more information, see SET in the PostgreSQL documentation.

SQL Server
LOCK_TIMEOUT

IMPLICIT_TRANSACTI
ONS

TRANSACTION ISOLATION
LEVEL

IDENTITY_INSERT

LANGUAGE

QUOTED_IDENTIFIER
NOCOUNT

SHOWPLAN_ALL , TEXT, XML,
STATISTICS IO , PROFILE,
and TIME

CONCAT_NULL_YIELDS
_NULL

ROWCOUNT

Configuring database options

Aurora PostgreSQL
lock_timeout

SET TRANSACTION

BEGIN TRANSACTION
ISOLATION LEVEL

See Sequences and ldentity.

lc_monetary , lc_numeri
c ,orlc_time

N/A
N/A and not needed

See Run Plans.

N/A

Use LIMIT within SELECT.

This topic provides reference information about the differences in database options and features
between Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can understand
how SQL Server's database-level options and features translate to cluster and instance-level

parameters. The topic helps you grasp the architectural differences between the two database

systems, particularly in terms of database configuration, security settings, and high availability

options.

Configuring database options

296

https://www.postgresql.org/docs/13/sql-set.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

@ N/A N/A Difference.

SQL Server Usage

SQL Server provides database level options that you can set using the ALTER DATABASE .. SET
command. You can use these settings to:

» Set default session options. For more information, see Session Options.

« Enable or disable database features such as SNAPSHOT_ISOLATION, CHANGE_TRANCKING, and
ENABLE_BROKER.

« Configure high availability and disaster recovery options such as always on availability groups.

« Configure security access control such as restricting access to a single user, setting the database
offline, or setting the database to read-only.

Syntax

Syntax for setting database options:
ALTER DATABASE { <database name> } SET { <option> [,...n] };
Examples
Set a database to read-only and use ARITHABORT by default.
ALTER DATABASE Demo SET READ_ONLY, ARITHABORT ON;
Set a database to use automatic statistic creation.

ALTER DATABASE Demo SET AUTO_CREATE_STATISTICS ON;

SQL Server Usage 297

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Set a database offline immediately.

ALTER DATABASE DEMO SET OFFLINE WITH ROLLBACK IMMEDIATE;

For more information, see ALTER DATABASE SET options (Transact-SQL) in the SQL Server
documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) supports CREATE SCHEMA
and CREATE DATABASE statements.

As with SQL Server, Aurora PostgreSQL does have the concept of an instance hosting multiple
databases, which in turn contain multiple schemas. Objects in Aurora PostgreSQL are referenced as
a three-part name: <database>.<schema>.<object>.

Database options are related to the cluster-level parameters which are managed by the Amazon
Cluster Parameter Groups. You can find some SQL Server equivalent parameters at the instance
level in the Amazon Database Parameter Group.

Datable options are being compared to Amazon Database Parameter Group and Server Options are
being compared to Amazon Cluster Parameter Group. For more information, see Server Options.

Configuring server options

This topic provides reference information about parameter configuration in SQL Server and
PostgreSQL, specifically in the context of migrating from SQL Server 2019 to Amazon Aurora
PostgreSQL. You can understand the differences in how server-level settings and parameters are
managed between these two database systems.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Use Cluster and
@ Database/Cluster
Parameter.

PostgreSQL Usage 298

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

SQL Server provides server-level settings that affect all databases and all sessions. You can modify
these settings using the sp_configure system stored procedure.

You can use server options to perform the following configuration tasks:

» Define hardware utilization such as memory management, affinity mask, priority boost, network
packet size, and soft Non-Uniform Memory Access (NUMA).

o Alter run time global values such as recovery interval, remote login timeout, optimization for ad-
hoc workloads, and cost threshold for parallelism.

« Enable and disable global features such as C2 Audit, OLE, procedures, CLR procedures, and allow
trigger recursion.

» Configure global security settings such as server authentication mode, remote access, shell
access with xp_cmdshell, CLR access level, and database chaining.

» Set default values for sessions such as user options, default language, backup compression, and
fill factor.

Some settings require an explicit RECONFIGURE command to apply the changes to the server.
High risk settings require RECONFIGURE WITH OVERRIDE for the changes to be applied. Some
advanced options are hidden by default. To view and modify these settings, set show advanced
options to 1andrun sp_configure.

® Note

Server audits are managed with the T-SQL commands CREATE and ALTER SERVER
AUDIT.

Syntax

EXECUTE sp_configure <option>, <value>;

Examples

Limit server memory usage to 4 GB.

SQL Server Usage 299

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

EXECUTE sp_configure 'show advanced options', 1;

RECONFIGURE;

sp_configure 'max server memory', 4096;

RECONFIGURE;

Allow command shell access from T-SQL.

EXEC sp_configure 'show advanced options', 1;

RECONFIGURE;

EXEC sp_configure 'xp_cmdshell', 1;

RECONFIGURE;

View the current values.

EXECUTE sp_configure

For more information, see Server Configuration Options (SQL Server) in the SQL Server
documentation.

PostgreSQL Usage

When running PostgreSQL databases as Amazon Aurora Clusters, Parameter Groups are used to
change to cluster-level and database-level parameters.

Most of the PostgreSQL parameters are configurable in an Amazon Aurora PostgreSQL-Compatible
Edition (Aurora PostgreSQL) cluster, but some are disabled and can't be modified. Because Amazon
Aurora clusters restrict access to the underlying operating system, modification to PostgreSQL
parameters must be made using Parameter Groups.

PostgreSQL Usage 300

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Amazon Aurora is a cluster of database instances and, as a direct result, some of the PostgreSQL
parameters apply to the entire cluster while other parameters apply only to a particular database

instance.

Aurora PostgreSQL parameter class
Cluster-level parameters

Single cluster parameter group for each
Amazon Aurora Cluster.

Database instance-level parameters

You can associate every instance in an
Amazon Aurora cluster with a unique database
parameter group.

Controlled by

Managed by cluster parameter groups. For
example,

o The PostgreSQL wal_buffers parameter
is controlled by a cluster parameter group.

o The PostgreSQL autovacuum parameter
is controlled by a cluster parameter group.

« The client_encoding parameteris
controlled by a cluster parameter group.

Managed by database parameter groups. For
example,

o The PostgreSQL shared_buffers
memory cache configuration parameter is
controlled by a database parameter group
with an optimized default value based on
the configured database class: {DBInstan
ceClassMemory/10922}

o The PostgreSQL max_connections
parameter, which controls the maximum
number of client connections allowed to
the PostgreSQL instance, is controlled by
a database parameter group. The default
value is optimized by Amazon based on
the configured database class: LEAST({DB
InstanceClassMemory/9531392
},5000) .

e The authentication_timeout

parameter, which controls the maximum

PostgreSQL Usage

301

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Aurora PostgreSQL parameter class Controlled by

time to complete client authentication
(in seconds), is controlled by a database
parameter group.

e The superuser_reserved_connecti
ons parameter, which determines the
number of reserved connection slots for
PostgreSQL superusers, is configured by a
database parameter group.

o The PostgreSQL effective_cache_si
ze , which informs the query optimizer
how much cache is present in the kernel
and helps control how expensive large index
scans will be, is controlled by a database
level parameter group. The default value is
optimized by Amazon based on database
class (RAM): {DBInstanceClassMe
mory/10922}

New parameters in PostgreSQL 10:

—

. enable_gathermerge enables the gather merge run plan.
2. max_parallel_workers stands for the maximum number of parallel workers process.

3. max_sync_workers_per_subscription stands for the maximum number of synchronous
workers for subscription.

4. wal_consistency_checking checks consistency of WAL on the standby instance (can't be set
in Aurora PostgreSQL).

5. max_logical_replication_workers stands for the maximum number of logical replication
worker process.

6. max_pred_locks_per_relation stands for the maximum number of records that you can
predicate-lock before locking the entire relation.

7. max_pred_locks_per_page stands for the maximum number of records that you can
predicate-lock before locking the entire page.

PostgreSQL Usage 302

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

8. min_parallel_table_scan_size stands for the minimum table size to consider parallel
table scan.

9. min_parallel_index_scan_size stands for the minimum table size to consider parallel
index scan.

Examples
To create and configure a new parameter group

1. Sign in to the Amazon Management Console and choose RDS.

2. Choose Parameter groups.

(® Note

You can't edit the default parameter group. Create a custom parameter group to apply
changes to your Amazon Aurora cluster and its database instances.

Amazon RDS X RDS Parameter groups
Dashboard Parameter groups (6) ?|
Databases Q 1 &
Query Editor
Performance Insights Name A Family v Type v D
Snapshots

default.aurora-mysql5.7 aurora-mysgls.7 Parameter groups D
Automated backups
Reserved instances default.aurora-mysql5.7 aurora-mysql5.7 DB cluster parameter group D
Proxies default.aurora-postgresql12 aurora-postgresqll2 Parameter groups D

3. Select the DB family from the Parameter group family drop-down list.
4. For Type, select the DB parameter group.

5. Choose Create.

To modify an existing parameter group

1. Sign in to the Amazon Management Console and choose RDS.
2. Choose Parameter groups.

3. Choose the name of the parameter to edit.

PostgreSQL Usage 303

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

4. Choose Edit parameters.

5. Change parameter values and choose Save changes.

For more information, see Working with parameter groups in the Amazon RDS User Guide.

PostgreSQL Usage 304

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

High availability and disaster recovery

This topic provides conceptual content comparing backup, restore, high availability, and disaster
recovery capabilities between Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can
gain valuable insights into how these two database systems handle critical data management and
protection features. The content explores various aspects such as recovery models, backup types,
restore operations, server-level and database-level failure protection, disk error handling, read-
only replicas, and failover addressing. By understanding these similarities and differences, you can
make informed decisions when considering a migration from SQL Server to Aurora PostgreSQL

or when evaluating which database solution best fits your specific needs for data reliability and
availability in your cloud infrastructure.

Topics

» Backup and restore design

» High availability essentials

Backup and restore design

This topic provides reference information about backup and restore capabilities in Microsoft

SQL Server and Amazon Aurora PostgreSQL. You can understand the differences and similarities
between these two database systems in terms of their backup and recovery features. The topic
compares various aspects such as recovery models, backup types, and restore operations, helping
you grasp how these functionalities translate between SQL Server and Aurora PostgreSQL.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A Backup Storage level backup
@ @ E E managed by Amazon
RDS.

Backup and restore design 305

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

The term backup refers to both the process of copying data and to the resulting set of data created
by the processes that copy data for safekeeping and disaster recovery. Backup processes copy SQL
Server data and transaction logs to media such as tapes, network shares, cloud storage, or local
files. You can copy these backups back to the database using a restore process.

SQL Server uses files, or filegroups, to create backups for an individual database or subset of a
database. Table backups aren’t supported.

When a database uses the FULL recovery model, transaction logs also need to be backed up.
Transaction logs allow backing up only database changes since the last full backup and provide a
mechanism for point-in-time restore operations.

Recovery model is a database-level setting that controls transaction log management. The three
available recovery models are SIMPLE, FULL, and BULK LOGGED. For more information, see
Recovery Models (SQL Server) in the SQL Server documentation.

The SQL Server RESTORE process copies data and log pages from a previously created backup back
to the database. It then triggers a recovery process that rolls forward all committed transactions
not yet flushed to the data pages when the backup took place. It also rolls back all uncommitted
transactions written to the data files.

SQL Server supports the following types of backups:

» Copy-only backups are independent of the standard chain of SQL Server backups. They are
typically used as one-off backups for special use cases and don't interrupt normal backup
operations.

» Data backups copy data files and the transaction log section of the activity during the backup.
A data backup may contain the whole database (database backup) or part of the database. The
parts can be a partial backup, a file, or a filegroup.

« A database backup is a data backup representing the entire database at the point in time when
the backup process finished.

« A differential backup is a data backup containing only the data structures (extents) modified
since the last full backup. A differential backup is dependent on the previous full backup and
can't be used alone.

« A full backup is a data backup containing a Database Backup and the transaction log records of
the activity during the backup process.

SQL Server Usage 306

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Transaction log backups don't contain data pages. They contain the log pages for all transaction
activity since the last full backup or the previous transaction log backup.

« File backups consist of one or more files or filegroups.

SQL Server also supports media families and media sets that you can use to mirror and stripe
backup devices. For more information, see Media Sets, Media Families, and Backup Sets (SQL

Server) in the SQL Server documentation.

SQL Server 2008 Enterprise edition and later versions, support backup compression. Backup
compression provides the benefit of a smaller backup file footprint, less I/O consumption, and less
network traffic at the expense of increased CPU utilization for running the compression algorithm.
For more information, see Backup Compression (SQL Server) in the SQL Server documentation.

A database backed up in the SIMPLE recovery mode can only be restored from a full or differential
backup. For FULL and BULK LOGGED recovery models, you can restore transaction log backups to
minimize potential data loss.

Restoring a database involves maintaining a correct sequence of individual backup restores. For
example, a typical restore operation may include the following steps:

1. Restore the most recent full backup.
2. Restore the most recent differential backup.
3. Restore a set of uninterrupted transaction log backups, in order.

4. Recover the database.

For large databases, a full restore, or a complete database restore, from a full database backup isn’t
always a practical solution. SQL Server supports data file restore that restores and recovers a set of
files and a single Data Page Restore, except for databases using the SIMPLE recovery model.

Syntax

SQL Server uses the following backup syntax.

Backing Up a Whole Database

BACKUP DATABASE <Database Name> [<Files / Filegroups>] [READ_WRITE_FILEGROUPS]
TO <Backup Devices>
[<MIRROR TO Clause>]
[WITH [DIFFERENTIAL]

SQL Server Usage 307

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-sets-media-families-and-backup-sets-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-sets-media-families-and-backup-sets-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

[<Option List>][;]

BACKUP LOG <Database Name>
TO <Backup Devices>
[<MIRROR TO clause>]
[WITH <Option List>]J[;]

<Option List> =

COPY_ONLY | {COMPRESSION | NO_COMPRESSION } | DESCRIPTION = <Description>

| NAME = <Backup Set Name> | CREDENTIAL | ENCRYPTION | FILE_SNAPSHOT | { EXPIREDATE =
<Expiration Date> | RETAINDAYS = <Retention> }

{ NOINIT | INIT } | { NOSKIP | SKIP } | { NOFORMAT | FORMAT } |

{ NO_CHECKSUM | CHECKSUM } | { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }

{ NORECOVERY | STANDBY = <Undo File for Log Shipping> } | NO_TRUNCATE

ENCRYPTION (ALGORITHM = <Algorithm> | SERVER CERTIFICATE = <Certificate> | SERVER
ASYMMETRIC KEY = <Key>);

SQL Server uses the following restore syntax.

RESTORE DATABASE <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>
FROM <Backup Devices>

[WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]
[, <Option List>]

[;]

RESTORE LOG <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>

[FROM <Backup Devices>

[WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]
[, <Option List>]

;]

<Option List> =

MOVE <File to Location>

| REPLACE | RESTART | RESTRICTED_USER | CREDENTIAL

| FILE = <File Number> | PASSWORD = <Password>

| { CHECKSUM | NO_CHECKSUM } | { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }
| KEEP_REPLICATION | KEEP_CDC

| { STOPAT = <Stop Time>

| STOPATMARK = <Log Sequence Number>

| STOPBEFOREMARK = <Log Sequence Number>

SQL Server Usage 308

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples

Perform a full compressed database backup.

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\FullBackup.bak"
WITH COMPRESSION;

Perform a log backup.

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\LogBackup.bak'
WITH COMPRESSION;

Perform a partial differential backup.

BACKUP DATABASE MyDatabase
FILEGROUP = 'FileGroupl',
FILEGROUP = 'FileGroup2'
TO DISK='C:\Backups\MyDatabase\DB1.bak'
WITH DIFFERENTIAL;

Restore a database to a point in time.

RESTORE DATABASE MyDatabase
FROM DISK='C:\Backups\MyDatabase\FullBackup.bak'
WITH NORECOVERY;

RESTORE LOG AdventureWorks2012
FROM DISK='C:\Backups\MyDatabase\LogBackup.bak'
WITH NORECOVERY, STOPAT = '20180401 10:35:00';

RESTORE DATABASE AdventureWorks2012 WITH RECOVERY;

For more information, see Backup Overview (SQL Server) and Restore and Recovery Overview (SQL

Server) in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) continuously backs up all
cluster volumes and retains restore data for the duration of the backup retention period. The

PostgreSQL Usage 309

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

backups are incremental and you can use them to restore the cluster to any point in time within
the backup retention period. You can specify a backup retention period from one to 35 days when
creating or modifying a database cluster. Backups incur no performance impact and don't cause
service interruptions.

Additionally, you can manually trigger data snapshots in a cluster volume that you can save beyond
the retention period. You can use Snapshots to create new database clusters.

(@ Note

Manual snapshots incur storage charges for Amazon Relational Database Service (Amazon
RDS).

Restoring Data

You can recover databases from Amazon Aurora automatically retained data or from a manually
saved snapshot. Using the automatically retained data significantly reduces the need to take
frequent snapshots and maintain Recovery Point Objective (RPO) policies.

The Amazon Relational Database Service (Amazon RDS) console displays the available time frame
for restoring database instances in the Latest Restorable Time and Earliest Restorable Time fields.
The Latest Restorable Time is typically within the last five minutes. The Earliest Restorable Time is
the end of the backup retention period.

(@ Note

The Latest Restorable Time and Earliest Restorable Time fields display when a database
cluster restore has been completed. Both display NULL until the restore process completes.

Database Cloning

Database cloning is a fast and cost-effective way to create copies of a database. You can create
multiple clones from a single DB cluster. You can also create additional clones from existing clones.
When first created, a cloned database requires only minimal additional storage space.

Database cloning uses a copy-on-write protocol. Data is copied only when it changes either on the
source or cloned database.

PostgreSQL Usage 310

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Data cloning is useful for avoiding impacts on production databases. For example:

» Testing schema or parameter group modifications.

« Isolating intensive workloads. For example, exporting large amounts of data and running high
resource-consuming queries.

» Development and testing with a copy of a production database.

Copying and sharing snapshots

You can copy and share database snapshots within the same Amazon Region, across Amazon
Regions, and across Amazon accounts. Snapshot sharing allows an authorized Amazon account
to access and copy snapshots. Authorized users can restore a snapshot from its current location
without first copying it.

Copying an automated snapshot to another Amazon account requires two steps:

» Create a manual snapshot from the automated snapshot.

» Copy the manual snapshot to another account.

Backup Storage

In all Amazon RDS regions, backup storage is the collection of both automated and manual
snapshots for all database instances and clusters. The size of this storage is the sum of all
individual instance snapshots.

When an Aurora PostgreSQL database instance is deleted, all automated backups of that database
instance are also deleted. However, Amazon RDS provides the option to create a final snapshot
before deleting a database instance. This final snapshot is retained as a manual snapshot. Manual
snapshots aren't automatically deleted.

The Backup Retention Period

Retention periods for Aurora PostgreSQL DB cluster backups are configured when creating a
cluster. If not explicitly set, the default retention is one day when using the Amazon RDS API or the
Amazon CLI. The retention period is seven days if using the Amazon Console. You can modify the
backup retention period at any time with values of one to 35 days.

PostgreSQL Usage 311

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Disabling automated backups

You can't disable automated backups on Aurora PostgreSQL. The backup retention period for
Aurora PostgreSQL is managed by the database cluster.

Migration Considerations

Migrating from a self-managed backup policy to a Platform as a Service (PaaS) environment such
as Aurora PostgreSQL is a complete paradigm shift. You no longer need to worry about transaction
logs, file groups, disks running out of space, and purging old backups.

Amazon RDS provides guaranteed continuous backup with point-in-time restore up to 35 days.

Managing a SQL Server backup policy with similar RTO and RPO is a challenging task. With Aurora
PostgreSQL, all you need to set is the retention period and take some manual snapshots for special
use cases.

Examples

The following walkthrough describes how to change Aurora PostgreSQL DB cluster retention
settings from one day to seven days using the Amazon RDS console.

1. Log in to the Amazon RDS Console and on dashboard choose Databases.

Amazon RDS X

Resources
Dashboard

Databases

Q Edit You are using the following Amazon RDS
uery Editor

(used/quota)
Performance Insights DB Instances (4/40)
Snapshots Allocated storage (0.02 TB/100 TB)

Click here to increase DB instances
limit
DB Clusters (2/40)

Automated backups

Reserved instances

2. Choose the relevant DB identifier.

PostgreSQL Usage 312

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

RDS Databases
Databases
@D Group resources |) | Modify || Actions ¥ || Restore from S3 | Create database
Q
DB identifier A Role « Engine v
(o] - mysql-aurora-playbook Regional Aurora MySQL
mysql-aurora-playbook-instance-1 Writer Aurora MySQL

3. Verify the current automatic backup settings.

Backup
Automated backups Earliest restorable time Latest restare time
Enabled (2 Days) February 24, 2021, 2:32:36 February 26, 2021,

A T 11:3405PMUTC
Copy tags to snapshots
Disabled Backup window

02:27-02:57 UTC (GMT)

4. In this cluster, select database instance with the writer role.

PostgreSQL Usage 313

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
RDS Databases mysgl-aurora-playbook mysgl-aurora-playbook-instance-1
mysql-aurora-playbook-instance-1 | Modify || Actions ¥
Related
Q &
DB identifier A Role « Engine v Region & AZ ¥ Size
mysql-aurora-playbook Regional Aurora My5QL eu-central-1 1ins
(o] mysgl-aurora-playbook-instance-1 Writer Aurora MySQL eu-central-T1a db.t3

.3

5. On the top right, choose Modify.

6. For Backup retention period, choose *7 Days.

Backup

Creates a point-in-time snapshot of your database

Backup retention period Info
Choose the number of days that RDS should retain automatic backups for this instance.

2 days A

3 days
4 days
5 days
& days
| 7 days
| 8 days Bs or

7. Choose Continue and review the summary.

8. For When to apply modifications, choose Apply during the next scheduled maintenance
window to apply your changes during the next scheduled maintenance window. Or, choose
Apply immediately to apply your changes immediately.

9. Choose Modify DB instance.

PostgreSQL Usage 314

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
For more information, see Maintenance Plans.
Summary
Feature SQL Server Aurora PostgreSQL Comments
Recovery Model SIMPLE, BULK N/A The functionality of

Backup database

Partial backup

Log backup

Differential backups

LOGGED, FULL

BACKUP DATABASE

BACKUP DATABASE
. FILE= .. |
FILEGROUP = ..

BACKUP LOG

BACKUP DATABASE

.. WITH DIFFERENT

IAL

aws rds create-
db-clusters
napshot --db-
cluster-snaps
hot-identifier
Snapshot_name
--db-cluster-
identifier
Cluster_Name

N/A

N/A

N/A

Aurora PostgreSQL
backups is equivalent
to the FULL recovery
model.

Can use export
utilities. For more
information, see SQL
Server Export and

Import with Text
Files and PostgreSQ
L pg_dump and

pg_restore.

Backup is at the
storage level.

You can do manually
using export tools.

Summary

315

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature SQL Server Aurora PostgreSQL Comments

Database snapshots BACKUP DATABASE Amazon RDS console The terminology is

.. WITH COPY_ONLY orAPIL inconsistent between
SQL Server and
Aurora PostgreSQL.
A database snapshot
in SQL Server is
similar to database
cloning in Aurora
PostgreSQL. Aurora
PostgreSQL database
snapshots are similar
to a COPY_ONLY
backup in SQL Server.

Summary 316

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Feature

Database clones

SQL Server

CREATE DATABASE..
AS SNAPSHOT
OF...

Aurora PostgreSQL

Create new cluster
from a cluster
snapshot: aws rds
restore-db-
cluster-from-
snapshot --db-
clusteridenti
fier NewCluste
r --snapsho
t-identif

ier SnapshotT
ORestore --
engine aurora-po
stgresql .

Add a new instance
to the new or
restored cluster: aws
rds create-db
-instance --
region us-east-1
--db-subnet-
group default --
engine aurora-
postgresql --
dbcluster-
identifier
clustername-
restore --db-
instanceident
ifier newinstan
cenodeA --db-
instance-class
db.r4.large .

Comments

The terminology is
inconsistent between
SQL Server and
Aurora PostgreSQL.
A database snapshot
in SQL Server is
similar to database
cloning in Aurora
PostgreSQL. Aurora
PostgreSQL database
snapshots are similar
to a COPY_ONLY
backup in SQL Server.

Summary

317

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature SQL Server

RESTORE DATABASE
| LOG .. WITH
STOPAT...

Point in time restore

Aurora PostgreSQL Comments

Create new cluster
from a cluster
snapshot by given
custom time to
restore: aws rds
restore-db-
clusterto-
point-in-

time --db-clus
teridenti

fier clusterna
merestore --
source-db-
clusteridentifi
er clustername
--restore-to-
time 2017-09-1
9T23:45:0
0.000Z .

Add a new instance
to the new or
restored cluster: aws
rds create-db
-instance --
region us-east-1
--db-subnet-
group default --
engine aurora-
postgresql --
dbcluster-
identifier
clustername-
restore --db-

Summary

318

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Feature SQL Server Aurora PostgreSQL Comments

instanceident

ifier newinstan

cenodeA --db-

instance-class

db.r4.large .
Partial restore RESTORE N/A You can restore the

DATABASE.. FILE= cluster to a new
| FILEGROUP = cluster and copy the

needed data to the
primary cluster.

For more information, see Managing an Amazon Aurora DB cluster in the User Guide for Aurora.

High availability essentials

This topic provides reference information comparing high availability and disaster recovery
solutions between Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can gain
insight into how these database systems handle server-level and database-level failure protection,
disk error protection, read-only replicas, failover addressing, and read-only workloads.

Feature compatibi Amazon SCT /
lity Amazon DMS
automation level

gggg

Amazon SCT action Key differences
code index
N/A Multi replica, scale

out solution using
Amazon Aurora
clusters and Availabil
ity Zones.

High availability essentials

319

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/CHAP_Aurora.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

SQL Server provides several solutions to support high availability and disaster recovery
requirements including Always On Failover Cluster Instances (FCI), Always On Availability Groups,
Database Mirroring, and Log Shipping. The following sections describe each solution.

SQL Server 2017 also adds new Availability Groups functionality which includes read-scale support
without a cluster, Minimum Replica Commit Availability Groups setting, and Windows-Linux cross-
OS migrations and testing.

SQL Server 2019 introduces support for creating Database Snapshots of databases that include
memory-optimized filegroups. A database snapshot is a read-only, static view of a SQL Server
database. The database snapshot is transactional consistent with the source database as of the
moment of the snapshot’s creation. Among other things, some benefits of the database snapshots
with regard to high availability are:

« You can use snapshots for reporting purposes.
« Maintaining historical data for report generation.

» Using a mirror database that you are maintaining for availability purposes to offload reporting.

For more information about snapshots, see Database Snapshots in the SQL Server documentation.

SQL Server 2019 introduces secondary to primary connection redirection for Always On Availability
Groups. It allows client application connections to be directed to the primary replica regardless of
the target server specified in the connections string. The connection string can target a secondary
replica. Using the right configuration of the availability group replica and the settings in the
connection string, you can automatically redirect the connection to the primary replica.

For more information, see Secondary to primary replica read/write connection redirection (Always

On Availability Groups) in the SQL Server documentation.

Always On Failover Cluster Instances

Always On Failover Cluster Instances (FCI) use the Windows Server Failover Clustering (WSFC)
operating system framework to deliver redundancy at the server instance level.

An FCl is an instance of SQL Server installed across two or more WSFC nodes. For client
applications, the FCl is transparent and appears to be a normal instance of SQL Server running

SQL Server Usage 320

https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-always-on-availability-groups?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-always-on-availability-groups?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

on a single server. The FCI provides failover protection by moving the services from one WSFC
node Windows server to another WSFC node windows server in the event the current active node
becomes unavailable or degraded.

FCls target scenarios where a server fails due to a hardware malfunction or a software hang up.
Without FCI, a significant hardware or software failure would render the service unavailable until
the malfunction is corrected. With FCl, you can configure another server as a standby to replace the
original server if it stops servicing requests.

For each service or cluster resource, there is only one node that actively services client requests
(known as owning a resource group). A monitoring agent constantly monitors the resource owners
and can transfer ownership to another node in the event of a failure or planned maintenance such
as installing service packs or security patches. This process is completely transparent to the client
application, which may continue to submit requests as normal when the failover or ownership
transfer process completes.

FCI can significantly minimize downtime due to hardware or software general failures. The main
benefits of FCl are:

« Full instance level protection.

« Automatic failover of resources from one node to another.

» Supports a wide range of storage solutions. WSFC cluster disks can be iSCSI, Fiber Channel, SMB
file shares, and others.

o Supports multi-subnet.
» No need client application configuration after a failover.
« Configurable failover policies.

« Automatic health detection and monitoring.

For more information, see Always On Failover Cluster Instances (SQL Server) in the SQL Server

documentation.
Always On Availability Groups

Always On Availability Groups is the most recent high availability and disaster recovery solution for
SQL Server. It was introduced in SQL Server 2012 and supports high availability for one or more
user databases. Because you can configure and manage it at the database level rather than the

SQL Server Usage 321

https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-cluster-instances-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

entire server, it provides much more control and functionality. As with FCI, Always On Availability
Groups relies on the framework services of Windows Server Failover Cluster (WSFC) nodes.

Always On Availability Groups utilize real-time log record delivery and apply mechanism to
maintain near-real-time readable copies of one or more databases. These copies can also be used
as redundant copies for resource usage distribution between servers (a scale-out read solution).

The main characteristics of Always On Availability Groups are:

« Supports up to nine availability replicas: One primary replica and up to eight secondary readable
replicas.

o Supports both asynchronous-commit and synchronous-commit availability modes.

» Supports automatic failover, manual failover, and a forced failover. Only the latter can result in
data loss.

« Secondary replicas allow both read-only access and offloading of backups.

« Availability Group Listener may be configured for each availability group. It acts as a virtual
server address where applications can submit queries. The listener may route requests to a read-
only replica or to the primary replica for read-write operations. This configuration also facilitates
fast failover as client applications don't need to be reconfigured post failover.

« Flexible failover policies.
« The automatic page repair feature protects against page corruption.
» Log transport framework uses encrypted and compressed channels.

 Rich tooling and APIs including Transact-SQL DDL statements, management studio wizards,
Always On Dashboard Monitor, and PowerShell scripting.

For more information, see Always On availability groups: a high-availability and disaster-recovery
solution in the SQL Server documentation.

Database Mirroring

Microsoft recommends avoiding Database Mirroring for new development. This feature is
deprecated and will be removed in a future release. It is recommended to use Always On
Availability Groups instead.

Database mirroring is a legacy solution to increase database availability by supporting near
instantaneous failover. It is similar in concept to Always On Availability Groups, but can only be
configured for one database at a time and with only one standby replica.

SQL Server Usage 322

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information, see Database Mirroring (SQL Server) in the SQL Server documentation.

Log Shipping

Log shipping is one of the oldest and well tested high availability solutions. It is configured at the
database level similar to Always On Availability Groups and Database Mirroring. You can use log
shipping to maintain one or more secondary databases for a single primary database.

The log shipping process involves three steps:

1. Backing up the transaction log of the primary database instance.
2. Copying the transaction log backup file to a secondary server.

3. Restoring the transaction log backup to apply changes to the secondary database.

You can configure log shipping to create multiple secondary database replicas by repeating steps
2 and 3 for each secondary server. Unlike FCl and Always On Availability Groups, log shipping
solutions don't provide automatic failover.

In the event the primary database becomes unavailable or unusable for any reason, an
administrator must configure the secondary database to serve as the primary and potentially
reconfigure all client applications to connect to the new database.

(® Note

You can use secondary databases used for read-only access, but require special handling.
For more information, see Configure Log Shipping (SQL Server) in the SQL Server
documentation.

The main characteristics of log shipping solutions are:

» Provides redundancy for a single primary database and one or more secondary databases. Log
shipping is considered less of a high availability solution due to the lack of automatic failover.

» Supports limited read-only access to secondary databases.

« Administrators have control over the timing and delays of the primary server log backup and
secondary server restoration.

« Longer delays can be useful if data is accidentally modified or deleted in the primary database.

SQL Server Usage 323

https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server?view=sql-server-ver15&viewFallbackFrom=sql-server-ver15Log
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-shipping-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information, see About Log Shipping (SQL Server) in the SQL Server documentation.

Examples

Configure an Always On Availability Group.

CREATE DATABASE DB1;
ALTER DATABASE DB1 SET RECOVERY FULL;
BACKUP DATABASE DB1 TO DISK = N'\\MyBackupShare\DB1\DBl.bak' WITH FORMAT;

CREATE ENDPOINT DBHA STATE=STARTED
AS TCP (LISTENER_PORT=7022) FOR DATABASE_MIRRORING (ROLE=ALL);

CREATE AVAILABILITY GROUP AG_DB1
FOR
DATABASE DB1
REPLICA ON
'SecondarySQL' WITH
(
ENDPOINT_URL = 'TCP://SecondarySQL.MyDomain.com:7022"',
AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
FAILOVER_MODE = MANUAL
e

-- On SecondarySQL
ALTER AVAILABILITY GROUP AG_DB1 JOIN;

RESTORE DATABASE DB1 FROM DISK = N'\\MyBackupShare\DB1\DB1.bak"
WITH NORECOVERY;

-- On Primary

BACKUP LOG DB1

TO DISK = N'\\MyBackupShare\DB1\DB1l_Tran.bak'
WITH NOFORMAT

-- On SecondarySQL

RESTORE LOG DB1
FROM DISK = N'\\MyBackupShare\DB1\DB1l_Tran.bak'
WITH NORECOVERY

ALTER DATABASE MyDbl SET HADR AVAILABILITY GROUP = MyAG;

SQL Server Usage 324

https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information, see Business continuity and database recovery - SQL Server in the SQL

Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) is a fully managed Platform
as a Service (PaaS) providing high availability capabilities. Amazon RDS provides database and
instance administration functionality for provisioning, patching, backup, recovery, failure detection,
and repair.

New Aurora PostgreSQL database instances are always created as part of a cluster. If you don't
specify replicas at creation time, a single-node cluster is created. You can add database instances to
clusters later.

Regions and Availability Zones

Amazon Relational Database Service (Amazon RDS) is hosted in multiple global locations. Each
location is composed of Regions and Availability Zones. Each Region is a separate geographic area
having multiple, isolated Availability Zones. Amazon RDS supports placement of resources such as
database instances and data storage in multiple locations. By default, resources aren't replicated
across regions.

Each Region is completely independent and each Availability Zone is isolated from all others.
However, the main benefit of Availability Zones within a Region is that they are connected through
low-latency, high bandwidth local network links.

/- ™

Amazon Web Services
. ™ ' T
Region Availability Region Availability
Zone / Zone
i ™y ' ™y
Availability Availability Availability Availability
Zone Zone Zone Zane
% ¥, n .
b A . >
h. vy

PostgreSQL Usage 325

https://docs.microsoft.com/en-us/sql/database-engine/sql-server-business-continuity-dr?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Resources may have different scopes. A resource may be global, associated with a specific region
(region level), or associated with a specific Availability Zone within a region. For more information,
see Resource locations in the User Guide for Linux Instances.

When you create a database instance, you can specify an availability zone or use the default No
preference option. In this case, Amazon chooses the availability zone for you.

You can distribute Aurora PostgreSQL instances across multiple availability zones. You can design
applications designed to take advantage of failover such that in the event of an instance in one
availability zone failing, another instance in different availability zone will take over and handle
requests.

You can use elastic IP addresses to abstract the failure of an instance by remapping the virtual
IP address to one of the available database instances in another Availability Zone. For more
information, see Elastic IP addresses in the User Guide for Linux Instances.

An Availability Zone is represented by a region code followed by a letter identifier. For example,
us-east-1a.

® Note

To guarantee even resource distribution across Availability Zones for a region, Amazon
RDS independently maps Availability Zones to identifiers for each account. For example,
the Availability Zone us-east-1a for one account might not be in the same location as us-
east-1a for another account. Users can't coordinate Availability Zones between accounts.

Aurora PostgreSQL DB Cluster

A DB cluster consists of one or more DB instances and a cluster volume that manages the data
for those instances. A cluster volume is a virtual database storage volume that may span multiple
Availability Zones with each holding a copy of the database cluster data.

An Amazon Aurora database cluster is made up of one of more of the following types of instances:

« A Primary instance that supports both read and write workloads. This instance is used for all DML
transactions. Every Amazon Aurora DB cluster has one, and only, one primary instance.

« An Amazon Aurora Replica that supports read-only workloads. Every Aurora PostgreSQL
database cluster may contain from zero to 15 Amazon Aurora Replicas in addition to the primary

PostgreSQL Usage 326

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/resources.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

instance for a total maximum of 16 instances. Amazon Aurora Replicas enable scale-out of

read operations by offloading reporting or other read-only processes to multiple replicas. Place

Amazon Aurora replicas in multiple availability Zones to increase availability of the databases.

Primary Aurora
Instance

Endpoints

-

Read

Availability zone C

Read
Replica

Read
Replica

O

Endpoints are used to connect to Aurora PostgreSQL databases. An endpoint is a Universal

Resource Locator (URL) comprised of a host address and port number.

» A Cluster Endpoint is an endpoint for an Amazon Aurora database cluster that connects to the

current primary instance for that database cluster regardless of the availability zone in which the

primary resides. Every Aurora PostgreSQL DB cluster has one cluster endpoint and one primary

instance. The cluster endpoint should be used for transparent failover for either read or write

workloads.

PostgreSQL Usage

327

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

® Note

Use the cluster endpoint for all write operations including all DML and DDL statements.

If the primary instance of a DB cluster fails for any reason, Amazon Aurora automatically
fails over server requests to a new primary instance. An example of a typical Aurora
PostgreSQL DB Cluster endpoint is: mydbcluster.cluster-123456789012.us-
east-1.rds.amazonaws.com:3306.

« A Reader Endpoint is an endpoint that is used to connect to one of the Aurora read-only replicas
in the database cluster. Each Aurora PostgreSQL database cluster has one reader endpoint.
If there are more than one Aurora Replicas in the cluster, the reader endpoint redirects the
connection to one of the available replicas. Use the Reader Endpoint to support load balancing
for read-only connections. If the DB cluster contains no replicas, the reader endpoint redirects
the connection to the primary instance. If an Aurora Replica is created later, the Reader Endpoint
starts directing connections to the new Aurora Replica with minimal interruption in service.
An example of a typical Aurora PostgreSQL DB Reader Endpoint is: mydbcluster.cluster-
10-123456789012.us-east-1.rds.amazonaws.com: 3306.

« An Instance Endpoint is a specific endpoint for every database instance in an Aurora DB
cluster. Every Aurora PostgreSQL DB instance regardless of its role has its own unique instance
endpoint. Use the Instance Endpoints only when the application handles failover and read
workload scale-out on its own. For example, you can have certain clients connect to one replica
and others to another. An example of a typical Aurora PostgreSQL DB Reader Endpoint is:
pgsdbinstance.123456789012.us-east-1.rds.amazonaws.com: 3306.

Some general considerations for using endpoints:

» Consider using the cluster endpoint instead of individual instance endpoints because it supports
high-availability scenarios. In the event that the primary instance fails, Aurora PostgreSQL
automatically fails over to a new primary instance. You can accomplish this configuration by
either promoting an existing Aurora Replica to be the new primary or by creating a new primary
instance.

o If you use the cluster endpoint instead of the instance endpoint, the connection is automatically
redirected to the new primary.

PostgreSQL Usage 328

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« If you choose to use the instance endpoint, you must use the Amazon RDS console or the API to
discover which database instances in the database cluster are available and their current roles.
Then, connect using that instance endpoint.

« Be aware that the reader endpoint load balances connections to Aurora Replicas in an Aurora
database cluster, but it doesn’t load balance specific queries or workloads. If your application
requires custom rules for distributing read workloads, use instance endpoints.

« The reader endpoint may redirect connection to a primary instance during the promotion of an
Aurora Replica to a new primary instance.

Amazon Aurora Storage

Aurora PostgreSQL data is stored in a cluster volume. The cluster volume is a single, virtual volume
that uses fast solid-state disk (SSD) drives. The cluster volume is comprised of multiple copies

of the data distributed between availability zones in a region. This configuration minimizes the
chances of data loss and allows for the failover scenarios mentioned in the preceding sections.

Amazon Aurora cluster volumes automatically grow to accommodate the growth in size of your
databases. An Aurora cluster volume has a maximum size of 64 terabytes (TiB). Since table size
is theoretically limited to the size of the cluster volume, the maximum table size in an Aurora DB
cluster is 64 TiB.

Storage Auto-Repair

The chance of data loss due to disk failure is greatly minimize due to the fact that Aurora
PostgreSQL maintains multiple copies of the data in three Availability Zones. Aurora PostgreSQL
detects failures in the disks that make up the cluster volume. If a disk segment fails, Aurora repairs
the segment automatically. Repairs to the disk segments are made using data from the other
cluster volumes to ensure correctness. This process allows Aurora to significantly minimize the
potential for data loss and the subsequent need to restore a database.

Survivable Cache Warming

When a database instance starts, Aurora PostgreSQL performs a warming process for the buffer
pool. Aurora PostgreSQL pre-loads the buffer pool with pages that have been frequently used
in the past. This approach improves performance and shortens the natural cache filling process
for the initial period when the database instance starts servicing requests. Aurora PostgreSQL
maintains a separate process to manage the cache, which can stay alive even when the database

PostgreSQL Usage 329

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

process restarts. The buffer pool entries remain in memory regardless of the database restart
providing the database instance with a fully warm buffer pool.

Crash Recovery

Aurora PostgreSQL can instantaneously recover from a crash and continue to serve requests. Crash
recovery is performed asynchronously using parallel threads enabling the database to remain open
and available immediately after a crash.

For more information, see Fault tolerance for an Aurora DB cluster in the User Guide for Aurora.

Examples

The following walkthrough demonstrates how to create a read-replica:

1. Log in to the Amazon Console, and choose RDS.

2. Select the instance and choose Instance actions, Create cross-region read replica.

rROS Databases

Databases
() Group resources (3 Modify Actions & Restore from 53 reate databas |
Stop
Q 1 &

DB identifier ne Region &

[o] mysgl-aurora-playbook a MySQL eu-central-
PR EE 4 Add Region @ MysQ !

mysql-aurora-playbook-instance-1 Add reader ra MysQL eu-central-

Create cross-Region read
replica

oraplaybook le Standard Edition Two eu-central-

3. On the next page, enter all required details and choose Create.

After the replica is created, you can run read and write operations on the primary instance and
read-only operations on the replica.

PostgreSQL Usage 330

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraHighAvailability.html#Aurora.Managing.FaultTolerance

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Summary

Feature

Server level failure
protection

Database level failure
protection

Log replication

Disk error protection

Maximum read-only
replicas

Failover address

Read-only workloads

SQL Server

Failover Cluster
Instances

Always On Availabil
ity Groups

Log Shipping

RESTORE... PAGE=

8 + Primary

Availability group
listener

READ INTENT
connection

Aurora PostgreSQL

N/A

Amazon Aurora
Replicas

N/A

Automatically

15 + Primary

Cluster endpoint

Read Endpoint

Comments

Not applicable.
Clustering is handled
by Aurora PostgreSQ
L.

Not applicable.
Aurora PostgreSQL
handles data replicati
on at the storage
level.

For more information, see Amazon Aurora DB clusters in the User Guide for Aurora and Regions and
Zones in the User Guide for Linux Instances.

Summary

331

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Migrating indexes to Aurora PostgreSQL

This topic provides reference information about migrating indexes from Microsoft SQL Server 2019
to Amazon Aurora PostgreSQL. It compares and contrasts how indexes are implemented and used
in both database systems, highlighting key differences and similarities. You'll gain insight into the
types of indexes supported, their limitations, and specific features available in each platform.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Indexes PostgreSQL doesn't
@ @ E @ @ @ support CLUSTERED
INDEX. Few missing

options.

SQL Server Usage

Indexes are physical disk structures used to optimize data access. They are associated with tables
or materialized views and allow the query optimizer to access rows and individual column values
without scanning an entire table.

An index consists of index keys, which are columns from a table or view. They are sorted in
ascending or descending order providing quick access to individual values for queries that use
equality or range predicates. Database indexes are similar to book indexes that list page numbers
for common terms. Indexes created on multiple columns are called composite indexes.

SQL Server implements indexes using the balanced tree algorithm (B-tree).

(® Note

SQL Server supports additional index types such as hash indexes (for memory-optimized
tables), spatial indexes, full text indexes, and XML indexes.

SQL Server Usage 332

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Indexes are created automatically to support table primary keys and unique constraints. They are
required to efficiently enforce uniqueness. You can create up to 250 indexes on a table to support
common queries.

SQL Server provides two types of B-tree indexes: clustered indexes and non-clustered indexes.

Clustered Indexes

Clustered indexes include all the table’s column data in their leaf level. The entire table data is
sorted and logically stored in order on disk. A clustered index is similar to a phone directory index
where the entire data is contained for every index entry. Clustered indexes are created by default
for primary key constraints. However, a primary key doesn’t necessarily need to use a clustered
index if it is explicitly specified as non-clustered.

Clustered indexes are created using the CREATE CLUSTERED INDEX statement. You can create
only one clustered index for each table because the index itself is the table's data. A table having
a clustered index is called a clustered table (also known as an index-organized table in other
relational database management systems). A table with no clustered index is called a heap.

Examples

Create a Clustered Index as part of table definition.

CREATE TABLE MyTable
(

Coll INT NOT NULL

PRIMARY KEY,

Col2 VARCHAR(20) NOT NULL
);

Create an explicit clustered index using CREATE INDEX.

CREATE TABLE MyTable
(
Coll INT NOT NULL
PRIMARY KEY NONCLUSTERED,
Col2 VARCHAR(20) NOT NULL
)8

CREATE CLUSTERED INDEX IDX1

Clustered Indexes 333

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

ON MyTable(Col2);

Non-Clustered Indexes

Non-clustered indexes also use the B-tree algorithm but consist of a data structure separate from
the table itself. They are also sorted by the index keys, but the leaf level of a non-clustered index
contains pointers to the table rows; not the entire row as with a clustered index.

You can create up to 999 non-clustered indexes on a SQL Server table. The type of pointer used at
the lead level of a non-clustered index (also known as a row locator) depends on whether the table
has a clustered index (clustered table) or not (heap). For heaps, the row locators use a physical
pointer (RID). For clustered tables, row locators use the clustering key plus a potential uniquifier.
This approach minimizes non-clustered index updates when rows move around, or the clustered
index key value changes.

Both clustered and non-clustered indexes may be defined as UNIQUE using the CREATE UNIQUE
INDEX statement. SQL Server maintains indexes automatically for a table or view and updates the
relevant keys when table data is modified.

Examples

Create a unique non-clustered index as part of table definition.

CREATE TABLE MyTable
(
Coll INT NOT NULL
PRIMARY KEY,
Col2 VARCHAR(20) NOT NULL
UNIQUE
I

Create a unique non-clustered index using CREATE INDEX.

CREATE TABLE MyTable
(
Coll INT NOT NULL
PRIMARY KEY CLUSTERED,
Col2 VARCHAR(20) NOT NULL
);

Non-Clustered Indexes 334

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE UNIQUE NONCLUSTERED INDEX IDX1 ON MyTable(Col2);

Filtered Indexes and Covering Indexes

SQL Server also supports two special options for non-clustered indexes. You can create filtered
indexes to index only a subset of a table's data. They are useful when it is known that the
application will not need to search for specific values such as NULLs.

For queries that typically require searching on particular columns but also need additional column
data from the table, you can configure non-clustered indexes. They include additional column data
in the index leaf level in addition to the row locator. This may prevent expensive lookup operations,
which follow the pointers to either the physical row location (in a heap) or traverse the clustered
index key to fetch the rest of the data not part of the index. If a query can get all the data it needs
from the non-clustered index leaf level, that index is considered a covering index.

Examples

Create a filtered index to exclude NULL values.

CREATE NONCLUSTERED INDEX IDX1
ON MyTable(Col2)
WHERE Col2 IS NOT NULL;

Create a covering index for queries that search on col2 but also need data from col3.

CREATE NONCLUSTERED INDEX IDX1
ON MyTable (Col2)
INCLUDE (Col3);

Indexes On Computed Columns

In SQL Server, you can create indexes on persisted computed columns. Computed columns are
table or view columns that derive their value from an expression based on other columns in the
table. They aren’t explicitly specified when data is inserted or updated. This feature is useful
when a query'’s filter predicates aren't based on the column table data as-is, but on a function or
expression.

Filtered Indexes and Covering Indexes 335

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples

For example, consider the following table that stores phone numbers for customers, but the format
isn't consistent for all rows; some include country code and some don't:

CREATE TABLE PhoneNumbers

(
PhoneNumber VARCHAR(15) NOT NULL
PRIMARY KEY,
Customer VARCHAR(20) NOT NULL

);

INSERT INTO PhoneNumbers
VALUES
('+1-510-444-3422"','Dan'),
('644-2442-3119"', 'John'),
('1-402-343-1991"', 'Jane');

The following query to look up the owner of a specific phone number must scan the entire table
because the index can't be used due to the preceding % wild card.

SELECT Customer
FROM PhoneNumbers
WHERE PhoneNumber LIKE '%510-444-3422"';

A potential solution would be to add a computed column that holds the phone number in reverse
order.

ALTER TABLE PhoneNumbers
ADD ReversePhone AS REVERSE(PhoneNumber)
PERSISTED;

CREATE NONCLUSTERED INDEX IDX1
ON PhoneNumbers (ReversePhone)
INCLUDE (Customer);

Now, you can use the following query to search for the customer based on the reverse string, which
places the wild card at the end of the LIKE predicate. This approach provides an efficient index
seek to retrieve the customer based on the phone number value.

Indexes On Computed Columns 336

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

DECLARE @ReversePhone VARCHAR(15) = REVERSE('510-444-3422');
SELECT Customer

FROM PhoneNumbers

WHERE ReversePhone LIKE @ReversePhone + '%';

For more information, see Clustered and nonclustered indexes described and CREATE INDEX

(Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) supports balanced tree (B-
tree) indexes similar to SQL Server. However, the terminology, use, and options for these indexes
are different.

Aurora PostgreSQL is missing the CLUSTERED INDEX feature but has other options which SQL
Server doesn’t have, index prefix, and binary large object (BLOB) indexing.

Starting with PostgreSQL 10, there are many improvements in performance, related to joins and
parallel scans of the indexes.

Starting with PostgreSQL 12, you can monitor progress of CREATE INDEX and REINDEX
operations by querying the pg_stat_progress_create_index system view.

Cluster Table

PostgreSQL doesn’t support cluster tables directly, but provides similar functionality using the
CLUSTER feature. The PostgreSQL CLUSTER statement specifies table sorting based on an index
already associated with the table. When using the PostgreSQL CLUSTER command, the data in the
table is physically sorted based on the index, possibly using a primary key column.

You can use the CLUSTER statement to re-cluster the table.

Examples

CREATE TABLE SYSTEM_EVENTS (
EVENT_ID NUMERIC,
EVENT_CODE VARCHAR(1@) NOT NULL,
EVENT_DESCIPTION VARCHAR(200),

PostgreSQL Usage 337

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

EVENT_TIME DATE NOT NULL,
CONSTRAINT PK_EVENT_ID PRIMARY KEY(EVENT_ID));

INSERT INTO SYSTEM_EVENTS VALUES(9, 'EV-A1-10', 'Critical', '01-JAN-2017');
INSERT INTO SYSTEM_EVENTS VALUES(1, 'EV-C1-09', 'Warning', '01-JAN-2017');
INSERT INTO SYSTEM_EVENTS VALUES(7, 'EV-E1-14', 'Critical', '01-JAN-2017');

CLUSTER SYSTEM_EVENTS USING PK_EVENT_ID;
SELECT * FROM SYSTEM_EVENTS;

event_id event_code event_desciption event_time

1 EVNT-C1-09 Warning 2017-01-01
7 EVNT-E1-14 Critical 2017-01-01
9 EVNT-A1-10 Critical 2017-01-01

INSERT INTO SYSTEM_EVENTS VALUES(2, 'EV-E2-02', 'Warning', '01-JAN-2017');
SELECT * FROM SYSTEM_EVENTS;

event_id event_code event_desciption event_time

1 EVNT-C1-09 Warning 2017-01-01
7 EVNT-E1-14 Critical 2017-01-01
9 EVNT-A1-10 Critical 2017-01-01
2 EVNT-E2-02 Warning 2017-01-01

CLUSTER SYSTEM_EVENTS USING PK_EVENT_ID; -- Run CLUSTER again to re-cluster
SELECT * FROM SYSTEM_EVENTS;

event_id event_code event_desciption event_time

1 EVNT-C1-09 Warning 2017-01-01
2 EVNT-E2-02 Warning 2017-01-01
7 EVNT-E1-14 Critical 2017-01-01
9 EVNT-A1-10 Critical 2017-01-01

B-tree Indexes

When you create an index in PostgreSQL, a B-tree index is created by default, similar to the
behavior in SQL Server. PostgreSQL B-tree indexes have the same characteristics as SQL Server and
can handle equality and range queries on data. The PostgreSQL optimizer considers using B-tree
indexes especially for one or more of the following operators in queries: >, >=, <, #, =.

In addition, you can achieve performance improvements when using IN, BETWEEN, IS NULL, or IS
NOT NULL.

B-tree Indexes 338

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Starting with PostgreSQL 10, there is a support of parallel B-tree index scans. This change allows

this index type pages to be searched by separate parallel workers.
Example

Create a PostgreSQL B-Tree Index.

CREATE INDEX IDX_EVENT_ID ON SYSTEM_LOG(EVENT_ID);
OR
CREATE INDEX IDX_EVENT_ID1 ON SYSTEM_LOG USING BTREE (EVENT_ID);

For more information, see CREATE INDEX in the PostgreSQL documentation.

Column and Multiple Column Secondary Indexes

Currently, only B-tree, GiST, GIN, and BRIN support multicolumn indexes. You can specify 32
columns when you create a multicolumn index.

PostgreSQL uses the same syntax as SQL Server to create multicolumn indexes.
Examples

Create a multicolumn index on the EMPLOYEES table.

CREATE INDEX IDX_EMP_COMPI
ON EMPLOYEES (FIRST_NAME, EMAIL, PHONE_NUMBER);

Drop a multicolumn index.

DROP INDEX IDX_EMP_COMPI;

For more information, see Multicolumn Indexes in the PostgreSQL documentation.

Expression Indexes and Partial Indexes

Create an Expression Index in PostgreSQL.

CREATE TABLE SYSTEM_EVENTS(
EVENT_ID NUMERIC PRIMARY KEY,
EVENT_CODE VARCHAR(1@) NOT NULL,

Column and Multiple Column Secondary Indexes

339

https://www.postgresql.org/docs/13/sql-createindex.html
https://www.postgresql.org/docs/13/indexes-multicolumn.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

EVENT_DESCIPTION VARCHAR(200),
EVENT_TIME TIMESTAMP NOT NULL);

CREATE INDEX EVNT_BY_DAY ON SYSTEM_EVENTS(EXTRACT(DAY FROM EVENT_TIME));

Insert records into the SYSTEM_EVENTS table, gathering table statistics using the ANALYZE
statement and verifying that the EVNT_BY_DAY expression index is being used for data access.

INSERT INTO SYSTEM_EVENTS
SELECT ID AS event_id,

"EVNT-A'||ID+9||'-"'||ID AS event_code,
CASE WHEN mod(ID,2) = @ THEN 'Warning' ELSE 'Critical' END AS event_desc,
now() + INTERVAL 'l minute' * ID AS event_time
FROM
(SELECT generate_series(1,1000000) AS ID) A;

INSERT 0 1000000

ANALYZE SYSTEM_EVENTS;
ANALYZE

EXPLAIN
SELECT * FROM SYSTEM_EVENTS
WHERE EXTRACT(DAY FROM EVENT_TIME) = '22°';

QUERY PLAN
Bitmap Heap Scan on system_events (cost=729.08..10569.58 rows=33633 width=41)
Recheck Cond: (date_part('day'::text, event_time) = '22'::double precision)

-> Bitmap Index Scan on evnt_by_day (cost=0.00..720.67 rows=33633 width=0)
Index Cond: (date_part('day'::text, event_time) = '22'::double precision)

Partial Indexes

PostgreSQL also provides partial indexes, which are indexes that use a WHERE clause when created.
The most significant benefit of using partial indexes is a reduction of the overall subset of indexed
data, allowing users to index relevant table data only. You can use partial indexes to increase
efficiency and reduce the size of the index.

Example

The following example creates a PostgreSQL partial Index.

Partial Indexes 340

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE TABLE SYSTEM_EVENTS(
EVENT_ID NUMERIC PRIMARY KEY,
EVENT_CODE VARCHAR(1@) NOT NULL,
EVENT_DESCIPTION VARCHAR(200),
EVENT_TIME DATE NOT NULL);

CREATE INDEX IDX_TIME_CODE ON SYSTEM_EVENTS(EVENT_TIME)
WHERE EVENT_CODE like '01-A%';

For more information, see Building Indexes Concurrently in the PostgreSQL documentation.

BRIN Indexes

PostgreSQL doesn't provide native support for BITMAP indexes. However, you can use a BRIN index,
which splits table records into block ranges with MIN/MAX summaries. A BRIN index is a partial
alternative for certain analytic workloads. For example, BRIN indexes are suited for queries that rely
heavily on aggregations to analyze large numbers of records.

Example

The following example creates a PostgreSQL BRIN index.

CREATE INDEX IDX_BRIN_EMP ON EMPLOYEES USING BRIN(salary);

Summary

The following table summarizes the key differences to consider when migrating b-tree indexes
from SQL Server to Aurora PostgreSQL.

Index feature SQL Server Aurora PostgreSQL
Clustered indexes supported Table keys, composite or On indexes.
for single column, unique and

non-unique, null or not null.

Non-clustered indexes Table keys, composite or Table keys, composite or
supported for single column, unique and single column, unique and
non-unique, null or not null. non-unique, null or not null.

BRIN Indexes 341

https://www.postgresql.org/docs/13/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Index feature

Max number of non-clustered
indexes

Max total index key size
Max columns for each index
Index prefix

Filtered indexes

Indexes on BLOBs

SQL Server

999

900 bytes
32

N/A
Supported

N/A

Aurora PostgreSQL

N/A

N/A

32

Supported

Supported (partial indexes)

Supported

For more information, see Index Types, CREATE INDEX, CLUSTER, and Building Indexes

Concurrently in the PostgreSQL documentation.

Summary

342

https://www.postgresql.org/docs/13/indexes-types.html
https://www.postgresql.org/docs/13/sql-createindex.html
https://www.postgresql.org/docs/13/sql-cluster.html
https://www.postgresql.org/docs/13/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY
https://www.postgresql.org/docs/13/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Migrating management features to Aurora PostgreSQL

This topic provides conceptual content comparing various aspects of Microsoft SQL Server 2019
and Amazon Aurora PostgreSQL in the context of database migration. It covers key differences

in features and functionalities such as task scheduling, alerting, email capabilities, ETL processes,
data export/import, logging, maintenance tasks, monitoring, resource management, linked servers,
and scripting. By understanding these differences, you can better plan and execute your migration
strategy from SQL Server to Aurora PostgreSQL. The content highlights alternative solutions

and workarounds available in the Amazon ecosystem to replicate or replace SQL Server-specific
features, helping you anticipate challenges and adapt your database management practices. This
comprehensive comparison enables database administrators and developers to make informed
decisions and smooth their transition when migrating from SQL Server to Aurora PostgreSQL.

Topics

« SQL Server Agent and PostgreSQL

» Alerting features

o Database mail features

o ETL features

« Export and import features

» Viewing server logs

« Maintenance plans

« Monitoring features

» Resource governor features

« Linked servers

» Scripting features

SQL Server Agent and PostgreSQL

This topic provides reference information about the differences between SQL Server Agent and
PostgreSQL in the context of migrating from Microsoft SQL Server 2019 to Amazon Aurora
PostgreSQL. You can understand the key functions of SQL Server Agent, including scheduling
automated maintenance jobs and alerting, and how these features are utilized in SQL Server.

SQL Server Agent and PostgreSQL 343

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

SQL Server Agent provides two main functions: scheduling automated maintenance jobs and
alerting.

(® Note

Other SQL Server built-in frameworks such as replication, also use SQL Server Agent jobs.

For more information, see Maintenance Plans and Alerting.

PostgreSQL Usage

Currently, there is no equivalent in Amazon Aurora PostgreSQL-Compatible Edition (Aurora
PostgreSQL) for scheduling tasks but you can create scheduled Amazon Lambda that will run a
stored procedure. Find an example in Database Mail.

Alerting features

This topic provides reference information about alert and notification systems in SQL Server and
Amazon Aurora PostgreSQL. You can understand how SQL Server Agent generates alerts for
various events and performance conditions, and how it allows for customized responses.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Use Amazon RDS
@ event notification
with Amazon Simple

Notification Service.

SQL Server Usage

SQL Server provides SQL Server Agent to generate alerts. When running, SQL Server Agent
constantly monitors SQL Server windows application log messages, performance counters, and

SQL Server Usage

344

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Events.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Events.html
https://www.amazonaws.cn/sns/
https://www.amazonaws.cn/sns/

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Windows Management Instrumentation (WMI) objects. When a new error event is detected, the
agent checks the msdb database for configured alerts and runs the specified action.

You can define SQL Server Agent alerts for the following categories:

e SQL Server events.
« SQL Server performance conditions.

« WMI events.

For SQL Server events, the alert options include the following settings:

Error Number — Alert when a specific error is logged.

Severity Level — Alert when any error in the specified severity level is logged.

Database — Filter the database list for which the event will generate an alert.

Event Text — Filter specific text in the event message.

(@ Note

SQL Server Agent is pre-configured with several high severity alerts. It is highly
recommended to turn on these alerts.

To generate an alert in response to a specific performance condition, specify the performance
counter to be monitored, the threshold values for the alert, and the predicate for the alert to occur.
The following list identifies the performance alert settings:

Object — The Performance counter category or the monitoring area of performance.

Counter — A counter is a specific attribute value of the object.

Instance — Filter by SQL Server instance (multiple instances can share logs).

Alert if counter and Value — The threshold for the alert and the predicate. The threshold is a
number. Predicates are falls below, becomes equal to, or rises above the threshold.

WMI events require the WMI namespace and the WMI Query Language (WQL) query for specific
events.

SQL Server Usage 345

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

You can assign alerts to specific operators with schedule limitations and multiple response types
including:

e Run an SQL Server Agent job.

» Send Email, Net Send command, or a pager notification.

You can configure alerts and responses with SQL Server Management Studio or system stored
procedures.

Example

Configure an alert for all errors with severity 20.

EXEC msdb.dbo.sp_add_alert

@name = N'Severity 20 Error Alert',

@severity = 20,

@notification_message = N'A severity 20 Error has occurred. Initiating emergency
procedure',

@job_name = N'Error 20 emergency response';

For more information, see Alerts in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) doesn’t support direct
configuration of engine alerts. Use the Event Notifications Infrastructure to collect history logs or
receive event notifications in near real-time.

Amazon Relational Database Service (Amazon RDS) uses Amazon Simple Notification Service
(Amazon SNS) to provide notifications for events. SNS can send notifications in any form supported
by the region including email, text messages, or calls to HTTP endpoints for response automation.

Events are grouped into categories. You can only subscribe to event categories, not individual
events. SNS sends notifications when any event in a category occurs.

You can subscribe to alerts for database instances, database clusters, database snapshots, database
cluster snapshots, database security groups, and database parameter groups. For example, a
subscription to the Backup category for a specific database instance sends notifications when

PostgreSQL Usage 346

https://docs.microsoft.com/en-us/sql/ssms/agent/alerts?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

backup related events occur on that instance. A subscription to a Configuration Change category
for a database security group sends notifications when the security group changes.

(® Note

For Amazon Aurora, some events occur at the cluster rather than instance level. You will
not receive those events if you subscribe to an Amazon Aurora DB instance.

SNS sends event notifications to the address specified when the subscription was created. Typically,
administrators create several subscriptions. For example, one subscription to receive logging events
and another to receive only critical events for a production environment requiring immediate
responses.

You can disable notifications without deleting a subscription by setting the Enabled radio button
to No in the Amazon RDS console. Alternatively, use the Command Line Interface (CLI) or Amazon
RDS API to change the Enabled setting.

Subscriptions are identified by the Amazon Resource Name (ARN) of an Amazon SNS topic. The
Amazon RDS console creates ARNs when subscriptions are created. When using the CLI or API, you
must create the ARN using the Amazon SNS console or the Amazon SNS API.

Examples

The following walkthrough demonstrates how to create an event notification subscription.

1. Sign in to your Amazon account, and choose RDS.

2. Choose Events on the left navigation pane. This screen that presents relevant Amazon RDS
events occurs.

3. Choose Event subscriptions and then choose Create event subscription.

4. Enter the Name of the subscription and select a Target of ARN or Email. For email
subscriptions, enter values for Topic name and With these recipients.

5. Select the event source, choose specific event categories to be monitored, and choose Create.

6. On the Amazon RDS dashboard, choose Recent events.

For more information, see Using Amazon RDS event notification in the Amazon Relational Database
Service User Guide.

PostgreSQL Usage 347

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Events.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Raising Errors from Within the Database
The following table shows the PostgreSQL log severity levels.
Log type Information written to log
DEBUGL1..DEBUG5 Provides successively-more-detailed informati
on for use by developers.
INFO Provides information implicitly requested by
the user.
NOTICE Provides information that might be helpful to
users.
WARNING Provides warnings of likely problems.
ERROR Reports the error that caused the current
command to abort.
LOG Reports information of interest to administr
ators.
FATAL Reports the error that caused the current
session to abort.
PANIC Reports the error that caused all database
sessions to abort.
Several parameters control how and where PostgreSQL log and errors files are placed:
Parameter Description
log_filename Sets the file name pattern for log files. To

modify, use an Aurora Database Parameter
Group.

PostgreSQL Usage 348

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Parameter

log_rotation_age

log_rotation_size

log_min_messages

log_min_error_statement

log_min_duration_statement

® Note

Description

(min) Automatic log file rotation will occur
after N minutes. To modify, use an Aurora
Database Parameter Group.

(kB) Automatic log file rotation will occur
after N kilobytes. To modify, use an Aurora
Database Parameter Group.

Sets the message levels that are logged, such
as DEBUG, ERROR, INFO, and so on. To modify,
use an Aurora Database Parameter Group.

Causes all statements generating errors at or
above this level to be logged, such as DEBUG,
ERROR, INFO, and so on. To modify, use an
Aurora Database Parameter Group.

Sets the minimum run time above which
statements will be logged (ms). To modify, use
an Aurora Database Parameter Group.

Modifications to certain parameters such as 1og_directory (which sets the destination

directory for log files) or logging_collector (which starts a subprocess to capture the

stderr output or csvlogs into log files) are disabled for an Aurora PostgreSQL instance.

For more information, see Error Reporting and Logging in the PostgreSQL documentation.

Database mail features

This topic provides reference information about email capabilities in Microsoft SQL Server and

their counterparts in Amazon Aurora PostgreSQL. You can understand the differences in email

Database mail features

349

https://www.postgresql.org/docs/13/runtime-config-logging.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

functionality between these two database systems and learn about alternative solutions for
sending emails from Aurora PostgreSQL.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

@ N/A SQL Server Mail Use Lambda integrati
on.

SQL Server Usage

The Database Mail framework is an email client solution for sending messages directly from SQL
Server. Email capabilities and APIs within the database server provide easy management of the
following messages:

» Server administration messages such as alerts, logs, status reports, and process confirmations.

» Application messages such as user registration confirmation and action verifications.

(® Note
Database Mail is turned off by default.

The main features of the Database Mail framework are:
» Database Mail sends messages using the standard and secure Simple Mail Transfer Protocol
(SMTP) .

« The email client engine runs asynchronously and sends messages in a separate process to
minimize dependencies.

» Database Mail supports multiple SMTP Servers for redundancy.

« Full support and awareness of Windows Server Failover Cluster for high availability
environments.

» Multi-profile support with multiple failover accounts in each profile.

SQL Server Usage 350

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

» Enhanced security management with separate roles in the msdb database.
» Security is enforced for mail profiles.

« Administrators can monitor and cap attachment sizes.

» You can add attachment file types to a deny list.

» You can log Email activity to SQL Server, the Windows application event log, and a set of system
tables in the msdb database.

« Supports full auditing capabilities with configurable retention policies.

» Supports both plain text and HTML messages.

Architecture

Database Mail is built on top of the Microsoft SQL Server Service Broker queue management
framework.

The system stored procedure sp_send_dbmail sends email messages. When you run this stored
procedure, it inserts a row to the mail queue and records the Email message.

The queue insert operation triggers the run of the Database Mail process (DatabaseMail.exe).
The Database Mail process then reads the Email information and sends the message to the SMTP
servers.

When the SMTP servers acknowledge or reject the message, the Database Mail process inserts a
status row into the status queue, including the result of the send attempt. This insert operation
triggers the run of a system stored procedure that updates the status of the Email message send
attempt.

Database Mail records all Email attachments in the system tables. SQL Server provides a set of
system views and stored procedures for troubleshooting and administration of the Database Mail
queue.

Deprecated SQL Mail framework

The previous SQL Mail framework using xp_sendmail has been deprecated as of SQL Server
2008R2. For more information, see Deprecated Database Engine Features in SQL Server 2008 R2 in

the SQL Server documentation.

SQL Server Usage 351

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The legacy mail system has been completely replaced by the greatly enhanced DB mail framework

described here. The previous system has been out of use for many years because it was prone to
synchronous run issues and windows mail profile quirks.

Syntax

EXECUTE sp_send_dbmail
[[,eprofile_name =] '<Profile Name>']
[,[,@erecipients =] '<Recipients>"']
[,[,@copy_recipients =] '<CC Recipients>"']
[,[,eblind_copy_recipients =] '<BCC Recipients>"']
[,[,efrom_address =] '<From Address>']
[,[,ereply_to =] '<Reply-to Address>']
[,[,@subject =] '<Subject>"']
[,[,ebody =] '<Message Body>']
[,[,@body_format =] '<Message Body Format>']
[,[,@importance =] '<Importance>"']
[,[,@sensitivity =] '<Sensitivity>']
[,[,efile_attachments =] '<Attachments>']
[,[,equery =] '<SQL Query>']
[,[,eexecute_query_database =] '<Execute Query Database>']
[,[,@attach_query_result_as_file =] <Attach Query Result as File>]
[,[,equery_attachment_filename =] <Query Attachment Filename>]
[, [
[, [
[, [
[, [
[, [
[, [
[, [
[, [

’
’
’
’
’
’

’

,@query_result_header =] <Query Result Header>]

,@query_result_width =] <Query Result Width>]

,@query_result_separator =] '<Query Result Separator>']
,@exclude_query_output =] <Exclude Query Output>]

,@append_query_error =] <Append Query Error>]

,@query_no_truncate =] <Query No Truncate>]

,@query_result_no_padding =] @<Parameter for Query Result No Padding>]
,@mailitem_id =] <Mail item id>] [,OUTPUT]

’
’
’
’
’
’
’

Examples
Create a Database Mail account.

EXECUTE msdb.dbo.sysmail_add_account_sp

@account_name = 'MailAccountl',

@description = 'Mail account for testing DB Mail',
@email_address = 'Address@MyDomain.com',
@replyto_address = 'ReplyAddress@MyDomain.com',
@display_name = 'Mailer for registration messages'’,

SQL Server Usage

352

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

@mailserver_name = 'smtp.MyDomain.com' ;

Create a Database Mail profile.

EXECUTE msdb.dbo.sysmail_add_profile_sp
@profile_name = 'MailAccountl Profile’,
@description = 'Mail Profile for testing DB Mail' ;

Associate the account with the profile.

EXECUTE msdb.dbo.sysmail_add_profileaccount_sp
@profile_name = 'MailAccountl Profile’,
@account_name = 'MailAccountl',
@sequence_number =1 ;

Grant the profile access to the DBMailUsers role.

EXECUTE msdb.dbo.sysmail_add_principalprofile_sp
@profile_name = 'MailAccountl Profile’,
@principal_name = 'ApplicationUser',
@is_default = 1 ;

Send a message with sp_db_sendmail.

EXEC msdb.dbo.sp_send_dbmail
@profile_name = 'MailAccountl Profile’,
@recipients = 'Recipient@Mydomain.com',
@query = 'SELECT * FROM fn_WeeklySalesReport(GETDATE())',
@subject = 'Weekly Sales Report',
@attach_query_result_as_file = 1 ;

For more information, see Database Mail in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) doesn't provide native
support for sending email message from the database. For alerting purposes, use the Event
Notification Subscription feature to send email notifications to operators. For more information,

see Alerting.

PostgreSQL Usage 353

https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The only way to send an Email from the database is to use Amazon Lambda integration. For more
information, see Amazon Lambda.

Examples

The following walkthrough shows how to send an Email from Aurora PostgreSQL using Amazon
Lambda integration.

First, configure Amazon Simple Email Service (Amazon SES). For more information, see What is

Amazon SES? in the Amazon Simple Email Service Developer Guide.

1. In the Amazon console, choose SES, SMTP Settings, and then choose Create My SMTP
Credentials. Copy the SMTP server name, which you will use in the Amazon Lambda function.

2. For IAM User Name, enter the SMTP user name, and then choose Create.

3. Save the credentials, which you will use to authenticate with the SMTP server. After you leave
this page, you can't retrieve these credentials.

4. In the Amazon console, choose SES, Email Addresses, and then choose Verify a New Email
Address. Before you send emails, verify the email address.

5. After you verify the email, create a table to store messages to be sent by the Amazon Lambda
function.

CREATE TABLE emails (title varchar(600), body varchar(600), recipients varchar(600));

6. In the Amazon console, choose Lambda, and then choose Create function.

7. Select Author from scratch, enter a name for your project, and select Python 2.7 as the runtime.
Make sure that you use a role with the correct permissions. Choose Create function.

8. Download this GitHub project.

9. In your local environment, create two files: main.py and db_util.py. Copy and paste the
following content into these files. Make sure that you replace the code placeholders with values
for your environment.

main.py

#1/usr/bin/python
import sys

import logging
import psycopg2

PostgreSQL Usage 354

https://www.amazonaws.cn/lambda
https://docs.amazonaws.cn/ses/latest/dg/Welcome.html
https://docs.amazonaws.cn/ses/latest/dg/Welcome.html
https://github.com/alexcasalboni/awslambda-psycopg2

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

from db_util import make_conn, fetch_data

def lambda_handler(event, context):
query_cmd = "select * from mails"
print query_cmd

get a connection, if a connect can't be made an exception will be raised here
conn = make_conn()

result = fetch_data(conn, query_cmd)
conn.close()

return result

db_util.py:

#!/usr/bin/python

import psycopg2

import smtplib

import email.utils

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

db_host = 'YOUR_RDS_HOST'
db_port = 'YOUR_RDS_PORT'
db_name = 'YOUR_RDS_DBNAME'
db_user = 'YOUR_RDS_USER'
db_pass = 'YOUR_RDS_PASSWORD'

def sendEmail(recp, sub, message):
Replace sender@example.com with your "From" address.
This address must be verified.
SENDER = 'PUT HERE THE VERIFIED EMAIL'
SENDERNAME = 'Lambda'

Replace recipient@example.com with a "To" address. If your account
is still in the sandbox, this address must be verified.
RECIPIENT = recp

Replace smtp_username with your Amazon SES SMTP user name.
USERNAME_SMTP = "YOUR_SMTP_USERNAME"

Replace smtp_password with your Amazon SES SMTP password.
PASSWORD_SMTP = "YQOUR_SMTP PASSWORD"

PostgreSQL Usage 355

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

(Optional) the name of a configuration set to use for this message.
If you comment out this line, you also need to remove or comment out
the "X-SES-CONFIGURATION-SET:" header.

CONFIGURATION_SET = "ConfigSet"

If you're using Amazon SES in a region other than US West (Oregon),
replace email-smtp.us-west-2.amazonaws.com with the Amazon SES SMTP
endpoint in the appropriate region.

HOST = "YOUR_SMTP_SERVERNAME"

PORT = 587

The subject line of the email.
SUBJECT = sub

The email body for recipients with non-HTML email clients.
BODY_TEXT = ("Amazon SES Test\r\n"
"This email was sent through the Amazon SES SMTP "
"Interface using the Python smtplib package."

The HTML body of the email.

BODY_HTML = """<html>

<head></head>

<body>

<hl>Amazon SES SMTP Email Test</h1>""" + message + """</body>
</html>

Create message container - the correct MIME type is multipart/alternative.
msg = MIMEMultipart('alternative')

msg['Subject'] = SUBJECT

msg['From'] = email.utils.formataddr((SENDERNAME, SENDER))

msg['To'] = RECIPIENT

Comment or delete the next line if you aren't using a configuration set
#msg.add_header('X-SES-CONFIGURATION-SET', CONFIGURATION_SET)

Record the MIME types of both parts - text/plain and text/html.
partl = MIMEText(BODY_TEXT, 'plain')
part2 = MIMEText(BODY_HTML, 'html')

Attach parts into message container.
According to RFC 2046, the last part of a multipart message, in this case

PostgreSQL Usage 356

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

def

the HTML message, is best and preferred.
msg.attach(partl)
msg.attach(part2)

Try to send the message.
try:
server = smtplib.SMTP(HOST, PORT)
server.ehlo()
server.starttls()
#stmplib docs recommend calling ehlo() before & after starttls()
server.ehlo()
server.login(USERNAME_SMTP, PASSWORD_SMTP)
server.sendmail (SENDER, RECIPIENT, msg.as_string())
server.close()

Display an error message if something goes wrong.
except Exception as e:

print ("Error: ", e)
else:

print ("Email sent!")

make_conn():
conn = None
try:
conn = psycopg2.connect("dbname="5%s

user='%s' host='%s

(db_name, db_user, db_host, db_pass))

def

except:
print "I am unable to connect to the database"
return conn

fetch_data(conn, query):
result = []
print "Now running:

[J

%s" % (query)
cursor = conn.cursor()
cursor.execute(query)

print("Number of new mails to be sent: ", cursor.rowcount)
raw = cursor.fetchall()
for line in raw:

print(line[@])
sendEmail(line[2],1ine[@],1line[1])

password="%

[TI)
)

PostgreSQL Usage

357

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

result.append(line)

cursor.execute('delete from mails')
cursor.execute('commit')

return result

(® Note
In the body of db_util.py, Amazon Lambda deletes the content of the mails table.

T10Place the main.py and db_util. py files inside the GitHub extracted folder and create a new
archive file using the ZIP file format that includes your two new files.

T11Return to your Lambda project and change the Code entry type to Upload a .ZIP file, change
the Handler to mail.lambda_handler, and upload the file. Choose Save.

12To test the lambda function, choose Test and enter the Event name.

® Note

You can trigger the Amazon Lambda function by multiple options. This walkthrough
demonstrates how to schedule it to run every minute. Remember, you are paying for
each Amazon Lambda run.

13To create a scheduled trigger, use Amazon CloudWatch, enter all details, and choose Add.

® Note

This example runs every minute, but you can use a different interval. For more
information, see Schedule expressions using rate or cron.

14Choose Save.

ETL features

This topic provides reference information about migrating ETL (Extract, Transform, Load)
functionality from Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL. It introduces Amazon

ETL features 358

https://docs.amazonaws.cn/lambda/latest/dg/services-cloudwatchevents-expressions.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Glue as an alternative to SQL Server's native ETL tools, specifically SQL Server Integration Services
(SSIS) which replaced the older Data Transformation Services (DTS).

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Use Amazon Glue for
ETL.

SQL Server Usage

SQL Server offers a native extract, transform, and load (ETL) framework of tools and services to
support enterprise ETL requirements. The legacy Data Transformation Services (DTS) has been
deprecated as of SQL Server 2008 and replaced with SQL Server Integration Services (SSIS), which
was introduced in SQL Server 2005. For more information, see Data Transformation Services (DTS)

in the SQL Server documentation.
DTS

DTS was introduced in SQL Server version 7 in 1998. It was significantly expanded in SQL Server
2000 with features such as FTP, database level operations, and Microsoft Message Queuing
(MSMQ) integration. It included a set of objects, utilities, and services that enabled easy, visual
construction of complex ETL operations across heterogeneous data sources and targets.

DTS supported OLE DB, ODBC, and text file drivers. It allowed transformations to be scheduled
using SQL Server Agent. For more information, see SQL Server Agent. DTS also provided version

control and backup capabilities with version control systems such as Microsoft Visual SourceSafe.

The fundamental entity in DTS was the DTS Package. Packages were the logical containers for DTS
objects such as connections, data transfers, transformations, and notifications. The DTS framework
also included the following tools:

DTS Wizards.

DTS Package Designers.

DTS Query Designer.
DTS Run Utility.

SQL Server Usage 359

https://www.amazonaws.cn/glue
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/cc707786(v=sql.105)

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SSIS

The SSIS framework was introduced in SQL Server 2005, but was limited to the top-tier editions
only, unlike DTS which was available with all editions.

SSIS has evolved over DTS to offer a true modern, enterprise class, heterogeneous platform for a
broad range of data migration and processing tasks. It provides a rich workflow-oriented design
with features for all types of enterprise data warehousing. It also supports scheduling capabilities
for multi-dimensional cubes management.

SSIS provides the following tools:

o SSIS Import/Export Wizard is an SQL Server Management Studio extension that enables
quick creation of packages for moving data between a wide array of sources and destinations.
However, it has limited transformation capabilities.

« SQL Server Business Intelligence Development Studio (BIDS) is a developer tool for creating
complex packages and transformations. It provides the ability to integrate procedural code into
package transformations and provides a scripting environment. Recently, BIDS has been replaced
by SQL Server Data Tools - Business intelligence (SSDT-BI).

SSIS objects include:

« Connections.

« Event handlers.

» Workflows.

 Error handlers.

« Parameters (starting with SQL Server 2012).
« Precedence constraints.

 Tasks.

« Variables.

SSIS packages are constructed as XML documents and you can save them to the file system or store
within a SQL Server instance using a hierarchical name space.

For more information, see SQL Server Integration Services in the SQL Server documentation and

Data Transformation Services in Wikipedia.

SQL Server Usage 360

https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://en.wikipedia.org/wiki/Data_Transformation_Services

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) provides Amazon Glue for

enterprise class extract, transform, and load (ETL). It is a fully managed service that performs
data cataloging, cleansing, enriching, and movement between heterogeneous data sources
and destinations. Being a fully managed service, the user doesn’t need to be concerned with
infrastructure management.

Amazon Glue Key Features

Integrated data catalog

The Amazon Glue Data Catalog is a persistent metadata store, that you can use to store all data
assets, whether in the cloud or on-premises. It stores table schemas, job steps, and additional
meta data information for managing these processes. Amazon Glue can automatically calculate
statistics and register partitions to make queries more efficient. It maintains a comprehensive
schema version history for tracking changes over time.

Automatic schema discovery

Amazon Glue provides automatic crawlers that can connect to source or target data providers.

The crawler uses a prioritized list of classifiers to determine the schema for your data and then
generates and stores the metadata in the Amazon Glue Data Catalog. You can schedule crawlers or
run on-demand. You can also trigger a crawler when an event occurs to keep metadata current.

Code generation

Amazon Glue automatically generates the code to extract, transform, and load data. All you need
to do is point Glue to your data source and target. The ETL scripts to transform, flatten, and enrich
data are created automatically. You can generate Amazon Glue scripts in Scala or Python and use
them in Apache Spark.

Developer endpoints

When interactively developing Amazon Glue ETL code, Amazon Glue provides development
endpoints for editing, debugging, and testing. You can use any IDE or text editor for ETL
development. You can import custom readers, writers, and transformations into Glue ETL jobs
as libraries. You can also use and share code with other developers in the Amazon Glue GitHub

repository.

Flexible job scheduler

PostgreSQL Usage 361

https://www.amazonaws.cn/glue
https://github.com/awslabs/aws-glue-libs
https://github.com/awslabs/aws-glue-libs

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

You can trigger Amazon Glue jobs for running either on a pre-defined schedule, on-demand, or as a
response to an event.

You can start multiple jobs in parallel and explicitly define dependencies across jobs to build
complex ETL pipelines. Amazon Glue handles all inter-job dependencies, filters bad data, and
retries failed jobs. All logs and notifications are pushed to Amazon CloudWatch; you can monitor
and get alerts from a central service.

Migration Considerations

You can use Amazon Schema Conversion Tool (Amazon SCT) to convert your Microsoft SSIS ETL
scripts to Amazon Glue. For more information, see Converting SSIS.

Examples

The following walkthrough describes how to create an Amazon Glue job to upload a comma-
separated values (CSV) file from Amazon S3 to Aurora PostgreSQL.

The source file for this walkthrough is a simple Visits table in CSV format. The objective is to
upload this file to an Amazon S3 bucket and create an Amazon Glue job to discover and copy it into
an Aurora PostgreSQL database.

Step 1 — Create a Bucket in Amazon S3 and Upload the CSV File

1. In the Amazon console, choose S3, and then choose Create bucket.

(® Note

This walkthrough demonstrates how to create the buckets and upload the files manually,
which is automated using the Amazon S3 API for production ETLs. Using the console to
manually run all the settings will help you get familiar with the terminology, concepts,
and workflow.

2. Enter a unique name for the bucket, select a region, and define the level of access.

3. Turn on versioning, add tags, turn on server-side encryption, and choose Create bucket.
4. On the Amazon S3 Management Console, choose the newly created bucket.

5. On the bucket page, choose Upload.

6. Choose Add files, select your CSV file, and choose Upload.

PostgreSQL Usage 362

https://docs.amazonaws.cn/SchemaConversionTool/latest/userguide/CHAP-converting-aws-glue-ssis.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Step 2 — Add an Amazon Glue Crawler to Discover and Catalog the Visits File

1. In the Amazon console, choose Amazon Glue.

2. Choose Tables, and then choose Add tables using a crawler.

3. Enter the name of the crawler and choose Next.

4. On the Specify crawler source type page, leave the default values, and choose Next.

5. On the Add a data store page, specify a valid Amazon S3 path, and choose Next.

6. On the Choose an IAM role page, choose an existing IAM role, or create a new IAM role. Choose
Next.

7. On the Create a schedule for this crawler page, choose Run on demand, and choose Next.

8. On the Configure the crawler’s output page, choose a database for the crawler’s output, enter
an optional table prefix for easy reference, and choose Next.

9. Review the information that you provided and choose Finish to create the crawler.

PostgreSQL Usage 363

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Add crawler
@ Crawler info Crawler info

§3_visits Mame s3_visits
() Crawler source type Tags

Data stores
() Data store

53 53visits-glue-a Data stores
() 1AM Role Data store 53

arm.aws:iam:: Include path s3:/visits-glue-aurorasVisits.csy

wralefservice- Connection

role/ AWSGlueService

Role-S2Role Exclude patterns
(=) Schedule

Run on demand
2 Outn
(& Output IAM role

visits_demo

IAMrole arncawsiam: wrole/service-role/ AWSGlueServiceRole-S3Role

() Review all steps

Schedule

Schedule Run on demand

Output

Database visits_demo
Prefi added to tables (optional)
Create a single schema for each 53 path false

v Configuration options

Step 3 — Run the Amazon Glue Crawler

1. In the Amazon console, choose Amazon Glue, and then choose Crawlers.

2. Choose the crawler that you created on the previous step, and choose Run crawler.

After the crawler completes, the table should be discovered and recorded in the catalog in the
table specified.

Click the link to get to the table that was just discovered and then click the table name.

PostgreSQL Usage 364

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Verify the crawler identified the table's properties and schema correctly.

(® Note

You can manually adjust the properties and schema JSON files using the buttons on the
top right.

If you don't want to add a crawler, you can add tables manually.

1.
2.

In the Amazon console, choose Amazon Glue.

Choose Tables, and then choose Add table manually.

Step 4 — Create an ETL Job to Copy the Visits Table to an Aurora PostgreSQL Database

1.
2.

9.

In the Amazon console, choose Amazon Glue .

Choose Jobs (legacy), and then choose Add job.

. Enter a name for the ETL job and pick a role for the security context. For this example, use the

same role created for the crawler. The job may consist of a pre-existing ETL script, a manually-
authored script, or an automatic script generated by Amazon Glue. For this example, use
Amazon Glue. Enter a name for the script file or accept the default, which is also the job's name.
Configure advanced properties and parameters if needed and choose Next.

. Select the data source for the job and choose Next.
. On the Choose a transform type page, choose Change schema.

. On the Choose a data target page, choose Create tables in your data target, use the JDBC Data

store, and the gluerds connection type. Choose Add Connection.

. On the Add connection page, enter the access details for the Amazon Aurora Instance and
choose Add.
. Choose Next to display the column mapping between the source and target. Leave the default

mapping and data types, and choose Next.

Review the job properties and choose Save job and edit script.

T0Review the generated script and make manual changes if needed. You can use the built-in

templates for source, target, target location, transform, and spigot using the buttons at the top
right section of the screen.

PostgreSQL Usage 365

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

11Choose Run job.
12In the Amazon console, choose Amazon Glue, and then choose Jobs (legacy).
130n the history tab, verify that the job status is set to Succeeded.

140pen your query IDE, connect to the Aurora PostgreSQL cluster, and query the visits database to
make sure the data has been transferred successfully.

For more information, see Amazon Glue Developer Guide and Amazon Glue resources.

Export and import features

This topic provides reference information on data export and import capabilities in Microsoft SQL
Server and PostgreSQL, with a focus on migration scenarios. You can use various tools and utilities
to export data from SQL Server and import it into PostgreSQL, which is particularly useful when
migrating to Amazon Aurora PostgreSQL.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Non-compatible tool.

SQL Server Usage

SQL Server provides many options for exporting and importing text files. These operations are
commonly used for data migration, scripting, and backup.

» Save results to a file in SQL Server Management Studio (SSMS). For more information, see
KB - How to create .csv or .rpt files from an SQL statement in Microsoft SQL Server in the

SQL Server documentation. | SQLCMD. For more information, see Run the script file in the
SQL Server documentation. | PowerShell wrapper for SQLCMD | SSMS Import/Export Wizard.
For more information, see Start the SQL Server Import and Export Wizard in the SQL Server
documentation. | SQL Server Reporting Services (SSRS) | Bulk Copy Program (BCP). For more
information, see Import and export bulk data using bcp (SQL Server) in the SQL Server

documentation.

Export and import features 366

https://docs.amazonaws.cn/glue/latest/dg/what-is-glue.html
https://www.amazonaws.cn/glue/resources
https://support.microsoft.com/en-us/topic/kb-how-to-create-csv-or-rpt-files-from-an-sql-statement-in-microsoft-sql-server-baaccba6-a3d9-b77d-7f4e-107ae4dd739b
https://docs.microsoft.com/en-us/sql/ssms/scripting/sqlcmd-run-transact-sql-script-files?view=sql-server-ver15#save-the-output-to-a-text-file
https://docs.microsoft.com/en-us/sql/integration-services/import-export-data/start-the-sql-server-import-and-export-wizard?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/import-export/import-and-export-bulk-data-by-using-the-bcp-utility-sql-server?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

All of the options described before required additional tools to export data. Most of the tools are
open source and provide support for a variety of databases.

SQLCMD is a command line utility for running T-SQL statements, system procedures, and script
files. It uses ODBC to run T-SQL batches. For example:

SQLCMD -i C:\sql\myquery.sqgl -o C:\sqll\output.txt

SQLCMD utility syntax:

sqlcmd
-a packet_size
-A (dedicated administrator connection)
-b (terminate batch job if there is an error)
-c batch_terminator
-C (trust the server certificate)
-d db_name
-e (echo input)
-E (use trusted connection)
-f codepage | i:codepage[,o:codepage] | o:codepagel,i:codepage]
-g (enable column encryption)
-G (use Azure Active Directory for authentication)
-h rows_per_header
-H workstation_name
-i input_file
-I (enable quoted identifiers)
-j (Print raw error messages)
-k[1 | 2] (remove or replace control characters)
-K application_intent
-1 login_timeout
-L[c] (list servers, optional clean output)
-m error_level
-M multisubnet_failover
-N (encrypt connection)
-o output_file
-p[1] (print statistics, optional colon format)
-P password
-q "cmdline query"
-Q "cmdline query" (and exit)
-r[@ | 1] (msgs to stderr)
-R (use client regional settings)
-s col_separator

SQL Server Usage 367

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

-S [protocol:]server[instance_name][, port]
-t query_timeout

-u (unicode output file)

-U login_id

-v var = "value"

-V error_severity_level

-w column_width

-W (remove trailing spaces)

-x (disable variable substitution)

-X[1] (disable commands, startup script, environment variables, optional exit)
-y variable_length_type_display_width

-Y fixed_length_type_display_width

-Z new_password

-Z new_password (and exit)

-? (usage)

Examples

Connect to a named instance using Windows Authentication and specify input and output files.

sqlcmd -S MyMSSQLServer\MyMSSQLInstance -i query.sql -o outputfile.txt

If the file is needed for import to another database, query the data as INSERT commands and
CREATE for the object.

You can export data with SQLCMD and import with the Export/Import wizard.

For more information, see sglcmd Utility in the SQL Server documentation.

PostgreSQL Usage

PostgreSQL provides the native utilities pg_dump and pg_restore to perform logical database
exports and imports with comparable functionality to the SQL Server SQLCMD utility. For example,
moving data between two databases and creating logical database backups.

e pg_dump to export data.

« pg_restore to import data.

The binaries for both utilities must be installed on your local workstation or on an Amazon EC2
server as part of the PostgreSQL client binaries.

PostgreSQL Usage 368

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

You can export and copy PostgreSQL dump files created using pg_dump to an Amazon S3 bucket
as cloud backup storage or for maintaining the desired backup retention policy. Later, when you
need the dump files for database restore, you can copy them copied back to a desktop or server
that has a PostgreSQL client, such as your workstation or an Amazon EC2 server. Then you can
issue the pg_restore command.

Starting with PostgreSQL 10, these capabilities were added:

» You can exclude a schema in pg_dump and pg_restore commands.
» Can create dumps with no blobs.
« Allow to run pg_dumpall by non-superusers, using the --no-role-passwoxrds option.

« Create additional integrity option to ensure that the data is stored in disk using fsync()
method.

Starting with PostgreSQL 11, the following capabilities were added: * pg_dump and pg_restore
now export or import relationships between extensions and database objects established with
ALTER .. DEPENDS ON EXTENSION , which allows these objects to be dropped when extension is
dropped with CASCADE option.

Notes

« pg_dump creates consistent backups even if the database is being used concurrently.
« pg_dump doesn't block other users accessing the database (readers or writers).

« pg_dump only exports a single database. To backup global objects common to all databases in a
cluster (such as roles and tablespaces), use pg_dumpall.

» PostgreSQL dump files can be plain-text and custom format files.

Another option to export and import data from PostgreSQL database is to use COPY TO/COPY
FROM commands. Starting with PostgreSQL 12, you can use the COPY FROM command to load data
into DB. This command has support for filtering incoming rows with the WHERE condition.

CREATE TABLE tst_copy(v TEXT);

COPY tst_copy FROM '/home/postgres/file.csv' WITH (FORMAT CSV) WHERE v LIKE 'Sapple%';

PostgreSQL Usage 369

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples

Export data using pg_dump. Use a workstation or server with the PostgreSQL client installed to
connect to the Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) instance. Issue
the pg_dump command providing the hostname (-h), database user name (-U), and database name
(-d).

$ pg_dump -h hostname.rds.amazonaws.com -U username -d db_name -f dump_file_name.sql

The output dump_file_name. sql file is stored on the server where the pg_dump command runs.
You can copy the output file to an Amazon S3 bucket if needed.

Run pg_dump and copy the backup file to an Amazon S3 bucket using a pipe and the Amazon CLI.

$ pg_dump -h hostname.rds.amazonaws.com -U username -d db_name -f dump_file_name.sql |
aws s3 cp - s3://pg-backup/pg_bck-$(date"+%Y-%m-%d-%H-%M-%S")

Restore data using pg_restore. Use a workstation or server with the PostgreSQL client installed
to connect to the Aurora PostgreSQL instance. Issue the pg_restore command providing the
hostname (-h), database user name (-U), database name (-d), and the dump file.

$ pg_restore -h hostname.rds.amazonaws.com -U username -d dbname_restore
dump_file_name.sql

Copy the output file from the local server to an Amazon S3 Bucket using the Amazon CLI. Upload
the dump file to an Amazon S3 bucket.

$ aws s3 cp /usr/Exports/hr.dmp s3://my-bucket/backup-$(date "+%Y-%m-%d-%H-%M-%S")

® Note

The {-$(date "+%Y-%m-%d-%H-%M-%S")} format is valid on Linux servers only.

Download the output file from the Amazon S3 bucket.

$ aws s3 cp s3://my-bucket/backup-2017-09-10-01-10-10 /usr/Exports/hr.dmp

PostgreSQL Usage 370

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

® Note

You can create a copy of an existing database without having to use pg_dump or
pg_restore. Instead, use the template keyword to specify the source database.

CREATE DATABASE mydb_copy TEPLATE mydb;

Summary
Description SQL Server export / import
PostgreSQL Dump Export data to a file

Using SQLCMD or Export/Import Wizard

pg_dump -F c -h hostname.rds.amazo

naws.com
SQLCMD -i C:\sql\myquery.sql -o C:\sql -U username -d hr -p 5432 > c:
\output.txt \Export\hxr.dmp
Import data to a new database with a new Run SQLCMD with objects and data creation
name script

SQLCMD -i C:\sql\myquery.sql

For more information, see SQL Dump and pg_restore in the PostgreSQL documentation.

Viewing server logs

This topic provides reference information about logging capabilities in SQL Server and

Amazon Aurora PostgreSQL. You can use these logging features to monitor database activities,
troubleshoot issues, and maintain the health of your database systems. The topic explains how to
access and interpret logs in both environments, highlighting key differences and similarities.

Summary 371

https://www.postgresql.org/docs/13/backup-dump.html
https://www.postgresql.org/docs/13/app-pgrestore.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level
N/A N/A View logs from the

@ @ E Amazon RDS console,

the Amazon RDS API,
the Amazon CLI, or
the Amazon SDKs.

SQL Server Usage

SQL Server logs system and user generated events to the SQL Server Error Log and to the Windows
Application Log. It logs recovery messages, kernel messages, security events, maintenance events,
and other general server level error and informational messages. The Windows Application Log
contains events from all windows applications including SQL Server and SQL Server agent.

SQL Server Management Studio Log Viewer unifies all logs into a single consolidated view. You can
also view the logs with any text editor.

Administrators typically use the SQL Server Error Log to confirm successful completion of
processes, such as backup or batches, and to investigate the cause of run time errors. These logs
can help detect current risks or potential future problem areas.

To view the log for SQL Server, SQL Server Agent, Database Mail, and Windows applications, open
the SQL Server Management Studio Object Explorer pane, navigate to Management, SQL Server
Logs, and choose the current log.

The following table identifies some common error codes database administrators typically look for
in the error logs:

Error code Error message

1105 Couldn't allocate space.
3041 Backup failed.

9002 Transaction log full.

SQL Server Usage 372

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Error code Error message
14151 Replication agent failed.
17053 Operating system error.
18452 Login failed.
9003 Possible database corruption.
Examples
The following screenshot shows the typical log file viewer content:
{E Log File Viewer - . - O >
Selectlogs [i Load Log 7 Export [#] Refresh 7 Filter... & Search ... Stop [Hel
e o2d Log ..,J port [2 % p [Help
] Current - 3/20/2018 11:15:00 py || L3 file summary: No fiter applied
[Archive #1 - 3/20/2018 6:26:00 Py | Date T Source Message 2

32172018 10:21:11 AM spid25h Using xpsglbot.dil’ version "2015.130.1601" to execute extended stored procedure xp_gv'. This is an
37212018 10:21:11 AM spid55 Attempting to load library xpsglbot dil' into memory. This is an informational message only. No user ac
32172018 10:21:09 AM spid54 DBCC TRACEQFF 3604, server process ID (SPID) 54, This is an informational message only; no use
3/21/2018 10:21:09 AM spid54 DBCC TRACEOM 3604, server process 1D (SPID) 54. This iz an informational message only; no user
3/21/2018 10:21:06 AM spid55 Using xpstar.dl’ version '2015.130.1601" to execute extended stored procedure %p_instance_regrea
3/21/2018 10:21:.06 AM spid25 Attempting to load library xpstar.dll’into memary. This is an informational message only. Mo user actio
3/21/2018 10:21:06 AM spid54 DBCC TRACEQOFF 3604, server process ID (SPID) 54. This is an informational message only; no use

[Archive #2 - 3/15/2018 1:46:00 PM El
il
il
il
il
il
il
1 3/21/2018 10:21:06 AM spid2d DBCC TRACEQM 3604, server process |0 (SPID) 54. This is an informational message only; no user
il
il
il
il
il
il
il

[Archive #3 - 3/13/2018 4:55:00 PM
[Archive #4 - 3/8/2018 3:55:00 PM
[Archive #5 - 3/2/2018 1:45:00 FM
[Archive #6 - 3/2/2018 1:00:00 AM
SQL Server Agent
[Database Mail
[CIWindows NT

3/21/2018 12:00:56 AM spid23s This instance of SQL Server has been using a process 1D of 6516 since 3/20/2018 11:15:52 PM (o
320/2018 11:21.43 PM spid21 Using ‘dbghelp dll’ version "4.0.5

< > 372072018 11:16:24 PM spid51 Using %plog 70 dlI" version "2015.130.1607" to execute extended stored procedure “p_msver’. This is
Stalus 372072018 11:16:24 PM spid51 Attempting to load library %plog70.dI" into memory. This is an informational message only. Mo user act
Last Refresh: 372072018 11:16:23 PM Server Software Usage Metrics is disabled.
3/21/2018 2:23:53 PM 3/20/2018 11:16:04 PM spidds Recovery is complete. This is an infformational message only. No user action is required.
32002018 11:16:.04 PM spidds Recovery completed for database WideWordimporters (database |D 6)in 8 second(s) (analysis 704"
Fitter: None 71 3/20/2018 11:16:04 PM soidds Otransactions rolled back in database "WideWordimoorters' (6:01. This is an informational messaae ¢
£ b3
Y \Miewfiter settings Selected row details:
Progress Date 228 10:21:11 AM ~
d Log SQL Server (Cument - 3/20/2018 11:15:00 PM)
> Done (197 records).
@ Source spid55
Message]

For more information, see Monitoring the Error Logs in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) provides administrators with
access to the PostgreSQL error log.

PostgreSQL Usage 373

https://docs.microsoft.com/en-us/sql/tools/configuration-manager/monitoring-the-error-logs?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

The PostgreSQL error log is generated by default. To generate the slow query and general logs, set
the corresponding parameters in the database parameter group. For more information, see Server

Options in SQL Server and Parameter Groups in Amazon Aurora.

You can view Aurora PostgreSQL logs directly from the Amazon RDS console, the Amazon RDS
API, the Amazon CLI, or the Amazon SDKs. You can also direct the logs to a database table in the
main database and use SQL queries to view the data. To download a binary log, use the Amazon
Console.

The following table includes the parameters, which control how and where PostgreSQL places log
and errors files.

Parameter Description

log_filename Sets the file name pattern for log files. You
can modify this parameter in an Aurora
Database Parameter Group.

log_rotation_age (min) Automatic log file rotation will occur
after N minutes. You can modify this
parameter in an Aurora Database Parameter
Group.

log_rotation_size (kB) Automatic log file rotation will occur after
N kilobytes. You can modify this parameter in
an Aurora Database Parameter Group.

log_min_messages Sets the message levels that are logged such
as DEBUG, ERROR, INFO, and so on. You can
modify this parameter in an Aurora Database
Parameter Group.

log_min_error_statement Causes all statements generating errors at or
above this level to be logged such as DEBUG,
ERROR, INFO, and so on. You can modify this
parameter in an Aurora Database Parameter
Group.

PostgreSQL Usage 374

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Parameter Description

log_min_duration_statement Sets the minimum run time above which
statements will be logged (ms). You can
modify this parameter in an Aurora Database
Parameter Group.

Examples

The following walkthrough demonstrates how to view the Aurora PostgreSQL error logs in the
Amazon RDS console.

1. In the Amazon console, choose RDS, and then choose Databases.

2. Choose the instance for which you want to view the error log.

RDS Databases
Databases @) Group resources ‘ C Modify Ac
Q
DB identifier A Role w Engine Region & AZ
o mysql-aurara-playbook Regional Aurora MySQL eu-central-1

mysgl-aurora-playbook-instance-1 Writer Aurora MySQL eu-central-1a

3. Scroll down to the logs section and choose the log name. The log viewer displays the log
content.

For more information, see PostgreSQL database log files in the Amazon Relational Database Service
User Guide.

Maintenance plans

This topic provides reference information comparing database maintenance tasks between
Microsoft SQL Server and Amazon Aurora PostgreSQL. You can understand the key differences in
how these two database systems handle common maintenance operations such as backups, index
management, statistics updates, and consistency checks.

Maintenance plans 375

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.PostgreSQL.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Backups using

@ @ E the Amazon RDS

services. Table
maintenance using
SQL commands.

SQL Server Usage

A maintenance plan is a set of automated tasks used to optimize a database, performs regular
backups, and ensure it is free of inconsistencies. Maintenance plans are implemented as SQL Server
Integration Services (SSIS) packages and are run by SQL Server Agent jobs. You can run them
manually or automatically at scheduled time intervals.

SQL Server provides a variety of pre-configured maintenance tasks. You can create custom tasks
using TSQL scripts or operating system batch files.

Maintenance plans are typically used for the following tasks:

« Backing up database and transaction log files.

» Performing cleanup of database backup files in accordance with retention policies.
» Performing database consistency checks.

» Rebuilding or reorganizing indexes.

« Decreasing data file size by removing empty pages (shrink a database).

« Updating statistics to help the query optimizer obtain updated data distributions.
« Running SQL Server Agent jobs for custom actions.

e Running a T-SQL task.

Maintenance plans can include tasks for operator notifications and history or maintenance cleanup.
They can also generate reports and output the contents to a text file or the maintenance plan
tables in the msdb database.

SQL Server Usage 376

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

You can create and manage maintenance plans using the maintenance plan wizard in SQL Server
Management Studio, Maintenance Plan Design Surface (provides enhanced functionality over the
wizard), Management Studio Object Explorer, and T-SQL system stored procedures.

For more information, see SQL Server Agent and PostgreSQL Scheduled Lambda.

Deprecated DBCC Index and Table Maintenance Commands

The DBCC DBREINDEX, INDEXDEFRAG, and SHOWCONTIG commands have been deprecated as of
SQL Server 2008R2. For more information, see Deprecated Database Engine Features in SQL Server
2008 R2 in the SQL Server documentation.

In place of the deprecated DBCC, SQL Server provides newer syntax alternatives as detailed in the
following table.

Deprecated DBCC command Use instead

DBCC DBREINDEX ALTER INDEX .. REBUILD

DBCC INDEXDEFRAG ALTER INDEX .. REORGANIZE

DBCC SHOWCONTIG sys.dm_db_index_physical_stats

For the Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) alternatives to these
maintenance commands, see Aurora PostgreSQL Maintenance Plans.

Examples

Enable Agent XPs, which are disabled by default.

EXEC [sys].[sp_configure] @configname
RECONFIGURE ;

'show advanced options', @configvalue =1

EXEC [sys].[sp_configure] e@configname = 'agent xps', @configvalue = 1 RECONFIGURE;

Create a T-SQL maintenance plan for a single index rebuild.

USE msdb;

SQL Server Usage 377

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Add the Index Maintenance IDX1 job to SQL Server Agent.

EXEC dbo.sp_add_job @job_name = N'Index Maintenance IDX1', @enabled = 1, @description =
N'Optimize IDX1 for INSERT' ;

Add the T-SQL job step Rebuild IDX1 to 50 percent fill.

EXEC dbo.sp_add_jobstep @job_name = N'Index Maintenance IDX1', @step_name = N'Rebuild
IDX1 to 50 percent fill', @subsystem = N'TSQL',

@command = N'Use MyDatabase; ALTER INDEX IDX1 ON Shcema.Table REBUILD WITH
(FILL_FACTOR = 50), @retry_attempts = 5, @retry_interval = 5;

Add a schedule to run every day at 01:00 AM.

EXEC dbo.sp_add_schedule @schedule_name = N'Daily@100@', efreq_type = 4, e@freq_interval
= 1, @active_start_time = 010000;

Associate the schedule Daily@100 with the job index maintenance IDX1.

EXEC sp_attach_schedule @job_name = N'Index Maintenance IDX1' @schedule_name =
N'Daily0100' ;

For more information, see Maintenance Plans in the SQL Server documentation.

PostgreSQL Usage

Amazon Relational Database Service (Amazon RDS) performs automated database backups by
creating storage volume snapshots that back up entire instances, not individual databases.

Amazon RDS creates snapshots during the backup window for individual database instances and
retains snapshots in accordance with the backup retention period. You can use the snapshots to
restore a database to any point in time within the backup retention period.

(@ Note

The state of a database instance must be ACTIVE for automated backups to occur.

You can backup database instances manually by creating an explicit database snapshot. Use the
Amazon console, the Amazon CLI, or the Amazon API to take manual snapshots.

PostgreSQL Usage 378

https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-plans?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples
Create a manual database snapshot using the Amazon RDS console

1. In the Amazon console, choose RDS, and then choose Databases.

2. Choose your Aurora PostgreSQL instance, and for Instance actions choose Take snapshot.

Databases
@ Group resources C ‘ Modify H Actions A Restore from 53 Create database
Reboot
Q, 1
Delete
DB identifier Engine v

Take snapshot

mysql-aurora-playbook furora MySQL

Start database activity stream

o] mysql-aurora-playbook-instance-1 Writer Aurora MySQL

Restore a snapshot using the Amazon RDS console

1. In the Amazon console, choose RDS, and then choose Snapshots.

2. Choose the snapshot to restore, and for Actions choose Restore snapshot.

This action creates a new instance.

3. Enter the required configuration options in the wizard for creating a new Amazon Aurora
database instance. Choose Restore DB Instance.

You can also restore a database instance to a point-in-time. For more information, see Backup and
Restore.

For all other tasks, use a third-party or a custom application scheduler.
Rebuild and reorganize a table

Aurora PostgreSQL supports the VACUUM, ANALYZE, and REINDEX commands, which are similar to
the REORGANIZE option of SQL Server indexes.

VACUUM MyTable;

PostgreSQL Usage 379

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

ANALYZE MyTable;
REINDEX TABLE MyTable;

« VACUUM reclaims storage.
e« ANALYZE collects statistics.

« REINDEX recreates all indexes.

For more information, see ANALYZE, VACUUM, and REINDEX in the PostgreSQL documentation.

Convert deprecated DBCC index and table maintenance commands

Deprecated DBCC command Aurora PostgreSQL equivalent
DBCC DBREINDEX REINDEX INDEX or REINDEX TABLE
DBCC INDEXDEFRAG VACUUM table_name or VACUUM

table_name column_name

Update statistics to help the query optimizer get updated data distribution

For more information, see SQL Server Managing Statistics and PostgreSQL Table Statistics.

Summary

The following table summarizes the key tasks that use SQL Server maintenance plans and a

comparable Aurora PostgreSQL solutions.

Task SQL Server

Rebuild or reorganize indexes ALTER INDEX or ALTER

TABLE
Decrease data file size by DBCC SHRINKDATABASE or
removing empty pages DBCC SHRINKFILE

Aurora PostgreSQL

REINDEX INDEX or REINDEX
TABLE

VACUUM

Summary

380

https://www.postgresql.org/docs/13/sql-analyze.html
https://www.postgresql.org/docs/13/sql-vacuum.html
https://www.postgresql.org/docs/13/sql-reindex.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Task SQL Server Aurora PostgreSQL
Update statistics to help the UPDATE STATISTICS or ANALYZE
query optimizer get updated sp_updatestats
data distribution
Perform database consistency DBCC CHECKDB or DBCC N/A
checks CHECKTABLE
Back up the database and BACKUP DATABASE or Automatically (for example,
transaction log files BACKUP LOG using Amazon CLI)
Run SQL Server Agent jobs sp_start_job or N/A
for custom actions scheduled

For more information, see Working with backups in the PostgreSQL documentation.

Monitoring features

This topic provides reference information about monitoring capabilities in Microsoft SQL Server
and Amazon Aurora PostgreSQL. You can use various tools and services to monitor and maintain
the performance of your database systems.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level
N/A N/A Use Amazon
@ @ E CloudWatch service.

For more informati
on, see Monitoring
metrics in an Amazon
RDS instance in the
Amazon Relational

Database Service User
Guide.

Monitoring features 381

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

Monitoring server performance and behavior is a critical aspect of maintaining service quality and
includes ad-hoc data collection, ongoing data collection, root cause analysis, preventative actions,
and reactive actions. SQL Server provides an array of interfaces to monitor and collect server data.

SQL Server 2017 introduces several new dynamic management views:

« sys.dm_db_log_stats exposes summary level attributes and information on transaction log
files, helpful for monitoring transaction log health.

« sys.dm_tran_version_store_space_usage tracks version store usage for each database,
useful for proactively planning tempdb sizing based on the version store usage for each
database.

« sys.dm_db_log_info exposes VLF information to monitor, alert, and avert potential
transaction log issues.

« sys.dm_db_stats_histogramis a new dynamic management view for examining statistics.

« sys.dm_os_host_info provides operating system information for both Windows and Linux.

SQL Server 2019 adds new configuration parameter, LIGHTWEIGHT_QUERY_PROFILING. It turns
on or turns off the lightweight query profiling infrastructure. The lightweight query profiling
infrastructure (LWP) provides query performance data more efficiently than standard profiling
mechanisms and is enabled by default. For more information, see Query Profiling Infrastructure in
the SQL Server documentation.

Windows Operating System Level Tools

You can use the Windows Scheduler to trigger run of script files such as CMD, PowerShell, and so
on to collect, store, and process performance data.

System Monitor is a graphical tool for measuring and recording performance of SQL Server and
other Windows-related metrics using the Windows Management Interface (WMI) performance
objects.

(® Note

Performance objects can also be accessed directly from T-SQL using the SQL Server
Operating System Related DMVs. For a full list of the DMVs, see SQL Server Operating

SQL Server Usage 382

https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sql-server-operating-system-related-dynamic-management-views-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

System Related Dynamic Management Views (Transact-SQL) in the SQL Server

documentation.

Performance counters exist for real-time measurements such as CPU Utilization and for aggregated
history such as average active transactions. For a full list of the object hierarchy, see: Use SQL
Server Objects in the SQL Server documentation.

SQL Server Extended Events

SQL Server's latest tracing framework provides very lightweight and robust event collection and
storage. SQL Server Management Studio features the New Session Wizard and New Session graphic
user interfaces for managing and analyzing captured data. SQL Server Extended Events consists of
the following items:

» SQL Server Extended Events Package is a logical container for Extended Events objects.

« SQL Server Extended Events Targets are consumers of events. Targets include Event File, which
writes data to the file Ring Buffer for retention in memory, or for processing aggregates such as
Event Counters and Histograms.

« SQL Server Extended Events Engine is a collection of services and tools that comprise the
framework.

« SQL Server Extended Events Sessions are logical containers mapped many-to-many with
packages, events, and filters.

The following example creates a session that logs lock escalations and lock timeouts to a file.

CREATE EVENT SESSION Locking_Demo
ON SERVER

ADD EVENT sqlserver.lock_escalation,

ADD EVENT sqglserver.lock_timeout

ADD TARGET package@.etw_classic_sync_target

(SET default_etw_session_logfile_path = N'C:\ExtendedEvents\Locking

\Demo_20180502.etl"')

WITH (MAX_MEMORY=8MB, MAX_EVENT_SIZE=8MB);
GO

SQL Server Usage 383

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sql-server-operating-system-related-dynamic-management-views-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Tracing Framework and the SQL Server Profiler Tool

The SQL Server trace framework is the predecessor to the Extended Events framework and remains
popular among database administrators. The lighter and more flexible Extended Events Framework
is recommended for development of new monitoring functionality. For more information, see SQL
Server Profiler in the SQL Server documentation.

SQL Server Management Studio

SQL Server Management Studio (SSMS) provides several monitoring extensions:

« SQL Server Activity Monitor is an in-process, real-time, basic high-level information graphical
tool.

» Query Graphical Show Plan provides easy exploration of estimated and actual query run plans.
« Query Live Statistics displays query run progress in real time.

» Replication Monitor presents a publisher-focused view or distributor-focused view of all
replication activity. For more information, see Overview of the Replication Monitor Interface in
the SQL Server documentation.

« Log Shipping Monitor displays the status of any log shipping activity whose status is available
from the server instance to which you are connected. For more information, see View the Log
Shipping Report (SQL Server Management Studio) in the SQL Server documentation.

» Standard Performance Reports is set of reports that show the most important performance
metrics such as change history, memory usage, activity, transactions, HA, and more.

T-SQL

From the T-SQL interface, SQL Server provides many system stored procedures, system views, and
functions for monitoring data.

System stored procedures such as sp_who and sp_lock provide real-time information. The
sp_monitor procedure provides aggregated data.

Built in functions such as @@CONNECTIONS, @@IO0_BUSY, @@TOTAL_ERRORS, and others provide
high level server information.

A rich set of System Dynamic Management functions and views are provided for monitoring
almost every aspect of the server. These functions reside in the sys schema and are prefixed with

SQL Server Usage 384

https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/replication/monitor/overview-of-the-replication-monitor-interface?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/view-the-log-shipping-report-sql-server-management-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/view-the-log-shipping-report-sql-server-management-studio?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

dm_string. For more information, see System Dynamic Management Views in the SQL Server
documentation.

Trace Flags

You can set trace flags to log events. For example, set trace flag 1204 to log deadlock information.
For more information, see DBCC TRACEON - Trace Flags (Transact-SQL) in the SQL Server
documentation.

SQL Server Query Store

Query Store is a database-level framework supporting automatic collection of queries, run
plans, and run time statistics. This data is stored in system tables. You can use this data to
diagnose performance issues, understand patterns, and understand trends. It can also be set to
automatically revert plans when a performance regression is detected.

For more information, see Monitoring performance by using the Query Store in the SQL Server
documentation.

PostgreSQL Usage

Amazon Relational Database Service (Amazon RDS) provides a rich monitoring infrastructure for
Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) clusters and instances with
the Amazon CloudWatch service. For more information, see Monitoring metrics in an Amazon RDS
instance and Monitoring OS metrics with Enhanced Monitoring in the Amazon Relational Database
Service User Guide.

You can also use the Amazon Performance Insights tool to monitor PostgreSQL.
PostgreSQL can also be monitored by querying system catalog table and views.

Starting with PostgreSQL 12, you can monitor progress of CREATE INDEX, REINDEX, CLUSTER,
and VACUUM FULL operations by querying system views pg_stat_progress_create_index
and pg_stat_progress_cluster.

Starting with PostgreSQL 13, you can monitor progress of ANALYZE operations by querying system
view pg_stat_progress_analyze. Also, you can monitor shared memory usage with system
view pg_shmem_allocations.

PostgreSQL Usage 385

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver15
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Example

The following walkthrough demonstrates how to access the Amazon Aurora Performance Insights
Console.

1. In the Amazon console, choose RDS, and then choose Performance insights.

2. The web page displays a dashboard containing current and past database performance metrics.
You can choose the period of the displayed performance data (5 minutes, 1 hour, 6 hours, or 24
hours) as well as different criteria to filter and slice the information such as waits, SQL, hosts,
users, and so on.

&m 1h &h 24h

Load: Average Active Sesaions [AAS) Total 1.,
[= T —
M, P
PR3y . S 1.16
® cru 044
@ Lockiraniac thonid 0.1%
@ LWlockbuffer_conbent o
@ Lociotuple [}]
@ | e icrelation n
[A i B sy
s . 1520 Sepl6 153000 e
Waits SOL Hosts Users Qs . T b 4
Load By Waits 0L
v I V5ERTINTO authors fd.name.email) VALUES [extvai(T) ,7,7), | mexdvaliT) ,2,7) (nextval) 7,7, { nextva
" _:- delate from authors whans id < [sslect maxfid) - 7 from authors) and id > [sslect max(id) - 7 fom authors)
[] WITH cte AS [SELECT id FROM suthors LIMIT 7 | UPTWATE authors 3 SET small = 7 FROM cte WHERE 8.
] select count(”) from suthan whars id < | select max(d) - 7 from aushers) and id » | select maxfid] - 7 from
D select count(T] from suthors whare id < | sslect maxid) - 7 from authors) and id = | select max(id) = 7 from

Turning on Performance Insights

Performance insights are turned on by default for Amazon Aurora clusters. If you have more than
one database in your Amazon Aurora cluster, performance data for all databases is aggregated.
Database performance data is retained for 24 hours.

For more information, see Monitoring DB load with Performance Insights on Amazon RDS in the
Amazon Relational Database Service User Guide.

Resource governor features

This topic provides reference information comparing resource management capabilities between
Microsoft SQL Server and Amazon Aurora PostgreSQL. You can understand how SQL Server’s
Resource Governor functionality, which allows administrators to control and manage resource

Resource governor features 386

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_PerfInsights.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

consumption, differs from Aurora PostgreSQL. While Aurora PostgreSQL doesn't have built-in
resource management equivalent to SQL Server, it leverages cloud economics and flexibility to
address similar needs.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Distribute load,
@ @ E applications, or
users across multiple
instances.

SQL Server Usage

SQL Server Resource Governor provides the capability to control and manage resource
consumption. Administrators can specify and enforce workload limits on CPU, physical I/0, and
Memory. Resource configurations are dynamic and you can change them in real time.

In SQL Server 2019 configurable value for the REQUEST_MAX_MEMORY_GRANT_PERCENT option of
CREATE WORKLOAD GROUP and ALTER WORKLOAD GROUP has been changed from an integer to a
float data type to allow more granular control of memory limits. For more information, see ALTER
WORKLOAD GROUP (Transact-SQL) and CREATE WORKLOAD GROUP (Transact-SQL) in the SQL
Server documentation.

Use Cases

The following list identifies typical Resource Governor use cases:

« Minimize performance bottlenecks and inconsistencies to better support Service Level
Agreements (SLA) for multiple workloads and users.

« Protect against runaway queries that consume a large amount of resources or explicitly throttle
I/0 intensive operations. For example, consistency checks with DBCC that may bottleneck the I/
O subsystem and negatively impact concurrent workloads.

» Allow tracking and control for resource-based pricing scenarios to improve predictability of
user charges.

SQL Server Usage 387

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-workload-group-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-workload-group-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-workload-group-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Concepts

The three basic concepts in Resource Governor are Resource Pools, Workload Groups, and
Classification.

» Resource Pools represent physical resources. Two built-in resource pools, internal and default,
are created when SQL Server is installed. You can create custom user-defined resource pools for
specific workload types.

» Workload Groups are logical containers for session requests with similar characteristics.
Workload Groups allow aggregate resource monitoring of multiple sessions. Resource limit
policies are defined for a Workload Group. Each Workload Group belongs to a Resource Pool.

« Classification is a process that inspects incoming connections and assigns them to a specific
Workload Group based on the common attributes. User-defined functions are used to implement
Classification. For more information, see User-Defined Functions.

Examples

Enable the Resource Governor.

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a Resource Pool.

CREATE RESOURCE POOL ReportingWorkloadPool
WITH (MAX_CPU_PERCENT = 20);

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a Workload Group.
CREATE WORKLOAD GROUP ReportingWorkloadGroup USING poolAdhoc;
ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a classifier function.

CREATE FUNCTION dbo.WorkloadClassifier()

SQL Server Usage 388

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

RETURNS sysname WITH SCHEMABINDING

AS
BEGIN
RETURN (CASE
WHEN HOST_NAME()= 'ReportServer'
THEN 'ReportingWorkloadGroup'
ELSE 'Default'
END)
END;

Register the classifier function.

ALTER RESOURCE GOVERNOR with (CLASSIFIER_FUNCTION = dbo.WorkloadClassifier);

ALTER RESOURCE GOVERNOR RECONFIGURE;

For more information, see Resource Governor in the SQL Server documentation.

PostgreSQL Usage

PostgreSQL doesn’t have built-in resource management capabilities equivalent to the functionality
provided by SQL Server's Resource Governor. However, due to the elasticity and flexibility provided
by cloud economics, workarounds could be applicable and such capabilities might not be as of
similar importance to monolithic on-premises databases.

The SQL Server's Resource Governor primarily exists because traditionally, SQL Server instances
were installed on very powerful monolithic servers that powered multiple applications
simultaneously. The monolithic model made the most sense in an environment where the licensing
for the SQL Server database was per-CPU and where SQL Server instances were deployed on
physical hardware. In these scenarios, it made sense to consolidate as many workloads as possible
into fewer servers. With cloud databases, the strict requirement to maximize the usage of each
individual server is often not as important and you can use a different approach.

You can deploy individual Amazon Aurora clusters with varying sizes, each dedicated to a specific
application or workload. You can use additional read-only Amazon Aurora Replica servers to
offload any reporting workloads from the master instance.

With Amazon Aurora, you can deploy separate and dedicated database clusters, each dedicated
to a specific application or workload creating isolation between multiple connected sessions and
applications.

PostgreSQL Usage 389

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Each Amazon Aurora instance (primary or replica) can scale independently in terms of CPU and
memory resources using different instance types. Because you can instantly deploy multiple
Amazon Aurora Instances and much less overhead is associated with the deployment and
management of Amazon Aurora instances when compared to physical servers, separating different
workloads to different instance classes could be a suitable solution for controlling resource
management.

For more information, see Amazon EC2 Instance Types.

In addition, each Amazon Aurora instance can also be directly accessed from your applications
using its own endpoint. This capability is especially useful if you have multiple Amazon Aurora
read-replicas for a given cluster and you want to use different Amazon Aurora replicas to segment
your workload.

You can adjust the resources and some parameters for Amazon Aurora read-replicas in the
same cluster to avoid having additional cluster, however, this will allow to be used only for read
operations.

Examples

Follow these steps to create an Amazon Aurora cluster.

1. In the Amazon console, choose RDS.
2. Choose Databases, and then choose Create database.

3. Follow the wizard. Your new cluster appears in the Databases section.

Suppose that you were using a single SQL Server instance for multiple separate applications and
used SQL Server Resource Governor to enforce a workload separation, allocating a specific amount
of server resources for each application. With Amazon Aurora, you might want to create multiple
separate databases for each individual application.

Follow these steps to add additional replica instances to an existing Amazon Aurora cluster:

1. In the Amazon console, choose RDS.

2. Choose the Amazon Aurora cluster that you want to scale-out by adding an additional read
replica.

3. For Instance actions, choose Create Aurora Replica.

PostgreSQL Usage 390

https://www.amazonaws.cn/ec2/instance-types/

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

4. Select the instance class depending on the amount of compute resources your application

requires.

5. Choose Create Aurora Replica.

Dedicated Aurora PostgreSQL Instances

Feature

Set the maximum CPU usage for a resource
group.

Limit the degree of parallelism for specific
queries.

Limit parallel runs

Limit the number of active sessions.

Amazon Aurora instances

Create a dedicated Amazon Aurora instance
for a specific application.

SET max_parallel_workers_per_gather
TO x;

Setting the PostgreSQL max_paral
lel_workers_per_gather parameter
should be done as part of your application

database connection.

SET max_parallel_workers_per_gather
TO 0;

or

SET max_parallel_workers TO x; -- for

the whole system (since PostgreSQL
10)

Manually detect the number of connectio

ns that are open from a specific application
and restrict connectivity either with database
procedures or within the application DAL itself.

select pid from pg_stat_activity
where usename in(select usename from
pg_stat_activity

PostgreSQL Usage

391

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature Amazon Aurora instances

where state = 'active' group by
usename having count(*) > 10)

and state = 'active' order by
query_Start;

Restrict maximum runtime of queries. Manually terminate sessions that exceed the
required threshold. You can detect the length
of running queries using SQL commands
and restrict max run duration using either
database procedures or within the application
DAL itself.

SELECT pg_terminate_backend(pid)

FROM pg_stat_activity

WHERE now()-pg_stat_activity.quer
y_start > interval '5 minutes';

Limit the maximum idle time for sessions. Manually terminate sessions that exceed the
required threshold. You can detect the length
of your idle sessions using SQL queries and
restrict maximum run using either database
procedures or within the application DAL itself.

SELECT pg_terminate_backend(pid)
FROM pg_stat_activity
WHERE datname = 'regress' AND pid
<> pg_backend_pid()
AND state = 'idle' AND state_cha
nge < current_timestamp - INTERVAL
'5' MINUTE;

PostgreSQL Usage 392

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playb

ook

Feature

Limit the time that an idle session holding
open locks can block other sessions.

Amazon Aurora instances

Manually terminate sessions that exceed the
required threshold. You can detect the length
of blocking idle sessions using SQL queries
and restrict max run duration using either
database procedures or within the application
DAL itself.

SELECT pg_terminate_backend(blocki
ng_locks.pid)
FROM pg_catalog.pg_locks AS
blocked_locks
JOIN pg_catalog.pg_stat_activity
AS blocked_activity ON blocked_a
ctivity.pid = blocked_locks.pid
JOIN pg_catalog.pg_locks AS
blocking_locks ON blocking_locks.loc
ktype = blocked_locks.locktype
AND blocking_locks.DATABASE IS
NOT DISTINCT FROM blocked_locks.DATA
BASE
AND blocking_locks.relation IS
NOT DISTINCT FROM blocked_locks.rela
tion
AND blocking_locks.page IS NOT
DISTINCT FROM blocked_locks.page
AND blocking_locks.tuple IS NOT
DISTINCT FROM blocked_locks.tuple
AND blocking_locks.virtualxid IS
NOT DISTINCT FROM blocked_locks.virt
ualxid
AND blocking_locks.transactioni
d IS NOT DISTINCT FROM blocked_1
ocks.transactionid
AND blocking_locks.classid IS NOT
DISTINCT FROM blocked_locks.classid
AND blocking_locks.objid IS NOT
DISTINCT FROM blocked_locks.objid
AND blocking_locks.objsubid IS
NOT DISTINCT FROM blocked_locks.objs
ubid

PostgreSQL Usage

393

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature Amazon Aurora instances

AND blocking_locks.pid !=
blocked_locks.pid

JOIN pg_catalog.pg_stat_activity
AS blocking_activity

ON blocking_activity.pid =
blocking_locks.pid

WHERE NOT blocked_locks.granted
and blocked_activity.state_change
< current_timestamp - INTERVAL '5'
minute;

For more information, see Resource Consumption in the PostgreSQL documentation.

Linked servers

This topic provides reference information about linked servers in SQL Server and their equivalent
functionality in PostgreSQL. You can understand how linked servers enable SQL Server to connect
to external data sources, allowing for distributed queries and data access across heterogeneous
systems. The topic explains the benefits of using linked servers, how they are configured, and the
methods for accessing remote data.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A Linked Servers Syntax and option
@ @ E differences, similar

functionality.
SQL Server Usage
Linked servers enable the database engine to connect to external Object Linking and Embedding

for databases (OLE-DB) sources. They are typically used to run T-SQL commands and include tables
in other instances of SQL Server, or other RDBMS engines such as Oracle. SQL Server supports

Linked servers 394

https://www.postgresql.org/docs/13/runtime-config-resource.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

multiple types of OLE-DB sources as linked servers, including Microsoft Access, Microsoft Excel, text
files and others.

The main benefits of using linked servers are:

» Reading external data for import or processing.

» Running distributed queries, data modifications, and transactions for enterprise-wide data
sources.

» Querying heterogeneous data source using the familiar T-SQL API.

You can configure linked servers using either SQL Server Management Studio, or the system stored
procedure sp_addlinkedserver. The available functionality and the specific requirements vary
significantly between the various OLE-DB sources. Some sources may allow read only access, others
may require specific security context settings, and so on.

The linked server definition contains the linked server alias, the OLE DB provider, and all the
parameters needed to connect to a specific OLE-DB data source.

The OLE-DB provider is a .NET Dynamic Link Library (DLL) that handles the interaction of SQL
Server with all data sources of its type. For example, OLE-DB Provider for Oracle. The OLE-DB data
source is the specific data source to be accessed, using the specified OLE-DB provider.

(® Note

You can use SQL Server distributed queries with any custom OLE DB provider as long as the
required interfaces are implemented correctly.

SQL Server parses the T-SQL commands that access the linked server and sends the appropriate
requests to the OLE-DB provider. There are several access methods for remote data, including
opening the base table for read or issuing SQL queries against the remote data source.

You can manage linked servers using SQL Server Management Studio graphical user interface or T-
SQL system stored procedures.

« EXECUTE sp_addlinkedserver to add new server definitions.

« EXECUTE sp_addlinkedserverlogin to define security context.

SQL Server Usage 395

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« EXECUTE sp_linkedservers or SELECT * FROM sys.servers system catalog view to
retrieve meta data.

« EXECUTE sp_dropserver to delete a linked server.

You can access linked server data sources from T-SQL using a fully qualified, four-part naming
scheme: <Server Name>.<Database Name>.<Schema Name>.<0Object Name>.

Additionally, you can use the OPENQUERY row set function to explicitly invoke pass-through queries
on the remote linked server. Also, you can use the OPENROWSET and OPENDATASOURCE row set
functions for one-time remote data access without defining the linked server in advance.

Syntax

EXECUTE sp_addlinkedserver
[@server=] <Linked Server Name>
, [@srvproduct=] <Product Name>]
, [@provider=] <OLE DB Provider>]
[edatasrc=] <Data Source>]
, [@location=] <Data Source Address>]
[
[

@provstr=] <Provider Connection String>]
@catalog=] <Database>];

| e B e N e B e N e B |
~

Examples

Create a linked server to a local text file.

EXECUTE sp_addlinkedserver MyTextLinkedServer, N'Jet 4.0°',
N'Microsoft.Jet.OLEDB.4.0"',
N'D:\TextFiles\MyFolder"',
NULL,
N'Text';

Define security context.

EXECUTE sp_addlinkedsrvlogin MyTextlLinkedServer, FALSE, Admin, NULL;

Use sp_tables_ex to list tables in a folder.

EXEC sp_tables_ex MyTextLinkedServer;

SQL Server Usage 396

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Issue a SELECT query using a four-part name.

SELECT *
FROM MyTextLinkedServer...[FileName#text];

For more information, see sp_addlinkedserver (Transact-SQL) and Distributed Queries Stored

Procedures (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage
Querying data in remote databases is available through two primary options:

« dblink database link function.
» Foreign data wrapper (FDW) postgresql_fdw extension.

The PostgreSQL foreign data wrapper extension is new to PostgreSQL and provides functionality
similar to dblink. However, the PostgreSQL foreign data wrapper aligns closer with the SQL
standard and can provide improved performance.

Examples

Load the dblink extension into PostgreSQL.

CREATE EXTENSION dblink;

Create a persistent connection to a remote PostgreSQL database using the dblink_connect
function specifying a connection name (myconn), database name (postgresql), port (5432), host
(hostname), user (username), and password (passwozrd).

SELECT dblink_connect ('myconn',
'dbname=postgres port=5432 host=hostname user=username password=password');

You can use the connection to run queries against the remote database.

Run a query using the previously created myconn connection by using the dblink function. The
query returns the id and name columns from the employees table. On the remote database, you
must specify the connection name and the SQL query to run as well as parameters and datatypes
for selected columns (id and name in this example).

PostgreSQL Usage 397

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addlinkedserver-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT * from dblink ('myconn',
'SELECT id, name FROM EMPLOYEES') AS p(id int,fullname text);

Close the connection using the dblink_disconnect function.

SELECT dblink_disconnect('myconn');

Alternatively, you can use the dblink function specifying the full connection string to the remote
PostgreSQL database including the database name, port, hostname, username, and password. You
can do this instead of using a previously defined connection. Make sure that you specify the SQL
query to run as well as parameters and data types for the selected columns (id and name, in this
example).

SELECT * from dblink ('dbname=postgres port=5432 host=hostname user=username
password=password',
'SELECT id, name FROM EMPLOYEES') AS p(id int,fullname text);

DML commands are supported on tables referenced by the dblink function. For example, you can
insert a new row and then delete it from the remote table.

SELECT * FROM dblink('myconn',$$INSERT into employees VALUES (3, 'New Employees No.
31')$$) AS t(message text);

SELECT * FROM dblink('myconn',$$DELETE FROM employees WHERE id=3%$$) AS t(message text);

Create a new new_employees_table local table by querying data from a remote table.

SELECT emps.* INTO new_employees_table
FROM dblink('myconn', 'SELECT * FROM employees')
AS emps(id int, name varchar);

Join remote data with local data.

SELECT local_emps.id , local_emps.name, s.sale_year, s.sale_amount
FROM local_emps INNER JOIN
dblink('myconn', 'SELECT * FROM working_hours') AS s(id int, hours worked int)
ON local_emps.id = s.id;

PostgreSQL Usage 398

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Run DDL statements in the remote database.

SELECT * FROM dblink('myconn',$$CREATE table new_remote_tbl (a int, b text)$$) AS t(a
text);

For more information, see dblink in the PostgreSQL documentation.

Scripting features

This topic provides reference information comparing the scripting and automation capabilities of
Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. It highlights the differences in tool
sets and scripting languages between these two database systems. The topic explains that SQL
Server supports T-SQL and XQuery scripting within various frameworks, while Aurora PostgreSQL,
as a Platform as a Service, offers different approaches for database administration and scripting.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Non-compatible
tool sets and
scripting languages
. Use PostgreSQL
pgAdmin, Amazon
RDS API, Amazon
Management
Console, and Amazon
CLI.

SQL Server Usage

SQL Server supports T-SQL and XQuery scripting within multiple run frameworks such as SQL
Server Agent, and stored procedures.

The SQLCMD command line utility can also be used to run T-SQL scripts. However, the most
extensive and feature-rich scripting environment is PowerShell.

Scripting features 399

https://www.postgresql.org/docs/13/dblink.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server provides two PowerShell snap-ins that implement a provider exposing the entire SQL
Server Management Object Model (SMO) as PowerShell paths. Additionally, you can use cmd in SQL
Server to run specific SQL Server commands.

(® Note
You can use Invoke-Sqlcmd to run scripts using the SQLCMD utility.

The sqlps utility launches the PowerShell scripting environment and automatically loads the SQL
Server modules. You can launch sqlps from a command prompt or from the Object Explorer pane
of SQL Server Management Studio. You can run one-time PowerShell commands and script files
(for example, .\SomeFolder\SomeScript.psl).

(® Note

SQL Server Agent supports running PowerShell scripts in job steps. For more information,
see SQL Server Agent.

SQL Server also supports three types of direct database engine queries: T-SQL, XQuery, and the
SQLCMD utility. You can call T-SQL and XQuery from stored procedures, SQL Server Management
Studio (or other IDE), and SQL Server agent jobs. The SQLCMD utility also supports commands and
variables.

Examples

Backup a database with PowerShell using the default backup options.

PS C:\> Backup-SqlDatabase -ServerInstance "MyServer\SQLServerInstance" -Database
IIMyDBII

Get all rows from the MyTable table in the MyDB database.

PS C:\> Read-SglTableData -ServerInstance MyServer\SQLServerInstance" -DatabaseName
"MyDB" -TableName "MyTable"

For more information, see SQL Server PowerShell, Database Engine Scripting, and sqlcmd Utility in

the SQL Server documentation.

SQL Server Usage 400

https://docs.microsoft.com/en-us/sql/powershell/sql-server-powershell?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/scripting/database-engine-scripting?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PostgreSQL Usage

As a Platform as a Service (PaaS), Amazon Aurora PostgreSQL-Compatible Edition (Aurora
PostgreSQL) accepts connections from any compatible client, but you can't access the PostgreSQL
command line utility typically used for database administration. However, you can use PostgreSQL
tools installed on a network host and the Amazon Relational Database Service (Amazon RDS) API.
The most common tools for Aurora PostgreSQL scripting and automation include PostgreSQL
pgAdmin, PostgreSQL utilities, and the Amazon RDS API. The following sections describe each tool.

PostgreSQL pgAdmin

PostgreSQL pgAdmin is the most commonly used tool for development and administration of
PostgreSQL servers. It is available as a free Community Edition and paid support is available.

The PostgreSQL pgAdmin also supports a Python scripting shell that you can use interactively and
programmatically. For more information see: pgAdmin.

Amazon RDS API

The Amazon RDS APl is a web service for managing and maintaining Aurora PostgreSQL and other
relational databases. You can use Amazon RDS API to setup, operate, scale, backup, and perform
many common administration tasks. The Amazon RDS API supports multiple database platforms
and can integrate administration seamlessly for heterogeneous environments.

(® Note

The Amazon RDS APl is asynchronous. Some interfaces may require polling or callback
functions to receive command status and results.

You can access Amazon RDS using the Amazon Management Console, the Amazon Command Line
Interface (CLI), and the Amazon RDS Programmatic APl as described in the following sections.

Amazon Management Console

The Amazon Management Console is a simple web-based set of tools for interactive management
of Aurora PostgreSQL and other Amazon RDS services. To access the Amazon Management
Console, sign in to your Amazon account, and choose RDS.

PostgreSQL Usage 401

https://www.pgadmin.org/

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Amazon Command Line Interface

The Amazon Command Line Interface is an open source tool that runs on Linux, Windows, or
macOS having Python 2 version 2.6.5 and higher or Python 3 version 3.3 and higher.

The Amazon CLI is built on top of the Amazon SDK for Python (Boto), which provides commands
for interacting with Amazon services. With minimal configuration, you can start using all Amazon
Management Console functionality from your favorite terminal application.

 Linux shells — Use common shell programs such as Bash, Zsh, or tsch.
« Windows command line — Run commands in PowerShell or the Windows Command Processor.

« Remotely — Run commands on Amazon EC2 instances through a remote terminal such as PuTTY
or SSH.

The Amazon Tools for Windows PowerShell and Amazon Tools for PowerShell Core are PowerShell
modules built on the functionality exposed by the Amazon SDK for .NET. These Tools enable
scripting operations for Amazon resources using the PowerShell command line.

® Note

You can’'t use SQL Server cmdlets in PowerShell.

Amazon RDS Programmatic API

You can use the Amazon RDS API to automate management of database instances and other
Amazon RDS objects.

For more information, see Actions, Data Types, Common Parameters, and Common Errors in the

Amazon Relational Database Service API Reference.
Examples

The following walkthrough describes how to connect to an Aurora PostgreSQL database instance
using the PostgreSQL utility.

1. Sign in to your Amazon account, choose RDS, and then choose Databases.

2. Choose the PostgreSQL database you want to connect to and copy the cluster endpoint address.

PostgreSQL Usage 402

https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/API_Operations.html
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/API_Types.html
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/CommonParameters.html
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/CommonErrors.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

® Note

You can also connect to individual database instances. For more information, see High
Availability Essentials.

3. In the command shell, enter the following:

psql --host=mypostgresql.c6c8mwvfdgv@.us-west-2.rds.amazonaws.com
--port=5432 --username=awsuser --password --dbname=mypgdb

In the preceding example, the --host parameter is the endpoint DNS name of the Aurora
PostgreSQL database cluster.

In the preceding example, the - -port parameter is the port number.

For more information, see Command Line Interface Command Reference and Amazon Relational
Database Service API Reference.

PostgreSQL Usage 403

https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/Welcome.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Performance tuning overview

This topic provides conceptual information about query execution plans, feature compatibility,
and statistics in the context of migrating from Microsoft SQL Server 2019 to Amazon Aurora
PostgreSQL. You can gain insights into how these database management systems approach
query optimization, execution plan generation, and statistical data management. The content
compares and contrasts the methods used by SQL Server and PostgreSQL, highlighting key
differences in functionality such as database hints, graphical execution plans, and statistics
collection. Understanding these concepts is crucial for database administrators and developers
who are planning or executing a migration from SQL Server to Aurora PostgreSQL, as it helps
them anticipate changes in query performance optimization strategies and adapt their database
management practices accordingly.

Topics

« Tuning run plans

e Query hints and plan guides

» Managing statistics

Tuning run plans

This topic provides reference information about query execution plans in both Microsoft SQL
Server and PostgreSQL, focusing on their importance for performance optimization. You can
understand how these database management systems generate and utilize execution plans to
analyze and improve query performance. The topic compares the features and syntax differences
between SQL Server and PostgreSQL, highlighting SQL Server’s graphical representation of
execution plans and automatic tuning capabilities.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Syntax differences.
@ @ Completely different
optimizer with

Tuning run plans 404

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

different operators
and rules.

SQL Server Usage

Run plans provide users detailed information about the data access and processing methods
chosen by the SQL Server Query Optimizer. They also provide estimated or actual costs of each
operator and sub-tree. Run plans provide critical data for troubleshooting query performance
issues.

SQL Server creates run plans for most queries and returns them to client applications as plain text
or XML documents. SQL Server produces an run plan when a query runs, but it can also generate
estimated plans without running a query.

SQL Server Management Studio provides a graphical view of the underlying XML plan document
using icons and arrows instead of textual information. This graphical view is extremely helpful
when investigating the performance aspects of a query.

To request an estimated run plan, use the SET SHOWPLAN_XML, SHOWPLAN_ALL, or
SHOWPLAN_TEXT statements.

SQL Server 2017 introduces automatic tuning, which notifies users whenever a potential
performance issue is detected and lets them apply corrective actions, or lets the Database Engine
automatically fix performance problems.

Automatic tuning SQL Server enables users to identify and fix performance issues caused by
query run plan choice regressions. For more information, see Automatic tuning in the SQL Server
documentation.

Examples

Show the estimated run plan for a query.

SET SHOWPLAN_XML ON;

SQL Server Usage 405

https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT *

FROM MyTable

WHERE SomeColumn = 3;
SET SHOWPLAN_XML OFF;

Actual run plans return after run of the query or batch of queries completes. Actual run plans
include run-time statistics about resource usage and warnings. To request the actual run plan, use
the SET STATISTICS XML statement to return the XML document object. Alternatively, use the
STATISTICS PROFILE statement, which returns an additional result set containing the query run
plan.

Show the actual run plan for a query.

SET STATISTICS XML ON;
SELECT *

FROM MyTable

WHERE SomeColumn = 3;
SET STATISTICS XML OFF;

The following example shows a partial graphical run plan from SQL Server Management Studio.

FH Resuts B Messages 27 Execution plan

Query 1: Query cost (relative to the batch): 100%
SELECT [Sensor], [Date], CAST(ISNULL ([Measurement], [Last Non Null Measurement] + { {({ [Fext Non Null Measurement] - [Last Non Null Measuremer

)!: ‘?4 5
= = e A I = =
i r:‘: r:‘: 5 ; zjt B ll,:l' l?: el J_l‘_l'
Dl;) Compute Scalar Compute Scalar tream Aggregate Sort EFE. elism Compute Scalar N a.ra elism
r Join) Cost: 0 % Cost: 0 & {hAggregate) Cost: 0 % (Repartition Streams) Cost: 0 &% (Distribuce Streams)
)& Cost: O % Cost: 0 % Cost: 0 %
La E e .):: Y]
P TE;: t:: = Ta: 5
Parallelism Nested Loops Stream Aggregate Parallelism Stream Aggregate Sort
(Repartition Strezms) (Inner Jein) (Aggregate) {Repartition Streams) {kggregatce) (Distinet Sort)
Cost: 3 % Cost: 1 % Cost:z 0 % Cost: O % Cost: O % Cost: 0 %
b
iy 1
£

Clustered Index Sesk (Clustered)
[Calendar] . [FK_Calendar] [C]
Cost: 2 %

For more information, see Display and Save Execution Plans in the SQL Server documentation.

PostgreSQL Usage

When using the EXPLAIN command, PostgreSQL will generate the estimated run plan for actions,
such as SELECT, INSERT, UPDATE, and DELETE. EXPLAIN builds a structured tree of plan nodes
representing the different actions taken (the sign # represents a root line in the PostgreSQL run
plan). In addition, the EXPLAIN statement will provide statistical information regarding each action,
such as cost, rows, time and loops.

PostgreSQL Usage 406

https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

When using the EXPLAIN command as part of a SQL statement, the statement will not run, and
the run plan will be an estimation. By using the EXPLAIN ANALYZE command, the statement will
run in addition to displaying the run plan.

PostgreSQL EXPLAIN Synopsis

EXPLAIN [(option value[, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option and values can be one of:
ANALYZE [boolean]
VERBOSE [boolean]
COSTS [boolean]
BUFFERS [boolean]
TIMING [boolean]
SUMMARY [boolean] (since PostgreSQL 10)
FORMAT { TEXT | XML | JSON | YAML }

By default, planning and run time are displayed when using EXPLAIN ANALYZE, but not in other
cases. A new option SUMMARY gives explicit control of this information. Use SUMMARY to include
planning and run time metrics in your output.

PostgreSQL provides configurations options that will cancel SQL statements running longer than
provided time limit. To use this option, you can set the statement_timeout instance-level
parameter. If the value is specified without units, it is taken as milliseconds. A value of zero (the
default) disables the timeout.

Third-party connection pooler solutions like Pgbouncer and PgPool build on that and allow more
flexibility in controlling how long connection to DB can run, be in idle state, and so on.

Aurora PostgreSQL Query Plan Management

The Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) Query Plan Management
(QPM) feature solves the problem of plan instability by allowing database users to maintain stable,
yet optimal, performance for a set of managed SQL statements. QPM primarily serves two main
objectives:

« Plan stability. QPM prevents plan regression and improves plan stability when any of the
preceding changes occur in the system.

PostgreSQL Usage 407

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Plan adaptability. QPM automatically detects new minimum-cost plans and controls when new
plans may be used and adapts to the changes.

The quality and consistency of query optimization have a major impact on the performance and
stability of any relational database management system (RDBMS). Query optimizers create a query
run plan for a SQL statement at a specific point in time. As conditions change, the optimizer might
pick a different plan that makes performance better or worse. In some cases, a number of changes
can all cause the query optimizer to choose a different plan and lead to performance regression.
These changes include changes in statistics, constraints, environment settings, query parameter
bindings, and software upgrades. Regression is a major concern for high-performance applications.

With query plan management, you can control run plans for a set of statements that you want to
manage. You can do the following:

« Improve plan stability by forcing the optimizer to choose from a small number of known, good
plans.

« Optimize plans centrally and then distribute the best plans globally.

« Identify indexes that aren’t used and assess the impact of creating or dropping an index.

« Automatically detect a new minimum-cost plan discovered by the optimizer.

« Try new optimizer features with less risk, because you can choose to approve only the plan
changes that improve performance.

Examples

Display the run plan of a SQL statement using the EXPLAIN command.

EXPLAIN
SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
WHERE LAST_NAME='King' AND FIRST_NAME='Steven';

Index Scan using idx_emp_name on employees (cost=0.14..8.16 rows=1 width=18)

Index Cond: (((last_name)::text = 'King'::text) AND ((first_name)::text =
'Steven'::text))

(2 rows)

Run the same statement with the ANALYZE keyword.

PostgreSQL Usage 408

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

EXPLAIN ANALYZE
SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
WHERE LAST_NAME='King' AND FIRST_NAME='Steven';

Seq Scan on employees (cost=0.00..3.60 rows=1 width=18) (actual time=0.012..0.024
rows=1 loops=1)

Filter: (((last_name)::text = 'King'::text) AND ((first_name)::text = 'Steven'::text))
Rows Removed by Filter: 106

Planning time: 0.073 ms

Execution time: 0.037 ms

(5 rows)

By adding the ANALYZE keyword and running the statement, we get additional information in
addition to the run plan.

View a PostgreSQL run plan showing a FULL TABLE SCAN.

EXPLAIN ANALYZE
SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME FROM EMPLOYEES
WHERE SALARY > 10000;

Seq Scan on employees (cost=0.00..3.34 rows=15 width=18) (actual time=0.012..0.036
rows=15 loops=1)

Filter: (salary > '10000': :numeric)

Rows Removed by Filter: 92

Planning time: 0.069 ms

Execution time: 0.052 ms

(5 rows)

PostgreSQL can perform several scan types for processing and retrieving data from tables
including sequential scans, index scans, and bitmap index scans. The sequential scan is PostgreSQL
equivalent for SQL Server full table scan.

For more information, see EXPLAIN in the PostgreSQL documentation.

Query hints and plan guides

This topic provides reference information about the differences in feature compatibility between
Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL, specifically regarding database

Query hints and plan guides 409

https://www.postgresql.org/docs/13/sql-explain.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

hints and query optimization. You can understand how SQL Server's hint functionality, which
allows direct influence over query execution plans, contrasts with PostgreSQL's approach. While
PostgreSQL doesn't support database hints in the same way, it offers alternative methods to
influence query planning through session parameters.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Very limited set of
@ @ hints - Index hints
and optimizer hints
as comments. Syntax
differences.

SQL Server Usage

SQL Server hints are instructions that override automatic choices made by the query processor for
DML and DQL statements. The term hint is misleading because, in reality, it forces an override to
any other choice of run plan.

JOIN Hints

You can explicitly add LOOP, HASH, MERGE, and REMOTE hints to a JOIN statement. For example, ...
Tablel INNER LOOP JOIN Table2 ON .. .

These hints force the optimizer to use nested loops, hash match, or merge physical join algorithms.

REMOTE enables processing a join with a remote table on the local server.
Table Hints

Table hints override the default behavior of the query optimizer. Table hints are used to explicitly
force a particular locking strategy or access method for a table operation clause. These hints don't
modify the defaults and apply only for the duration of the DML or DQL statement.

Some common table hints are INDEX = <Index value>, FORCESEEK, NOLOCK, and TABLOCKX.

SQL Server Usage 410

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Query Hints

Query hints affect the entire set of query operators, not just the individual clause in which they
appear. Query hints may be JOIN hints, table hints, or from a set of hints that are only relevant for
query hints.

Some common table hints include OPTIMIZE FOR, RECOMPILE, FORCE ORDER, FAST <rows>.

You can specify query hints after the query itself following the WITH options clause.
Plan Guides

Plan guides provide similar functionality to query hints in the sense they allow explicit user
intervention and control over query optimizer plan choices. Plan guides can use either query hints
or a full fixed, pre-generated plan attached to a query. The difference between query hints and
plan guides is the way they are associated with a query.

While query or table hints need to be explicitly stated in the query text, they aren’t an option if
you have no control over the source code generating these queries. If an application uses ad-hoc
queries instead of stored procedures, views, and functions, the only way to affect query plans is to
use plan guides. They are often used to mitigate performance issues with third-party software.

A plan guide consists of the statement whose run plan needs to be adjusted and either an OPTION
clause that lists the desired query hints or a full XML query plan that is enforced as long it is valid.

At run time, SQL Server matches the text of the query specified by the guide and attaches the
OPTION hints. Alternatively, it assigns the provided plan for running.

SQL Server supports three types of plan guides:

« Object plan guides target statements that run within the scope of a code object such as a stored
procedure, function, or trigger. If the same statement is found in another context, the plan guide
is not be applied.

« SQL plan guides are used for matching general ad-hoc statements not within the scope of code
objects. In this case, any instance of the statement regardless of the originating client is assigned
the plan guide.

« Template plan guides can be used to abstract statement templates that differ only in parameter
values. You can use them to override the PARAMETERIZATION database option setting for a
family of queries.

SQL Server Usage 411

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Syntax

The following example uses query hints in a SELECT statement. You can use query hints in all DQL
and DML statements.

SELECT <statement>

OPTION

(

{{HASH|ORDER} GROUP

| {CONCAT |HASH|MERGE} UNION

| {LOOP | MERGE |HASH} JOIN

| EXPAND VIEWS

| FAST <Rows>

| FORCE ORDER

| {FORCE |[DISABLE} EXTERNALPUSHDOWN

| IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX
| KEEP PLAN

| KEEPFIXED PLAN

| MAX_GRANT_PERCENT <Percent>

| MIN_GRANT_PERCENT = <Percent>

| MAXDOP <Number of Processors>

| MAXRECURSION <Number>

| NO_PERFORMANCE_SPOOL

|OPTIMIZE FOR (@<Variable> {UNKNOWN|= <Value>}[,...])
|OPTIMIZE FOR UNKNOWN

| PARAMETERIZATION {SIMPLE|FORCED}

| RECOMPILE

| ROBUST PLAN

|[USE HINT ('<Hint>' [,...1])

|[USE PLAN N'<XML Plan>'

| TABLE HINT (<Object Name> [,<Table Hint>[[,...]1])
1)

The following example creates a plan guide.

EXECUTE sp_create_plan_guide @name = '<Plan Guide Name>'
,@stmt = '<Statement>'
,@type = '<OBJECT|SQL|TEMPLATE>"
,@module_or_batch = 'Object Name>'|'<Batch Text>'| NULL
,@params = '<Parameter List>'|NULL }
,@hints = 'OPTION(<Query Hints>'|'<XML Plan>'|NULL;

SQL Server Usage 412

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples

Limit parallelism for a sales report query.

EXEC sp_create_plan_guide
@name = N'SalesReportPlanGuideMAXDOP',
@stmt = N'SELECT *
FROM dbo.fn_SalesReport(GETDATE())
@type = N'SQL',
@module_or_batch = NULL,
@params = NULL,
@hints = N'OPTION (MAXDOP 1)';

Use table and query hints.

SELECT *
FROM MyTablel AS T1
WITH (FORCESCAN)
INNER LOOP JOIN
MyTable2 AS T2
WITH (TABLOCK, HOLDLOCK)
ON T1.Coll = T2.Coll
WHERE T1.Date BETWEEN DATEADD(DAY, -7, GETDATE()) AND GETDATE()

For more information, see Hints (Transact-SQL) and Plan Guides in the SQL Server documentation.

PostgreSQL Usage

PostgreSQL doesn’t support database hints to influence the behavior of the query planner, and
you can't influence how run plans are generated from within SQL queries. Although database hints
aren't directly supported, session parameters (also known as Query Planning Parameters) can
influence the behavior of the query optimizer at the session level.

Examples

Configure the query planner to use indexes instead of full table scans (disable SEQSCAN).

SET ENABLE_SEQSCAN=FALSE;

Set the query planner’s estimated cost of a disk page fetch that is part of a series of sequential
fetches (SEQ_PAGE_COST) and set the planner's estimate of the cost of a non-sequentially-

PostgreSQL Usage 413

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

fetched disk page (RANDOM_PAGE_COST). Reducing the value of RANDOM_PAGE_COST relative to
SEQ_PAGE_COST causes the query planner to prefer index scans, while raising the value makes
index scans more expensive.

SET SEQ_PAGE_COST to 4;
SET RANDOM_PAGE_COST to 1;

Turn on or turn off the query planner’s use of nested-loops when performing joins. While it is
impossible to completely disable the usage of nested-loop joins, setting the ENABLE_NESTLOOP to
OFF discourages the query planner from choosing nested-loop joins compared to alternative join
methods.

SET ENABLE_NESTLOOP to FALSE;

For more information, see Query Planning in the PostgreSQL documentation.

Managing statistics

This topic provides reference information about statistics and query optimization in SQL Server
and PostgreSQL databases. You can understand how these database systems use statistics to
improve query performance and how they differ in their approach to collecting and managing
statistical data. The topic compares the methods for creating, viewing, and updating statistics in
SQL Server with similar functionality in PostgreSQL.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index

automation level

N/A N/A Syntax and option
@ @ E differences, similar

functionality.

SQL Server Usage

Statistics objects in SQL Server are designed to support SQL Server cost-based query optimizer. It
uses statistics to evaluate the various plan options and choose an optimal plan for optimal query
performance.

Managing statistics 414

https://www.postgresql.org/docs/13/static/runtime-config-query.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Statistics are stored as BLOBs in system tables and contain histograms and other statistical
information about the distribution of values in one or more columns. A histogram is created for
the first column only and samples the occurrence frequency of distinct values. Statistics and
histograms are collected by either scanning the entire table or by sampling only a percentage of
the rows.

You can view Statistics manually using the DBCC SHOW_STATISTICS statement or the more recent
sys.dm_db_stats_properties and sys.dm_db_stats_histogram system views.

SQL Server provides the capability to create filtered statistics containing a WHERE predicate.
Filtered statistics are useful for optimizing histogram granularity by eliminating rows whose values
are of less interest, for example NULLs.

SQL Server can manage the collection and refresh of statistics automatically (the default). Use the
AUTO_CREATE_STATISTICS and AUTO_UPDATE_STATISTICS database options to change the
defaults.

When a query is submitted with AUTO_CREATE_STATISTICS on and the query optimizer may
benefit from a statistics that don’t yet exist, SQL Server creates the statistics automatically. You can
use the AUTO_UPDATE_STATISTICS_ASYNC database property to set new statistics creation to
occur immediately (causing queries to wait) or to run asynchronously. When run asynchronously,
the triggering run can't benefit from optimizations the optimizer may derive from it.

After creation of a new statistics object, either automatically or explicitly using the

CREATE STATISTICS statement, the refresh of the statistics is controlled by the
AUTO_UPDATE_STATISTICS database option. When set to ON, statistics are recalculated when
they are stale, which happens when significant data modifications have occurred since the last
refresh.

Syntax

CREATE STATISTICS <Statistics Name>
ON <Table Name> (<Column> [,...])
[WHERE <Filter Predicate>]

[WITH <Statistics Options>;

Examples

The following example creates new statistics on multiple columns. Set to use a full scan and to not
refresh.

SQL Server Usage 415

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE STATISTICS MyStatistics
ON MyTable (Coll, Col2)
WITH FULLSCAN, NORECOMPUTE;

The following example updates statistics with a 50% sampling rate.

UPDATE STATISTICS MyTable(MyStatistics)
WITH SAMPLE 50 PERCENT;

View the statistics histogram and data.
DBCC SHOW_STATISTICS ('MyTable', 'MyStatistics');
Turn off automatic statistics creation for a database.

ALTER DATABASE MyDB SET AUTO_CREATE_STATS OFF;

For more information, see Statistics, CREATE STATISTICS (Transact-SQL), and DBCC
SHOW_STATISTICS (Transact-SQL) in the SQL Server documentation.

PostgreSQL Usage

Use the ANALYZE command to collect statistics about a database, a table, or a specific table
column. The PostgreSQL ANALYZE command collects table statistics that support the generation of
efficient query run plans by the query planner.

« Histograms — ANALYZE collects statistics on table column values and creates a histogram of the
approximate data distribution in each column.

» Pages and Rows — ANALYZE collects statistics on the number of database pages and rows from
which each table is comprised.

« Data Sampling — For large tables, the ANALYZE command takes random samples of values
rather than examining each row. This allows the ANALYZE command to scan very large tables in
a relatively small amount of time.

« Statistic Collection Granularity — Running the ANALYZE command without parameters
instructs PostgreSQL to examine every table in the current schema. Supplying the table name or
column name to ANALYZE instructs the database to examine a specific table or table column.

PostgreSQL Usage 416

https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Automatic Statistics Collection

By default, PostgreSQL is configured with an AUTOVACUUM daemon which automates the run of

statistics collection by using the ANALYZE commands (in addition to automation of the VACUUM
command). The AUTOVACUUM daemon scans for tables that show signs of large modifications in

data to collect the current statistics. AUTOVACUUM is controlled by several parameters.

Individual tables have several storage parameters which can trigger AUTOVACUUM process
sooner or later. You can set or change such parameters as autovacuum_enabled,
autovacuum_vacuum_threshold, and others, using CREATE TABLE or ALTER TABLE
statements.

ALTER TABLE custom_autovaccum SET (autovacuum_enabled = true,
autovacuum_vacuum_cost_delay = 1@ms, autovacuum_vacuum_scale_factor = 0.01,
autovacuum_analyze_scale_factor = 0.005);

The preceding command enables AUTOVACUUM for the custom_autovaccum table and specifies
the AUTOVACUUM process to sleep for 10 milliseconds each run.

It also specifies a 1% of the table size to be added to autovacuum_vacuum_threshold and 0.5%
of the table size to be added to autovacuum_analyze_threshold when deciding whether to
trigger a VACUUM.

For more information, see Automatic Vacuuming in the PostgreSQL documentation.

Manual Statistics Collection

In PostgreSQL, you can collect statistics on-demand using the ANALYZE command at the database
level, table level, or column level.

« ANALYZE on indexes isn't currently supported.

« ANALYZE requires only a read-lock on the target table. It can run in parallel with other activity on
the table.

« For large tables, ANALYZE takes a random sample of the table contents. It is configured by the
show default_statistics_target parameter. The default value is 100 entries. Raising the
limit might allow more accurate planner estimates to be made at the price of consuming more
space in the pg_statistic table.

PostgreSQL Usage 417

https://www.postgresql.org/docs/13/runtime-config-autovacuum.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Starting from PostgreSQL 10, there is a new command CREATE STATISTICS, which creates a new
extended statistics object tracking data about the specified table.

The STATISTICS object tells the server to collect more detailed statistics.
Examples

The following example gathers statistics for the entire database.

ANALYZE;

The following example gathers statistics for a specific table. The VERBOSE keyword displays
progress.

ANALYZE VERBOSE EMPLOYEES;

The following example gathers statistics for a specific column.

ANALYZE EMPLOYEES (HIRE_DATE);

Specify the default_statistics_target parameter for an individual table column and reset it back to
default.

ALTER TABLE EMPLOYEES ALTER COLUMN SALARY SET STATISTICS 150;

ALTER TABLE EMPLOYEES ALTER COLUMN SALARY SET STATISTICS -1;

Larger values increase the time needed to complete an ANALYZE, but improve the quality of the
collected planner's statistics, which can potentially lead to better run plans.

View the current (session or global) default_statistics_target, modify it to 150, and
analyze the EMPLOYEES table:

SHOW default_statistics_target ;
SET default_statistics_target to 150;
ANALYZE EMPLOYEES ;

View the last time statistics were collected for a table.

PostgreSQL Usage 418

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

select relname, last_analyze from pg_stat_all_tables;

Summary

Feature

Analyze a specific database
table

Analyze a database table
while only sampling certain
rows

View last time statistics were
collected

For more information, see ANALYZE and The Autovacuum Daemon

SQL Server

CREATE STATISTICS
MyStatistics
ON MyTable (Coll, Col2)

UPDATE STATISTICS
MyTable(MyStatistics)
WITH SAMPLE 50 PERCENT;

DBCC SHOW_STATISTICS
('MyTable', 'MyStat
istics');

documentation.

PostgreSQL

ANALYZE EMPLOYEES;

Configure the number of
entries for the table:

SET default_statistics
_target to 150;
ANALYZE EMPLOYEES ;

select relname, last

in the PostgreSQL

Summary

419

https://www.postgresql.org/docs/13/sql-analyze.html
https://www.postgresql.org/docs/13/routine-vacuuming.html#AUTOVACUUM

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Physical storage overview

This topic provides conceptual content comparing feature compatibility between Microsoft SQL
Server 2019 and Amazon Aurora PostgreSQL. It covers three main areas: columnstore indexes,
indexed views and materialized views, and partitioning. The content explores how these features
are implemented in both database systems, highlighting similarities, differences, and potential
migration challenges. By understanding these concepts, database administrators and developers
can better prepare for the transition from SQL Server to Aurora PostgreSQL. This knowledge
allows them to anticipate feature gaps, plan for necessary adjustments in their database design
and optimization strategies, and make informed decisions when migrating their data warehousing
and analytical workloads.

Topics

» Columnstore index functionality

 Indexed view functionality

 Partitioning databases

Columnstore index functionality

This topic provides reference information about the compatibility of columnstore indexes when
migrating from Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL. Aurora PostgreSQL
does not offer a directly comparable feature to SQL Server's columnstore indexes, which are used
for data compression and query performance improvement in data warehousing scenarios.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A Aurora PostgreSQL
offers no comparable
feature.

Columnstore index functionality 420

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server Usage

SQL Server provides columnstore indexes that use column-based data storage to compress data
and improve query performance in data warehouses. Columnstore indexes are the preferred data
storage format for data warehousing and analytic workloads. As a best practice, use Columnstore
indexes with fact tables and large dimension workloads.

Examples

The following example creates

CREATE TABLE products(ID [int] NOT NULL, OrderDate [int] NOT NULL, ShipDate [int] NOT
NULL);
GO

CREATE CLUSTERED COLUMNSTORE INDEX cci_T1 ON products;
GO

For more information, see Columnstore indexes: Overview in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) doesn't currently provide a
directly comparable alternative for SQL Server columnstore index.

Indexed view functionality

This topic provides reference information comparing the feature compatibility between Microsoft
SQL Server 2019 and Amazon Aurora PostgreSQL, specifically focusing on indexed views and
materialized views. You can understand the differences in implementation and limitations between
these two database systems when it comes to creating and managing views with indexes. The topic
highlights that while SQL Server supports indexed views with specific requirements, PostgreSQL
offers similar functionality through materialized views.

SQL Server Usage 421

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-2017

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level
N/A Different paradigm
@ @ and syntax will

require rewriting the
application.

SQL Server Usage

The first index created on a view must be a clustered index. Subsequent indexes can be non-
clustered indexes. For more information, see Clustered and nonclustered indexes described in the

SQL Server documentation.

Before creating an index on a view, the following requirements must be met:

« The WITH SCHEMABINDING option must be used when creating the view.

« Verify the SET options are correct for all existing tables referenced in the view and for the
session. Find the link at the end of this section for required values.

o Ensure that a clustered index on the view is exists.

(@ Note
You can't use indexed views with temporal queries (FOR SYSTEM_TIME).

Examples

Set the required SET options, create a view with the WITH SCHEMABINDING option, and create an
index on this view.

SET NUMERIC_ROUNDABORT OFF;

SET ANSI_PADDING, ANSI_WARNINGS, CONCAT_NULL_YIELDS_NULL, ARITHABORT,
QUOTED_IDENTIFIER, ANSI_NULLS ON;

GO

SQL Server Usage 422

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-2017

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE VIEW Sales.Ord_view
WITH SCHEMABINDING
AS
SELECT SUM(Price*Qty*(1.00-Discount)) AS Revenue,
OrdTime, ID, COUNT_BIG(*) AS COUNT
FROM Sales.OrderDetail AS ordet, Sales.OrderHeader AS ordhead
WHERE ordet.SalesOrderID = ordhead.SalesOrderID
GROUP BY OrdTime, ID;
GO

CREATE UNIQUE CLUSTERED INDEX IDX_V1

ON Sales.Ord_view (OrdTime, ID);
GO

For more information, see Create Indexed Views in the SQL Server documentation.

PostgreSQL Usage

PostgreSQL doesn't support indexed views, but does provide similar functionality with materialized
views. You can run queries associated with materialized views, and populate the view data with the
REFRESH command.

The PostgreSQL implementation of materialized views has three primary limitations:

» You can refresh PostgreSQL materialized views either manually or using a job running the
REFRESH MATERIALIZED VIEW command. To refresh materialized views automatically, create a
trigger.

» PostgreSQL materialized views only support complete or full refresh.

o DML on materialized views isn't supported.

In some cases, when the tables are big, full REFRESH can cause performance issues. In this case,
you can use triggers to sync between one table to the new table. You can use the new table as an
indexed view.

Examples

The following example creates a materialized view named sales_summary using the sales table as
the source.

CREATE MATERIALIZED VIEW sales_summary AS

PostgreSQL Usage 423

https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views?view=sql-server-2017

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT seller_no,sale_date,sum(sale_amt)::numeric(10@,2) as sales_amt
FROM sales

WHERE sale_date < CURRENT_DATE

GROUP BY seller_no, sale_date

ORDER BY seller_no, sale_date;

The following example runs a manual refresh of the materialized view:

REFRESH MATERIALIZED VIEW sales_summary;

(® Note

The materialized view data isn't refreshed automatically if changes occur to its underlying
tables. For automatic refresh of materialized view data, a trigger on the underlying tables
must be created.

Creating a Materialized View

When you create a materialized view in PostgreSQL, it uses a regular database table underneath.
You can create database indexes on the materialized view directly and improve performance of
queries that access the materialized view.

Example

The following example creates an index on the sellerno and sale_date columns of the
sales_summary materialized view.

CREATE UNIQUE INDEX sales_summary_seller
ON sales_summary (seller_no, sale_date);

Summary

Feature Indexed views Materialized view

Create materialized view SET NUMERIC_ROUNDABORT CREATE MATERTALIZED

OFF; VIEW mvl AS SELECT *
FROM employees;

Summary 424

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Feature Indexed views

SET ANSI_PADDING,
ANSI_WARNINGS,
CONCAT_NULL_YIELDS

_NULL,

ARITHABORT, QUOTED_ID

ENTIFIER, ANSI_NULLS
ON;

GO

CREATE VIEW Sales.Oxd
_view WITH SCHEMABIN
DING
AS SELECT SUM(Price
Qty(1.00-Discount))
AS Revenue,
OrdTime, ID, COUNT_BIG
(*) AS
COUNT FROM Sales.Ozxd
erDetail AS ordet,
Sales.OrderHeader AS
ordhead
WHERE ordet.Sal
esOrderID = ordhead.S
alesOrderID
GROUP BY OrdTime,
ID;
GO

CREATE UNIQUE CLUSTERED
INDEX IDX_V1 ON
Sales.Ord_view
(0xrdTime, ID);

GO

Materialized view

Summary

425

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Feature Indexed views Materialized view

Indexed refreshed Automatic Manual. You can automate
refreshes using triggers.

Create a trigger that initiates
a refresh after every DML
command on the underlying
tables:

CREATE OR REPLACE
FUNCTION

refresh_mv1()

returns trigger
language plpgsql as

$$ begin

refresh materialized
view mvl;

return null;

end $%;

Create the refresh_m

vl trigger after insert,
update, delete, or truncate
on employees. For each
statement, run the
refresh_mvl();
procedure.

DML Supported Not Supported

For more information, see Materialized Views in the PostgreSQL documentation.

Partitioning databases

This topic provides reference information about partitioning in Microsoft SQL Server and Amazon
Aurora PostgreSQL. It compares and contrasts how partitioning works in these two database
systems, highlighting their similarities and differences. The topic explores the features, limitations,

Partitioning databases 426

https://www.postgresql.org/docs/13/rules-materializedviews.htm

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

and recent improvements in partitioning capabilities for both platforms. You can use this
information to understand the partitioning options available when migrating from SQL Server to
Aurora PostgreSQL, helping you make informed decisions about database design and performance
optimization.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

Partitioning PostgreSQL doesn't
@ @ @@@ support LEFT
partition or foreign
keys referencing
partitioned tables.

SQL Server Usage

SQL Server provides a logical and physical framework for partitioning table and index data. SQL
Server 2017 supports up to 15,000 partitions.

Partitioning separates data into logical units. You can store these logical units in more than one
file group. SQL Server partitioning is horizontal, where data sets of rows are mapped to individual
partitions. A partitioned table or index is a single object and must reside in a single schema within
a single database. Objects composed of disjointed partitions aren’t allowed.

All DQL and DML operations are partition agnostic except for the special $partition predicate.
You can use the $partition predicate for explicit partition elimination.

Partitioning is typically needed for very large tables to address the following management and
performance challenges:

« Deleting or inserting large amounts of data in a single operation with partition switching instead
of individual row processing while maintaining logical consistency.

« You can split and customize maintenance operations for each partition. For example, you can
compress older data partitions. Then you can rebuild and reorganize more frequently active
partitions.

SQL Server Usage 427

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Partitioned tables may use internal query optimization techniques such as collocated and
parallel partitioned joins.

» You can optimize physical storage performance by distributing IO across partitions and physical
storage channels.

» Concurrency improvements due to the engine’s ability to escalate locks to the partition level
rather than the whole table.

Partitioning in SQL Server uses the following three objects:

« A partitioning column is used by the partition function to partition the table or index. The
value of this column determines the logical partition to which it belongs. You can use computed
columns in a partition function as long as they are explicitly PERSISTED. Partitioning columns
may be any data type that is a valid index column with less than 900 bytes for each key except
timestamp and LOB data types.

« A partition function is a database object that defines how the values of the partitioning columns
for individual tables or index rows are mapped to a logical partition. The partition function
describes the partitions for the table or index and their boundaries.

« A partition scheme is a database object that maps individual logical partitions of a table or an
index to a set of file groups, which in turn consist of physical operating system files. Placing
individual partitions on individual file groups enables backup operations for individual partitions
(by backing their associated file groups).

Syntax

CREATE PARTITION FUNCTION <Partition Function>(<Data Type>)
AS RANGE [LEFT | RIGHT]
FOR VALUES (<Boundary Value 1>,...)[;]

CREATE PARTITION SCHEME <Partition Scheme>
AS PARTITION <Partition Function>
[ALL] TO (<File Group> | [PRIMARY] [,...1)[;]

CREATE TABLE <Table Name> (<Table Definition>)
ON <Partition Schema> (<Partitioning Column>);

SQL Server Usage 428

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Examples

The following example creates a partitioned table.

CREATE PARTITION FUNCTION PartitionFunctionl (INT)
AS RANGE LEFT FOR VALUES (1, 1000, 100000);

CREATE PARTITION SCHEME PartitionSchemel
AS PARTITION PartitionFunctionl
ALL TO (PRIMARY);

CREATE TABLE PartitionTable (
Coll INT NOT NULL PRIMARY KEY,
Col2 VARCHAR(20)

)
ON PartitionSchemel (Coll);

For more information, see Partitioned Tables and Indexes, CREATE TABLE (Transact-SQL), CREATE
PARTITION SCHEME (Transact-SQL), and CREATE PARTITION FUNCTION (Transact-SQL) in the SQL
Server documentation.

PostgreSQL Usage

Starting with PostgreSQL 10, there is an equivalent option to the SQL Server Partitions when using
RANGE or LIST partitions. Support for HASH partitions is expected to be included in PostgreSQL
11.

Prior to PostgreSQL 10, the table partitioning mechanism in PostgreSQL differed from SQL
Server. Partitioning in PostgreSQL was implemented using table inheritance. Each table partition
was represented by a child table which was referenced to a single parent table. The parent

table remained empty and was only used to represent the entire table data set (as a meta-data
dictionary and as a query source).

In PostgreSQL 10, you still need to create the partition tables manually, but you don’t need to
create triggers or functions to redirect data to the right partition.

Some of the partitioning management operations are performed directly on the sub-partitions
(sub-tables). You can query the partitioned table.

Starting with PostgreSQL 11, the following features were added:

PostgreSQL Usage 429

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-scheme-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-scheme-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-function-transact-sql?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« For partitioned tables, a default partition can now be created that will store data which can’t be
redirected to any other explicit partitions

« In addition to partitioning by ranges and lists, tables can now be partitioned by a hashed key.

« When UPDATE changes values in a column that's used as partition key in partitioned table, data
is moved to proper partitions.

« Anindex can now be created on a partitioned table. Corresponding indexes will be automatically
created on individual partitions.

» Foreign keys can now be created on a partitioned table. Corresponding foreign key constraints
will be propagated to individual partitions

» Triggers FOR EACH ROW can now be created on a partitioned table. Corresponding triggers will
be automatically created on individual partitions as well.

« When attaching or detaching new partition to a partitioned table with the foreign key, foreign
key enforcement triggers are correctly propagated to a new partition.

For more information, see Inheritance and Table Partitioning in the PostgreSQL documentation.

Using The Partition Mechanism

List Partition

CREATE TABLE emps (
emp_id SERIAL NOT NULL,
emp_name VARCHAR(3@) NOT NULL)
PARTITION BY LIST (left(lower(emp_name), 1));

CREATE TABLE emp_abc

PARTITION OF emps (

CONSTRAINT emp_id_nonzero CHECK (emp_id != 0)
) FOR VALUES IN ('a', 'b', 'c');

CREATE TABLE emp_def

PARTITION OF emps (

CONSTRAINT emp_id_nonzero CHECK (emp_id != 0)
) FOR VALUES IN ('d', 'e', 'f');
INSERT INTO emps VALUES (DEFAULT, 'Andrew');

row inserted.

PostgreSQL Usage 430

https://www.postgresql.org/docs/13/ddl-inherit.html
https://www.postgresql.org/docs/13/ddl-partitioning.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

INSERT INTO emps VALUES (DEFAULT, 'Chris');
row inserted.
INSERT INTO emps VALUES (DEFAULT, 'Frank');
row inserted.
INSERT INTO emps VALUES (DEFAULT, 'Pablo');

SQL Error [23514]: ERROR: no partition of relation "emps" found for row
Detail: Partition key of the failing row contains ("left"(lower(emp_name::text), 1)) =

(p).

To prevent the error shown in the preceding example, make sure that all partitions exist for all
possible values in the column that partitions the table. The default partition feature was added in
PostgreSQL 11.

Use the MAXVALUE and MINVALUE in your FROM/TO clause. This can help you get all values with
RANGE partitions without the risk of creating new partitions.

Range partition

CREATE TABLE sales (
saledate DATE NOT NULL,
item_id INT,
price FLOAT

) PARTITION BY RANGE (saledate);

CREATE TABLE sales_2018ql
PARTITION OF sales (
price DEFAULT 0
) FOR VALUES FROM ('2018-01-01') TO ('2018-03-31"');

CREATE TABLE sales_2018q2
PARTITION OF sales (
price DEFAULT 0
) FOR VALUES FROM ('2018-04-01') TO ('2018-06-30');

CREATE TABLE sales_2018q3
PARTITION OF sales (

PostgreSQL Usage 431

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

price DEFAULT 0
) FOR VALUES FROM ('2018-07-01') TO ('2018-09-30');

INSERT INTO sales VALUES (('2018-01-08'),3121121, 100);
row inserted.

INSERT INTO sales VALUES (('2018-04-20'),4378623);

row inserted.

INSERT INTO sales VALUES (('2018-08-13'),3278621, 200);

row inserted.

When you create a table with PARTITION OF clause, you can still use the PARTITION BY clause
with it. In this case, the PARTITION BY clause creates a sub-partition.

A sub-partition can be the same type as the partition table it is related to, or another partition
type.

List combined with range partition

The following example creates a list partition and sub partitions by range.

CREATE TABLE salers (
emp_id serial not null,
emp_name varchar(30) not null,
sales_in_usd int not null,
sale_date date not null
) PARTITION BY LIST (left(lower(emp_name), 1));

CREATE TABLE emp_abc
PARTITION OF salers (
CONSTRAINT emp_id_nonzero CHECK (emp_id != 0)
) FOR VALUES IN ('a', 'b', 'c') PARTITION BY RANGE (sale_date);

CREATE TABLE emp_def
PARTITION OF salers (
CONSTRAINT emp_id_nonzero CHECK (emp_id != 0)
) FOR VALUES IN ('d', 'e', 'f') PARTITION BY RANGE (sale_date);

CREATE TABLE sales_abc_2018ql

PostgreSQL Usage

432

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

PARTITION OF emp_abc (
sales_in_usd DEFAULT @

) FOR VALUES FROM ('2018-01-01') TO

CREATE TABLE sales_abc_2018q2
PARTITION OF emp_abc (
sales_in_usd DEFAULT 0

) FOR VALUES FROM ('2018-04-01') TO

CREATE TABLE sales_abc_2018q3
PARTITION OF emp_abc (
sales_in_usd DEFAULT @

) FOR VALUES FROM ('2018-07-01') TO

CREATE TABLE sales_def_2018ql
PARTITION OF emp_def (
sales_in_usd DEFAULT 0

) FOR VALUES FROM ('2018-01-01') TO

CREATE TABLE sales_def_2018qg2
PARTITION OF emp_def (
sales_in_usd DEFAULT @

) FOR VALUES FROM ('2018-04-01') TO

CREATE TABLE sales_def_2018q3
PARTITION OF emp_def (
sales_in_usd DEFAULT 0

('2018-03-31"');

('2018-06-30");

('2018-09-30"');

('2018-03-31");

('2018-06-30");

) FOR VALUES FROM ('2018-07-01') TO ('2018-09-30');

Implementing List Table Partitioning with Inheritance Tables

For older PostgreSQL versions, follow these steps to implement list table partitioning using

inherited tables:

1. Create a parent table from which all child tables or partitions will inherit.

2. Create child tables that inherit from the parent table. This is similar to creating table partitions.

The child tables should have an identical structure to the parent table.

3. Create indexes on each child table. Optionally, add constraints to define allowed values in each

table. For example, add primary keys or check constraints.

4. Create a database trigger to redirect data inserted into the parent table to the appropriate child

table.

PostgreSQL Usage

433

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

5. Make sure that the PostgreSQL constraint_exclusion parameter is turned on and set to
partition. This parameter ensures the queries are optimized for working with table partitions.

show constraint_exclusion;

constraint_exclusion
partition

For more information, see constraint_exclusion in the PostgreSQL documentation.

PostgreSQL 9.6 doesn't support declarative partitioning, nor several of the table partitioning
features available in SQL Server.

PostgreSQL 9.6 table partitioning doesn't support the creation of foreign keys on the parent table.
Alternative solutions include application-centric methods such as using triggers and functions or
creating these on the individual tables.

PostgreSQL doesn’t support SPLIT and EXCHANGE of table partitions. For these actions, you will
need to plan your data migrations manually (between tables) to replace the data into the right
partition.

Examples
The following examples create a PostgreSQL list-partitioned table.

Create the parent table.

CREATE TABLE SYSTEM_LOGS
(EVENT_NO NUMERIC NOT NULL,
EVENT_DATE DATE NOT NULL,
EVENT_STR VARCHAR(500),
ERROR_CODE VARCHAR(10));

Create child tables or partitions with check constraints.

CREATE TABLE SYSTEM_LOGS_WARNING (
CHECK (ERROR_CODE IN('errl', 'err2', 'err3'))) INHERITS (SYSTEM_LOGS);

CREATE TABLE SYSTEM_LOGS_CRITICAL (
CHECK (ERROR_CODE IN('err4', 'err5', 'err6'))) INHERITS (SYSTEM_LOGS);

PostgreSQL Usage 434

https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Create indexes on each of the child tables.

CREATE INDEX IDX_SYSTEM_LOGS_WARNING ON SYSTEM_LOGS_WARNING(ERROR_CODE);

CREATE INDEX IDX_SYSTEM_LOGS_CRITICAL ON SYSTEM_LOGS_CRITICAL(ERROR_CODE);

Create a function to redirect data inserted into the parent table.

CREATE OR REPLACE FUNCTION SYSTEM_LOGS_ERR_CODE_INS()
RETURNS TRIGGER AS
$$
BEGIN
IF (NEW.ERROR_CODE IN('errl', 'err2', 'err3')) THEN
INSERT INTO SYSTEM_LOGS_WARNING VALUES (NEW.*);
ELSIF (NEW.ERROR_CODE IN('err4', 'err5', 'err6')) THEN
INSERT INTO SYSTEM_LOGS_CRITICAL VALUES (NEW.*);
ELSE
RAISE EXCEPTION 'Value out of range, check SYSTEM_LOGS_ERR_CODE_INS ()
Function!';
END IF;
RETURN NULL;
END;
$$
LANGUAGE plpgsql;

Attach the trigger function created in the preceding example to log to the table.

CREATE TRIGGER SYSTEM_LOGS_ERR_TRIG
BEFORE INSERT ON SYSTEM_LOGS
FOR EACH ROW EXECUTE PROCEDURE SYSTEM_LOGS_ERR_CODE_INS();

Insert data directly into the parent table.

INSERT INTO SYSTEM_LOGS VALUES(1, '2015-05-15', 'a...', 'errl');
INSERT INTO SYSTEM_LOGS VALUES(2, '2016-06-16', 'b...', 'err3');
INSERT INTO SYSTEM_LOGS VALUES(3, '2017-07-17', 'c...', 'err6');

View results from across all the different child tables.

SELECT * FROM SYSTEM_LOGS;

PostgreSQL Usage 435

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

event_no event_date event_str

1 2015-05-15 a...
2 2016-06-16 b...
3 2017-07-17 c...

SELECT * FROM SYSTEM_LOGS_WARNING;

event_no event_date event_str error_code
1 2015-05-15 a... errl

2 2016-06-16 b... err3

SELECT * FROM SYSTEM_LOGS_CRITICAL;

event_no event_date event_str error_cod
3 2017-07-17 c... err6

The following examples create a PostgreSQL range-partitioned table:

Create the parent table.

CREATE TABLE SYSTEM_LOGS
(EVENT_NO NUMERIC NOT NULL,
EVENT_DATE DATE NOT NULL,
EVENT_STR VARCHAR(500));

Create the child tables or partitions with check constraints.

ExCREATE TABLE SYSTEM_LOGS_2015 (CHECK (EVENT_DATE >= DATE '2015-01-01' AND EVENT_DATE
< DATE '2016- 01-01')) INHERITS (SYSTEM_LOGS);

CREATE TABLE SYSTEM_LOGS_2016 (CHECK (EVENT_DATE >= DATE '2016-01-01' AND EVENT_DATE <
DATE '2017-01-01')) INHERITS (SYSTEM_LOGS);

CREATE TABLE SYSTEM_LOGS_2017 (CHECK (EVENT_DATE >= DATE '2017-01-01' AND EVENT_DATE <=
DATE '2017-12-31')) INHERITS (SYSTEM_LOGS);ample

Create indexes on all child tables.

CREATE INDEX IDX_SYSTEM_LOGS_2015 ON SYSTEM_LOGS_2015(EVENT_DATE);
CREATE INDEX IDX_SYSTEM_LOGS_2016 ON SYSTEM_LOGS_2016(EVENT_DATE);
CREATE INDEX IDX_SYSTEM_LOGS_2017 ON SYSTEM_LOGS_2017(EVENT_DATE);

PostgreSQL Usage 436

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Create a function to redirect data inserted into the parent table.

CREATE OR REPLACE FUNCTION SYSTEM_LOGS_INS ()
RETURNS TRIGGER AS
$$
BEGIN
IF (NEW.EVENT_DATE >= DATE '2015-01-01' AND
NEW.EVENT_DATE < DATE '2016-01-01') THEN
INSERT INTO SYSTEM_LOGS_2015 VALUES (NEW.*);
ELSIF (NEW.EVENT_DATE >= DATE '2016-01-01' AND
NEW.EVENT_DATE < DATE '2017-01-01') THEN
INSERT INTO SYSTEM_LOGS_2016 VALUES (NEW.*);
ELSIF (NEW.EVENT_DATE >= DATE '2017-01-01' AND
NEW.EVENT_DATE <= DATE '2017-12-31') THEN
INSERT INTO SYSTEM_LOGS_2017 VALUES (NEW.*);
ELSE
RAISE EXCEPTION 'Date out of range. check SYSTEM_LOGS_INS () function!';
END IF;
RETURN NULL;
END;
$$
LANGUAGE plpgsql;

Attach the trigger function created in the preceding example to log to the SYSTEM_LOGS table.

CREATE TRIGGER SYSTEM_LOGS_TRIG BEFORE INSERT ON SYSTEM_LOGS
FOR EACH ROW EXECUTE PROCEDURE SYSTEM_LOGS_INS ();

Insert data directly to the parent table.

INSERT INTO SYSTEM_LOGS VALUES (1, '2015-05-15', 'a...');
INSERT INTO SYSTEM_LOGS VALUES (2, '2016-06-16', 'b...');
INSERT INTO SYSTEM_LOGS VALUES (3, '2017-07-17', 'c...');

Test the solution by selecting data from the parent and child tables.

SELECT * FROM SYSTEM_LOGS;

event_no event_date event_str

1 2015-05-15 a...
2 2016-06-16 b...
3 2017-07-17 c...

PostgreSQL Usage 437

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SELECT * FROM SYSTEM_LOGS_2015;

event_no event_date event_str
1 2015-05-15 a...

Examples of New Partitioning Features of PostgreSQL 11

The following example creates default partitions.

CREATE TABLE tst_part(i INT) PARTITION BY RANGE(i);

CREATE TABLE tst_partl PARTITION OF tst_part FOR VALUES FROM (1) TO (5);
CREATE TABLE tst_part_dflt PARTITION OF tst_part DEFAULT;

INSERT INTO tst_part SELECT generate_series(1,10,1);

SELECT * FROM tst_partl;

i
1
2
3
4
(4 rows)

SELECT * FROM tst_part_dflt;

O 00 N O Ul -

(6 rows)

The following example creates hash partitions.

CREATE TABLE tst_hash(i INT) PARTITION BY HASH(i);
CREATE TABLE tst_hash_1 PARTITION OF tst_hash FOR VALUES WITH (MODULUS 2, REMAINDER 0);
CREATE TABLE tst_hash_2 PARTITION OF tst_hash FOR VALUES WITH (MODULUS 2, REMAINDER 1);

PostgreSQL Usage 438

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

INSERT INTO tst_hash SELECT generate_series(1,10,1);
SELECT * FROM tst_hash_1;

i

1

2

(2 rows)

SELECT * FROM tst_hash_2;

O 0o N O Ul &~ N

10
(8 rows)

The following example runs UPDATE on the partition key.

CREATE TABLE tst_part(i INT) PARTITION BY RANGE(i);

CREATE TABLE tst_partl PARTITION OF tst_part FOR VALUES FROM (1) TO (5);
CREATE TABLE tst_part_dflt PARTITION OF tst_part DEFAULT;

INSERT INTO tst_part SELECT generate_series(1,10,1);

SELECT * FROM tst_partl;

i
1
2
3
4
(4 rows)

SELECT * FROM tst_part_dflt;

o N O

PostgreSQL Usage 439

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

9

10

(6 rows)

UPDATE tst_part SET i=1 WHERE i IN (5,6);
SELECT * FROM tst_part_dflt;

i

7

8

9

10

(4 rows)

SELECT * FROM tst_partl;

i
1
2
3
A
1
1
(6 rows)

Index propagation on partitioned tables:

CREATE TABLE tst_part(i INT) PARTITION BY RANGE(i);

CREATE TABLE tst_partl PARTITION OF tst_part FOR VALUES FROM (1) TO (5);
CREATE TABLE tst_part2 PARTITION OF tst_part FOR VALUES FROM (5) TO (10);
CREATE INDEX tst_part_ind ON tst_part(i);

\d+ tst_part

Partitioned table "public.tst_part"

Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description

i | integer | | | | plain |

Partition key: RANGE (i)

Indexes:

"tst_part_ind" btree (i)

PostgreSQL Usage 440

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Partitions: tst_partl FOR VALUES FROM (1) TO (5),
tst_part2 FOR VALUES FROM (5) TO (10)

\d+ tst_partl

Table "public.tst_partl"

Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description
i | integer | | | | plain |

Partition of: tst_part FOR VALUES FROM (1) TO (5)
Partition constraint: ((i IS NOT NULL) AND (i >= 1) AND (i < 5))
Indexes:
"tst_partl_i_idx" btree (i)
Access method: heap

\d+ tst_part2

Table "public.tst_part2"

Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description
i | integer | | | | plain |

Partition of: tst_part FOR VALUES FROM (5) TO (10)
Partition constraint: ((i IS NOT NULL) AND (i >= 5) AND (i < 10))
Indexes:
"tst_part2_i_idx" btree (i)
Access method: heap

Foreign keys propagation on partitioned tables:

CREATE TABLE tst_ref(i INT PRIMARY KEY);
ALTER TABLE tst_part ADD CONSTRAINT tst_part_fk FOREIGN KEY (i) REFERENCES tst_ref(i);
\d+ tst_part

Partitioned table "public.tst_part"

Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description

i | integer | | | | plain |

Partition key: RANGE (i)

Indexes:

"tst_part_ind" btree (i)
Foreign-key constraints:

PostgreSQL Usage 441

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

"tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Partitions: tst_partl FOR VALUES FROM (1) TO (5),
tst_part2 FOR VALUES FROM (5) TO (10)
\d+ tst_partl

Table "public.tst_partl"

Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description
i | integer | | | | plain |

Partition of: tst_part FOR VALUES FROM (1) TO (5)
Partition constraint: ((i IS NOT NULL) AND (i >= 1) AND (i < 5))
Indexes:
"tst_partl_i_idx" btree (i)
Foreign-key constraints:
TABLE "tst_part" CONSTRAINT "tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Access method: heap

\d+ tst_part2

Table "public.tst_part2"

Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description
i | integer | | | | plain |

Partition of: tst_part FOR VALUES FROM (5) TO (10)
Partition constraint: ((i IS NOT NULL) AND (i >= 5) AND (i < 10))
Indexes:
"tst_part2_i_idx" btree (i)
Foreign-key constraints:
TABLE "tst_part" CONSTRAINT "tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Access method: heap

Triggers propagation on partitioned tables:

CREATE TRIGGER some_trigger AFTER UPDATE ON tst_part FOR EACH ROW EXECUTE FUNCTION
some_func();

\d+ tst_part

Partitioned table "public.tst_part"

Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description
i | integer | | | | plain |

PostgreSQL Usage 442

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Partition key: RANGE (i)
Indexes:
"tst_part_ind" btree (i)
Foreign-key constraints:
"tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Triggers:
some_trigger AFTER UPDATE ON tst_part FOR EACH ROW EXECUTE FUNCTION some_func()
Partitions: tst_partl FOR VALUES FROM (1) TO (5),
tst_part2 FOR VALUES FROM (5) TO (10)

\d+ tst_partl

Table "public.tst_partl"

Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description
i | integer | | | | plain |

Partition of: tst_part FOR VALUES FROM (1) TO (5)
Partition constraint: ((i IS NOT NULL) AND (i >= 1) AND (i < 5))
Indexes:

"tst_partl_i_idx" btree (i)
Foreign-key constraints:

TABLE "tst_part" CONSTRAINT "tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Triggers:

some_trigger AFTER UPDATE ON tst_partl FOR EACH ROW EXECUTE FUNCTION some_func()
Access method: heap

\d+ tst_part2

Table "public.tst_part2"

Column | Type | Collation | Nullable | Default | Storage | Stats target |
Description
i | integer | | | | plain |

Partition of: tst_part FOR VALUES FROM (5) TO (10)
Partition constraint: ((i IS NOT NULL) AND (i >= 5) AND (i < 10))
Indexes:

"tst_part2_i_idx" btree (i)
Foreign-key constraints:

TABLE "tst_part" CONSTRAINT "tst_part_fk" FOREIGN KEY (i) REFERENCES tst_ref(i)
Triggers:

some_trigger AFTER UPDATE ON tst_part2 FOR EACH ROW EXECUTE FUNCTION some_func()
Access method: heap

PostgreSQL Usage 443

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature
Partition types

Partitioned tables scope

Partition boundary direction
Exchange partition

Partition function

Partition scheme

Limitations on partitioned
tables

SQL Server
RANGE only

All tables are partitioned,
some have more than one
partition

LEFT or RIGHT
Any partition to any partition

Abstract function object,
independent of individual
column

Abstract partition storage
mapping object

None — all tables are
partitioned

Aurora PostgreSQL
RANGE, LIST

All tables are partitioned,
some have more than one
partition

RIGHT
N/A

Abstract function object,
independent of individual
column

Abstract partition storage
mapping object

Not all commands are
compatible with table
inheritance

For more information, see Table Partitioning in the PostgreSQL documentation.

Summary

444

https://www.postgresql.org/docs/10/ddl-partitioning.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Migrating security features to Aurora PostgreSQL

This topic provides conceptual content comparing the security and encryption features of Microsoft
SQL Server 2019 and Amazon Aurora PostgreSQL. You can gain a comprehensive understanding of
how encryption, user permissions, access control, and authentication mechanisms differ between
these two database systems. The content explores encryption functions, data protection at rest,
user management, and role-based access control, highlighting similarities and key differences

in implementation. By understanding these concepts, you can make informed decisions about
securing your data and implementing robust security measures when migrating from SQL Server

to Aurora PostgreSQL. This knowledge is crucial for database administrators and developers to
ensure a smooth transition while maintaining data integrity and compliance in the new database
environment.

Topics

Column encryption for Aurora PostgreSQL

Data control language for Aurora PostgreSQL

Transparent data encryption Aurora PostgreSQL

Users and roles for Aurora PostgreSQL

Column encryption for Aurora PostgreSQL

This topic provides reference information comparing encryption and decryption capabilities
between Microsoft SQL Server 2019 and Amazon Aurora PostgreSQL. You can understand the
encryption functions available in SQL Server and their counterparts in Aurora PostgreSQL. The
topic highlights the similarities in functionality while noting the differences in syntax and options.
It introduces the encryption hierarchy in SQL Server and the various encryption algorithms
supported by Aurora PostgreSQL.

Column encryption for Aurora PostgreSQL 445

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level
N/A N/A Syntax and option
@ @ E differences, similar

functionality.

SQL Server Usage

SQL Server provides encryption and decryption functions to secure the content of individual
columns. The following list identifies common encryption functions:

EncryptByKey and DecryptByKey.

EncryptByCert and DecryptByCert.

EncryptByPassPhrase and DecryptByPassPhrase.

EncryptByAsymKey and DecryptByAsymKey.

You can use these functions anywhere in your code; they aren't limited to encrypting table
columns. A common use case is to increase run time security by encrypting of application user
security tokens passed as parameters.

These functions follow the general SQL Server encryption hierarchy, which in turn use the Windows
Server Data Protection API.

Symmetric encryption and decryption consume minimal resources. You can use them for large data
sets.

(® Note

This section doesn’t cover Transparent Data Encryption (TDE) or Always Encrypted end-to-
end encryption.

SQL Server Usage 446

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Syntax

General syntax for EncryptByKey and DecryptByKey:

EncryptByKey (<key GUID> , { 'text to be encrypted' }, { <use authenticator flag>},
{ <authenticator> });

DecryptByKey ('Encrypted Text' , <use authenticator flag>, { <authenticator>)

Examples
The following examples demonstrate how to encrypt an employee Social Security Number.

Create a database master key.

USE MyDatabase;
CREATE MASTER KEY
ENCRYPTION BY PASSWORD = '<MyPassword>';

Create a certificate and a key.

CREATE CERTIFICATE Certol
WITH SUBJECT = 'SSN';

CREATE SYMMETRIC KEY SSN_Key
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE Cert@1;

Create an Employees table.

CREATE TABLE Employees

(
EmployeeID INT PRIMARY KEY,

SSN_encrypted VARBINARY(128) NOT NULL
);

Open the symmetric key for encryption.

SQL Server Usage 447

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

OPEN SYMMETRIC KEY SSN_Key
DECRYPTION BY CERTIFICATE Cert01;

Insert the encrypted data.

INSERT INTO Employees (EmployeeID, SSN_encrypted)

VALUES

(1, EncryptByKey(Key_GUID('SSN_Key') , '1112223333', 1, HashBytes('SHAl',
CONVERT(VARBINARY, 1)));

SELECT EmployeelD,

CONVERT(CHAR(10), DecryptByKey(SSN, 1 , HashBytes('SHAl', CONVERT(VARBINARY,
EmployeeID)))) AS SSN

FROM Employees;

EmployeeID SSN_Encrypted SSN
1 0x00F983FF436E32418132... 1112223333

For more information, see Encrypt a Column of Data and Encryption Hierarchy in the SQL Server

documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) provides encryption and
decryption functions similar to SQL Server using the pgcrypto extension. To use this feature, you
must first install the pgcrypto extension.

CREATE EXTENSION pgcrypto;

Aurora PostgreSQL supports many encryption algorithms:

- MD5

« SHA1

o SHA224/256/384/512
« Blowfish

o AES

« Raw encryption

PostgreSQL Usage 448

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

o PGP Symmetric encryption

» PGP Public-Key encryption

This section describes the use of PGP_SYM_ENCRYPT and PGP_SYM_DECRYPT, but there are many

more options available. For more information, see the link and the end of this section.
Syntax

Encrypt columns using PGP_SYM_ENCRYPT.

pgp_sym_encrypt(data text, psw text [, options text]) returns bytea
pgp_sym_decrypt(msg bytea, psw text [, options text]) returns text

Examples

The following examples demonstrate how to encrypt an employee’s Social Security Number.

Create the users table.

CREATE TABLE users (id SERIAL, name VARCHAR(6@), pass TEXT);

Insert the encrypted data.

INSERT INTO users (name, pass) VALUES ('John',PGP_SYM_ENCRYPT('123456', 'AES_KEY'));

Verify the data is encrypted.

SELECT * FROM users;

id name pass
2 John

\xc30d04070302c30d07ff8b3b12f26ad233015a72bab4d3bb7315a80d5187b1b043149dd961da58e76440ca9eb4at

Query using the encryption key.

SELECT name, PGP_SYM_DECRYPT(pass::bytea, 'AES_KEY') as pass
FROM users WHERE (name LIKE '%John%');

PostgreSQL Usage

449

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

name pass
John 123456

Update the data.

UPDATE users SET (name, pass) = ('John',PGP_SYM_ENCRYPT('0000', 'AES_KEY')) WHERE
id='2";

SELECT name, PGP_SYM_DECRYPT(pass::bytea, 'AES_KEY') as pass
FROM users WHERE (name LIKE '%John%');

name pass
John 0000

For more information, see pgcrypto in the PostgreSQL documentation.

Data control language for Aurora PostgreSQL

This topic provides reference information about user permissions and access control in Amazon
Aurora PostgreSQL, comparing it to Microsoft SQL Server. You can understand how Aurora
PostgreSQL implements the ANSI standard for data control language commands, including GRANT
and REVOKE. The topic explains the various permission levels available in Aurora PostgreSQL, from
individual object permissions to schema-wide access.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Simil t d
SEEES8 ES——_

SQL Server Usage

The ANSI standard specifies, and most Relational Database Management Systems (RDBMS) use,
GRANT and REVOKE commands to control permissions.

Data control language for Aurora PostgreSQL 450

https://www.postgresql.org/docs/13/pgcrypto.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

However, SQL Server also provides a DENY command to explicitly restrict access to a resource. DENY
takes precedence over GRANT and is needed to avoid potentially conflicting permissions for users
having multiple logins. For example, if a user has DENY for a resource through group membership
but GRANT access for a personal login, the user is denied access to that resource.

In SQL Server, you can grant permissions at multiple levels from lower-level objects such as
columns to higher-level objects such as servers. Permissions are categorized for specific services
and features such as the service broker.

You can use permissions in conjunction with database users and roles. For more information, see
Users and Roles.

Syntax
Simplified syntax for SQL Server DCL commands:
GRANT { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>

DENY { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>

REVOKE [GRANT OPTION FOR] {[ALL [PRIVILEGES]]|<permission>} [ON <securable>]
{ TO | FROM } <principal>

For more information, see Permissions Hierarchy (Database Engine) in the SQL Server

documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) supports the ANSI Data
Control Language (DCL) commands GRANT and REVOKE.

Administrators can grant or revoke permissions for individual objects such as a column, a stored
function, or a table. You can grant permissions to multiple objects using ALL % IN SCHEMA. In the
example preceding, % can be TABLES, SEQUENCES, or FUNCTIONS.

Use the following command to grant select on all tables in schema to a specific user.

GRANT SELECT ON ALL TABLES IN SCHEMA <Schema Name> TO <Role Name>;

PostgreSQL Usage 451

https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Aurora PostgreSQL provides a GRANT permission option that is similar to SQL Server WITH GRANT

OPTION clause. This permission grants a user permission to further grant the same permission to

other users.

GRANT EXECUTE

ON FUNCTION demo.Procedurel
TO UserY

WITH GRANT OPTION;

The following table identifies Aurora PostgreSQL privileges.

Permissions

SELECT

INSERT

UPDATE

DELETE

TRUNCATE

REFERENCES

TRIGGER

CREATE

CONNECT

TEMPORARY or TEMP

EXECUTE

USAGE

Use to

Use to query rows from table.
Use to insert rows into a table.
Use to update rows in table.
Use to delete rows from table.
Use to truncate a table.

Use to create a foreign key constraint.

Use to create a trigger on the specified table.

The purpose of this permission depends on
the target object. For more information, see
GRANT in the PostgreSQL documentation.

Use to connect to the specified database.
Use to create temporary tables.
Use to run a function.

The purpose of this permission depends on
the target object. For more information, see
GRANT in the PostgreSQL documentation.

PostgreSQL Usage

452

https://www.postgresql.org/docs/13/sql-grant.html
https://www.postgresql.org/docs/13/sql-grant.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Permissions Use to
ALL or ALL PRIVILEGES Grant all available privileges.
Syntax

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
[, ...1 | ALL [PRIVILEGES] }
ON { [TABLE] table_name [, ...]
| ALL TABLES IN SCHEMA schema_name [, ...] }
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
[, ...1 | ALL [PRIVILEGES] (column_name [, ...]1) }
ON [TABLE] table_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
[, ...1 | ALL [PRIVILEGES] }
ON { SEQUENCE sequence_name [, ...]
| ALL SEQUENCES IN SCHEMA schema_name [, ...] }
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...]1 | ALL [PRIVILEGES] }
ON DATABASE database_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON DOMAIN domain_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON FOREIGN DATA WRAPPER fdw_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON FOREIGN SERVER server_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON { FUNCTION function_name ([[argmode] [arg_name] arg_type [, ...1 1) [,...]

PostgreSQL Usage 453

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

| ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON LANGUAGE lang_name [, ...]
TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | UPDATE } [, ...1 | ALL [PRIVILEGES] }

ON LARGE OBJECT loid [, ...]

TO role_specification [, ...] [WITH GRANT OPTION]
GRANT { { CREATE | USAGE } [, ...]1 | ALL [PRIVILEGES] }

ON SCHEMA schema_name [, ...]

TO role_specification [, ...] [WITH GRANT OPTION]
GRANT { CREATE | ALL [PRIVILEGES] }

ON TABLESPACE tablespace_name [, ...]

TO role_specification [, ...] [WITH GRANT OPTION]
GRANT { USAGE | ALL [PRIVILEGES] }

ON TYPE type_name [, ...]

TO role_specification [, ...] [WITH GRANT OPTION]
where role_specification can be:

[GROUP] role_name

| PUBLIC

| CURRENT_USER

| SESSION_USER

GRANT role_name [, ...] TO role_name [, ...] [WITH ADMIN OPTION]

Examples
Grant SELECT permission to a user on all tables in the demo database.
GRANT SELECT ON ALL TABLES IN SCHEMA emps TO John;
Revoke EXECUTE permissions from a user on the EmployeeReport stored procedure.

REVOKE EXECUTE ON FUNCTION EmployeeReport FROM John;

For more information, see GRANT in the PostgreSQL documentation.

PostgreSQL Usage 454

https://www.postgresql.org/docs/13/sql-grant.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Transparent data encryption Aurora PostgreSQL

This topic provides reference information about data encryption capabilities in Microsoft SQL
Server and Amazon Aurora PostgreSQL. You can understand how Transparent Data Encryption
(TDE) works in SQL Server to protect data at rest, and how Aurora PostgreSQL offers similar
functionality through Amazon RDS encryption. The topic explains the encryption mechanisms, key
management, and limitations associated with these features.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level
N/A N/A Storage level
@ @ E E encryption managed

by Amazon RDS.

SQL Server Usage

Transparent data encryption (TDE) is an SQL Server feature designed to protect data at rest in the
event an attacker obtains the physical media containing database files.

TDE doesn’t require application changes and is completely transparent to users. The storage engine
encrypts and decrypts data on-the-fly. Data isn't encrypted while in memory or on the network.
You can turn TDE on or off individually for each database.

TDE encryption uses a Database Encryption Key (DEK) stored in the database boot record, making
it available during database recovery. The DEK is a symmetric key signed with a server certificate
from the master system database.

In many instances, security compliance laws require TDE for data at rest.
Examples
The following example demonstrates how to enable TDE for a database:

Create a master key and certificate.

USE master;

Transparent data encryption Aurora PostgreSQL 455

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'MyPassword';
CREATE CERTIFICATE TDECert WITH SUBJECT = 'TDE Certificate';

Create a database encryption key.

USE MyDatabase;

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES_128

ENCRYPTION BY SERVER CERTIFICATE TDECert;

Enable TDE.

ALTER DATABASE MyDatabase SET ENCRYPTION ON;

For more information, see Transparent data encryption (TDE) in the SQL Server documentation.

PostgreSQL Usage

Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) provides the ability to
encrypt data at rest (data stored in persistent storage) for new database instances. When data
encryption is enabled, Amazon Relational Database Service (RDS) automatically encrypts the
database server storage, automated backups, read replicas, and snapshots using the AES-256
encryption algorithm.

You can manage the keys used for Amazon Relational Database Service (Amazon RDS) encrypted
instances from the Identity and Access Management (IAM) console using the Amazon Key
Management Service (Amazon KMS). If you require full control of a key, you must manage it
yourself. You can't delete, revoke, or rotate default keys provisioned by Amazon KMS.

The following limitations exist for Amazon RDS encrypted instances:

» You can only enable encryption for an Amazon RDS database instance when you create it, not
afterward. It is possible to encrypt an existing database by creating a snapshot of the database
instance and then creating an encrypted copy of the snapshot. You can restore the database
from the encrypted snapshot. For more information, see Copying a snapshot in the Amazon

Relational Database Service User Guide.
« Encrypted database instances can't be modified to disable encryption.

» Encrypted Read Replicas must be encrypted with the same key as the source database instance.

PostgreSQL Usage 456

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption?view=sql-server-ver15
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« An unencrypted backup or snapshot can’t be restored to an encrypted database instance.

« KMS encryption keys are specific to the region where they are created. Copying an encrypted
snapshot from one region to another requires the KMS key identifier of the destination region.

(@ Note

Disabling the key for an encrypted database instance prevents reading from, or writing

to, that instance. When Amazon RDS encounters a database instance encrypted by a key

to which Amazon RDS doesn’t have access, it puts the database instance into a terminal
state. In this state, the database instance is no longer available and the current state of the
database can't be recovered. To restore the database instance, you must re-enable access to
the encryption key for Amazon RDS and then restore the database instance from a backup.

Examples
The following walkthrough demonstrates how to enable TDE.
Enable encryption

In the database settings, enable encryption and choose a master key. You can choose the default
key provided for the account or define a specific key based on an IAM KMS ARN from your account
or a different account.

Encryption Master key

This is the master key that will be
Encryption used to protect the key used to
encrypt this database volume. You
pear in the list after 4 . : can select from master keys in
Learn More your account or type/paste the
ARM of a key from a different
account. You cam create a new
master encryption key by going to
Master key info the Encryption Keys tab of the

Disable Encryption

(default) aws/rds v 1AM console.

Create an encryption key

To create your own key, browse to the Key Management Service (KMS), choose Customer managed
keys, and create a new key.

PostgreSQL Usage 457

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Choose the key type and the key material origin, and then choose Next.

Create alias and description, and then choose Next.

Add labels

Step 2of 5

Create alias and description

Enter an alias and a description for this key. You can change the properties of the key at any time. Learn more [
Alias

db-rds-finance

Description - optional

This encryption key should be used to finance data.

rd

Tags - optional

You can use tags to categorize and identify your CMKs and help you track your costs. When you add tags to
resources, generates a cost allocation report for each tag. Learn more [

This key has no tags.

Add tag

You can add up o 50 more tags

Camcel Previous | m

For Define Key Administrative Permissions, leave the default values and choose Next.

Make sure that you assigned the key to the relevant users who will need to interact with Amazon
Aurora.

PostgreSQL Usage 458

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Define key usage permissions

Step 4 of 5

This account

Select the 1AM users and roles that can use the CMEK in cryptographic operations. Learn maore [A

]
=] Mame 2 Path
g am.com /

Other accounts

Specify the accounts that can use this key, Administrators of the accounts you specify are responsible for
managing the permissions that allow their 1AM wsers and roles to use this key. Learn more [

Add another account

Cancel | Previous |m

Review and edit the key policy, and then choose Finish.

PostgreSQL Usage 459

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook
Review and edit key policy
{
"Id": "key-consolepolicy-3",
"Version": "2812-18-17",
"Statement”: [
{
"Sid": "Enable IA&AM User Permissions”,
"Effect”: "Allow",
"Principal": {
"arn: viam:: rroot”
I
"Action": "kms:*",
"Resoupce”: MY
I
{
"gid": "allow use of the key", hd

Cancel Previous m

Now, you can set the master encryption key by using the ARN of the key that you have created or
picking it from the list.

Encryption

Encryption

© Enable Encryption
Select to encrypt the given instance. Master key ids and aliases appear in the list atter they have been created wsing the Key
Management Service{KM5) console. Learn More

Disable Encryption

Master key info ARN
Enter a key ARM L4 am:aws:kms:us-east-1:270324671 3865 key/ 7578611
arn:awskms<region> <accountiD=key/<key-id=
Description Account KMS key ID
None None Mone

Proceed to the finish and launch the instance.

For more information, see Specifying Amazon S3 encryption in the Amazon Simple Storage Service

User Guide and s3 in the Command Line Interface Command Reference.

PostgreSQL Usage 460

https://docs.amazonaws.cn/AmazonS3/latest/userguide/specifying-s3-encryption.html
https://docs.amazonaws.cn/cli/latest/reference/s3/

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Users and roles for Aurora PostgreSQL

This topic provides reference information about the security and authentication differences
between Microsoft SQL Server and Amazon Aurora PostgreSQL. You can understand how

user management, role-based access control, and authentication mechanisms differ between
these two database systems. The topic explains the fundamental concepts of users, roles, and
permissions in both SQL Server and PostgreSQL, highlighting the key differences in terminology
and implementation.

Feature compatibi Amazon SCT / Amazon SCT action Key differences
lity Amazon DMS code index
automation level

N/A N/A Syntax and option
@ @ E differences, similar
functionality. There
are no users in
PostgreSQL, only
roles.

SQL Server Usage

SQL Server provides two layers of security principals: logins at the server level and users at the
database level. Logins are mapped to users in one or more databases. Administrators can grant
logins server-level permissions that aren’t mapped to particular databases such as database
creator, system administrator, and security administrator.

SQL Server also supports roles for both the server and the database levels. At the database level,
administrators can create custom roles in addition to the general purpose built-in roles.

For each database, administrators can create users and associate them with logins. At the database
level, the built-in roles include db_owner, db_datareader, db_securityadmin, and others. A
database user can belong to one or more roles (users are assigned to the public role by default and
can't be removed). Administrators can grant permissions to roles and then assign individual users
to the roles to simplify security management.

Users and roles for Aurora PostgreSQL 461

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Logins are authenticated using either Windows Authentication, which uses the Windows Server
Active Directory framework for integrated single sign-on, or SQL authentication, which is managed
by the SQL Server service and requires a password, certificate, or asymmetric key for identification.
You can create logins that use Windows Authentication for individual users and domain groups.

In previous versions of SQL server, the concepts of user and schema were interchangeable. For
backward compatibility, each database has several existing schemas, including a default schema
named dbo which is owned by the db_owner role. Logins with system administrator privileges are
automatically mapped to the dbo user in each database. Typically, you don't need to migrate these
schemas.

Examples

Create a login.

CREATE LOGIN MyLogin WITH PASSWORD = 'MyPassword'

Create a database user for MyLogin.

USE MyDatabase; CREATE USER MyUser FOR LOGIN Mylogin;

Assign MyLogin to a server role.

ALTER SERVER ROLE dbcreator ADD MEMBER 'MylLogin'

Assign MyUser to the db_datareader role.

ALTER ROLE db_datareader ADD MEMBER 'MyUser';

For more information, see Database-level roles in the SQL Server documentation.

PostgreSQL Usage

PostgreSQL supports only roles; there are no users. However, there is a CREATE USER command,
which is an alias for CREATE ROLE that automatically includes the LOGIN permission.

Roles are defined at the database cluster level and are valid in all databases in the PostgreSQL
cluster.

PostgreSQL Usage 462

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles?view=sql-server-ver15

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Syntax

The following example shows a simplified syntax for CREATE ROLE in Amazon Aurora PostgreSQL-
Compatible Edition (Aurora PostgreSQL).

CREATE ROLE name [[WITH] option [... 1]
where option can be:

SUPERUSER | NOSUPERUSER

| CREATEDB | NOCREATEDB

| CREATEROLE | NOCREATEROLE

| INHERIT | NOINHERIT

| LOGIN | NOLOGIN

| REPLICATION | NOREPLICATION
| BYPASSRLS | NOBYPASSRLS

| CONNECTION LIMIT connlimit
| [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
| VALID UNTIL 'timestamp'

| IN ROLE role_name [, ...]

| IN GROUP role_name [, ...]
| ROLE role_name [, ...]

| ADMIN role_name [, ...]

| USER role_name [, ...]

| SYSID uid

The UNENCRYPTED PASSWORD option was dropped in PostgreSQL 10, the password must be kept
encrypted.

Example

Create a new database role called hr_role. Users can use this role to create new databases in the
PostgreSQL cluster. Note that this role isn’t able to login to the database and act as a database
user. In addition, grant SELECT, INSERT, and DELETE privileges on the hr.employees table to
the role.

CREATE ROLE hr_role;
GRANT SELECT, INSERT,DELETE on hr.employees to hr_role;

PostgreSQL Usage 463

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration

Playbook

Summary

The following table summarizes common security tasks and the differences between SQL Server

and Aurora PostgreSQL.

Task

View database users

Create a user and password

Create a role

Change a user’s password

External authentication

Add a user to a role

Lock a user

Grant SELECT on a schema

SQL Server

SELECT Name FROM
SYS.SysSusers

CREATE USER <Userx
Name> WITH PASSWORD =
<PassWord>;

CREATE ROLE <Role
Name>

ALTER LOGIN <SQL
Login> WITH PASSWORD =
<PassWord>;

Windows Authentication

ALTER ROLE <Role Name>
ADD MEMBER <User Name>

ALTER LOGIN <Login
Name> DISABLE

GRANT SELECT ON
SCHEMA: : <Schema Name>
to <User Name>

Aurora PostgreSQL

SELECT * FROM pg_roles
where rolcanlogin =
true;

CREATE USER <Userx
Name> WITH PASSWORD
'<PassWord>"';

CREATE ROLE <Role
Name>

ALTER USER <SQL
Login> WITH PASSWORD
'<PassWord>"';

N/A

ALTER ROLE <Role Name>
SET <property and
value>

REVOKE CONNECT ON
DATABASE <database

_name> from <Role

Name>;

GRANT SELECT ON ALL
TABLES IN SCHEMA
<Schema Name> TO <User
Name>;

Summary

464

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

For more information, see CREATE ROLE in the PostgreSQL documentation.

Summary 465

https://www.postgresql.org/docs/13/sql-createrole.html

SQL Server to Aurora PostgreSQL Migration Playbook

Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

SQL Server 2018 deprecated features list

This topic provides reference information related to migrating from Microsoft SQL Server 2019
to Amazon Aurora PostgreSQL. It covers a range of database concepts and features that differ
between the two systems, including data types, table creation, maintenance operations, and query

syntax. You'll find information on how various SQL Server constructs and functionalities map to

their PostgreSQL equivalents or alternatives.

SQL Server 2018 deprecated feature
TEXT, NTEXT, and IMAGE data types
SET ROWCOUNT for DML

TIMESTAMP syntax for CREATE TABLE

DBCC DBREINDEX , INDEXDEFRAG , and
SHOWCONTIG

Old SQL Mail

IDENTITY seed, increment, non primary key,
and compound

Stored procedures RETURN values

GROUP BY ALL, Cube, and Compute By

DTS
Old outer join syntax = and =
'String Alias' = Expression

DEFAULT keyword for INSERT statements

Section

Data Types

Session Options

Creating Tables

Maintenance Plans

Database Mail

Sequences and Identity

Stored Procedures

GROUP BY
ETL
Table JOIN

Migration Quick Tips

Migration Quick Tips

466

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

Migration quick tips

This section provides migration tips that can help save time as you transition from Microsoft SQL
Server to Aurora PostgreSQL. They address many of the challenges faced by administrators new to
Aurora PostgreSQL. Some of these tips describe functional differences in similar features between
SQL Server and Aurora PostgreSQL.

Management

« The equivalent of SQL Server's CREATE DATABASE.. AS SNAPSHOT OF.. resembles Aurora
PostgreSQL database cloning. However, unlike SQL Server snapshots, which are read-only, you
can update Aurora PostgreSQL cloned databases.

 In Aurora PostgreSQL terminology, Database Snapshot is equivalent to SQL Server BACKUP
DATABASE.. WITH COPY_ONLY .

« Partitioning in Aurora PostgreSQL is called INHERITS tables and act completely different in
terms of management.

« Unlike SQL Server's statistics, Aurora PostgreSQL doesn't collect detailed key value distribution;
it relies on selectivity only. When troubleshooting run issues, be aware that parameter values are
insignificant to plan choices.

« You can achieve many missing features, such as sending emails, with quick implementations of
Amazon services such as Lambda.

« Parameters and backups are managed by Amazon RDS. It is very useful in terms of checking
parameter’s value against its default and comparing them to another parameter group.

» You can implement high availability in few clicks to create replicas.

« With Database Links, the db_1ink extension is similar to SQL Server.

SQL

« Triggers work differently in Aurora PostgreSQL. You can run triggers for each row. The syntax for
inserted and deleted for each row is new and old.

» Aurora PostgreSQL doesn't support @@FETCH_STATUS system parameter for cursors. When you
declare cursors in Aurora PostgreSQL, create an explicit HANDLER object.

Management 467

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« To run a stored procedure or function, use SELECT instead of EXECUTE.

« To run a string as a query, use Aurora PostgreSQL Prepared Statements instead of EXECUTE
(<String>) syntax.

 In Aurora PostgreSQL, terminate IF blocks with END IF and the WHILE. .LOOP loops with END
LOOP.

 In Aurora PostgreSQL, use START TRANSACTION to open a transaction instead of BEGIN
TRANSACTION. Use COMMIT and ROLLBACK without the TRANSACTION keyword.

» Aurora PostgreSQL doesn't use special data types for UNICODE data. All string types may use any
character set and any relevant collation.

« You can define collations at the server, database, and column level, similar to SQL Server. You
can't define collations at the table level.

« Aurora PostgreSQL doesn't support DELETE <Table Name> syntax, where you drop the FROM
keyword. Add the FROM keyword to all DELETE statements.

 In Aurora PostgreSQL, you can use multiple rows with NULL for a UNIQUE constraint. In SQL
Server, you can only use one. Aurora PostgreSQL follows the behavior specified in the ANSI
standard.

» Aurora PostgreSQL SERIAL column property is similar to IDENTITY in SQL Server. However,
there is a major difference in the way sequences are maintained. SQL Server caches a set of
values in memory and records the last allocation on disk. When the service restarts, some values
may be lost, but the sequence continues from where it left off. In Aurora PostgreSQL, each time
you restart the service, the seed value to SERIAL is reset to one increment interval larger than
the largest existing value. Sequence position isn't maintained across service restarts.

« Parameter names in Aurora PostgreSQL don't require a preceding @. You can declare local
variables such as SET schema.test = value and get the value by running the SELECT
current_setting('username.test'); query.

o Local parameter scope isn't limited to the run scope. You can define or set a parameter in one
statement, run it, and then query it in the following batch.

« Error handling in Aurora PostgreSQL has less features, but for special requirements, you can log
or send alerts by inserting into tables or catching errors.

» Aurora PostgreSQL doesn't support the MERGE statement. Use the REPLACE statement and the
INSERT.. ON DUPLICATE KEY UPDATE statement as alternatives.

 In Aurora PostgreSQL, you can't concatenate strings with the + operator. Use the CONCAT
function instead. For example, CONCAT('A', 'B').

SQL 468

SQL Server to Aurora PostgreSQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora PostgreSQL Migration
Playbook

« Amazon Aurora PostgreSQL-Compatible Edition (Aurora PostgreSQL) doesn't support aliasing
in the select list using the String Alias = Expression. Aurora PostgreSQL treats it as a
logical predicate, returns @ or FALSE, and will alias the column with the full expression. Use the
AS syntax instead. Also note that this syntax has been deprecated as of SQL Server 2008 R2.

« Aurora PostgreSQL has a large set of string functions that is much more diverse than SQL Server.
Some of the more useful string functions are:

« TRIMisn't limited to full trim or spaces. The syntax is TRIM([{BOTH | LEADING |
TRAILING} [<remove string>] FROM] <source string>)).

o LENGTH in PostgreSQL is equivalent to DATALENGTH in T-SQL. CHAR_LENGTH is the equivalent
of T-SQL LENGTH.

« SUBSTRING_INDEX returns a substring from a string before the specified number of
occurrences of the delimiter.

o FIELD returns the index position of the first argument in the subsequent arguments.
o POSITION returns the index position of the first argument within the second argument.
o REGEXP_MATCHES provides support for regular expressions.

« For more information, see String Functions and Operators.

» The Aurora PostgreSQL CAST function is for casting between collation and not other data types.
Use CONVERT for casting data types.

» Aurora PostgreSQL is much stricter than SQL Server in terms of statement terminators. Make
sure that you always use a semicolon at the end of statements.

« In Aurora PostgreSQL, you can't use the CREATE PROCEDURE syntax. You can use only the
CREATE FUNCTION syntax. You can create a function that returns void.

» Beware of control characters when copying and pasting a script to Aurora PostgreSQL clients.
Aurora PostgreSQL is much more sensitive to control characters than SQL Server and they result
in frustrating syntax errors that are hard to find.

SQL 469

https://www.postgresql.org/docs/13/functions-string.html

	SQL Server to Aurora PostgreSQL Migration Playbook
	Table of Contents
	Migration guide overview
	Tables of Feature Compatibility
	Feature Compatibility Legend
	Amazon SCT and Amazon DMS Automation Level Legend

	Migration tools and services overview
	Amazon Schema Conversion Tool overview
	Download the Software and Drivers
	Configure Amazon SCT
	Create a New Migration Project

	Amazon SCT Action Code Index overview
	Creating Tables
	Data Types
	Collations
	PIVOT and UNPIVOT
	TOP and FETCH
	Cursors
	Flow Control
	Transaction Isolation
	Stored Procedures
	Triggers
	MERGE
	Query Hints
	Full-Text Search
	Indexes
	Partitioning
	Backup
	SQL Server Mail
	Graph
	SQL Server Agent
	Service Broker
	XML
	Constraints
	Linked Servers
	Synonyms

	Amazon Database Migration Service overview
	Migration Tasks Performed by Amazon DMS
	How Amazon DMS Works
	Latest Updates

	Amazon RDS on Outposts overview
	How It Works

	Amazon RDS Proxy overview
	Amazon RDS Proxy Benefits
	How Amazon RDS Proxy Works

	Amazon Aurora Serverless v1 overview
	How to Provision

	Migrating ANSI SQL features
	Case sensitivity differences for ANSI SQL
	Constraints for ANSI SQL
	SQL Server Usage
	Check Constraints
	Unique Constraints
	Primary Key Constraints
	Foreign Key Constraints
	Examples

	PostgreSQL Usage
	Primary Key Constraints
	Foreign Key Constraints
	ON DELETE Clause
	ON UPDATE Clause
	ON UPDATE Clause
	CHECK Constraints
	NOT NULL Constraints
	SET Constraints Syntax
	Using Existing Indexes During Constraint Creation

	Summary

	Creating tables for ANSI SQL
	SQL Server Usage
	ANSI Syntax Conformity
	T-SQL Extensions
	Table Scope
	Creating a Table Based on an Existing Table or Query
	TIMESTAMP Syntax for ROWVERSION Deprecated Syntax
	Syntax
	Examples

	PostgreSQL Usage
	Aurora PostgreSQL Extensions
	Table Scope
	Creating a Table Based on an Existing Table or Query
	Converting TIMESTAMP and ROWVERSION Columns
	Syntax
	Examples

	Summary

	Common table expressions for ANSI SQL
	SQL Server Usage
	CTE Syntax
	Recursive CTE Syntax
	Examples

	PostgreSQL Usage
	CTE Syntax
	Recursive CTE Syntax
	Examples

	Data types for ANSI SQL
	SQL Server Usage
	TEXT, NTEXT, and IMAGE Deprecated Data Types
	Examples

	PostgreSQL Usage
	PostgreSQL Character Column Semantics
	Migration of SQL Server Data Types to PostgreSQL Data Types
	Examples

	Summary

	Derived tables for ANSI SQL
	SQL Server Usage
	Examples

	PostgreSQL Usage
	Examples

	GROUP BY for ANSI SQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	Table JOIN for ANSI SQL
	SQL Server Usage
	ANSI JOIN
	APPLY
	ANSI SQL 89 JOIN
	Syntax
	Examples

	PostgreSQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	Temporal tables for ANSI SQL
	SQL Server Usage
	Anomaly Detection
	Audit
	Other Scenarios

	PostgreSQL Usage

	Views for ANSI SQL
	SQL Server Usage
	Modifying Data Through Views
	Special View Types
	Syntax
	Examples

	PostgreSQL Usage
	PostgreSQL View Privileges
	PostgreSQL View Parameters
	Syntax
	Examples

	Summary

	Window functions for ANSI SQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	PostgreSQL Window Functions by Type
	PostgreSQL Window Functions
	Examples

	Migrating T-SQL features
	Service Broker functionality for T-SQL
	SQL Server Usage
	CREATE MESSAGE TYPE
	CREATE QUEUE
	CREATE CONTRACT
	CREATE SERVICE
	BEGIN DIALOG CONVERSATION
	WAITFOR(RECEIVE TOP(1))

	PostgreSQL Usage

	SQL Server cast and convert for T-SQL
	SQL Server Usage
	Conversion Matrix
	Syntax
	Examples

	PostgreSQL Usage
	Syntax
	Examples

	Summary

	Common Language Runtime for T-SQL
	SQL Server Usage
	PostgreSQL Usage
	Examples

	Collations for T-SQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Examples
	Changing Character Sets or Encoding
	Client-Server Character Set Conversions
	Examples
	Table Level Collation
	Example

	Summary

	Cursors for T-SQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Examples

	Summary

	Date and time functions for T-SQL
	SQL Server Usage
	Syntax and Examples

	PostgreSQL Usage
	Functions and Definition

	Summary

	String functions for T-SQL
	SQL Server Usage
	Syntax and Examples

	PostgreSQL Usage
	Syntax and Examples

	Summary

	Databases and schemas for T-SQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Syntax
	Migration Considerations
	Examples

	Dynamic SQL for T-SQL
	SQL Server Usage
	EXECUTE Command
	sp_executesql System Stored Procedure

	PostgreSQL Usage
	Prepare

	Summary

	Transactions for T-SQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Multiversion Concurrency Control
	Isolation Levels
	Setting Isolation Levels in Aurora PostgreSQL
	Syntax
	Examples
	Comparison table of relevant database features related to transactions
	Read-Committed Isolation Level
	Serializable Isolation Level

	Summary

	Synonyms for T-SQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Examples

	Delete and update from for T-SQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	Stored procedures for T-SQL
	SQL Server Usage
	Syntax
	Examples
	INSERT…​ EXEC Syntax

	PostgreSQL Usage
	PostgreSQL Create Function Privileges
	Examples

	Summary

	Error handling for T-SQL
	SQL Server Usage
	TRY…​CATCH Blocks
	THROW
	Examples
	RAISERROR
	FORMATMESSAGE
	Error State Functions

	PostgreSQL Usage
	Syntax
	Throw errors
	Examples

	Summary

	Flow control for T-SQL
	SQL Server Usage
	Examples

	PostgreSQL Usage
	Examples

	Summary

	Full-text search for T-SQL
	SQL Server Usage
	Full-Text Indexes
	Full-Text Catalogs
	Full-Text Queries
	Updating Full-Text Indexes
	Examples

	PostgreSQL Usage
	Full-Text Search Functions
	Migration Considerations
	Examples

	SQL server graph features for T-SQL
	SQL Server Usage
	PostgreSQL Usage

	JSON and XML for T-SQL
	SQL Server Usage
	XML Data
	XML Data Types and Columns
	XML Indexes
	XQuery

	JSON Data
	Examples

	PostgreSQL Usage
	Examples
	XML Examples

	Summary

	Merge for T-SQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Examples

	Pivot and unpivot for T-SQL
	SQL Server Usage
	PIVOT
	PIVOT Syntax
	PIVOT Examples

	UNPIVOT
	UNPIVOT Examples

	PostgreSQL Usage
	PIVOT Examples
	UNPIVOT Examples

	Triggers for T-SQL
	SQL Server Usage
	Trigger Run
	Trigger Scope
	Examples

	PostgreSQL Usage
	PostgreSQL DML Triggers
	PostgreSQL Event Triggers
	PostgreSQL CREATE TRIGGER Synopsis
	Examples

	Summary

	Top fetch for T-SQL
	SQL Server Usage
	TOP
	Syntax
	Examples

	PostgreSQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	User-defined functions for T-SQL
	SQL Server Usage
	Scalar User-Defined Functions
	Syntax
	Examples

	User-Defined Table-Valued Functions
	Syntax
	Examples

	Multi-Statement User-Defined Table-Valued Functions
	Syntax

	PostgreSQL Usage
	Syntax

	User-defined types for T-SQL
	SQL Server Usage
	Syntax
	User-Defined Types Examples
	Table-Valued Types Examples

	PostgreSQL Usage
	Syntax
	Examples

	Identity and sequences for T-SQL
	SQL Server Usage
	Identity
	Syntax
	Examples

	SEQUENCE
	Syntax
	Examples

	Identity
	Syntax
	Examples

	PostgreSQL Usage
	Sequence Parameters
	Syntax
	Examples
	IDENTITY Usage
	SERIAL Usage

	Summary

	Configuration overview
	Configuring upgrades
	SQL Server Usage
	Upgrade in-place
	Migrate to a new installation

	PostgreSQL Usage
	Summary

	Configuring session options
	SQL Server Usage
	Syntax
	SET ROWCOUNT for DML Deprecated Setting
	Examples

	PostgreSQL Usage
	Converting from SQL Server 2008 SET ROWCOUNT for DML operations
	Examples

	Summary

	Configuring database options
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage

	Configuring server options
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Examples

	High availability and disaster recovery
	Backup and restore design
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Restoring Data
	Database Cloning
	Copying and sharing snapshots
	Backup Storage
	The Backup Retention Period
	Disabling automated backups
	Migration Considerations
	Examples

	Summary

	High availability essentials
	SQL Server Usage
	Always On Failover Cluster Instances
	Always On Availability Groups
	Database Mirroring
	Log Shipping
	Examples

	PostgreSQL Usage
	Regions and Availability Zones
	Aurora PostgreSQL DB Cluster
	Endpoints
	Amazon Aurora Storage
	Storage Auto-Repair
	Survivable Cache Warming
	Crash Recovery
	Examples

	Summary

	Migrating indexes to Aurora PostgreSQL
	SQL Server Usage
	Clustered Indexes
	Examples

	Non-Clustered Indexes
	Examples

	Filtered Indexes and Covering Indexes
	Examples

	Indexes On Computed Columns
	Examples

	PostgreSQL Usage
	Cluster Table
	Examples

	B-tree Indexes
	Example

	Column and Multiple Column Secondary Indexes
	Examples

	Expression Indexes and Partial Indexes
	Partial Indexes
	Example

	BRIN Indexes
	Example

	Summary

	Migrating management features to Aurora PostgreSQL
	SQL Server Agent and PostgreSQL
	SQL Server Usage
	PostgreSQL Usage

	Alerting features
	SQL Server Usage
	Example

	PostgreSQL Usage
	Examples
	Raising Errors from Within the Database

	Database mail features
	SQL Server Usage
	Architecture
	Deprecated SQL Mail framework
	Syntax
	Examples

	PostgreSQL Usage
	Examples

	ETL features
	SQL Server Usage
	DTS
	SSIS

	PostgreSQL Usage
	Amazon Glue Key Features
	Migration Considerations
	Examples
	Step 1 — Create a Bucket in Amazon S3 and Upload the CSV File
	Step 2 — Add an Amazon Glue Crawler to Discover and Catalog the Visits File
	Step 3 — Run the Amazon Glue Crawler
	Step 4 — Create an ETL Job to Copy the Visits Table to an Aurora PostgreSQL Database

	Export and import features
	SQL Server Usage
	Examples

	PostgreSQL Usage
	Notes
	Examples

	Summary

	Viewing server logs
	SQL Server Usage
	Examples

	PostgreSQL Usage
	Examples

	Maintenance plans
	SQL Server Usage
	Deprecated DBCC Index and Table Maintenance Commands
	Examples

	PostgreSQL Usage
	Examples

	Summary

	Monitoring features
	SQL Server Usage
	Windows Operating System Level Tools
	SQL Server Extended Events
	SQL Server Tracing Framework and the SQL Server Profiler Tool
	SQL Server Management Studio
	T-SQL
	Trace Flags
	SQL Server Query Store

	PostgreSQL Usage
	Example
	Turning on Performance Insights

	Resource governor features
	SQL Server Usage
	Use Cases
	Concepts
	Examples

	PostgreSQL Usage
	Examples
	Dedicated Aurora PostgreSQL Instances

	Linked servers
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Examples

	Scripting features
	SQL Server Usage
	Examples

	PostgreSQL Usage
	PostgreSQL pgAdmin
	Amazon RDS API
	Amazon Management Console
	Amazon Command Line Interface
	Amazon RDS Programmatic API
	Examples

	Performance tuning overview
	Tuning run plans
	SQL Server Usage
	Examples

	PostgreSQL Usage
	PostgreSQL EXPLAIN Synopsis
	Aurora PostgreSQL Query Plan Management
	Examples

	Query hints and plan guides
	SQL Server Usage
	JOIN Hints
	Table Hints
	Query Hints
	Plan Guides
	Syntax
	Examples

	PostgreSQL Usage
	Examples

	Managing statistics
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Automatic Statistics Collection
	Manual Statistics Collection
	Examples

	Summary

	Physical storage overview
	Columnstore index functionality
	SQL Server Usage
	Examples

	PostgreSQL Usage

	Indexed view functionality
	SQL Server Usage
	Examples

	PostgreSQL Usage
	Examples
	Creating a Materialized View
	Example

	Summary

	Partitioning databases
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Using The Partition Mechanism
	Implementing List Table Partitioning with Inheritance Tables
	Examples
	Examples of New Partitioning Features of PostgreSQL 11

	Summary

	Migrating security features to Aurora PostgreSQL
	Column encryption for Aurora PostgreSQL
	SQL Server Usage
	Syntax
	Examples

	PostgreSQL Usage
	Syntax
	Examples

	Data control language for Aurora PostgreSQL
	SQL Server Usage
	Syntax

	PostgreSQL Usage
	Syntax
	Examples

	Transparent data encryption Aurora PostgreSQL
	SQL Server Usage
	Examples

	PostgreSQL Usage
	Examples

	Users and roles for Aurora PostgreSQL
	SQL Server Usage
	Examples

	PostgreSQL Usage
	Syntax
	Example

	Summary

	SQL Server 2018 deprecated features list
	Migration quick tips
	Management
	SQL

