
Developer Guide

Amazon Elastic Beanstalk

Amazon Elastic Beanstalk Developer Guide

Amazon Elastic Beanstalk: Developer Guide

Amazon Elastic Beanstalk Developer Guide

Table of Contents

What is Amazon Elastic Beanstalk? .. 1
Supported platforms ... 2
Application deploy workflow ... 3
Pricing ... 3
Next steps .. 4

Getting started tutorial ... 5
What you will build .. 7
Step 1 - Create an application .. 7
Step 2 - Deploy your application ... 10
Step 3 - Explore the environment .. 13

Troubleshooting with logs .. 16
Step 4 - Update your application ... 18
Step 5 - Scale your application ... 19

Increase capacity settings ... 20
Verify increased capacity ... 21

Clean up ... 21
Next steps .. 23

Setting up the EB CLI .. 24
Install EB CLI ... 24
Manual installation .. 25
Install in virtualenv .. 28
Install the EB CLI with homebrew .. 29
Configure the EB CLI ... 29

Ignoring files using .ebignore ... 32
Using named profiles ... 33
Deploying an artifact instead of the project folder .. 33
Configuration settings and precedence ... 33
Instance metadata .. 34

Using the EB CLI with Git .. 35
Associating Elastic Beanstalk environments with Git branches ... 35
Deploying changes ... 35
Using Git submodules .. 36
Assigning Git tags to your application version ... 37

EB CLI commands .. 38

iii

Amazon Elastic Beanstalk Developer Guide

Common options .. 39
eb abort ... 40

Description .. 40
Syntax .. 40
Options .. 40
Output ... 40
Example ... 40

eb appversion ... 41
Description .. 41
Syntax .. 41
Options .. 41
Using the command interactively ... 43
Output ... 44
Examples ... 44

eb clone ... 45
Description .. 45
Syntax .. 46
Options .. 46
Output ... 47
Example ... 47

eb codesource .. 48
Description .. 48
Syntax .. 48
Options .. 48
Output ... 49
Examples ... 49

eb config .. 50
Description .. 50
Syntax .. 50
Options .. 52
Output ... 54
Examples ... 55

eb console ... 58
Description .. 58
Syntax .. 59
Options .. 59

iv

Amazon Elastic Beanstalk Developer Guide

eb create .. 59
Description .. 59
Syntax .. 60
Options .. 60
Output ... 73
Examples ... 73

eb deploy ... 76
Description .. 76
Syntax .. 76
Options .. 76
Output ... 77
Example ... 78

eb events ... 78
Description .. 78
Syntax .. 78
Options .. 78
Output ... 79
Example ... 79

eb health ... 80
Description .. 80
Syntax .. 80
Options .. 80
Output ... 80
Example ... 80

eb init ... 82
Description .. 82
Syntax .. 82
Options .. 82
CodeBuild support .. 85
Output ... 85
Example ... 85

eb labs .. 86
Description .. 86

eb list ... 86
Description .. 86
Syntax .. 86

v

Amazon Elastic Beanstalk Developer Guide

Options .. 87
Output ... 87
Example 1 ... 87
Example 2 ... 87

eb local .. 88
Description .. 88
Syntax .. 88
Options .. 89
Output ... 89
Examples ... 90

eb logs .. 91
Description .. 91
Syntax .. 92
Options .. 92
Output ... 95
Examples ... 95

eb migrate ... 96
Description .. 96
Syntax .. 97
Subcommands ... 97
Options .. 99
Output ... 107
Examples ... 107

eb open .. 111
Description ... 111
Syntax .. 112
Options ... 112
Output ... 112

eb platform .. 112
Description ... 112
Using eb platform for custom platforms .. 113
Using eb platform for environments ... 120

eb printenv ... 122
Description ... 122
Syntax .. 122
Options ... 122

vi

Amazon Elastic Beanstalk Developer Guide

Output ... 123
Example .. 123

eb restore .. 123
Description ... 123
Syntax .. 123
Options ... 123
Output ... 123
Example .. 123

eb scale .. 124
Description ... 124
Syntax .. 124
Options ... 125
Output ... 125
Example .. 125

eb setenv ... 125
Description ... 125
Syntax .. 125
Options ... 126
Output ... 126
Example .. 126

eb ssh ... 127
Description ... 127
Syntax .. 127
Options ... 128
Output ... 129
Example .. 129

eb status .. 130
Description ... 130
Syntax .. 130
Options ... 130
Output ... 130
Example .. 131

eb swap ... 131
Description ... 131
Syntax .. 132
Options ... 132

vii

Amazon Elastic Beanstalk Developer Guide

Output ... 132
Examples ... 132

eb tags ... 133
Description ... 133
Syntax .. 133
Options ... 134
Output ... 135
Examples ... 136

eb terminate .. 136
Description ... 136
Syntax .. 137
Options ... 138
Output ... 138
Example .. 138

eb upgrade ... 139
Description ... 139
Syntax .. 139
Options ... 139
Output ... 140
Example .. 140

eb use ... 140
Description ... 140
Syntax .. 140
Options ... 141

Concepts ... 142
Application .. 143
Application version .. 143
Environment .. 143
Environment tier .. 143
Environment configuration .. 143
Saved configuration .. 144
Platform ... 144
Web server environments .. 144
Worker environments .. 146
Design considerations ... 147

Scalability ... 148

viii

Amazon Elastic Beanstalk Developer Guide

Security ... 148
Persistent storage ... 149
Fault tolerance .. 150
Content delivery ... 150
Software updates and patching .. 151
Connectivity ... 151

Managing applications .. 153
Application management console .. 154
Managing application versions ... 155

Creating application versions ... 155
Deleting application versions ... 156
Version lifecycle .. 158
Tagging application versions .. 159

Create a source bundle ... 162
Creating a source bundle from the command line .. 163
Creating a source bundle with Git .. 163
Zipping files in Mac OS X Finder or Windows explorer .. 164
Creating a source bundle for a .NET application ... 165
Testing your source bundle .. 166

Building with CodeBuild ... 166
Creating an application ... 167
Building and deploying your application code ... 167

Tagging applications ... 169
Adding tags during application creation ... 169
Managing tags of an existing application ... 170

Tagging resources .. 171
Resources you can tag ... 172
Tag propagation to launch templates ... 172

Creating environments .. 175
Environment management console ... 176

Accessing the console .. 177
Environment overview pane .. 178
Environment detail ... 179
Environment actions .. 183

Creating environments ... 185
The create new environment wizard .. 191

ix

Amazon Elastic Beanstalk Developer Guide

Clone an environment ... 213
Terminate an environment ... 215
With the Amazon CLI .. 217
With the API .. 219
Launch Now URL .. 223
Compose environments ... 227

Composing environments .. 230
Deployments ... 232

Choosing a deployment policy .. 233
Deploying a new application version ... 235
Redeploying a previous version ... 236
Other ways to deploy your application ... 236
Deployment options .. 237
Blue/Green deployments .. 245

Configuration changes .. 247
Rolling updates ... 248
Immutable updates .. 253

Platform updates ... 257
Method 1 – Update your environment's platform version ... 260
Method 2 – Perform a Blue/Green deployment .. 262
Managed updates ... 263
Upgrade a legacy environment ... 270
Migrate to AL2023/AL2 .. 271
Platform retirement FAQ .. 287

Cancel an update ... 291
Rebuild an environment ... 292

Rebuilding a running environment ... 293
Rebuilding a terminated environment ... 294

Environment types ... 296
Load-balanced, scalable environment .. 296
Single-instance environment ... 296
Changing environment type .. 297

Worker environments .. 298
The worker environment SQS daemon .. 301
Dead-letter queues ... 302
Periodic tasks ... 303

x

Amazon Elastic Beanstalk Developer Guide

Use Amazon CloudWatch for automatic scaling in worker environment tiers 304
Configuring worker environments .. 305

Environment links .. 309
Recovering from invalid stack state ... 311

Addressing the error .. 311
Why the error occurs ... 311

Configuring environments .. 313
Provisioned resources .. 313
Configuration using the console .. 315

Configuration page .. 315
Review changes page .. 317

Amazon EC2 instances .. 318
Amazon EC2 instance types ... 319
Configuring with the console .. 321
Managing EC2 security groups .. 328
Configuring with the Amazon CLI ... 330
Configuring with namespace ... 341
IMDS .. 342

Auto Scaling group .. 345
Launch templates ... 346
Spot Instance support ... 349
Triggers ... 366
Scheduled actions ... 368
Health check setting .. 372

Load balancer ... 373
Classic Load Balancer .. 375
Application Load Balancer .. 385
Shared Application Load Balancer .. 405
Network Load Balancer ... 423
Configuring access logs ... 434

Database .. 434
Database lifecycle ... 435
Adding an Amazon RDS DB instance to your environment using the console 436
Connecting to the database ... 438
Configuring an integrated RDS DB instance using the console .. 438
Configuring an integrated RDS DB instance using configuration files 439

xi

Amazon Elastic Beanstalk Developer Guide

Decoupling an RDS DB instance using the console ... 440
Decoupling an RDS DB instance using configuration files ... 443

Security .. 445
Configuring your environment security ... 445
Environment security configuration namespaces .. 448

Tagging environments .. 448
Adding tags during environment creation .. 449
Managing tags of an existing environment .. 450

Environment variables and software settings ... 452
Configure platform-specific settings .. 452
Configuring environment properties (environment variables) .. 453
Software setting namespaces .. 455
Accessing environment properties .. 457
Debugging .. 459
Log viewing .. 461

Notifications .. 463
Configuring notifications using the Elastic Beanstalk console .. 465
Configuring notifications using configuration options ... 465
Configuring permissions to send notifications ... 468

Amazon VPC ... 470
Configuring VPC settings in the Elastic Beanstalk console .. 470
The aws:ec2:vpc namespace ... 473
Migrating from EC2-Classic to a VPC ... 474

Domain name ... 479
Configuring environments (advanced) ... 481

Configuration options ... 482
Precedence ... 482
Recommended values .. 483
Before environment creation ... 485
During creation ... 491
After creation .. 498
General options ... 508
Platform specific options .. 593
Custom options ... 605

.Ebextensions .. 606
Option settings ... 608

xii

Amazon Elastic Beanstalk Developer Guide

Linux server .. 611
Windows server ... 627
Custom resources ... 637

Saved configurations ... 665
Tagging saved configurations .. 671

env.yaml .. 673
Custom image ... 676

Creating a custom AMI .. 676
Managing a custom AMI ... 680
Cleaning up a custom AMI ... 681
AMI based on retired platform .. 681

Static files .. 688
Configure static files using the console ... 689
Configure static files using configuration options ... 689

HTTPS ... 690
Server certificates ... 692
Terminate HTTPS at the load balancer ... 699
Terminate HTTPS at the instance ... 702
End-to-end encryption .. 738
TCP Passthrough ... 742
HTTP to HTTPS redirection .. 743

Platforms .. 746
Platforms glossary ... 746
Shared responsibility model .. 749
Platform support policy ... 751

Retired platform branches .. 751
Beyond the 90 day grace period ... 752

Platform schedule .. 752
Planning resources ... 753
Upcoming platform branch releases .. 753
Retiring platform branch schedule ... 754
Retired platform branch history ... 754
Server and OS history ... 759

Supported platforms ... 761
Supported platforms and component history ... 762

Linux platforms .. 762

xiii

Amazon Elastic Beanstalk Developer Guide

Supported Amazon Linux versions ... 763
List of Elastic Beanstalk Linux platforms .. 764
Instance deployment workflow ... 764
Instance deployment workflow for ECS on AL2 and later ... 767
Platform script tools .. 770

Extending Linux platforms ... 780
Buildfile and Procfile ... 780
Platform hooks ... 782
Configuration files .. 784
Reverse proxy configuration ... 785
Application example with extensions ... 788

Deploying .NET (Windows) .. 790
QuickStart for .NET Core on Windows .. 791

Your Amazon account .. 792
Prerequisites .. 793
Step 1: Create a .NET Core on Windows application .. 793
Step 2: Run your application locally .. 794
Step 3: Deploy your .NET Core on Windows application with the EB CLI 794
Step 4: Run your application on Elastic Beanstalk .. 796
Step 5: Clean up ... 796
Amazon resources for your application ... 796
Next steps .. 797
Deploy with the console ... 797

QuickStart for ASP.NET .. 798
Your Amazon account .. 798
Prerequisites .. 799
Step 1: Create a ASP.NET application .. 800
Step 2: Run your application locally .. 801
Step 3: Deploy your ASP.NET application with the Amazon Toolkit for Visual Studio 801
Step 4: Run your application on Elastic Beanstalk .. 802
Step 5: Clean up ... 802
Amazon resources for your application ... 802
Next steps .. 803
Deploy with the console ... 803

Development environment .. 804
Installing an IDE ... 804

xiv

Amazon Elastic Beanstalk Developer Guide

Installing the Amazon Toolkit for Visual Studio .. 804
The .NET platform ... 804

Configuring your .NET environment in the Elastic Beanstalk console 805
The aws:elasticbeanstalk:container:dotnet:apppool namespace .. 806
Major version migration .. 807
Deployment manifest .. 810
EC2 Fast Launch .. 829

Adding a database ... 830
Adding a DB instance to your environment .. 831
Downloading a driver .. 832
Connecting to a database ... 832

The Amazon Toolkit for Visual Studio .. 834
Test locally ... 834
Create an Elastic Beanstalk environment .. 834
Terminating an environment ... 845
Deploy ... 846
Managing environments .. 849
Managing accounts ... 863
Debug .. 864
Monitor ... 865
Deployment tool ... 867

Migrating on-premises application .. 869
Retired component recommendations .. 870

Retired Windows 2012 R2 branches .. 870
TLS 1.2 Compatibility .. 871

Deploying .NET core (Linux) ... 873
QuickStart for .NET Core on Linux ... 873

Your Amazon account .. 874
Prerequisites .. 875
Step 1: Create a .NET Core on Linux application ... 876
Step 2: Run your application locally .. 876
Step 3: Deploy your .NET Core on Linux application with the EB CLI 877
Step 4: Run your application on Elastic Beanstalk .. 878
Step 5: Clean up ... 796
Amazon resources for your application ... 879
Next steps .. 880

xv

Amazon Elastic Beanstalk Developer Guide

Deploy with the console ... 880
Development environment .. 880

Installing the .NET Core SDK .. 880
Installing an IDE ... 804
Installing the Amazon Toolkit for Visual Studio .. 804

The .NET core on Linux platform ... 881
.NET Core on Linux platform considerations .. 881
Configuring your .NET Core on Linux environment ... 882
.NET Core on Linux configuration namespace .. 883
Bundling applications .. 884
Procfile .. 886
Proxy server ... 886

The Amazon Toolkit for Visual Studio .. 887
Prerequisites .. 888
Create a new application project .. 888
Create an Elastic Beanstalk environment and deploy your application 889
Terminating an environment ... 891
Managing environments .. 892
Monitor ... 905

Migration from Windows to Linux ... 907
Considerations for migrating to the .NET Core on Linux platform .. 907

Deploying Go ... 908
QuickStart for Go .. 908

Your Amazon account .. 909
Prerequisites .. 910
Step 1: Create a Go application .. 910
Step 2: Deploy your Go application with the EB CLI .. 911
Step 3: Run your application on Elastic Beanstalk .. 912
Step 4: Clean up ... 796
Amazon resources for your application ... 912
Next steps .. 913
Deploy with the console ... 913

Development environment .. 914
Installing Go .. 914
Installing the Amazon SDK for Go .. 914

The Go platform .. 914

xvi

Amazon Elastic Beanstalk Developer Guide

Configuring your Go environment .. 915
Go configuration namespace ... 917
Procfile .. 918
Buildfile ... 920
Proxy configuration .. 921

Deploying Java ... 923
QuickStart for Java .. 924

Your Amazon account .. 925
Prerequisites .. 926
Step 1: Create a Java application ... 927
Step 2: Run your application locally .. 929
Step 3: Deploy your Java application with the EB CLI .. 929
Step 4: Run your application on Elastic Beanstalk .. 931
Step 5: Clean up ... 931
Amazon resources for your application ... 932
Next steps .. 932
Deploy with the console ... 933

QuickStart for Java on Tomcat ... 933
Your Amazon account .. 934
Prerequisites .. 935
Step 1: Create a Java JSP application .. 935
Step 2: Deploy your Java JSP application with the EB CLI .. 936
Step 3: Run your application on Elastic Beanstalk .. 936
Step 4: Clean up ... 796
Amazon resources for your application ... 937
Next steps .. 938
Deploy with the console ... 938

Development environment .. 938
Installing the Java development kit ... 939
Installing a web container .. 939
Downloading libraries .. 939
Installing the Amazon SDK for Java ... 940
Installing an IDE or text editor .. 940

Sample applications and tutorials .. 941
Launching an environment with a sample Java application .. 941
Next steps .. 950

xvii

Amazon Elastic Beanstalk Developer Guide

The Tomcat platform .. 950
Configuring your Tomcat environment .. 951
Tomcat configuration namespaces ... 955
Bundling WAR files ... 957
Structuring your project folder ... 958
Proxy configuration .. 962

The Java SE platform .. 967
Configuring your Java SE environment ... 969
Java SE configuration namespace ... 970
Buildfile ... 972
Procfile .. 972
Proxy configuration .. 974

Adding a database ... 977
Downloading the JDBC driver .. 979
Connecting to a database (Java SE platforms) .. 980
Connecting to a database (Tomcat platforms) .. 980
Troubleshooting database connections ... 983

Resources ... 986
Deploying Node.js ... 987

QuickStart for Node.js .. 987
Your Amazon account .. 988
Prerequisites .. 989
Step 1: Create a Node.js application .. 990
Step 2: Run your application locally .. 990
Step 3: Deploy your Node.js application with the EB CLI .. 991
Step 4: Run your application on Elastic Beanstalk .. 992
Step 5: Clean up ... 796
Amazon resources for your application ... 992
Next steps .. 993
Deploy with the console ... 993

Development environment .. 994
Install Node.js .. 994
Confirm npm installation .. 994
Install the Amazon SDK for Node.js ... 994
Install the Express generator ... 995
Set up an Express framework and server .. 996

xviii

Amazon Elastic Beanstalk Developer Guide

The Node.js platform .. 997
Configuring your Node.js environment .. 998
Node.js configuration namespace ... 1000
Procfile .. 1004
Configuring dependencies .. 1004
npm shrinkwrap file .. 1009
Proxy configuration ... 1009

Sample applications and tutorials ... 1013
Launching an environment with a sample Node.js application .. 1013
Next steps .. 1014

Tutorial - Express ... 1015
Prerequisites .. 1015
Create an Elastic Beanstalk environment .. 1015
Update the application to use Express .. 1018
Update the application to use Amazon RDS .. 1021
Clean up ... 1026

Tutorial - Express with clustering .. 1026
Prerequisites .. 1027
Create an Elastic Beanstalk environment .. 1027
Update the application to use Express .. 1030
Clean up ... 1044

Tutorial - Node.js w/ DynamoDB ... 1044
Prerequisites .. 1045
Create an Elastic Beanstalk environment .. 1045
Add permissions to your environment's instances .. 1048
Deploy the example application ... 1048
Create a DynamoDB table .. 1051
Update the application's configuration files .. 1052
Configure your environment for high availability ... 1054
Cleanup ... 1054
Next steps .. 1055

Adding a database .. 1056
Adding a DB instance to your environment ... 1056
Downloading a driver .. 1057
Connecting to a database .. 1058

Resources ... 1059

xix

Amazon Elastic Beanstalk Developer Guide

Deploying PHP ... 1060
QuickStart for PHP ... 1060

Your Amazon account ... 1060
Prerequisites .. 1061
Step 1: Create a PHP application ... 1062
Step 2: Run your application locally .. 1062
Step 3: Initialize and deploy your PHP application ... 1062
Step 4: Browse your cloud application .. 1063
Step 5: Update and redeploy your application .. 1063
Clean up ... 796
Next steps .. 1065

PHP platform .. 1065
Installing the Amazon SDK for PHP ... 1066
Considerations for PHP 8.1 on Amazon Linux 2 ... 1066
Configuring your PHP environment ... 1069
Namespaces for configuration ... 1071
Installing dependencies .. 1072
Updating Composer ... 1073
Extending php.ini ... 1075

Advanced examples ... 1075
Adding a database ... 1076
Tutorial - Laravel .. 1079
Tutorial - CakePHP ... 1089
Tutorial - Symfony ... 1097
Tutorial - HA production .. 1103
Tutorial - HA WordPress ... 1113
Tutorial - HA Drupal .. 1130

Deploying Python .. 1148
QuickStart for Python .. 1148

Your Amazon account ... 1149
Prerequisites .. 1150
Step 1: Create a Python application .. 1151
Step 2: Run your application locally .. 1152
Step 3: Deploy your Python application with the EB CLI .. 1153
Step 4: Run your application on Elastic Beanstalk .. 1153
Step 5: Clean up ... 796

xx

Amazon Elastic Beanstalk Developer Guide

Amazon resources for your application ... 1154
Next steps .. 1155
Deploy with the console ... 1155

Development environment .. 1155
Prerequisites .. 1156
Using a virtual environment .. 1157
Configuring a Python project for Elastic Beanstalk .. 1158

The Python platform .. 1159
Configuring your Python environment .. 1160
Python configuration namespaces ... 1162
The python3 executable .. 1164
Procfile .. 1164
Specifying dependencies .. 1165

Tutorial - flask .. 1167
Prerequisites .. 1168
Set up a Python virtual environment with Flask ... 1168
Create a Flask application .. 1169
Deploy your site with the EB CLI .. 1171
Cleanup ... 1175
Next steps .. 1175

Tutorial - Django ... 1176
Prerequisites .. 1176
Set up a Python virtual environment and install Django .. 1177
Create a Django project .. 1178
Configure your Django application for Elastic Beanstalk ... 1180
Deploy your site with the EB CLI .. 1182
Update your application ... 1185
Clean up ... 1189
Next steps .. 1189

Adding a database .. 1189
Adding a DB instance to your environment ... 1190
Downloading a driver .. 1191
Connecting to a database .. 1192

Resources ... 1192
Deploying Ruby ... 1193

Development environment .. 1193

xxi

Amazon Elastic Beanstalk Developer Guide

Installing Ruby .. 1194
Installing the Amazon SDK for Ruby ... 1195
Installing an IDE or text editor ... 1195

The Ruby platform .. 1196
Configuring your Ruby environment .. 1197
Ruby configuration namespaces ... 1200
Gemfile ... 1201
Procfile .. 1201

Tutorial - rails ... 1203
Prerequisites .. 1203
Basic Elastic Beanstalk knowledge ... 1203
Launch an Elastic Beanstalk environment .. 1204
Install rails and generate a website ... 1206
Configure rails settings ... 1210
Deploy your application .. 1211
Cleanup ... 1211
Next steps .. 1212

Tutorial - sinatra .. 1212
Prerequisites .. 1212
Launch an Elastic Beanstalk environment .. 1213
Write a basic sinatra website ... 1215
Deploy your application .. 1216
Cleanup ... 1217
Next steps .. 1217

Adding a database .. 1217
Adding a DB instance to your environment ... 1218
Downloading an adapter .. 1219
Connecting to a database .. 1220

Deploying with Docker .. 1221
Docker platform branches ... 1221

Retired platform branches running on Amazon Linux AMI (AL1) ... 1222
Docker platform branch ... 1223

QuickStart for Docker ... 1223
Docker image configuration ... 1229

ECS managed platform branch .. 1236
ECS managed Docker platform overview ... 1236

xxii

Amazon Elastic Beanstalk Developer Guide

Amazon ECS resources created by Elastic Beanstalk .. 1237
Dockerrun.aws.json v2 file ... 1238
Docker images ... 1238
Failed container deployments ... 1239
Extending ECS based Docker platforms .. 1239
ECS managed Docker configuration for Elastic Beanstalk ... 1239
Tutorial - ECS managed Docker .. 1252
Migration to ECS running on AL2023 .. 1261

Using images from a private repository ... 1263
Amazon ECR repository .. 1263
SSM Parameter Store .. 1265
Dockerrun.aws.json file ... 1267

Environment configuration .. 1269
Configuring software in Docker environments .. 1270
Referencing environment variables in containers ... 1272
Using interpolate feature for environment variables with Docker Compose 1273
Generating logs for enhanced health reporting with Docker Compose 1275
Docker container customized logging with Docker Compose ... 1275
Docker images ... 1276
Configuring managed updates for Docker environments .. 1277
Docker configuration namespaces .. 1278
Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2) 1278

Legacy platforms ... 1280
(Legacy) Migrating to Docker running on Amazon Linux 2 ... 1281
(Legacy) Docker GlassFish containers .. 1286

Monitoring environments ... 1295
Monitoring console ... 1295

Monitoring graphs .. 1296
Customizing the monitoring console ... 1297

Monitoring health with CLI ... 1298
Reading the output .. 1302
Interactive health view ... 1304
Interactive health view options ... 1306

Basic health reporting .. 1306
Health colors ... 1307
Elastic Load Balancing health checks .. 1308

xxiii

Amazon Elastic Beanstalk Developer Guide

Single instance and worker tier environment health checks ... 1309
Additional checks ... 1309
Amazon CloudWatch metrics ... 1309

Enhanced health reporting and monitoring .. 1311
The Elastic Beanstalk health agent .. 1313
Factors in determining instance and environment health ... 1314
Health check rule customization .. 1316
Enhanced health roles ... 1316
Enhanced health authorization ... 1317
Enhanced health events .. 1318
Enhanced health reporting behavior during updates, deployments, and scaling 1319
Enable enhanced health ... 1320
Health console .. 1323
Health colors and statuses ... 1328
Instance metrics .. 1331
Enhanced health rules ... 1334
CloudWatch ... 1338
API users ... 1347
Enhanced health log format .. 1349
Notifications and troubleshooting .. 1353

Manage alarms ... 1355
View change history ... 1357
View events ... 1358

Console ... 1359
Command line ... 1359

Monitor instances .. 1360
View instance logs ... 1361

Log location on Amazon EC2 instances .. 1363
Log location in Amazon S3 .. 1364
Log rotation settings on Linux .. 1365
Extending the default log task configuration .. 1365
Streaming log files to Amazon CloudWatch Logs ... 1368

Integrating Amazon services .. 1370
Architectural overview .. 1370
CloudFront ... 1371
CloudTrail .. 1372

xxiv

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk information in CloudTrail .. 1372
Understanding Elastic Beanstalk log file entries ... 1373

CloudWatch ... 1374
CloudWatch Logs ... 1375

Prerequisites to instance log streaming to CloudWatch Logs ... 1376
How Elastic Beanstalk sets up CloudWatch Logs .. 1376
Streaming instance logs to CloudWatch Logs ... 1381
Troubleshooting CloudWatch Logs integration ... 1384
Streaming environment health ... 1385

EventBridge ... 1388
Monitor an Elastic Beanstalk resource with EventBridge ... 1388
Example Elastic Beanstalk event patterns .. 1391
Example Elastic Beanstalk events ... 1394
Elastic Beanstalk event field mapping ... 1395

Amazon Config ... 1398
Setting up Amazon Config ... 1398
Configuring Amazon Config to record Elastic Beanstalk resources .. 1398
Viewing Elastic Beanstalk configuration details in the Amazon Config console 1399
Evaluating Elastic Beanstalk resources using Amazon Config rules 1403

DynamoDB .. 1404
ElastiCache .. 1404
Amazon EFS .. 1405

Configuration files .. 1406
Encrypted file systems .. 1407
Sample applications ... 1407
Cleaning up file systems ... 1407

IAM .. 1408
Instance profiles ... 1409
Service roles .. 1413
Using service-linked roles ... 1420
User policies .. 1432
ARN format .. 1440
Resources and conditions ... 1442
Tag-based access control .. 1487
Example managed policies ... 1491
Example resource-specific policies ... 1494

xxv

Amazon Elastic Beanstalk Developer Guide

Cross-environment S3 bucket access ... 1505
Amazon RDS ... 1507

Amazon RDS in default VPC .. 1509
Amazon RDS credentials and Secrets Manager ... 1514
Cleaning up an external Amazon RDS instance ... 1515

Amazon S3 .. 1515
The Elastic Beanstalk Amazon S3 customer account bucket .. 1515
Contents of the Elastic Beanstalk Amazon S3 customer account bucket 1516
Deleting objects in the Elastic Beanstalk Amazon S3 bucket ... 1517
Deleting the Elastic Beanstalk Amazon S3 bucket .. 1517

Secrets Manager & Systems Manager Parameter Store .. 1519
Fetch secrets to environment variables ... 1519
Required IAM permissions .. 1526
Using Secrets Manager and Systems Manager Parameter Store .. 1529
Troubleshooting secrets and environment variables .. 1531

Amazon VPC ... 1532
Public VPC .. 1534
Public/private VPC ... 1535
Private VPC .. 1535
Bastion hosts ... 1537
Amazon RDS .. 1542
VPC endpoints .. 1549
VPC endpoint policies ... 1553

Security .. 1563
Data protection .. 1564

Data encryption .. 1565
Internetwork privacy ... 1566

Identity and access management .. 1566
Amazon managed policies ... 1566

Logging and monitoring .. 1579
Enhanced health reporting .. 1579
Amazon EC2 instance logs ... 1579
Environment notifications .. 1579
Amazon CloudWatch alarms .. 1580
Amazon CloudTrail logs .. 1580
Amazon X-Ray debugging .. 1580

xxvi

Amazon Elastic Beanstalk Developer Guide

Compliance validation .. 1580
Resilience ... 1581
Infrastructure security .. 1582
Shared responsibility model .. 1582
Security best practices ... 1582

Preventive security best practices .. 1582
Detective security best practices .. 1584

Permissions .. 1586
Required roles .. 1586
Optional polices and roles ... 1586
Service role ... 1587

AWSElasticBeanstalkEnhancedHealth .. 1414
AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy 1414

Instance profile .. 1589
Managed policies .. 1589
Creating an EC2 instance profile .. 1590

User policy .. 1590
Tutorials and samples ... 1591
Migrating IIS applications ... 1594

Prerequisites ... 1595
Migration glossary ... 1597

Windows, IIS, and .NET terms .. 1597
Elastic Beanstalk terms ... 1601
Python terms .. 1605

Basic IIS migrations ... 1606
Exploring your IIS environment .. 1606
Preparing for migration .. 1608
Your first migration ... 1608
Controlling the migration ... 1609
Monitoring progress .. 1610
Verifying the migration .. 1610
Managing migration artifacts .. 1611

Network configuration ... 1612
VPC configuration .. 1612
Multi-site deployments with port configurations .. 1616
Shared configuration and dependencies ... 1618

xxvii

Amazon Elastic Beanstalk Developer Guide

Best practices .. 1619
Troubleshooting .. 1620

Security configuration .. 1620
Instance profile configuration ... 1621
Service role management .. 1621
Security group configuration ... 1622
SSL certificate integration .. 1623
Windows authentication ... 1624
Best practices and troubleshooting .. 1625

IIS to Elastic Beanstalk migration mapping ... 1627
IIS sites and applications in Elastic Beanstalk .. 1627
Virtual directory and application path management ... 1628
URL rewrite and application request routing (ARR) .. 1629
Migration artifact structure .. 1630

Advanced migration scenarios .. 1632
Multi-site migrations with Application Request Routing (ARR) .. 1632
Multi-site migrations without ARR using host-based routing ... 1635
Virtual directory management .. 1638
Custom application pool settings ... 1642
Deploying previous versions .. 1644

Troubleshooting and diagnostics ... 1645
Associating an EC2 keypair with your environment .. 1645
Accessing logs ... 1645
Accessing client-side artifacts .. 1646
Monitoring environment health .. 1646
EC2 performance optimization ... 1647
EBS volume configuration .. 1647
Common issues and solutions ... 1647
Getting support .. 1648

Migration options: EB CLI vs. MGN .. 1649
When to use each migration option .. 1650
Migration workflow comparison ... 1651
Conclusion .. 1651

Troubleshooting ... 1653
Using the Systems Manager tool .. 1654
General guidance ... 1655

xxviii

Amazon Elastic Beanstalk Developer Guide

Environment variables for secrets ... 1656
Environment creation ... 1657
Deployments ... 1657
Health ... 1658
Configuration .. 1658
Docker .. 1659
FAQ ... 1660
Troubleshooting deployments .. 1661
Deployment errors .. 1662

Resources .. 1665
Sample applications .. 1665
Amazon SDK for Java ... 1666
Amazon SDK for .NET ... 1667
Amazon Toolkit for Visual Studio .. 1667
Amazon SDK for JavaScript in Node.js ... 1667
Amazon SDK for PHP ... 1667
Amazon SDK for Python (Boto) .. 1668
Amazon SDK for Ruby .. 1668

Document history .. 1669

xxix

Amazon Elastic Beanstalk Developer Guide

What is Amazon Elastic Beanstalk?

With Elastic Beanstalk you can deploy web applications into the Amazon Cloud on a variety of
supported platforms. You build and deploy your applications. Elastic Beanstalk provisions Amazon
EC2 instances, configures load balancing, sets up health monitoring, and dynamically scales your
environment.

In addition to web server environments, Elastic Beanstalk also provides worker environments which
you can use to process messages from an Amazon SQS queue, useful for asynchronous or long-
running tasks. For more information, see Elastic Beanstalk worker environments.

1

Amazon Elastic Beanstalk Developer Guide

Supported platforms

Elastic Beanstalk supports applications developed in Go, Java, .NET, Node.js, PHP, Python,
and Ruby. Elastic Beanstalk also supports Docker containers, where you can choose your own
programming language and application dependencies. When you deploy your application, Elastic

Supported platforms 2

Amazon Elastic Beanstalk Developer Guide

Beanstalk builds the selected supported platform version and provisions one or more Amazon
resources, such as Amazon EC2 instances, in your Amazon account to run your application.

You can interact with Elastic Beanstalk through the Elastic Beanstalk console, the Amazon
Command Line Interface (Amazon CLI), or the EB CLI, a high-level command line tool designed
specifically for Elastic Beanstalk.

You can perform most deployment tasks, such as changing the size of your fleet of Amazon
EC2 instances or monitoring your application, directly from the Elastic Beanstalk web interface
(console).

To learn more about how to deploy a sample web application using Elastic Beanstalk, see Learn
how to get started with Elastic Beanstalk.

Application deploy workflow

To use Elastic Beanstalk, you create an application, then upload your application source bundle
to Elastic Beanstalk. Next, you provide information about the application, and Elastic Beanstalk
automatically launches an environment and creates and configures the Amazon resources needed
to run your code.

After you create and deploy your application and your environment is launched, you can manage
your environment and deploy new application versions. Information about the application—
including metrics, events, and environment status—is made available through the Elastic Beanstalk
console, APIs, and Command Line Interfaces.

The following diagram illustrates Elastic Beanstalk workflow:

Pricing

There is no additional charge for Elastic Beanstalk. You pay only for the underlying Amazon
resources that your application consumes. For details about pricing, see the Elastic Beanstalk
service detail page.

Application deploy workflow 3

http://www.amazonaws.cn/elasticbeanstalk
http://www.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Next steps

We recommend the tutorial, Getting started tutorial, to start using Elastic Beanstalk. The tutorial
steps you through creating, viewing, and updating a sample Elastic Beanstalk application.

Next steps 4

Amazon Elastic Beanstalk Developer Guide

Learn how to get started with Elastic Beanstalk

With Elastic Beanstalk you can deploy, monitor, and scale web applications and services. Typically,
you will develop your code locally then deploy it to Amazon EC2 server instances. Theses instances,
also called environments, run on platforms that can be upgraded through the Amazon console or
the command line.

To get started, we recommend deploying a pre-built sample application directly from the console.
Then, you can learn how to develop locally and deploy from the command line in the the section
called “QuickStart for PHP”.

There is no cost for using Elastic Beanstalk, but standard fees do apply to Amazon resources that
you create during the course of this tutorial until you delete them at the end. The total charges are
typically less than a dollar. For information about how to minimize charges, see Amazon free tier.

After completing this tutorial, you will understand the basics of creating, configuring, deploying,
updating, and monitoring an Elastic Beanstalk application with environments running on Amazon
EC2 instances.

Estimated duration: 35-45 minutes

5

http://www.amazonaws.cn/free

Amazon Elastic Beanstalk Developer Guide

6

Amazon Elastic Beanstalk Developer Guide

What you will build

Your first Elastic Beanstalk application will consist of a single Amazon EC2 environment running
the PHP sample on a PHP managed platform.

Elastic Beanstalk application

An Elastic Beanstalk application is a container for Elastic Beanstalk components, including
environments where your application code runs on platforms provided and managed by Elastic
Beanstalk, or in custom containers that you provide.

Environment

An Elastic Beanstalk environment is a collection of Amazon resources running together including
an Amazon EC2 instance. When you create an environment, Elastic Beanstalk provisions the
necessary resources into your Amazon account.

Platform

A platform is a combination of an operating system, programming language runtime, web
server, application server, and additional Elastic Beanstalk components. Elastic Beanstalk
provides manged platforms, or you can provide your own platform in a container.

Elastic Beanstalk supports platforms for different programming languages, application servers,
and Docker containers. When you create an environment, you must choose the platform. You can
upgrade the platform, but you cannot change the platform for an environment.

Switching platforms

If you need to change programming languages, you must create and switch to a new
environment on a different platform.

Step 1 - Create an application

To create your example application, you'll use the Create application console wizard. It creates an
Elastic Beanstalk application and launches an environment within it.

Reminder: an environment is a collection of Amazon resources required to run your application
code.

What you will build 7

Amazon Elastic Beanstalk Developer Guide

To create an application

1. Open the Elastic Beanstalk console.

2. Choose Create application.

3. For Application name enter getting-started-app.

The console provides a six step process for creating an application and configuring an environment.
For this quick start, you'll only need to focus on the first two steps, then you can skip ahead to
review and create your application and environment.

To configure an environment

1. In Environment information, for Environment name enter: gs-app-web-env.

2. For Platform, choose the PHP platform.

3. For Application code and Presets, accept the defaults (Sample application and Single instance),
then choose Next.

To configure service access

Next, you need two roles. A service role allows Elastic Beanstalk to monitor your EC2 instances and
upgrade you environment’s platform. An EC2 instance profile role permits tasks such as writing logs
and interacting with other services.

To create the Service role

1. For Service role, choose Create role.

2. For Trusted entity type, choose Amazon service.

Step 1 - Create an application 8

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

3. For Use case, choose Elastic Beanstalk – Environment.

4. Choose Next.

5. Verify that Permissions policies include the following, then choose Next:

• AWSElasticBeanstalkEnhancedHealth

• AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

6. Choose Create role.

7. Return to the Configure service access tab, refresh the list, then select the newly created
service role.

To create the EC2 instance profile

1. Choose Create role.

2. For Trusted entity type, choose Amazon service.

3. For Use case, choose Elastic Beanstalk – Compute.

4. Choose Next.

5. Verify that Permissions policies include the following, then choose Next:

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

6. Choose Create role.

7. Return to the Configure service access tab, refresh the list, then select the newly created EC2
instance profile.

To finish configuring and creating your application

1. Skip over EC2 key pair.

We'll show you other ways to connect to your Amazon EC2 instances through the Console.

2. Choose Skip to Review to move over several optional steps.

Optional steps: networking, databases, scaling parameters, advanced configuration for updates,
monitoring, and logging.

3. On the Review page which shows a summary of your choices, choose Submit.

Step 1 - Create an application 9

Amazon Elastic Beanstalk Developer Guide

Congratulations!

You have created an application and configured an environment! Now you need to wait for
the resources to deploy.

Step 2 - Deploy your application

When you create an application, Elastic Beanstalk sets up the environments for you. You just need
to sit back and wait.

The initial deploy can take up to five minutes to create the resources. Updates will take less time
because only changes will be deployed to your stack.

When you create the example application, Elastic Beanstalk creates the following resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
selected.

Every platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy to forward web traffic to your web app, serve static
assets, and generate access and error logs. You can connect to your Amazon EC2 instances to
view configuration and logs.

Step 2 - Deploy your application 10

Amazon Elastic Beanstalk Developer Guide

• Instance security group – An Amazon EC2 security group will be created to allow incoming
requests on port 80, so inbound traffic on a load balancer can reach your web app.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts.

• Amazon CloudWatch alarms – Two CloudWatch alarms are created to monitor the load on your
instances and scale them up or down as needed.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to deploy
the resources in your environment and make configuration changes. You can view the resource
definition template in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form :
subdomain.region.eb.amazonaws.com.cn.

Elastic Beanstalk creates your application, launches an environment, makes an application version,
then deploys your code into the environment. During the process, the console tracks progress and
displays event status in the Events tab.

Step 2 - Deploy your application 11

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

After all of the resources are deployed, the environment's health should change to Ok.

Step 2 - Deploy your application 12

Amazon Elastic Beanstalk Developer Guide

Your application is ready!

After you see your application health change to Ok, you can browse to your web
application's website.

Step 3 - Explore the Elastic Beanstalk environment

You'll start exploring your deployed application environment from the Environment overview
page in the console.

To view the environment and your application

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Go to environment to browse your application!

(You can also choose the URL link listed for Domain to browse your application.)

The connection will be HTTP (not HTTPS), so you might see a warning in your browser.

Step 3 - Explore the environment 13

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Back in the Elastic Beanstalk console, the upper portion shows the Environment overview with
top level information about your environment, including name, domain URL, current health status,
running version, and the platform that the application is running on. The running version and
platform are essential for troubleshooting your currently deployed application.

After the overview pane, you will see recent environment activity in the Events tab.

Step 3 - Explore the environment 14

Amazon Elastic Beanstalk Developer Guide

While Elastic Beanstalk creates your Amazon resources and launches your application, the
environment is in a Pending state. Status messages about launch events are continuously added
to the list of Events .

The environment's Domain is the URL for your deployed web application. In the left navigation
pane, Go to environment also takes you to your domain. Similarly, the left navigation pane has
links that correspond to the various tabs.

Take note of the Configuration link in the left navigation pane. which displays a summary of
environment configuration option values, grouped by category.

Environment configuration settings

Take note of the Configuration link in the left navigation pane. You can view and edit
detailed environment settings, such as service roles, networking, database, scaling,
managed platform updates, memory, health monitoring, rolling deployment, logging, and
more!

The various tabs contain detailed information about your environment:

Step 3 - Explore the environment 15

Amazon Elastic Beanstalk Developer Guide

• Events – View an updating list of information and error messages from the Elastic Beanstalk
service and other services for resources in your environment.

• Health – View status and detailed health information for the Amazon EC2 instances running your
application.

• Logs – Retrieve and download logs from the Amazon EC2 in your environment. You can retrieve
full logs or recent activity. The retrieved logs are available for 15 minutes.

• Monitoring – View statistics for the environment, such as average latency and CPU utilization.

• Alarms – View and edit alarms that are configured for environment metrics.

• Managed updates – View information about upcoming and completed managed platform
updates and instance replacement.

• Tags – View and edit key-value pairs that are applied to your environment.

Note

Links in the console navigation pane will display the corresponding tab.

Troubleshooting with logs

For troubleshooting unexpected behaviors or debugging deployments, you might want to check
the logs in your environments.

You can request 100 lines of all the log files under the Logs tab in the Elastic Beanstalk console.
Alternatively, you can connect directly to the Amazon EC2 instance and tail the logs in realtime.

To request the logs (Elastic Beanstalk console)

1. Navigate to your environment in the Elastic Beanstalk console.

2. Choose the Logs tab or left-nav, then choose Request logs.

3. Select Last 100 lines.

4. After the logs are created, choose the Download link to view the logs in the browser.

In the logs, find the log and note the directory for the nginx access log.

Troubleshooting with logs 16

Amazon Elastic Beanstalk Developer Guide

Add a policy to enable connections to Amazon EC2

Before you can connect, you must add a policy that enables connections to Amazon EC2 with
Session Manager.

1. Navigate to the IAM console.

2. Find and select the aws-elasticbeanstalk-ec2-role role.

3. Choose Add permission, then Attach policies.

4. Search for a default policy that begins with the following text:
AmazonSSMManagedEC2Instance, then add it to the role.

To connect to your Amazon EC2 with Session Manager

1. Navigate to the Amazon EC2 console.

2. Choose Instances, then select your gs-app-web-env instance.

3. Choose Connect, then Session Manager.

4. Choose Connect.

After connecting to the instance, start a bash shell and tail the logs:

1. Run the command bash.

2. Run the command cd /var/log/nginx.

3. Run the command tail -f access.log.

4. In your browser, go to the application domain URL. Refresh.

Congratulations, you're connected!

You should see log entries in your instance update every time you refresh the page.

Connect button not working?

If the connect button is not available, go back to IAM and verify that you added the
necessary policy to the role.

Troubleshooting with logs 17

Amazon Elastic Beanstalk Developer Guide

Step 4 - Update your application

Eventually, you will want to update your application. You can deploy a new version at any time, as
long as no other update operations are in progress on your environment.

The application version that you started this tutorial with is called Sample Application.

To update your application version

1. Download the following PHP sample application:

PHP – php-v2.zip

2. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

3. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

4. On the environment overview page, choose Upload and deploy.

5. Select Choose file, and then upload the sample application source bundle that you
downloaded.

Step 4 - Update your application 18

samples/php-v2.zip
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

The console automatically fills in the Version label with a new unique label, automatically
incrementing a trailing integer. If you choose your own version label, ensure that it's unique.

6. Choose Deploy.

While Elastic Beanstalk deploys your file to your Amazon EC2 instances, you can view the
deployment status on the Environment overview page. While the application version is updated,
the environment Health status is gray. When the deployment is complete, Elastic Beanstalk
performs an application health check. When the application responds to the health check, it's
considered healthy and the status returns to green. The environment overview shows the new
Running Version—the name you provided as the Version label.

Elastic Beanstalk also uploads your new application version and adds it to the table of application
versions. To view the table, choose Application versions under getting-started-app on the
navigation pane.

Update success!

You should see an updated "v2" message after refreshing your browser.
If you want to edit the source yourself, unzip, edit, then re-zip the source bundle. On
macOS, use the following command from inside your php directory with the -X to exclude
extra file attributes:
zip -X -r ../php-v2.zip .

Step 5 - Scale your application

You can configure your environment to better suit your application. For example, if you have
a compute-intensive application, you can change the type of Amazon Elastic Compute Cloud
(Amazon EC2) instance that is running your application. To apply configuration changes, Elastic
Beanstalk performs an environment update.

Some configuration changes are simple and happen quickly. Some changes require deleting and
recreating Amazon resources, which can take several minutes. When you change configuration
settings, Elastic Beanstalk warns you about potential application downtime.

Step 5 - Scale your application 19

Amazon Elastic Beanstalk Developer Guide

Increase capacity settings

In this example of a configuration change, you edit your environment's capacity settings. You
configure a load-balanced, scalable environment that has between two and four Amazon EC2
instances in its Auto Scaling group, and then you verify that the change occurred. Elastic Beanstalk
creates an additional Amazon EC2 instance, adding to the single instance that it created initially.
Then, Elastic Beanstalk associates both instances with the environment's load balancer. As a result,
your application's responsiveness is improved and its availability is increased.

To change your environment's capacity

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Instance traffic and scaling configuration category, choose Edit.

5. Collapse the Instances section, so you can more easily see the Capacity section. Under Auto
Scaling group change Environment type to Load balanced.

6. In the Instances row, change Min to 2 and Max to 4.

Increase capacity settings 20

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

7. To save the changes choose Apply at the bottom of the page.

If you are warned that the update will replace all of your current instances. Choose Confirm.

The environment update can take a few minutes. You should see several updates in the list of
events. Watch for the event Successfully deployed new configuration to environment.

Verify increased capacity

After the environment update is complete and the environment is ready, Elastic Beanstalk
automatically launched a second instance to meet your new minimum capacity setting.

To verify the increased capacity

1. Choose Health from either the tab list or left navigation pane.

2. Review the Enhanced instance health section.

You just scaled up!

With two Amazon EC2 instances, your environment capacity has doubled, and it only took a
few minutes.

Cleaning up your Elastic Beanstalk environment

To ensure that you're not charged for any services you aren't using, delete all application versions
and terminate environments, which also deletes the Amazon resources that the environment
created for you.

Verify increased capacity 21

Amazon Elastic Beanstalk Developer Guide

To delete the application and all associated resources

1. Delete all application versions.

a. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web
Services Region.

b. In the navigation pane, choose Applications, and then choose getting-started-app.

c. In the navigation pane, find your application's name and choose Application versions.

d. On the Application versions page, select all application versions that you want to delete.

e. Choose Actions, and then choose Delete.

f. Turn on Delete versions from Amazon S3.

g. Choose Delete, and then choose Done.

2. Terminate the environment.

Clean up 22

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

a. In the navigation pane, choose getting-started-app, and then choose
GettingStartedApp-env in the environment list.

b. Choose Actions, and then choose Terminate Environment.

c. Confirm that you want to terminate GettingStartedApp-env by typing the environment
name, and then choose Terminate.

3. Delete the getting-started-app application.

a. In the navigation pane, choose the getting-started-app.

b. Choose Actions, and then choose Delete application.

c. Confirm that you want to delete getting-started-app by typing the application name, and
then choose Delete.

Congratulations!

You have successfully deployed a sample application to the Amazon Cloud, uploaded a new
version, modified its configuration to add a second Auto Scaling instance, and cleaned up
your Amazon resources!

Next steps

To learn how to use the eb command line tool to automate deploying your code to Elastic
Beanstalk, We suggest continuing with the the section called “QuickStart for PHP”.

Next, you might want to review how to set up HTTPS connection, see the section called “HTTPS”.

Next steps 23

Amazon Elastic Beanstalk Developer Guide

Setting up the EB command line interface (EB CLI) to
manage Elastic Beanstalk

The EB CLI is a command line interface which provides interactive commands to create, update,
and monitor environments in Amazon Elastic Beanstalk. The EB CLI open-source project is on
Github: aws/aws-elastic-beanstalk-cli

After you install the EB CLI and configure a project directory, you can create environments with a
single command:

$ eb create <my-beanstalk-environment>

We recommend installing with the setup script, learn how in the section called “Install EB CLI”.

The Amazon CLI provides direct access to low-level Elastic Beanstalk APIs. Although powerful, it
is also verbose and less preferred over the EB CLI. For example, creating an environment with the
Amazon CLI requires the following series of commands:

$ aws elasticbeanstalk check-dns-availability \
 --cname-prefix my-cname
$ aws elasticbeanstalk create-application-version \
 --application-name my-application \
 --version-label v1 \
 --source-bundle S3Bucket=amzn-s3-demo-bucket,S3Key=php-proxy-sample.zip
$ aws elasticbeanstalk create-environment \
 --cname-prefix my-cname \
 --application-name my-app \
 --version-label v1 \
 --environment-name my-env \
 --solution-stack-name "64bit Amazon Linux 2023 v4.5.0 running Ruby 3.4"

Install EB CLI with setup script (recommended)

We recommend the installer script

We recommend using the installer script to set up the EB CLI and its dependencies and
prevent potential conflicts with other Python packages.

Install EB CLI 24

https://github.com/aws/aws-elastic-beanstalk-cli

Amazon Elastic Beanstalk Developer Guide

Pre-requisites: Git, Python, and virtualenv

To download and use the installer script

1. Clone the repository.

git clone https://github.com/aws/aws-elastic-beanstalk-cli-setup.git

2. Install or upgrade the EB CLI.

macOS / Linux in Bash or Zsh

python ./aws-elastic-beanstalk-cli-setup/scripts/ebcli_installer.py

Windows in PowerShell or Command window

python .\aws-elastic-beanstalk-cli-setup\scripts\ebcli_installer.py

3. Verify that the EB CLI is installed correctly.

$ eb --version
EB CLI 3.21.0 (Python 3.12)

For complete installation instructions, see the aws/aws-elastic-beanstalk-cli-setup
repository on GitHub.

Manually install the EB CLI

You can install the EB CLI on Linux, macOS, and Windows with the pip package manager
for Python which provides installation, upgrade, and removal of Python packages and their
dependencies.

We recommend the installer script

We recommend using the Install EB CLI to set up the EB CLI and prevent dependency
conflicts.

Manual installation 25

https://virtualenv.pypa.io/en/latest/installation.html
https://github.com/aws/aws-elastic-beanstalk-cli-setup

Amazon Elastic Beanstalk Developer Guide

Prerequisite - You must have a supported version of Python installed. You can download it from
the Python downloads page on the Python website.

To install the EB CLI (manually)

1. Run the following command.

$ pip install awsebcli --upgrade --user

The --upgrade option tells pip to upgrade any requirements that are already installed. The
--user option tells pip to install the program to a subdirectory of your user directory to
avoid modifying libraries that your operating system uses.

Troubleshooting issues

If you encounter issues when you try to install the EB CLI with pip, you can install
the EB CLI in a virtual environment to isolate the tool and its dependencies, or use a
different version of Python than you normally do.

2. Add the path to the executable file to your PATH variable:

• On Linux and macOS:

Linux – ~/.local/bin

macOS – ~/Library/Python/3.12/bin

To modify your PATH variable (Linux, Unix, or macOS):

a. Find your shell's profile script in your user folder. If you are not sure which shell you
have, run echo $SHELL.

$ ls -a ~
. .. .bash_logout .bash_profile .bashrc Desktop Documents Downloads

• Bash – .bash_profile, .profile, or .bash_login.

• Zsh – .zshrc

• Tcsh – .tcshrc, .cshrc or .login.

Manual installation 26

https://www.python.org/downloads/

Amazon Elastic Beanstalk Developer Guide

b. Add an export command to your profile script. The following example adds the path
represented by LOCAL_PATH to the current PATH variable.

export PATH=LOCAL_PATH:$PATH

c. Load the profile script described in the first step into your current session. The
following example loads the profile script represented by PROFILE_SCRIPT.

$ source ~/PROFILE_SCRIPT

• On Windows:

Python 3.12 – %USERPROFILE%\AppData\Roaming\Python\Python312\Scripts

Python earlier versions – %USERPROFILE%\AppData\Roaming\Python\Scripts

To modify your PATH variable (Windows):

a. Press the Windows key, and then enter environment variables.

b. Choose Edit environment variables for your account.

c. Choose PATH, and then choose Edit.

d. Add paths to the Variable value field, separated by semicolons. For example: C:
\item1\path;C:\item2\path

e. Choose OK twice to apply the new settings.

f. Close any running Command Prompt windows, and then reopen a Command Prompt
window.

3. Verify that the EB CLI installed correctly by running eb --version.

$ eb --version
EB CLI 3.21.0 (Python 3.12)

The EB CLI is updated regularly to add functionality that supports the latest Elastic Beanstalk
features. To update to the latest version of the EB CLI, run the installation command again.

$ pip install awsebcli --upgrade --user

If you need to uninstall the EB CLI, use pip uninstall.
Manual installation 27

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/

Amazon Elastic Beanstalk Developer Guide

$ pip uninstall awsebcli

Install the EB CLI in a virtual environment

You can avoid version requirement conflicts with other pip packages by installing the EB CLI in a
virtual environment.

To install the EB CLI in a virtual environment

1. First, install virtualenv with pip.

$ pip install --user virtualenv

2. Create a virtual environment.

$ virtualenv ~/eb-ve

To use a Python executable other than the default, use the -p option.

$ virtualenv -p /usr/bin/python3.12 ~/eb-ve

3. Activate the virtual environment.

Linux, Unix, or macOS

$ source ~/eb-ve/bin/activate

Windows

$ %USERPROFILE%\eb-ve\Scripts\activate

4. Install the EB CLI.

(eb-ve)$ pip install awsebcli --upgrade

5. Verify that the EB CLI is installed correctly.

$ eb --version
EB CLI 3.23.0 (Python 3.12)

Install in virtualenv 28

Amazon Elastic Beanstalk Developer Guide

You can use the deactivate command to exit the virtual environment. Whenever you start a new
session, run the activation command again.

To upgrade to the latest version, run the installation command again.

(eb-ve)$ pip install awsebcli --upgrade

Install the EB CLI with homebrew

The latest version of the EB CLI is typically available from Homebrew a couple of days after it
appears in pip.

We recommend the installer script

We recommend using the Install EB CLI to set up the EB CLI and prevent dependency
conflicts.

To install the EB CLI with Homebrew

1. Ensure you have the latest version of Homebrew.

$ brew update

2. Run brew install awsebcli.

$ brew install awsebcli

3. Verify that the EB CLI is installed correctly.

$ eb --version
EB CLI 3.21.0 (Python 3.12)

Configure the EB CLI

After installing the EB CLI, you are ready to configure your project directory and the EB CLI by
running eb init.The following example shows the configuration steps when running eb init for the
first time in a project folder named eb.

Install the EB CLI with homebrew 29

Amazon Elastic Beanstalk Developer Guide

To initialize an EB CLI project

1. First, the EB CLI prompts you to select a region. Choose your preferred region.

~/eb $ eb init
Select a default region
1) us-east-1 : US East (N. Virginia)
2) us-west-1 : US West (N. California)
3) us-west-2 : US West (Oregon)
4) eu-west-1 : Europe (Ireland)
5) eu-central-1 : Europe (Frankfurt)
6) ap-south-1 : Asia Pacific (Mumbai)
7) ap-southeast-1 : Asia Pacific (Singapore)
...
(default is 3): 3

2. If prompted, provide your access key and secret key so that the EB CLI can manage resources
for you. Access keys are created in the Amazon Identity and Access Management console.
If you don't have keys, see How Do I Get Security Credentials? in the Amazon Web Services
General Reference.

You have not yet set up your credentials or your credentials are incorrect.
You must provide your credentials.
(aws-access-id): AKIAJOUAASEXAMPLE
(aws-secret-key): 5ZRIrtTM4ciIAvd4EXAMPLEDtm+PiPSzpoK

3. An Elastic Beanstalk application is a resource that contains a set of application versions
(source), environments, and saved configurations that are associated with a single web
application. Each time you deploy your source code to Elastic Beanstalk using the EB CLI, a new
application version is created and added to the list.

Select an application to use
1) [Create new Application]
(default is 1): 1

4. The default application name is the name of the folder in which you run eb init. Enter any
name that describes your project.

Enter Application Name
(default is "eb"): eb
Application eb has been created.

Configure the EB CLI 30

https://docs.amazonaws.cn/general/latest/gr/getting-aws-sec-creds.html

Amazon Elastic Beanstalk Developer Guide

5. Select a platform that matches the language or framework that your web application is
developed in. If you haven't started developing an application yet, choose a platform that
you're interested in. You will see how to launch a sample application shortly, and you can
always change this setting later.

Select a platform.
1) .NET Core on Linux
2) .NET on Windows Server
3) Docker
4) Go
5) Java
6) Node.js
7) PHP <== select platform by number
8) Packer
9) Python
10) Ruby
11) Tomcat
(make a selection):7

6. Select a specific platform branch.

Select a platform branch.
1) PHP 8.4 running on 64bit Amazon Linux 2023
2) PHP 8.3 running on 64bit Amazon Linux 2023
3) PHP 8.2 running on 64bit Amazon Linux 2023
4) PHP 8.1 running on 64bit Amazon Linux 2023
5) PHP 8.1 running on 64bit Amazon Linux 2
(default is 1):1

7. Choose yes to assign an SSH key pair to the instances in your Elastic Beanstalk environment.
This allows you to connect directly to them for troubleshooting.

Do you want to set up SSH for your instances?
(y/n): y

8. Choose an existing key pair or create a new one. To use eb init to create a new key pair, you
must have ssh-keygen installed on your local machine and available from the command line.
The EB CLI registers the new key pair with Amazon EC2 for you and stores the private key
locally in a folder named .ssh in your user directory.

Select a keypair.

Configure the EB CLI 31

Amazon Elastic Beanstalk Developer Guide

1) [Create new KeyPair]
(default is 1): 1

Your EB CLI installation is now configured and ready to use.

Advanced Configuration

• Ignoring files using .ebignore

• Using named profiles

• Deploying an artifact instead of the project folder

• Configuration settings and precedence

• Instance metadata

Ignoring files using .ebignore

You can tell the EB CLI to ignore certain files in your project directory by adding the file
.ebignore to the directory. This file works like a .gitignore file. When you deploy your project
directory to Elastic Beanstalk and create a new application version, the EB CLI doesn't include files
specified by .ebignore in the source bundle that it creates.

If .ebignore isn't present, but .gitignore is, the EB CLI ignores files specified in .gitignore.
If .ebignore is present, the EB CLI doesn't read .gitignore.

When .ebignore is present, the EB CLI doesn't use git commands to create your source bundle.
This means that EB CLI ignores files specified in .ebignore, and includes all other files. In
particular, it includes uncommitted source files.

Note

In Windows, adding .ebignore causes the EB CLI to follow symbolic links and include the
linked file when creating a source bundle. This is a known issue and will be fixed in a future
update.

Ignoring files using .ebignore 32

Amazon Elastic Beanstalk Developer Guide

Using named profiles

If you store your credentials as a named profile in a credentials or config file, you can use the
--profile option to explicitly specify a profile. For example, the following command creates a
new application using the user2 profile.

$ eb init --profile user2

You can also change the default profile by setting the AWS_EB_PROFILE environment variable.
When this variable is set, the EB CLI reads credentials from the specified profile instead of default
or eb-cli.

Linux, OS X, or Unix

$ export AWS_EB_PROFILE=user2

Windows

> set AWS_EB_PROFILE=user2

Deploying an artifact instead of the project folder

You can tell the EB CLI to deploy a ZIP file or WAR file that you generate as part of a separate
build process by adding the following lines to .elasticbeanstalk/config.yml in your project
folder.

deploy:
 artifact: path/to/buildartifact.zip

If you configure the EB CLI in your Git repository, and you don't commit the artifact to source, use
the --staged option to deploy the latest build.

~/eb$ eb deploy --staged

Configuration settings and precedence

The EB CLI uses a provider chain to look for Amazon credentials in a number of different places,
including system or user environment variables and local Amazon configuration files.

Using named profiles 33

Amazon Elastic Beanstalk Developer Guide

The EB CLI looks for credentials and configuration settings in the following order:

1. Command line options – Specify a named profile by using --profile to override default
settings.

2. Environment variables – AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

3. The Amazon credentials file – Located at ~/.aws/credentials on Linux and OS X systems,
or at C:\Users\USERNAME\.aws\credentials on Windows systems. This file can contain
multiple named profiles in addition to a default profile.

4. The Amazon CLI configuration file – Located at ~/.aws/config on Linux and OS X systems
or C:\Users\USERNAME\.aws\config on Windows systems. This file can contain a default
profile, named profiles, and Amazon CLI–specific configuration parameters for each.

5. Legacy EB CLI configuration file – Located at ~/.elasticbeanstalk/config on Linux and
OS X systems or C:\Users\USERNAME\.elasticbeanstalk\config on Windows systems.

6. Instance profile credentials – These credentials can be used on Amazon EC2 instances with
an assigned instance role, and are delivered through the Amazon EC2 metadata service. The
instance profile must have permission to use Elastic Beanstalk.

If the credentials file contains a named profile with the name "eb-cli", the EB CLI will prefer that
profile over the default profile. If no profiles are found, or a profile is found but does not have
permission to use Elastic Beanstalk, the EB CLI prompts you to enter keys.

Instance metadata

To use the EB CLI from an Amazon EC2 instance, create a role that has access to the resources
needed and assign that role to the instance when it is launched. Launch the instance and install the
EB CLI by using pip.

~$ sudo pip install awsebcli

pip comes preinstalled on Amazon Linux.

The EB CLI reads credentials from the instance metadata. For more information, see Granting
Applications that Run on Amazon EC2 Instances Access to Amazon Resources in IAM User Guide.

Instance metadata 34

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles
https://docs.amazonaws.cn/IAM/latest/UserGuide/role-usecase-ec2app.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/role-usecase-ec2app.html

Amazon Elastic Beanstalk Developer Guide

Using the EB CLI with Git

The EB CLI provides a Git integration so you can associate code branches with specific
environments in Elastic Beanstalk to organize your deploys.

To install Git and initialize your Git repository

1. Download the most recent version of Git by visiting http://git-scm.com.

2. Initialize your Git repository by typing the following:

~/eb$ git init

EB CLI will now recognize that your application is set up with Git.

3. If you haven't already run eb init, do that now:

~/eb$ eb init

Associating Elastic Beanstalk environments with Git branches

You can associate a different environment with each branch of your code. When you checkout
a branch, changes are deployed to the associated environment. For example, you can type the
following to associate your production environment with your mainline branch, and a separate
development environment with your development branch:

~/eb$ git checkout mainline
~/eb$ eb use prod
~/eb$ git checkout develop
~/eb$ eb use dev

Deploying changes

By default, the EB CLI deploys the latest commit in the current branch, using the commit ID and
message as the application version label and description, respectively. If you want to deploy to your
environment without committing, you can use the --staged option to deploy changes that have
been added to the staging area.

Using the EB CLI with Git 35

http://git-scm.com

Amazon Elastic Beanstalk Developer Guide

To deploy changes without committing

1. Add new and changed files to the staging area:

~/eb$ git add .

2. Deploy the staged changes with eb deploy:

~/eb$ eb deploy --staged

If you have configured the EB CLI to deploy an artifact, and you don't commit the artifact to your
git repository, use the --staged option to deploy the latest build.

Using Git submodules

Some code projects benefit from having Git submodules — repositories within the top-level
repository. When you deploy your code using eb create or eb deploy, the EB CLI can include
submodules in the application version zip file and upload them with the rest of the code.

You can control the inclusion of submodules by using the include_git_submodules option in
the global section of the EB CLI configuration file, .elasticbeanstalk/config.yml in your
project folder.

To include submodules, set this option to true:

global:
 include_git_submodules: true

When the include_git_submodules option is missing or set to false, EB CLI does not include
submodules in the uploaded zip file.

See Git Tools - Submodules for more details about Git submodules.

Default behavior

When you run eb init to configure your project, the EB CLI adds the
include_git_submodules option and sets it to true. This ensures that any submodules
you have in your project are included in your deployments.

Using Git submodules 36

https://git-scm.com/book/en/v2/Git-Tools-Submodules

Amazon Elastic Beanstalk Developer Guide

The EB CLI did not always support including submodules. To avoid an accidental and
undesirable change to projects that had existed before we added submodule support,
the EB CLI does not include submodules when the include_git_submodules option is
missing. If you have one of these existing projects and you want to include submodules in
your deployments, add the option and set it to true as explained in this section.

CodeCommit behavior

Elastic Beanstalk's integration with CodeCommit doesn't support submodules at this time.
If you enabled your environment to integrate with CodeCommit, submodules are not
included in your deployments.

Assigning Git tags to your application version

You can use a Git tag as your version label to identify what application version is running in your
environment. For example, type the following:

~/eb$ git tag -a v1.0 -m "My version 1.0"

Assigning Git tags to your application version 37

Amazon Elastic Beanstalk Developer Guide

EB CLI command reference

You can use the Elastic Beanstalk command line interface (EB CLI) to perform a variety of
operations to deploy and manage your Elastic Beanstalk applications and environments. The EB CLI
integrates with Git if you want to deploy application source code that is under Git source control.
For more information, see Setting up the EB command line interface (EB CLI) to manage Elastic
Beanstalk and Using the EB CLI with Git.

Commands

• Common options

• eb abort

• eb appversion

• eb clone

• eb codesource

• eb config

• eb console

• eb create

• eb deploy

• eb events

• eb health

• eb init

• eb labs

• eb list

• eb local

• eb logs

• eb migrate

• eb open

• eb platform

• eb printenv

• eb restore

38

Amazon Elastic Beanstalk Developer Guide

• eb scale

• eb setenv

• eb ssh

• eb status

• eb swap

• eb tags

• eb terminate

• eb upgrade

• eb use

Common options

You can use the following options with all EB CLI commands.

Name Description

--debug Print information for debugging.

-h, --help Show the Help message.

Type: String

Default: None

--no-verify-ssl Skip SSL certificate verification. Use this option if you have
issues using the CLI with a proxy.

--profile Use a specific profile from your Amazon credentials file.

--quiet Suppress all output from the command.

--region Use the specified region.

-v, --verbose Display verbose information.

Common options 39

Amazon Elastic Beanstalk Developer Guide

eb abort

Description

Cancels an upgrade when environment configuration changes to instances are still in progress.

Note

If you have more than two environments that are undergoing a update, you are prompted
to select the name of the environment for which you want to roll back changes.

Syntax

eb abort

eb abort environment-name

Options

Name Description

Common options

Output

The command shows a list of environments currently being updated and prompts you to choose
the update that you want to abort. If only one environment is currently being updated, you do
not need to specify the environment name. If successful, the command reverts environment
configuration changes. The rollback process continues until all instances in the environment have
the previous environment configuration or until the rollback process fails.

Example

The following example cancels the platform upgrade.

$ eb abort
Aborting update to environment "tmp-dev".

eb abort 40

Amazon Elastic Beanstalk Developer Guide

<list of events>

eb appversion

Description

The EB CLI appversion command manages your Elastic Beanstalk application versions. You can
create a new version of the application without deploying, delete a version of the application, or
create the application version lifecycle policy. If you invoke the command without any options, it
enters the interactive mode.

Use the --create option to create a new version of the application.

Use the --delete option to delete a version of the application.

Use the lifecycle option to display or create the application version lifecycle policy. For more
information, see the section called “Version lifecycle”.

Syntax

eb appversion

eb appversion [-c | --create]

eb appversion [-d | --delete] version-label

eb appversion lifecycle [-p | --print]

Options

Name Description

Type: String

-a application-name

or

--application_name
application-name

The name of the application. If an application with the
specified name isn't found, the EB CLI creates an application
version for a new application.

Only applicable with the --create option.

Type: String

eb appversion 41

Amazon Elastic Beanstalk Developer Guide

Name Description

Type: String

-c

or

--create

Create a new version of the application.

-d version-label

or

--delete version-label

Delete the version of the application that is labeled version-
label .

-l version_label

or

--label version_label

Specify a label to use for the version that the EB CLI creates. If
you don't use this option, the EB CLI generates a new unique
label. If you provide a version label, make sure that it's unique.

Only applicable with the --create option.

Type: String

lifecycle Invoke the default editor to create a new application version
lifecycle policy. Use this policy to avoid reaching the applicati
on version quota.

lifecycle -p

or

lifecycle --print

Display the current application lifecycle policy.

-m "version_descriptio
n "

or

--message "version_d
escription "

The description for the application version. It's enclosed in
double quotation marks.

Only applicable with the --create option.

Type: String

Options 42

https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html#limits_elastic_beanstalk
https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html#limits_elastic_beanstalk

Amazon Elastic Beanstalk Developer Guide

Name Description

Type: String

-p

or

--process

Preprocess and validate the environment manifest and
configuration files in the source bundle. Validating configura
tion files can identify issues. We recommend you do this before
deploying the application version to the environment.

Only applicable with the --create option.

--source codecommi
t/ repository-
name/branch-name

CodeCommit repository and branch.

Only applicable with the --create option.

--staged Use the files staged in the git index, instead of the HEAD
commit, to create the application version.

Only applicable with the --create option.

--timeout minutes The number of minutes before the command times out.

Only applicable with the --create option.

Common options

Using the command interactively

If you use the command without any arguments, the output displays the versions of the
application. They're listed in reverse chronological order, with the lastest version listed first. See the
Examples section for examples of what the screen looks like. Note that the status line is displayed
at the bottom. The status line displays context-sensitive information.

Press d to delete an application version, press l to manage the lifecycle policy for your application,
or press q to quit without making any changes.

Note

If the version is deployed to any environment, you can't delete that version.

Using the command interactively 43

Amazon Elastic Beanstalk Developer Guide

Output

The command with the --create option displays a message confirming that the application
version was created.

The command with the --delete version-label option displays a message confirming that the
application version was deleted.

Examples

The following example shows the interactive window for an application with no deployments.

The following example shows the interactive window for an application with the fourth version,
with version label Sample Application, deployed.

The following example shows the output from an eb appversion lifecycle -p command, where
ACCOUNT-ID is the user's account ID:

Application details for: lifecycle
 Region: sa-east-1
 Description: Application created from the EB CLI using "eb init"
 Date Created: 2016/12/20 02:48 UTC
 Date Updated: 2016/12/20 02:48 UTC

Output 44

Amazon Elastic Beanstalk Developer Guide

 Application Versions: ['Sample Application']
 Resource Lifecycle Config(s):
 VersionLifecycleConfig:
 MaxCountRule:
 DeleteSourceFromS3: False
 Enabled: False
 MaxCount: 200
 MaxAgeRule:
 DeleteSourceFromS3: False
 Enabled: False
 MaxAgeInDays: 180
 ServiceRole: arn:aws-cn:iam::ACCOUNT-ID:role/aws-elasticbeanstalk-service-role

eb clone

Description

Clones an environment to a new environment so that both have identical environment settings.

Note

By default, regardless of the solution stack version of the environment from which you
create the clone, the eb clone command creates the clone environment with the most
recent solution stack. You can suppress this by including the --exact option when you run
the command.

Important

Cloned Elastic Beanstalk environments do not carry over the security groups for ingress,
leaving the environment open to all internet traffic. You’ll need to reestablish ingress
security groups for the cloned environment.
You can see resources that may not be cloned by checking the drift status of your
environment configuration. For more information, see Detect drift on an entire
CloudFormation stack in the Amazon CloudFormation User Guide.

eb clone 45

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/detect-drift-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/detect-drift-stack.html

Amazon Elastic Beanstalk Developer Guide

Syntax

eb clone

eb clone environment-name

Options

Name Description

-n string

or

--clone_name string

Desired name for the cloned environment.

-c string

or

--cname string

Desired CNAME prefix for the cloned environment.

--envvars Environment properties in a comma-separated list with the
format name=value.

Type: String

Constraints:

• Key-value pairs must be separated by commas.

• Keys and values can contain any alphabetic character in
any language, any numeric character, white space, invisible
separator, and the following symbols: _ . : / + \ - @

• Keys can contain up to 128 characters. Values can contain up
to 256 characters.

• Keys and values are case sensitive.

• Values cannot match the environment name.

• Values cannot include either aws: or elasticbe
anstalk: .

Syntax 46

Amazon Elastic Beanstalk Developer Guide

Name Description

• The combined size of all environment properties cannot
exceed 4096 bytes.

--exact Prevents Elastic Beanstalk from updating the solution stack
version for the new clone environment to the most recent
version available (for the original environment's platform).

--scale number The number of instances to run in the clone environment when
it is launched.

--tags name=value Tags for the resources in your environment in a comma-sep
arated list with the format name=value.

--timeout The number of minutes before the command times out.

Common options

Output

If successful, the command creates an environment that has the same settings as the original
environment or with modifications to the environment as specified by any eb clone options.

Example

The following example clones the specified environment.

$ eb clone
Enter name for Environment Clone
(default is tmp-dev-clone):
Enter DNS CNAME prefix
(default is tmp-dev-clone):
Environment details for: tmp-dev-clone
 Application name: tmp
 Region: us-west-2
 Deployed Version: app-141029_144740
 Environment ID: e-vjvrqnn5pv
 Platform: 64bit Amazon Linux 2014.09 v1.0.9 running PHP 5.5
 Tier: WebServer-Standard-1.0

Output 47

Amazon Elastic Beanstalk Developer Guide

 CNAME: tmp-dev-clone.elasticbeanstalk.com
 Updated: 2014-10-29 22:00:23.008000+00:00
Printing Status:
2018-07-11 21:04:20 INFO: createEnvironment is starting.
2018-07-11 21:04:21 INFO: Using elasticbeanstalk-us-west-2-888888888888 as Amazon S3
 storage bucket for environment data.
...
2018-07-11 21:07:10 INFO: Successfully launched environment: tmp-dev-clone

eb codesource

Description

Configures the EB CLI to deploy from a CodeCommit repository, or disables CodeCommit
integration and uploads the source bundle from your local machine.

Note

Some Amazon Regions don't offer CodeCommit. The integration between Elastic Beanstalk
and CodeCommit doesn't work in these Regions.
For information about the Amazon services offered in each Region, see Region Table.

Syntax

eb codesource

eb codesource codecommit

eb codesource local

Options

Name Description

Common options

eb codesource 48

http://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/

Amazon Elastic Beanstalk Developer Guide

Output

eb codesource prompts you to choose between CodeCommit integration and standard
deployments.

eb codesource codecommit initiates interactive repository configuration for CodeCommit
integration.

eb codesource local shows the original configuration and disables CodeCommit integration.

Examples

Use eb codesource codecommit to configure CodeCommit integration for the current branch.

~/my-app$ eb codesource codecommit
Select a repository
1) my-repo
2) my-app
3) [Create new Repository]
(default is 1): 1

Select a branch
1) mainline
2) test
3) [Create new Branch with local HEAD]
(default is 1): 1

Use eb codesource local to disable CodeCommit integration for the current branch.

~/my-app$ eb codesource local
Current CodeCommit setup:
 Repository: my-app
 Branch: mainline
Default set to use local sources

Output 49

Amazon Elastic Beanstalk Developer Guide

eb config

Description

Manages the active configuration settings and saved configurations of your environment. You can
use this command to upload, download, or list the saved configurations of your environment. You
can also use it to download, display, or update its active configuration settings.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also changes the builder configuration settings. This is done based on the values that are set in
platform.yaml.

Note

eb config doesn't show environment properties. To set environment properties that you
can read from within your application, use eb setenv instead.

Syntax

The following are parts of the syntax that's used for the eb config command to work with the
active configuration settings of your environment. For specific examples, see the Examples section
later in this topic.

• eb config – Displays the active configuration settings of your environment in a text editor that
you configured as the EDITOR environment variable. When you save changes to the file and close
the editor, the environment is updated with the option settings that you saved in the file.

Note

If you didn't configure an EDITOR environment variable, EB CLI displays your option
settings in your default editor for YAML files.

• eb config environment-name – Displays and updates the configuration for the named
environment. The configuration is either displayed in a text editor that you configured or your
default editor YAML files.

• eb config save – Saves the active configuration settings for the current environment
to .elasticbeanstalk/saved_configs/ with the filename [configuration-

eb config 50

Amazon Elastic Beanstalk Developer Guide

name].cfg.yml. By default, the EB CLI saves the configuration settings with a
configuration-name based on the environment name. You can specify a different
configuration name by including the --cfg option with your desired configuration name when
you run the command.

You can tag your saved configuration using the --tags option.

• eb config --display – Writes an environment's active configuration settings to stdout instead
of a file. By default this displays the configuration settings to the terminal.

• eb config --update configuration_string | file_path – Updates the active
configuration settings for the current environment with the information that's specified in
configuration_string or inside the file identified by file_path.

Note

The --display and --update options provide flexibility for reading and revising an
environment's configuration settings programmatically.

The following describes the syntax for using the eb config command to work with saved
configurations. For examples, see the Examples section later in this topic.

• eb config get config-name – Downloads the named saved configuration from Amazon S3.

• eb config delete config-name – Deletes the named saved configuration from Amazon S3. Also
deletes it locally, if you already downloaded it.

• eb config list – Lists the saved configurations that you have in Amazon S3.

• eb config put filename – Uploads the named saved configuration to an Amazon S3 bucket.
The filename must have the file extension .cfg.yml. To specify the file name without a path,
you can save the file to the .elasticbeanstalk folder or to the .elasticbeanstalk/
saved_configs/ folder before you run the command. Alternatively, you can specify the
filename by providing the full path.

Syntax 51

Amazon Elastic Beanstalk Developer Guide

Options

Name Description

--cfg config-name The name to use for a saved configuration.

This option works with eb config save only.

-d

or

--display

Displays the configuration settings for the current environment
(writes to stdout).

Use with the --format option to specify the output to be
in JSON or YAML. If you don't specify, the output is in YAML
format.

This option only works if you use the eb config command
without any of the other subcommands.

-f format_type

or

--format format_type

Specifies display format. Valid values are JSON or YAML.

Defaults to YAML.

This option works with the --display option only.

--tags key1=value1[,key2=value2 ...]Tags to add to your saved configuration. When specifying tags
in the list, specify them as key=value pairs and separate each
one with a comma.

For more information, see Tagging saved configurations.

This option works with eb config save only.

--timeout timeout The number of minutes before the command times out.

-u configuration_stri
ng | file_path

or

Updates the active configuration settings for the current
environment.

This option only works if you use the eb config command
without any of the other subcommands.

Options 52

Amazon Elastic Beanstalk Developer Guide

Name Description

--update configura
tion_string |
file_path

The configuration_string | file_path parameter
is of the type string. The string provides the list of namespace
s and corresponding options to add to, update, or remove from
the configuration settings for your environment. Alternatively,
the input string can represent a file that contains the same
information.

To specify a file name, the input string must follow the format
"file://< path><filename>". To specify the file name
without a path, save the file to the folder where you run the
command. Alternatively, specify the filename by providing the
full path.

The configuration information must meet the following
conditions. At least one of the sections, OptionSettings or
OptionsToRemove, is required. Use OptionSettings to add
or change options. Use OptionsToRemove to remove options
from a namespace. For specific examples, see the Examples
section later in this topic.

Example

YAML Format

OptionSettings:
 namespace1:
 option-name-1: option-value-1
 option-name-2: option-value-2
 ...
OptionsToRemove:
 namespace1:
 option-name-1
 option-name-2
 ...

Example

JSON Format

Options 53

Amazon Elastic Beanstalk Developer Guide

Name Description

{
 "OptionSettings": {
 "namespace1": {
 "option-name-1": " option-value-1 ",
 "option-name-2": " option-value-2 ",
 ...
 }
 },
 "OptionsToRemove": {
 "namespace1": {
 "option-name-1",
 "option-name-2",
 ...
 }
 }
}

Common options

Output

If the eb config or eb config environment-name command is run successfully with no
subcommands or options added, the command displays your current option settings in the text
editor that you configured as the EDITOR environment variable. If you didn't configure an EDITOR
environment variable, EB CLI displays your option settings in your default editor for YAML files.

When you save changes to the file and close the editor, the environment is updated with the option
settings that you saved in the file. The following output is displayed to confirm the configuration
update.

$ eb config myApp-dev
 Printing Status:
 2021-05-19 18:09:45 INFO Environment update is starting.
 2021-05-19 18:09:55 INFO Updating environment myApp-dev's configuration
 settings.
 2021-05-19 18:11:20 INFO Successfully deployed new configuration to
 environment.

Output 54

Amazon Elastic Beanstalk Developer Guide

If the command runs successfully with the --display option, it displays the configuration settings
for the current environment (writes to stdout).

If the command runs successfully with the get parameter, the command displays the location of
the local copy that you downloaded.

If the command runs successfully with the save parameter, the command displays the location of
the saved file.

Examples

This section describes how to change the text editor that you use to view and edit your option
settings file.

For Linux and UNIX, the following example changes the editor to vim:

$ export EDITOR=vim

For Linux and UNIX, the following example changes the editor to whatever is installed at /usr/
bin/kate.

$ export EDITOR=/usr/bin/kate

For Windows, the following example changes the editor to Notepad++.

> set EDITOR="C:\Program Files\Notepad++\Notepad++.exe

This section provides examples for the eb config command when it's run with subcommands.

The following example deletes the saved configuration named app-tmp.

$ eb config delete app-tmp

The following example downloads the saved configuration with the name app-tmp from your
Amazon S3 bucket.

$ eb config get app-tmp

The following example lists the names of saved configurations that are stored in your Amazon S3
bucket.

Examples 55

Amazon Elastic Beanstalk Developer Guide

$ eb config list

The following example uploads the local copy of the saved configuration named app-tmp to your
Amazon S3 bucket.

$ eb config put app-tmp

The following example saves configuration settings from the current running environment.
If you don't provide a name to use for the saved configuration, then Elastic Beanstalk names
the configuration file according to the environment name. For example, an environment
named tmp-dev would be called tmp-dev.cfg.yml. Elastic Beanstalk saves the file to the
/.elasticbeanstalk/saved_configs/ folder.

$ eb config save

In the following example, the --cfg option is used to save the configuration settings from the
environment tmp-dev to a file called v1-app-tmp.cfg.yml. Elastic Beanstalk saves the file to
the folder /.elasticbeanstalk/saved_configs/. If you don't specify an environment name,
Elastic Beanstalk saves configuration settings from the current running environment.

$ eb config save tmp-dev --cfg v1-app-tmp

This section provides examples for the eb config command when it's run without subcommands.

The following command displays the option settings of your current environment in a text editor.

$ eb config

The following command displays the option settings for the my-env environment in a text editor.

$ eb config my-env

The following example displays the options settings for your current environment. It outputs in the
YAML format because no specific format was specified with the --format option.

$ eb config --display

Examples 56

Amazon Elastic Beanstalk Developer Guide

The following example updates the options settings for your current environment with the
specifications in the file named example.txt. The file is in either the YAML or JSON format. The
EB CLI automatically detects the file format.

• The Minsize option is set to 1 for the namespace aws:autoscaling:asg.

• The batch size for the namespace aws:elasticbeanstalk:command is set to 30%.

• It removes the option setting of IdleTimeout: None from the namespace
AWSEBV2LoadBalancer.aws:elbv2:loadbalancer.

$ eb config --update "file://example.txt"

Example - filename: example.txt - YAML format

OptionSettings:
 'aws:elasticbeanstalk:command':
 BatchSize: '30'
 BatchSizeType: Percentage
 'aws:autoscaling:asg':
 MinSize: '1'
OptionsToRemove:
 'AWSEBV2LoadBalancer.aws:elbv2:loadbalancer':
 IdleTimeout

Example - filename: example.txt - JSON format

{
 "OptionSettings": {
 "aws:elasticbeanstalk:command": {
 "BatchSize": "30",
 "BatchSizeType": "Percentage"
 },
 "aws:autoscaling:asg": {
 "MinSize": "1"
 }
 },
 "OptionsToRemove": {
 "AWSEBV2LoadBalancer.aws:elbv2:loadbalancer": {
 "IdleTimeout"
 }
 }

Examples 57

Amazon Elastic Beanstalk Developer Guide

}

The following examples update the options settings for your current environment. The command
sets the Minsize option to 1 for theaws:autoscaling:asg namespace.

Note

These examples are specific to Windows PowerShell. They escape literal occurrences of the
double-quote (") character by preceding it with a slash (\) character. Different operating
systems and command-line environments might have different escape sequences. For
this reason, we recommend using the file option that's shown in the previous examples.
Specifying the configuration options in a file doesn't require escaping characters and is
consistent across different operating systems.

The following example is in JSON format. The EB CLI detects if the format is in JSON or YAML.

PS C:\Users\myUser\EB_apps\myApp-env>eb config --update '{\"OptionSettings\":
{\"aws:autoscaling:asg\":{\"MaxSize\":\"1\"}}}'

The following example is in YAML format. To enter the YAML string in the correct format, the
command includes spacing and end-of-line returns that are required in a YAML file.

• End each line with the "enter" or "return" key.

• Start the second line with two spaces, and start the third line with four spaces.

PS C:\Users\myUser\EB_apps\myApp-env>eb config --update 'OptionSettings:
>> aws:autoscaling:asg:
>> MinSize: \"1\"'

eb console

Description

Opens a browser to display the environment configuration dashboard in the Elastic Beanstalk
Management Console.

eb console 58

Amazon Elastic Beanstalk Developer Guide

If the root directory contains a platform.yaml file specifying a custom platform, this command
also displays the builder environment configuration, as specified in platform.yaml, in the Elastic
Beanstalk Management Console.

Syntax

eb console

eb console environment-name

Options

Name Description

Common options

eb create

Description

Creates a new environment and deploys an application version to it.

Note

• To use eb create on a .NET application, you must create a deployment package as
described in Creating a source bundle for a .NET application, then set up the CLI
configuration to deploy the package as an artifact as described in Deploying an artifact
instead of the project folder.

• Creating environments with the EB CLI requires a service role. You can create a service
role by creating an environment in the Elastic Beanstalk console. If you don't have a
service role, the EB CLI attempts to create one when you run eb create.

You can deploy the application version from a few sources:

• By default: From the application source code in the local project directory.

• Using the --version option: From an application version that already exists in your application.

Syntax 59

Amazon Elastic Beanstalk Developer Guide

• When your project directory doesn't have application code, or when using the --sample option:
Deployed from a sample application, specific to your environment's platform.

Syntax

eb create

eb create environment-name

An environment name must be between 4 and 40 characters in length. It can only contain letters,
numbers, and hyphens (-). An environment name can't begin or end with a hyphen.

If you include an environment name in the command, the EB CLI doesn't prompt you to make any
selections or create a service role.

If you run the command without an environment name argument, it runs in an interactive flow,
and prompts you to enter or select values for some settings. In this interactive flow, in case you
are deploying a sample application, the EB CLI also asks you if you want to download this sample
application to your local project directory. By downloading it, you can use the EB CLI with the new
environment later to run operations that require the application's code, such as eb deploy.

Some interactive flow prompts are displayed only under certain conditions. For example, if
you choose to use an Application Load Balancer, and your account has at least one sharable
Application Load Balancer, Elastic Beanstalk displays a prompt that asks if you want to use a shared
load balancer. If no sharable Application Load Balancer exists in your account, this prompt isn't
displayed.

Options

None of these options are required. If you run eb create without any options, the EB CLI prompts
you to enter or select a value for each setting.

Name Description

-d

or

--branch_default

Set the environment as the default environment for the
current repository.

Syntax 60

Amazon Elastic Beanstalk Developer Guide

Name Description

--cfg config-name Use platform settings from a saved configuration in
.elasticbeanstalk/saved_configs/ or your
Amazon S3 bucket. Specify the name of the file only,
without the .cfg.yml extension.

-c subdomain-name

or

--cname subdomain-name

The subdomain name to prefix the CNAME DNS entry
that routes to your website.

Type: String

Default: The environment name

-db

or

--database

Attaches a database to the environment. If you run
eb create with the --database option, but without
the --database.username and --databas
e.password options, EB CLI prompts you for the
database master user name and password.

-db.engine engine

or

--database.engine engine

The database engine type. If you run eb create with this
option, then EB CLI launches the environment with a
database attached. This is the case even if you didn't run
the command with the --database option.

Type: String

Valid values: mysql, oracle-se1 , postgres,
sqlserver-ex , sqlserver-web , sqlserver-se

Options 61

Amazon Elastic Beanstalk Developer Guide

Name Description

-db.i instance_type

or

--database.instance
instance_type

The type of Amazon EC2 instance to use for the
database. If you run eb create with this option, then EB
CLI launches the environment with a database attached.
This is the case even if you didn't run the command with
the --database option.

Type: String

Valid values:

Amazon RDS supports a standard set of DB instances.
To select an appropriate DB instance for your DB engine,
you must take into account some specific considerations.
For more information, see DB instance classes in the
Amazon RDS User Guide.

-db.pass password

or

--database.password
password

The password for the database. If you run eb create with
this option, then EB CLI launches the environment with
a database attached. This is the case even if you didn't
run the command with the --database option.

Options 62

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

Amazon Elastic Beanstalk Developer Guide

Name Description

-db.size number_of_gigabyte
s

or

--database.size number_of
_gigabytes

The number of gigabytes (GB) to allocate for database
storage. If you run eb create with this option, then EB
CLI launches the environment with a database attached.
This is the case even if you didn't run the command with
the --database option.

Type: Number

Valid values:

• MySQL – 5 to 1024. The default is 5.

• Postgres – 5 to 1024. The default is 5.

• Oracle – 10 to 1024. The default is 10.

• Microsoft SQL Server Express Edition – 30.

• Microsoft SQL Server Web Edition – 30.

• Microsoft SQL Server Standard Edition – 200.

-db.user username

or

--database.username
username

The user name for the database. If you run eb create
with this option, then EB CLI launches the environme
nt with a database attached even if you didn't run the
command with the --database option. If you run
eb create with the --database option, but without
the --database.username and --databas
e.password options, then EB CLI prompts you for
the master database user name and password.

-db.version version

or

--database.version version

Used to specify the database engine version. If this
flag is present, the environment will launch with a
database with the specified version number, even if the
--database flag isn't present.

Options 63

Amazon Elastic Beanstalk Developer Guide

Name Description

--elb-type type The load balancer type.

Type: String

Valid values: classic, application , network

Default: application

-es

or

--enable-spot

Enable Spot Instance requests for your environment. For
more information, see Auto Scaling group.

Related options:

• --instance-types

• --on-demand-base-capacity

• --on-demand-above-base-capacity

• --spot-max-price

--env-group-suffix
groupname

The group name to append to the environment name.
Only for use with Compose Environments.

--envvars Environment properties in a comma-separated list with
the format name=value. See Configuring environment
properties (environment variables) for limits.

-ip profile_name

or

--instance_profile
profile_name

The instance profile with the IAM role with the
temporary security credentials that your application
needs to access Amazon resources.

Options 64

Amazon Elastic Beanstalk Developer Guide

Name Description

-it

or

--instance-
types type1[,type2 ...]

A comma-separated list of Amazon EC2 instance types
that you want your environment to use. If you don't
specify this option, Elastic Beanstalk provides default
instance types.

For more information, see Amazon EC2 instances and
Auto Scaling group.

Important

The EB CLI only applies this option to Spot
Instances. Unless this option is used with the --
enable-spot option, the EB CLI ignores it.
To specify an instance type for an On-Demand
Instance, use the --intance-type (no "s")
option instead.

-i

or

--instance_type

The Amazon EC2 instance type that you want your
environment to use. If you don't specify this option,
Elastic Beanstalk provides a default instance type.

For more information, see Amazon EC2 instances.

Important

The EB CLI only applies this option to On-
Demand Instances. Don't use this option with
the --enable-spot option, because the
EB CLI ignores it when you do so. To specify
instance types for a Spot Instance, use the --
intance-types (with an "s") option instead.

Options 65

Amazon Elastic Beanstalk Developer Guide

Name Description

-k key_name

or

--keyname key_name

The name of the Amazon EC2 key pair to use with
the Secure Shell (SSH) client to securely log in to the
Amazon EC2 instances that are running your Elastic
Beanstalk application. If you include this option with the
eb create command, the value you provide overwrites
any key name that you might have specified with eb init.

Valid values: An existing key name that's registered with
Amazon EC2

-im number-of-instances

or

--min-instances number-of-
instances

The minimum number of Amazon EC2 instances that
you require your environment to have.

Type: Number (integer)

Default: 1

Valid values: 1 to 10000

-ix number-of-instances

or

--max-instances number-of-
instances

The maximum number of Amazon EC2 instances you
allow your environment to have.

Type: Number (integer)

Default: 4

Valid values: 1 to 10000

--modules component-a
component-b

A list of component environments to create. This is only
for use with Compose Environments.

Options 66

Amazon Elastic Beanstalk Developer Guide

Name Description

-sb

or

--on-demand-base-capacity

The minimum number of On-Demand Instances that
your Auto Scaling group provisions before considering
Spot Instances as your environment scales up.

This option can only be specified with the --enable-
spot option. For more information, see Auto Scaling
group.

Type: Number (integer)

Default: 0

Valid values: 0 to --max-instances (when absent:
MaxSize option in aws:autoscaling:asg
namespace)

-sp

or

--on-demand-above-base-
capacity

The percentage of On-Demand Instances as part of
additional capacity that your Auto Scaling group
provisions that's more than the number of instances
that's specified by the --on-demand-base-c
apacity option.

This option can only be specified with the --enable-
spot option. For more details, see Auto Scaling group.

Type: Number (integer)

Default: 0 for a single-instance environment; 70 for a
load-balanced environment

Valid values: 0 to 100

Options 67

Amazon Elastic Beanstalk Developer Guide

Name Description

-p platform-version

or

--platform platform-
version

The platform version to use. You can specify a platform,
a platform and version, a platform branch, a solution
stack name, or a solution stack ARN. For example:

• php, PHP, node.js – The latest platform version for
the specified platform

• php-7.2, "PHP 7.2" – The recommended (typically
latest) PHP 7.2 platform version

• "PHP 7.2 running on 64bit Amazon Linux"
– The recommended (typically latest) PHP platform
version in this platform branch

• "64bit Amazon Linux 2017.09 v2.6.3
running PHP 7.1" – The PHP platform version
specified by this solution stack name

• "arn:aws:elasticbeanstalk:us-west-2:
:platform/PHP 7.1 running on 64bit
Amazon Linux/2.6.3" – The PHP platform version
specified by this solution stack ARN

Use eb platform list to get a list of available
configurations.

If you specify the --platform option, it overrides the
value that was provided during eb init.

-pr

or

--process

Preprocess and validate the environment manifest and
configuration files in the source bundle. Validating
configuration files can identify issues prior to deploying
the application version to an environment.

Options 68

Amazon Elastic Beanstalk Developer Guide

Name Description

-r region

or

--region region

The Amazon Region where you want to deploy the
application.

For the list of values you can specify for this option, see
Amazon Elastic Beanstalk Endpoints and Quotas in the
Amazon Web Services General Reference.

--sample Deploy the sample application to the new environment
instead of the code in your repository.

--scale number-of-instance
s

Launch with the specified number of instances

--service-role servicerole Assign a non-default service role to the environment.

Note

Don't enter an ARN. Only enter the role name.
Elastic Beanstalk prefixes the role name with
the correct values to create the resulting ARN
internally.

Options 69

https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html

Amazon Elastic Beanstalk Developer Guide

Name Description

-ls load-balancer

or

--shared-lb load-balancer

Configure the environment to use a shared load
balancer. Provide the name or ARN of a sharable load
balancer in your account—an Application Load Balancer
that you explicitly created, not one created by another
Elastic Beanstalk environment. For more information,
see Shared Application Load Balancer.

Parameter examples:

• FrontEndLB – A load balancer name.

• arn:aws-cn:elasticloadbalancing:us-
west-2:123456789012:loadbalancer/
app/FrontEndLB/0dbf78d8ad96abbc – An
Application Load Balancer ARN.

You can specify this option only with --elb-type
application . If you specify that option and don't
specify --shared-lb , Elastic Beanstalk creates a
dedicated load balancer for the environment.

-lp port

or

--shared-lb-port port

The default listener port of the shared load balancer for
this environment. Elastic Beanstalk adds a listener rule
that routes all traffic from this listener to the default
environment process. For more information, see Shared
Application Load Balancer.

Type: Number (integer)

Default: 80

Valid values: Any integer that represents a listener port
of the shared load balancer.

Options 70

Amazon Elastic Beanstalk Developer Guide

Name Description

--single Create the environment with a single Amazon EC2
instance and without a load balancer.

Warning

A single-instance environment isn't production
ready. If the instance becomes unstable during
deployment, or Elastic Beanstalk terminates
and restarts the instance during a configuration
update, your application can be unavailable for a
period of time. Use single-instance environments
for development, testing, or staging. Use load-
balanced environments for production.

-sm

or

--spot-max-price

The maximum price per unit hour, in US dollars, that
you're willing to pay for a Spot Instance.

This option can only be specified with the --enable-
spot option. For more details, see Auto Scaling group.

Type: Number (float)

Default: The On-Demand price, for each instance type.
The option's value in this case is null.

Valid values: 0.001 to 20.0

For recommendations about maximum price options for
Spot Instances, see Spot Instance pricing history in the
Amazon EC2 User Guide.

--tags key1=value1[,key2=value2 ...]Tag the resources in your environment. Tags are
specified as a comma-separated list of key=value
pairs.

For more information, see Tagging environments.

Options 71

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-spot-instances-history.html

Amazon Elastic Beanstalk Developer Guide

Name Description

-t worker

or

--tier worker

Create a worker environment. Omit this option to create
a web server environment.

--timeout minutes Set number of minutes before the command times out.

--version version_label Specifies the application version that you want deployed
to the environment instead of the application source
code in the local project directory.

Type: String

Valid values: An existing application version label

--vpc Configure a VPC for your environment. When you
include this option, the EB CLI prompts you to enter all
required settings prior to launching the environment.

--vpc.dbsubnets subnet1,s
ubnet2

Specifies subnets for database instances in a VPC.
Required when --vpc.id is specified.

--vpc.ec2subnets subnet1,s
ubnet2

Specifies subnets for Amazon EC2 instances in a VPC.
Required when --vpc.id is specified.

--vpc.elbpublic Launches your Elastic Load Balancing load balancer in a
public subnet in your VPC.

You can't specify this option with the --tier worker
or --single options.

--vpc.elbsubnets subnet1,s
ubnet2

Specifies subnets for the Elastic Load Balancing load
balancer in a VPC.

You can't specify this option with the --tier worker
or --single options.

Options 72

Amazon Elastic Beanstalk Developer Guide

Name Description

--vpc.id ID Launches your environment in the specified VPC.

--vpc.publicip Launches your Amazon EC2 instances in a public subnet
in your VPC.

You can't specify this option with the --tier worker
option.

--vpc.securitygrou
ps securitygroup1,sec
uritygroup2

Specifies security group IDs. Required when --vpc.id is
specified.

Common options

Output

If successful, the command prompts you with questions and then returns the status of the create
operation. If there were problems during the launch, you can use the eb events operation to get
more details.

If you enabled CodeBuild support in your application, eb create displays information from
CodeBuild as your code is built. For information about CodeBuild support in Elastic Beanstalk, see
Using the EB CLI with Amazon CodeBuild.

Examples

The following example creates an environment in interactive mode.

$ eb create
Enter Environment Name
(default is tmp-dev): ENTER
Enter DNS CNAME prefix
(default is tmp-dev): ENTER
Select a load balancer type
1) classic
2) application
3) network

Output 73

Amazon Elastic Beanstalk Developer Guide

(default is 2): ENTER
Environment details for: tmp-dev
 Application name: tmp
 Region: us-west-2
 Deployed Version: app-141029_145448
 Environment ID: e-um3yfrzq22
 Platform: 64bit Amazon Linux 2014.09 v1.0.9 running PHP 5.5
 Tier: WebServer-Standard-1.0
 CNAME: tmp-dev.elasticbeanstalk.com
 Updated: 2014-10-29 21:54:51.063000+00:00
Printing Status:
...

The following example also creates an environment in interactive mode. In this example, your
project directory doesn't have application code. The command deploys a sample application and
downloads it to your local project directory.

$ eb create
Enter Environment Name
(default is tmp-dev): ENTER
Enter DNS CNAME prefix
(default is tmp-dev): ENTER
Select a load balancer type
1) classic
2) application
3) network
(default is 2): ENTER
NOTE: The current directory does not contain any source code. Elastic Beanstalk is
 launching the sample application instead.
Do you want to download the sample application into the current directory?
(Y/n): ENTER
INFO: Downloading sample application to the current directory.
INFO: Download complete.
Environment details for: tmp-dev
 Application name: tmp
 Region: us-west-2
 Deployed Version: Sample Application
 Environment ID: e-um3yfrzq22
 Platform: 64bit Amazon Linux 2014.09 v1.0.9 running PHP 5.5
 Tier: WebServer-Standard-1.0
 CNAME: tmp-dev.elasticbeanstalk.com
 Updated: 2017-11-08 21:54:51.063000+00:00
Printing Status:

Examples 74

Amazon Elastic Beanstalk Developer Guide

...

The following command creates an environment without displaying any prompts.

$ eb create dev-env
Creating application version archive "app-160312_014028".
Uploading test/app-160312_014028.zip to S3. This may take a while.
Upload Complete.
Application test has been created.
Environment details for: dev-env
 Application name: test
 Region: us-west-2
 Deployed Version: app-160312_014028
 Environment ID: e-6fgpkjxyyi
 Platform: 64bit Amazon Linux 2015.09 v2.0.8 running PHP 5.6
 Tier: WebServer-Standard
 CNAME: UNKNOWN
 Updated: 2016-03-12 01:40:33.614000+00:00
Printing Status:
...

The following command creates an environment in a custom VPC.

$ eb create dev-vpc --vpc.id vpc-0ce8dd99 --vpc.elbsubnets subnet-
b356d7c6,subnet-02f74b0c --vpc.ec2subnets subnet-0bb7f0cd,subnet-3b6697c1 --
vpc.securitygroup sg-70cff265
Creating application version archive "app-160312_014309".
Uploading test/app-160312_014309.zip to S3. This may take a while.
Upload Complete.
Environment details for: dev-vpc
 Application name: test
 Region: us-west-2
 Deployed Version: app-160312_014309
 Environment ID: e-pqkcip3mns
 Platform: 64bit Amazon Linux 2015.09 v2.0.8 running Java 8
 Tier: WebServer-Standard
 CNAME: UNKNOWN
 Updated: 2016-03-12 01:43:14.057000+00:00
Printing Status:
...

Examples 75

Amazon Elastic Beanstalk Developer Guide

eb deploy

Description

Deploys the application source bundle from the initialized project directory to the running
application.

If git is installed, EB CLI uses the git archive command to create a .zip file from the contents
of the most recent git commit command.

However, when .ebignore is present in your project directory, the EB CLI doesn't use git
commands and semantics to create your source bundle. This means that EB CLI ignores files
specified in .ebignore, and includes all other files. In particular, it includes uncommitted source
files.

Note

You can configure the EB CLI to deploy an artifact from your build process instead of
creating a ZIP file of your project folder. See Deploying an artifact instead of the project
folder for details.

Syntax

eb deploy

eb deploy environment-name

Options

Name Description

-l version_label

or

--label version_label

Specify a label to use for the version that the EB CLI creates.
If the label has already been used, the EB CLI redeploys the
previous version with that label.

Type: String

eb deploy 76

Amazon Elastic Beanstalk Developer Guide

Name Description

--env-group-suffix
groupname

Group name to append to the environment name. Only for use
with Compose Environments.

-m "version_descriptio
n "

or

--message "version_d
escription "

The description for the application version, enclosed in double
quotation marks.

Type: String

--modules component-a
component-b

List of components to update. Only for use with Compose
Environments.

-p

or

--process

Preprocess and validate the environment manifest and
configuration files in the source bundle. Validating configura
tion files can identify issues prior to deploying the application
version to an environment.

--source codecommi
t/ repository-
name/branch-name

CodeCommit repository and branch.

--staged Deploy files staged in the git index instead of the HEAD
commit.

--timeout minutes The number of minutes before the command times out.

--version version_l
abel

An existing application version to deploy.

Type: String

Common options

Output

If successful, the command returns the status of the deploy operation.

Output 77

Amazon Elastic Beanstalk Developer Guide

If you enabled CodeBuild support in your application, eb deploy displays information from
CodeBuild as your code is built. For information about CodeBuild support in Elastic Beanstalk, see
Using the EB CLI with Amazon CodeBuild.

Example

The following example deploys the current application.

$ eb deploy
2018-07-11 21:05:22 INFO: Environment update is starting.
2018-07-11 21:05:27 INFO: Deploying new version to instance(s).
2018-07-11 21:05:53 INFO: New application version was deployed to running EC2
 instances.
2018-07-11 21:05:53 INFO: Environment update completed successfully.

eb events

Description

Returns the most recent events for the environment.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also returns the most recent events for the builder environment.

Syntax

eb events

eb events environment-name

Options

Name Description

-f

or

--follow

Streams events. To cancel, press CTRL+C.

Example 78

Amazon Elastic Beanstalk Developer Guide

Output

If successful, the command returns recent events.

Example

The following example returns the most recent events.

$ eb events
2014-10-29 21:55:39 INFO createEnvironment is starting.
2014-10-29 21:55:40 INFO Using elasticbeanstalk-us-west-2-111122223333 as Amazon
 S3 storage bucket for environment data.
2014-10-29 21:55:57 INFO Created load balancer named: awseb-e-r-AWSEBLoa-
NSKUOK5X6Z9J
2014-10-29 21:56:16 INFO Created security group named: awseb-e-rxgrhjr9bx-stack-
AWSEBSecurityGroup-1UUHU5LZ20ZY7
2014-10-29 21:57:18 INFO Waiting for EC2 instances to launch. This may take a
 few minutes.
2014-10-29 21:57:18 INFO Created Auto Scaling group named: awseb-e-rxgrhjr9bx-
stack-AWSEBAutoScalingGroup-1TE320ZCJ9RPD
2014-10-29 21:57:22 INFO Created Auto Scaling group policy named:
 arn:aws-cn:autoscaling:us-west-2:11122223333:scalingPolicy:2cced9e6-859b-421a-
be63-8ab34771155a:autoScalingGroupName/awseb-e-rxgrhjr9bx-stack-
AWSEBAutoScalingGroup-1TE320ZCJ9RPD:policyName/awseb-e-rxgrhjr9bx-stack-
AWSEBAutoScalingScaleUpPolicy-1I2ZSNVU4APRY
2014-10-29 21:57:22 INFO Created Auto Scaling group policy named:
 arn:aws-cn:autoscaling:us-west-2:11122223333:scalingPolicy:1f08b863-
bf65-415a-b584-b7fa3a69a0d5:autoScalingGroupName/awseb-e-rxgrhjr9bx-stack-
AWSEBAutoScalingGroup-1TE320ZCJ9RPD:policyName/awseb-e-rxgrhjr9bx-stack-
AWSEBAutoScalingScaleDownPolicy-1E3G7PZKZPSOG
2014-10-29 21:57:25 INFO Created CloudWatch alarm named: awseb-e-rxgrhjr9bx-
stack-AWSEBCloudwatchAlarmLow-VF5EJ549FZBL
2014-10-29 21:57:25 INFO Created CloudWatch alarm named: awseb-e-rxgrhjr9bx-
stack-AWSEBCloudwatchAlarmHigh-LA9YEW3O6WJO
2014-10-29 21:58:50 INFO Added EC2 instance 'i-c7ee492d' to Auto ScalingGroup
 'awseb-e-rxgrhjr9bx-stack-AWSEBAutoScalingGroup-1TE320ZCJ9RPD'.
2014-10-29 21:58:53 INFO Successfully launched environment: tmp-dev
2014-10-29 21:59:14 INFO Environment health has been set to GREEN
2014-10-29 21:59:43 INFO Adding instance 'i-c7ee492d' to your environment.

Output 79

Amazon Elastic Beanstalk Developer Guide

eb health

Description

Returns the most recent health for the environment.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also returns the most recent health for the builder environment.

Syntax

eb health

eb health environment-name

Options

Name Description

-r

or

--refresh

Show health information interactively and update every 10
seconds as new information is reported.

--mono Don't display color in output.

Output

If successful, the command returns recent health.

Example

The following example returns the most recent health information for a Linux environment.

~/project $ eb health
 elasticBeanstalkExa-env Ok
 2015-07-08 23:13:20
WebServer
 Ruby 2.1 (Puma)

eb health 80

Amazon Elastic Beanstalk Developer Guide

 total ok warning degraded severe info pending unknown
 5 5 0 0 0 0 0 0

 instance-id status cause
 health
 Overall Ok
 i-d581497d Ok
 i-d481497c Ok
 i-136e00c0 Ok
 i-126e00c1 Ok
 i-8b2cf575 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75 p50
 p10 requests
 Overall 671.8 100.0 0.0 0.0 0.0 0.003 0.002 0.001 0.001
 0.000
 i-d581497d 143.0 1430 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-d481497c 128.8 1288 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-136e00c0 125.4 1254 0 0 0 0.004 0.002 0.001 0.001
 0.000
 i-126e00c1 133.4 1334 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-8b2cf575 141.2 1412 0 0 0 0.003 0.002 0.001 0.001
 0.000

 instance-id type az running load 1 load 5 user% nice% system%
 idle% iowait% cpu
 i-d581497d t2.micro 1a 12 mins 0.0 0.04 6.2 0.0 1.0
 92.5 0.1
 i-d481497c t2.micro 1a 12 mins 0.01 0.09 5.9 0.0 1.6
 92.4 0.1
 i-136e00c0 t2.micro 1b 12 mins 0.15 0.07 5.5 0.0 0.9
 93.2 0.0
 i-126e00c1 t2.micro 1b 12 mins 0.17 0.14 5.7 0.0 1.4
 92.7 0.1
 i-8b2cf575 t2.micro 1c 1 hour 0.19 0.08 6.5 0.0 1.2
 92.1 0.1

 instance-id status id version ago
 deployments
 i-d581497d Deployed 1 Sample Application 12 mins
 i-d481497c Deployed 1 Sample Application 12 mins

Example 81

Amazon Elastic Beanstalk Developer Guide

 i-136e00c0 Deployed 1 Sample Application 12 mins
 i-126e00c1 Deployed 1 Sample Application 12 mins
 i-8b2cf575 Deployed 1 Sample Application 1 hour

eb init

Description

Sets default values for Elastic Beanstalk applications created with EB CLI by prompting you with a
series of questions.

Note

The values you set with eb init apply to the current directory and repository on the current
computer.
The command creates an Elastic Beanstalk application in your account. To create an Elastic
Beanstalk environment, run eb create after running eb init.

Syntax

eb init

eb init application-name

Options

If you run eb init without specifying the --platform option, the EB CLI prompts you to enter a
value for each setting.

Note

To use eb init to create a new key pair, you must have ssh-keygen installed on your local
machine and available from the command line.

eb init 82

Amazon Elastic Beanstalk Developer Guide

Name Description

-i

--interactive

Forces EB CLI to prompt you to provide a value for
every eb init command option.

Note

The init command prompts you to provide
values for eb init command options that do
not have a (default) value. After the first time
you run the eb init command in a directory
, EB CLI might not prompt you about any
command options. Therefore, use the --
interactive option when you want to
change a setting that you previously set.

-k keyname

--keyname keyname

The name of the Amazon EC2 key pair to use with
the Secure Shell (SSH) client to securely log in to the
Amazon EC2 instances running your Elastic Beanstalk
 application.

--modules folder-1
folder-2

List of child directories to initialize. Only for use with
Compose Environments.

-p platform-
version

--platform
platform-version

The platform version to use. You can specify a
platform, a platform and version, a platform branch,
a solution stack name, or a solution stack ARN. For
example:

• php, PHP, node.js – The latest platform version
for the specified platform

• php-7.2, "PHP 7.2" – The recommended
(typically latest) PHP 7.2 platform version

• "PHP 7.2 running on 64bit Amazon Linux"
– The recommended (typically latest) PHP platform
version in this platform branch

Options 83

Amazon Elastic Beanstalk Developer Guide

Name Description

• "64bit Amazon Linux 2017.09 v2.6.3
running PHP 7.1" – The PHP platform version
specified by this solution stack name

• "arn:aws:elasticbeanstalk:us-west-2:
:platform/PHP 7.1 running on 64bit
Amazon Linux/2.6.3" – The PHP platform
version specified by this solution stack ARN

Use eb platform list to get a list of available
configurations.

Specify the --platform option to skip interactive
configuration.

Note

When you specify this option, then EB CLI
does not prompt you for values for any other
options. Instead, it assumes default values
for each option. You can specify options for
anything for which you do not want to use
default values.

--source codecommi
t/ repository-
name/branch-name

CodeCommit repository and branch.

--tags key1=value1[,key2=value2 ...]Tag your application. Tags are specified as a comma-
separated list of key=value pairs.

For more details, see Tagging applications.

Common options

Options 84

Amazon Elastic Beanstalk Developer Guide

CodeBuild support

If you run eb init in a folder that contains a buildspec.yml file, Elastic Beanstalk parses the file for
an eb_codebuild_settings entry with options specific to Elastic Beanstalk. For information about
CodeBuild support in Elastic Beanstalk, see Using the EB CLI with Amazon CodeBuild.

Output

If successful, the command guides you through setting up a new Elastic Beanstalk application
through a series of prompts.

Example

The following example request initializes EB CLI and prompts you to enter information about your
application. Replace placeholder text with your own values.

$ eb init -i
Select a default region
1) us-east-1 : US East (N. Virginia)
2) us-west-1 : US West (N. California)
3) us-west-2 : US West (Oregon)
4) eu-west-1 : Europe (Ireland)
5) eu-central-1 : Europe (Frankfurt)
6) ap-south-1 : Asia Pacific (Mumbai)
7) ap-southeast-1 : Asia Pacific (Singapore)
...
(default is 3): 3

Select an application to use
1) HelloWorldApp
2) NewApp
3) [Create new Application]
(default is 3): 3

Enter Application Name
(default is "tmp"):
Application tmp has been created.

It appears you are using PHP. Is this correct?
(y/n): y

CodeBuild support 85

https://docs.amazonaws.cn/codebuild/latest/userguide/build-spec-ref.html

Amazon Elastic Beanstalk Developer Guide

Select a platform branch.
1) PHP 7.2 running on 64bit Amazon Linux
2) PHP 7.1 running on 64bit Amazon Linux (Deprecated)
3) PHP 7.0 running on 64bit Amazon Linux (Deprecated)
4) PHP 5.6 running on 64bit Amazon Linux (Deprecated)
5) PHP 5.5 running on 64bit Amazon Linux (Deprecated)
6) PHP 5.4 running on 64bit Amazon Linux (Deprecated)
(default is 1): 1
Do you want to set up SSH for your instances?
(y/n): y

Select a keypair.
1) aws-eb
2) [Create new KeyPair]
(default is 2): 1

eb labs

Description

Subcommands of eb labs support work-in-progress or experimental functionality. These
commands may be removed or reworked in future versions of the EB CLI and are not guaranteed to
be forward compatible.

For a list of available subcommands and descriptions, run eb labs --help.

eb list

Description

Lists all environments in the current application or all environments in all applications, as specified
by the --all option.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also lists the builder environments.

Syntax

eb list

eb labs 86

Amazon Elastic Beanstalk Developer Guide

Options

Name Description

-a

or

--all

Lists all environments from all applications.

-v

or

--verbose

Provides more detailed information about all environments,
including instances.

Common options

Output

If successful, the command returns a list of environment names in which your current environment
is marked with an asterisk (*).

Example 1

The following example lists your environments and indicates that tmp-dev is your default
environment.

$ eb list
* tmp-dev

Example 2

The following example lists your environments with additional details.

$ eb list --verbose
Region: us-west-2
Application: tmp
 Environments: 1

Options 87

Amazon Elastic Beanstalk Developer Guide

 * tmp-dev : ['i-c7ee492d']

eb local

Description

Use eb local run to run your application's containers locally in Docker. Check the application's
container status with eb local status. Open the application in a web browser with eb local open.
Retrieve the location of the application's logs with eb local logs.

eb local setenv and eb local printenv let you set and view environment variables that are provided
to the Docker containers that you run locally with eb local run.

You must run all eb local commands in the project directory of a Docker application that has been
initialized as an EB CLI repository by using eb init.

Note

Use eb local on a local computer running Linux or macOS. The command doesn't support
Windows.
Before using the command on macOS, install Docker for Mac, and ensure that boot2docker
isn't installed (or isn't in the execution path). The eb local command tries to use
boot2docker if it's present, but doesn't work well with it on macOS.

Syntax

eb local run

eb local status

eb local open

eb local logs

eb local setenv

eb local printenv

eb local 88

Amazon Elastic Beanstalk Developer Guide

Options

eb local run

Name Description

--envvars key1=valu
e1,key2=value2

Sets environment variables that the EB CLI will pass to the
local Docker containers. In multicontainer environments, all
variables are passed to all containers.

--port hostport Maps a port on the host to the exposed port on the container
. If you don't specify this option, the EB CLI uses the same port
on both host and container.

This option works only with Docker platform applications. It
doesn't apply to the Multicontainer Docker platform.

Common options

eb local status

eb local open

eb local logs

eb local setenv

eb local printenv

Name Description

Common options

Output

eb local run

Options 89

Amazon Elastic Beanstalk Developer Guide

Status messages from Docker. Remains active as long as application is running. Press Ctrl+C to stop
the application.

eb local status

The status of each container used by the application, running or not.

eb local open

Opens the application in a web browser and exits.

eb local logs

The location of the logs generated in your project directory by applications running locally under
eb local run.

eb local setenv

None

eb local printenv

The name and values of environment variables set with eb local setenv.

Examples

eb local run

~/project$ eb local run
Creating elasticbeanstalk_phpapp_1...
Creating elasticbeanstalk_nginxproxy_1...
Attaching to elasticbeanstalk_phpapp_1, elasticbeanstalk_nginxproxy_1
phpapp_1 | [23-Apr-2015 23:24:25] NOTICE: fpm is running, pid 1
phpapp_1 | [23-Apr-2015 23:24:25] NOTICE: ready to handle connections

eb local status

View the status of your local containers:

~/project$ eb local status
Platform: 64bit Amazon Linux 2014.09 v1.2.1 running Multi-container Docker 1.3.3
 (Generic)
Container name: elasticbeanstalk_nginxproxy_1

Examples 90

Amazon Elastic Beanstalk Developer Guide

Container ip: 127.0.0.1
Container running: True
Exposed host port(s): 80
Full local URL(s): 127.0.0.1:80

Container name: elasticbeanstalk_phpapp_1
Container ip: 127.0.0.1
Container running: True
Exposed host port(s): None
Full local URL(s): None

eb local logs

View the log path for the current project:

~/project$ eb local logs
Elastic Beanstalk will write logs locally to /home/user/project/.elasticbeanstalk/logs/
local.
Logs were most recently created 3 minutes ago and written to /home/user/
project/.elasticbeanstalk/logs/local/150420_234011665784.

eb local setenv

Set environment variables for use with eb local run.

~/project$ eb local setenv PARAM1=value

Print environment variables set with eb local setenv.

~/project$ eb local printenv
Environment Variables:
PARAM1=value

eb logs

Description

The eb logs command has two distinct purposes: to enable or disable log streaming to CloudWatch
Logs, and to retrieve instance logs or CloudWatch Logs logs. With the --cloudwatch-logs (-cw)
option, the command enables or disables log streaming. Without this option, it retrieves logs.

eb logs 91

Amazon Elastic Beanstalk Developer Guide

When retrieving logs, specify the --all, --zip, or --stream option to retrieve complete logs. If
you don't specify any of these options, Elastic Beanstalk retrieves tail logs.

The command processes logs for the specified or default environment. Relevant logs vary by
container type. If the root directory contains a platform.yaml file specifying a custom platform,
this command also processes logs for the builder environment.

For more information, see the section called “CloudWatch Logs”.

Syntax

To enable or disable log streaming to CloudWatch Logs:

eb logs --cloudwatch-logs [enable | disable] [--cloudwatch-log-source instance |
 environment-health | all] [environment-name]

To retrieve instance logs:

eb logs [-all | --zip | --stream] [--cloudwatch-log-source instance] [--
instance instance-id] [--log-group log-group] [environment-name]

To retrieve environment health logs:

eb logs [-all | --zip | --stream] --cloudwatch-log-source environment-health
 [environment-name]

Options

Name Description

-cw [enable | disable]

or

--cloudwatch-logs
[enable | disable]

Enables or disables log streaming to CloudWatch Logs. If
no argument is supplied, log streaming is enabled. If the --
cloudwatch-log-source (-cls) option isn't specified in
addition, instance log streaming is enabled or disabled.

-cls instance |
environment-health |
all

Specifies the source of logs when working with CloudWatch
Logs. With the enable or disable form of the command, these
are the logs for which to enable or disable CloudWatch Logs

Syntax 92

Amazon Elastic Beanstalk Developer Guide

Name Description

or

--cloudwatch-log-
source instance |
environment-health |
all

streaming. With the retrieval form of the command, these are
the logs to retrieve from CloudWatch Logs.

Valid values:

• With --cloudwatch-logs (enable or disable) – instance
| environment-health | all

• Without --cloudwatch-logs (retrieve) – instance |
environment-health

Value meanings:

• instance (default) – Instance logs

• environment-health – Environment health logs
(supported only when enhanced health is enabled in the
environment)

• all – Both log sources

-a

or

--all

Retrieves complete logs and saves them to the .elasticb
eanstalk/logs directory.

-z

or

--zip

Retrieves complete logs, compresses them into a .zip file,
and then saves the file to the .elasticbeanstalk/logs
directory.

--stream Streams (continuously outputs) complete logs. With this
option, the command keeps running until you interrupt it
(press Ctrl+C).

Options 93

Amazon Elastic Beanstalk Developer Guide

Name Description

-i instance-id

or

--instance instance-
id

Retrieves logs for the specified instance only.

-g log-group

or

--log-group log-group

Specifies the CloudWatch Logs log group from which to
retrieve logs. The option is valid only when instance log
streaming to CloudWatch Logs is enabled.

If instance log streaming is enabled, and you don't specify the
--log-group option, the default log group is one of the
following:

• Amazon Linux 2 – /aws/elasticbeanst
alk/ environment-name /var/log/eb-engine.log

• Windows platforms – /aws/elasticbeanst
alk/ environment-name /EBDeploy-Log

• Amazon Linux AMI (AL1) – /aws/elasticbeanst
alk/ environment-name /var/log/eb-activi
ty.log

Note

On July 18,2022, Elastic Beanstalk set the status
of all platform branches based on Amazon Linux
AMI (AL1) to retired. For more information about
migrating to a current and fully supported Amazon
Linux 2023 platform branch, see Migrating your
Elastic Beanstalk Linux application to Amazon Linux
2023 or Amazon Linux 2.

For information about the log group corresponding to each log
file, see How Elastic Beanstalk sets up CloudWatch Logs.

Options 94

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

Name Description

Common options

Output

By default, displays the logs directly in the terminal. Uses a paging program to display the output.
Press Q or q to exit.

With --stream, shows existing logs in the terminal and keeps running. Press Ctrl+C to exit.

With --all and --zip, saves the logs to local files and displays the file location.

Examples

The following example enables instance log streaming to CloudWatch Logs.

$ eb logs -cw enable
Enabling instance log streaming to CloudWatch for your environment
After the environment is updated you can view your logs by following the link:
https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#logs:prefix=/aws/
elasticbeanstalk/environment-name/
Printing Status:
2018-07-11 21:05:20 INFO: Environment update is starting.
2018-07-11 21:05:27 INFO: Updating environment environment-name's configuration
 settings.
2018-07-11 21:06:45 INFO: Successfully deployed new configuration to environment.

The following example retrieves instance logs into a .zip file.

$ eb logs --zip
Retrieving logs...
Logs were saved to /home/workspace/environment/.elasticbeanstalk/logs/150622_173444.zip

Output 95

Amazon Elastic Beanstalk Developer Guide

eb migrate

Description

Migrates Internet Information Services (IIS) sites and applications from a Windows server to Elastic
Beanstalk. The command packages your applications, preserves their configurations, and deploys
them to a new Elastic Beanstalk environment.

For more information about migrating your IIS sites and applications, see Migrating IIS applications.

Note

Before using this command, ensure your system meets these requirements:

• Internet Information Services (IIS) version 7.0 or later

• Web Deploy 3.6 or later installed

• Administrative privileges on the Windows server

• Amazon credentials configured with appropriate permissions

• Your source server has outbound internet access to Amazon services.

The following steps summarize the migration process:

1. Discover IIS sites and their configurations.

2. Package application content and configuration.

3. Create Elastic Beanstalk environment and application.

4. Deploy the application with preserved settings.

The command creates migration artifacts in a structured directory as shown in the following listing:

C:\migration_workspace\
.\migrations\latest\
 ### upload_target.zip
 ### upload_target\
 ### [SiteName].zip # One ZIP per default application of
 IIS site
 ### [SiteName-ApplicationName].zip # One ZIP per additional application
 ### aws-windows-deployment-manifest.json

eb migrate 96

Amazon Elastic Beanstalk Developer Guide

 ### ebmigrateScripts\
 ### site_installer.ps1 # Site installation scripts
 ### permission_handler.ps1 # Permission management
 ### other helper scripts

Use eb migrate cleanup to manage these artifacts.

Syntax

eb migrate [options]

eb migrate explore [options]

eb migrate cleanup [options]

When run without arguments, eb migrate operates in non-interactive mode. To execute it in the
interactive mode, run eb migrate --interactive.

The interactive mode command prompts for the following information:

• Selection of IIS sites to migrate

• Environment and application names

• Platform version selection

• Instance type and other configuration options

Subcommands

explore

The eb migrate explore subcommand examines your IIS server and lists available sites.

Use this command to display the following information:

• View all IIS sites on the server

• With --verbose, inspect detailed configuration including:

• Site bindings and ports

• Application pools

• Virtual directories and their physical paths

• Authentication settings

Syntax 97

Amazon Elastic Beanstalk Developer Guide

PS C:\migrations_workspace > eb migrate explore
Default Web Site
Site2
site3
router

PS C:\migrations_workspace > eb migrate explore --verbose
1: Default Web Site:
 - Bindings:
 - *:8083:
 - Application '/':
 - Application Pool: DefaultAppPool
 - Enabled Protocols: http
 - Virtual Directories:
 - /:
 - Physical Path: C:\inetpub\wwwroot
 - Logon Method: ClearText
 - Application '/dotnet-6-0':
 - Application Pool: DefaultAppPool
 - Enabled Protocols: http
 - Virtual Directories:
 - /:
 - Physical Path: C:\inetpub\AspNetCoreWebApps\CoreWebApp-6-0
 - Logon Method: ClearText
 - Application '/dotnet-8-0':
 - Application Pool: DefaultAppPool
 - Enabled Protocols: http
 - Virtual Directories:
 - /:
 - Physical Path: C:\inetpub\AspNetCoreWebApps\CoreWebApp-8-0
 - Logon Method: ClearText
2: Site2:
 - Bindings:
 - *:8081:
...

cleanup

The eb migrate cleanup subcommand manages migration artifacts with the following actions:

• Preserving the most recent successful migration in ./migrations/latest

• Removing older migration directories

Subcommands 98

Amazon Elastic Beanstalk Developer Guide

• Maintaining critical configuration files

PS C:\migrations_workspace > eb migrate cleanup
Are you sure you would like to cleanup older artifacts within `./migrations/`? (y/N):

Use --force to skip confirmation prompts during cleanup.

PS C:\migrations_workspace > eb migrate cleanup --force

Options

None of these options are required. If you run eb migrate without any options, the EB CLI will
execute in the non-interactive mode. With eb migrate --interactive, the EB CLI prompts you to
enter or select a value for required settings.

Name Description

-a application-name

or

--application-name
application-name

Name for the new Elastic Beanstalk application.

Type: String

Default: EBMigratedApp

--archive directory-or-zip The directory or ZIP file containing source code previousl
y generated by eb migrate --archive-only.

Use this option to deploy a previously created migration
package.

Example: --archive .\migrations\latest
\upload_target or --archive .\migrations
\latest\upload_target.zip

-ao

or

--archive-only

Create only the destination archive directory without
deployment.

Options 99

Amazon Elastic Beanstalk Developer Guide

Name Description

The resulting directory can be manually deployed using
eb migrate with the archive option, or eb deploy.

-c subdomain-name

or

--cname subdomain-name

The subdomain name to prefix the CNAME DNS entry
for your migrated application.

Type: String

Default: The environment name

-cf

or

--copy-firewall-config

Copy source server firewall configuration to the destinati
on for all HTTP ports with active bindings.

Creates corresponding security group rules in Amazon.

-es snapshot-id [snapshot-
id ...]

or

--ebs-snapshots snapshot-
id [snapshot-id ...]

Comma-separated list of Amazon EBS snapshot IDs to
associate with the environment.

Example: --ebs-snapshots snap-1234
567890abcdef0, snap-0987654321fedcba1

--encrypt-ebs-volumes Enforce encryption for all new Amazon EBS volumes.

Important

This is an account-wide setting that affects all
future Amazon EBS volume creation.

Options 100

Amazon Elastic Beanstalk Developer Guide

Name Description

-e environment-name

or

--environment-name
environment-name

Name for the new Elastic Beanstalk environment.

Type: String

Default: EBMigratedEnv

Constraints: Must be between 4 and 40 characters in
length. Can only contain letters, numbers, and hyphens.
Cannot start or end with a hyphen.

--force Skip confirmation prompts during operations.

When used with cleanup subcommand, removes
migration artifacts without confirmation.

-ip profile-name

or

--instance-profile
profile-name

Instance Profile to associate with the environment's
Amazon EC2 instances.

If not specified, creates a default instance profile with
permissions to access Elastic Beanstalk resources. For
more information, see the section called “Instance
profile”.

-i instance-type

or

--instance-type instance-
type

The Amazon EC2 instance type for your Elastic Beanstalk
environment.

Type: String

Default: c5.2xlarge

For available instance types, see Amazon EC2 instance
types in the Amazon EC2 User Guide.

-in

or

--interactive

Force interactive mode for the migration process.

Prompts for configuration values even when defaults are
available.

Options 101

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Beanstalk Developer Guide

Name Description

-k key-name

or

--keyname key-name

Amazon EC2 key pair to enable RDP access to environme
nt instances.

Useful for investigating instance-level issues not visible
in logs.

Valid values: An existing key pair name registered with
Amazon EC2

-p platform-version

or

--platform platform-
version

Elastic Beanstalk platform runtime for the environme
nt. If not specified, automatically detected from host
Windows Server version.

Example: "64bit Windows Server 2016 v2.16.2
running IIS 10.0"

For a list of available platform versions, use eb platform
list.

Options 102

Amazon Elastic Beanstalk Developer Guide

Name Description

--remote Indicates to execute the migration in remote mode.
This option allows execution from a bastion host,
which connects to the target server that contains
the application and configurations to be migrated to
Elastic Beanstalk. Running from the bastion server, eb
migrate discovers configurations, stages migration
logic on the bastion host, then deploys your application
to a new Elastic Beanstalk environment.

This option eliminates the need to install the EB CLI
and Python on the Windows server that you need to
migrate. You install Python and the EB CLI on a bastion
host instead, where you run the eb migrate command
with the --remote option. Use the --target-ip
option to specify the host with the IIS configurations to
migrate.

Must be used with --target-ip , --username , and
--password .

--target-ip ip-address Public IP address of the remote Windows machine that
contains the IIS servers to be migrated.

Required when using --remote. Can only be specified
when using --remote.

--username username Username of the user profile to access the remote
Windows machine that contains the IIS servers to be
migrated.

Required when using --remote. Can only be specified
when using --remote.

Options 103

Amazon Elastic Beanstalk Developer Guide

Name Description

--password password Password of the user profile to access the remote
Windows machine that contains the IIS servers to be
migrated.

Required when using --remote. Can only be specified
when using --remote.

-sr role-name

or

--service-role role-name

IAM service role for Elastic Beanstalk to manage related
Amazon services.

If not specified, creates a default service role with
necessary permissions. For more information, see the
section called “Service role”.

Note

Specify only the role name, not the full ARN.
Elastic Beanstalk automatically creates the
complete ARN.

-s site-names

or

--sites site-names

Comma-separated list of IIS sites to migrate. If not
specified, migrates all available sites on the server.

Example: --sites "Default Web Site,Intr
anet,API"

--ssl-certificates
certificate-arn [,certifica
te-arn ...]

Comma-separated list of ACM SSL certificate ARNs to
associate with the Application Load Balancer.

Required when migrating sites with HTTPS bindings.

Example: --ssl-certificates arn:aws:a
cm:region:account:certificate/certif
icate-id

Options 104

Amazon Elastic Beanstalk Developer Guide

Name Description

-
t key1=value1[,key2=value2 ...]

or

--tags key1=value1[,key2=value2 ...]

Comma-separated list of key=value pairs to tag new
resources in your environment: Environment, Elastic
Beanstalk application, Application version.

For more information, see Tagging environments.

--verbose Show detailed information during migration process.

When used with explore subcommand, displays
comprehensive site configuration details.

Options 105

Amazon Elastic Beanstalk Developer Guide

Name Description

-vpc config-file-or-string

or

--vpc-config config-file-
or-string

VPC configuration for the environment, specified either
as a JSON file path or a JSON string.

Configuration must include:

{
 "id": "vpc-1234567890abcdef0",
 "publicip": "true|false",
 "elbscheme": "public|private",
 "ec2subnets": ["subnet-a1b2c3d4",
 "subnet-e5f6g7h8"],
 "securitygroups": "sg-123456,sg-789012",
 "elbsubnets": ["subnet-a1b2c3d4",
 "subnet-e5f6g7h8"]
}

• id: (Required) VPC identifier

• publicip: Whether to assign public IPs to instances

• elbscheme : Load balancer scheme (public or
private)

• ec2subnets : List of subnet IDs for EC2 instances

• securitygroups : Comma-separated security group
IDs

• elbsubnets : List of subnet IDs for the load balancer

Important

The migration will ignore any existing VPC
settings from the source environment when
you specify the --vpc-config parameter.
When you use this parameter, the migration
will only use the VPC settings specified in the
configuration file that you're passing in. Using
this parameter overrides the default behavior of

Options 106

Amazon Elastic Beanstalk Developer Guide

Name Description

discovering the source instance's VPC configura
tion or using the default VPC.

Common options

Output

The command provides status updates throughout the migration process:

1. VPC configuration detection (when running on an EC2 instance)

2. Source bundle generation progress for each site

3. Environment creation status

4. Deployment progress

If successful, displays the new environment's details including:

• Environment name and ID

• Application name

• Region

• Platform version

• Environment CNAME

For issues during migration, use the eb events and eb health commands to get detailed
information.

Examples

Basic Usage

Basic migration in interactive mode:

PS C:\migrations_workspace > eb migrate
Identifying VPC configuration of this EC2 instance (i-0123456789abcdef0):
 id: vpc-1234567890abcdef0

Output 107

Amazon Elastic Beanstalk Developer Guide

 publicip: true
 elbscheme: public
 ec2subnets: subnet-123,subnet-456,subnet-789
 securitygroups: sg-123,sg-456
 elbsubnets: subnet-123,subnet-456,subnet-789

Using .\migrations\latest to contain artifacts for this migration run.
Generating source bundle for sites, applications, and virtual directories...
 Default Web Site/ -> .\migrations\latest\upload_target\DefaultWebSite.zip

Creating application version
Creating environment

Environment details for: EBMigratedEnv
 Application name: EBMigratedApp
 Region: us-west-2
 Deployed Version: app-230320_153045
 Environment ID: e-abcdef1234
 Platform: 64bit Windows Server 2019 v2.7.0 running IIS 10.0
 Tier: WebServer-Standard-1.0
 CNAME: ebmigratedenv.us-west-2.elasticbeanstalk.com
 Updated: 2023-03-20 15:30:45

Migrating specific sites with custom configuration:

PS C:\migrations_workspace > eb migrate `
 --sites "Default Web Site,InternalAPI" `
 --application-name "CorporateApp" `
 --environment-name "Production" `
 --instance-type "c5.xlarge" `
 --tags "Environment=Production,Team=WebOps" `
 --copy-firewall-config

Creating migration archive without deployment:

PS C:\migrations_workspace > eb migrate --archive-only
Using .\migrations\latest to contain artifacts for this migration run.
Generating source bundle for sites, applications, and virtual directories...
 Default Web Site/ -> .\migrations\latest\upload_target\DefaultWebSite.zip

Generated destination archive directory at .\migrations\latest\upload_target
You can execute `eb init` and `eb create` from this directory to deploy to EB.

Examples 108

Amazon Elastic Beanstalk Developer Guide

Advanced Configuration Examples

Migration with custom VPC configuration using a JSON file:

PS C:\migrations_workspace > cat vpc-config.json
{
 "id": "vpc-1234567890abcdef0",
 "publicip": "false",
 "elbscheme": "internal",
 "ec2subnets": [
 "subnet-private1",
 "subnet-private2"
],
 "securitygroups": [
 "sg-app",
 "sg-database",
 "sg-monitoring"
],
 "elbsubnets": [
 "subnet-private1",
 "subnet-private2"
]
}

PS C:\migrations_workspace eb migrate `
 --sites "InternalAPI" `
 --vpc-config vpc-config.json `
 --instance-type "r5.xlarge" `
 --tags "Environment=Internal,Security=High"

Migrating sites with SSL certificates and host headers:

PS C:\migrations_workspace > eb migrate `
 --sites "SecurePortal" `
 --ssl-certificates "arn:aws:acm:region:account:certificate/
cert1,arn:aws:acm:region:account:certificate/cert2" `
 --verbose
INFO: Detected HTTPS bindings:
 - www.example.com:443
 - api.example.com:443

INFO: Configuring Application Load Balancer with SSL certificates
INFO: Creating host-based routing rules:

Examples 109

Amazon Elastic Beanstalk Developer Guide

 - www.example.com -> target group 1
 - api.example.com -> target group 2

Migration with EBS snapshot configuration:fo

PS C:\migrations_workspace > eb migrate `
 --sites "Default Web Site" `
 --ebs-snapshots "snap-1234567890abcdef0" "snap-0987654321fedcba1" `
 --encrypt-ebs-volumes
Using .\migrations\latest to contain artifacts for this migration run.
INFO: Enabling EBS encryption for all new volumes in us-west-2
INFO: Configuring environment with specified EBS snapshots

Security Configuration Examples

Handling sites with complex firewall rules:

PS C:\migrations_workspace > eb migrate `
 --sites "Default Web Site,ReportingService" `
 --copy-firewall-config `
 --verbose
INFO: Detected the following Windows Firewall rules:
 - Allow Web Traffic (TCP 80, 443)
 - Allow Reporting Traffic (TCP 8081)
INFO: Creating corresponding security group rules

Migration with custom IAM roles:

PS C:\migrations_workspace > eb migrate `
 --sites "SecureApp" `
 --instance-profile "CustomInstanceProfile" `
 --service-role "CustomServiceRole"

Remote Execution Examples

Migrating IIS applications from a remote Windows server:

PS C:\migrations_workspace > eb migrate `
 --remote `
 --target-ip "192.0.2.10" `

Examples 110

Amazon Elastic Beanstalk Developer Guide

 --username "administrator" `
 --password "YourPassword123" `
 --application-name "RemoteApp" `
 --environment-name "RemoteEnv"
INFO: Establishing SSH connection to remote host 192.0.2.10...
INFO: Connection established
INFO: Discovering IIS sites on remote host...
INFO: Found 2 sites: Default Web Site, API
INFO: Extracting site configurations...
INFO: Generating source bundle for sites, applications, and virtual directories...
 Default Web Site/ -> .\migrations\latest\upload_target\DefaultWebSite.zip
 API/ -> .\migrations\latest\upload_target\API.zip

Creating application version
Creating environment

Environment details for: RemoteEnv
 Application name: RemoteAppstage mi
 Region: us-west-2
 Deployed Version: app-230320_153045
 Environment ID: e-abcdef1234
 Platform: 64bit Windows Server 2019 v2.7.0 running IIS 10.0
 Tier: WebServer-Standard-1.0
 CNAME: remoteenv.us-west-2.elasticbeanstalk.com
 Updated: 2023-03-20 15:30:45

Remote migration with specific site selection:

PS C:\migrations_workspace > eb migrate `
 --remote `
 --target-ip "192.0.2.10" `
 --username "administrator" `
 --password "YourPassword123" `
 --sites "API" `
 --instance-type "c5.large"

eb open

Description

Opens the public URL of your website in the default browser.

eb open 111

Amazon Elastic Beanstalk Developer Guide

Syntax

eb open

eb open environment-name

Options

Name Description

Common options

Output

The command eb open does not have output. Instead, it opens the application in a browser
window.

eb platform

Description

This command supports two different workspaces:

Platform

Use this workspace to manage custom platforms.

Environment

Use this workspace to select a default platform or show information about the current
platform.

Elastic Beanstalk provides the shortcut ebp for eb platform.

Note

Windows PowerShell uses ebp as a command alias. If you're running the EB CLI in Windows
PowerShell, use the long form of this command — eb platform.

Syntax 112

Amazon Elastic Beanstalk Developer Guide

Using eb platform for custom platforms

Lists the versions of the current platform and enables you to manage custom platforms.

Syntax

eb platform create [version] [options]

eb platform delete [version] [options]

eb platform events [version] [options]

eb platform init [platform] [options]

eb platform list [options]

eb platform logs [version] [options]

eb platform status [version] [options]

eb platform use [platform] [options]

Options

Name Description

create [version]
[options]

Build a new version of the platform. Learn more.

delete version
[options]

Delete a platform version. Learn more.

events [version]
[options]

Display the events from a platform version. Learn more.

init [platform]
[options]

Initialize a platform repository. Learn more.

list [options] List the versions of the current platform. Learn more.

Using eb platform for custom platforms 113

Amazon Elastic Beanstalk Developer Guide

Name Description

logs [version]
[options]

Display logs from the builder environment for a platform
version. Learn more.

status [version]
[options]

Display the status of the a platform version. Learn more.

use [platform]
[options]

Select a different platform from which new versions are built.
Learn more.

Common options

Common options

All eb platform commands include the following common options.

Name Description

-h

OR

--help

Shows a help message and exits.

--debug Shows additional debugging output.

--quiet Suppresses all output.

-v

OR

--verbose

Shows additional output.

--profile PROFILE Uses the specified PROFILE from your credentials.

-r REGION

OR

Use the region REGION.

Using eb platform for custom platforms 114

Amazon Elastic Beanstalk Developer Guide

Name Description

--region REGION

--no-verify-ssl Do not verify Amazon SSL certificates.

Eb platform create

Builds a new version of the platform and returns the ARN for the new version. If there is no
builder environment running in the current region, this command launches one. The version and
increment options (-M, -m, and -p) are mutually exclusive.

Options

Name Description

version If version isn't specified, creates a new version based on
the most-recent platform with the patch version (N in n.n.N)
incremented.

-M

OR

--major-increment

Increments the major version number (the N in N.n.n).

-m

OR

--minor-increment

Increments the minor version number (the N in n.N.n).

-p

OR

--patch-increment

Increments the patch version number (the N in n.n.N).

-i INSTANCE_TYPE

OR

Use INSTANCE_TYPE as the instance type, such as
t1.micro.

Using eb platform for custom platforms 115

Amazon Elastic Beanstalk Developer Guide

Name Description

--instance-type INSTANCE_
TYPE

-ip INSTANCE_PROFILE

OR

--instance-profile
INSTANCE_PROFILE

Use INSTANCE_PROFILE as the instance profile when
creating AMIs for a custom platform.

If the -ip option isn't specified, creates the instance profile
aws-elasticbeanstalk-custom-platforme-ec2-
role and uses it for the custom platform.

--tags key1=value1[,key2=value2 ...]Tags are specified as a comma-separated list of key=value
pairs.

--timeout minutes Set number of minutes before the command times out.

--vpc.id VPC_ID The ID of the VPC in which Packer builds.

--vpc.subnets
VPC_SUBNETS

The VPC subnets in which Packer builds.

--vpc.publicip Associates public IPs to EC2 instances launched.

Eb platform delete

Delete a platform version. The version isn't deleted if an environment is using that version.

Options

Name Description

version The version to delete. This value is required.

--cleanup Remove all platform versions in the Failed state.

--all-platforms If --cleanup is specified, remove all platform versions in the
Failed state for all platforms.

--force Do not require confirmation when deleting a version.

Using eb platform for custom platforms 116

Amazon Elastic Beanstalk Developer Guide

Eb platform events

Display the events from a platform version. If version is specified, display the events from that
version, otherwise display the events from the current version.

Options

Name Description

version The version for which events are displayed. This value is
required.

-f

OR

--follow

Continue to display events as they occur.

Eb platform init

Initialize a platform repository.

Options

Name Description

platform The name of the platform to initialize. This value is required,
unless -i (interactive mode) is enabled.

-i

OR

--interactive

Use interactive mode.

-k KEYNAME

OR

--keyname KEYNAME

The default EC2 key name.

Using eb platform for custom platforms 117

Amazon Elastic Beanstalk Developer Guide

You can run this command in a directory that has been previously initialized, although you cannot
change the workspace type if run in a directory that has been previously initialized.

To re-initialize with different options, use the -i option.

Eb platform list

List the versions of the platform associated with a workspace (directory) or a region.

The command returns different results depending on the type of workspace you run it in, as
follows:

• In a platform workspace (a directory initialized by eb platform init), the command returns
a list of all platform versions of the custom platform defined in the workspace. Add the --all-
platforms or --verbose option to get a list of all platform versions of all custom platforms
your account has in the region associated with the workspace.

• In an application workspace (a directory initialized by eb init), the command returns a list of
all platform versions, both for platforms managed by Elastic Beanstalk and for your account's
custom platforms. The list uses short platform version names, and some platform version
variants might be combined. Add the --verbose option to get a detailed list with full names
and all variants listed separately.

• In an uninitialized directory, the command only works with the --region option. It returns a list
of all Elastic Beanstalk-managed platform versions supported in the region. The list uses short
platform version names, and some platform version variants might be combined. Add the --
verbose option to get a detailed list with full names and all variants listed separately.

Options

Name Description

-a

OR

--all-platforms

Valid only in an initialized workspace (a directory initialized by
eb platform init or eb init). Lists the platform versions
of all custom platforms associated with your account.

-s STATUS

OR

List only the platforms matching STATUS:

• Ready

Using eb platform for custom platforms 118

Amazon Elastic Beanstalk Developer Guide

Name Description

--status STATUS • Failed

• Deleting

• Creating

Eb platform logs

Display logs from the builder environment for a platform version.

Options

Name Description

version The version of the platform for which logs are displayed. If
omitted, display logs from the current version.

--stream Stream deployment logs that were set up with CloudWatch.

Eb platform status

Display the status of the a platform version.

Options

Name Description

version The version of the platform for which the status is retrieved. If
omitted, display the status of the current version.

Eb platform use

Select a different platform from which new versions are built.

Using eb platform for custom platforms 119

Amazon Elastic Beanstalk Developer Guide

Options

Name Description

platform Specifies platform as the active version for this workspace.
This value is required.

Using eb platform for environments

Lists supported platforms and enables you to set the default platform and platform version to use
when you launch an environment. Use eb platform list to view a list of all supported platforms.
Use eb platform select to change the platform for your project. Use eb platform show to view
your project's selected platform.

Syntax

eb platform list

eb platform select

eb platform show

Options

Name Description

list List the version of the current platform.

select Select the default platform.

show Show information about the current platform.

Example 1

The following example lists the names of all configurations for all platforms that Elastic Beanstalk
supports.

$ eb platform list

Using eb platform for environments 120

Amazon Elastic Beanstalk Developer Guide

docker-1.5.0
glassfish-4.0-java-7-(preconfigured-docker)
glassfish-4.1-java-8-(preconfigured-docker)
go-1.3-(preconfigured-docker)
go-1.4-(preconfigured-docker)
iis-7.5
iis-8
iis-8.5
multi-container-docker-1.3.3-(generic)
node.js
php-5.3
php-5.4
php-5.5
python
python-2.7
python-3.4
python-3.4-(preconfigured-docker)
ruby-1.9.3
ruby-2.0-(passenger-standalone)
ruby-2.0-(puma)
ruby-2.1-(passenger-standalone)
ruby-2.1-(puma)
ruby-2.2-(passenger-standalone)
ruby-2.2-(puma)
tomcat-6
tomcat-7
tomcat-7-java-6
tomcat-7-java-7
tomcat-8-java-8

Example 2

The following example prompts you to choose from a list of platforms and the version that you
want to deploy for the specified platform.

$ eb platform select
Select a platform.
1) PHP
2) Node.js
3) IIS
4) Tomcat
5) Python
6) Ruby

Using eb platform for environments 121

Amazon Elastic Beanstalk Developer Guide

7) Docker
8) Multi-container Docker
9) GlassFish
10) Go
(default is 1): 5

Select a platform version.
1) Python 2.7
2) Python
3) Python 3.4 (Preconfigured - Docker)

Example 3

The following example shows information about the current default platform.

$ eb platform show
Current default platform: Python 2.7
New environments will be running: 64bit Amazon Linux 2014.09 v1.2.0 running Python 2.7

Platform info for environment "tmp-dev":
Current: 64bit Amazon Linux 2014.09 v1.2.0 running Python
Latest: 64bit Amazon Linux 2014.09 v1.2.0 running Python

eb printenv

Description

Prints all the environment properties in the command window.

Syntax

eb printenv

eb printenv environment-name

Options

Name Description

Common options

eb printenv 122

Amazon Elastic Beanstalk Developer Guide

Output

If successful, the command returns the status of the printenv operation.

Example

The following example prints environment properties for the specified environment.

$ eb printenv
Environment Variables:
 PARAM1 = Value1

eb restore

Description

Rebuilds a terminated environment, creating a new environment with the same name, ID, and
configuration. The environment name, domain name, and application version must be available for
use in order for the rebuild to succeed.

Syntax

eb restore

eb restore environment_id

Options

Name Description

Common options

Output

The EB CLI displays a list of terminated environments that are available to restore.

Example

$ eb restore

Output 123

Amazon Elastic Beanstalk Developer Guide

Select a terminated environment to restore

 # Name ID Application Version Date Terminated Ago

 3 gamma e-s7mimej8e9 app-77e3-161213_211138 2016/12/14 20:32 PST 13
 mins
 2 beta e-sj28uu2wia app-77e3-161213_211125 2016/12/14 20:32 PST 13
 mins
 1 alpha e-gia8mphu6q app-77e3-161213_211109 2016/12/14 16:21 PST 4
 hours

 (Commands: Quit, Restore, # #)

Selected environment alpha
Application: scorekeep
Description: Environment created from the EB CLI using "eb create"
CNAME: alpha.h23tbtbm92.us-west-2.elasticbeanstalk.com
Version: app-77e3-161213_211109
Platform: 64bit Amazon Linux 2016.03 v2.1.6 running Java 8
Terminated: 2016/12/14 16:21 PST
Restore this environment? [y/n]: y

2018-07-11 21:04:20 INFO: restoreEnvironment is starting.
2018-07-11 21:04:39 INFO: Created security group named: sg-e2443f72
...

eb scale

Description

Scales the environment to always run on a specified number of instances, setting both the
minimum and maximum number of instances to the specified number.

Syntax

eb scale number-of-instances

eb scale number-of-instances environment-name

eb scale 124

Amazon Elastic Beanstalk Developer Guide

Options

Name Description

--timeout The number of minutes before the command times out.

Common options

Output

If successful, the command updates the number of minimum and maximum instances to run to the
specified number.

Example

The following example sets the number of instances to 2.

$ eb scale 2
2018-07-11 21:05:22 INFO: Environment update is starting.
2018-07-11 21:05:27 INFO: Updating environment tmp-dev's configuration settings.
2018-07-11 21:08:53 INFO: Added EC2 instance 'i-5fce3d53' to Auto Scaling Group
 'awseb-e-2cpfjbra9a-stack-AWSEBAutoScalingGroup-7AXY7U13ZQ6E'.
2018-07-11 21:08:58 INFO: Successfully deployed new configuration to environment.
2018-07-11 21:08:59 INFO: Environment update completed successfully.

eb setenv

Description

Sets environment properties for the default environment.

Syntax

eb setenv key=value

You can include as many properties as you want, but the total size of all properties cannot exceed
4096 bytes. You can delete a variable by leaving the value blank. See Configuring environment
properties (environment variables) for limits.

Options 125

Amazon Elastic Beanstalk Developer Guide

Note

If the value contains a special character, you must escape that character by preceding it
with a \ character.

Options

Name Description

--timeout The number of minutes before the command times out.

Common options

Output

If successful, the command displays that the environment update succeeded.

Example

The following example sets the environment variable ExampleVar.

$ eb setenv ExampleVar=ExampleValue
2018-07-11 21:05:25 INFO: Environment update is starting.
2018-07-11 21:05:29 INFO: Updating environment tmp-dev's configuration settings.
2018-07-11 21:06:50 INFO: Successfully deployed new configuration to environment.
2018-07-11 21:06:51 INFO: Environment update completed successfully.

The following command sets multiple environment properties. It adds the environment property
named foo and sets its value to bar, changes the value of the JDBC_CONNECTION_STRING
property, and deletes the PARAM4 and PARAM5 properties.

$ eb setenv foo=bar JDBC_CONNECTION_STRING=hello PARAM4= PARAM5=

Options 126

http://tldp.org/LDP/abs/html/special-chars.html

Amazon Elastic Beanstalk Developer Guide

eb ssh

Description

Note

This command does not work with environments running Windows Server instances.

Connect to a Linux Amazon EC2 instance in your environment using Secure Shell (SSH). If an
environment has multiple running instances, EB CLI prompts you to specify which instance you
want to connect to. To use this command, SSH must be installed on your local machine and
available from the command line. Private key files must be located in a folder named .ssh under
your user directory, and the EC2 instances in your environment must have public IP addresses.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also connects to instances in the custom environment.

SSH keys

If you have not previously configured SSH, you can use the EB CLI to create a key when
running eb init. If you have already run eb init, run it again with the --interactive
option and select Yes and Create New Keypair when prompted to set up SSH. Keys created
during this process will be stored in the proper folder by the EB CLI.

This command temporarily opens port 22 in your environment's security group for incoming traffic
from 0.0.0.0/0 (all IP addresses) if no rules for port 22 are already in place. If you have configured
your environment's security group to open port 22 to a restricted CIDR range for increased security,
the EB CLI will respect that setting and forgo any changes to the security group. To override this
behavior and force the EB CLI to open port 22 to all incoming traffic, use the --force option.

See EC2 security groups for information on configuring your environment's security group.

Syntax

eb ssh

eb ssh environment-name

eb ssh 127

Amazon Elastic Beanstalk Developer Guide

Options

Name Description

-i

or

--instance

Specifies the instance ID of the instance to which you connect.
We recommend that you use this option.

-n

or

--number

Specify the instance to connect to by number.

-o

or

--keep_open

Leave port 22 open on the security group after the SSH session
ends.

--command Execute a shell command on the specified instance instead of
starting an SSH session.

--custom Specify an SSH command to use instead of 'ssh -i keyfile'. Do
not include the remote user and hostname.

--setup Change the key pair assigned to the environment's instances
(requires instances to be replaced).

--force Open port 22 to incoming traffic from 0.0.0.0/0 in the
environment's security group, even if the security group is
already configured for SSH.

Use this option if your environment's security group is
configured to open port 22 to a restricted CIDR range that
does not include the IP address that you are trying to connect
from.

--timeout minutes Set number of minutes before the command times out.

Options 128

Amazon Elastic Beanstalk Developer Guide

Name Description

Can only be used with the --setup argument.

Common options

Output

If successful, the command opens an SSH connection to the instance.

Example

The following example connects you to the specified environment.

$ eb ssh
Select an instance to ssh into
1) i-96133799
2) i-5931e053
(default is 1): 1
INFO: Attempting to open port 22.
INFO: SSH port 22 open.
The authenticity of host '54.191.45.125 (54.191.45.125)' can't be established.
RSA key fingerprint is ee:69:62:df:90:f7:63:af:52:7c:80:60:1b:3b:51:a9.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '54.191.45.125' (RSA) to the list of known hosts.

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

http://www.amazonaws.cn/amazon-linux-ami/2014.09-release-notes/
No packages needed for security; 1 packages available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-31-8-185 ~]$ ls
[ec2-user@ip-172-31-8-185 ~]$ exit
logout
Connection to 54.191.45.125 closed.
INFO: Closed port 22 on ec2 instance security group

Output 129

Amazon Elastic Beanstalk Developer Guide

eb status

Description

Provides information about the status of the environment.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also provides information about the builder environment.

Syntax

eb status

eb status environment-name

Options

Name Description

-v

or

--verbose

Provides more information about individual instances, such as
their status with the Elastic Load Balancing load balancer.

Common options

Output

If successful, the command returns the following information about the environment:

• Environment name

• Application name

• Deployed application version

• Environment ID

• Platform

• Environment tier

eb status 130

Amazon Elastic Beanstalk Developer Guide

• CNAME

• Time the environment was last updated

• Status

• Health

If you use verbose mode, EB CLI also provides you with the number of running Amazon EC2
instances.

Example

The following example shows the status for the environment tmp-dev.

$ eb status
Environment details for: tmp-dev
 Application name: tmp
 Region: us-west-2
 Deployed Version: None
 Environment ID: e-2cpfjbra9a
 Platform: 64bit Amazon Linux 2014.09 v1.0.9 running PHP 5.5
 Tier: WebServer-Standard-1.0
 CNAME: tmp-dev.elasticbeanstalk.com
 Updated: 2014-10-29 21:37:19.050000+00:00
 Status: Launching
 Health: Grey

eb swap

Description

Swaps the environment's CNAME with the CNAME of another environment (for example, to avoid
downtime when you update your application version).

Note

If you have more than two environments, you are prompted to select the name of the
environment that is currently using your desired CNAME from a list of environments. To
suppress this, you can specify the name of the environment to use by including the -n
option when you run the command.

Example 131

Amazon Elastic Beanstalk Developer Guide

Syntax

eb swap

eb swap environment-name

Note

The environment-name is the environment for which you want a different CNAME. If you
don't specify environment-name as a command line parameter when you run eb swap,
EB CLI updates the CNAME of the default environment.

Options

Name Description

-n

or

--destination_name

Specifies the name of the environment with which you want to
swap CNAMEs. If you run eb swap without this option, then EB
CLI prompts you to choose from a list of your environments.

Common options

Output

If successful, the command returns the status of the swap operation.

Examples

The following example swaps the environment tmp-dev with live-env.

$ eb swap
Select an environment to swap with.
1) staging-dev
2) live-env
(default is 1): 2
2018-07-11 21:05:25 INFO: swapEnvironmentCNAMEs is starting.
2018-07-11 21:05:26 INFO: Swapping CNAMEs for environments 'tmp-dev' and 'live-env'.

Syntax 132

Amazon Elastic Beanstalk Developer Guide

2018-07-11 21:05:30 INFO: 'tmp-dev.elasticbeanstalk.com' now points to 'awseb-e-j-
AWSEBLoa-M7U21VXNLWHN-487871449.us-west-2.elb.amazonaws.com.cn'.
2018-07-11 21:05:30 INFO: Completed swapping CNAMEs for environments 'tmp-dev' and
 'live-env'.

The following example swaps the environment tmp-dev with the environment live-env but does
not prompt you to enter or select a value for any settings.

$ eb swap tmp-dev --destination_name live-env
2018-07-11 21:18:12 INFO: swapEnvironmentCNAMEs is starting.
2018-07-11 21:18:13 INFO: Swapping CNAMEs for environments 'tmp-dev' and 'live-env'.
2018-07-11 21:18:17 INFO: 'tmp-dev.elasticbeanstalk.com' now points to 'awseb-e-j-
AWSEBLoa-M7U21VXNLWHN-487871449.us-west-2.elb.amazonaws.com.cn'.
2018-07-11 21:18:17 INFO: Completed swapping CNAMEs for environments 'tmp-dev' and
 'live-env'.

eb tags

Description

Add, delete, update, and list tags of an Elastic Beanstalk resource.

For details about resource tagging in Elastic Beanstalk, see Tagging Elastic Beanstalk application
resources.

Syntax

eb tags [environment-name] [--resource ARN] -l | --list

eb tags [environment-name] [--resource ARN] -a | --add key1=value1[,key2=value2 ...]

eb tags [environment-name] [--resource ARN] -u | --update key1=value1[,key2=value2 ...]

eb tags [environment-name] [--resource ARN] -d | --delete key1[,key2 ...]

You can combine the --add, --update, and --delete subcommand options in a single
command. At least one of them is required. You can't combined any of these three subcommand
options with --list.

Without any additional arguments, all of these commands list or modify tags of the default
environment in the current directory's application. With an environment-name argument,
the commands list or modify tags of that environment. With the --resource option, the

eb tags 133

Amazon Elastic Beanstalk Developer Guide

commands list or modify tags of any Elastic Beanstalk resource – an application, an environment,
an application version, a saved configuration, or a custom platform version. Specify the resource by
its Amazon Resource Name (ARN).

Options

None of these options are required. If you run eb create without any options, you are prompted to
enter or select a value for each setting.

Name Description

-l

or

--list

List all tags that are currently applied to the resource.

-a key1=value1[,key2=value2 ...]

or

--add key1=value1[,key2=value2 ...]

Apply new tags to the resource. Specify tags as a
comma-separated list of key=value pairs. You can't
specify keys of existing tags.

Valid values: See Tagging resources.

-u key1=value1[,key2=value2 ...]

or

--updat
e key1=value1[,key2=value2 ...]

Update the values of existing resource tags. Specify tags
as a comma-separated list of key=value pairs. You
must specify keys of existing tags.

Valid values: See Tagging resources.

-d key1[,key2 ...]

or

--delete key1[,key2 ...]

Delete existing resource tags. Specify tags as a comma-
separated list of keys. You must specify keys of existing
tags.

Valid values: See Tagging resources.

-r region

or

--region region

The Amazon Web Services Region in which your resource
exists.

Default: the configured default region.

Options 134

Amazon Elastic Beanstalk Developer Guide

Name Description

For the list of values you can specify for this option, see
Amazon Elastic Beanstalk Endpoints and Quotas in the
Amazon Web Services General Reference.

--resource ARN The ARN of the resource that the command modifies
or lists tags for. If not specified, the command refers
to the (default or specified) environment in the current
directory's application.

Valid values: See one of the sub-topic of Tagging
resources that is specific to the resource you're intereste
d in. These topics show how the resource's ARN is
constructed and explain how to get a list of this
resource's ARNs that exist for your application or
account.

Output

The --list subcommand option displays a list of the resource's tags. The output shows both the
tags that Elastic Beanstalk applies by default and your custom tags.

$ eb tags --list
Showing tags for environment 'MyApp-env':

Key Value

Name MyApp-env
elasticbeanstalk:environment-id e-63cmxwjaut
elasticbeanstalk:environment-name MyApp-env
mytag tagvalue
tag2 2nd value

The --add, --update, and --delete subcommand options, when successful, don't have any
output. You can add the --verbose option to see detailed output of the command's activity.

$ eb tags --verbose --update "mytag=tag value"
Updated Tags:

Output 135

https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html

Amazon Elastic Beanstalk Developer Guide

Key Value

mytag tag value

Examples

The following command successfully adds a tag with the key tag1 and the value value1 to the
application's default environment, and at the same time deletes the tag tag2.

$ eb tags --add tag1=value1 --delete tag2

The following command successfully adds a tag to a saved configuration within an application.

$ eb tags --add tag1=value1 \
 --resource "arn:aws-cn:elasticbeanstalk:us-west-2:my-account-
id:configurationtemplate/my-app/my-template"

The following command fails because it tries to update a nonexisting tag.

$ eb tags --update tag3=newval
ERROR: Tags with the following keys can't be updated because they don't exist:

 tag3

The following command fails because it tries to update and delete the same key.

$ eb tags --update mytag=newval --delete mytag
ERROR: A tag with the key 'mytag' is specified for both '--delete' and '--update'. Each
 tag can be either deleted or updated in a single operation.

eb terminate

Description

Terminates the running environment so that you don't incur charges for unused Amazon resources.

Using the --all option, deletes the application that the current directory was initialized to using
eb init. The command terminates all environments in the application. It also terminates the
application versions and saved configurations for the application, and then deletes the application.

Examples 136

Amazon Elastic Beanstalk Developer Guide

If the root directory contains a platform.yaml file specifying a custom platform, this command
terminates the running custom environment.

Note

You can always launch a new environment using the same version later.

If you have data from an environment that you want to preserve, set the database deletion policy
to Retain before terminating the environment. This keeps the database operational outside of
Elastic Beanstalk. After this, any Elastic Beanstalk environments must connect to it as an external
database. If you want to back up the data without keeping the database operational, set the
deletion policy to take a snapshot of the database before terminating the environment. For more
information, see Database lifecycle in the Configuring environments chapter of this guide.

Important

If you terminate an environment, you must also delete any CNAME mappings that you
created, as other customers can reuse an available hostname. Be sure to delete DNS records
that point to your terminated environment to prevent a dangling DNS entry. A dangling
DNS entry can expose internet traffic destined for your domain to security vulnerabilities. It
can also present other risks.
For more information, see Protection from dangling delegation records in Route 53 in the
Amazon Route 53 Developer Guide. You can also learn more about dangling DNS entries
in Enhanced Domain Protections for Amazon CloudFront Requests in the Amazon Security
Blog.

Syntax

eb terminate

eb terminate environment-name

Syntax 137

https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/protection-from-dangling-dns.html
https://amazonaws-china.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/

Amazon Elastic Beanstalk Developer Guide

Options

Name Description

--all Terminates all environments in the application, the applicati
on's application versions, and its saved configurations, and
then deletes the application.

--force Terminates the environment without prompting for confirmat
ion.

--ignore-links Terminates the environment even if there are dependent
environments with links to it. See Compose Environments.

--timeout The number of minutes before the command times out.

Output

If successful, the command returns the status of the terminate operation.

Example

The following example request terminates the environment tmp-dev.

$ eb terminate
The environment "tmp-dev" and all associated instances will be terminated.
To confirm, type the environment name: tmp-dev
2018-07-11 21:05:25 INFO: terminateEnvironment is starting.
2018-07-11 21:05:40 INFO: Deleted CloudWatch alarm named: awseb-e-2cpfjbra9a-stack-
AWSEBCloudwatchAlarmHigh-16V08YOF2KQ7U
2018-07-11 21:05:41 INFO: Deleted CloudWatch alarm named: awseb-e-2cpfjbra9a-stack-
AWSEBCloudwatchAlarmLow-6ZAWH9F20P7C
2018-07-11 21:06:42 INFO: Deleted Auto Scaling group policy named:
 arn:aws-cn:autoscaling:us-west-2:11122223333:scalingPolicy:5d7d3e6b-
d59b-47c5-b102-3e11fe3047be:autoScalingGroupName/awseb-e-2cpfjbra9a-stack-
AWSEBAutoScalingGroup-7AXY7U13ZQ6E:policyName/awseb-e-2cpfjbra9a-stack-AWSEBAutoSca
lingScaleUpPolicy-1876U27JEC34J
2018-07-11 21:06:43 INFO: Deleted Auto Scaling group policy named: arn:aws-
cn:autoscaling:us-west-2:11122223333:scalingPolicy:29c6e7c7-7ac8-46fc-91f5-

Options 138

Amazon Elastic Beanstalk Developer Guide

cfabb65b985b:autoScalingGroupName/awseb-e-2cpfjbra9a-stack-
AWSEBAutoScalingGroup-7AXY7U13ZQ6E:policyName/awseb-e-2cpfjbra9a-stack-AWSEBAutoSca
lingScaleDownPolicy-SL4LHODMOMU
2018-07-11 21:06:48 INFO: Waiting for EC2 instances to terminate. This may take a
 few minutes.
2018-07-11 21:08:55 INFO: Deleted Auto Scaling group named: awseb-e-2cpfjbra9a-
stack-AWSEBAutoScalingGroup-7AXY7U13ZQ6E
2018-07-11 21:09:10 INFO: Deleted security group named: awseb-e-2cpfjbra9a-stack-
AWSEBSecurityGroup-XT4YYGFL7I99
2018-07-11 21:09:40 INFO: Deleted load balancer named: awseb-e-2-AWSEBLoa-
AK6RRYFQVV3S
2018-07-11 21:09:42 INFO: Deleting SNS topic for environment tmp-dev.
2018-07-11 21:09:52 INFO: terminateEnvironment completed successfully.

eb upgrade

Description

Upgrades the platform of your environment to the most recent version of the platform on which it
is currently running.

If the root directory contains a platform.yaml file specifying a custom platform, this command
upgrades the environment to the most recent version of the custom platform on which it is
currently running.

Syntax

eb upgrade

eb upgrade environment-name

Options

Name Description

--force Upgrades without requiring you to confirm the environment
name before starting the upgrade process.

--noroll Updates all instances without using rolling updates to keep
some instances in service during the upgrade.

eb upgrade 139

Amazon Elastic Beanstalk Developer Guide

Name Description

Common options

Output

The command shows an overview of the change and prompts you to confirm the upgrade by
typing the environment name. If successful, your environment is updated and then launched with
the most recent version of the platform.

Example

The following example upgrades the current platform version of the specified environment to the
most recently available platform version.

$ eb upgrade
Current platform: 64bit Amazon Linux 2014.09 v1.0.9 running Python 2.7
Latest platform: 64bit Amazon Linux 2014.09 v1.2.0 running Python 2.7

WARNING: This operation replaces your instances with minimal or zero downtime. You may
 cancel the upgrade after it has started by typing "eb abort".
You can also change your platform version by typing "eb clone" and then "eb swap".

To continue, type the environment name:

eb use

Description

Sets the specified environment as the default environment.

When using Git, eb use sets the default environment for the current branch. Run this command
once in each branch that you want to deploy to Elastic Beanstalk.

Syntax

eb use environment-name

Output 140

Amazon Elastic Beanstalk Developer Guide

Options

Name Description

--source codecommi
t/ repository-
name/branch-name

CodeCommit repository and branch.

-r region

--region region

Change the region in which you create environments.

Common options

Options 141

Amazon Elastic Beanstalk Developer Guide

Understanding concepts in Elastic Beanstalk

Becoming familiar with the concepts and terms will help you gain an understanding needed for
deploying your applications with Elastic Beanstalk.

142

Amazon Elastic Beanstalk Developer Guide

Application

An Elastic Beanstalk application is a container for Elastic Beanstalk components, including
environments, versions, and environment configurations. Within an Elastic Beanstalk application,
you manage all the resources relevant to running your code.

Application version

In Elastic Beanstalk, an application version refers to a specific, labeled iteration of deployable code
for a web application. An application version points to an Amazon Simple Storage Service (Amazon
S3) object that contains the deployable code, such as a Java WAR file.

An application version is part of an application. Applications can have many versions and each
application version is unique. In a running environment, you can deploy any application version you
already uploaded to the application, or you can upload and immediately deploy a new application
version. For example, you could upload multiple application versions to test differences between
them.

Environment

An environment is a collection of Amazon resources running an application version. Each
environment runs only one application version at a time, however, you can run the same
application version or different application versions in many environments simultaneously. When
you create an environment, Elastic Beanstalk provisions the resources needed in your Amazon
account to run the application version you specified.

Environment tier

When you launch an Elastic Beanstalk environment, you first choose an environment tier. The
environment tier designates the type of application that the environment runs and determines
what resources Elastic Beanstalk provisions to support it. An application that serves HTTP requests
runs in a web server environment tier. A backend environment that pulls tasks from an Amazon
Simple Queue Service (Amazon SQS) queue runs in a worker environment tier.

Environment configuration

An environment configuration identifies a collection of parameters and settings that define
how an environment and its associated resources behave. When you update an environment’s

Application 143

Amazon Elastic Beanstalk Developer Guide

configuration settings, Elastic Beanstalk automatically applies the changes to existing resources or
deletes and deploys new resources (depending on the type of change).

Saved configuration

A saved configuration is a template that you can use as a starting point for creating unique
environment configurations. You can create and modify saved configurations, and apply them to
environments, using the Elastic Beanstalk console, EB CLI, Amazon CLI, or API. The API and the
Amazon CLI refer to saved configurations as configuration templates.

Platform

A platform is a combination of an operating system, programming language runtime, web server,
application server, and Elastic Beanstalk components. You design and target your web application
to a platform. Elastic Beanstalk provides a variety of platforms on which you can build your
applications.

For details, see Elastic Beanstalk platforms.

Elastic Beanstalk web server environments

The following diagram shows an example Elastic Beanstalk architecture for a web server
environment tier, and shows how the components in that type of environment tier work together.

Saved configuration 144

Amazon Elastic Beanstalk Developer Guide

The environment is the heart of the application. In the diagram, the environment is shown within
the top-level solid line. When you create an environment, Elastic Beanstalk provisions the resources
required to run your application. Amazon resources created for an environment include one
elastic load balancer (ELB in the diagram), an Auto Scaling group, and one or more Amazon Elastic
Compute Cloud (Amazon EC2) instances.

Every environment has a CNAME (URL) that points to a load balancer. The environment
has a URL, such as myapp.us-west-2.elasticbeanstalk.com. This URL is aliased in
Amazon Route 53 to an Elastic Load Balancing URL—something like abcdef-123456.us-
west-2.elb.amazonaws.com.cn—by using a CNAME record. Amazon Route 53 is a highly
available and scalable Domain Name System (DNS) web service. It provides secure and reliable
routing to your infrastructure. Your domain name that you registered with your DNS provider will
forward requests to the CNAME.

The load balancer sits in front of the Amazon EC2 instances, which are part of an Auto Scaling
group. Amazon EC2 Auto Scaling automatically starts additional Amazon EC2 instances to
accommodate increasing load on your application. If the load on your application decreases,
Amazon EC2 Auto Scaling stops instances, but always leaves at least one instance running.

The software stack running on the Amazon EC2 instances is dependent on the container type.
A container type defines the infrastructure topology and software stack to be used for that
environment. For example, an Elastic Beanstalk environment with an Apache Tomcat container uses
the Amazon Linux operating system, Apache web server, and Apache Tomcat software. For a list of
supported container types, see Elastic Beanstalk supported platforms. Each Amazon EC2 instance
that runs your application uses one of these container types. In addition, a software component
called the host manager (HM) runs on each Amazon EC2 instance. The host manager is responsible
for the following:

• Deploying the application

• Aggregating events and metrics for retrieval via the console, the API, or the command line

• Generating instance-level events

• Monitoring the application log files for critical errors

• Monitoring the application server

• Patching instance components

• Rotating your application's log files and publishing them to Amazon S3

Web server environments 145

http://www.amazonaws.cn/route53/
http://www.amazonaws.cn/route53/

Amazon Elastic Beanstalk Developer Guide

The host manager reports metrics, errors and events, and server instance status, which are
available via the Elastic Beanstalk console, APIs, and CLIs.

The Amazon EC2 instances shown in the diagram are part of one security group. A security group
defines the firewall rules for your instances. By default, Elastic Beanstalk defines a security
group, which allows everyone to connect using port 80 (HTTP). You can define more than one
security group. For example, you can define a security group for your database server. For more
information about Amazon EC2 security groups and how to configure them for your Elastic
Beanstalk application, see EC2 security groups.

Elastic Beanstalk worker environments

Amazon resources created for a worker environment tier include an Auto Scaling group, one or
more Amazon EC2 instances, and an IAM role. For the worker environment tier, Elastic Beanstalk
also creates and provisions an Amazon SQS queue if you don’t already have one. When you launch
a worker environment, Elastic Beanstalk installs the necessary support files for your programming
language of choice and a daemon on each EC2 instance in the Auto Scaling group. The daemon
reads messages from an Amazon SQS queue. The daemon sends data from each message that
it reads to the web application running in the worker environment for processing. If you have
multiple instances in your worker environment, each instance has its own daemon, but they all read
from the same Amazon SQS queue.

The following diagram shows the different components and their interactions across environments
and Amazon services.

Worker environments 146

Amazon Elastic Beanstalk Developer Guide

Amazon CloudWatch is used for alarms and health monitoring. For more information, go to Basic
health reporting.

For details about how the worker environment tier works, see Elastic Beanstalk worker
environments.

Design considerations for your Elastic Beanstalk applications

Because applications deployed using Amazon Elastic Beanstalk run on Amazon Web Services Cloud
resources, you should keep several configuration factors in mind to optimize your applications:
scalability, security, persistent storage, fault tolerance, content delivery, software updates and
patching, and connectivity. Each of these are covered separately in this topic. For a comprehensive
list of technical Amazon whitepapers, covering topics such as architecture, as well as security and
economics, see Amazon Cloud Computing Whitepapers.

Design considerations 147

http://www.amazonaws.cn/whitepapers/

Amazon Elastic Beanstalk Developer Guide

Scalability

When operating in a physical hardware environment, in contrast to a cloud environment, you can
approach scalability in one of either two ways. Either you can scale up through vertical scaling
or you can scale out through horizontal scaling. The scale-up approach requires that you invest
in powerful hardware, which can support the increasing demands of your business. The scale-
out approach requires that you follow a distributed model of investment. As such, your hardware
and application acquisitions can be more targeted, your data sets are federated, and your design
is service oriented. The scale-up approach can be expensive, and there's also the risk that your
demand could outgrow your capacity. In this regard, the scale-out approach is usually more
effective. However, when using it, you must be able to predict demand at regular intervals and
deploy infrastructure in chunks to meet that demand. As a result, this approach can often lead to
unused capacity and might require some careful monitoring.

By migrating to the cloud, you can make your infrastructure align well with demand by leveraging
the elasticity of cloud. Elasticity helps to streamline resource acquisition and release. With it,
your infrastructure can rapidly scale in and scale out as demand fluctuates. To use it, configure
your Auto Scaling settings to scale up or down based on the metrics for the resources in your
environment. For example, you can set metrics such as server utilization or network I/O. You can
use Auto Scaling for compute capacity to be added automatically whenever usage rises and for it
to be removed whenever usage drops. You can publish system metrics (for example, CPU, memory,
disk I/O, and network I/O) to Amazon CloudWatch. Then, you can use CloudWatch to configure
alarms to trigger Auto Scaling actions or send notifications based on these metrics. For instructions
on how to configure Auto Scaling, see Auto Scaling your Elastic Beanstalk environment instances.

We also recommend that you design all your Elastic Beanstalk applications as stateless as possible,
using loosely coupled, fault-tolerant components that can be scaled out as needed. For more
information about designing scalable application architectures for Amazon, see Amazon Well-
Architected Framework.

Security

Security on Amazon is a shared responsibility. Amazon Web Services protects the physical
resources in your environment and ensures that the Cloud is a safe place for you to run
applications. You're responsible for the security of data coming in and out of your Elastic Beanstalk
environment and the security of your application.

Configure SSL to protect information that flows between your application and clients. To configure
SSL, you need a free certificate from Amazon Certificate Manager (ACM). If you already have

Scalability 148

https://docs.amazonaws.cn/wellarchitected/latest/framework/welcome.html
https://docs.amazonaws.cn/wellarchitected/latest/framework/welcome.html
http://www.amazonaws.cn/compliance/shared-responsibility-model/

Amazon Elastic Beanstalk Developer Guide

a certificate from an external certificate authority (CA), you can use ACM to import that your
certificate. Otherwise, you can import it using the Amazon CLI.

If ACM isn't available in your Amazon Web Services Region, you can purchase a certificate from
an external CA, such as VeriSign or Entrust. Then, use the Amazon Command Line Interface
(Amazon CLI) to upload a third-party or self-signed certificate and private key to Amazon Identity
and Access Management (IAM). The public key of the certificate authenticates your server to the
browser. It also serves as the basis for creating the shared session key that encrypts the data in
both directions. For instructions on how to create, upload, and assign an SSL certificate to your
environment, see Configuring HTTPS for your Elastic Beanstalk environment.

When you configure an SSL certificate for your environment, data is encrypted between the client
and the Elastic Load Balancing load balancer for your environment. By default, encryption is
terminated at the load balancer, and traffic between the load balancer and Amazon EC2 instances
is unencrypted.

Persistent storage

Elastic Beanstalk applications run on Amazon EC2 instances that have no persistent local storage.
When the Amazon EC2 instances terminate, the local file system isn't saved. New Amazon EC2
instances start with a default file system. We recommend that you configure your application to
store data in a persistent data source. Amazon offers a number of persistent storage services that
you can use for your application. The following table lists them.

Storage service Service documentation Elastic Beanstalk integration

Amazon S3 Amazon Simple Storage
Service Documentation

Using Elastic Beanstalk with
Amazon S3

Amazon Elastic File
System

Amazon Elastic File System
Documentation

Using Elastic Beanstalk with
Amazon Elastic File System

Amazon Elastic Block
Store

Amazon Elastic Block Store

Feature Guide: Elastic Block
Store

Amazon DynamoDB Amazon DynamoDB
Documentation

Using Elastic Beanstalk with
Amazon DynamoDB

Persistent storage 149

https://docs.amazonaws.cn/general/latest/gr/acm.html
http://www.amazonaws.cn/s3/
http://www.amazonaws.cn/documentation/s3/
http://www.amazonaws.cn/documentation/s3/
http://www.amazonaws.cn/efs/
http://www.amazonaws.cn/efs/
http://www.amazonaws.cn/documentation/efs/
http://www.amazonaws.cn/documentation/efs/
http://www.amazonaws.cn/ebs/
http://www.amazonaws.cn/ebs/
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AmazonEBS.html
http://www.amazonaws.cn/articles/1667
http://www.amazonaws.cn/articles/1667
http://www.amazonaws.cn/dynamodb/
http://www.amazonaws.cn/documentation/dynamodb/
http://www.amazonaws.cn/documentation/dynamodb/

Amazon Elastic Beanstalk Developer Guide

Storage service Service documentation Elastic Beanstalk integration

Amazon Relational
Database Service (RDS)

Amazon Relational Database
Service Documentation

Using Elastic Beanstalk with
Amazon RDS

Note

Elastic Beanstalk creates a webapp user for you to set up as the owner of application
directories on EC2 instances. For Amazon Linux 2 platform versions that are released on
or after Feburary 3, 2022, Elastic Beanstalk assigns the webapp user a uid (user id) and gid
(group id) value of 900 for new environments. It does the same for existing environments
following a platform version update. This approach keeps consistent access permission for
the webapp user to permanent file system storage.
In the unlikely situation that another user or process is already using 900, the operating
system defaults the webapp user uid and gid to another value. Run the Linux command
id webapp on your EC2 instances to verify the uid and gid values that are assigned to the
webapp user.

Fault tolerance

As a rule of thumb, you should be a pessimist when designing architecture for the cloud. Leverage
the elasticity that it offers. Always design, implement, and deploy for automated recovery from
failure. Use multiple Availability Zones for your Amazon EC2 instances and for Amazon RDS.
Availability Zones are conceptually like logical data centers. Use Amazon CloudWatch to get more
visibility into the health of your Elastic Beanstalk application and take appropriate actions in case
of hardware failure or performance degradation. Configure your Auto Scaling settings to maintain
your fleet of Amazon EC2 instances at a fixed size so that unhealthy Amazon EC2 instances are
replaced by new ones. If you're using Amazon RDS, then set the retention period for backups, so
that Amazon RDS can perform automated backups.

Content delivery

When users connect to your website, their requests may be routed through a number of individual
networks. As a result, users might experience poor performance due to high latency. Amazon
CloudFront can help ameliorate latency issues by distributing your web content, such as images
and video, across a network of edge locations around the world. Users' requests are routed to the

Fault tolerance 150

http://www.amazonaws.cn/rds/
http://www.amazonaws.cn/rds/
http://www.amazonaws.cn/documentation/rds/
http://www.amazonaws.cn/documentation/rds/
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-02-03-linux.html#release-2022-02-03-linux.changes

Amazon Elastic Beanstalk Developer Guide

nearest edge location, so content is delivered with the best possible performance. CloudFront
works seamlessly with Amazon S3, which durably stores the original, definitive versions of your
files. For more information about Amazon CloudFront, see the Amazon CloudFront Developer
Guide.

Software updates and patching

Amazon Elastic Beanstalk regularly releases platform updates to provide fixes, software updates,
and new features. Elastic Beanstalk offers several options to handle platform updates. With
managed platform updates your environment automatically upgrades to the latest version of a
platform during a scheduled maintenance window while your application remains in service. For
environments created on November 25, 2019 or later using the Elastic Beanstalk console, managed
updates are enabled by default whenever possible. You can also manually initiate updates using
the Elastic Beanstalk console or EB CLI.

Connectivity

Elastic Beanstalk needs to be able to connect to the instances in your environment to complete
deployments. When you deploy an Elastic Beanstalk application inside an Amazon VPC, the
configuration required to enable connectivity depends on the type of Amazon VPC environment
you create:

• For single-instance environments, no additional configuration is required. This is because, with
these environments, Elastic Beanstalk assigns each Amazon EC2 instance a public Elastic IP
address that enables the instance to communicate directly with the internet.

• For load-balanced, scalable environments in an Amazon VPC with both public and private
subnets, you must do the following:

• Create a load balancer in the public subnet to route inbound traffic from the internet to the
Amazon EC2 instances.

• Create a network address translation (NAT) device to route outbound traffic from the Amazon
EC2 instances in private subnets to the internet.

• Create inbound and outbound routing rules for the Amazon EC2 instances inside the private
subnet.

• If you're using a NAT instance, configure the security groups for the NAT instance and Amazon
EC2 instances to enable internet communication.

• For a load-balanced, scalable environment in an Amazon VPC that has one public subnet, no
additional configuration is required. This is because, with this environment, your Amazon EC2

Software updates and patching 151

https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/Introduction.html

Amazon Elastic Beanstalk Developer Guide

instances are configured with a public IP address that enables the instances to communicate with
the internet.

For more information about using Elastic Beanstalk with Amazon VPC, see Using Elastic Beanstalk
with Amazon VPC.

Connectivity 152

Amazon Elastic Beanstalk Developer Guide

Managing Elastic Beanstalk applications

This chapter describes how to manage and configure your Elastic Beanstalk applications. The
first step in using Amazon Elastic Beanstalk is to create an application, which represents your
web application in Amazon. In Elastic Beanstalk an application serves as a container for the
environments that run your web app and for versions of your web app's source code, saved
configurations, logs, and other artifacts that you create while using Elastic Beanstalk.

To create an application

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose Create application.

3. Use the on-screen form to provide an application name.

4. (Optional) Provide a description, and add tag keys and values.

5. Choose Create.

After creating the application, the console prompts you to create an environment for it. For
detailed information about all of the options available, see Creating an Elastic Beanstalk
environment.

If you no longer need an application, you can delete it.

Warning

Deleting an application terminates all associated environments and deletes all application
versions and saved configurations that belong to the application.

To delete an application

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then select your application on the list.

3. Choose Actions, and then choose Delete application.

153

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Topics

• Elastic Beanstalk application management console

• Managing application versions

• Create an Elastic Beanstalk application source bundle

• Using the EB CLI with Amazon CodeBuild

• Tagging applications

• Tagging Elastic Beanstalk application resources

Elastic Beanstalk application management console

This topic explains how you can use the Amazon Elastic Beanstalk console to manage applications,
application versions, and saved configurations.

To access the application management console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

The application overview page shows a list with an overview of all environments associated
with the application.

3. You have a few ways to continue:

a. From the Actions drop-down menu, you can choose one of the application management
actions: Create environment, Delete application, View application versions, View saved
configurations, Restore terminated environment.

To launch an environment in this application, you can directly choose Create
environment. For details, see the section called “Creating environments”.

b. The page lists the environment name next to applications that are deployed to an
environment. Choose an environment name to go to the environment management
console for that environment, where you can configure, monitor, or manage the
environment.

c. When you select an application from the list, the left navigation pane lists the application.

Application management console 154

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Choose Application versions following the application name in the navigation pane
to view and manage the application versions for your application.

An application version is an uploaded version of your application code. You
can upload new versions, deploy an existing version to any of the application's
environments, or delete old versions. For more information, see Managing application
versions.

• Choose Saved configurations following the application name in the navigation pane
to view and manage configurations saved from running environments.

A saved configuration is a collection of settings that you can use to restore an
environment's settings to a previous state, or to create an environment with the same
settings. For more information see Using Elastic Beanstalk saved configurations.

Managing application versions

This topic explains application versions and how to create and manage them.

Elastic Beanstalk creates an application version whenever you upload source code. This usually
occurs when you create an environment or upload and deploy code using the environment
management console or EB CLI. Elastic Beanstalk deletes these application versions according to
the application's lifecycle policy and when you delete the application. For details about application
lifecycle policy, see Configuring application version lifecycle settings.

You can also upload a source bundle without deploying it from the application management
console or with the EB CLI command eb appversion. Elastic Beanstalk stores source bundles in
Amazon Simple Storage Service (Amazon S3) and doesn't automatically delete them.

You can apply tags to an application version when you create it, and edit tags of existing
application versions. For details, see Tagging application versions.

Creating application versions

You can also create a new application version using the EB CLI. For more information, see eb
appversion in the EB CLI commands chapter.

Managing application versions 155

Amazon Elastic Beanstalk Developer Guide

Note

Over time, your application can accumulate many application versions. To save storage
space and avoid hitting the application version quota, it's a good idea to delete application
versions that you no longer need.

The file you specify in the following procedure is associated with your application. You can deploy
the application version to a new or existing environment.

To create a new application version

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Choose Upload. Use the on-screen form to upload your application's source bundle.

Note

The source bundle's file size limit is 500 MB.

5. Optionally, provide a brief description, and add tag keys and values.

6. Choose Upload.

Deleting application versions

You can also delete an application version using the EB CLI. For more information, see eb
appversion in the EB CLI commands chapter.

Note

Deleting an application version doesn't affect environments currently running that version.

Deleting application versions 156

https://docs.amazonaws.cn/general/latest/gr/aws_service_limits.html#limits_elastic_beanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

You can also configure Elastic Beanstalk to delete old versions automatically by configuring
application version lifecycle settings. If you configure these lifecycle settings, they're applied when
you create new application versions. For example, if you configure a maximum of 25 application
versions, Elastic Beanstalk deletes the oldest version when you upload a 26th version. If you set
a maximum age of 90 days, any versions older than 90 days are deleted when you upload a new
version. For details, see the section called “Version lifecycle”.

To delete an application version

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Select one or more application versions that you want to delete.

5. Choose Actions, then choose Delete.

6. (Optional) To leave the application source bundle for these application versions in your
Amazon Simple Storage Service (Amazon S3) bucket, clear the box for Delete versions from
Amazon S3.

7. Choose Delete.

If you don't choose to delete the source bundle from Amazon S3, Elastic Beanstalk still deletes the
version from its records. However, the source bundle is left in your Elastic Beanstalk storage bucket.
The application version quota applies only to versions Elastic Beanstalk tracks. Therefore, you can
delete versions to stay within the quota, but retain all source bundles in Amazon S3.

Note

The application version quota doesn't apply to source bundles, but you might still incur
Amazon S3 charges, and retain personal information beyond the time you need it. Elastic
Beanstalk never deletes source bundles automatically. You should delete source bundles
when you no longer need them.

Deleting application versions 157

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Configuring application version lifecycle settings

This topic explains the policies and quotas that Elastic Beanstalk applies to the versions of your
application in a given environment, including how long an application version remains in an
environment.

Each time you upload a new version of your application with the Elastic Beanstalk console or the
EB CLI, Elastic Beanstalk creates an application version. If you don't delete versions that you no
longer use, you will eventually reach the application version quota and be unable to create new
versions of that application.

You can avoid hitting the quota by applying an application version lifecycle policy to your
applications. A lifecycle policy tells Elastic Beanstalk to delete application versions that are old,
or to delete application versions when the total number of versions for an application exceeds a
specified number.

Elastic Beanstalk applies an application's lifecycle policy each time you create a new application
version, and deletes up to 100 versions each time the lifecycle policy is applied. Elastic Beanstalk
deletes old versions after creating the new version, and does not count the new version towards
the maximum number of versions defined in the policy.

Elastic Beanstalk does not delete application versions that are currently being used by an
environment, or application versions deployed to environments that were terminated less than ten
weeks before the policy was triggered.

The application version quota applies across all applications in a region. If you have several
applications, configure each application with a lifecycle policy appropriate to avoid reaching the
quota. For example, if you have 10 applications in a region and the quota is 1,000 application
versions, consider setting a lifecycle policy with a quota of 99 application versions for all
applications, or set other values in each application as long as the total is less than 1,000
application versions. Elastic Beanstalk only applies the policy if the application version creation
succeeds, so if you have already reached the quota, you must delete some versions manually prior
to creating a new version.

By default, Elastic Beanstalk leaves the application version's source bundle in Amazon S3 to
prevent loss of data. You can delete the source bundle to save space.

You can set the lifecycle settings through the Elastic Beanstalk CLI and APIs. See eb
appversion, CreateApplication (using the ResourceLifecycleConfig parameter), and
UpdateApplicationResourceLifecycle for details.

Version lifecycle 158

https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html#limits_elastic_beanstalk
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_CreateApplication.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateApplicationResourceLifecycle.html

Amazon Elastic Beanstalk Developer Guide

Setting the application lifecycle settings in the console

You can specify the lifecycle settings in the Elastic Beanstalk console.

To specify your application lifecycle settings

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Choose Settings.

5. Use the on-screen form to configure application lifecycle settings.

6. Choose Save.

On the settings page, you can do the following.

• Configure lifecycle settings based on the total count of application versions or the age of
application versions.

• Specify whether to delete the source bundle from S3 when the application version is deleted.

• Specify the service role under which the application version is deleted. To include all permissions
required for version deletion, choose the default Elastic Beanstalk service role, named aws-
elasticbeanstalk-service-role, or another service role using the Elastic Beanstalk
managed service policies. For more information, see Managing Elastic Beanstalk service roles.

Tagging application versions

This topic explains the benefits of tagging your Elastic Beanstalk application versions and how to
manage the tags.

You can apply tags to your Amazon Elastic Beanstalk application versions. Tags are key-value pairs
associated with Amazon resources. For information about Elastic Beanstalk resource tagging, use
cases, tag key and value constraints, and supported resource types, see Tagging Elastic Beanstalk
application resources.

Tagging application versions 159

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

You can specify tags when you create an application version. In an existing application version, you
can add or remove tags, and update the values of existing tags. You can add up to 50 tags to each
application version.

Adding tags during application version creation

When you use the Elastic Beanstalk console to create an environment, and you choose to upload
a version of your application code, you can specify tag keys and values to associate with the new
application version.

You can also use the Elastic Beanstalk console to upload an application version without
immediately using it in an environment. You can specify tag keys and values when you upload an
application version.

With the Amazon CLI or other API-based clients, add tags by using the --tags parameter on the
create-application-version command.

$ aws elasticbeanstalk create-application-version \
 --tags Key=mytag1,Value=value1 Key=mytag2,Value=value2 \
 --application-name my-app --version-label v1

When you use the EB CLI to create or update an environment, an application version is created
from the code that you deploy. There isn't a direct way to tag an application version during its
creation through the EB CLI. See the following section to learn about adding tags to an existing
application version.

Managing tags of an existing application version

You can add, update, and delete tags in an existing Elastic Beanstalk application version.

To manage an application version's tags using the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Select the application version you want to manage.

Tagging application versions 160

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-application-version.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

5. Choose Actions, and then choose Manage tags.

6. Use the on-screen form to add, update, or delete tags.

7. To save the changes choose Apply at the bottom of the page.

If you use the EB CLI to update your application version, use eb tags to add, update, delete, or list
tags.

For example, the following command lists the tags in an application version.

~/workspace/my-app$ eb tags --list --resource "arn:aws-cn:elasticbeanstalk:us-
west-2:my-account-id:applicationversion/my-app/my-version"

The following command updates the tag mytag1 and deletes the tag mytag2.

~/workspace/my-app$ eb tags --update mytag1=newvalue --delete mytag2 \
 --resource "arn:aws-cn:elasticbeanstalk:us-west-2:my-account-
id:applicationversion/my-app/my-version"

For a complete list of options and more examples, see eb tags.

With the Amazon CLI or other API-based clients, use the list-tags-for-resource command to list the
tags of an application version.

$ aws elasticbeanstalk list-tags-for-resource --resource-arn "arn:aws-
cn:elasticbeanstalk:us-west-2:my-account-id:applicationversion/my-app/my-version"

Use the update-tags-for-resource command to add, update, or delete tags in an application
version.

$ aws elasticbeanstalk update-tags-for-resource \
 --tags-to-add Key=mytag1,Value=newvalue --tags-to-remove mytag2 \
 --resource-arn "arn:aws-cn:elasticbeanstalk:us-west-2:my-account-
id:applicationversion/my-app/my-version"

Specify both tags to add and tags to update in the --tags-to-add parameter of update-tags-
for-resource. A nonexisting tag is added, and an existing tag's value is updated.

Tagging application versions 161

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/list-tags-for-resource.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-tags-for-resource.html

Amazon Elastic Beanstalk Developer Guide

Note

To use some of the EB CLI and Amazon CLI commands with an Elastic Beanstalk application
version, you need the application version's ARN. You can retrieve the ARN by using the
following command.

$ aws elasticbeanstalk describe-application-versions --application-name my-app
 --version-label my-version

Create an Elastic Beanstalk application source bundle

This topic explains how to upload your application source files to Elastic Beanstalk in a source
bundle. It explains the requirements of a source bundle, the structure, and the approaches to
create one.

When you use the Amazon Elastic Beanstalk console to deploy a new application or an application
version, you'll need to upload the files for the application in a source bundle. Your source bundle
must meet the following requirements:

• Consist of a single ZIP file or WAR file (you can include multiple WAR files inside your ZIP file)

• Not exceed 500 MB

• Not include a parent folder or top-level directory (subdirectories are fine)

If you want to deploy a worker application that processes periodic background tasks, your
application source bundle must also include a cron.yaml file. For more information, see Periodic
tasks.

If you are deploying your application with the Elastic Beanstalk Command Line Interface (EB CLI),
the Amazon Toolkit for Eclipse, or the Amazon Toolkit for Visual Studio, the ZIP or WAR file will
automatically be structured correctly. For more information, see Setting up the EB command line
interface (EB CLI) to manage Elastic Beanstalk, Deploying Java applications with Elastic Beanstalk,
and The Amazon Toolkit for Visual Studio.

Sections

• Creating a source bundle from the command line

• Creating a source bundle with Git

Create a source bundle 162

Amazon Elastic Beanstalk Developer Guide

• Zipping files in Mac OS X Finder or Windows explorer

• Creating a source bundle for a .NET application

• Testing your source bundle

Creating a source bundle from the command line

Create a source bundle using the zip command. To include hidden files and folders, use a pattern
like the following.

~/myapp$ zip ../myapp.zip -r * .[^.]*
 adding: app.js (deflated 63%)
 adding: index.js (deflated 44%)
 adding: manual.js (deflated 64%)
 adding: package.json (deflated 40%)
 adding: restify.js (deflated 85%)
 adding: .ebextensions/ (stored 0%)
 adding: .ebextensions/xray.config (stored 0%)

This ensures that Elastic Beanstalk configuration files and other files and folders that start with a
period are included in the archive.

For Tomcat web applications, use jar to create a web archive.

~/myapp$ jar -cvf myapp.war .

The above commands include hidden files that may increase your source bundle size unnecessarily.
For more control, use a more detailed file pattern, or create your source bundle with Git.

Creating a source bundle with Git

If you're using Git to manage your application source code, use the git archive command to
create your source bundle.

$ git archive -v -o myapp.zip --format=zip HEAD

git archive only includes files that are stored in git, and excludes ignored files and git files. This
helps keep your source bundle as small as possible. For more information, go to the git-archive
manual page.

Creating a source bundle from the command line 163

http://git-scm.com/docs/git-archive
http://git-scm.com/docs/git-archive

Amazon Elastic Beanstalk Developer Guide

Zipping files in Mac OS X Finder or Windows explorer

When you create a ZIP file in Mac OS X Finder or Windows Explorer, make sure you zip the files and
subfolders themselves, rather than zipping the parent folder.

Note

The graphical user interface (GUI) on Mac OS X and Linux-based operating systems does
not display files and folders with names that begin with a period (.). Use the command line
instead of the GUI to compress your application if the ZIP file must include a hidden folder,
such as .ebextensions. For command line procedures to create a ZIP file on Mac OS X or
a Linux-based operating system, see Creating a source bundle from the command line.

Example

Suppose you have a Python project folder labeled myapp, which includes the following files and
subfolders:

myapplication.py
README.md
static/
static/css
static/css/styles.css
static/img
static/img/favicon.ico
static/img/logo.png
templates/
templates/base.html
templates/index.html

As noted in the list of requirements above, your source bundle must be compressed without a
parent folder, so that its decompressed structure does not include an extra top-level directory.
In this example, no myapp folder should be created when the files are decompressed (or, at the
command line, no myapp segment should be added to the file paths).

This sample file structure is used throughout this topic to illustrate how to zip files.

Zipping files in Mac OS X Finder or Windows explorer 164

Amazon Elastic Beanstalk Developer Guide

Creating a source bundle for a .NET application

If you use Visual Studio, you can use the deployment tool included in the Amazon Toolkit for Visual
Studio to deploy your .NET application to Elastic Beanstalk. For more information, see Deploying
Elastic Beanstalk applications in .NET using the deployment tool.

If you need to manually create a source bundle for your .NET application, you cannot simply create
a ZIP file that contains the project directory. You must create a web deployment package for your
project that is suitable for deployment to Elastic Beanstalk. There are several methods you can use
to create a deployment package:

• Create the deployment package using the Publish Web wizard in Visual Studio. For more
information, go to How to: Create a Web Deployment Package in Visual Studio.

Important

When creating the web deployment package, you must start the Site name with
Default Web Site.

• If you have a .NET project, you can create the deployment package using the msbuild command
as shown in the following example.

Important

The DeployIisAppPath parameter must begin with Default Web Site.

C:/> msbuild <web_app>.csproj /t:Package /p:DeployIisAppPath="Default Web Site"

• If you have a website project, you can use the IIS Web Deploy tool to create the deployment
package. For more information, go to Packaging and Restoring a Web site.

Important

The apphostconfig parameter must begin with Default Web Site.

Creating a source bundle for a .NET application 165

http://msdn.microsoft.com/en-us/library/dd465323.aspx
http://www.iis.net/learn/publish/using-web-deploy/packaging-and-restoring-a-web-site

Amazon Elastic Beanstalk Developer Guide

If you are deploying multiple applications or an ASP.NET Core application, put your
.ebextensions folder in the root of the source bundle, side by side with the application bundles
and manifest file:

~/workspace/source-bundle/
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- AspNetCore101HelloWorld.zip
|-- AspNetCoreHelloWorld.zip
|-- aws-windows-deployment-manifest.json
`-- VS2015AspNetWebApiApp.zip

Testing your source bundle

You may want to test your source bundle locally before you upload it to Elastic Beanstalk. Because
Elastic Beanstalk essentially uses the command line to extract the files, it's best to do your tests
from the command line rather than with a GUI tool.

Ensure that the decompressed files appear in the same folder as the archive itself, rather than in a
new top-level folder or directory.

Using the EB CLI with Amazon CodeBuild

Amazon CodeBuild compiles your source code, runs unit tests, and produces artifacts that are ready
to deploy. You can use CodeBuild together with the EB CLI to automate building your application
from its source code. Environment creation and each deployment thereafter start with a build step,
and then deploy the resulting application.

Note

Some regions don't offer CodeBuild. The integration between Elastic Beanstalk and
CodeBuild doesn't work in these regions.
For information about the Amazon services offered in each region, see Region Table.

Testing your source bundle 166

https://docs.amazonaws.cn/codebuild/latest/userguide/
http://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/

Amazon Elastic Beanstalk Developer Guide

Creating an application

To create an Elastic Beanstalk application that uses CodeBuild

1. Include a CodeBuild build specification file, buildspec.yml, in your application folder.

2. Add an eb_codebuild_settings entry with options specific to Elastic Beanstalk to the file.

3. Run eb init in the folder.

Note

Do not use the period (.) or space () characters in Application name when you use the
EB CLI with CodeBuild.

Elastic Beanstalk extends the CodeBuild build specification file format to include the following
additional settings:

eb_codebuild_settings:
 CodeBuildServiceRole: role-name
 ComputeType: size
 Image: image
 Timeout: minutes

CodeBuildServiceRole

The ARN or name of the Amazon Identity and Access Management (IAM) service role that
CodeBuild can use to interact with dependent Amazon services on your behalf. This value is
required. If you omit it, any subsequent eb create or eb deploy command fails.

To learn more about creating a service role for CodeBuild, see Create a CodeBuild Service Role
in the Amazon CodeBuild User Guide.

Note

You also need permissions to perform actions in CodeBuild itself. The Elastic Beanstalk
AdministratorAccess-AWSElasticBeanstalk managed user policy includes all the
required CodeBuild action permissions. If you're not using the managed policy, be sure
to allow the following permissions in your user policy.

Creating an application 167

https://docs.amazonaws.cn/codebuild/latest/userguide/build-spec-ref.html
https://docs.amazonaws.cn/codebuild/latest/userguide/build-spec-ref.html
https://docs.amazonaws.cn/codebuild/latest/userguide/setting-up.html#setting-up-service-role

Amazon Elastic Beanstalk Developer Guide

 "codebuild:CreateProject",
 "codebuild:DeleteProject",
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild"

For details, see Managing Elastic Beanstalk user policies.

ComputeType

The amount of resources used by the Docker container in the CodeBuild build
environment. Valid values are BUILD_GENERAL1_SMALL, BUILD_GENERAL1_MEDIUM, and
BUILD_GENERAL1_LARGE.

Image

The name of the Docker Hub or Amazon ECR image that CodeBuild uses for the build
environment. This Docker image should contain all the tools and runtime libraries required
to build your code, and should match your application's target platform. CodeBuild manages
and maintains a set of images specifically meant to be used with Elastic Beanstalk. It is
recommended that you use one of them. For details, see Docker Images Provided by CodeBuild
in the Amazon CodeBuild User Guide.

The Image value is optional. If you omit it, the eb init command attempts to choose an image
that best matches your target platform. In addition, if you run eb init in interactive mode and
it fails to choose an image for you, it prompts you to choose one. At the end of a successful
initialization, eb init writes the chosen image into the buildspec.yml file.

Timeout

The duration, in minutes, that the CodeBuild build runs before timing out. This value is optional.
For details about valid and default values, see Create a Build Project in CodeBuild.

Note

This timeout controls the maximum duration for a CodeBuild run, and the EB CLI also
respects it as part of its first step to create an application version. It's distinct from
the value you can specify with the --timeout option of the eb create or eb deploy

Creating an application 168

https://docs.amazonaws.cn/codebuild/latest/userguide/build-env-ref-available.html
https://docs.amazonaws.cn/codebuild/latest/userguide/create-project.html

Amazon Elastic Beanstalk Developer Guide

commands. The latter value controls the maximum duration that for EB CLI to wait for
environment creation or update.

Building and deploying your application code

Whenever your application code needs to be deployed, the EB CLI uses CodeBuild to run a build,
then deploys the resulting build artifacts to your environment. This happens when you create an
Elastic Beanstalk environment for your application using the eb create command, and each time
you later deploy code changes to the environment using the eb deploy command.

If the CodeBuild step fails, environment creation or deployment doesn't start.

Tagging applications

This topic explains the benefits of tagging your Elastic Beanstalk applications. It also provides
instructions to create and manage application tags. Tags are key-value pairs associated with
Amazon resources. For information about Elastic Beanstalk resource tagging, use cases, tag key
and value constraints, and supported resource types, see Tagging Elastic Beanstalk application
resources.

You can specify tags when you create an application. In an existing application, you can add or
remove tags, and update the values of existing tags. You can add up to 50 tags to each application.

Adding tags during application creation

When you use the Elastic Beanstalk console to create an application, you can specify tag keys and
values in the Create New Application dialog box.

If you use the EB CLI to create an application, use the --tags option with eb init to add tags.

~/workspace/my-app$ eb init --tags mytag1=value1,mytag2=value2

With the Amazon CLI or other API-based clients, add tags by using the --tags parameter on the
create-application command.

$ aws elasticbeanstalk create-application \
 --tags Key=mytag1,Value=value1 Key=mytag2,Value=value2 \
 --application-name my-app --version-label v1

Building and deploying your application code 169

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-application.html

Amazon Elastic Beanstalk Developer Guide

Managing tags of an existing application

You can add, update, and delete tags in an existing Elastic Beanstalk application.

To manage an application's tags in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. Choose Actions, and then choose Manage tags.

4. Use the on-screen form to add, update, or delete tags.

5. To save the changes choose Apply at the bottom of the page.

If you use the EB CLI to update your application, use eb tags to add, update, delete, or list tags.

For example, the following command lists the tags in an application.

~/workspace/my-app$ eb tags --list --resource "arn:aws-cn:elasticbeanstalk:us-
west-2:my-account-id:application/my-app"

The following command updates the tag mytag1 and deletes the tag mytag2.

~/workspace/my-app$ eb tags --update mytag1=newvalue --delete mytag2 \
 --resource "arn:aws-cn:elasticbeanstalk:us-west-2:my-account-id:application/my-
app"

For a complete list of options and more examples, see eb tags.

With the Amazon CLI or other API-based clients, use the list-tags-for-resource command to list the
tags of an application.

$ aws elasticbeanstalk list-tags-for-resource --resource-arn "arn:aws-
cn:elasticbeanstalk:us-west-2:my-account-id:application/my-app"

Use the update-tags-for-resource command to add, update, or delete tags in an application.

$ aws elasticbeanstalk update-tags-for-resource \

Managing tags of an existing application 170

https://console.amazonaws.cn/elasticbeanstalk
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/list-tags-for-resource.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-tags-for-resource.html

Amazon Elastic Beanstalk Developer Guide

 --tags-to-add Key=mytag1,Value=newvalue --tags-to-remove mytag2 \
 --resource-arn "arn:aws-cn:elasticbeanstalk:us-west-2:my-account-
id:application/my-app"

Specify both tags to add and tags to update in the --tags-to-add parameter of update-tags-
for-resource. A nonexisting tag is added, and an existing tag's value is updated.

Note

To use some of the EB CLI and Amazon CLI commands with an Elastic Beanstalk
application, you need the application's ARN. You can retrieve the ARN by using the
following command.

$ aws elasticbeanstalk describe-applications --application-names my-app

Tagging Elastic Beanstalk application resources

This topic explains the benefits of using tags with your Elastic Beanstalk application resources
along with the constraints of doing so. It also explains how to create and manage tags for
application resources.

You can apply tags to resources of your Amazon Elastic Beanstalk applications. Tags are key-
value pairs associated with Amazon resources. Tags can help you categorize resources. They're
particularly useful if you manage many resources as part of multiple Amazon applications.

Here are some ways to use tagging with Elastic Beanstalk resources:

• Deployment stages – Identify resources associated with different stages of your application, such
as development, beta, and production.

• Cost allocation – Use cost allocation reports to track your usage of Amazon resources associated
with various expense accounts. The reports include both tagged and untagged resources, and
they aggregate costs according to tags. For information about how cost allocation reports use
tags, see Use Cost Allocation Tags for Custom Billing Reports in the Amazon Billing and Cost
Management User Guide.

• Access control – Use tags to manage permissions to requests and resources. For example, a user
who can only create and manage beta environments should only have access to beta stage
resources. For details, see Using tags to control access to Elastic Beanstalk resources.

Tagging resources 171

https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/allocation.html

Amazon Elastic Beanstalk Developer Guide

You can add up to 50 tags to each resource. Environments are slightly different: Elastic Beanstalk
adds three default system tags to environments, and you can't edit or delete these tags. In addition
to the default tags, you can add up to 47 additional tags to each environment.

The following constraints apply to tag keys and values:

• Keys and values can contain letters, numbers, white space, and the following symbols: _ . : /
= + - @

• Keys can contain up to 127 characters. Values can contain up to 255 characters.

Note

These length limits are for Unicode characters in UTF-8. For other multibyte encodings,
the limits might be lower.

• Keys are case sensitive.

• Keys cannot begin with aws: or elasticbeanstalk:.

Resources you can tag

The following are the types of Elastic Beanstalk resources that you can tag, and links to specific
topics about managing tags for each of them:

• Applications

• Environments

• Application versions

• Saved configurations

Tag propagation to launch templates

Elastic Beanstalk provides an option to enable the propagation of environment tags to launch
templates. This option provides continued support for tag-based access control (TBAC) with launch
templates.

Resources you can tag 172

Amazon Elastic Beanstalk Developer Guide

Note

Launch configurations are being phased out and replaced by launch templates. For more
information, see Launch configurations in the Amazon EC2 Auto Scaling User Guide.

To prevent down-time of running EC2 instances Amazon CloudFormation doesn’t propagate
tags to existing launch templates. If there's a use case that requires tags for your environment’s
resources, you can enable Elastic Beanstalk to create launch templates with tags for these
resources. To do so, set the LaunchTemplateTagPropagationEnabled option in the
aws:autoscaling:launchconfiguration namespace to true. The default value is false.

The following configuration file example enables the propagation of tags to launch templates.

option_settings:
 aws:autoscaling:launchconfiguration:
 LaunchTemplateTagPropagationEnabled: true

Elastic Beanstalk can only propagate tags to launch templates for the following resources:

• EBS volumes

• EC2 instances

• EC2 network interfaces

• Amazon CloudFormation launch templates that define a resource

This constraint exists because CloudFormation only allows tags on template creation for specific
resources. For more information see TagSpecification in the Amazon CloudFormation User Guide.

Important

• Changing this option value from false to true for an existing environment may be a
breaking change for previously existing tags.

• When this feature is enabled, the propagation of tags will require EC2 replacement,
which can result in downtime. You can enable rolling updates to apply configuration
changes in batches and prevent downtime during the update process. For more
information, see Configuration changes.

Tag propagation to launch templates 173

https://docs.amazonaws.cn/autoscaling/ec2/userguide/launch-configurations.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-launchtemplate-tagspecification.html

Amazon Elastic Beanstalk Developer Guide

For more information about launch templates, see the following:

• Launch templates in the Amazon EC2 Auto Scaling User Guide

• Working with templates in the Amazon CloudFormation User Guide

• Elastic Beanstalk template snippets in the Amazon CloudFormation User Guide

Tag propagation to launch templates 174

https://docs.amazonaws.cn/autoscaling/ec2/userguide/launch-templates.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/quickref-elasticbeanstalk.html

Amazon Elastic Beanstalk Developer Guide

Creating environments in Elastic Beanstalk

This chapter describes how to create and manage your Elastic Beanstalk environments. This
introductory page provides an overview of updates, maintenance, and configurations that you'll
apply over time as your application and environment evolve.

Environment functions

You can create and manage separate environments for development, testing, and production use,
and you can deploy any version of your application to any environment. Environments can be long-
running or temporary. When you terminate an environment, you can save its configuration to
recreate it later.

Application deployments

As you develop your application, you will deploy it often, possibly to several different environments
for different purposes. Elastic Beanstalk lets you configure how deployments are performed. You
can deploy to all of the instances in your environment simultaneously, or split a deployment into
batches with rolling deployments.

Configuration changes

Configuration changes are processed separately from deployments, and have their own scope. For
example, if you change the type of the EC2 instances running your application, all of the instances
must be replaced. On the other hand, if you modify the configuration of the environment's load
balancer, that change can be made in-place without interrupting service or lowering capacity. You
can also apply configuration changes that modify the instances in your environment in batches
with rolling configuration updates.

Note

Modify the resources in your environment only by using Elastic Beanstalk. If you modify
resources using another service's console, CLI commands, or SDKs, Elastic Beanstalk won't
be able to accurately monitor the state of those resources, and you won't be able to save
the configuration or reliably recreate the environment. Out-of band-changes can also cause
issues when updating or terminating an environment.

Platform updates

175

Amazon Elastic Beanstalk Developer Guide

When you launch an environment, you choose a platform version. We update platforms
periodically with new platform versions to provide performance improvements and new features.
You can update your environment to the latest platform version at any time. See the Amazon
Elastic Beanstalk Platforms guide for a list of supported platforms and a platform version history
that includes the date ranges they were current.

Architecture options

As your application grows in complexity, you can split it into multiple components, each running
in a separate environment. For long-running workloads, you can launch worker environments that
process jobs from an Amazon Simple Queue Service (Amazon SQS) queue.

Topics

• Using the Elastic Beanstalk environment management console

• Creating an Elastic Beanstalk environment

• Managing multiple Elastic Beanstalk environments as a group with the EB CLI

• Deploying applications to Elastic Beanstalk environments

• Configuration changes

• Updating your Elastic Beanstalk environment's platform version

• Canceling environment configuration updates and application deployments

• Rebuilding Elastic Beanstalk environments

• Environment types

• Elastic Beanstalk worker environments

• Creating links between Elastic Beanstalk environments

• Recovering your Elastic Beanstalk environment from an invalid state

Using the Elastic Beanstalk environment management console

This section describes how you can manage your Elastic Beanstalk environment using the
environment management console. The console provides the capability to manage your
environment's configuration and perform common actions. These actions include restarting
the web servers running in your environment, cloning your environment, or rebuilding your
environment from scratch.

Topics

Environment management console 176

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history.html

Amazon Elastic Beanstalk Developer Guide

• Accessing the environment management console

• Environment overview pane

• Environment detail

• Environment actions

Accessing the environment management console

The following procedure provides steps to launch the environment management console.

If you're already logged in to the Elastic Beanstalk console, you can also launch the environment
management page from the Application management console. Select an environment from the list
to display the management console details for the selected environment.

To access the environment management console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

The following image illustrates the environment management console.

The top pane is the Environment overview page. It shows top-level information about your
environment.

Accessing the console 177

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

The bottom half of the page displays tabs that provide more detailed information. The Events tab
displays by default. The pages that are linked to the tabs, are also listed on the left navigation pane
under the environment.

The console's navigation pane shows the name of the application that's deployed to the
environment, with related application management pages. The environment name is also displayed
on the navigation page, followed by the environment management pages. The links listed under
the environment name also include Go to environment and Configuration, in addition to the
tabbed pages previously mentioned.

Environment overview pane

This topic describes the information that the Environment overview pane provides. It shows
top-level information about your environment and is located on the top half of the environment
management console.

The following image displays the Environment overview pane.

Health

The overall health of the environment. If the health of your environment degrades, the View
causes link displays next to the environment health. Select this link to view the Health tab with
more details.

Domain

The environment's Domain, or URL, is located in the upper portion of the Environment overview
page, below the environment's Health. This is the URL of the web application that the environment
is running. You can launch the application be selecting the URL.

Environment overview pane 178

Amazon Elastic Beanstalk Developer Guide

Environment id

The environment ID. This is an internal ID that's generated when the environment is created.

Application name

The name of the application that is deployed and running on your environment.

Running version

The name of the application version that is deployed and running on your environment. Choose
Upload and deploy to upload a source bundle and deploy it to your environment. This option
creates a new application version.

Platform

The name of the platform version running on your environment. Typically, this comprises the
architecture, operating system (OS), language, and application server (collectively known as the
platform branch), with a specific platform version number.

If your platform version is not the most recently available, then a status label displays next to it in
the Platform section. The Update label indicates that although the platform version is supported
a newer version is available. The platform version may also be labeled as Deprecated or Retired.
Select Change version to update your platform branch to a newer version. For more information
about the states of a platform version, see the Platform Branch section in the Elastic Beanstalk
platforms glossary. The previous image on this page illustrates the Update status label for the
given platform.

Environment detail

This topic describes the additional information that the environment management console
provides from the left navigation pane and the tabbed pages.

The following image illustrates the environment management console.

Environment detail 179

Amazon Elastic Beanstalk Developer Guide

The bottom half of the environment management console lists tabs that provide more detailed
and varied information about the environment. You can either select the tab page or the page label
from the left navigation pane.

From the left navigation pane of the console under the environment name, there are two choices
that are not in the tabbed pages. These are Go to environment and Configuration.

Note

Select Go to environment to launch your application.

Configuration

Use the Configuration page on the left navigation pane to view and update current configuration
settings for your environment and its resources. This includes networking configuration, database
configuration, load balancing, notifications, health monitoring settings, managed platform
update configuration, deployment configuration, instance log streaming, CloudWatch integration,
Amazon X-Ray, proxy server settings, environment properties, and platform specific options. Use
the settings on this page to customize the behavior of your environment during deployments,
enable additional features, and modify the instance type and other settings that you chose during
environment creation.

For more information, see Configuring Elastic Beanstalk environments.

Environment detail 180

Amazon Elastic Beanstalk Developer Guide

Events

The Events page shows the event stream for your environment. Elastic Beanstalk outputs event
messages whenever you interact with the environment, and when any of your environment's
resources are created or modified as a result.

For more information, see Viewing an Elastic Beanstalk environment's event stream.

Health

If enhanced health monitoring is enabled, this page lists the EC2 instances in your environment and
the live health information for each instance.

The Overall health page shows health data as an average for all of your environment’s instances
combined.

The Enhanced instance health pane shows live health information for each individual EC2 instance
in your environment. Enhanced health monitoring enables Elastic Beanstalk to closely monitor the
resources in your environment so that it can assess the health of your application more accurately.

When enhanced health monitoring is enabled, this page shows information about the requests
served by the instances in your environment and metrics from the operating system, including
latency, load, and CPU utilization.

For more information, see Enhanced health reporting and monitoring in Elastic Beanstalk.

Logs

The Logs page lets you retrieve logs from the EC2 instances in your environment. When you
request logs, Elastic Beanstalk sends a command to the instances, which then upload logs to
your Elastic Beanstalk storage bucket in Amazon S3. When you request logs on this page, Elastic
Beanstalk automatically deletes them from Amazon S3 after 15 minutes.

You can also configure your environment's instances to upload logs to Amazon S3 for permanent
storage after they have been rotated locally.

For more information, see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk
environment.

Environment detail 181

Amazon Elastic Beanstalk Developer Guide

Monitoring

The Monitoring page shows an overview of health information for your environment. This includes
the default set of metrics provided by Elastic Load Balancing and Amazon EC2, and graphs that
show how the environment's health has changed over time.

For more information, see Monitoring environment health in the Amazon management console.

Alarms

The Existing alarms page shows information about any alarms that you have configured for your
environment. You can use the options on this page to create or delete alarms.

For more information, see Manage alarms.

Managed updates

The Managed updates page shows information about upcoming and completed managed
platform updates and instance replacement.

The managed update feature lets you configure your environment to update to the latest platform
version automatically during a weekly maintenance window that you choose. In between platform
releases, you can choose to have your environment replace all of its Amazon EC2 instances during
the maintenance window. This can alleviate issues that occur when your application runs for
extended periods of time.

For more information, see Managed platform updates.

Tags

The Tags page shows the tags that Elastic Beanstalk applied to the environment when you created
it, and any tags that you added. You can add, edit, and delete custom tags. You can't edit or delete
the tags that Elastic Beanstalk applied.

Environment tags are applied to every resource that Elastic Beanstalk creates to support your
application.

For more information, see Tagging resources in your Elastic Beanstalk environments.

Environment detail 182

Amazon Elastic Beanstalk Developer Guide

Environment actions

This topic describes the common operations that you can select to perform on your environment
from the Actions drop-down menu on the environment management console.

The following image illustrates the environment management console. The Actions drop-down
menu is on the right side of the header that displays the environment name, next to the Refresh
button.

Note

Some actions are only available under certain conditions, remaining disabled until the right
conditions are met.

Load configuration

Load a previously saved configuration. Configurations are saved to your application and can
be loaded by any associated environment. If you've made changes to your environment's
configuration, you can load a saved configuration to undo those changes. You can also load
a configuration that you saved from a different environment running the same application to
propagate configuration changes between them.

Environment actions 183

Amazon Elastic Beanstalk Developer Guide

Save configuration

Save the current configuration of your environment to your application. Before you make changes
to your environment's configuration, save the current configuration so that you can roll back later,
if needed. You can also apply a saved configuration when you launch a new environment.

Swap environment Domains (URLs)

Swap the CNAME of the current environment with a new environment. After a CNAME swap, all
traffic to the application using the environment URL goes to the new environment. When you are
ready to deploy a new version of your application, you can launch a separate environment under
the new version. When the new environment is ready to start taking requests, perform a CNAME
swap to start routing traffic to the new environment. Doing this doesn't interrupt your services. For
more information, see Blue/Green deployments with Elastic Beanstalk.

Clone environment

Launch a new environment with the same configuration as your currently running environment.

Clone with latest platform

Clone your current environment with the latest version of the in-use Elastic Beanstalk platform.
This option is available only when a newer version of the current environment's platform is
available for use.

Abort current operation

Stop an in-progress environment update. Stopping an operation can cause some of the instances
in your environment to be in a different state than others, depending on how far the operation
progressed. This option is available only when your environment is being updated.

Restart app servers

Restart the web server that is running on your environment's instances. This option doesn't
terminate or restart any Amazon resources. If your environment is acting strangely in response to
some bad requests, restarting the application server can restore functionality temporarily while
you troubleshoot the root cause.

Environment actions 184

Amazon Elastic Beanstalk Developer Guide

Rebuild environment

Terminate all resources in the running environment and build a new environment with the
same settings. This operation takes several minutes, similar to the amount of time needed for
deploying a new environment from scratch. Any Amazon RDS instances that are running in your
environment's data tier are deleted during a rebuild. If you need the data, create a snapshot. You
can create a snapshot manually in the RDS console or configure your data tier's Deletion Policy to
create a snapshot automatically before deleting the instance. This is the default setting when you
create a data tier.

Terminate environment

Terminate all resources in the running environment and remove the environment from the
application. If you have an RDS instance that is running in a data tier and you need to retain
its data, make sure the database deletion policy is set to either Snapshot or Retain. For more
information, see Database lifecycle in the Configuring environments chapter of this guide.

Creating an Elastic Beanstalk environment

The following procedure launches a new environment running the default application. These steps
are simplified to get your environment up and running quickly, using default option values.

Note about permissions

Creating an environment requires the permissions in the Elastic Beanstalk full access
managed policy. See Elastic Beanstalk user policy for details.

To launch an environment with a sample application (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications. Select an existing application in the list. You can
also choose to create one, following the instructions in Managing applications .

3. On the application overview page, choose Create new environment.

The following image displays the application overview page.

Creating environments 185

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

This launches the Create environment wizard. The wizard provides a set of steps for you to
create a new environment.

4. For Environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

Note

The .NET on Windows Server platform doesn't support the worker environment tier.

The Application information fields default, based on the application that you previously
chose.

In the Environment information grouping the Environment name defaults, based on the
application name. If you prefer a different environment name you can enter another value in
the field. You can optionally enter a Domain name; otherwise Elastic Beanstalk autogenerates
a value. You can also optionally enter an Environment description.

5. For Platform, select the platform and platform branch that match the language your
application uses.

Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

6. For Application code, you have some choices for launching a sample application.

Creating environments 186

Amazon Elastic Beanstalk Developer Guide

• To launch the default sample application without supplying the source code, choose
Sample application. This action chooses the single page application that Elastic Beanstalk
provides for the platform you previously selected.

• If you downloaded a sample application from this guide or another source, do the
following steps.

a. Select Upload your code.

b. Next choose Local file, then under Upload application, select Choose file.

c. Your computer's operating system will present you with an interface to select the
local file that you downloaded. Select the source bundle file and continue.

7. For Presets, choose Single instance.

8. Choose Next.

9. The Configure service access page displays.

The following image illustrates the Configure service access page.

10. Choose a value from the Existing Service Roles dropdown.

11. (Optional) If you previously created an EC2 key pair, you can select it from the EC2 key pair
field dropdown. You would use it to securely log in to the Amazon EC2 instance that Elastic

Creating environments 187

Amazon Elastic Beanstalk Developer Guide

Beanstalk provisions for your application. If you skip this step, you can always create and
assign an EC2 key pair after the environment is created. For more information, see EC2 key
pair.

12. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following items, based on the values displayed in your list.

• If aws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
dropdown list.

• If another value displays in the list, and it’s the default EC2 instance profile intended for
your environments, select it from the dropdown list.

• If the EC2 instance profile dropdown list doesn't list any values, you'll need to create an
instance profile.

Create an instance profile

To create an instance profile, we'll take a detour to another procedure on this
same page. Go to the end of this procedure and expand the procedure that
follows, Create IAM Role for EC2 instance profile.
Complete the steps in Create IAM Role for EC2 instance profile to create an IAM
Role that you can subsequently select for the EC2 instance profile. Then return
back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

13.
Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

14. The Review page displays a summary of all your choices.

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

Creating environments 188

Amazon Elastic Beanstalk Developer Guide

• Environment name

• Domain name

• Platform version

• Processor

• VPC

• Tier

You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

• Instance type, root volume, key pair, and Amazon Identity and Access Management (IAM)
role

• Internal Amazon RDS database

• Load balancer

For details on all available settings, see The create new environment wizard.

15. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Creating environments 189

Amazon Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

To create the EC2 instance profile

1. Choose Create role.

2. For Trusted entity type, choose Amazon service.

3. For Use case, choose Elastic Beanstalk – Compute.

4. Choose Next.

5. Verify that Permissions policies include the following, then choose Next:

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

6. Choose Create role.

7. Return to the Configure service access tab, refresh the list, then select the newly created EC2
instance profile.

Creating environments 190

Amazon Elastic Beanstalk Developer Guide

While Elastic Beanstalk creates your environment, you are redirected to the Elastic Beanstalk
console. When the environment health turns green, choose the URL next to the environment name
to view the running application. This URL is generally accessible from the internet unless you
configure your environment to use a custom VPC with an internal load balancer.

Topics

• The create new environment wizard

• Clone an Elastic Beanstalk environment

• Terminate an Elastic Beanstalk environment

• Creating Elastic Beanstalk environments with the Amazon CLI

• Creating Elastic Beanstalk environments with the API

• Constructing a Launch Now URL

• Creating and updating groups of Elastic Beanstalk environments

The create new environment wizard

This topic describes the Create environment wizard and all the ways you can use it to configure the
environment you want to create.

Note

In Creating an Elastic Beanstalk environment we show how to launch the Create
environment wizard and quickly create an environment with default values and
recommended settings. This current topic will walk you through all of the options.

Wizard page

The Create environment wizard provides a set of steps for you to create a new environment.

The create new environment wizard 191

Amazon Elastic Beanstalk Developer Guide

The create new environment wizard 192

Amazon Elastic Beanstalk Developer Guide

Environment tier

For environment tier, choose the Web server environment or Worker environment environment
tier. You can't change an environment's tier after creation.

Note

The .NET on Windows Server platform doesn't support the worker environment tier.

Application information

If you launched the wizard by selecting Create new environment from the Application overview
page, then the Application name is prefilled. Otherwise, enter an application name. Optionally,
add application tags.

Environment information

The create new environment wizard 193

Amazon Elastic Beanstalk Developer Guide

Set the environment's name and domain, and create a description for your environment. Be aware
that these environment settings cannot change after the environment is created.

• Name – Enter a name for the environment. The form provides a generated name.

• Domain – (web server environments) Enter a unique domain name for your environment.
The default name is the environment's name. You can enter a different domain name. Elastic
Beanstalk uses this name to create a unique CNAME for the environment. To check whether the
domain name you want is available, choose Check Availability.

• Description – Enter a description for this environment.

Select a platform for the new environment

You can create a new environment from two types of platforms:

• Managed platform

• Custom platform

Managed platform

In most cases you use an Elastic Beanstalk managed platform for your new environment. When the
new environment wizard starts, it selects the Managed platform option by default.

The create new environment wizard 194

Amazon Elastic Beanstalk Developer Guide

Select a platform, a platform branch within that platform, and a specific platform version in
the branch. When you select a platform branch, the recommended version within the branch is
selected by default. In addition, you can select any platform version you've used before.

Note

For a production environment, we recommend that you choose a platform version in a
supported platform branch. For details about platform branch states, see the Platform
Branch definition in the the section called “Platforms glossary”.

Custom platform

If an off-the-shelf platform doesn't meet your needs, you can create a new environment from a
custom platform. To specify a custom platform, choose the Custom platform option, and then
select one of the available custom platforms. If there are no custom platforms available, this
option is dimmed.

Provide application code

Now that you have selected the platform to use, the next step is to provide your application code.

The create new environment wizard 195

Amazon Elastic Beanstalk Developer Guide

You have several options:

• You can use the sample application that Elastic Beanstalk provides for each platform.

• You can use code that you already deployed to Elastic Beanstalk. Choose Existing version and
your application in the Application code section.

• You can upload new code. Choose Upload your code, and then choose Upload. You can upload
new application code from a local file, or you can specify the URL for the Amazon S3 bucket that
contains your application code.

Note

Depending on the platform version you selected, you can upload your application in a ZIP
source bundle, a WAR file, or a plaintext Docker configuration. The file size limit is 500
MB.

When you choose to upload new code, you can also provide tags to associate with your new
code. For more information about tagging an application version, see the section called “Tagging
application versions”.

The create new environment wizard 196

Amazon Elastic Beanstalk Developer Guide

The create new environment wizard 197

Amazon Elastic Beanstalk Developer Guide

For quick environment creation using default configuration options, you can now choose Create
environment. Choose Configure more options to make additional configuration changes, as
described in the following sections.

Wizard configuration page

When you choose Configure more options, the wizard shows the Configure page. On this page
you can select a configuration preset, change the platform version you want your environment to
use, or make specific configuration choices for the new environment.

Choose a preset configuration

On the Presets section of the page, Elastic Beanstalk provides several configuration presets for
different use cases. Each preset includes recommended values for several configuration options.

The High availability presets include a load balancer, and are recommended for production
environments. Choose them if you want an environment that can run multiple instances for high
availability and scale in response to load. The Single instance presets are primarily recommended
for development. Two of the presets enable Spot Instance requests. For details about Elastic
Beanstalk capacity configuration, see Auto Scaling group.

The last preset, Custom configuration, removes all recommended values except role settings and
uses the API defaults. Choose this option if you are deploying a source bundle with configuration
files that set configuration options. Custom configuration is also selected automatically if you
modify either the Low cost or High availability configuration presets.

The create new environment wizard 198

Amazon Elastic Beanstalk Developer Guide

Customize your configuration

In addition to (or instead of) choosing a configuration preset, you can fine-tune configuration
options in your environment. The Configure wizard wizard shows several configuration categories.
Each configuration category displays a summary of values for a group of configuration settings.
Choose Edit to edit this group of settings.

Configuration Categories

• Software settings

• Instances

• Capacity

• Load balancer

• Rolling updates and deployments

• Security

• Monitoring

• Managed updates

• Notifications

• Network

• Database

• Tags

• Worker environment

Software settings

Use the Modify software configuration page to configure the software on the Amazon Elastic
Compute Cloud (Amazon EC2) instances that run your application. You can configure environment
properties, Amazon X-Ray debugging, instance log storing and streaming, and platform-specific
settings. For details, see the section called “Environment variables and software settings”.

The create new environment wizard 199

Amazon Elastic Beanstalk Developer Guide

Instances

Use the Modify instances configuration page to configure the Amazon EC2 instances that run your
application. For details, see the section called “Amazon EC2 instances”.

Capacity

Use the Modify capacity configuration page to configure the compute capacity of your
environment and Auto Scaling group settings to optimize the number and type of instances you're
using. You can also change your environment capacity based on triggers or on a schedule.

The create new environment wizard 200

Amazon Elastic Beanstalk Developer Guide

A load-balanced environment can run multiple instances for high availability and prevent
downtime during configuration updates and deployments. In a load-balanced environment, the
domain name maps to the load balancer. In a single-instance environment, it maps to an elastic IP
address on the instance.

Warning

A single-instance environment isn't production ready. If the instance becomes unstable
during deployment, or Elastic Beanstalk terminates and restarts the instance during
a configuration update, your application can be unavailable for a period of time. Use
single-instance environments for development, testing, or staging. Use load-balanced
environments for production.

For more information about environment capacity settings, see the section called “Auto Scaling
group” and the section called “Amazon EC2 instances”.

The create new environment wizard 201

Amazon Elastic Beanstalk Developer Guide

Load balancer

Use the Modify load balancer configuration page to select a load balancer type and to configure
settings for it. In a load-balanced environment, your environment's load balancer is the entry point
for all traffic headed for your application. Elastic Beanstalk supports several types of load balancer.
By default, the Elastic Beanstalk console creates an Application Load Balancer and configures it to
serve HTTP traffic on port 80.

Note

You can only select your environment's load balancer type during environment creation.

For more information about load balancer types and settings, see the section called “Load
balancer” and the section called “HTTPS”.

The create new environment wizard 202

Amazon Elastic Beanstalk Developer Guide

Note

The Classic Load Balancer (CLB) option is disabled on the Create Environment console
wizard. If you have an existing environment configured with a Classic Load Balancer you
can create a new one by cloning the existing environment using either the Elastic Beanstalk
console or the EB CLI. You also have the option to use the EB CLI or the Amazon CLI to
create a new environment configured with a Classic Load Balancer. These command line
tools will create a new environment with a CLB even if one doesn’t already exist in your
account.

The create new environment wizard 203

Amazon Elastic Beanstalk Developer Guide

Rolling updates and deployments

Use the Modify rolling updates and deployments configuration page to configure how Elastic
Beanstalk processes application deployments and configuration updates for your environment.

Application deployments happen when you upload an updated application source bundle and
deploy it to your environment. For more information about configuring deployments, see the
section called “Deployment options”.

Configuration changes that modify the launch configuration or VPC settings require terminating all
instances in your environment and replacing them. For more information about setting the update
type and other options, see the section called “Configuration changes”.

The create new environment wizard 204

Amazon Elastic Beanstalk Developer Guide

Security

Use the Configure service access page to configure service and instance security settings.

For a description of Elastic Beanstalk security concepts, see Permissions.

The first time you create an environment in the Elastic Beanstalk console, you must create an EC2
instance profile with a default set of permissions. If the EC2 instance profile dropdown list doesn't
show any values to choose from, expand the procedure that follows. It provides steps to create a
Role that you can subsequently select for the EC2 instance profile.

Create IAM Role for EC2 instance profile

To create the EC2 instance profile

1. Choose Create role.

2. For Trusted entity type, choose Amazon service.

3. For Use case, choose Elastic Beanstalk – Compute.

4. Choose Next.

5. Verify that Permissions policies include the following, then choose Next:

The create new environment wizard 205

Amazon Elastic Beanstalk Developer Guide

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

6. Choose Create role.

7. Return to the Configure service access tab, refresh the list, then select the newly created EC2
instance profile.

Monitoring

Use the Modify monitoring configuration page to configure health reporting, monitoring rules,
and health event streaming. For details, see the section called “Enable enhanced health”, the
section called “Enhanced health rules”, and the section called “Streaming environment health”.

The create new environment wizard 206

Amazon Elastic Beanstalk Developer Guide

Managed updates

Use the Modify managed updates configuration page to configure managed platform updates.
You can decide if you want them enabled, set the schedule, and configure other properties. For
details, see the section called “Managed updates”.

The create new environment wizard 207

Amazon Elastic Beanstalk Developer Guide

Notifications

Use the Modify notifications configuration page to specify an email address to receive email
notifications for important events from your environment.

The create new environment wizard 208

Amazon Elastic Beanstalk Developer Guide

Network

If you have created a custom VPC, the Modify network configuration page to configure your
environment to use it. If you don't choose a VPC, Elastic Beanstalk uses the default VPC and
subnets.

The create new environment wizard 209

Amazon Elastic Beanstalk Developer Guide

Database

Use the Modify database configuration page to add an Amazon Relational Database Service
(Amazon RDS) database to your environment for development and testing. Elastic Beanstalk
provides connection information to your instances by setting environment properties for the
database hostname, user name, password, table name, and port.

For details, see the section called “Database”.

The create new environment wizard 210

Amazon Elastic Beanstalk Developer Guide

Tags

Use the Modify tags configuration page to add tags to the resources in your environment. For
more information about environment tagging, see Tagging resources in your Elastic Beanstalk
environments.

The create new environment wizard 211

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/Using_Tags.html

Amazon Elastic Beanstalk Developer Guide

Worker environment

If you're creating a worker tier environment, use the Modify worker configuration page to configure
the worker environment. The worker daemon on the instances in your environment pulls items
from an Amazon Simple Queue Service (Amazon SQS) queue and relays them as post messages to
your worker application. You can choose the Amazon SQS queue that the worker daemon reads
from (auto-generated or existing). You can also configure the messages that the worker daemon
sends to your application.

For more information, see the section called “Worker environments”.

The create new environment wizard 212

Amazon Elastic Beanstalk Developer Guide

Clone an Elastic Beanstalk environment

You can use an existing Elastic Beanstalk environment as the basis for a new environment by
cloning the existing environment. For example, you might want to create a clone so that you can
use a newer version of the platform branch used by the original environment's platform. Elastic
Beanstalk configures the clone with the environment settings used by the original environment.
By cloning an existing environment instead of creating a new environment, you don't have to
manually configure option settings, environment variables, and other settings that you made
with the Elastic Beanstalk service. Elastic Beanstalk also creates a copy of any Amazon resource
associated with the original environment.

It's important to be aware of the following situations:

• During the cloning process, Elastic Beanstalk doesn't copy data from Amazon RDS to the clone.

• Elastic Beanstalk doesn't include any unmanaged changes to resources in the clone. Changes to
Amazon resources that you make using tools other than the Elastic Beanstalk console, command-
line tools, or API are considered unmanaged changes.

• The security groups for ingress are considered unmanaged changes. Cloned Elastic Beanstalk
environments do not carry over the security groups for ingress, leaving the environment open to
all internet traffic. You’ll need to reestablish ingress security groups for the cloned environment.

You can only clone an environment to a different platform version of the same platform branch. A
different platform branch isn't guaranteed to be compatible. To use a different platform branch,
you have to manually create a new environment, deploy your application code, and make any
necessary changes in code and options to ensure your application works correctly on the new
platform branch.

Amazon management console

Important

Cloned Elastic Beanstalk environments do not carry over the security groups for ingress,
leaving the environment open to all internet traffic. You’ll need to reestablish ingress
security groups for the cloned environment.
You can see resources that may not be cloned by checking the drift status of your
environment configuration. For more information, see Detect drift on an entire
CloudFormation stack in the Amazon CloudFormation User Guide.

Clone an environment 213

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/detect-drift-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/detect-drift-stack.html

Amazon Elastic Beanstalk Developer Guide

To clone an environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Actions.

4. Choose Clone environment.

5. On the Clone environment page, review the information in the Original Environment section
to verify that you chose the environment from which you want to create a clone.

6. In the New Environment section, you can optionally change the Environment name,
Environment URL, Description, Platform version, and Service role values that Elastic
Beanstalk automatically set based on the original environment.

Note

If the platform version used in the original environment isn't the one recommended
for use in the platform branch, you are warned that a different platform version is
recommended. Choose Platform version, and you can see the recommended platform
version on the list—for example, 3.3.2 (Recommended).

7. When you are ready, choose Clone.

Elastic Beanstalk command line interface (EB CLI)

Important

Cloned Elastic Beanstalk environments do not carry over the security groups for ingress,
leaving the environment open to all internet traffic. You’ll need to reestablish ingress
security groups for the cloned environment.
You can see resources that may not be cloned by checking the drift status of your
environment configuration. For more information, see Detect drift on an entire
CloudFormation stack in the Amazon CloudFormation User Guide.

Use the eb clone command to clone a running environment, as follows.

Clone an environment 214

https://console.amazonaws.cn/elasticbeanstalk
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/detect-drift-stack.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/detect-drift-stack.html

Amazon Elastic Beanstalk Developer Guide

~/workspace/my-app$ eb clone my-env1
Enter name for Environment Clone
(default is my-env1-clone): my-env2
Enter DNS CNAME prefix
(default is my-env1-clone): my-env2

You can specify the name of the source environment in the clone command, or leave it out to clone
the default environment for the current project folder. The EB CLI prompts you to enter a name
and DNS prefix for the new environment.

By default, eb clone creates the new environment with the latest available version of the source
environment's platform. To force the EB CLI to use the same version, even if there is a newer
version available, use the --exact option.

~/workspace/my-app$ eb clone --exact

For more information about this command, see eb clone.

Terminate an Elastic Beanstalk environment

You can terminate a running Amazon Elastic Beanstalk environment using the Elastic Beanstalk
console. By doing this, you avoid incurring charges for unused Amazon resources.

Note

You can always launch a new environment using the same version later.

If you have data from an environment that you want to preserve, set the database deletion policy
to Retain before terminating the environment. This keeps the database operational outside of
Elastic Beanstalk. After this, any Elastic Beanstalk environments must connect to it as an external
database. If you want to back up the data without keeping the database operational, set the
deletion policy to take a snapshot of the database before terminating the environment. For more
information, see Database lifecycle in the Configuring environments chapter of this guide.

Elastic Beanstalk might fail to terminate your environment. One common reason is that the
security group of another environment has a dependency on the security group of the environment
that you want to terminate. For instructions on how to avoid this problem, see EC2 security groups
on the EC2 Instances page of this guide.

Terminate an environment 215

Amazon Elastic Beanstalk Developer Guide

Important

If you terminate an environment, you must also delete any CNAME mappings that you
created, as other customers can reuse an available hostname. Be sure to delete DNS records
that point to your terminated environment to prevent a dangling DNS entry. A dangling
DNS entry can expose internet traffic destined for your domain to security vulnerabilities. It
can also present other risks.
For more information, see Protection from dangling delegation records in Route 53 in the
Amazon Route 53 Developer Guide. You can also learn more about dangling DNS entries
in Enhanced Domain Protections for Amazon CloudFront Requests in the Amazon Security
Blog.

Elastic Beanstalk console

To terminate an environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

Note

When you terminate your environment, the CNAME that's associated with the
terminated environment is freed up to be used by anyone.

It takes a few minutes for Elastic Beanstalk to terminate the Amazon resources that are
running in the environment.

Terminate an environment 216

https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/protection-from-dangling-dns.html
https://amazonaws-china.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Amazon CLI

To terminate an environment

• Run the following command.

$ aws elasticbeanstalk terminate-environment --environment-name my-env

API

To terminate an environment

• Call TerminateEnvironment with the following parameter:

EnvironmentName = SampleAppEnv

https://elasticbeanstalk.us-west-2.amazon.com/?EnvironmentName=SampleAppEnv
&Operation=TerminateEnvironment
&AuthParams

Creating Elastic Beanstalk environments with the Amazon CLI

For details about the Amazon CLI commands for Elastic Beanstalk, see the Amazon CLI Command
Reference.

1. Check if the CNAME for the environment is available.

$ aws elasticbeanstalk check-dns-availability --cname-prefix my-cname
{
 "Available": true,
 "FullyQualifiedCNAME": "my-cname.elasticbeanstalk.com"
}

2. Make sure your application version exists.

$ aws elasticbeanstalk describe-application-versions --application-name my-app --
version-label v1

With the Amazon CLI 217

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

If you don't have an application version for your source yet, create it. For example, the
following command creates an application version from a source bundle in Amazon Simple
Storage Service (Amazon S3).

$ aws elasticbeanstalk create-application-version --application-name my-app --
version-label v1 --source-bundle S3Bucket=amzn-s3-demo-bucket,S3Key=my-source-
bundle.zip

3. Create a configuration template for the application.

$ aws elasticbeanstalk create-configuration-template --application-name my-app --
template-name v1 --solution-stack-name "64bit Amazon Linux 2015.03 v2.0.0 running
 Ruby 2.2 (Passenger Standalone)"

4. Create environment.

$ aws elasticbeanstalk create-environment --cname-prefix my-cname --application-
name my-app --template-name v1 --version-label v1 --environment-name v1clone --
option-settings file://options.txt

Option Settings are defined in the options.txt file:

[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 }
]

The above option setting defines the IAM instance profile. You can specify the ARN or the
profile name.

5. Determine if the new environment is Green and Ready.

$ aws elasticbeanstalk describe-environments --environment-names my-env

If the new environment does not come up Green and Ready, you should decide if you want to
retry the operation or leave the environment in its current state for investigation. Make sure to
terminate the environment after you are finished, and clean up any unused resources.

With the Amazon CLI 218

Amazon Elastic Beanstalk Developer Guide

Note

You can adjust the timeout period if the environment doesn't launch in a reasonable
time.

Creating Elastic Beanstalk environments with the API

1. Call CheckDNSAvailability with the following parameter:

• CNAMEPrefix = SampleApp

Example

https://elasticbeanstalk.us-west-2.amazonaws.com/?CNAMEPrefix=sampleapplication
&Operation=CheckDNSAvailability
&AuthParams

2. Call DescribeApplicationVersions with the following parameters:

• ApplicationName = SampleApp

• VersionLabel = Version2

Example

https://elasticbeanstalk.us-west-2.amazonaws.com/?ApplicationName=SampleApp
&VersionLabel=Version2
&Operation=DescribeApplicationVersions
&AuthParams

3. Call CreateConfigurationTemplate with the following parameters:

• ApplicationName = SampleApp

• TemplateName = MyConfigTemplate

• SolutionStackName = 64bit%20Amazon%20Linux%202015.03%20v2.0.0%20running
%20Ruby%202.2%20(Passenger%20Standalone)

With the API 219

Amazon Elastic Beanstalk Developer Guide

Example

https://elasticbeanstalk.us-west-2.amazonaws.com/?ApplicationName=SampleApp
&TemplateName=MyConfigTemplate
&Operation=CreateConfigurationTemplate
&SolutionStackName=64bit%20Amazon%20Linux%202015.03%20v2.0.0%20running%20Ruby
%202.2%20(Passenger%20Standalone)
&AuthParams

4. Call CreateEnvironment with one of the following sets of parameters.

a. Use the following for a web server environment tier:

• EnvironmentName = SampleAppEnv2

• VersionLabel = Version2

• Description = description

• TemplateName = MyConfigTemplate

• ApplicationName = SampleApp

• CNAMEPrefix = sampleapplication

• OptionSettings.member.1.Namespace =
aws:autoscaling:launchconfiguration

• OptionSettings.member.1.OptionName = IamInstanceProfile

• OptionSettings.member.1.Value = aws-elasticbeanstalk-ec2-role

Example

https://elasticbeanstalk.us-west-2.amazonaws.com/?ApplicationName=SampleApp
&VersionLabel=Version2
&EnvironmentName=SampleAppEnv2
&TemplateName=MyConfigTemplate
&CNAMEPrefix=sampleapplication
&Description=description
&Operation=CreateEnvironment
&OptionSettings.member.1.Namespace=aws%3Aautoscaling%3Alaunchconfiguration
&OptionSettings.member.1.OptionName=IamInstanceProfile
&OptionSettings.member.1.Value=aws-elasticbeanstalk-ec2-role

With the API 220

Amazon Elastic Beanstalk Developer Guide

&AuthParams

b. Use the following for a worker environment tier:

• EnvironmentName = SampleAppEnv2

• VersionLabel = Version2

• Description = description

• TemplateName = MyConfigTemplate

• ApplicationName = SampleApp

• Tier = Worker

• OptionSettings.member.1.Namespace =
aws:autoscaling:launchconfiguration

• OptionSettings.member.1.OptionName = IamInstanceProfile

• OptionSettings.member.1.Value = aws-elasticbeanstalk-ec2-role

• OptionSettings.member.2.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.2.OptionName = WorkerQueueURL

• OptionSettings.member.2.Value = sqsd.elasticbeanstalk.us-
west-2.amazonaws.com

• OptionSettings.member.3.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.3.OptionName = HttpPath

• OptionSettings.member.3.Value = /

• OptionSettings.member.4.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.4.OptionName = MimeType

• OptionSettings.member.4.Value = application/json

• OptionSettings.member.5.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.5.OptionName = HttpConnections

• OptionSettings.member.5.Value = 75

• OptionSettings.member.6.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.6.OptionName = ConnectTimeout

• OptionSettings.member.6.Value = 10

• OptionSettings.member.7.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.7.OptionName = InactivityTimeout

With the API 221

Amazon Elastic Beanstalk Developer Guide

• OptionSettings.member.7.Value = 10

• OptionSettings.member.8.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.8.OptionName = VisibilityTimeout

• OptionSettings.member.8.Value = 60

• OptionSettings.member.9.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.9.OptionName = RetentionPeriod

• OptionSettings.member.9.Value = 345600

Example

https://elasticbeanstalk.us-west-2.amazonaws.com/?ApplicationName=SampleApp
&VersionLabel=Version2
&EnvironmentName=SampleAppEnv2
&TemplateName=MyConfigTemplate
&Description=description
&Tier=Worker
&Operation=CreateEnvironment
&OptionSettings.member.1.Namespace=aws%3Aautoscaling%3Alaunchconfiguration
&OptionSettings.member.1.OptionName=IamInstanceProfile
&OptionSettings.member.1.Value=aws-elasticbeanstalk-ec2-role
&OptionSettings.member.2.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.2.OptionName=WorkerQueueURL
&OptionSettings.member.2.Value=sqsd.elasticbeanstalk.us-west-2.amazonaws.com
&OptionSettings.member.3.Namespace=aws%3elasticbeanstalk%3sqsd
&OptionSettings.member.3.OptionName=HttpPath
&OptionSettings.member.3.Value=%2F
&OptionSettings.member.4.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.4.OptionName=MimeType
&OptionSettings.member.4.Value=application%2Fjson
&OptionSettings.member.5.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.5.OptionName=HttpConnections
&OptionSettings.member.5.Value=75
&OptionSettings.member.6.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.6.OptionName=ConnectTimeout
&OptionSettings.member.6.Value=10
&OptionSettings.member.7.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.7.OptionName=InactivityTimeout
&OptionSettings.member.7.Value=10
&OptionSettings.member.8.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.8.OptionName=VisibilityTimeout

With the API 222

Amazon Elastic Beanstalk Developer Guide

&OptionSettings.member.8.Value=60
&OptionSettings.member.9.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.9.OptionName=RetentionPeriod
&OptionSettings.member.9.Value=345600
&AuthParams

Constructing a Launch Now URL

You can construct a custom URL so that anyone can quickly deploy and run a predetermined web
application in Amazon Elastic Beanstalk. This URL is called a Launch Now URL. You might need
a Launch Now URL, for example, to demonstrate a web application that's built to run on Elastic
Beanstalk. With a Launch Now URL, you can use parameters to add the required information to
the Create Application wizard in advance. After you add this information to the wizard, anyone
can use the URL link to launch an Elastic Beanstalk environment with your web application source
in only a few steps. This means users don't need to manually upload or specify the location of
the application source bundle. They also don't need to provide any additional information to the
wizard.

A Launch Now URL gives Elastic Beanstalk the minimum information that's required to create an
application: the application name, solution stack, instance type, and environment type. Elastic
Beanstalk uses default values for other configuration details that aren't explicitly specified in your
custom Launch Now URL.

A Launch Now URL uses standard URL syntax. For more information, see RFC 3986 - Uniform
Resource Identifier (URI): Generic Syntax.

URL parameters

The URL must contain the following parameters, which are case sensitive:

• region – Specify an Amazon Region. For a list of Regions that are supported by Elastic Beanstalk,
see Amazon Elastic Beanstalk Endpoints and Quotas in the Amazon Web Services General
Reference.

• applicationName – Specify the name of your application. Elastic Beanstalk displays the
application name in the Elastic Beanstalk console to distinguish it from other applications. By
default, the application name also forms the basis of the environment name and environment
URL.

Launch Now URL 223

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html

Amazon Elastic Beanstalk Developer Guide

• platform – Specify the platform version to use for the environment. Use one of the following
methods, then URL-encode your choice:

• Specify a platform ARN without a version. Elastic Beanstalk selects the latest platform version
of the corresponding platform major version. For example, to select the latest Python 3.6
platform version, specify Python 3.6 running on 64bit Amazon Linux.

• Specify the platform name. Elastic Beanstalk selects the latest version of the platform's latest
language runtime (for example, Python).

For a description of all available platforms and their versions, see Elastic Beanstalk supported
platforms.

You can use the Amazon Command Line Interface (Amazon CLI) to get a list of all the available
platform versions with their respective ARNs. The list-platform-versions command lists
detailed information about all the available platform versions. Use the --filters argument to
scope down the list. For example, you can scope the list to only show the platform versions of a
specific language.

The following example queries all the Python platform versions, and pipes the output through a
series of commands. The result is a list of platform version ARNs (without the /version tail), in
a human-readable format, without URL encoding.

$ aws elasticbeanstalk list-platform-versions --filters
 'Type="PlatformName",Operator="contains",Values="Python"' | grep PlatformArn | awk -
F '"' '{print $4}' | awk -F '/' '{print $2}'
Preconfigured Docker - Python 3.4 running on 64bit Debian
Preconfigured Docker - Python 3.4 running on 64bit Debian
Python 2.6 running on 32bit Amazon Linux
Python 2.6 running on 32bit Amazon Linux 2014.03
...
Python 3.6 running on 64bit Amazon Linux

The following example adds a Perl command to the last example to URL-encode the output.

$ aws elasticbeanstalk list-platform-versions --filters
 'Type="PlatformName",Operator="contains",Values="Python"' | grep PlatformArn | awk
 -F '"' '{print $4}' | awk -F '/' '{print $2}' | perl -MURI::Escape -ne 'chomp;print
 uri_escape($_),"\n"'
Preconfigured%20Docker%20-%20Python%203.4%20running%20on%2064bit%20Debian
Preconfigured%20Docker%20-%20Python%203.4%20running%20on%2064bit%20Debian
Python%202.6%20running%20on%2032bit%20Amazon%20Linux

Launch Now URL 224

https://docs.amazonaws.cn/cli/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

Python%202.6%20running%20on%2032bit%20Amazon%20Linux%202014.03
...
Python%203.6%20running%20on%2064bit%20Amazon%20Linux

A Launch Now URL can optionally contain the following parameters. If you don't include the
optional parameters in your Launch Now URL, Elastic Beanstalk uses default values to create and
run your application. When you don't include the sourceBundleUrl parameter, Elastic Beanstalk
uses the default sample application for the specified platform.

• sourceBundleUrl – Specify the location of your web application source bundle in URL
format. For example, if you uploaded your source bundle to an Amazon S3 bucket, you
might specify the value of the sourceBundleUrl parameter as https://amzn-s3-demo-
bucket.s3.amazonaws.com/myobject.

Note

You can specify the value of the sourceBundleUrl parameter as an HTTP URL, but the
user's web browser will convert characters as needed by applying HTML URL encoding.

• environmentType – Specify whether the environment is load balanced and scalable or
just a single instance. For more information, see Environment types. You can specify either
LoadBalancing or SingleInstance as the parameter value.

• tierName – Specify whether the environment supports a web application that processes web
requests or a web application that runs background jobs. For more information, see Elastic
Beanstalk worker environments. You can specify either WebServer or Worker,

• instanceType – Specify a server with the characteristics (including memory size and CPU power)
that are most appropriate to your application. For more information about Amazon EC2 instance
families and types, see Instance types in the Amazon EC2 User Guide. For more information about
the available instance types across Regions, see Available instance types in the Amazon EC2 User
Guide.

• withVpc – Specify whether to create the environment in an Amazon VPC. You can specify either
true or false. For more information about using Elastic Beanstalk with Amazon VPC, see Using
Elastic Beanstalk with Amazon VPC.

• withRds – Specify whether to create an Amazon RDS database instance with this environment.
For more information, see Using Elastic Beanstalk with Amazon RDS. You can specify either true
or false.

Launch Now URL 225

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes

Amazon Elastic Beanstalk Developer Guide

• rdsDBEngine – Specify the database engine that you want to use for your Amazon EC2 instances
in this environment. You can specify mysql, oracle-sel, sqlserver-ex, sqlserver-web, or
sqlserver-se. The default value is mysql.

• rdsDBAllocatedStorage – Specify the allocated database storage size in gigabytes (GB). You can
specify the following values:

• MySQL – 5 to 1024. The default is 5.

• Oracle – 10 to 1024. The default is 10.

• Microsoft SQL Server Express Edition – 30.

• Microsoft SQL Server Web Edition – 30.

• Microsoft SQL Server Standard Edition – 200.

• rdsDBInstanceClass – Specify the database instance type. The default value is db.t2.micro
(db.m1.large is for an environment that's not running in an Amazon VPC). For a list of
database instance classes that are supported by Amazon RDS, see DB Instance Class in the
Amazon Relational Database Service User Guide.

• rdsMultiAZDatabase – Specify whether Elastic Beanstalk needs to create the database instance
across multiple Availability Zones. You can specify either true or false. For more information
about multiple Availability Zone deployments with Amazon RDS, see Regions and Availability
Zones in the Amazon Relational Database Service User Guide.

• rdsDBDeletionPolicy – Specify whether to delete or snapshot the database instance on
environment termination. You can specify either Delete or Snapshot.

Example

The following is an example Launch Now URL. After you construct your own, you can give it to your
users. For example, you can embed the URL on a webpage or in training materials. When users
create an application using the Launch Now URL, the Elastic Beanstalk Create an Application wizard
requires no additional input.

https://console.amazonaws.cn/elasticbeanstalk/home?region=us-west-2#/newApplication?
applicationName=YourCompanySampleApp
 &platform=PHP%207.3%20running%20on%2064bit%20Amazon%20Linux&sourceBundleUrl=
 http://s3.amazonaws.com/amzn-s3-demo-bucket/
myobject&environmentType=SingleInstance&tierName=WebServer
 &instanceType=m1.small&withVpc=true&withRds=true&rdsDBEngine=

 postgres&rdsDBAllocatedStorage=6&rdsDBInstanceClass=db.m1.small&rdsMultiAZDatabase=

Launch Now URL 226

http://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
http://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

Amazon Elastic Beanstalk Developer Guide

 true&rdsDBDeletionPolicy=Snapshot

To use the Launch Now URL

1. Choose the Launch Now URL.

2. After the Elastic Beanstalk console opens, on the Create a web app page, choose Review and
launch to view the settings that Elastic Beanstalk uses to create the application and launch the
environment where the application runs.

3. On the Configure page, choose Create app to create the application.

Creating and updating groups of Elastic Beanstalk environments

With the Amazon Elastic Beanstalk ComposeEnvironments API, you can create and update groups
of Elastic Beanstalk environments within a single application. Each environment in the group
can run a separate component of a service-oriented architecture application. The Compose
Environments API takes a list of application versions and an optional group name. Elastic
Beanstalk creates an environment for each application version, or, if the environments already
exist, deploys the application versions to them.

Create links between Elastic Beanstalk environments to designate one environment as
a dependency of another. When you create a group of environments with the Compose
Environments API, Elastic Beanstalk creates dependent environments only after their
dependencies are up and running. For more information on environment links, see Creating links
between Elastic Beanstalk environments.

The Compose Environments API uses an environment manifest to store configuration details
that are shared by groups of environments. Each component application must have an env.yaml
configuration file in its application source bundle that specifies the parameters used to create its
environment.

Compose Environments requires the EnvironmentName and SolutionStack to be specified in
the environment manifest for each component application.

You can use the Compose Environments API with the Elastic Beanstalk command line interface
(EB CLI), the Amazon CLI, or an SDK. See Managing multiple Elastic Beanstalk environments as a
group with the EB CLI for EB CLI instructions.

Compose environments 227

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_ComposeEnvironments.html

Amazon Elastic Beanstalk Developer Guide

Using the Compose Environments API

For example, you could make an application named Media Library that lets users upload and
manage images and videos stored in Amazon Simple Storage Service (Amazon S3). The application
has a front-end environment, front, that runs a web application that lets users upload and
download individual files, view their library, and initiate batch processing jobs.

Instead of processing the jobs directly, the front-end application adds jobs to an Amazon SQS
queue. The second environment, worker, pulls jobs from the queue and processes them. worker
uses a G2 instance type that has a high-performance GPU, while front can run on a more cost-
effective generic instance type.

You would organize the project folder, Media Library, into separate directories for each
component, with each directory containing an environment definition file (env.yaml) with the
source code for each:

~/workspace/media-library
|-- front
| `-- env.yaml
`-- worker
 `-- env.yaml

The following listings show the env.yaml file for each component application.

~/workspace/media-library/front/env.yaml

EnvironmentName: front+
EnvironmentLinks:
 "WORKERQUEUE" : "worker+"
AWSConfigurationTemplateVersion: 1.1.0.0
EnvironmentTier:
 Name: WebServer
 Type: Standard
SolutionStack: 64bit Amazon Linux 2015.09 v2.0.4 running Java 8
OptionSettings:
 aws:autoscaling:launchconfiguration:
 InstanceType: m4.large

~/workspace/media-library/worker/env.yaml

EnvironmentName: worker+

Compose environments 228

Amazon Elastic Beanstalk Developer Guide

AWSConfigurationTemplateVersion: 1.1.0.0
EnvironmentTier:
 Name: Worker
 Type: SQS/HTTP
SolutionStack: 64bit Amazon Linux 2015.09 v2.0.4 running Java 8
OptionSettings:
 aws:autoscaling:launchconfiguration:
 InstanceType: g2.2xlarge

After creating an application version for the front-end (front-v1) and worker (worker-v1)
application components, you call the Compose Environments API with the version names. In this
example, we use the Amazon CLI to call the API.

Create application versions for each component:
~$ aws elasticbeanstalk create-application-version --application-name media-
library --version-label front-v1 --process --source-bundle S3Bucket="amzn-s3-demo-
bucket",S3Key="front-v1.zip"
 {
 "ApplicationVersion": {
 "ApplicationName": "media-library",
 "VersionLabel": "front-v1",
 "Description": "",
 "DateCreated": "2015-11-03T23:01:25.412Z",
 "DateUpdated": "2015-11-03T23:01:25.412Z",
 "SourceBundle": {
 "S3Bucket": "amzn-s3-demo-bucket",
 "S3Key": "front-v1.zip"
 }
 }
 }
~$ aws elasticbeanstalk create-application-version --application-name media-library
 --version-label worker-v1 --process --source-bundle S3Bucket="amzn-s3-demo-
bucket",S3Key="worker-v1.zip"
 {
 "ApplicationVersion": {
 "ApplicationName": "media-library",
 "VersionLabel": "worker-v1",
 "Description": "",
 "DateCreated": "2015-11-03T23:01:48.151Z",
 "DateUpdated": "2015-11-03T23:01:48.151Z",
 "SourceBundle": {
 "S3Bucket": "amzn-s3-demo-bucket",
 "S3Key": "worker-v1.zip"

Compose environments 229

Amazon Elastic Beanstalk Developer Guide

 }
 }
 }
Create environments:
~$ aws elasticbeanstalk compose-environments --application-name media-library --group-
name dev --version-labels front-v1 worker-v1

The third call creates two environments, front-dev and worker-dev. The API creates the names
of the environments by concatenating the EnvironmentName specified in the env.yaml file with
the group name option specified in the Compose Environments call, separated by a hyphen.
The total length of these two options and the hyphen must not exceed the maximum allowed
environment name length of 23 characters.

The application running in the front-dev environment can access the name of the Amazon SQS
queue attached to the worker-dev environment by reading the WORKERQUEUE variable. For more
information on environment links, see Creating links between Elastic Beanstalk environments.

Managing multiple Elastic Beanstalk environments as a group
with the EB CLI

You can use the EB CLI to create groups of Amazon Elastic Beanstalk environments, each running
a separate component of a service-oriented architecture application. The EB CLI manages such
groups by using the ComposeEnvironments API.

Note

Environment groups are different than multiple containers in a Multicontainer Docker
environment. With environment groups, each component of your application runs in
a separate Elastic Beanstalk environment, with its own dedicated set of Amazon EC2
instances. Each component can scale separately. With Multicontainer Docker, you combine
several components of an application into a single environment. All components share the
same set of Amazon EC2 instances, with each instance running multiple Docker containers.
Choose one of these architectures according to your application's needs.
For details about Multicontainer Docker, see Using the ECS managed Docker platform
branch in Elastic Beanstalk.

Organize your application components into the following folder structure:

Composing environments 230

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_ComposeEnvironments.html

Amazon Elastic Beanstalk Developer Guide

~/project-name
|-- component-a
| `-- env.yaml
`-- component-b
 `-- env.yaml

Each subfolder contains the source code for an independent component of an application that will
run in its own environment and an environment definition file named env.yaml. For details on the
env.yaml format, see Environment manifest (env.yaml).

To use the Compose Environments API, first run eb init from the project folder, specifying each
component by the name of the folder that contains it with the --modules option:

~/workspace/project-name$ eb init --modules component-a component-b

The EB CLI prompts you to configure each component, and then creates the .elasticbeanstalk
directory in each component folder. EB CLI doesn't create configuration files in the parent
directory.

~/project-name
|-- component-a
| |-- .elasticbeanstalk
| `-- env.yaml
`-- component-b
 |-- .elasticbeanstalk
 `-- env.yaml

Next, run the eb create command with a list of environments to create, one for each component:

~/workspace/project-name$ eb create --modules component-a component-b --env-group-
suffix group-name

This command creates an environment for each component. The names of the environments are
created by concatenating the EnvironmentName specified in the env.yaml file with the group
name, separated by a hyphen. The total length of these two options and the hyphen must not
exceed the maximum allowed environment name length of 23 characters.

To update the environment, use the eb deploy command:

Composing environments 231

Amazon Elastic Beanstalk Developer Guide

~/workspace/project-name$ eb deploy --modules component-a component-b

You can update each component individually or you can update them as a group. Specify the
components that you want to update with the --modules option.

The EB CLI stores the group name that you used with eb create in the branch-defaults section
of the EB CLI configuration file under /.elasticbeanstalk/config.yml. To deploy your
application to a different group, use the --env-group-suffix option when you run eb deploy. If
the group does not already exist, the EB CLI will create a new group of environments:

~/workspace/project-name$ eb deploy --modules component-a component-b --env-group-
suffix group-2-name

To terminate environments, run eb terminate in the folder for each module. By default, the EB
CLI will show an error if you try to terminate an environment that another running environment is
dependent on. Terminate the dependent environment first, or use the --ignore-links option to
override the default behavior:

~/workspace/project-name/component-b$ eb terminate --ignore-links

Deploying applications to Elastic Beanstalk environments

You can use the Amazon Elastic Beanstalk console to upload an updated source bundle and deploy
it to your Elastic Beanstalk environment, or redeploy a previously uploaded version.

Each deployment is identified by a deployment ID. Deployment IDs start at 1 and increment by
one with each deployment and instance configuration change. If you enable enhanced health
reporting, Elastic Beanstalk displays the deployment ID in both the health console and the EB CLI
when it reports instance health status. The deployment ID helps you determine the state of your
environment when a rolling update fails.

Elastic Beanstalk provides several deployment policies and settings. For details about configuring
a policy and additional settings, see the section called “Deployment options”. The following table
lists the policies and the kinds of environments that support them.

Deployments 232

Amazon Elastic Beanstalk Developer Guide

Supported deployment policies

Deployment policy Load-balanced
environments

Single-instance
environments

Legacy Windows
Server environme
nts†

All at once ✓ Yes ✓ Yes ✓ Yes

Rolling ✓ Yes ☓ No ✓ Yes

Rolling with an
additional batch

✓ Yes ☓ No ☓ No

Immutable ✓ Yes ✓ Yes ☓ No

Traffic splitting ✓ Yes (Application
Load Balancer)

☓ No ☓ No

† In this table, a Legacy Windows Server environment is an environment based on a Windows Server
platform configuration that uses an IIS version earlier than IIS 8.5.

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

• Managed platform updates with instance replacement enabled

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

Choosing a deployment policy

Choosing the right deployment policy for your application is a tradeoff of a few considerations,
and depends on your particular needs. The the section called “Deployment options” page has more
information about each policy, and a detailed description of the workings of some of them.

The following list provides summary information about the different deployment policies and adds
related considerations.

Choosing a deployment policy 233

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.amazonaws.cn/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html

Amazon Elastic Beanstalk Developer Guide

• All at once – The quickest deployment method. Suitable if you can accept a short loss of service,
and if quick deployments are important to you. With this method, Elastic Beanstalk deploys the
new application version to each instance. Then, the web proxy or application server might need
to restart. As a result, your application might be unavailable to users (or have low availability) for
a short time.

• Rolling – Avoids downtime and minimizes reduced availability, at a cost of a longer deployment
time. Suitable if you can't accept any period of completely lost service. With this method, your
application is deployed to your environment one batch of instances at a time. Most bandwidth is
retained throughout the deployment.

• Rolling with additional batch – Avoids any reduced availability, at a cost of an even longer
deployment time compared to the Rolling method. Suitable if you must maintain the same
bandwidth throughout the deployment. With this method, Elastic Beanstalk launches an extra
batch of instances, then performs a rolling deployment. Launching the extra batch takes time,
and ensures that the same bandwidth is retained throughout the deployment.

• Immutable – A slower deployment method, that ensures your new application version is always
deployed to new instances, instead of updating existing instances. It also has the additional
advantage of a quick and safe rollback in case the deployment fails. With this method, Elastic
Beanstalk performs an immutable update to deploy your application. In an immutable update,
a second Auto Scaling group is launched in your environment and the new version serves traffic
alongside the old version until the new instances pass health checks.

• Traffic splitting – A canary testing deployment method. Suitable if you want to test the health
of your new application version using a portion of incoming traffic, while keeping the rest of the
traffic served by the old application version.

The following table compares deployment method properties.

Deployment methods

Method Impact of failed deployment Deploy time Zero
downtime

No
DNS
change

Rollback
process

Code
deployed
to

All at
once

Downtime ☓ No ✓ Yes Manual
redeploy

Existing
instances

Choosing a deployment policy 234

Amazon Elastic Beanstalk Developer Guide

Method Impact of failed deployment Deploy time Zero
downtime

No
DNS
change

Rollback
process

Code
deployed
to

Rolling Single batch out of service; any
successful batches before failure
running new application version

†✓ Yes ✓ Yes Manual
redeploy

Existing
instances

Rolling
with
an
additiona
l
batch

Minimal if first batch fails;
otherwise, similar to Rolling

†✓ Yes ✓ Yes Manual
redeploy

New
and
existing
instances

ImmutableMinimal ✓ Yes ✓ Yes Terminate
new
instances

New
instances

Traffic
splitting

Percentage of client traffic routed
to new version temporarily
impacted

††✓ Yes ✓ Yes Reroute
traffic
and
terminate
new
instances

New
instances

Blue/
green

Minimal ✓ Yes ☓ No Swap
URL

New
instances

† Varies depending on batch size.

†† Varies depending on evaluation time option setting.

Deploying a new application version

You can perform deployments from your environment's dashboard.

Deploying a new application version 235

Amazon Elastic Beanstalk Developer Guide

To deploy a new application version to an Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Upload and deploy.

4. Use the on-screen form to upload the application source bundle.

5. Choose Deploy.

Redeploying a previous version

You can also deploy a previously uploaded version of your application to any of its environments
from the application versions page.

To deploy an existing application version to an existing environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Select the application version to deploy.

5. Choose Actions, and then choose Deploy.

6. Select an environment, and then choose Deploy.

Other ways to deploy your application

If you deploy often, consider using the Elastic Beanstalk Command Line Interface (EB CLI) to
manage your environments. The EB CLI creates a repository alongside your source code. It can also
create a source bundle, upload it to Elastic Beanstalk, and deploy it with a single command.

For deployments that depend on resource configuration changes or a new version that can't run
alongside the old version, you can launch a new environment with the new version and perform a
CNAME swap for a blue/green deployment.

Redeploying a previous version 236

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Deployment policies and settings

Amazon Elastic Beanstalk provides several options for how deployments are processed, including
deployment policies (All at once, Rolling, Rolling with additional batch, Immutable, and Traffic
splitting) and options that let you configure batch size and health check behavior during
deployments. By default, your environment uses all-at-once deployments. If you created the
environment with the EB CLI and it's a scalable environment (you didn't specify the --single
option), it uses rolling deployments.

With rolling deployments, Elastic Beanstalk splits the environment's Amazon EC2 instances into
batches and deploys the new version of the application to one batch at a time. It leaves the rest
of the instances in the environment running the old version of the application. During a rolling
deployment, some instances serve requests with the old version of the application, while instances
in completed batches serve other requests with the new version. For details, see the section called
“How rolling deployments work”.

To maintain full capacity during deployments, you can configure your environment to launch
a new batch of instances before taking any instances out of service. This option is known as a
rolling deployment with an additional batch. When the deployment completes, Elastic Beanstalk
terminates the additional batch of instances.

Immutable deployments perform an immutable update to launch a full set of new instances
running the new version of the application in a separate Auto Scaling group, alongside the
instances running the old version. Immutable deployments can prevent issues caused by partially
completed rolling deployments. If the new instances don't pass health checks, Elastic Beanstalk
terminates them, leaving the original instances untouched.

Traffic-splitting deployments let you perform canary testing as part of your application
deployment. In a traffic-splitting deployment, Elastic Beanstalk launches a full set of new instances
just like during an immutable deployment. It then forwards a specified percentage of incoming
client traffic to the new application version for a specified evaluation period. If the new instances
stay healthy, Elastic Beanstalk forwards all traffic to them and terminates the old ones. If the new
instances don't pass health checks, or if you choose to abort the deployment, Elastic Beanstalk
moves traffic back to the old instances and terminates the new ones. There's never any service
interruption. For details, see the section called “How traffic-splitting deployments work”.

Deployment options 237

Amazon Elastic Beanstalk Developer Guide

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

• Managed platform updates with instance replacement enabled

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

If your application doesn't pass all health checks, but still operates correctly at a lower health
status, you can allow instances to pass health checks with a lower status, such as Warning, by
modifying the Healthy threshold option. If your deployments fail because they don't pass health
checks and you need to force an update regardless of health status, specify the Ignore health
check option.

When you specify a batch size for rolling updates, Elastic Beanstalk also uses that value for rolling
application restarts. Use rolling restarts when you need to restart the proxy and application servers
running on your environment's instances without downtime.

Configuring application deployments

In the environment management console, enable and configure batched application version
deployments by editing Updates and Deployments on the environment's Configuration page.

To configure deployments (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Rolling updates and deployments configuration category, choose Edit.

5. In the Application Deployments section, choose a Deployment policy, batch settings, and
health check options.

6. To save the changes choose Apply at the bottom of the page.

Deployment options 238

https://docs.amazonaws.cn/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

The Application deployments section of the Rolling updates and deployments page has the
following options for application deployments:

• Deployment policy – Choose from the following deployment options:

• All at once – Deploy the new version to all instances simultaneously. All instances in your
environment are out of service for a short time while the deployment occurs.

• Rolling – Deploy the new version in batches. Each batch is taken out of service during the
deployment phase, reducing your environment's capacity by the number of instances in a
batch.

• Rolling with additional batch – Deploy the new version in batches, but first launch a new
batch of instances to ensure full capacity during the deployment process.

• Immutable – Deploy the new version to a fresh group of instances by performing an
immutable update.

• Traffic splitting – Deploy the new version to a fresh group of instances and temporarily split
incoming client traffic between the existing application version and the new one.

For the Rolling and Rolling with additional batch deployment policies you can configure:

• Batch size – The size of the set of instances to deploy in each batch.

Choose Percentage to configure a percentage of the total number of EC2 instances in the Auto
Scaling group (up to 100 percent), or choose Fixed to configure a fixed number of instances (up
to the maximum instance count in your environment's Auto Scaling configuration).

For the Traffic splitting deployment policy you can configure the following:

• Traffic split – The initial percentage of incoming client traffic that Elastic Beanstalk shifts to
environment instances running the new application version you're deploying.

• Traffic splitting evaluation time – The time period, in minutes, that Elastic Beanstalk waits after
an initial healthy deployment before proceeding to shift all incoming client traffic to the new
application version that you're deploying.

Deployment options 239

Amazon Elastic Beanstalk Developer Guide

The Deployment preferences section contains options related to health checks.

• Ignore health check – Prevents a deployment from rolling back when a batch fails to become
healthy within the Command timeout.

• Healthy threshold – Lowers the threshold at which an instance is considered healthy during
rolling deployments, rolling updates, and immutable updates.

• Command timeout – The number of seconds to wait for an instance to become healthy before
canceling the deployment or, if Ignore health check is set, to continue to the next batch.

Deployment options 240

Amazon Elastic Beanstalk Developer Guide

How rolling deployments work

When processing a batch, Elastic Beanstalk detaches all instances in the batch from the load
balancer, deploys the new application version, and then reattaches the instances. If you enable
connection draining, Elastic Beanstalk drains existing connections from the Amazon EC2 instances
in each batch before beginning the deployment.

After reattaching the instances in a batch to the load balancer, Elastic Load Balancing waits until
they pass a minimum number of Elastic Load Balancing health checks (the Healthy check count
threshold value), and then starts routing traffic to them. If no health check URL is configured, this
can happen very quickly, because an instance will pass the health check as soon as it can accept a
TCP connection. If a health check URL is configured, the load balancer doesn't route traffic to the
updated instances until they return a 200 OK status code in response to an HTTP GET request to
the health check URL.

Elastic Beanstalk waits until all instances in a batch are healthy before moving on to the next
batch. With basic health reporting, instance health depends on the Elastic Load Balancing health
check status. When all instances in the batch pass enough health checks to be considered healthy
by Elastic Load Balancing, the batch is complete. If enhanced health reporting is enabled, Elastic
Beanstalk considers several other factors, including the result of incoming requests. With enhanced
health reporting, all instances must pass 12 consecutive health checks with an OK status within
two minutes for web server environments, and 18 health checks within three minutes for worker
environments.

Deployment options 241

Amazon Elastic Beanstalk Developer Guide

If a batch of instances does not become healthy within the command timeout, the deployment
fails. After a failed deployment, check the health of the instances in your environment for
information about the cause of the failure. Then perform another deployment with a fixed or
known good version of your application to roll back.

If a deployment fails after one or more batches completed successfully, the completed batches run
the new version of your application while any pending batches continue to run the old version. You
can identify the version running on the instances in your environment on the health page in the
console. This page displays the deployment ID of the most recent deployment that executed on
each instance in your environment. If you terminate instances from the failed deployment, Elastic
Beanstalk replaces them with instances running the application version from the most recent
successful deployment.

How traffic-splitting deployments work

Traffic-splitting deployments allow you to perform canary testing. You direct some incoming client
traffic to your new application version to verify the application's health before committing to the
new version and directing all traffic to it.

During a traffic-splitting deployment, Elastic Beanstalk creates a new set of instances in a separate
temporary Auto Scaling group. Elastic Beanstalk then instructs the load balancer to direct a certain
percentage of your environment's incoming traffic to the new instances. Then, for a configured
amount of time, Elastic Beanstalk tracks the health of the new set of instances. If all is well, Elastic
Beanstalk shifts remaining traffic to the new instances and attaches them to the environment's
original Auto Scaling group, replacing the old instances. Then Elastic Beanstalk cleans up—
terminates the old instances and removes the temporary Auto Scaling group.

Note

The environment's capacity doesn't change during a traffic-splitting deployment. Elastic
Beanstalk launches the same number of instances in the temporary Auto Scaling group
as there are in the original Auto Scaling group at the time the deployment starts. It then
maintains a constant number of instances in both Auto Scaling groups for the deployment
duration. Take this fact into account when configuring the environment's traffic splitting
evaluation time.

Rolling back the deployment to the previous application version is quick and doesn't impact
service to client traffic. If the new instances don't pass health checks, or if you choose to abort the

Deployment options 242

Amazon Elastic Beanstalk Developer Guide

deployment, Elastic Beanstalk moves traffic back to the old instances and terminates the new ones.
You can abort any deployment by using the environment overview page in the Elastic Beanstalk
console, and choosing Abort current operation in Environment actions. You can also call the
AbortEnvironmentUpdate API or the equivalent Amazon CLI command.

Traffic-splitting deployments require an Application Load Balancer. Elastic Beanstalk uses this load
balancer type by default when you create your environment using the Elastic Beanstalk console or
the EB CLI.

Deployment option namespaces

You can use the configuration options in the aws:elasticbeanstalk:command namespace to
configure your deployments. If you choose the traffic-splitting policy, additional options for this
policy are available in the aws:elasticbeanstalk:trafficsplitting namespace.

Use the DeploymentPolicy option to set the deployment type. The following values are
supported:

• AllAtOnce – Disables rolling deployments and always deploys to all instances simultaneously.

• Rolling – Enables standard rolling deployments.

• RollingWithAdditionalBatch – Launches an extra batch of instances, before starting the
deployment, to maintain full capacity.

• Immutable – Performs an immutable update for every deployment.

• TrafficSplitting – Performs traffic-splitting deployments to canary-test your application
deployments.

When you enable rolling deployments, set the BatchSize and BatchSizeType options to
configure the size of each batch. For example, to deploy 25 percent of all instances in each batch,
specify the following options and values.

Example .ebextensions/rolling-updates.config

option_settings:
 aws:elasticbeanstalk:command:
 DeploymentPolicy: Rolling
 BatchSizeType: Percentage
 BatchSize: 25

Deployment options 243

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_AbortEnvironmentUpdate.html

Amazon Elastic Beanstalk Developer Guide

To deploy to five instances in each batch, regardless of the number of instances running, and to
bring up an extra batch of five instances running the new version before pulling any instances out
of service, specify the following options and values.

Example .ebextensions/rolling-additionalbatch.config

option_settings:
 aws:elasticbeanstalk:command:
 DeploymentPolicy: RollingWithAdditionalBatch
 BatchSizeType: Fixed
 BatchSize: 5

To perform an immutable update for each deployment with a health check threshold of Warning,
and proceed with the deployment even if instances in a batch don't pass health checks within a
timeout of 15 minutes, specify the following options and values.

Example .ebextensions/immutable-ignorehealth.config

option_settings:
 aws:elasticbeanstalk:command:
 DeploymentPolicy: Immutable
 HealthCheckSuccessThreshold: Warning
 IgnoreHealthCheck: true
 Timeout: "900"

To perform traffic-splitting deployments, forwarding 15 percent of client traffic to the new
application version and evaluating health for 10 minutes, specify the following options and values.

Example .ebextensions/traffic-splitting.config

option_settings:
 aws:elasticbeanstalk:command:
 DeploymentPolicy: TrafficSplitting
 aws:elasticbeanstalk:trafficsplitting:
 NewVersionPercent: "15"
 EvaluationTime: "10"

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Deployment options 244

Amazon Elastic Beanstalk Developer Guide

Blue/Green deployments with Elastic Beanstalk

Because Amazon Elastic Beanstalk performs an in-place update when you update your application
versions, your application might become unavailable to users for a short period of time. To
avoid this, perform a blue/green deployment. To do this, deploy the new version to a separate
environment, and then swap the CNAMEs of the two environments to redirect traffic to the new
version instantly.

A blue/green deployment is also required if you want to update an environment to an
incompatible platform version. For more information, see the section called “Platform updates”.

Blue/green deployments require that your environment runs independently of your production
database, if your application uses one. If your environment includes a database that Elastic
Beanstalk created on your behalf, the database and connection of the environment isn't preserved
unless you take specific actions. If you have a database that you want to retain, use one of the
Elastic Beanstalk database lifecycle options. You can choose the Retain option to keep the database
and environment operational after decoupling the database. For more information see Database
lifecycle in the Configuring environments chapter of this guide.

For instructions on how to configure your application to connect to an Amazon RDS instance that's
not managed by Elastic Beanstalk, see Using Elastic Beanstalk with Amazon RDS.

To perform a blue/green deployment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. Clone your current environment, or launch a new environment to run the platform version you
want.

3. Deploy the new application version to the new environment.

4. Test the new version on the new environment.

5. On the environment overview page, choose Actions, and then choose Swap environment
URLs.

6. For Environment name, select the current environment.

Blue/Green deployments 245

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

7. Choose Swap.

Elastic Beanstalk swaps the CNAME records of the old and new environments, redirecting traffic
from the old version to the new version.

After Elastic Beanstalk completes the swap operation, verify that the new environment responds
when you try to connect to the old environment URL. However, do not terminate your old
environment until the DNS changes are propagated and your old DNS records expire. DNS servers
don't always clear old records from their cache based on the time to live (TTL) that you set on your
DNS records.

Blue/Green deployments 246

Amazon Elastic Beanstalk Developer Guide

Configuration changes

When you modify configuration option settings in the Configuration section of the environment
management console, Amazon Elastic Beanstalk propagates the change to all affected resources.
These resources include the load balancer that distributes traffic to the Amazon EC2 instances
running your application, the Auto Scaling group that manages those instances, and the EC2
instances themselves.

Many configuration changes can be applied to a running environment without replacing existing
instances. For example, setting a health check URL triggers an environment update to modify
the load balancer settings, but doesn't cause any downtime because the instances running your
application continue serving requests while the update is propagated.

Configuration changes that modify the launch configuration or VPC settings require terminating
all instances in your environment and replacing them. For example, when you change the instance
type or SSH key setting for your environment, the EC2 instances must be terminated and replaced.
Elastic Beanstalk provides several policies that determine how this replacement is done.

• Rolling updates – Elastic Beanstalk applies your configuration changes in batches, keeping a
minimum number of instances running and serving traffic at all times. This approach prevents
downtime during the update process. For details, see Rolling updates.

• Immutable updates – Elastic Beanstalk launches a temporary Auto Scaling group outside of
your environment with a separate set of instances running with the new configuration. Then
Elastic Beanstalk places these instances behind your environment's load balancer. Old and new
instances both serve traffic until the new instances pass health checks. At that time, Elastic
Beanstalk moves the new instances into your environment's Auto Scaling group and terminates
the temporary group and old instances. For details, see Immutable updates.

• Disabled – Elastic Beanstalk makes no attempt to avoid downtime. It terminates your
environment's existing instances and replaces them with new instances running with the new
configuration.

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

• Managed platform updates with instance replacement enabled

Configuration changes 247

https://docs.amazonaws.cn/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html

Amazon Elastic Beanstalk Developer Guide

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

Supported update types

Rolling update
setting

Load-balanced
environments

Single-instance
environments

Legacy Windows
server environme
nts†

Disabled ✓ Yes ✓ Yes ✓ Yes

Rolling Based on
Health

✓ Yes ☓ No ✓ Yes

Rolling Based on
Time

✓ Yes ☓ No ✓ Yes

Immutable ✓ Yes ✓ Yes ☓ No

† For the purpose of this table, a Legacy Windows Server Environment is an environment based on a
Windows Server platform configuration that use an IIS version earlier than IIS 8.5.

Topics

• Elastic Beanstalk rolling environment configuration updates

• Immutable environment updates

Elastic Beanstalk rolling environment configuration updates

When a configuration change requires replacing instances, Elastic Beanstalk can perform the
update in batches to avoid downtime while the change is propagated. During a rolling update,
capacity is only reduced by the size of a single batch, which you can configure. Elastic Beanstalk
takes one batch of instances out of service, terminates them, and then launches a batch with the
new configuration. After the new batch starts serving requests, Elastic Beanstalk moves on to the
next batch.

Rolling updates 248

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

Amazon Elastic Beanstalk Developer Guide

Rolling configuration update batches can be processed periodically (time-based), with a delay
between each batch, or based on health. For time-based rolling updates, you can configure the
amount of time that Elastic Beanstalk waits after completing the launch of a batch of instances
before moving on to the next batch. This pause time allows your application to bootstrap and start
serving requests.

With health-based rolling updates, Elastic Beanstalk waits until instances in a batch pass health
checks before moving on to the next batch. The health of an instance is determined by the health
reporting system, which can be basic or enhanced. With basic health, a batch is considered healthy
as soon as all instances in it pass Elastic Load Balancing (ELB) health checks.

With enhanced health reporting, all of the instances in a batch must pass multiple consecutive
health checks before Elastic Beanstalk will move on to the next batch. In addition to ELB health
checks, which check only your instances, enhanced health monitors application logs and the state
of your environment's other resources. In a web server environment with enhanced health, all
instances must pass 12 health checks over the course of two minutes (18 checks over three minutes
for worker environments). If any instance fails one health check, the count resets.

If a batch doesn't become healthy within the rolling update timeout (default is 30
minutes), the update is canceled. Rolling update timeout is a configuration option
that is available in the aws:autoscaling:updatepolicy:rollingupdate
namespace. If your application doesn't pass health checks with Ok status but is stable
at a different level, you can set the HealthCheckSuccessThreshold option in the
aws:elasticbeanstalk:healthreporting:system namespace to change the level at which
Elastic Beanstalk considers an instance to be healthy.

If the rolling update process fails, Elastic Beanstalk starts another rolling update to roll back to the
previous configuration. A rolling update can fail due to failed health checks or if launching new
instances causes you to exceed the quotas on your account. If you hit a quota on the number of
Amazon EC2 instances, for example, the rolling update can fail when it attempts to provision a
batch of new instances. In this case, the rollback fails as well.

A failed rollback ends the update process and leaves your environment in an unhealthy state.
Unprocessed batches are still running instances with the old configuration, while any batches
that completed successfully have the new configuration. To fix an environment after a failed
rollback, first resolve the underlying issue that caused the update to fail, and then initiate another
environment update.

Rolling updates 249

Amazon Elastic Beanstalk Developer Guide

An alternative method is to deploy the new version of your application to a different environment
and then perform a CNAME swap to redirect traffic with zero downtime. See Blue/Green
deployments with Elastic Beanstalk for more information.

Rolling updates versus rolling deployments

Rolling updates occur when you change settings that require new Amazon EC2 instances to be
provisioned for your environment. This includes changes to the Auto Scaling group configuration,
such as instance type and key-pair settings, and changes to VPC settings. In a rolling update, each
batch of instances is terminated before a new batch is provisioned to replace it.

Rolling deployments occur whenever you deploy your application and can typically be performed
without replacing instances in your environment. Elastic Beanstalk takes each batch out of service,
deploys the new application version, and then places it back in service.

The exception to this is if you change settings that require instance replacement at the same
time you deploy a new application version. For example, if you change the key name settings in
a configuration file in your source bundle and deploy it to your environment, you trigger a rolling
update. Instead of deploying your new application version to each batch of existing instances,
a new batch of instances is provisioned with the new configuration. In this case, a separate
deployment doesn't occur because the new instances are brought up with the new application
version.

Anytime new instances are provisioned as part of an environment update, there is a deployment
phase where your application's source code is deployed to the new instances and any configuration
settings that modify the operating system or software on the instances are applied. Deployment
health check settings (Ignore health check, Healthy threshold, and Command timeout) also apply
to health-based rolling updates and immutable updates during the deployment phase.

Configuring rolling updates

You can enable and configure rolling updates in the Elastic Beanstalk console.

To enable rolling updates

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Rolling updates 250

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

3. In the navigation pane, choose Configuration.

4. In the Rolling updates and deployments configuration category, choose Edit.

5. In the Configuration updates section, for Rolling update type, select one of the Rolling
options.

6. Choose Batch size, Minimum capacity, and Pause time settings.

7. To save the changes choose Apply at the bottom of the page.

The Configuration updates section of the Rolling updates and deployments page has the
following options for rolling updates:

• Rolling update type – Elastic Beanstalk waits after it finishes updating a batch of instances
before moving on to the next batch, to allow those instances to finish bootstrapping and start
serving traffic. Choose from the following options:

• Rolling based on Health – Wait until instances in the current batch are healthy before placing
instances in service and starting the next batch.

• Rolling based on Time – Specify an amount of time to wait between launching new instances
and placing them in service before starting the next batch.

• Immutable – Apply the configuration change to a fresh group of instances by performing an
immutable update.

Rolling updates 251

Amazon Elastic Beanstalk Developer Guide

• Batch size – The number of instances to replace in each batch, between 1 and 10000. By default,
this value is one-third of the minimum size of the Auto Scaling group, rounded up to a whole
number.

• Minimum capacity – The minimum number of instances to keep running while other instances
are updated, between 0 and 9999. The default value is either the minimum size of the Auto
Scaling group or one less than the maximum size of the Auto Scaling group, whichever number is
lower.

• Pause time (time-based only) – The amount of time to wait after a batch is updated before
moving on to the next batch, to allow your application to start receiving traffic. Between 0
seconds and one hour.

The aws:autoscaling:updatepolicy:rollingupdate namespace

You can also use the configuration options in the
aws:autoscaling:updatepolicy:rollingupdate namespace to configure rolling updates.

Use the RollingUpdateEnabled option to enable rolling updates, and RollingUpdateType to
choose the update type. The following values are supported for RollingUpdateType:

• Health – Wait until instances in the current batch are healthy before placing instances in service
and starting the next batch.

• Time – Specify an amount of time to wait between launching new instances and placing them in
service before starting the next batch.

• Immutable – Apply the configuration change to a fresh group of instances by performing an
immutable update.

When you enable rolling updates, set the MaxBatchSize and MinInstancesInService options
to configure the size of each batch. For time-based and health-based rolling updates, you can also
configure a PauseTime and Timeout, respectively.

For example, to launch up to five instances at a time, while maintaining at least two instances in
service, and wait five minutes and 30 seconds between batches, specify the following options and
values.

Example .ebextensions/timebased.config

option_settings:

Rolling updates 252

Amazon Elastic Beanstalk Developer Guide

 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateEnabled: true
 MaxBatchSize: 5
 MinInstancesInService: 2
 RollingUpdateType: Time
 PauseTime: PT5M30S

To enable health-based rolling updates, with a 45-minute timeout for each batch, specify the
following options and values.

Example .ebextensions/healthbased.config

option_settings:
 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateEnabled: true
 MaxBatchSize: 5
 MinInstancesInService: 2
 RollingUpdateType: Health
 Timeout: PT45M

Timeout and PauseTime values must be specified in ISO8601 duration: PT#H#M#S, where each #
is the number of hours, minutes, or seconds, respectively.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Immutable environment updates

Immutable environment updates are an alternative to rolling updates. Immutable environment
updates ensure that configuration changes that require replacing instances are applied efficiently
and safely. If an immutable environment update fails, the rollback process requires only
terminating an Auto Scaling group. A failed rolling update, on the other hand, requires performing
an additional rolling update to roll back the changes.

To perform an immutable environment update, Elastic Beanstalk creates a second, temporary Auto
Scaling group behind your environment's load balancer to contain the new instances. First, Elastic
Beanstalk launches a single instance with the new configuration in the new group. This instance
serves traffic alongside all of the instances in the original Auto Scaling group that are running the
previous configuration.

Immutable updates 253

http://en.wikipedia.org/wiki/ISO_8601#Durations

Amazon Elastic Beanstalk Developer Guide

When the first instance passes health checks, Elastic Beanstalk launches additional instances with
the new configuration, matching the number of instances running in the original Auto Scaling
group. When all of the new instances pass health checks, Elastic Beanstalk transfers them to the
original Auto Scaling group, and terminates the temporary Auto Scaling group and old instances.

Note

During an immutable environment update, the capacity of your environment doubles for
a short time when the instances in the new Auto Scaling group start serving requests and
before the original Auto Scaling group's instances are terminated. If your environment
has many instances, or you have a low on-demand instance quota, ensure that you have
enough capacity to perform an immutable environment update. If you are near the quota,
consider using rolling updates instead.

Immutable updates require enhanced health reporting to evaluate your environment's health
during the update. Enhanced health reporting combines standard load balancer health checks
with instance monitoring to ensure that the instances running the new configuration are serving
requests successfully.

You can also use immutable updates to deploy new versions of your application, as an alternative
to rolling deployments. When you configure Elastic Beanstalk to use immutable updates for
application deployments, it replaces all instances in your environment every time you deploy a new
version of your application. If an immutable application deployment fails, Elastic Beanstalk reverts
the changes immediately by terminating the new Auto Scaling group. This can prevent partial fleet
deployments, which can occur when a rolling deployment fails after some batches have already
completed.

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

• Managed platform updates with instance replacement enabled

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

Immutable updates 254

http://www.amazonaws.cn/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
https://docs.amazonaws.cn/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html

Amazon Elastic Beanstalk Developer Guide

If an immutable update fails, the new instances upload bundle logs to Amazon S3 before Elastic
Beanstalk terminates them. Elastic Beanstalk leaves logs from a failed immutable update in
Amazon S3 for one hour before deleting them, instead of the standard 15 minutes for bundle and
tail logs.

Note

If you use immutable updates for application version deployments, but not for
configuration, you might encounter an error if you attempt to deploy an application version
that contains configuration changes that would normally trigger a rolling update (for
example, configurations that change instance type). To avoid this, make the configuration
change in a separate update, or configure immutable updates for both deployments and
configuration changes.

You can't perform an immutable update in concert with resource configuration changes. For
example, you can't change settings that require instance replacement while also updating other
settings, or perform an immutable deployment with configuration files that change configuration
settings or additional resources in your source code. If you attempt to change resource settings (for
example, load balancer settings) and concurrently perform an immutable update, Elastic Beanstalk
returns an error.

If your resource configuration changes aren't dependent on your source code change or on
instance configuration, perform them in two updates. If they are dependent, perform a blue/green
deployment instead.

Configuring immutable updates

You can enable and configure immutable updates in the Elastic Beanstalk console.

To enable immutable updates (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Rolling updates and deployments configuration category, choose Edit.

Immutable updates 255

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

5. In the Configuration Updates section, set Rolling update type to Immutable.

6. To save the changes choose Apply at the bottom of the page.

The aws:autoscaling:updatepolicy:rollingupdate namespace

You can also use the options in the aws:autoscaling:updatepolicy:rollingupdate
namespace to configure immutable updates. The following example configuration file enables
immutable updates for configuration changes.

Example .ebextensions/immutable-updates.config

option_settings:
 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateType: Immutable

The following example enables immutable updates for both configuration changes and
deployments.

Example .ebextensions/immutable-all.config

option_settings:

Immutable updates 256

Amazon Elastic Beanstalk Developer Guide

 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateType: Immutable
 aws:elasticbeanstalk:command:
 DeploymentPolicy: Immutable

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Updating your Elastic Beanstalk environment's platform
version

Elastic Beanstalk regularly releases new platform versions to update all Linux-based and Windows
Server-based platforms. New platform versions provide updates to existing software components
and support for new features and configuration options. To learn about platforms and platform
versions, see Elastic Beanstalk platforms glossary.

You can use the Elastic Beanstalk console or the EB CLI to update your environment's platform
version. Depending on the platform version you'd like to update to, Elastic Beanstalk recommends
one of two methods for performing platform updates.

• Method 1 – Update your environment's platform version. We recommend this method when
you're updating to the latest platform version within a platform branch—with the same runtime,
web server, application server, and operating system, and without a change in the major
platform version. This is the most common and routine platform update.

• Method 2 – Perform a Blue/Green deployment. We recommend this method when you're
updating to a platform version in a different platform branch—with a different runtime, web
server, application server, or operating system, or to a different major platform version. This is
a good approach when you want to take advantage of new runtime capabilities or the latest
Elastic Beanstalk functionality, or when you want to move off of a deprecated or retired platform
branch.

Migrating from a legacy platform version requires a blue/green deployment, because these
platform versions are incompatible with currently supported versions.

Migrating a Linux application to Amazon Linux 2 requires a blue/green deployment, because
Amazon Linux 2 platform versions are incompatible with previous Amazon Linux AMI platform
versions.

Platform updates 257

Amazon Elastic Beanstalk Developer Guide

For more help with choosing the best platform update method, expand the section for your
environment's platform.

Docker

Use Method 1 to perform platform updates.

Multicontainer Docker

Use Method 1 to perform platform updates.

Preconfigured Docker

Consider the following cases:

• If you're migrating your application to another platform, for example from Go 1.4 (Docker) to Go
1.11 or from Python 3.4 (Docker) to Python 3.6, use Method 2.

• If you're migrating your application to a different Docker container version, for example from
Glassfish 4.1 (Docker) to Glassfish 5.0 (Docker), use Method 2.

• If you're updating to a latest platform version with no change in container version or major
version, use Method 1.

Go

Use Method 1 to perform platform updates.

Java SE

Consider the following cases:

• If you're migrating your application to a different Java runtime version, for example from Java 7
to Java 8, use Method 2.

• If you're updating to a latest platform version with no change in runtime version, use Method 1.

Java with Tomcat

Consider the following cases:

• If you're migrating your application to a different Java runtime version or Tomcat application
server version, for example from Java 7 with Tomcat 7 to Java 8 with Tomcat 8.5, use Method 2.

Platform updates 258

Amazon Elastic Beanstalk Developer Guide

• If you're migrating your application across major Java with Tomcat platform versions (v1.x.x,
v2.x.x, and v3.x.x), use Method 2.

• If you're updating to a latest platform version with no change in runtime version, application
server version, or major version, use Method 1.

.NET on Windows server with IIS

Consider the following cases:

• If you're migrating your application to a different Windows operating system version, for
example from Windows Server 2008 R2 to Windows Server 2016, use Method 2.

• If you're migrating your application across major Windows Server platform versions, see
Migrating from earlier major versions of the Windows server platform, and use Method 2.

• If your application is currently running on a Windows Server platform V2.x.x and you're updating
to a latest platform version, use Method 1.

Note

Windows Server platform versions earlier than v2 aren't semantically versioned. You can
only launch the latest version of each of these Windows Server major platform versions
and can't roll back after an upgrade.

Node.js

Use Method 2 to perform platform updates.

PHP

Consider the following cases:

• If you're migrating your application to a different PHP runtime version, for example from PHP 5.6
to PHP 7.2, use Method 2.

• If you're migrating your application across major PHP platform versions (v1.x.x and v2.x.x), use
Method 2.

• If you're updating to a latest platform version with no change in runtime version or major
version, use Method 1.

Platform updates 259

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

Amazon Elastic Beanstalk Developer Guide

Python

Consider the following cases:

• If you're migrating your application to a different Python runtime version, for example from
Python 2.7 to Python 3.6, use Method 2.

• If you're migrating your application across major Python platform versions (v1.x.x and v2.x.x), use
Method 2.

• If you're updating to a latest platform version with no change in runtime version or major
version, use Method 1.

Ruby

Consider the following cases:

• If you're migrating your application to a different Ruby runtime version or application server
version, for example from Ruby 2.3 with Puma to Ruby 2.6 with Puma, use Method 2.

• If you're migrating your application across major Ruby platform versions (v1.x.x and v2.x.x), use
Method 2.

• If you're updating to a latest platform version with no change in runtime version, application
server version, or major version, use Method 1.

Method 1 – Update your environment's platform version

Use this method to update to the latest version of your environment's platform branch. If you've
previously created an environment using an older platform version, or upgraded your environment
from an older version, you can also use this method to revert to a previous platform version,
provided that it's in the same platform branch.

To update your environment's platform version

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, under Platform, choose Change.

Method 1 – Update your environment's platform version 260

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

4. On the Update platform version dialog, select a platform version. The newest (recommended)
platform version in the branch is selected automatically. You can update to any version that
you've used in the past.

5. Choose Save.

Method 1 – Update your environment's platform version 261

Amazon Elastic Beanstalk Developer Guide

To further simplify platform updates, Elastic Beanstalk can manage them for you. You can
configure your environment to apply minor and patch version updates automatically during a
configurable weekly maintenance window. Elastic Beanstalk applies managed updates with no
downtime or reduction in capacity, and cancels the update immediately if instances running your
application on the new version fail health checks. For details, see Managed platform updates.

Method 2 – Perform a Blue/Green deployment

Use this method to update to a different platform branch—with a different runtime, web server,
application server, or operating system, or to a different major platform version. This is typically
necessary when you want to take advantage of new runtime capabilities or the latest Elastic
Beanstalk functionality. It's also required when you're migrating off of a deprecated or retired
platform branch.

When you migrate across major platform versions or to platform versions with major component
updates, there's a greater likelihood that your application, or some aspects of it, might not function
as expected on the new platform version, and might require changes.

Before performing the migration, update your local development machine to the newer runtime
versions and other components of the platform you plan on migrating to. Verify that your
application still works as expected, and make any necessary code fixes and changes. Then use the
following best practice procedure to safely migrate your environment to the new platform version.

To migrate your environment to a platform version with major updates

1. Create a new environment, using the new target platform version, and deploy your application
code to it. The new environment should be in the Elastic Beanstalk application that contains
the environment you're migrating. Don't terminate the existing environment yet.

2. Use the new environment to migrate your application. In particular:

• Find and fix any application compatibility issues that you couldn't discover during the
development phase.

• Ensure that any customizations that your application makes using configuration files work
correctly in the new environment. These might include option settings, additional installed
packages, custom security policies, and script or configuration files installed on environment
instances.

• If your application uses a custom Amazon Machine Image (AMI), create a new custom AMI
based on the AMI of the new platform version. To learn more, see Using a custom Amazon

Method 2 – Perform a Blue/Green deployment 262

Amazon Elastic Beanstalk Developer Guide

machine image (AMI) in your Elastic Beanstalk environment. Specifically, this is required if
your application uses the Windows Server platform with a custom AMI, and you're migrating
to a Windows Server V2 platform version. In this case, see also Migrating from earlier major
versions of the Windows server platform.

Iterate on testing and deploying your fixes until you're satisfied with the application on the
new environment.

3. Turn the new environment into your production environment by swapping its CNAME with
the existing production environment's CNAME. For details, see Blue/Green deployments with
Elastic Beanstalk.

4. When you're satisfied with the state of your new environment in production, terminate the old
environment. For details, see Terminate an Elastic Beanstalk environment.

Managed platform updates

Amazon Elastic Beanstalk regularly releases platform updates to provide fixes, software updates,
and new features. With managed platform updates, you can configure your environment to
automatically upgrade to the latest version of a platform during a scheduled maintenance window.
Your application remains in service during the update process with no reduction in capacity.
Managed updates are available on both single-instance and load-balanced environments.

Note

This feature isn't available on Windows Server platform versions earlier than version 2 (v2).

You can configure your environment to automatically apply patch version updates, or both patch
and minor version updates. Managed platform updates don't support updates across platform
branches (updates to different major versions of platform components such as operating system,
runtime, or Elastic Beanstalk components), because these can introduce changes that are backward
incompatible.

You can also configure Elastic Beanstalk to replace all instances in your environment during the
maintenance window, even if a platform update isn't available. Replacing all instances in your
environment is helpful if your application encounters bugs or memory issues when running for a
long period.

Managed updates 263

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

Amazon Elastic Beanstalk Developer Guide

On environments created on November 25, 2019 or later using the Elastic Beanstalk console,
managed updates are enabled by default whenever possible. Managed updates require enhanced
health to be enabled. Enhanced health is enabled by default when you select one of the
configuration presets, and disabled when you select Custom configuration. The console can't
enable managed updates for older platform versions that don't support enhanced health, or when
enhanced health is disabled. When the console enables managed updates for a new environment,
the Weekly update window is set to a random day of the week at a random time. Update level
is set to Minor and patch, and Instance replacement is disabled. You can disable or reconfigure
managed updates before the final environment creation step.

For an existing environment, use the Elastic Beanstalk console anytime to configure managed
platform updates.

Important

A high number of Beanstalk environments in one Amazon account may present a risk of
throttling issues during managed updates. High number is a relative amount that depends
on how closely you schedule the managed updates for your environments. Over 200
environments in one account scheduled closely could cause throttling issues, although a
lower number may also be problematic.
To balance the resource load for managed updates, we advise that you spread out the
scheduled maintenance windows for the environments in one account.
Also, consider a multi‐account strategy. For more information, see Organizing Your Amazon
Environment Using Multiple Accounts on the Amazon Whitepapers & Guides website.

To configure managed platform updates

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Managed updates category, choose Edit.

5. Disable or enable Managed updates.

6. If managed updates are enabled, select a maintenance window, and then select an Update
level.

Managed updates 264

https://docs.amazonaws.cn/whitepapers/latest/organizing-your-aws-environment/organizing-your-aws-environment.html
https://docs.amazonaws.cn/whitepapers/latest/organizing-your-aws-environment/organizing-your-aws-environment.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

7. (Optional) Select Instance replacement to enable weekly instance replacement.

8. To save the changes choose Apply at the bottom of the page.

Managed platform updates depend on enhanced health reporting to determine that your
application is healthy enough to consider the platform update successful. See Enabling Elastic
Beanstalk enhanced health reporting for instructions.

Sections

• Permissions required to perform managed platform updates

• Managed update maintenance window

• Minor and patch version updates

• Immutable environment updates

• Managing managed updates

• Managed action option namespaces

Managed updates 265

Amazon Elastic Beanstalk Developer Guide

Permissions required to perform managed platform updates

Elastic Beanstalk needs permission to initiate a platform update on your behalf. To
gain these permissions, Elastic Beanstalk assumes the managed-updates service role.
When you use the default service role for your environment, the Elastic Beanstalk
console uses it as the managed-updates service role too. The console assigns the
AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy managed policy to your service
role. This policy has all permissions that Elastic Beanstalk needs to perform managed platform
updates.

For details about other ways to set the managed-updates service role, see the section called
“Service roles”.

Note

If you use configuration files to extend your environment to include additional resources,
you might need to add permissions to your environment's managed-updates service role.
Typically you need to add permissions when you reference these resources by name in
other sections or files.

If an update fails, you can find the reason for the failure on the Managed updates page.

Managed update maintenance window

When Amazon releases a new version of your environment's platform, Elastic Beanstalk schedules a
managed platform update during the next weekly maintenance window. Maintenance windows are
two hours long. Elastic Beanstalk starts a scheduled update during the maintenance window. The
update might not complete until after the window ends.

Note

In most cases, Elastic Beanstalk schedules your managed update to occur during your
coming weekly maintenance window. The system considers various aspects of update
safety and service availability when scheduling managed updates. In rare cases, an update
might not be scheduled for the first coming maintenance window. If this happens, the
system tries again during the next maintenance window. To manually apply the managed
update, choose Apply now as explained in Managing managed updates on this page.

Managed updates 266

Amazon Elastic Beanstalk Developer Guide

Minor and patch version updates

You can enable managed platform updates to apply patch version updates only, or for both
minor and patch version updates. Patch version updates provide bug fixes and performance
improvements, and can include minor configuration changes to the on-instance software, scripts,
and configuration options. Minor version updates provide support for new Elastic Beanstalk
features. You can't apply major version updates, which might make changes that are backward
incompatible, with managed platform updates.

In a platform version number, the second number is the minor update version, and the third
number is the patch version. For example, a version 2.0.7 platform version has a minor version of 0
and a patch version of 7.

Immutable environment updates

Managed platform updates perform immutable environment updates to upgrade your
environment to a new platform version. Immutable updates update your environment without
taking any instances out of service or modifying your environment, before confirming that
instances running the new version pass health checks.

In an immutable update, Elastic Beanstalk deploys as many instances as are currently running with
the new platform version. The new instances begin to take requests alongside those running the
old version. If the new set of instances passes all health checks, Elastic Beanstalk terminates the
old set of instances, leaving only instances with the new version.

Managed platform updates always perform immutable updates, even when you apply them
outside of the maintenance window. If you change the platform version from the Dashboard,
Elastic Beanstalk applies the update policy that you've chosen for configuration updates.

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

• Managed platform updates with instance replacement enabled

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

Managed updates 267

https://docs.amazonaws.cn/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html

Amazon Elastic Beanstalk Developer Guide

Managing managed updates

The Elastic Beanstalk console shows detailed information about managed updates on the Managed
updates overview page.

To view information about managed updates (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Managed updates.

The Managed updates overview section provides information about scheduled and pending
managed updates. The History section lists successful updates and failed attempts.

You can choose to apply a scheduled update immediately, instead of waiting until the maintenance
window.

To apply a managed platform update immediately (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Managed updates.

4. Choose Apply now.

5. Verify the update details, and then choose Apply.

When you apply a managed platform update outside of the maintenance window, Elastic Beanstalk
performs an immutable update. If you update the environment's platform from the Dashboard,
or by using a different client, Elastic Beanstalk uses the update type that you selected for
configuration changes.

If you don't have a managed update scheduled, your environment might already be running the
latest version. Other reasons for not having an update scheduled include:

Managed updates 268

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• A minor version update is available, but your environment is configured to automatically apply
only patch version updates.

• Your environment hasn't been scanned since the update was released. Elastic Beanstalk typically
checks for updates every hour.

• An update is pending or already in progress.

When your maintenance window starts or when you choose Apply now, scheduled updates go into
pending status before execution.

Managed action option namespaces

You can use configuration options in the aws:elasticbeanstalk:managedactions and
aws:elasticbeanstalk:managedactions:platformupdate namespaces to enable and
configure managed platform updates.

The ManagedActionsEnabled option turns on managed platform updates. Set this option
to true to enable managed platform updates, and use the other options to configure update
behavior.

Use PreferredStartTime to configure the beginning of the weekly maintenance window in
day:hour:minute format.

Set UpdateLevel to minor or patch to apply both minor and patch version updates, or just
patch version updates, respectively.

When managed platform updates are enabled, you can enable instance replacement by setting
the InstanceRefreshEnabled option to true. When this setting is enabled, Elastic Beanstalk
runs an immutable update on your environment every week, regardless of whether there is a new
platform version available.

The following example configuration file enables managed platform updates for patch version
updates with a maintenance window starting at 9:00 AM UTC each Tuesday.

Example .ebextensions/managed-platform-update.config

option_settings:
 aws:elasticbeanstalk:managedactions:
 ManagedActionsEnabled: true
 PreferredStartTime: "Tue:09:00"

Managed updates 269

Amazon Elastic Beanstalk Developer Guide

 aws:elasticbeanstalk:managedactions:platformupdate:
 UpdateLevel: patch
 InstanceRefreshEnabled: true

Migrating your application from a legacy platform version

If you have deployed an Elastic Beanstalk application that uses a legacy platform version, you
should migrate your application to a new environment using a non-legacy platform version so that
you can get access to new features. If you are unsure whether you are running your application
using a legacy platform version, you can check in the Elastic Beanstalk console. For instructions, see
To check if you are using a legacy platform version.

What new features are legacy platform versions missing?

Legacy platforms do not support the following features:

• Configuration files, as described in the Advanced environment customization with configuration
files (.ebextensions) topic

• ELB health checks, as described in the Basic health reporting topic

• Instance Profiles, as described in the Managing Elastic Beanstalk instance profiles topic

• VPCs, as described in the Using Elastic Beanstalk with Amazon VPC topic

• Data Tiers, as described in the Adding a database to your Elastic Beanstalk environment topic

• Worker Tiers, as described in the Elastic Beanstalk worker environments topic

• Single Instance Environments, as described in the Environment types topic

• Tags, as described in the Tagging resources in your Elastic Beanstalk environments topic

• Rolling Updates, as described in the Elastic Beanstalk rolling environment configuration updates
topic

Why are some platform versions marked legacy?

Some older platform versions do not support the latest Elastic Beanstalk features. These versions
are marked (legacy) on the environment overview page in the Elastic Beanstalk console.

To check if you are using a legacy platform version

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

Upgrade a legacy environment 270

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, view the Platform name.

Your application is using a legacy platform version if you see (legacy) next to the platform's
name.

To migrate your application

1. Deploy your application to a new environment. For instructions, go to Creating an Elastic
Beanstalk environment.

2. If you have an Amazon RDS DB Instance, update your database security group to allow
access to your EC2 security group for your new environment. For instructions on how to
find the name of your EC2 security group using the Amazon Management Console, see EC2
security groups. For more information about configuring your EC2 security group, go to the
"Authorizing Network Access to an Amazon EC2 Security Group" section of Working with DB
Security Groups in the Amazon Relational Database Service User Guide.

3. Swap your environment URL. For instructions, go to Blue/Green deployments with Elastic
Beanstalk.

4. Terminate your old environment. For instructions, go to Terminate an Elastic Beanstalk
environment.

Note

If you use Amazon Identity and Access Management (IAM) then you will need to update
your policies to include Amazon CloudFormation and Amazon RDS (if applicable). For more
information, see Using Elastic Beanstalk with Amazon Identity and Access Management.

Migrating your Elastic Beanstalk Linux application to Amazon Linux
2023 or Amazon Linux 2

This section describes how to migrate your application using one of the following migration paths.

• Migrate from an Amazon Linux 2 platform branch to an Amazon Linux 2023 platform branch.

Migrate to AL2023/AL2 271

http://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_WorkingWithSecurityGroups.html
http://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_WorkingWithSecurityGroups.html

Amazon Elastic Beanstalk Developer Guide

• Migrate from an Amazon Linux AMI (AL1) platform branch to either an Amazon Linux 2023
(recommended) or an Amazon Linux 2 platform branch.

Topics

• Migration from Amazon Linux 2 to Amazon Linux 2023

• Migration from Amazon Linux AMI (AL1) to AL2 or AL2023

Migration from Amazon Linux 2 to Amazon Linux 2023

This topic provides guidance to migrate your application from an Amazon Linux 2 platform branch
to an Amazon Linux 2023 platform branch.

Differences and compatibility

Between the Elastic Beanstalk AL2 and AL2023 platforms

There is a high degree of compatibility between Elastic Beanstalk Amazon Linux 2 and Amazon
Linux 2023 platforms. Although there are some differences to note:

• Instance Metadata Service Version 1 (IMDSv1) – The DisableIMDSv1 option setting defaults to
true on AL2023 platforms. The default is false on AL2 platforms.

• pkg-repo instance tool – The pkg-repo tool is not available for environments running on AL2023
platforms. However,you can manually apply package and operating system updates to an
AL2023 instance. For more information, see Managing packages and operating system updates
in the Amazon Linux 2023 User Guide.

• Apache HTTPd configuration – The Apache httpd.conf file for AL2023 platforms has some
configuration settings that are different from those for AL2:

• Deny access to the server’s entire file system by default. These settings are described in Protect
Server Files by Default on the Apache website Security Tips page.

• Stop users from overriding security features you've configured. The configuration denies access
to set up of .htaccess in all directories, except for those specifically enabled. This setting is
described in Protecting System Settings on the Apache website Security Tips page. The Apache
HTTP Server Tutorial: .htaccess files page states this setting may help improve performance.

• Deny access to files with name pattern .ht*. This setting prevents web clients from viewing
.htaccess and .htpasswd files.

Migrate to AL2023/AL2 272

https://docs.amazonaws.cn/linux/al2023/ug/managing-repos-os-updates.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html

Amazon Elastic Beanstalk Developer Guide

You can change any of the above configuration settings for your environment. For more
information, see Configuring Apache HTTPD.

Between the Amazon Linux operating systems

For more information about the differences between the Amazon Linux 2 and Amazon Linux 2023
operating systems, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the Amazon Linux
2023 User Guide.

For more information about Amazon Linux 2023, see What is Amazon Linux 2023? in the Amazon
Linux 2023 User Guide.

General migration process

When you're ready to go to production, Elastic Beanstalk requires a blue/green deployment to
perform the upgrade. The following are the general best practice steps that we recommend for
migration with a blue/green deployment procedure.

Preparing to test for your migration

Before you deploy your application and start testing, review the information in the prior section
Differences and compatibility. Also review the reference cited in that section, Comparing Amazon
Linux 2 and Amazon Linux 2023 in the Amazon Linux 2023 User Guide. Make a note of the specific
information from this content that applies or may apply to your application and configuration set
up.

High level migration steps

1. Create a new environment that's based on an AL2023 platform branch.

2. Deploy your application to the target AL2023 environment.

Your existing production environment will remain active and unaffected, while you iterate
through testing and making adjustments to the new environment.

3. Test your application thoroughly in the new environment.

4. When your destination AL2023 environment is ready to go to production, swap the CNAMEs of
the two environments to redirect traffic to the new AL2023 environment.

More detailed migration steps and best practices

Migrate to AL2023/AL2 273

https://docs.amazonaws.cn/linux/al2023/ug/compare-with-al2.html
https://docs.amazonaws.cn/linux/al2023/ug/what-is-amazon-linux.html
https://docs.amazonaws.cn/linux/al2023/ug/compare-with-al2.html
https://docs.amazonaws.cn/linux/al2023/ug/compare-with-al2.html

Amazon Elastic Beanstalk Developer Guide

For a more detailed blue/green deployment procedure, see Blue/Green deployments with Elastic
Beanstalk.

For more specific guidance and detailed best practice steps, see Blue/Green method.

More references to help plan your migration

The following references can offer additional information to plan your migration.

• Elastic Beanstalk supported platforms in Amazon Elastic Beanstalk Platforms

• Retired platform branch history

• the section called “Linux platforms”

• Platform retirement FAQ

Migration from Amazon Linux AMI (AL1) to AL2 or AL2023

If your Elastic Beanstalk application is based on an Amazon Linux AMI platform branch, use this
section to learn how to migrate your application's environments to Amazon Linux 2 or Amazon
Linux 2023. Previous generation platform branches based on Amazon Linux AMI are now retired.

We highly recommend that you migrate to Amazon Linux 2023, since it's more recent than Amazon
Linux 2. The Amazon Linux 2 operating system will reach end of support before Amazon Linux
2023 does, so you'll benefit from a longer time frame of support if you migrate to Amazon Linux
2023.

It's worthwhile to note that there is a high degree of compatibility between the Elastic Beanstalk
Amazon Linux 2 and Amazon Linux 2023 platforms. Although some areas do have differences: the
Instance Metadata Service Version 1 (IMDSv1) option default, support for the pkg-repo instance
tool, and some Apache HTTPd configuration. For more information, see Amazon Linux 2023

Differences and compatibility

The AL2023/AL2 based platform branches aren't guaranteed to be backward compatible with your
existing application. It's also important to be aware that even if your application code successfully
deploys to the new platform version, it might behave or perform differently due to operating
system and run time differences.

Although Amazon Linux AMI and AL2023/AL2 share the same Linux kernel, they differ in the
following aspects: their initialization system, the libc versions, the compiler tool chain, and
various packages. For more information, see Amazon Linux 2 FAQs.

Migrate to AL2023/AL2 274

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
http://www.amazonaws.cn/amazon-linux-ami/
http://www.amazonaws.cn//amazon-linux-2/faqs/

Amazon Elastic Beanstalk Developer Guide

The Elastic Beanstalk service has also updated platform specific versions of runtime, build tools,
and other dependencies.

Therefore we recommend that you take your time, test your application thoroughly in a
development environment, and make any necessary adjustments.

General migration process

When you're ready to go to production, Elastic Beanstalk requires a blue/green deployment to
perform the upgrade. The following are the general best practice steps that we recommend for
migration with a blue/green deployment procedure.

Preparing to test for your migration

Before you deploy your application and start testing, review the information in Considerations
for all Linux platforms, which follows later in this topic. Also, review the information that applies
to your platform in the Platform specific considerations section that follows. Make a note of
the specific information from this content that applies or may apply to your application and
configuration set up.

High level migration steps

1. Create a new environment that's based on an AL2 or AL2023 platform branch. We recommend
that you migrate to an AL2023 platform branch.

2. Deploy your application to the target AL2023/AL2 environment.

Your existing production environment will remain active and unaffected, while you iterate
through testing and making adjustments to the new environment.

3. Test your application thoroughly in the new environment.

4. When your destination AL2023/AL2 environment is ready to go to production, swap the
CNAMEs of the two environments to redirect traffic to the new environment.

More detailed migration steps and best practices

For a more detailed blue/green deployment procedure, see Blue/Green deployments with Elastic
Beanstalk.

For more specific guidance and detailed best practice steps, see Blue/Green method.

Migrate to AL2023/AL2 275

Amazon Elastic Beanstalk Developer Guide

More references to help plan your migration

The following references can offer additional information to plan your migration.

• Comparing Amazon Linux 2 and Amazon Linux 2023 Amazon Linux 2023 User Guide.

• What is Amazon Linux 2023? in the Amazon Linux 2023 User Guide

• Elastic Beanstalk supported platforms in Amazon Elastic Beanstalk Platforms

• Retired platform branch history

• the section called “Linux platforms”

• Platform retirement FAQ

Considerations for all Linux platforms

The following table discusses considerations you should be aware of when planning an application
migration to AL2023/AL2. These considerations apply to any of the Elastic Beanstalk Linux
platforms, regardless of specific programming languages or application servers.

Area Changes and information

Configura
tion Files

On AL2023/AL2 platforms, you can use configuration files as before, and all
sections work the same way. However, specific settings might not work the same
as they did on previous Amazon Linux AMI platforms. For example:

• Some software packages that you install using a configuration file might not be
available on AL2023/AL2, or their names might have changed.

• Some platform specific configuration options have moved from their platform
specific namespaces to different, platform agnostic namespaces.

• Proxy configuration files provided in the .ebextensions/nginx directory
should move to the .platform/nginx platform hooks directory. For details,
see Reverse proxy configuration.

We recommend using platform hooks to run custom code on your environment
instances. You can still use commands and container commands in .ebextens
ions configuration files, but they aren't as easy to work with. For example,
writing command scripts inside a YAML file can be cumbersome and difficult to
test.

Migrate to AL2023/AL2 276

https://docs.amazonaws.cn/linux/al2023/ug/compare-with-al2.html
https://docs.amazonaws.cn/linux/al2023/ug/what-is-amazon-linux.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html

Amazon Elastic Beanstalk Developer Guide

Area Changes and information

You still need to use .ebextensions configuration files for any script that
needs a reference to an Amazon CloudFormation resource.

Platform
hooks

AL2 platforms introduced a new way to extend your environment's platform by
adding executable files to hook directories on the environment's instances. With
previous Linux platform versions, you might have used custom platform hooks.
These hooks weren't designed for managed platforms and weren't supported, but
could work in useful ways in some cases. With AL2023/AL2 platform versions,
custom platform hooks don't work. You should migrate any hooks to the new
platform hooks. For details see Platform hooks.

Supported
proxy
servers

AL2023/AL2 platform versions support the same reverse proxy servers as each
platform supported in its Amazon Linux AMI platform versions. All AL2023/AL
2; platform versions use nginx as their default reverse proxy server, with the
exception of the ECS and Docker platforms. The Tomcat, Node.js, PHP, and Python
platform also support Apache HTTPD as an alternative. All platforms enable
proxy server configuration in a uniform way, as described in this section. However,
configuring the proxy server is slightly different than it was on Amazon Linux AMI.
These are the differences for all platforms:

• Default is nginx – The default proxy server on all AL2023/AL2 platform
versions is nginx. On Amazon Linux AMI platform versions of Tomcat, PHP, and
Python, the default proxy server was Apache HTTPD.

• Consistent namespace – All AL2023/AL2 platform versions use the aws:elast
icbeanstalk:environment:proxy namespace to configure the
proxy server. On Amazon Linux AMI platform versions this was a per-platform
decision, and Node.js used a different namespace.

• Configuration file location – You should place proxy configuration files in the
.platform/nginx and .platform/httpd directories on all AL2023/AL2
platform versions. On Amazon Linux AMI platform versions these locations were
.ebextensions/nginx and .ebextensions/httpd , respectively.

For platform-specific proxy configuration changes, see the section called
“Platform specific considerations”. For information about proxy configuration on
AL2023/AL2 platforms, see Reverse proxy configuration.

Migrate to AL2023/AL2 277

Amazon Elastic Beanstalk Developer Guide

Area Changes and information

Proxy
Configura
tion
Changes

There are proxy configuration changes that apply uniformly to all platforms in
addition to proxy configuration changes that are specific to each platform. It's
important to refer to both to accurately configure your environments.

• All platforms – see Reverse proxy configuration

• Platform-specific – see the section called “Platform specific considerations”.

Instance
profile

AL2023/AL2 platforms require an instance profile to be configured. Environment
creation might temporarily succeed without one, but the environment might show
errors soon after creation when actions requiring an instance profile start failing.
For details, see the section called “Instance profiles”.

Enhanced
health

AL2023/AL2 platform versions enable enhanced health by default. This is a
change if you don't use the Elastic Beanstalk console to create your environments.
The console enables enhanced health by default whenever possible, regardless of
platform version. For details, see the section called “Enhanced health reporting
and monitoring”.

Custom
AMI

If your environment uses a custom AMI, create a new AMI based on AL2023/AL2
for your new environment using an Elastic Beanstalk AL2023/AL2 platform.

Custom
platforms

The managed AMIs of AL2023/AL2 platform versions don't support custom
platforms.

Platform specific considerations

This section discusses migration considerations specific to particular Elastic Beanstalk Linux
platforms.

Docker

The Docker platform branch family based on Amazon Linux AMI (AL1) includes three platform
branches. We recommend a different migration path for each.

Migrate to AL2023/AL2 278

Amazon Elastic Beanstalk Developer Guide

AL1
Platform
branch

Migration Path to AL2023/AL2

Multi-
container
Docker
managed
by Amazon
ECS
running on
Amazon
Linux AMI
(AL1)

ECS based Docker AL2023/AL2 platform branches

The ECS based Docker AL2023/AL2 platform branches offer a straightforward
migration path for environments running on the Multi-container Docker AL1
platform branch.

• Like the previous Multi-container Docker AL1 branch, the AL2023/AL2 platform
branches use Amazon ECS to coordinate deployment of multiple Docker
containers to an Amazon ECS cluster in an Elastic Beanstalk environment.

• The AL2023/AL2 platform branches support all of the features in the previous
Multi-container Docker AL1 branch.

• The AL2023/AL2 platform branches also support the same Dockerrun
.aws.json v2 file.

For more information about migrating your applications running on the Multi-
container Docker Amazon Linux platform branch to an Amazon ECS running on
AL2023/AL2 platform branch, see ???.

Docker
running on
Amazon
Linux AMI
(AL1)

Preconfig
ured
Docker
(Glassfis
h 5.0)
running
Amazon
Linux AMI
(AL1)

Docker Running on AL2023/AL2 platform branch

We recommend that you migrate your applications running on environments
based on Preconfigured Docker (Glassfish 5.0) or Docker running on Amazon Linux
AMI (AL1) to environments that are based on the Docker Running on Amazon
Linux 2 or Docker Running on AL2023 platform branches.

If your environment is based on the Preconfigured Docker (Glassfish 5.0) platform
branch, see the section called “Tutorial - GlassFish on Docker: path to Amazon
Linux 2023”.

The following table lists migration information specific to the platform branch
Docker Running on AL2023/AL2.

Migrate to AL2023/AL2 279

Amazon Elastic Beanstalk Developer Guide

AL1
Platform
branch

Migration Path to AL2023/AL2

Area Changes and information

Storage Elastic Beanstalk configures Docker to use storage drivers to
store Docker images and container data. On Amazon Linux AMI,
Elastic Beanstalk used the Device Mapper storage driver. To
improve performance, Elastic Beanstalk provisioned an extra
Amazon EBS volume. On AL2023/AL2 Docker platform versions,
Elastic Beanstalk uses the OverlayFS storage driver, and achieves
even better performance while not requiring a separate volume
anymore.

With Amazon Linux AMI, if you used the BlockDeviceMapping
s option of the aws:autoscaling:launchconfiguration
namespace to add custom storage volumes to a Docker environme
nt, we advised you to also add the /dev/xvdcz Amazon EBS
volume that Elastic Beanstalk provisions. Elastic Beanstalk doesn't
provision this volume anymore, so you should remove it from
your configuration files. For details, see the section called “Docker
configuration on Amazon Linux AMI (preceding Amazon Linux 2)”.

Private
repositor
y
authentic
ation

When you provide a Docker-generated authentication file to
connect to a private repository, you no longer need to convert it to
the older format that Amazon Linux AMI Docker platform versions
required. AL2023/AL2 Docker platform versions support the new
format. For details, see the section called “Using images from a
private repository”.

Proxy
server

AL2023/AL2 Docker platform versions don't support standalone
containers that don't run behind a proxy server. On Amazon Linux
AMI Docker platform versions, this used to be possible through
the none value of the ProxyServer option in the aws:elast
icbeanstalk:environment:proxy namespace.

Migrate to AL2023/AL2 280

https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

Amazon Elastic Beanstalk Developer Guide

Go

The following table lists migration information for the AL2023/AL2 platform versions in the Go
platform.

Area Changes and information

Port
passing

On AL2023/AL2 platforms, Elastic Beanstalk doesn't pass a port value to your
application process through the PORT environment variable. You can simulate this
behavior for your process by configuring a PORT environment property yourself.
 However, if you have multiple processes, and you're counting on Elastic Beanstalk
passing incremental port values to your processes (5000, 5100, 5200 etc.), you
should modify your implementation. For details see Reverse proxy configuration.

Amazon Corretto

The following table lists migration information for the Corretto platform branches in the Java SE
platform.

Area Changes and information

Corretto
vs.
OpenJDK

To implement the Java Platform, Standard Edition (Java SE), AL2023/AL2
platform branches use Amazon Corretto, an Amazon distribution of the Open Java
Development Kit (OpenJDK). Prior Elastic Beanstalk Java SE platform branches
use the OpenJDK packages included with Amazon Linux AMI.

Build tools AL2023/AL2 platforms have newer versions of the build tools: gradle, maven,
and ant.

JAR file
handling

On AL2023/AL2 platforms, if your source bundle (ZIP file) contains a single
JAR file and no other files, Elastic Beanstalk no longer renames the JAR file to
application.jar . Renaming occurs only if you submit a JAR file on its own,
not within a ZIP file.

Port
passing

On AL2023/AL2 platforms, Elastic Beanstalk doesn't pass a port value to your
application process through the PORT environment variable. You can simulate this
behavior for your process by configuring a PORT environment property yourself.
 However, if you have multiple processes, and you're counting on Elastic Beanstalk

Migrate to AL2023/AL2 281

http://www.amazonaws.cn/corretto

Amazon Elastic Beanstalk Developer Guide

Area Changes and information

passing incremental port values to your processes (5000, 5100, 5200 etc.), you
should modify your implementation. For details see Reverse proxy configuration.

Java 7 Elastic Beanstalk doesn't support an AL2023/AL2 Java 7 platform branch. If you
have a Java 7 application, migrate it to Corretto 8 or Corretto 11.

Tomcat

The following table lists migration information for the AL2023/AL2 platform versions in the
Tomcat platform.

Area Changes and information

Configura
tion
options

On AL2023/AL2 platform versions, Elastic Beanstalk supports only a subset of
the configuration options and option values in the aws:elasticbeansta
lk:environment:proxy namespace. Here's the migration information for
each option.

Option Migration information

GzipCompr
ession

Unsupported on AL2023/AL2 platform versions.

ProxyServ
er

AL2023/AL2 Tomcat platform versions support both the nginx
and the Apache HTTPD version 2.4 proxy servers. However, Apache
version 2.2 isn't supported.

On Amazon Linux AMI platform versions, the default proxy was
Apache 2.4. If you used the default proxy setting and added custom
proxy configuration files, your proxy configuration should still work
on AL2023/AL2. However, if you used the apache/2.2 option
value, you now have to migrate your proxy configuration to Apache
version 2.4.

Migrate to AL2023/AL2 282

Amazon Elastic Beanstalk Developer Guide

Area Changes and information

The XX:MaxPermSize option in the aws:elasticbeanstalk:contai
ner:tomcat:jvmoptions namespace isn't supported on AL2023/AL2
platform versions. The JVM setting to modify the size of the permanent generatio
n applies only to Java 7 and earlier, and is therefore not applicable to AL2023/AL2
platform versions.

Applicati
on path

On AL2023/AL2 platforms, the path to the application's directory on Amazon
EC2 instances of your environment is /var/app/current . It was /var/lib/
tomcat8/webapps on Amazon Linux AMI platforms.

Node.js

The following table lists migration information for the AL2023/AL2 platform versions in the
Node.js platform.

Area Changes and information

Installed
Node.js
versions

On AL2023/AL2 platforms, Elastic Beanstalk maintains several Node.js platform
branches, and only installs the latest version of the Node.js major version
corresponding with the platform branch on each platform version. For example,
each platform version in the Node.js 12 platform branch only has Node.js 12.x.y
installed by default. On Amazon Linux AMI platform versions, we installed the
multiple versions of multiple Node.js versions on each platform version, and only
maintained a single platform branch.

Choose the Node.js platform branch that corresponds with the Node.js major
version that your application needs.

Apache
HTTPD log
file names

On AL2023/AL2 platforms, if you use the Apache HTTPD proxy server, the HTTPD
log file names are access_log and error_log , which is consistent with all
other platforms that support Apache HTTPD. On Amazon Linux AMI platform
versions, these log files were named access.log and error.log , respectiv
ely.

For details about log file names and locations for all platforms, see the section
called “How Elastic Beanstalk sets up CloudWatch Logs”.

Migrate to AL2023/AL2 283

Amazon Elastic Beanstalk Developer Guide

Area Changes and information

Configura
tion
options

On AL2023/AL2 platforms, Elastic Beanstalk doesn't support the configuration
options in the aws:elasticbeanstalk:container:nodejs namespace.
Some of the options have alternatives. Here's the migration information for each
option.

Option Migration information

NodeComma
nd

Use a Procfile or the scripts keyword in a package.json
file to specify the start script.

NodeVersi
on

Use the engines keyword in a package.json file to specify
the Node.js version. Be aware that you can only specify a Node.js
version that correspondes with your platform branch. For example,
if you're using the Node.js 12 platform branch, you can specify only
a 12.x.y Node.js version. For details, see the section called “Specifyi
ng Node.js dependencies with a package.json file”.

GzipCompr
ession

Unsupported on AL2023/AL2 platform versions.

ProxyServ
er

On AL2023/AL2 Node.js platform versions, this option moved
to the aws:elasticbeanstalk:environment:proxy
namespace. You can choose between nginx (the default) and
apache.

AL2023/AL2 Node.js platform versions don't support standalone
applications that don't run behind a proxy server. On Amazon Linux
AMI Node.js platform versions, this used to be possible through
the none value of the ProxyServer option in the aws:elast
icbeanstalk:container:nodejs namespace. If your
environment runs a standalone application, update your code to
listen to the port that the proxy server (nginx or Apache) forwards
traffic to.

var port = process.env.PORT || 5000;

Migrate to AL2023/AL2 284

Amazon Elastic Beanstalk Developer Guide

Area Changes and information

Option Migration information

app.listen(port, function() {
 console.log('Server running at http://127.0.0.1:%s',
 port);
});

PHP

The following table lists migration information for the AL2023/AL2 platform versions in the PHP
platform.

Area Changes and information

PHP file
processing

On AL2023/AL2 platforms, PHP files are processed using PHP-FPM (a CGI process
manager). On Amazon Linux AMI platforms we used mod_php (an Apache
module).

Proxy
server

AL2023/AL2 PHP platform versions support both the nginx and the Apache
HTTPD proxy servers. The default is nginx.

Amazon Linux AMI PHP platform versions supported only Apache HTTPD. If you
added custom Apache configuration files, you can set the ProxyServer option
in the aws:elasticbeanstalk:environment:proxy namespace to
apache.

Python

The following table lists migration information for the AL2023/AL2 platform versions in the
Python platform.

Area Changes and information

WSGI
server

On AL2023/AL2 platforms, Gunicorn is the default WSGI server. By default,
Gunicorn listens on port 8000. The port might be different than what your

Migrate to AL2023/AL2 285

https://gunicorn.org/

Amazon Elastic Beanstalk Developer Guide

Area Changes and information

application used on the Amazon Linux AMI platform. If you're setting the
WSGIPath option of the aws:elasticbeanstalk:container:python
namespace, replace the value with Gunicorn's syntax. For details, see the section
called “Python configuration namespaces”.

Alternatively, you can use a Procfile to specify and configure the WSGI server.
For details, see the section called “Procfile”.

Applicati
on path

On AL2023/AL2 platforms, the path to the application's directory on Amazon EC2
instances of your environment is /var/app/current . It was /opt/python/
current/app on Amazon Linux AMI platforms.

Proxy
server

AL2023/AL2 Python platform versions support both the nginx and the Apache
HTTPD proxy servers. The default is nginx.

Amazon Linux AMI Python platform versions supported only Apache HTTPD. If
you added custom Apache configuration files, you can set the ProxyServer
option in the aws:elasticbeanstalk:environment:proxy namespace
to apache.

Ruby

The following table lists migration information for the AL2023/AL2 platform versions in the Ruby
platform.

Area Changes and information

Installed
Ruby
versions

On AL2023/AL2 platforms, Elastic Beanstalk only installs the latest version of a
single Ruby version, corresponding with the platform branch, on each platform
version. For example, each platform version in the Ruby 2.6 platform branch only
has Ruby 2.6.x installed. On Amazon Linux AMI platform versions, we installed the
latest versions of multiple Ruby versions, for example, 2.4.x, 2.5.x, and 2.6.x.

If your application uses a Ruby version that doesn't correspond to the platform
branch you're using, we recommend that you switch to a platform branch that has
the correct Ruby version for your application.

Migrate to AL2023/AL2 286

Amazon Elastic Beanstalk Developer Guide

Area Changes and information

Applicati
on server

On AL2023/AL2 platforms, Elastic Beanstalk only installs the Puma application
server on all Ruby platform versions. You can use a Procfile to start a different
application server, and a Gemfile to install it.

On the Amazon Linux AMI platform, we supported two flavors of platform
branches for each Ruby version—one with the Puma application server and the
other with the Passenger application server. If your application uses Passenger,
you can configure your Ruby environment to install and use Passenger.

For more information and examples, see the section called “The Ruby platform”.

Platform retirement FAQ

Note

Elastic Beanstalk retired all platform branches based on Amazon Linux AMI (AL1) on July
18, 2022 .

The answers in this FAQ reference the following topics:

• Elastic Beanstalk platform support policy

• Retired platform branch history

• Elastic Beanstalk supported platforms in Amazon Elastic Beanstalk Platforms

• Migrating your Elastic Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2

• Amazon Linux 2 FAQs.

1. What does retirement of a platform branch mean?

Following the announced retirement date of a platform branch, you will no longer be able to
create a new environment based on the retired platform branch, unless you already have an active
environment based on that platform branch. For more information, see FAQ #11. Elastic Beanstalk
will stop providing new maintenance updates for these platform branches. A retired platform
branch isn't recommended for use in production environments. For more information, see FAQ #5.

Platform retirement FAQ 287

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
http://www.amazonaws.cn//amazon-linux-2/faqs/

Amazon Elastic Beanstalk Developer Guide

2. Why has Amazon retired the AL1-based platforms branches?

Elastic Beanstalk retires platform branches when platform components are deprecated or retired
by their vendors. In this case, the Amazon Linux AMI (AL1) has ended standard support as of
December 31, 2020. While Elastic Beanstalk continued to offer AL1 based platforms through 2022,
we have since released AL2 and AL2023 and based platforms that have the latest features. In order
for customers to continue to benefit from the latest security and features going forward, it's critical
for customers to migrate to our AL2 or AL2023 based platforms.

3. Which platform branches are retired?

For a list of platform components and platform branches that have been retired, see Retired
platform branch history.

4. Which platforms are currently supported?

See Elastic Beanstalk supported platforms in Amazon Elastic Beanstalk Platforms.

5. Will Elastic Beanstalk remove or terminate any components of my environment
after retirement?

Our policy for retired platform branches does not remove access to environments nor delete
resources. However, an environment based on a retired platform branch can end up in an
unpredictable situation, because Elastic Beanstalk isn't able to provide security updates, technical
support, or hotfixes for retired platform branches due to the supplier marking their component
as End of Life (EOL). For example, a detrimental and critical security vulnerability may surface
in an environment running on a retired platform branch. Or an EB API action may stop working
for the environment if it becomes incompatible with the Elastic Beanstalk service over time.
The opportunity for these types of risks increases the longer an environment based on a retired
platform branch remains active.

If your application should encounter issues while running on a retired platform branch and
you're not able to migrate it to a supported platform, you'll need to consider other alternatives.
Workarounds include encapsulating the application into a Docker image to run it as a Docker
container. This would allow a customer to use any of our Docker solutions, such as our Elastic
Beanstalk AL2023/AL2 Docker platforms, or other Docker based services such as Amazon ECS
or Amazon EKS. Non-Docker alternatives include our Amazon CodeDeploy service, which allows
complete customization of the runtimes you desire.

Platform retirement FAQ 288

https://aws.amazon.com/blogs/aws/update-on-amazon-linux-ami-end-of-life/
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html

Amazon Elastic Beanstalk Developer Guide

6. Can I submit a request to extend the retirement date?

No. After the retirement date existing environments will continue to function. However, Elastic
Beanstalk will no longer provide platform maintenance and security updates. Therefore, it’s critical
to migrate to AL2 or AL2023 if you are still running applications on an AL1-based platform. For
more information about risks and workarounds, see FAQ #5.

7. What are the workarounds if I can't complete my AL2 or AL2023 migration in
time?

Customers may continue to run the environment, although we strongly encourage you to plan
to migrate all of your Elastic Beanstalk environments to a supported platform version. Doing
so will minimize risk and provide continued benefit from important security, performance, and
functionality enhancements offered in more recent releases. For more information about risks and
workarounds, see FAQ #5.

8. What is the recommended process to migrate to AL2 or AL2023 platforms?

For comprehensive AL1 to AL2023/AL2 migration instructions, see Migrating your Elastic Beanstalk
Linux application to Amazon Linux 2023 or Amazon Linux 2. This topic explains that Elastic
Beanstalk requires a blue/green deployment to perform the upgrade.

9. If I have an environment running on a retired platform, what would be the
impact?

An environment based on a retired platform branch can end up in an unpredictable situation,
because Elastic Beanstalk isn't able to provide security updates, technical support, or hotfixes for
retired platform branches due to the supplier marking their component as End of Life (EOL). For
example, a detrimental and critical security vulnerability may surface in an environment running on
a retired platform branch. Or an EB API action may stop working for the environment if it becomes
incompatible with the Elastic Beanstalk service over time. The opportunity for these types of
risks increases the longer an environment on a retired platform branch remains active. For more
information, see FAQ #5.

10. What happens 90 days after the retirement date?

Our policy for retired platform branches does not remove access to environments nor delete
resources. However, be aware that an environment based on a retired platform branch can end
up in an unpredictable situation, because Elastic Beanstalk isn't able to provide security updates,

Platform retirement FAQ 289

Amazon Elastic Beanstalk Developer Guide

technical support, or hotfixes for retired platform branches due to the supplier marking their
component as End of Life (EOL). For example, a detrimental and critical security vulnerability may
surface in an environment running on a retired platform branch. Or an EB API action may stop
working for the environment if it becomes incompatible with the Elastic Beanstalk service over
time. The opportunity for these types of risks increases the longer an environment on a retired
platform branch remains active. For more information see FAQ #5.

11. Can I create a new environment based on a retired platform?

You can create a new environment based on a retired platform branch, if you've already used
that platform branch to create an existing environment using the same account and in the same
region. The retired platform branch will not be available in the Elastic Beanstalk console. However,
for customers that have existing environments based on a retired platform branch, it will be
available through the EB CLI, EB API, and Amazon CLI. Also, existing customers can use the Clone
environment and Rebuild environment consoles. However, be aware that an environment based on
a retired platform branch can end up in an unpredictable situation. For more information, see FAQ
#5.

12. If I have an existing environment running on a retired platform branch, until
when can I create a new environment based on the retired platform branch? Can I
do so using the console, CLI or API?

You can create the environment after the retirement date. However, keep in mind that a retired
platform branch can end up in an unpredictable situation. The further out in time such an
environment an environment is created or active, the higher the risk for the environment to
encounter unexpected issues. For more information about creating a new environment, see FAQ
#11.

13. Can I clone or rebuild my environment which is based on retired platform?

Yes. You can do so using the Clone environment and Rebuild environment consoles. You can also
use the EB CLI, EB API, and Amazon CLI. For more information about creating a new environment,
see FAQ #11.

However, we strongly encourage you to plan to migrate all your Elastic Beanstalk environments
to a supported platform version. Doing so will minimize risk and provide continued benefit from
important security, performance, and functionality enhancements offered in more recent releases.
For more information about risks and workarounds, see FAQ #5.

Platform retirement FAQ 290

Amazon Elastic Beanstalk Developer Guide

14. After the retirement date, what would happen to the Amazon resources of
my Elastic Beanstalk environment that is based on a retired platform branch? For
example, if the running EC2 instance gets terminated, would Elastic Beanstalk be
able to launch a new AL1 based EC2 instance to maintain capacity?

The environment’s resources would remain active and continue to function. And, yes, Elastic
Beanstalk will auto scale for AL1 EC2 instances in the environment. However, Elastic Beanstalk
will stop providing new platform maintenance updates to the environment, which can lead to the
environment ending up in an unpredictable situation over time. For more information, see FAQ #5.

15. What are key differences between the AL2023/AL2 and Amazon Linux AMI
(AL1) operating systems? How are the Elastic Beanstalk AL2023/AL2 platform
branches affected?

Although Amazon Linux AMI and AL2023/AL2 share the same Linux kernel, they differ in their
initialization system, libc versions, the compiler tool chain, and various packages. For more
information, see Amazon Linux 2 FAQs.

The Elastic Beanstalk service has also updated platform specific versions of runtime, build tools,
and other dependencies. The AL2023/AL2 based platform branches aren't guaranteed to be
backward compatible with your existing application. Furthermore, even if your application code
successfully deploys to the new platform version, it might behave or perform differently due
to operating system and run time differences. For a list and description of configurations and
customizations that you'll need to review and test, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

Canceling environment configuration updates and application
deployments

You can cancel in-progress updates that are triggered by environment configuration changes.
You can also cancel the deployment of a new application version in progress. For example, you
might want to cancel an update if you decide you want to continue using the existing environment
configuration instead of applying new environment configuration settings. Or, you might realize
that the new application version that you are deploying has problems that will cause it to not start
or not run properly. By canceling an environment update or application version update, you can
avoid waiting until the update or deployment process is done before you begin a new attempt to
update the environment or application version.

Cancel an update 291

http://www.amazonaws.cn//amazon-linux-2/faqs/

Amazon Elastic Beanstalk Developer Guide

Note

During the cleanup phase in which old resources that are no longer needed are removed,
after the last batch of instances has been updated, you can no longer cancel the update.

Elastic Beanstalk performs the rollback the same way that it performed the last successful update.
For example, if you have time-based rolling updates enabled in your environment, then Elastic
Beanstalk will wait the specified pause time between rolling back changes on one batch of
instances before rolling back changes on the next batch. Or, if you recently turned on rolling
updates, but the last time you successfully updated your environment configuration settings was
without rolling updates, Elastic Beanstalk will perform the rollback on all instances simultaneously.

You cannot stop Elastic Beanstalk from rolling back to the previous environment configuration
once it begins to cancel the update. The rollback process continues until all instances in the
environment have the previous environment configuration or until the rollback process fails.
For application version deployments, canceling the deployment simply stops the deployment;
some instances will have the new application version and others will continue to run the existing
application version. You can deploy the same or another application version later.

For more information about rolling updates, see Elastic Beanstalk rolling environment
configuration updates. For more information about batched application version deployments, see
Deployment policies and settings.

To cancel an update

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Actions, and then choose Abort current
operation.

Rebuilding Elastic Beanstalk environments

Your Amazon Elastic Beanstalk environment can become unusable if you don't use Elastic
Beanstalk functionality to modify or terminate the environment's underlying Amazon resources.

Rebuild an environment 292

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

If this happens, you can rebuild the environment to attempt to restore it to a working state.
Rebuilding an environment terminates all of its resources and replaces them with new resources
with the same configuration.

You can also rebuild terminated environments within six weeks (42 days) of their termination.
When you rebuild, Elastic Beanstalk attempts to create a new environment with the same name, ID,
and configuration.

Rebuilding a running environment

You can rebuild an environment through the Elastic Beanstalk console or by using the
RebuildEnvironment API.

Warning

If your environment has a coupled database, it will be deleted as part of the rebuild,
and the new database in the rebuilt environment will not contain the previous data. If you
would like to retain the database or take a snapshot, make sure you have the database
deletion policy configured properly for the desired results after it's rebuilt. For more
information, see Database lifecycle.

To rebuild a running environment (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Rebuild environment.

4. Choose Rebuild.

To rebuild a running environment with the Elastic Beanstalk API, use the RebuildEnvironment
action with the Amazon CLI or the Amazon SDK.

$ aws elasticbeanstalk rebuild-environment --environment-id e-vdnftxubwq

Rebuilding a running environment 293

https://console.amazonaws.cn/elasticbeanstalk
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_RebuildEnvironment.html

Amazon Elastic Beanstalk Developer Guide

Rebuilding a terminated environment

You can rebuild and restore a terminated environment by using the Elastic Beanstalk console, the
EB CLI, or the RebuildEnvironment API.

Note

Unless you are using your own custom domain name with your terminated environment,
the environment uses a subdomain of elasticbeanstalk.com. These subdomains are shared
within an Elastic Beanstalk region. Therefore, they can be used by any environment created
by any customer in the same region. While your environment was terminated, another
environment could use its subdomain. In this case, the rebuild would fail.
You can avoid this issue by using a custom domain. See Your Elastic Beanstalk
environment's Domain name for details.

Recently terminated environments appear in the application overview for up to an hour. During
this time, you can view events for the environment in its dashboard, and use the Restore
environment action to rebuild it.

To rebuild an environment that is no longer visible, use the Restore terminated environment
option from the application page.

To rebuild a terminated environment (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. Choose Actions, and then choose Restore terminated environment.

Rebuilding a terminated environment 294

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

4. Choose a terminated environment.

5. Choose Restore.

Elastic Beanstalk attempts to create a new environment with the same name, ID, and configuration.
If an environment with the same name or URL exists when you attempt to rebuild, the rebuild fails.
Deleting the application version that was deployed to the environment will also cause the rebuild
to fail.

If you use the EB CLI to manage your environment, use the eb restore command to rebuild a
terminated environment.

$ eb restore e-vdnftxubwq

See eb restore for more information.

To rebuild a terminated environment with the Elastic Beanstalk API, use the
RebuildEnvironment action with the Amazon CLI or the Amazon SDK.

Rebuilding a terminated environment 295

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_RebuildEnvironment.html

Amazon Elastic Beanstalk Developer Guide

$ aws elasticbeanstalk rebuild-environment --environment-id e-vdnftxubwq

Environment types

In Amazon Elastic Beanstalk, you can create a load-balanced, scalable environment or a single-
instance environment. The type of environment that you require depends on the application that
you deploy. For example, you can develop and test an application in a single-instance environment
to save costs and then upgrade that environment to a load-balanced, scalable environment when
the application is ready for production.

Note

A worker environment tier for a web application that processes background tasks doesn't
include a load balancer. However, a worker environment does effectively scale out by
adding instances to the Auto Scaling group to process data from the Amazon SQS queue
when the load necessitates it.

Load-balanced, scalable environment

A load-balanced and scalable environment uses the Elastic Load Balancing and Amazon EC2
Auto Scaling services to provision the Amazon EC2 instances that are required for your deployed
application. Amazon EC2 Auto Scaling automatically starts additional instances to accommodate
increasing load on your application. If the load on your application decreases, Amazon EC2 Auto
Scaling stops instances but always leaves your specified minimum number of instances running. If
your application requires scalability with the option of running in multiple Availability Zones, use a
load-balanced, scalable environment. If you're not sure which environment type to select, you can
pick one and, if required, switch the environment type later.

Single-instance environment

A single-instance environment contains one Amazon EC2 instance with an Elastic IP address.
A single-instance environment doesn't have a load balancer, which can help you reduce costs
compared to a load-balanced, scalable environment. Although a single-instance environment
does use the Amazon EC2 Auto Scaling service, settings for the minimum number of instances,
maximum number of instances, and desired capacity are all set to 1. Consequently, new instances
are not started to accommodate increasing load on your application.

Environment types 296

Amazon Elastic Beanstalk Developer Guide

Use a single-instance environment if you expect your production application to have low traffic
or if you are doing remote development. If you're not sure which environment type to select, you
can pick one and, if required, you can switch the environment type later. For more information, see
Changing environment type.

Changing environment type

You can change your environment type to a single-instance or load-balanced, scalable environment
by editing your environment's configuration. In some cases, you might want to change your
environment type from one type to another. For example, let's say that you developed and tested
an application in a single-instance environment to save costs. When your application is ready for
production, you can change the environment type to a load-balanced, scalable environment so that
it can scale to meet the demands of your customers.

To change an environment's type

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Capacity category, choose Edit.

5. From the Environment Type list, select the type of environment that you want.

Changing environment type 297

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

6. Choose Save.

It can take several minutes for the environment to update while Elastic Beanstalk provisions
Amazon resources.

If your environment is in a VPC, select subnets to place Elastic Load Balancing and Amazon EC2
instances in. Each Availability Zone that your application runs in must have both. See Using Elastic
Beanstalk with Amazon VPC for details.

Elastic Beanstalk worker environments

If your Amazon Elastic Beanstalk application performs operations or workflows that take a long
time to complete, you can offload those tasks to a dedicated worker environment. Decoupling your
web application front end from a process that performs blocking operations is a common way to
ensure that your application stays responsive under load.

A long-running task is anything that substantially increases the time it takes to complete a request,
such as processing images or videos, sending email, or generating a ZIP archive. These operations
can take only a second or two to complete, but a delay of a few seconds is a lot for a web request
that would otherwise complete in less than 500 ms.

Worker environments 298

Amazon Elastic Beanstalk Developer Guide

One option is to spawn a worker process locally, return success, and process the task
asynchronously. This works if your instance can keep up with all of the tasks sent to it. Under
high load, however, an instance can become overwhelmed with background tasks and become
unresponsive to higher priority requests. If individual users can generate multiple tasks, the
increase in load might not correspond to an increase in users, making it hard to scale out your web
server tier effectively.

To avoid running long-running tasks locally, you can use the Amazon SDK for your programming
language to send them to an Amazon Simple Queue Service (Amazon SQS) queue, and run the
process that performs them on a separate set of instances. You then design these worker instances
to take items from the queue only when they have capacity to run them, preventing them from
becoming overwhelmed.

Elastic Beanstalk worker environments simplify this process by managing the Amazon SQS
queue and running a daemon process on each instance that reads from the queue for you. When
the daemon pulls an item from the queue, it sends an HTTP POST request locally to http://
localhost/ on port 80 with the contents of the queue message in the body. All that your
application needs to do is perform the long-running task in response to the POST. You can
configure the daemon to post to a different path, use a MIME type other than application/JSON,
connect to an existing queue, or customize connections (maximum concurrent requests), timeouts,
and retries.

Worker environments 299

Amazon Elastic Beanstalk Developer Guide

With periodic tasks, you can also configure the worker daemon to queue messages based on a cron
schedule. Each periodic task can POST to a different path. Enable periodic tasks by including a
YAML file in your source code that defines the schedule and path for each task.

Note

The .NET on Windows Server platform doesn't support worker environments.

Sections

• The worker environment SQS daemon

• Dead-letter queues

• Periodic tasks

• Use Amazon CloudWatch for automatic scaling in worker environment tiers

Worker environments 300

Amazon Elastic Beanstalk Developer Guide

• Configuring worker environments

The worker environment SQS daemon

Worker environments run a daemon process provided by Elastic Beanstalk. This daemon is updated
regularly to add features and fix bugs. To get the latest version of the daemon, update to the latest
platform version.

When the application in the worker environment returns a 200 OK response to acknowledge that
it has received and successfully processed the request, the daemon sends a DeleteMessage call
to the Amazon SQS queue to delete the message from the queue. If the application returns any
response other than 200 OK, Elastic Beanstalk waits to put the message back in the queue after
the configured ErrorVisibilityTimeout period. If there is no response, Elastic Beanstalk waits
to put the message back in the queue after the InactivityTimeout period so that the message
is available for another attempt at processing.

Note

The properties of Amazon SQS queues (message order, at-least-once delivery, and message
sampling) can affect how you design a web application for a worker environment. For more
information, see Properties of Distributed Queues in the Amazon Simple Queue Service
Developer Guide.

Amazon SQS automatically deletes messages that have been in a queue for longer than the
configured RetentionPeriod.

The daemon sets the following HTTP headers.

HTTP headers

Name Value

User-Agent aws-sqsd

aws-sqsd/1.1 1

The worker environment SQS daemon 301

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/DistributedQueues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html

Amazon Elastic Beanstalk Developer Guide

HTTP headers

X-Aws-Sqsd-Msgid SQS message ID, used to detect message
storms (an unusually high number of new
messages).

X-Aws-Sqsd-Queue Name of the SQS queue.

X-Aws-Sqsd-First-Received-At UTC time, in ISO 8601 format, when the
message was first received.

X-Aws-Sqsd-Receive-Count SQS message receive count.

X-Aws-Sqsd-Attr- message-a
ttribute-name

Custom message attributes assigned to the
message being processed. The message-a
ttribute-name is the actual message
attribute name. All string and number
message attributes are added to the header.
Binary attributes are discarded and not
included in the header.

Content-Type Mime type configuration; by default,
application/json .

Dead-letter queues

Elastic Beanstalk worker environments support Amazon Simple Queue Service (Amazon SQS) dead-
letter queues. A dead-letter queue is a queue where other (source) queues can send messages
that for some reason could not be successfully processed. A primary benefit of using a dead-
letter queue is the ability to sideline and isolate the unsuccessfully processed messages. You can
then analyze any messages sent to the dead-letter queue to try to determine why they were not
successfully processed.

If you specify an autogenerated Amazon SQS queue at the time you create your worker
environment tier, a dead-letter queue is enabled by default for a worker environment. If you
choose an existing SQS queue for your worker environment, you must use SQS to configure a dead-
letter queue independently. For information about how to use SQS to configure a dead-letter
queue, see Using Amazon SQS Dead Letter Queues.

Dead-letter queues 302

http://www.w3.org/TR/NOTE-datetime
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSDeadLetterQueue.html

Amazon Elastic Beanstalk Developer Guide

You cannot disable dead-letter queues. Messages that cannot be delivered are always eventually
sent to a dead-letter queue. You can, however, effectively disable this feature by setting the
MaxRetries option to the maximum valid value of 100.

If a dead-letter queue isn't configured for your worker environment's Amazon SQS queue, Amazon
SQS keeps messages on the queue until the retention period expires. For details about configuring
the retention period, see the section called “Configuring worker environments”.

Note

The Elastic Beanstalk MaxRetries option is equivalent to the SQS MaxReceiveCount
option. If your worker environment doesn't use an autogenerated SQS queue, use the
MaxReceiveCount option in SQS to effectively disable your dead-letter queue. For more
information, see Using Amazon SQS Dead Letter Queues.

For more information about the lifecycle of an SQS message, go to Message Lifecycle.

Periodic tasks

You can define periodic tasks in a file named cron.yaml in your source bundle to add jobs to your
worker environment's queue automatically at a regular interval.

For example, the following cron.yaml file creates two periodic tasks. The first one runs every 12
hours and the second one runs at 11 PM UTC every day.

Example cron.yaml

version: 1
cron:
 - name: "backup-job"
 url: "/backup"
 schedule: "0 */12 * * *"
 - name: "audit"
 url: "/audit"
 schedule: "0 23 * * *"

The name must be unique for each task. The URL is the path to which the POST request is sent to
trigger the job. The schedule is a CRON expression that determines when the task runs.

Periodic tasks 303

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSDeadLetterQueue.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/MessageLifecycle.html
http://en.wikipedia.org/wiki/Cron#CRON_expression

Amazon Elastic Beanstalk Developer Guide

When a task runs, the daemon posts a message to the environment's SQS queue with a header
indicating the job that needs to be performed. Any instance in the environment can pick up the
message and process the job.

Note

If you configure your worker environment with an existing SQS queue and choose an
Amazon SQS FIFO queue, periodic tasks aren't supported.

Elastic Beanstalk uses leader election to determine which instance in your worker environment
queues the periodic task. Each instance attempts to become leader by writing to an Amazon
DynamoDB table. The first instance that succeeds is the leader, and must continue to write to the
table to maintain leader status. If the leader goes out of service, another instance quickly takes its
place.

For periodic tasks, the worker daemon sets the following additional headers.

HTTP headers

Name Value

X-Aws-Sqsd-Taskname For periodic tasks, the name of the task to
perform.

X-Aws-Sqsd-Scheduled-At Time at which the periodic task was scheduled

X-Aws-Sqsd-Sender-Id Amazon account number of the sender of the
message

Use Amazon CloudWatch for automatic scaling in worker environment
tiers

Together, Amazon EC2 Auto Scaling and CloudWatch monitor the CPU utilization of the running
instances in the worker environment. How you configure the automatic scaling limit for CPU
capacity determines how many instances the Auto Scaling group runs to appropriately manage the
throughput of messages in the Amazon SQS queue. Each EC2 instance publishes its CPU utilization

Use Amazon CloudWatch for automatic scaling in worker environment tiers 304

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

Amazon Elastic Beanstalk Developer Guide

metrics to CloudWatch. Amazon EC2 Auto Scaling retrieves from CloudWatch the average CPU
usage across all instances in the worker environment. You configure the upper and lower threshold
as well as how many instances to add or terminate according to CPU capacity. When Amazon EC2
Auto Scaling detects that you have reached the specified upper threshold on CPU capacity, Elastic
Beanstalk creates new instances in the worker environment. The instances are deleted when the
CPU load drops back below the threshold.

Note

Messages that have not been processed at the time an instance is terminated are returned
to the queue where they can be processed by another daemon on an instance that is still
running.

You can also set other CloudWatch alarms, as needed, by using the Elastic Beanstalk console, CLI,
or the options file. For more information, see Using Elastic Beanstalk with Amazon CloudWatch and
Create an Auto Scaling group with Step Scaling Policies.

Configuring worker environments

You can manage a worker environment's configuration by editing the Worker category on the
Configuration page in the environment management console.

Configuring worker environments 305

https://docs.amazonaws.cn/autoscaling/ec2/userguide/as-scaling-simple-step.html#policy-creating-asg-console

Amazon Elastic Beanstalk Developer Guide

Configuring worker environments 306

Amazon Elastic Beanstalk Developer Guide

Note

You can configure the URL path for posting worker queue messages, but you can't
configure the IP port. Elastic Beanstalk always posts worker queue messages on port 80.
The worker environment application or its proxy must listen to port 80.

To configure the worker daemon

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Worker configuration category, choose Edit.

The Modify worker configuration page has the following options.

In the Queue section:

• Worker queue – Specify the Amazon SQS queue from which the daemon reads. If you have one,
you can choose an existing queue. If you choose Autogenerated queue, Elastic Beanstalk creates
a new Amazon SQS queue and a corresponding Worker queue URL.

Note

When you choose Autogenerated queue, the queue that Elastic Beanstalk creates is a
standard Amazon SQS queue. When you choose an existing queue, you can provide either
a standard or a FIFO Amazon SQS queue. Be aware that if you provide a FIFO queue,
periodic tasks aren't supported.

• Worker queue URL – If you choose an existing Worker queue, this setting displays the URL
associated with that Amazon SQS queue.

In the Messages section:

Configuring worker environments 307

https://console.amazonaws.cn/elasticbeanstalk
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

Amazon Elastic Beanstalk Developer Guide

• HTTP path – Specify the relative path to the application that will receive the data from the
Amazon SQS queue. The data is inserted into the message body of an HTTP POST message. The
default value is /.

• MIME type – Indicate the MIME type that the HTTP POST message uses. The default value is
application/json. However, any value is valid because you can create and then specify your
own MIME type.

• HTTP connections – Specify the maximum number of concurrent connections that the daemon
can make to any application within an Amazon EC2 instance. The default is 50. You can specify 1
to 100.

• Visibility timeout – Indicate the amount of time, in seconds, an incoming message from the
Amazon SQS queue is locked for processing. After the configured amount of time has passed, the
message is again made visible in the queue for another daemon to read. Choose a value that is
longer than you expect your application requires to process messages, up to 43200 seconds.

• Error visibility timeout – Indicate the amount of time, in seconds, that elapses before Elastic
Beanstalk returns a message to the Amazon SQS queue after an attempt to process it fails with
an explicit error. You can specify 0 to 43200 seconds.

In the Advanced options section:

• Max retries – Specify the maximum number of times Elastic Beanstalk attempts to send the
message to the Amazon SQS queue before moving the message to the dead-letter queue. The
default value is 10. You can specify 1 to 100.

Note

The Max retries option only applies to Amazon SQS queues that are configured with a
dead-letter queue. For any Amazon SQS queues that aren't configured with a dead-letter
queue, Amazon SQS retains messages in the queue and processes them until the period
specified by the Retention period option expires.

• Connection timeout – Indicate the amount of time, in seconds, to wait for successful
connections to an application. The default value is 5. You can specify 1 to 60 seconds.

• Inactivity timeout – Indicate the amount of time, in seconds, to wait for a response on an
existing connection to an application. The default value is 180. You can specify 1 to 36000
seconds.

Configuring worker environments 308

Amazon Elastic Beanstalk Developer Guide

• Retention period – Indicate the amount of time, in seconds, a message is valid and is actively
processed. The default value is 345600. You can specify 60 to 1209600 seconds.

If you use an existing Amazon SQS queue, the settings that you configure when you create a
worker environment can conflict with settings you configured directly in Amazon SQS. For example,
if you configure a worker environment with a RetentionPeriod value that is higher than the
MessageRetentionPeriod value you set in Amazon SQS, Amazon SQS deletes the message
when it exceeds the MessageRetentionPeriod.

Conversely, if the RetentionPeriod value you configure in the worker environment settings is
lower than the MessageRetentionPeriod value you set in Amazon SQS, the daemon deletes
the message before Amazon SQS can. For VisibilityTimeout, the value that you configure for
the daemon in the worker environment settings overrides the Amazon SQS VisibilityTimeout
setting. Ensure that messages are deleted appropriately by comparing your Elastic Beanstalk
settings to your Amazon SQS settings.

Creating links between Elastic Beanstalk environments

As your application grows in size and complexity, you may want to split it into components that
have different development and operational lifecycles. By running smaller services that interact
with each other over a well defined interface, teams can work independently and deployments
can be lower risk. Amazon Elastic Beanstalk lets you link your environments to share information
between components that depend on one another.

Note

Elastic Beanstalk currently supports environment links for all platforms except
Multicontainer Docker.

With environment links, you can specify the connections between your application’s component
environments as named references. When you create an environment that defines a link, Elastic
Beanstalk sets an environment variable with the same name as the link. The value of the variable
is the endpoint that you can use to connect to the other component, which can be a web server or
worker environment.

For example, if your application consists of a frontend that collects email addresses and a worker
that sends a welcome email to the email addresses collected by the frontend, you can create a link

Environment links 309

Amazon Elastic Beanstalk Developer Guide

to the worker in your frontend and have the frontend automatically discover the endpoint (queue
URL) for your worker.

Define links to other environments in an environment manifest, a YAML formatted file named
env.yaml in the root of your application source. The following manifest defines a link to an
environment named worker:

~/workspace/my-app/frontend/env.yaml

AWSConfigurationTemplateVersion: 1.1.0.0
EnvironmentLinks:
 "WORKERQUEUE": "worker"

When you create an environment with an application version that includes the above environment
manifest, Elastic Beanstalk looks for an environment named worker that belongs to the same
application. If that environment exists, Elastic Beanstalk creates an environment property
named WORKERQUEUE. The value of WORKERQUEUE is the Amazon SQS queue URL. The frontend
application can read this property in the same manner as an environment variable. See
Environment manifest (env.yaml) for details.

To use environment links, add an environment manifest to your application source and upload it
with the EB CLI, Amazon CLI or an SDK. If you use the Amazon CLI or an SDK, set the process flag
when you call CreateApplicationVersion:

$ aws elasticbeanstalk create-application-version --process --application-name
 my-app --version-label frontend-v1 --source-bundle S3Bucket="amzn-s3-demo-
bucket",S3Key="front-v1.zip"

This option tells Elastic Beanstalk to validate the environment manifest and configuration files in
your source bundle when you create the application version. The EB CLI sets this flag automatically
when you have an environment manifest in your project directory.

Create your environments normally using any client. When you need to terminate environments,
terminate the environment with the link first. If an environment is linked to by another
environment, Elastic Beanstalk will prevent the linked environment from being terminated. To
override this protection, use the ForceTerminate flag. This parameter is available in the Amazon
CLI as --force-terminate:

Environment links 310

Amazon Elastic Beanstalk Developer Guide

$ aws elasticbeanstalk terminate-environment --force-terminate --environment-name
 worker

Recovering your Elastic Beanstalk environment from an invalid
state

This topic provides some background information and resources that explain how to troubleshoot
an Elastic Beanstalk environment in an invalid state.

Addressing the error

Standard operations on an environment in an invalid state will not complete successfully. The
failed operation will return an error that includes the following text:

The stack stack_id associated with environment environment-ID is in stack-status state.

To troubleshoot and resolve this error, see the Knowledge Center article Why is my Elastic
Beanstalk environment in the invalid state?.

Note

Prior to December 16, 2024, the failing operation returned the following error instead:
Environment is in an invalid state for this operation. Must be ready.
In this case you had to contact Amazon Support to reset the environment status after you
completed the corrective actions.
Today you must still resolve the stack issues following the instructions in the referenced
Knowledge Center article. However, once you successfully complete the corrective actions,
Elastic Beanstalk automatically updates the environment's status from invalid to available,
and you can resume the standard operations on your environment without further delay.

Why the error occurs

When you deploy an application in Elastic Beanstalk, the service creates an underlying Amazon
CloudFormation stack. Elastic Beanstalk calls the Amazon CloudFormation service to launch the
resources in your environment and propagate configuration changes.

Recovering from invalid stack state 311

https://repost.aws/knowledge-center/elastic-beanstalk-invalid-state
https://repost.aws/knowledge-center/elastic-beanstalk-invalid-state
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2024-12-16-release-notes.html
https://repost.aws/knowledge-center/elastic-beanstalk-invalid-state

Amazon Elastic Beanstalk Developer Guide

If Elastic Beanstalk performs an operation on an environment without having access to a required
resource, the environment’s underlying CloudFormation stack can enter a failed state. Other issues
can also lead to this state, although permission issues are the primary cause. As a result of the
stack’s failed state, Amazon CloudFormation blocks Elastic Beanstalk operation requests from
performing further stack updates, causing the failure of Elastic Beanstalk operations, such as
UpdateEnvironment and RetrieveEnvironmentInfo.

At this point you must first correct the root cause of the underlying issue to remedy the
CloudFormation stack. The Elastic Beanstalk service then detects the CloudFormation stack status
change and follows through to reset your environment to an available status. At this point further
operations can complete successfully.

Permission issues typically cause this effect on the CloudFormation stack and the Elastic Beanstalk
environment, although out-of-band changes can also cause issues.

Important

To avoid disruption to your environment, we strongly recommend that you only initiate
operations to manage and configure your environment from the Elastic Beanstalk service.
Modification of resources by using the console, CLI commands, or SDK of a service other
than Elastic Beanstalk is an out-of-band change, which causes resource drift. Resource drift
affects the status of the CloudFormation stack, which in turn causes the Elastic Beanstalk
environment to enter into an invalid state.
For more information about resource drift, see What is drift? in the Amazon CloudFormation
User Guide.

Why the error occurs 312

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html#what-is-drift

Amazon Elastic Beanstalk Developer Guide

Configuring Elastic Beanstalk environments

This topic focuses on the configuration options available in the Elastic Beanstalk console.
Amazon Elastic Beanstalk provides a wide range of options for customizing the resources in your
environment, along with Elastic Beanstalk behavior and platform settings.

The following topics show how to configure your environment in the console. They also describe
the underlying namespaces that correspond to the console options for use with configuration files
or API configuration options. To learn about advanced configuration methods, see Configuring
environments (advanced).

Topics

• Provisioned resources

• Environment configuration using the Elastic Beanstalk console

• The Amazon EC2 instances for your Elastic Beanstalk environment

• Auto Scaling your Elastic Beanstalk environment instances

• Load balancer for your Elastic Beanstalk environment

• Adding a database to your Elastic Beanstalk environment

• Your Amazon Elastic Beanstalk environment security

• Tagging resources in your Elastic Beanstalk environments

• Environment variables and other software settings

• Elastic Beanstalk environment notifications with Amazon SNS

• Configuring Amazon Virtual Private Cloud (Amazon VPC) with Elastic Beanstalk

• Your Elastic Beanstalk environment's Domain name

Provisioned resources

When you create a web server environment, Elastic Beanstalk creates multiple resources to support
the operation of your application. This chapter describes how to customize these resources for your
Elastic Beanstalk environment.

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Provisioned resources 313

Amazon Elastic Beanstalk Developer Guide

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for
increased security. This practice defends your domain against cross-site request forgery

Provisioned resources 314

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/

Amazon Elastic Beanstalk Developer Guide

attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

Environment configuration using the Elastic Beanstalk console

This topic outlines the configuration options available through the Elastic Beanstalk console and
explains how to navigate the configuration pages.

To view a summary of your environment's configuration

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

Configuration page

The Configuration overview page shows a set of configuration categories. Each configuration
category groups a set of related options.

Service access

The options in this category select the service role and EC2 instance profile that Elastic Beanstalk
uses to manage your environment. Optionally choose an EC2 key pair to securely log in to your EC2
instances.

Networking and database

The options in this category configure VPC settings, and subnets for the environment's EC2
instances and load balancer. They also provide the option to set up an Amazon RDS database that's
integrated with your environment.

Instance traffic and scaling

These options customize the capacity, scaling, and load balancing for the environment’s EC2
instances. You can also configure Elastic Load Balancing to capture logs with detailed information
about requests sent to the load balancer.

Configuration using the console 315

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

The following options for your EC2 instances are also available for configuration:

• Root volume type, size, input/output operation rate (IOPS), and throughput.

• Enabling instance metadata service (IMDS).

• Selection of EC2 security groups to control instance traffic.

• CloudWatch metrics monitoring interval.

• Time interval for metrics logging.

Updates, monitoring, and logging

This category configures the following options:

• Environment health reporting, including the option to select enhanced health reporting.

• Managed platform updates that define when and how Elastic Beanstalk deploys changes to the
environment.

• Enabling of the X-Ray service to collect data about your application's behavior to identify issues
and optimization opportunities.

• Platform specific options, including the proxy server and OS environment properties.

Navigating the configuration page

Choose Edit in a configuration category to launch the associated configuration page, where you
can see full option values and make changes.

Navigation in a configuration category

Navigate in a configuration category page with any of the following actions:

• Cancel – Go back to the Configuration overview page without applying your configuration
changes. When you choose Cancel, the console loses any pending changes you made on any
configuration category.

You can also cancel your configuration changes by choosing another item on the left navigation
page, like Events or Logs.

• Continue – Go back to the Configuration overview page. You can then continue making changes
or apply pending ones.

Configuration page 316

Amazon Elastic Beanstalk Developer Guide

• Apply – Apply the changes you made in any of the configuration categories to your environment.
In some cases you're prompted to confirm a consequence of one of your configuration decisions.

Navigation on the Configuration overview page

Choose Edit in a configuration category to launch a related configuration page, where you can see
full option values and make changes. When you're done viewing and modifying options, you can
choose one of the following actions from the Configuration overview page:

• Cancel – Go back to the environment's dashboard without applying your configuration changes.
When you choose Cancel, the console loses any pending changes you made on any configuration
category.

You can also cancel your configuration changes by choosing another item on the left navigation
page, like Events or Logs.

• Review changes – Get a summary of all the pending changes you made in any of the
configuration categories. For details, see Review changes page.

• Apply changes – Apply the changes you made in any of the configuration categories to
your environment. In some cases you're prompted to confirm a consequence of one of your
configuration decisions.

Review changes page

The Review Changes page displays a table showing all the pending option changes you made in
any of the configuration categories and haven't applied to your environment yet.

The tables lists each option as a combination of the Namespace and Option with which Elastic
Beanstalk identifies it. For details, see Configuration options.

Review changes page 317

Amazon Elastic Beanstalk Developer Guide

When you're done reviewing your changes, you can choose one of the following actions:

• Continue – Go back to the Configuration overview page. You can then continue making changes
or apply pending ones.

• Apply changes – Apply the changes you made in any of the configuration categories to
your environment. In some cases you're prompted to confirm a consequence of one of your
configuration decisions.

The Amazon EC2 instances for your Elastic Beanstalk
environment

This topic explains the Amazon EC2 instances and the configuration options that affect your Elastic
Beanstalk environment.

When you create a web server environment, Amazon Elastic Beanstalk creates one or more Amazon
Elastic Compute Cloud (Amazon EC2) virtual machines, known as Instances.

The instances in your environment are configured to run web apps on the platform that you
choose. You can make changes to various properties and behaviors of your environment's
instances when you create your environment or after it's already running. Or, you can already make
these changes by modifying the source code that you deploy to the environment. For for more
information, see the section called “Configuration options”.

Amazon EC2 instances 318

Amazon Elastic Beanstalk Developer Guide

Note

The Auto Scaling group in your environment manages the Amazon EC2 instances that run
your application. When you make configuration changes that are described in this topic,
the launch configuration also changes. The launch configuration is either an Amazon EC2
launch template or an Auto Scaling group launch configuration resource. This change
requires replacement of all instances. It also triggers either a rolling update or immutable
update, depending on which one is configured.

EC2 instance purchasing options

Elastic Beanstalk supports several Amazon EC2 instance purchasing options:

• On-Demand — An On-Demand Instance is a pay-as-you-go resource—there's no long-term
commitment required when you use it.

• Reserved — A Reserved Instance is a pre-purchased billing discount applied automatically to
matching On-Demand instances in your environment.

• Spot — A Spot Instance is an unused Amazon EC2 instance that is available for less than the
On-Demand price. You can enable and configure the allocation of Spot Instances in your
environment. For more information, see Auto Scaling your Elastic Beanstalk environment
instances.

Topics

• Amazon EC2 instance types

• Configuring Amazon EC2 instances using the Elastic Beanstalk console

• Managing EC2 security groups

• Configuring Amazon EC2 security groups and instance types using the Amazon CLI

• Configuring Amazon EC2 instances with namespace options

• Configuring the IMDS on your Elastic Beanstalk environment's instances

Amazon EC2 instance types

This topic explains the term instance type. When you create a new environment, Elastic Beanstalk
provisions Amazon EC2 instances that are based on the Amazon EC2 instance types that you

Amazon EC2 instance types 319

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-purchasing-options.html

Amazon Elastic Beanstalk Developer Guide

choose. The instance types that you choose determine the host hardware that runs your instances.
EC2 instance types can be categorized by which processor architecture each is based on. Elastic
Beanstalk supports instance types based on the following processor architectures: Amazon
Graviton 64-bit Arm architecture (arm64), 64-bit architecture (x86), and 32-bit architecture
(i386). Elastic Beanstalk selects the x86 processor architecture by default when you create a new
environment.

Note

The i386 32-bit architecture is no longer supported by the majority of Elastic Beanstalk
platforms. We recommended that you choose the x86 or arm64 architecture types instead.
Elastic Beanstalk provides configuration options for i386 processor instance types in the
aws:ec2:instances namespace.

All of the instance types in the configuration for a given Elastic Beanstalk environment must have
the same type of processor architecture. Assume that you add a new instance type to an existing
environment that already has a t2.medium instance type, which is based on x86 architecture.
You can only add another instance type of the same architecture, such as t2.small. If you want
to replace the existing instance types with those from a different architecture, you can do so.
But make sure that all of the instance types in the command are based on the same type of
architecture.

Elastic Beanstalk regularly adds support for new compatible instance types after Amazon EC2
introduces them. For information about instance types that are available, see Instance types in the
Amazon EC2 User Guide.

Note

Elastic Beanstalk now offers support for Graviton on all of the latest Amazon Linux
2 platforms across all Amazon Graviton supported Regions. For more information
about creating an Elastic Beanstalk environment with arm64 based instances types, see
Configuring Amazon EC2 instances using the Elastic Beanstalk console.
Create new environments that run Amazon EC2 instances on arm64 architecture and
migrate your existing applications to them with the deployment options in Elastic
Beanstalk.
To learn more about Graviton arm64 based processors, see these Amazon resources:

Amazon EC2 instance types 320

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Beanstalk Developer Guide

• Benefits — The Amazon Graviton Processor

• Getting started and other topics, such as Language-specific considerations — Getting
started with Amazon Graviton GitHub article

Configuring Amazon EC2 instances using the Elastic Beanstalk console

You can create or modify your Elastic Beanstalk environment's Amazon EC2 instance configuration
in the Elastic Beanstalk console.

Note

Although the Elastic Beanstalk console doesn't provide the option to change the processor
architecture of an existing environment, you can do so with the Amazon CLI. For example
commands, see Configuring Amazon EC2 security groups and instance types using the
Amazon CLI.

To configure Amazon EC2 instances in the Elastic Beanstalk console during environment
creation

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments.

3. Choose Create a new environment to start creating your environment.

4. On the wizard's main page, before choosing Create environment, choose Configure more
options.

5. In the Instances configuration category, choose Edit. Make changes to settings in this
category, and then choose Apply. For setting descriptions, see the section the section called
“Instances category settings” on this page.

6. In the Capacity configuration category, choose Edit. Make changes to settings in this category,
and then choose Continue. For setting descriptions, see the section the section called
“Capacity category settings” on this page.

Configuring with the console 321

https://www.amazonaws.cn/ec2/graviton/
https://github.com/aws/aws-graviton-getting-started#getting-started-with-aws-graviton
https://github.com/aws/aws-graviton-getting-started#getting-started-with-aws-graviton
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Selecting processor architecture

Scroll down to Processor to select a processor architecture for your EC2 instances. The
console lists processor architectures that are supported by the platform that you chose
earlier in the Create environment panel.
If you don't see the processor architecture that you need, return to the configuration
category list to select a platform that supports it. From the Modify Capacity panel,
choose Cancel. Then, choose Change platform version to choose new platform
settings. Next, in the Capacity configuration category choose Edit tot see the
processor architecture choices again.

7. Choose Save, and then make any other configuration changes that your environment requires.

8. Choose Create environment.

Configuring with the console 322

Amazon Elastic Beanstalk Developer Guide

To configure a running environment’s Amazon EC2 instances in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Instances configuration category, choose Edit. Make changes to settings in this
category, and then choose Apply. For setting descriptions, see the section the section called
“Instances category settings” on this page.

5. In the Capacity configuration category, choose Edit. Make changes to settings in this category,
and then choose Continue. For setting descriptions, see the section the section called
“Capacity category settings” on this page.

Instances category settings

The following settings related to Amazon EC2 instances are available in the Instances
configuration category.

Options

• Monitoring interval

• Root volume (boot device)

• Instance metadata service

• EC2 security groups

Configuring with the console 323

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Configuring with the console 324

Amazon Elastic Beanstalk Developer Guide

Monitoring interval

By default, the instances in your environment publish basic health metrics to Amazon CloudWatch
at five-minute intervals at no additional cost.

For more detailed reporting, you can set the Monitoring interval to 1 minute to increase the
frequency that the resources in your environment publish basic health metrics to CloudWatch
at. CloudWatch service charges apply for one-minute interval metrics. For more information, see
Amazon CloudWatch.

Root volume (boot device)

Each instance in your environment is configured with a root volume. The root volume is the
Amazon EBS block device attached to the instance to store the operating system, libraries, scripts,
and your application source code. By default, all platforms use general-purpose SSD block devices
for storage.

You can modify Root volume type to use magnetic storage or provisioned IOPS SSD volume types
and, if needed, increase the volume size. For provisioned IOPS volumes, you must also select the
number of IOPS to provision. Throughput is only applicable to gp3 SSD volume types. You might
enter the desired throughput to provision. It can range between 125 and 1000 mebibytes per
second (MiB/s). Select the volume type that meets your performance and price requirements.

Important

The RootVolumeType option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the
necessary permissions to manage launch templates. These permissions are included in our
managed policy. If you use custom policies instead of our managed policies, environment
creation or updates might fail when you update your environment configuration. For more
information and other considerations, see Migrating your Elastic Beanstalk environment to
launch templates .

For more information, see Amazon EBS Volume Types in the Amazon EC2 User Guide and Amazon
EBS Product Details.

Configuring with the console 325

http://www.amazonaws.cn/cloudwatch/
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://www.amazonaws.cn/ebs/details/
http://www.amazonaws.cn/ebs/details/

Amazon Elastic Beanstalk Developer Guide

Instance metadata service

The instance metadata service (IMDS) is an on-instance component that code on the instance uses
to securely access instance metadata. Code can access instance metadata from a running instance
using one of two methods. They are Instance Metadata Service Version 1 (IMDSv1) or Instance
Metadata Service Version 2 (IMDSv2). IMDSv2 is more secure. Disable IMDSv1 to enforce IMDSv2.
For more information, see the section called “IMDS”.

Note

The IMDS section on this configuration page appears only for platform versions that
support IMDSv2.

EC2 security groups

The security groups that are attached to your instances determine which traffic is allowed to reach
and exit the instances.

The default EC2 security group that Elastic Beanstalk creates allows all incoming traffic from
the internet or load balancers on the standard ports for HTTP (80) and SSH(22). You may also
define your own custom security groups to designate firewall rules for the EC2 instances. The
security groups can allow traffic on other ports or from other sources. For example, you can create
a security group for SSH access that allows inbound traffic on port 22 from a restricted IP address
range. Or for additional security, you can create one that allows traffic from a bastion host that
only you can access.

You can select to opt out your environment from the default EC2 security group by setting
the DisableDefaultEC2SecurityGroup option in the aws:autoscaling:launchconfiguration
namespace to true. This option is not available in the console, but you can set it with the Amazon
CLI. For more information, see Managing EC2 security groups.

For more information about Amazon EC2 security groups, see Amazon EC2 Security Groups in the
Amazon EC2 User Guide.

Note

To allow traffic between environment A's instances and environment B's instances, you
can add a rule to the security group that Elastic Beanstalk attached to environment B.
Then, you can specify the security group that Elastic Beanstalk attached to environment

Configuring with the console 326

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-network-security.html

Amazon Elastic Beanstalk Developer Guide

A. This allows inbound traffic from, or outbound traffic to, environment A's instances.
However, doing so creates a dependency between the two security groups. If you later
try to terminate environment A, Elastic Beanstalk can't delete the environment's security
group, because environment B's security group is dependent on it.
Therefore, we recommend that you instead first create a separate security group. Then,
attach it to environment A, and specify it in a rule of environment B's security group.

Capacity category settings

The following settings related to Amazon EC2 instances are available in the Capacity configuration
category.

Options

• Instance types

• AMI ID

Instance types

The Instance types setting determines the type of Amazon EC2 instance that's launched to run
your application. This configuration page shows a list of Instance types. You can select one or
more instance types. The Elastic Beanstalk console only displays the instance types based on the
processor architecture that's configured for your environment. Therefore, you can only add instance
types of the same processor architecture.

Configuring with the console 327

Amazon Elastic Beanstalk Developer Guide

Note

Although the Elastic Beanstalk console doesn't provide the option to change the processor
architecture of an existing environment, you can do so with the Amazon CLI. For example
commands, see Configuring Amazon EC2 security groups and instance types using the
Amazon CLI.

Choose an instance that's powerful enough to run your application under load, but not so powerful
that it's idle most of the time. For development purposes, the t2 family of instances provides a
moderate amount of power with the ability to burst for short periods of time. For large-scale,
high-availability applications, use a pool of instances to ensure that capacity isn't too strongly
affected if any single instance goes down. Start with an instance type that you can use to run five
instances under moderate loads during normal hours. If any instance fails, the rest of the instances
can absorb the rest of the traffic. The capacity buffer also allows time for the environment to scale
up as traffic begins to rise during peak hours.

For more information about Amazon EC2 instance families and types, see Instance types in the
Amazon EC2 User Guide. To determine which instance types meet your requirements and their
supported Regions, see Available instance types in the Amazon EC2 User Guide.

AMI ID

The Amazon Machine Image (AMI) is the Amazon Linux or Windows Server machine image that
Elastic Beanstalk uses to launch Amazon EC2 instances in your environment. Elastic Beanstalk
provides machine images that contain the tools and resources required to run your application.

Elastic Beanstalk selects a default AMI for your environment based on the Region, platform version
and processor architecture that you choose. If you have created a custom AMI, replace the default
AMI ID with your own default custom one.

Managing EC2 security groups

When Elastic Beanstalk creates an environment, it assigns a default security group to the EC2
instances that are launched with it. The security groups that are attached to your instances
determine which traffic is allowed to reach and exit the instances.

The default EC2 security group that Elastic Beanstalk creates allows all incoming traffic from
the internet or load balancers on the standard ports for HTTP (80) and SSH(22). You may also
define your own custom security groups to designate firewall rules for the EC2 instances. The

Managing EC2 security groups 328

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes

Amazon Elastic Beanstalk Developer Guide

security groups can allow traffic on other ports or from other sources. For example, you can create
a security group for SSH access that allows inbound traffic on port 22 from a restricted IP address
range. Or for additional security, you can create one that allows traffic from a bastion host that
only you can access.

You can select to opt out your environment from the default EC2 security group by setting
the DisableDefaultEC2SecurityGroup option in the aws:autoscaling:launchconfiguration
namespace to true. Use the Amazon CLI or configuration files to apply this option to your
environment and to attach custom security groups to the EC2 instances.

Managing EC2 security groups in multi-instance environments

If you create a custom EC2 security group in a multi-instance environment you must also consider
how the load balancers and incoming traffic rules keep your instances secure and accessible.

Inbound traffic to an environment with multiple EC2 instances is managed by the load balancer,
which directs incoming traffic among all of the EC2 instances. When Elastic Beanstalk creates a
default EC2 security group, it also defines inbound rules that allow incoming traffic from the load
balancer. Without this inbound rule in the security group, the incoming traffic will not be allowed
to enter the instances. This condition would essentially block the instances from external requests.

If you disable the default EC2 security group for a load balanced environment, Elastic Beanstalk
validates some configuration rules. If the configuration doesn't meet the validation checks, it issues
messages instructing you to provide the required configuration. The validation checks are the
following:

• At least one security group must be assigned to the load balancer using the SecurityGroups
option of the aws:elbv2:loadbalancer or aws:elb:loadbalancer, depending on whether it's an
application load balancer or classic load balancer, respectively. For Amazon CLI examples see
Configuring with the Amazon CLI.

• Inbound traffic rules must exist that allow your EC2 instances to receive traffic from the load
balancer. Both your EC2 security groups and your load balancer security groups must reference
these inbound rules. For more information, see the Inbound rules for traffic section that follows.

Inbound rules for traffic

The EC2 security group(s) for a multi-instance environment, must include an inbound rule that
references the load balancer security group. This applies to environments with any type of load
balancer, dedicated or shared, and with either custom or default load balancer security groups.

Managing EC2 security groups 329

Amazon Elastic Beanstalk Developer Guide

You can view all of the security groups that are attached to your environment components in the
EC2 console. The following image shows the EC2 console listing of security groups that Elastic
Beanstalk creates by default during the create environment operation.

The Security Groups screen shows environments and their associated security groups. Both
GettingStarted-env and GettingStarted3-env are multi-instance environments with dedicated load
balancers. Each of these environments has two security groups listed, one for the EC2 instances
and another for the load balancer. Elastic Beanstalk creates these security groups when it creates
the environments. GettingStarted5-env doesn't have a load balancer security group, because it only
has one EC2 instance, and thus no load balancer.

The Inbound rules screen drills down into the EC2 security group for the instances of
GettingStarted3-env. This example defines the inbound rules for the EC2 security group. Note that
the Source column in the Inbound rules lists the security group id of the load balancer security
group listed in the prior image. This rule allows the EC2 instances of GettingStarted3-env to receive
inbound traffic from that specific load balancer on port 80.

For more information, see Change security groups for your instance and Elastic Load Balancing
rules in the Amazon EC2 User Guide.

Configuring Amazon EC2 security groups and instance types using the
Amazon CLI

You can use the Amazon Command Line Interface (Amazon CLI) to configure the Amazon EC2
instances in your Elastic Beanstalk environments.

Configuring with the Amazon CLI 330

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/changing-security-group.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-elb
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-elb

Amazon Elastic Beanstalk Developer Guide

Configuring EC2 security groups using the Amazon CLI

This topic provides examples for different EC2 security group configurations for both single-
instance and load balanced (multi-instance) environments. For more information about the options
in these examples, see aws:autoscaling:launchconfiguration.

Notes

The create environment operation provides an EC2 security group by default. It also creates
an environment with an application load balancer by default.
The update environment operation can be used to either disable or enable
the default EC2 security group for your environment with the boolean option
DisableDefaultEC2SecurityGroup. Example 5 shows how to set your environment
back to the default security configuration if you had previously modified it.

The following examples show a create-environment command opting out of the
default EC2 security group and providing custom security groups instead. Since the
DisableDefaultEC2SecurityGroup option is set to true, the default EC2 security group that
Elastic Beanstalk normally associates to the EC2 instances is not created. Therefore, you must
provide other security groups with the SecurityGroups option.

Note that the aws:elasticbeanstalk:environment EnvironmentType option is set to
SingleInstance. To create a single instance environment, you must specify this option, because
LoadBalanced is the default EnvironmentType. Since this environment does not include a load
balancer, we don't need to specify a load balancer security group.

Example 1 — New single-instance environment with custom EC2 security groups (namespace
options inline)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 v6.5.0 applrunning Node.js 22" \
--option-settings \
Namespace=aws:elasticbeanstalk:environment,OptionName=EnvironmentType,Value=SingleInstance
 \
Namespace=aws:autoscaling:launchconfiguration,OptionName=IamInstanceProfile,Value=aws-
elasticbeanstalk-ec2-role \

Configuring with the Amazon CLI 331

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-environment.html

Amazon Elastic Beanstalk Developer Guide

Namespace=aws:autoscaling:launchconfiguration,OptionName=DisableDefaultEC2SecurityGroup,Value=true
 \
Namespace=aws:autoscaling:launchconfiguration,OptionName=SecurityGroups,Value=sg-
abcdef01, sg-abcdef02 \
Namespace=aws:autoscaling:launchconfiguration,OptionName=EC2KeyName,Value=my-keypair

As an alternative, use an options.json file to specify the namespace options instead of including
them inline.

Example 2 — New single-instance environment with custom EC2 security groups (namespace
options in options.json file)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 v6.5.0 running Node.js 22" \
--option-settings file://options.json

Example

example options.json
[
 { "Namespace" : "aws:elasticbeanstalk:environment",
 "OptionName" : "EnvironmentType",
 "Value" : "SingleInstance"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "DisableDefaultEC2SecurityGroup",
 "Value": "true"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "SecurityGroups",
 "Value": "sg-abcdef01, sg-abcdef02"

Configuring with the Amazon CLI 332

Amazon Elastic Beanstalk Developer Guide

 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "EC2KeyName",
 "Value": "my-keypair"
 }
]

The following example creates a load-balanced environment. It specifies the
aws:elasticbeanstalk:environment namespace option LoadBalancerType set
to application. Since we're disabling the default EC2 security group with the
DisableDefaultEC2SecurityGroup option, we need to provide our own custom
security groups for the EC2 instances again, with the aws:autoscaling:launchconfiguration
SecurityGroups option, like the previous example. Since this environment has a load balancer to
route traffic, we must provide security groups for the load balancer as well.

To create an environment with a with a classic load balancer, but otherwise the same configuration,
update the configuration for the aws:elasticbeanstalk:environment namespace option
LoadBalancerType to classic.

The different load balancer types have different namespaces that hold the options to specify the
security groups:

• application load balancer – aws:elbv2:loadbalancer SecurityGroups option

• classic load balancer – aws:elb:loadbalancer SecurityGroups option

• network load balancer – since network load balancers do not have security groups, configure the
EC2 security groups with VPC identifiers. For more information, see Update the security groups
for your Network Load Balancer in the User Guide for Network Load Balancers.

Example 3 — New multi-instance environment with custom EC2 security groups (namespace
options in options.json file)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 v6.5.0 running Node.js 22" \
--option-settings file://options.json

Configuring with the Amazon CLI 333

https://docs.amazonaws.cn/elasticloadbalancing/latest/network/load-balancer-security-groups.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/network/load-balancer-security-groups.html

Amazon Elastic Beanstalk Developer Guide

Example

example options.json
[
 {
 "Namespace" : "aws:elasticbeanstalk:environment",
 "OptionName" : "EnvironmentType",
 "Value" : "LoadBalanced"
 },
 {
 "Namespace" : "aws:elasticbeanstalk:environment",
 "OptionName" : "LoadBalancerType",
 "Value" : "application"
 },
 {
 "Namespace" : "aws:elbv2:loadbalancer",
 "OptionName" : "SecurityGroups",
 "Value" : "sg-abcdefghikl012345"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "DisableDefaultEC2SecurityGroup",
 "Value": "true"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "SecurityGroups",
 "Value": "sg-abcdef01, sg-abcdef02"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "EC2KeyName",
 "Value": "my-keypair"
 }
]

Configuring with the Amazon CLI 334

Amazon Elastic Beanstalk Developer Guide

You can disable the default EC2 security group for an existing environment with the update-
environment command. The following example command disables the default EC2 security group
and assigns the environment's EC2 instances custom EC2 security groups.

Use the example options.jason files in examples 4(a), 4(b), or 4(c), depending on whether the
environment is load balanced and the type of load balancer. Configuration file 4(a) specifies the
security groups for a single-instance environment. Since it doesn't require a load balancer, we
only provide the security group for the EC2 instances. Configuration files 4(b) and 4(c) specify the
security groups for an application load balancer and a classic load balancer. For these cases we also
need to specify security groups for the load balancer.

Example 4 — Update an existing environment to disable default EC2 security group (namespace
options in options.json file)

aws elasticbeanstalk update-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 v6.5.0 running Node.js 22" \
--option-settings file://options.json

Example 4(a) — Configuration file for single-instance environment (no load balancer)

example options.json
[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "DisableDefaultEC2SecurityGroup",
 "Value": "true"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "SecurityGroups",
 "Value": "sg-abcdef01, sg-abcdef02"
 }
]

To update an environment that uses an application load balancer, use the
aws:elbv2:loadbalancer namespace to specify the security groups for the load balancer.

Configuring with the Amazon CLI 335

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html

Amazon Elastic Beanstalk Developer Guide

Example 4(b) — Configuration file for environment with an application load balancer

example options.json
[
 {
 "Namespace" : "aws:elbv2:loadbalancer",
 "OptionName" : "SecurityGroups",
 "Value" : "sg-abcdefghikl012345"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "DisableDefaultEC2SecurityGroup",
 "Value": "true"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "SecurityGroups",
 "Value": "sg-abcdef01, sg-abcdef02"
 }
]

To update an environment that uses a classic load balancer use the aws:elb:loadbalancer
namespace to specify the security groups for the load balancer.

Example 4(c) — Configuration file for environment with a classic load balancer

example options.json
[
 {
 "Namespace" : "aws:elb:loadbalancer",
 "OptionName" : "SecurityGroups",
 "Value" : "sg-abcdefghikl012345"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "DisableDefaultEC2SecurityGroup",
 "Value": "true"
 },
 {
 "Namespace": "aws:autoscaling:launchconfiguration",n
 "OptionName": "SecurityGroups",
 "Value": "sg-abcdef01, sg-abcdef02"
 }

Configuring with the Amazon CLI 336

Amazon Elastic Beanstalk Developer Guide

]

To return your environment to the default behavior and configuration with the default
security group that Elastic Beanstalk assigns, use the update-environment command to set the
DisableDefaultEC2SecurityGroup to false. For a multi-instance environment, Elastic
Beanstalk also handles the security groups and network traffic rules for your environment's load
balancer.

The following example applies to both a single-instance or multi-instance (load balanced)
environment:

Example 5 — Update an environment back to using the default security group (namespace
options in options.json file)

aws elasticbeanstalk update-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 v6.5.0 running Node.js 22" \
--option-settings file://options.json

Example

example options.json
[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "DisableDefaultEC2SecurityGroup",
 "Value": "false"
 }
]

Configuring EC2 with instance types using the Amazon CLI

This topic provides examples for configuring the instance types of the EC2 instances in your
environment.

The first two examples creates a new environment. The command specifies an Amazon EC2
instances type, t4g.small, that's based on arm64 processor architecture. Elastic Beanstalk defaults
the Image ID (AMI) for the EC2 instances based on the Region, platform version and instance type.

Configuring with the Amazon CLI 337

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html

Amazon Elastic Beanstalk Developer Guide

The instance type corresponds to a processor architecture. The solution-stack-name parameter
applies to platform version.

Example 1 — create a new arm64 based environment (namespace options inline)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings \
Namespace=aws:autoscaling:launchconfiguration,OptionName=IamInstanceProfile,Value=aws-
elasticbeanstalk-ec2-role \
Namespace=aws:ec2:instances,OptionName=InstanceTypes,Value=t4g.small

As an alternative, use an options.json file to specify the namespace options instead of including
them inline.

Example 2 — create a new arm64 based environment (namespace options in options.json
file)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings file://options.json

Example

example options.json
[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 },
 {
 "Namespace": "aws:ec2:instances",
 "OptionName": "InstanceTypes",
 "Value": "t4g.small"

Configuring with the Amazon CLI 338

Amazon Elastic Beanstalk Developer Guide

 }
]

The next two examples update the configuration for an existing environment with the update-
environment command. In this example we're adding another instance type that's also based on
arm64 processor architecture. For existing environments, all instance types that are added must
have the same processor architecture. If you want to replace the existing instance types with those
from a different architecture, you can do so. But make sure that all of the instance types in the
command have the same type of architecture.

Example 3 — update an existing arm64 based environment (namespace options inline)

aws elasticbeanstalk update-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings \
Namespace=aws:autoscaling:launchconfiguration,OptionName=IamInstanceProfile,Value=aws-
elasticbeanstalk-ec2-role \
Namespace=aws:ec2:instances,OptionName=InstanceTypes,Value=t4g.small,t4g.micro

As an alternative, use an options.json file to specify the namespace options instead of including
them inline.

Example 4 — update an existing arm64 based environment (namespace options in
options.json file)

aws elasticbeanstalk update-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings file://options.json

Example

example options.json

Configuring with the Amazon CLI 339

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html

Amazon Elastic Beanstalk Developer Guide

[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 },
 {
 "Namespace": "aws:ec2:instances",
 "OptionName": "InstanceTypes",
 "Value": "t4g.small, t4g.micro"
 }
]

The next two examples show more create-environment commands. These examples don't provide
values for InstanceTypes. When InstanceTypes values aren't specified, Elastic Beanstalk
defaults to x86 based processor architecture. The Image ID (AMI) for the environment's EC2
instances will default according to the Region, platform version and defaulted instance type. The
instance type corresponds to a processor architecture.

Example 5 — create a new x86 based environment (namespace options inline)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings \
Namespace=aws:autoscaling:launchconfiguration,OptionName=IamInstanceProfile,Value=aws-
elasticbeanstalk-ec2-role

As an alternative, use an options.json file to specify the namespace options instead of including
them inline.

Example 6 — create a new x86 based environment (namespace options in options.json file)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \

Configuring with the Amazon CLI 340

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-environment.html

Amazon Elastic Beanstalk Developer Guide

--option-settings file://options.json

Example

example options.json
[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 }
]

Configuring Amazon EC2 instances with namespace options

You can use the configuration options in the aws:autoscaling:launchconfiguration
namespace to configure the instances for your environment, including additional options that
aren't available in the console.

Important

The DisableIMDSv1, RootVolumeType, or BlockDeviceMappings option setting can
cause Elastic Beanstalk to migrate an existing environment with launch configurations
to launch templates. Doing so requires the necessary permissions to manage launch
templates. These permissions are included in our managed policy. If you use custom
policies instead of our managed policies, environment creation or updates might fail
when you update your environment configuration. For more information and other
considerations, see Migrating your Elastic Beanstalk environment to launch templates .

The following configuration file example uses the basic configuration options that are explained in
this topic. To see examples of additional configuration options when you need to specify security
groups for load balancers, see Configuring with the Amazon CLI.

option_settings:
 aws:autoscaling:launchconfiguration:
 SecurityGroups: my-securitygroup
 MonitoringInterval: "1 minute"
 DisableIMDSv1: false

Configuring with namespace 341

Amazon Elastic Beanstalk Developer Guide

 DisableDefaultEC2SecurityGroup: true
 SecurityGroups: "sg-abcdef01, sg-abcdef02"
 EC2KeyName: my-keypair
 IamInstanceProfile: "aws-elasticbeanstalk-ec2-role"
 BlockDeviceMappings: "/dev/sdj=:100,/dev/sdh=snap-51eef269,/dev/sdb=ephemeral0"
 aws:elasticbeanstalk:environment:
 EnvironmentType: SingleInstance

The DisableDefaultEC2SecurityGroup and BlockDeviceMappings are not available in the
console.

You can use BlockDeviceMappings to configure additional block devices for your instances. For
more information, see Block Device Mapping in the Amazon EC2 User Guide.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Configuring the IMDS on your Elastic Beanstalk environment's
instances

This topic describes the Instance Metadata Service (IMDS).

Instance metadata is data that's related to an Amazon Elastic Compute Cloud (Amazon EC2)
instance that applications can use to configure or manage the running instance. The instance
metadata service (IMDS) is an on-instance component that code on the instance uses to securely
access instance metadata. This code can be Elastic Beanstalk platform code on your environment
instances, the Amazon SDK that your application might be using, or even your application's own
code. For more information, see Instance metadata and user data in the Amazon EC2 User Guide.

Code can access instance metadata from a running instance using one of two methods: Instance
Metadata Service Version 1 (IMDSv1) or Instance Metadata Service Version 2 (IMDSv2). IMDSv2 uses
session-oriented requests and mitigates several types of vulnerabilities that could be used to try to
access the IMDS. For information about these two methods, see Configuring the instance metadata
service in the Amazon EC2 User Guide.

Topics

• Platform support for IMDS

• Choosing IMDS methods

IMDS 342

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/block-device-mapping-concepts.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html

Amazon Elastic Beanstalk Developer Guide

• Configuring IMDS using the Elastic Beanstalk console

• The aws:autoscaling:launchconfiguration namespace

Platform support for IMDS

Elastic Beanstalk platforms running on Amazon Linux 2 and Amazon Linux 2023 and Windows
server all support both IMDSv1 and IMDSv2. For more information, see Configuring IMDS using the
Elastic Beanstalk console

Choosing IMDS methods

When making a decision about the IMDS methods that you want your environment to support,
consider the following use cases:

• Amazon SDK – If your application uses an Amazon SDK, make sure you use an the latest version
of the SDK. The Amazon SDKs make IMDS calls, and newer SDK versions use IMDSv2 whenever
possible. If you ever disable IMDSv1, or if your application uses an old SDK version, IMDS calls
might fail.

• Your application code – If your application makes IMDS calls, consider using the Amazon SDK so
that you can make the calls instead of making direct HTTP requests. This way, you don't need to
make code changes to switch between IMDS methods. The Amazon SDK uses IMDSv2 whenever
possible.

• Elastic Beanstalk platform code – Our code makes IMDS calls through the Amazon SDK, and
therefore uses IMDSv2 on all supporting platform versions. If your code uses an up-to-date
Amazon SDK and makes all IMDS calls through the SDK, you can safely disable IMDSv1.

Configuring IMDS using the Elastic Beanstalk console

You can modify your Elastic Beanstalk environment's Amazon EC2 instance configuration in the
Elastic Beanstalk console.

Important

The DisableIMDSv1 option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the
necessary permissions to manage launch templates. These permissions are included in our
managed policy. If you use custom policies instead of our managed policies, environment

IMDS 343

Amazon Elastic Beanstalk Developer Guide

creation or updates might fail when you update your environment configuration. For more
information and other considerations, see Migrating your Elastic Beanstalk environment to
launch templates .

To configure IMDS on your Amazon EC2 instances in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Instance traffic and scaling configuration category, choose Edit.

5. Set Disable IMDSv1 to enforce IMDSv2. Clear Disable IMDSv1 to enable both IMDSv1 and
IMDSv2.

6. To save the changes choose Apply at the bottom of the page.

The aws:autoscaling:launchconfiguration namespace

You can use a configuration option in the aws:autoscaling:launchconfiguration
namespace to configure IMDS on your environment's instances.

Important

The DisableIMDSv1 option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the
necessary permissions to manage launch templates. These permissions are included in our
managed policy. If you use custom policies instead of our managed policies, environment
creation or updates might fail when you update your environment configuration. For more
information and other considerations, see Migrating your Elastic Beanstalk environment to
launch templates .

The following configuration file example disables IMDSv1 using the DisableIMDSv1 option.

option_settings:
 aws:autoscaling:launchconfiguration:

IMDS 344

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

 DisableIMDSv1: true

Set DisableIMDSv1 to true to disable IMDSv1 and enforce IMDSv2.

Set DisableIMDSv1 to false to enable both IMDSv1 and IMDSv2.

Auto Scaling your Elastic Beanstalk environment instances

This topic describes how you can customize the Auto Scaling features to manage your Elastic
Beanstalk environment’s workload. You can configure Auto Scaling for your environment using the
Elastic Beanstalk console, namespace configuration options, the Amazon CLI, or the EB CLI.

Load-balanced or single instance environments

Your Amazon Elastic Beanstalk environment includes an Auto Scaling group that manages the
Amazon EC2 instances in your environment. In a single-instance environment, the Auto Scaling
group ensures that there is always one instance running. In a load-balanced environment, you
configure the group with a range of instances to run, and Auto Scaling adds or removes instances
as needed, based on load.

EC2 Instance configuration

The Auto Scaling group also applies your configuration choices to provision and manage the EC2
instances in your environment. You can modify the EC2 configuration to change the instance type,
key pair, Amazon Elastic Block Store (Amazon EBS) storage, and other settings that can only be
configured when you launch an instance.

On-Demand and Spot Instances

As an option, Elastic Beanstalk can include Spot Instances in your environment and manage
them in combination with On-Demand instances. You can configure Amazon EC2 Auto Scaling to
monitor and automatically respond to changes that affect the availability of your Spot Instances by
enabling Capacity Rebalancing. You can also configure the Spot allocation strategy that the Auto
Scaling service uses to provision Spot Instances to your environment.

Required permissions when enabling Spot Instances

Enabling Spot Instance requests requires using Amazon EC2 launch templates. When you configure
this feature during environment creation or updates, Elastic Beanstalk attempts to configure your
environment to use Amazon EC2 launch templates (if the environment isn't using them already).
In this case, if your user policy lacks the necessary permissions, environment creation or updates

Auto Scaling group 345

https://docs.amazonaws.cn/autoscaling/ec2/userguide/capacity-rebalance.html

Amazon Elastic Beanstalk Developer Guide

might fail. Therefore, we recommend that you use our managed user policy or add the required
permissions to your custom policies. For details about the required permissions, see Required
permissions for launch templates.

Auto Scaling triggers

The Auto Scaling group uses two Amazon CloudWatch alarms to trigger scaling operations. The
default triggers scale when the average outbound network traffic from each instance is higher than
6 MiB or lower than 2 MiB over a period of five minutes. To use Auto Scaling effectively, configure
triggers that are appropriate for your application, instance type, and service requirements. You can
scale based on several statistics including latency, disk I/O, CPU utilization, and request count.

Schedule Auto Scaling actions

To optimize your environment's use of Amazon EC2 instances through predictable periods of peak
traffic, configure your Auto Scaling group to change its instance count on a schedule. You can
schedule changes to your group's configuration that recur daily or weekly, or schedule one-time
changes to prepare for marketing events that will drive a lot of traffic to your site.

Auto Scaling health check

Auto Scaling monitors the health of each Amazon EC2 instance that it launches. If any instance
terminates unexpectedly, Auto Scaling detects the termination and launches a replacement
instance. To configure the group to use the load balancer's health check mechanism, see Auto
Scaling health check setting for your Elastic Beanstalk environment.

Topics

• Migrating your Elastic Beanstalk environment to launch templates

• Spot Instance support for your Elastic Beanstalk environment

• Auto Scaling triggers for your Elastic Beanstalk environment

• Scheduled Auto Scaling actions for your Elastic Beanstalk environments

• Auto Scaling health check setting for your Elastic Beanstalk environment

Migrating your Elastic Beanstalk environment to launch templates

As of October 1, 2024, Amazon EC2 Auto Scaling no longer supports launch configurations for new
accounts. Accounts created prior to that date might have launch configurations.

We recommend migrating to launch templates for the following benefits:

Launch templates 346

Amazon Elastic Beanstalk Developer Guide

• Improved availability for your applications

• Better optimization of workloads in your Auto Scaling groups

• Access to the latest EC2 and Auto Scaling features

For more information, see Auto Scaling launch configurations in the Amazon EC2 Auto Scaling User
Guide.

Option settings for launch templates

To migrate your environment from launch configurations to launch templates, set one of the
following configuration options:

• RootVolumeType option set to gp3. You can set this option with the console or the namespace .

• BlockDeviceMappings option contains gp3. You can set this option with the console or the
namespace.

• DisableIMDSv1 option set to true. We recommend that you set this option using the
namespace.

• EnableSpot option set to true. For more information, see Enabling Spot Instances.

Important

After an environment begins using launch templates, Elastic Beanstalk does not revert
to launch configurations, even if you remove the configuration options that originally
triggered the use of launch templates.

Confirm whether your environment has launch configurations or launch
templates

You can confirm if your environment already uses launch templates, or if it's using launch
configurations, by inspecting the CloudFormation stack template.

To inspect your environment's CloudFormation stack template

1. Open the Amazon CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Region where you created
the environment.

Launch templates 347

https://docs.amazonaws.cn/autoscaling/ec2/userguide/launch-configurations.html
https://console.amazonaws.cn/cloudformation/

Amazon Elastic Beanstalk Developer Guide

3. On the Stacks page of the CloudFormation console, inspect the Description column.

Locate and select the stack for the Elastic Beanstalk environment. CloudFormation displays the
stack details for the environment.

4. In Stack details select the Template tab.

Using your browser's page search, you can search the template text for launchtemplate or
launchconfiguration.

For more information, see View stack information in the Amazon CloudFormation User Guide.

Required permissions for launch templates

The default Elastic Beanstalk managed service role policy
AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy provides the required permissions
to create and manage launch templates. Elastic Beanstalk must manage launch templates to
complete many environment operations, including creating environments.

If you attach custom policies to an Elastic Beanstalk service role, verify that the service role
includes the following permissions for creating launch templates. These permissions enable Elastic
Beanstalk to successfully create and update environments in your account:

Required permissions for Amazon EC2 launch templates

• ec2:RunInstances

• ec2:CreateLaunchTemplate

• ec2:CreateLaunchTemplateVersions

• ec2:DeleteLaunchTemplate

• ec2:DeleteLaunchTemplateVersions

• ec2:DescribeLaunchTemplate

• ec2:DescribeLaunchTemplateVersions

The following example IAM policy includes these permissions.

{
 "Statement": [
 {

Launch templates 348

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy.html

Amazon Elastic Beanstalk Developer Guide

 "Effect": "Allow",
 "Action": [
 "ec2:RunInstances",
 "ec2:CreateLaunchTemplate",
 "ec2:CreateLaunchTemplateVersions",
 "ec2:DeleteLaunchTemplate",
 "ec2:DeleteLaunchTemplateVersions",
 "ec2:DescribeLaunchTemplate",
 "ec2:DescribeLaunchTemplateVersions"
],
 "Resource": [
 "*"
]
 }
]
}

For more information, see Managing Elastic Beanstalk service roles and Managing Elastic Beanstalk
user policies.

More about launch templates

To learn more about launch templates, see Auto Scaling launch templates in the Amazon EC2 Auto
Scaling User Guide.

To learn more about the Amazon transition to launch templates and the benefits they offer,
see Amazon EC2 Auto Scaling will no longer add support for new EC2 features to Launch
Configurations in the Amazon Compute Blog.

Important

You don't need to follow the procedure referenced in this blog article to transition an older
environment to launch templates. To migrate an existing Elastic Beanstalk environment to
launch templates, set one of the options listed in Option settings for launch templates.

Spot Instance support for your Elastic Beanstalk environment

This topic describes the configuration options that are available for you to manage the capacity
and load balancing of Spot Instances in your Elastic Beanstalk environment. It also provides details

Spot Instance support 349

https://docs.amazonaws.cn/autoscaling/ec2/userguide/launch-templates.html
https://amazonaws-china.com/blogs/compute/amazon-ec2-auto-scaling-will-no-longer-add-support-for-new-ec2-features-to-launch-configurations/
https://amazonaws-china.com/blogs/compute/amazon-ec2-auto-scaling-will-no-longer-add-support-for-new-ec2-features-to-launch-configurations/

Amazon Elastic Beanstalk Developer Guide

and examples for the methods you can use to configure these options. You can use the Elastic
Beanstalk console, namespace configuration options, the Amazon CLI, or the EB CLI to manage the
configuration options.

Minimize Spot instance interruptions with Capacity Rebalancing

To help minimize the impact of Spot Instance interruptions to your application, you can enable the
Capacity Rebalancing option included with Amazon EC2 Auto Scaling.

Important

Demand for Spot Instances can vary significantly from moment to moment, and the
availability of Spot Instances can also vary significantly depending on how many unused
Amazon EC2 instances are available. It's always possible that your Spot Instance might be
interrupted.

When you enable Capacity Rebalancing, EC2 automatically attempts to replace Spot Instances in
an Auto Scaling group before they are interrupted. To enable this feature use the Elastic Beanstalk
console to configure the Auto Scaling group. Alternatively, you can set the Elastic Beanstalk
EnableCapacityRebalancing configuration option to true in the aws:autoscaling:asg
namespace.

For more information, see Capacity Rebalancing in the Amazon EC2 Auto Scaling User Guide and
Spot Instance Interruptions in the Amazon EC2 User Guide.

Older Instance Types and Spot Instance Support

Some older Amazon accounts might provide Elastic Beanstalk with default instance types that
don't support Spot Instances. If you enable Spot Instance requests and you see the error None of
the instance types you specified supports Spot, update your configuration with instance types that
support Spot Instances. To choose Spot Instance types, use the Spot Instance Advisor.

Topics

• Enabling Spot Instances for your environment

• Spot Instance allocation strategy

• Managing On-Demand instances and Spot instances

• Capacity configuration for your Elastic Beanstalk environment

Spot Instance support 350

https://docs.amazonaws.cn/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/spot-interruptions.html
https://aws.amazon.com/ec2/spot/instance-advisor/

Amazon Elastic Beanstalk Developer Guide

Enabling Spot Instances for your environment

To take advantage of Amazon EC2 Spot Instances, set the EnableSpot option for your
environment. Your environment's Auto Scaling group then combines Amazon EC2 purchase options
and maintains a mix of On-Demand and Spot Instances.

You can use the Elastic Beanstalk console, namespace configuration options, the Amazon CLI, or
the EB CLI to enable Spot Instance requests for your environment.

Before you enable Spot Instances for your environment, become familiar with the Auto Scaling,
capacity, and load balancing configuration options that are available. Your application's
requirements that are related to workload, impact of instance interruptions, and pricing, are all
important considerations in your planning to enable Spot Instances.

The topics that follow provide details about the Auto Scaling and capacity management options
and how their combined use affects your environment. There are procedures and example
configurations to inform and guide you about the various options and how to configure them.
We also offer tools and features to help you manage your configuration and respond to events.
You can schedule automated changes to your configuration based on predictable periods of
traffic, configure triggers to respond to factors such as traffic volume, and configure Auto Scaling
monitoring and health checks.

For more detailed information about Spot Instances, including explanation of key concepts and
best practices, see Spot Instances in the Amazon EC2 User Guide.

Important

The EnableSpot option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the
necessary permissions to manage launch templates. These permissions are included in our
managed policy. If you use custom policies instead of our managed policies, environment
creation or updates might fail when you update your environment configuration. For more
information and other considerations, see Migrating your Elastic Beanstalk environment to
launch templates .

Spot Instance allocation strategy

You can select any one of the allocation strategies listed in this topic for your Elastic Beanstalk
environment. Use the Elastic Beanstalk console, namespace configuration options, or the Amazon

Spot Instance support 351

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-spot-instances.html

Amazon Elastic Beanstalk Developer Guide

CLI, to set and configure Spot Instance allocation strategy and related attributes for your
environment.

Amazon EC2 applies an allocation strategy to manage and provision Spot instances for your
environment. Each allocation strategy optimizes the allocated instances based on how it’s defined
to handle available capacity, price, and selection of instance types.

Amazon EC2 Auto Scaling provides the following allocation strategies for Spot Instances.

• Capacity optimized (default)

• Requests Spot Instances from the pool, with optimal capacity for the number of instances that
are launching.

• This strategy works well for workloads where the possibility of service disruption must be
minimized.

• Price capacity optimized

• Requests Spot Instances from the pools that have the lowest chance of interruption and the
lowest possible price.

• This is the preferable choice for most Spot workloads.

• Capacity optimized prioritized

• Requests Spot Instances based on capacity availability first, while honoring your choice of
instance type prioritization on a best-effort basis. You can provide a list of instance types,
ordered by priority, when you configure Spot Instance options for Elastic Beanstalk.

• This strategy is good for workloads that require minimal service disruption, and a specific
instance type prioritization matters.

• Lowest price

• Requests Spot Instances from the lowest priced pool with available instances.

• It's important to take precaution when using this strategy, since it only considers instance price
and not capacity availability, which will result in high interruption rates.

For more details about each allocation strategy, see Allocation strategies for multiple instance
types in the Amazon EC2 Auto Scaling User Guide.

To help you understand which allocation strategy is best suited to meet your environment's
requirements, see Choose the appropriate Spot allocation strategy in the Amazon EC2 User Guide.

Spot Instance support 352

https://docs.amazonaws.cn/autoscaling/ec2/userguide/allocation-strategies.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/allocation-strategies.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-fleet-allocation-strategy.html#ec2-fleet-allocation-use-cases

Amazon Elastic Beanstalk Developer Guide

Managing On-Demand instances and Spot instances

You can launch and automatically scale a fleet of On-Demand Instances and Spot Instances within
a single Auto Scaling group. The following options can be used in tandem to configure how the
Auto Scaling service manages Spot Instances and On-Demand Instances in your environment.

You can configure these options for your environment using the Elastic Beanstalk console,
namespace configuration options, the Amazon CLI, or the EB CLI.

These options are part of the aws:ec2:instances namespace:

• EnableSpot ‐ When set to true this setting enables Spot Instance requests for your
environment.

• SpotFleetOnDemandBase ‐ Sets the minimum number of On-Demand Instances that your
Auto Scaling group provisions before considering Spot Instances as your environment scales up.

• SpotFleetOnDemandAboveBasePercentage ‐ The percentage of On-Demand Instances
as part of additional capacity that your Auto Scaling group provisions beyond the
SpotOnDemandBase instances.

The previously listed options correlate with the following options in the aws:autoscaling:asg
namespace:

• MinSize ‐ The minimum number of instances that you want in your Auto Scaling group.

• MaxSize ‐ The maximum number of instances that you want in your Auto Scaling group.

Important

The EnableSpot option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the
necessary permissions to manage launch templates. These permissions are included in our
managed policy. If you use custom policies instead of our managed policies, environment
creation or updates might fail when you update your environment configuration. For more
information and other considerations, see Migrating your Elastic Beanstalk environment to
launch templates .

Spot Instance support 353

Amazon Elastic Beanstalk Developer Guide

Applying both sets of namespace options

The following points describe how the combination of these option settings affects the scaling for
your environment.

• Only MinSize determines your environment’s initial capacity—the number of instances you
want running at a minimum.

• SpotFleetOnDemandBase doesn't affect initial capacity. When Spot is enabled, this option
determines how many On-Demand Instances are provisioned before any Spot Instances are
considered.

• Consider when SpotFleetOnDemandBase is less than MinSize. You'll still get exactly MinSize
instances as initial capacity. At least SpotFleetOnDemandBase of them must be On-Demand
Instances.

• Consider when SpotFleetOnDemandBase is greater than MinSize. As your environment scales
out, you're guaranteed to get at least an additional amount of instances equal to the difference
between the two values. In other words, you're guaranteed to get at least an additional
(SpotFleetOnDemandBase - MinSize) instances that are On-Demand before satisfying the
SpotFleetOnDemandBase requirement.

Single-instance environments

In production environments, Spot Instances are particularly useful as part of a scalable, load-
balanced environment. We don't recommend using Spot in a single-instance environment. If
Spot Instances aren't available, you might lose the entire capacity (a single instance) of your
environment. You may still wish to use a Spot Instance in a single instance environment for
development or testing. When you do, be sure to set both SpotFleetOnDemandBase and
SpotFleetOnDemandAboveBasePercentage to zero. Any other settings result in an On-Demand
Instance.

Examples of scaling options settings

The following examples demonstrate different scenarios of setting the various scaling options. All
examples assume a load-balanced environment with Spot Instance requests enabled.

Spot Instance support 354

Amazon Elastic Beanstalk Developer Guide

Example 1: On-Demand and Spot as part of initial capacity

Option settings

Option Namespace Value

MinSize aws:autoscaling:as
g

10

MaxSize aws:autoscaling:as
g

24

SpotFleetOnDemandBase aws:ec2:instances 4

SpotFleetOnDemandAboveBasePercentage aws:ec2:instances 50

In this example, the environment starts with ten instances, of which seven are On-Demand (four
base, and 50% of the six above base) and three are Spot. The environment can scale out up to 24
instances. As it scales out, the portion of On-Demand in the part of the fleet above the four base
On-Demand instances is kept at 50%, up to a maximum of 24 instances overall, of which 14 are
On-Demand (four base, and 50% of the 20 above base) and ten are Spot.

Example 2: All On-Demand initial capacity

Option settings

Option Namespace Value

MinSize aws:autoscaling:as
g

4

MaxSize aws:autoscaling:as
g

24

SpotFleetOnDemandBase aws:ec2:instances 4

SpotFleetOnDemandAboveBasePercentage aws:ec2:instances 50

Spot Instance support 355

Amazon Elastic Beanstalk Developer Guide

In this example, the environment starts with four instances, all of which are On-Demand. The
environment can scale out up to 24 instances. As it scales out, the portion of On-Demand in the
part of the fleet above the four base On-Demand instances is kept at 50%, up to a maximum of 24
instances overall, of which 14 are On-Demand (four base, and 50% of the 20 above base) and ten
are Spot.

Example 3: Additional On-Demand base beyond initial capacity

Option settings

Option Namespace Value

MinSize aws:autoscaling:as
g

3

MaxSize aws:autoscaling:as
g

24

SpotFleetOnDemandBase aws:ec2:instances 4

SpotFleetOnDemandAboveBasePercentage aws:ec2:instances 50

In this example, the environment starts with three instances, all of which are On-Demand. The
environment can scale out up to 24 instances. The first additional instance above the initial three is
On-Demand, to complete the four base On-Demand instances. As it scales out further, the portion
of On-Demand in the part of the fleet above the four base On-Demand instances is kept at 50%,
up to a maximum of 24 instances overall, of which 14 are On-Demand (four base, and 50% of the
20 above base) and ten are Spot.

Capacity configuration for your Elastic Beanstalk environment

This topic describes the different approaches to configure Auto Scaling capacity for your Elastic
Beanstalk environment. You can use the Elastic Beanstalk console, the EB CLI, the Amazon CLI, or
namespace options.

Important

The EnableSpot option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the

Spot Instance support 356

Amazon Elastic Beanstalk Developer Guide

necessary permissions to manage launch templates. These permissions are included in our
managed policy. If you use custom policies instead of our managed policies, environment
creation or updates might fail when you update your environment configuration. For more
information and other considerations, see Migrating your Elastic Beanstalk environment to
launch templates .

Configuration using the console

You can configure the capacity management of an Auto Scaling group by editing Capacity on the
environment's Configuration page in the Elastic Beanstalk console.

To configure Auto Scaling group capacity in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Auto Scaling group section, configure the following settings.

• Environment type – Select Load balanced.

• Min instances – The minimum number of EC2 instances that the group should contain at
any time. The group starts with the minimum count and adds instances when the scale-up
trigger condition is met.

• Max instances – The maximum number of EC2 instances that the group should contain at
any time.

Note

If you use rolling updates, be sure that the maximum instance count is higher than
the Minimum instances in service setting for rolling updates.

• Fleet composition – The default is On-Demand Instances. To enable Spot Instance requests,
select Combined purchase options and instances.

Spot Instance support 357

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Important

The EnableSpot option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the
necessary permissions to manage launch templates. These permissions are included
in our managed policy. If you use custom policies instead of our managed policies,
environment creation or updates might fail when you update your environment
configuration. For more information and other considerations, see Migrating your
Elastic Beanstalk environment to launch templates .

The following options are enabled if you select to enable Spot Instance requests:

• Spot allocation strategy – Determines the method used to manage and provision the
Spot Instances in your environment, based on available capacity, price, and selection of
instance types. Select from Capacity optimized (default), Price capacity optimized, Capacity
optimized prioritized, or Lowest price. For a description of each allocation strategy and
more information, see the section called “Spot allocation strategy”.

• Maximum spot price – For recommendations about maximum price options for Spot
Instances, see Spot Instance pricing history in the Amazon EC2 User Guide.

• On-Demand base – The minimum number of On-Demand Instances that your Auto
Scaling group provisions before considering Spot Instances as your environment scales
out.

• On-Demand above base – The percentage of On-Demand Instances as part of any
additional capacity that your Auto Scaling group provisions beyond the On-Demand base
instances.

Note

The options On-Demand base and On-Demand above base correlate to the Min
and Max Instances options listed earlier. For more information about these options
and examples, see the section called “Spot Instance support”.

• Capacity Rebalancing – This option is only relevant when there is at least one Spot
Instance in your Auto Scaling group. When this feature is enabled, EC2 automatically
attempts to replace Spot Instances in the Auto Scaling group before they're interrupted,

Spot Instance support 358

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-spot-instances-history.html

Amazon Elastic Beanstalk Developer Guide

minimizing Spot Instance interruptions to your applications. For more information, see
Capacity Rebalancing in the Amazon EC2 Auto Scaling User Guide

• Architecture – The processor architecture for your EC2 instances. The processor architecture
determines the EC2 Instance types that become available in the next field.

• Instance types – The types of Amazon EC2 instance launched to run your application. For
details, see the section called “Instance types”.

• AMI ID – The machine image that Elastic Beanstalk uses to launch Amazon EC2 instances in
your environment. For details, see the section called “AMI ID”.

• Availability Zones – Choose the number of Availability Zones to spread your environment's
instances across. By default, the Auto Scaling group launches instances evenly across all
usable zones. To concentrate your instances in fewer zones, choose the number of zones to
use. For production environments, use at least two zones to ensure that your application is
available in case one Availability Zone goes out.

• Placement (optional) – Choose the Availability Zones to use. Use this setting if your
instances need to connect to resources in specific zones, or if you have purchased reserved
instances, which are zone-specific. If you launch your environment in a custom VPC, you
cannot configure this option. In a custom VPC, you choose Availability Zones for the subnets
that you assign to your environment.

• Scaling cooldown – The amount of time, in seconds, to wait for instances to launch or
terminate after scaling, before continuing to evaluate triggers. For more information, see
Scaling Cooldowns.

6. To save the changes choose Apply at the bottom of the page.

Configuration using namespace options

Elastic Beanstalk provides configuration options for Auto Scaling settings in two namespaces:
aws:autoscaling:asg and aws:ec2:instances.

The aws:autoscaling:asg namespace

The aws:autoscaling:asg namespace provides options for overall scale and availability.

The following configuration file example configures the Auto Scaling group to use two to four
instances, specific availability zones, and a cooldown period of 12 minutes (720 seconds). It enables
Capacity Rebalancing for Spot Instances. This EnableCapacityRebalancing option only takes
effect if EnableSpot is set to true in the aws:ec2:instances namespace, as shown in the
configuration file example following this one.

Spot Instance support 359

https://docs.amazonaws.cn/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/concepts-on-demand-reserved-instances.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/concepts-on-demand-reserved-instances.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/Cooldown.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/capacity-rebalance.html

Amazon Elastic Beanstalk Developer Guide

option_settings:
 aws:autoscaling:asg:
 Availability Zones: Any
 Cooldown: '720'
 Custom Availability Zones: 'us-west-2a,us-west-2b'
 MaxSize: '4'
 MinSize: '2'
 EnableCapacityRebalancing: true

The aws:ec2:instances namespace

Note

When you update your environment configuration and remove one or more instance types
from the InstanceTypes option, Elastic Beanstalk terminates any Amazon EC2 instances
running on any of the removed instance types. Your environment's Auto Scaling group then
launches new instances, as necessary to complete the desired capacity, using your current
specified instance types.

The aws:ec2:instances namespace provides options related to your
environment's instances, including Spot Instance management. It complements
aws:autoscaling:launchconfiguration and aws:autoscaling:asg.

The following configuration file example configures the Auto Scaling group to enable Spot
Instance requests for your environment. It designates three possible instance types that can be
used. At least one On-Demand Instance is used for baseline capacity, and a sustained 33% of On-
Demand Instances is used for any additional capacity.

The configuration sets the spot allocation strategy to capacity-optimized-prioritized. This
particular allocation strategy prioritizes the instance launches from the pool based on the order of
the instance types specified in the InstanceTypes option. If SpotAllocationStrategy is not
specified it defaults to capacity-optimized.

option_settings:
 aws:ec2:instances:
 EnableSpot: true
 InstanceTypes: 't2.micro,t3.micro,t3.small'
 SpotAllocationStrategy: capacity-optimized-prioritized
 SpotFleetOnDemandBase: '1'

Spot Instance support 360

Amazon Elastic Beanstalk Developer Guide

 SpotFleetOnDemandAboveBasePercentage: '33'

To choose Spot Instance types, use the Spot Instance Advisor.

Important

The EnableSpot option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the
necessary permissions to manage launch templates. These permissions are included in our
managed policy. If you use custom policies instead of our managed policies, environment
creation or updates might fail when you update your environment configuration. For more
information and other considerations, see Migrating your Elastic Beanstalk environment to
launch templates .

Configuration using the Amazon CLI

This section provides examples of how you can use the Amazon CLI create-environment
command to configure your environment with the Auto Scaling and Capacity options described
in these sections. You'll notice the namespace settings for aws:autoscaling:asg and
aws:ec2:instances, as described in the previous namespace configuration options section are
also configured with this example.

The Amazon Command Line Interface provides commands to create and configure Elastic
Beanstalk environments. With the --option-settings option, you can pass in namespace
options that are supported by Elastic Beanstalk. This means that the namespace configuration
options described previously can be passed into applicable Amazon CLI commands to configure
your Elastic Beanstalk environment.

Note

You can also use the update-environment command with --option-settings to add
or update namespace options. If you need to remove any namespace options from your
environment use the update-environment command with --options-to-remove.

The following example creates a new environment. Refer to the previous topic namespace
configuration options for more context about the options that are passed in.

Spot Instance support 361

https://aws.amazon.com/ec2/spot/instance-advisor/
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-environment.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html

Amazon Elastic Beanstalk Developer Guide

The fist option listed, IamInstanceProfile in the aws:autoscaling:launchconfiguration
namespace, is the Elastic Beanstalk instance profile. It's required when you create a new
environment.

Example — create-environment with Auto Scaling options (namespace options inline)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 v4.3.0 running Python 3.12" \
--option-settings \
Namespace=aws:autoscaling:launchconfiguration,OptionName=IamInstanceProfile,Value=aws-
elasticbeanstalk-ec2-role
Namespace=aws:autoscaling:asg,OptionName=Availability Zones,Value=Any \
Namespace=aws:autoscaling:asg,OptionName=Cooldown,Value=720 \
Namespace=aws:autoscaling:asg,OptionName=Custom Availability Zones,Value=us-west-2a,us-
west-2b \
Namespace=aws:autoscaling:asg,OptionName=MaxSize,Value=4 \
Namespace=aws:autoscaling:asg,OptionName=MinSize,Value=2 \
Namespace=aws:autoscaling:asg,OptionName=EnableCapacityRebalancing,Value=true \
Namespace=aws:ec2:instances,OptionName=EnableSpot,Value=true \
Namespace=aws:ec2:instances,OptionName=InstanceTypes,Value=t2.micro,t3.micro,t3.small \
Namespace=aws:ec2:instances,OptionName=SpotAllocationStrategy,Value=capacity-optimized-
prioritized \
Namespace=aws:ec2:instances,OptionName=SpotFleetOnDemandBase,Value=1 \
Namespace=aws:ec2:instances,OptionName=SpotFleetOnDemandAboveBasePercentage,Value=33

Important

The EnableSpot option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the
necessary permissions to manage launch templates. These permissions are included in our
managed policy. If you use custom policies instead of our managed policies, environment
creation or updates might fail when you update your environment configuration. For more
information and other considerations, see Migrating your Elastic Beanstalk environment to
launch templates .

Spot Instance support 362

Amazon Elastic Beanstalk Developer Guide

As an alternative, use an options.json file to specify the namespace options instead of including
them inline.

Example —create-environment with Auto Scaling options (namespace options in
options.json file)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 v4.3.0 running Python 3.12"
--option-settings file://options.json

Example

example options.json
[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 },
 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "Availability Zones",
 "Value": "Any"
 },
 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "Cooldown",
 "Value": "720"
 },
 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "Custom Availability Zones",
 "Value": "us-west-2a,us-west-2b"
 },
 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "MaxSize",
 "Value": "4"
 },

Spot Instance support 363

Amazon Elastic Beanstalk Developer Guide

 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "MinSize",
 "Value": "2"
 },
 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "EnableCapacityRebalancing",
 "Value": "true"
 },
 {
 "Namespace": "aws:ec2:instances",
 "OptionName": "EnableSpot",
 "Value": "true"
 },
 {
 "Namespace": "aws:ec2:instances",
 "OptionName": "InstanceTypes",
 "Value": "t2.micro,t3.micro,t3.small"
 },
 {
 "Namespace": "aws:ec2:instances",
 "OptionName": "SpotAllocationStrategy",
 "Value": "capacity-optimized-prioritized"
 },
 {
 "Namespace": "aws:ec2:instances",
 "OptionName": "SpotFleetOnDemandBase",
 "Value": "1"
 },
 {
 "Namespace": "aws:ec2:instances",
 "OptionName": "SpotFleetOnDemandAboveBasePercentage",
 "Value": "33"
 }
]

Configuration using the EB CLI

When creating an environment using the eb create command, you can specify a few options that
are related to your environment's Auto Scaling group. These are some of the options that help you
control the capacity of your environment.

Spot Instance support 364

Amazon Elastic Beanstalk Developer Guide

--single

Creates the environment with one Amazon EC2 instance and no load balancer. If you don't use
this option, a load-balancer is added to the environment that's created.

--enable-spot

Enables Spot Instance requests for your environment.

Important

The enable-spot option setting can cause Elastic Beanstalk to migrate an existing
environment with launch configurations to launch templates. Doing so requires the
necessary permissions to manage launch templates. These permissions are included
in our managed policy. If you use custom policies instead of our managed policies,
environment creation or updates might fail when you update your environment
configuration. For more information and other considerations, see Migrating your Elastic
Beanstalk environment to launch templates .

The following options for the eb create command can only be used with --enable-spot.

--instance-types

Lists the Amazon EC2 instance types that you want your environment to use.

--spot-max-price

The maximum price per unit hour, in US dollars, that you're willing to pay for a Spot
Instance. For recommendations about maximum price options for Spot Instances, see Spot
Instance pricing history in the Amazon EC2 User Guide.

--on-demand-base-capacity

The minimum number of On-Demand Instances that your Auto Scaling group provisions
before considering Spot Instances as your environment scales up.

--on-demand-above-base-capacity

The percentage of On-Demand Instances as part of additional capacity that your Auto
Scaling group provisions that's more than the number of instances that's specified by the --
on-demand-base-capacity option.

Spot Instance support 365

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-spot-instances-history.html

Amazon Elastic Beanstalk Developer Guide

The following example creates an environment and configures the Auto Scaling group to enable
Spot Instance requests for the new environment. For this example, three possible instance types
can be used.

$ eb create --enable-spot --instance-types "t2.micro,t3.micro,t3.small"

Important

There is another similarly named option that's called --instance-type (no “s”) that the
EB CLI only recognizes when processing On-Demand Instances. Don't use --instance-
type (no "s") with the --enable-spot option. If you do, the EB CLI ignores it. Instead use
--instance-types (with "s") with the --enable-spot option.

Auto Scaling triggers for your Elastic Beanstalk environment

The Auto Scaling group in your Elastic Beanstalk environment uses two Amazon CloudWatch
alarms to trigger scaling operations. The default triggers scale when the average outbound
network traffic from each instance is higher than 6 MB or lower than 2 MB over a period of five
minutes. To use Amazon EC2 Auto Scaling effectively, configure triggers that are appropriate for
your application, instance type, and service requirements. You can scale based on several statistics
including latency, disk I/O, CPU utilization, and request count.

For more information about CloudWatch metrics and alarms, see Amazon CloudWatch Concepts in
the Amazon CloudWatch User Guide.

Configuring Auto Scaling triggers

You can configure the triggers that adjust the number of instances in your environment's Auto
Scaling group in the Elastic Beanstalk console.

To configure triggers in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

Triggers 366

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

4. In the Capacity configuration category, choose Edit.

5. In the Scaling triggers section, configure the following settings:

• Metric – Metric used for your Auto Scaling trigger.

• Statistic – Statistic calculation the trigger should use, such as Average.

• Unit – Unit for the trigger metric, such as Bytes.

• Period – Specifies how frequently Amazon CloudWatch measures the metrics for your
trigger.

• Breach duration – Amount of time, in minutes, a metric can be outside of the upper and
lower thresholds before triggering a scaling operation.

• Upper threshold – If the metric exceeds this number for the breach duration, a scaling
operation is triggered.

• Scale up increment – The number of Amazon EC2 instances to add when performing a
scaling activity.

• Lower threshold – If the metric falls below this number for the breach duration, a scaling
operation is triggered.

• Scale down increment – The number of Amazon EC2 instances to remove when performing
a scaling activity.

6. To save the changes choose Apply at the bottom of the page.

The aws:autoscaling:trigger namespace

Elastic Beanstalk provides configuration options for Auto Scaling settings in the
aws:autoscaling:trigger namespace. Settings in this namespace are organized by the
resource that they apply to.

option_settings:
 AWSEBAutoScalingScaleDownPolicy.aws:autoscaling:trigger:
 LowerBreachScaleIncrement: '-1'
 AWSEBAutoScalingScaleUpPolicy.aws:autoscaling:trigger:
 UpperBreachScaleIncrement: '1'
 AWSEBCloudwatchAlarmHigh.aws:autoscaling:trigger:
 UpperThreshold: '6000000'
 AWSEBCloudwatchAlarmLow.aws:autoscaling:trigger:
 BreachDuration: '5'
 EvaluationPeriods: '1'
 LowerThreshold: '2000000'

Triggers 367

Amazon Elastic Beanstalk Developer Guide

 MeasureName: NetworkOut
 Period: '5'
 Statistic: Average
 Unit: Bytes

Scheduled Auto Scaling actions for your Elastic Beanstalk environments

To optimize your environment's use of Amazon EC2 instances through predictable periods of peak
traffic, configure your Amazon EC2 Auto Scaling group to change its instance count on a schedule.
You can configure your environment with a recurring action to scale up each day in the morning,
and scale down at night when traffic is low. For example, if you have a marketing event that will
drive traffic to your site for a limited period of time, you can schedule a one-time event to scale up
when it starts, and another to scale down when it ends.

You can define up to 120 active scheduled actions per environment. Elastic Beanstalk also retains
up to 150 expired scheduled actions, which you can reuse by updating their settings.

Configuring scheduled actions

You can create scheduled actions for your environment's Auto Scaling group in the Elastic
Beanstalk console.

To configure scheduled actions in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Time-based scaling section, choose Add scheduled action.

6. Fill in the following scheduled action settings:

• Name – Specify a unique name of up to 255 alphanumeric characters, with no spaces.

• Instances – Choose the minimum and maximum instance count to apply to the Auto Scaling
group.

Scheduled actions 368

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Desired capacity (optional) – Set the initial desired capacity for the Auto Scaling group.
After the scheduled action is applied, triggers adjust the desired capacity based on their
settings.

• Occurrence – Choose Recurring to repeat the scaling action on a schedule.

• Start time – For one-time actions, choose the date and time to run the action.

For recurrent actions, a start time is optional. Specify it to choose the earliest time
the action is performed. After this time, the action recurs according to the Recurrence
expression.

• Recurrence – Use a Cron expression to specify the frequency with which you want the
scheduled action to occur. For example, 30 6 * * 2 runs the action every Tuesday at 6:30
AM UTC.

• End time (optional) – Optional for recurrent actions. If specified, the action recurs according
to the Recurrence expression, and is not performed again after this time.

When a scheduled action ends, Auto Scaling doesn't automatically go back to its previous
settings. Configure a second scheduled action to return Auto Scaling to the original settings
as needed.

7. Choose Add.

8. To save the changes choose Apply at the bottom of the page.

Note

Scheduled actions will not be saved until applied.

The aws:autoscaling:scheduledaction namespace

If you need to configure a large number of scheduled actions, you can use configuration files or the
Elastic Beanstalk API to apply the configuration option changes from a YAML or JSON file. These
methods also let you access the Suspend option to temporarily deactivate a recurrent scheduled
action.

Note

When working with scheduled action configuration options outside of the console,
use ISO 8601 time format to specify start and end times in UTC. For example,

Scheduled actions 369

http://en.wikipedia.org/wiki/Cron#CRON_expression

Amazon Elastic Beanstalk Developer Guide

2015-04-28T04:07:02Z. For more information about ISO 8601 time format, see Date and
Time Formats. The dates must be unique across all scheduled actions.

Elastic Beanstalk provides configuration options for scheduled action settings in the
aws:autoscaling:scheduledaction namespace. Use the resource_name field to specify the
name of the scheduled action.

Example Scheduled-scale-up-specific-time-long.config

This configuration file instructs Elastic Beanstalk to scale out from five instances to 10 instances at
2015-12-12T00:00:00Z.

option_settings:
 - namespace: aws:autoscaling:scheduledaction
 resource_name: ScheduledScaleUpSpecificTime
 option_name: MinSize
 value: '5'
 - namespace: aws:autoscaling:scheduledaction
 resource_name: ScheduledScaleUpSpecificTime
 option_name: MaxSize
 value: '10'
 - namespace: aws:autoscaling:scheduledaction
 resource_name: ScheduledScaleUpSpecificTime
 option_name: DesiredCapacity
 value: '5'
 - namespace: aws:autoscaling:scheduledaction
 resource_name: ScheduledScaleUpSpecificTime
 option_name: StartTime
 value: '2015-12-12T00:00:00Z'

Example Scheduled-scale-up-specific-time.config

To use the shorthand syntax with the EB CLI or configuration files, prepend the resource name to
the namespace.

option_settings:
 ScheduledScaleUpSpecificTime.aws:autoscaling:scheduledaction:
 MinSize: '5'
 MaxSize: '10'
 DesiredCapacity: '5'

Scheduled actions 370

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

Amazon Elastic Beanstalk Developer Guide

 StartTime: '2015-12-12T00:00:00Z'

Example Scheduled-scale-down-specific-time.config

This configuration file instructs Elastic Beanstalk to scale in at 2015-12-12T07:00:00Z.

option_settings:
 ScheduledScaleDownSpecificTime.aws:autoscaling:scheduledaction:
 MinSize: '1'
 MaxSize: '1'
 DesiredCapacity: '1'
 StartTime: '2015-12-12T07:00:00Z'

Example Scheduled-periodic-scale-up.config

This configuration file instructs Elastic Beanstalk to scale out every day at 9AM. The action is
scheduled to begin May 14, 2015 and end January 12, 2016.

option_settings:
 ScheduledPeriodicScaleUp.aws:autoscaling:scheduledaction:
 MinSize: '5'
 MaxSize: '10'
 DesiredCapacity: '5'
 StartTime: '2015-05-14T07:00:00Z'
 EndTime: '2016-01-12T07:00:00Z'
 Recurrence: 0 9 * * *

Example Scheduled-periodic-scale-down.config

This configuration file instructs Elastic Beanstalk to scale in to no running instance every day at
6PM. If you know that your application is mostly idle outside of business hours, you can create
a similar scheduled action. If your application must be down outside of business hours, change
MaxSize to 0.

option_settings:
 ScheduledPeriodicScaleDown.aws:autoscaling:scheduledaction:
 MinSize: '0'
 MaxSize: '1'
 DesiredCapacity: '0'
 StartTime: '2015-05-14T07:00:00Z'
 EndTime: '2016-01-12T07:00:00Z'
 Recurrence: 0 18 * * *

Scheduled actions 371

Amazon Elastic Beanstalk Developer Guide

Example Scheduled-weekend-scale-down.config

This configuration file instructs Elastic Beanstalk to scale in every Friday at 6PM. If you know
that your application doesn’t receive as much traffic over the weekend, you can create a similar
scheduled action.

option_settings:
 ScheduledWeekendScaleDown.aws:autoscaling:scheduledaction:
 MinSize: '1'
 MaxSize: '4'
 DesiredCapacity: '1'
 StartTime: '2015-12-12T07:00:00Z'
 EndTime: '2016-01-12T07:00:00Z'
 Recurrence: 0 18 * * 5

Auto Scaling health check setting for your Elastic Beanstalk
environment

Amazon EC2 Auto Scaling monitors the health of each Amazon Elastic Compute Cloud (Amazon
EC2) instance that it launches. If any instance terminates unexpectedly, Auto Scaling detects the
termination and launches a replacement instance. By default, the Auto Scaling group created for
your environment uses Amazon EC2 status checks. If an instance in your environment fails an
Amazon EC2 status check, Auto Scaling takes it down and replaces it.

Amazon EC2 status checks only cover an instance's health, not the health of your application,
server, or any Docker containers running on the instance. If your application crashes, but the
instance that it runs on is still healthy, it may be kicked out of the load balancer, but Auto Scaling
won't replace it automatically. The default behavior is good for troubleshooting. If Auto Scaling
replaced the instance as soon as the application crashed, you might not realize that anything went
wrong, even if it crashed quickly after starting up.

If you want Auto Scaling to replace instances whose application has stopped responding, you can
use a configuration file to configure the Auto Scaling group to use Elastic Load Balancing health
checks. The following example sets the group to use the load balancer's health checks, in addition
to the Amazon EC2 status check, to determine an instance's health.

Example .ebextensions/autoscaling.config

Resources:

Health check setting 372

https://docs.amazonaws.cn/autoscaling/latest/userguide/healthcheck.html

Amazon Elastic Beanstalk Developer Guide

 AWSEBAutoScalingGroup:
 Type: "AWS::AutoScaling::AutoScalingGroup"
 Properties:
 HealthCheckType: ELB
 HealthCheckGracePeriod: 300

For more information about the HealthCheckType and HealthCheckGracePeriod properties,
see AWS::AutoScaling::AutoScalingGroup in the Amazon CloudFormation User Guide and Health
Checks for Auto Scaling Instances in the Amazon EC2 Auto Scaling User Guide.

By default, the Elastic Load Balancing health check is configured to attempt a TCP connection to
your instance over port 80. This confirms that the web server running on the instance is accepting
connections. However, you might want to customize the load balancer health check to ensure
that your application, and not just the web server, is in a good state. The grace period setting sets
the number of seconds that an instance can fail the health check without being terminated and
replaced. Instances can recover after being kicked out of the load balancer, so give the instance an
amount of time that is appropriate for your application.

Load balancer for your Elastic Beanstalk environment

A load balancer distributes traffic among your environment's instances. When you enable load
balancing, Amazon Elastic Beanstalk creates an Elastic Load Balancing load balancer dedicated
to your environment. Elastic Beanstalk fully manages this load balancer, taking care of security
settings and of terminating the load balancer when you terminate your environment.

Alternatively, you can choose to share a load balancer across several Elastic Beanstalk
environments. With a shared load balancer, you save on operational cost by avoiding a dedicated
load balancer for each environment. You also assume more of the management responsibility for
the shared load balancer that your environments use.

Elastic Load Balancing has these load balancer types:

• Classic Load Balancer – The previous-generation load balancer. Routes HTTP, HTTPS, or TCP
request traffic to different ports on environment instances.

• Application Load Balancer – An application layer load balancer. Routes HTTP or HTTPS request
traffic to different ports on environment instances based on the request path.

• Network Load Balancer – A network layer load balancer. Routes TCP request traffic to different
ports on environment instances. Supports both active and passive health checks.

Load balancer 373

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-as-group.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/healthcheck.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/healthcheck.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/
https://docs.amazonaws.cn/elasticloadbalancing/latest/classic/
https://docs.amazonaws.cn/elasticloadbalancing/latest/application/
https://docs.amazonaws.cn/elasticloadbalancing/latest/network/

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk supports all three load balancer types. The following table shows which types you
can use with the two usage patterns:

Load balancer type Dedicated Shared

Classic Load Balancer ✓ Yes ☓ No

Application Load Balancer ✓ Yes ✓ Yes

Network Load Balancer ✓ Yes ☓ No

Note

The Classic Load Balancer (CLB) option is disabled on the Create Environment console
wizard. If you have an existing environment configured with a Classic Load Balancer you
can create a new one by cloning the existing environment using either the Elastic Beanstalk
console or the EB CLI. You also have the option to use the EB CLI or the Amazon CLI to
create a new environment configured with a Classic Load Balancer. These command line
tools will create a new environment with a CLB even if one doesn’t already exist in your
account.

By default, Elastic Beanstalk creates an Application Load Balancer for your environment when
you enable load balancing with the Elastic Beanstalk console or the EB CLI. It configures the load
balancer to listen for HTTP traffic on port 80 and forward this traffic to instances on the same port.
You can choose the type of load balancer that your environment uses only during environment
creation. Later, you can change settings to manage the behavior of your running environment's
load balancer, but you can't change its type.

Note

Your environment must be in a VPC with subnets in at least two Availability Zones to create
an Application Load Balancer. All new Amazon accounts include default VPCs that meet this
requirement.

Load balancer 374

Amazon Elastic Beanstalk Developer Guide

See the following topics to learn about each load balancer type that Elastic Beanstalk supports,
its functionality, how to configure and manage it in an Elastic Beanstalk environment, and how to
configure a load balancer to upload access logs to Amazon S3.

Topics

• Configuring a Classic Load Balancer

• Configuring an Application Load Balancer

• Configuring a shared Application Load Balancer

• Configuring a Network Load Balancer

• Configuring access logs

Configuring a Classic Load Balancer

When you enable load balancing, your Amazon Elastic Beanstalk environment is equipped with an
Elastic Load Balancing load balancer to distribute traffic among the instances in your environment.
Elastic Load Balancing supports several load balancer types. To learn about them, see the Elastic
Load Balancing User Guide. Elastic Beanstalk can create a load balancer for you, or let you specify a
shared load balancer that you've created.

This topic describes the configuration of a Classic Load Balancer that Elastic Beanstalk creates and
dedicates to your environment. For information about configuring all the load balancer types that
Elastic Beanstalk supports, see Load balancer for your Elastic Beanstalk environment.

Note

You can choose the type of load balancer that your environment uses only during
environment creation. Later, you can change settings to manage the behavior of your
running environment's load balancer, but you can't change its type.

Introduction

A Classic Load Balancer is the Elastic Load Balancing previous-generation load balancer. It supports
routing HTTP, HTTPS, or TCP request traffic to different ports on environment instances.

When your environment uses a Classic Load Balancer, Elastic Beanstalk configures it by default
to listen for HTTP traffic on port 80 and forward it to instances on the same port. Although you

Classic Load Balancer 375

https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/
https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/
https://docs.amazonaws.cn/elasticloadbalancing/latest/classic/
https://docs.amazonaws.cn/elasticloadbalancing/latest/classic/
https://docs.amazonaws.cn/elasticloadbalancing/latest/classic/elb-listener-config.html

Amazon Elastic Beanstalk Developer Guide

cannot delete the port 80 default listener, you can disable it, which achieves the same functionality
by blocking traffic. Note that you can add or delete other listeners. To support secure connections,
you can configure your load balancer with a listener on port 443 and a TLS certificate.

The load balancer uses a health check to determine whether the Amazon EC2 instances running
your application are healthy. The health check makes a request to a specified URL at a set interval.
If the URL returns an error message, or fails to return within a specified timeout period, the health
check fails.

If your application performs better by serving multiple requests from the same client on a single
server, you can configure your load balancer to use sticky sessions. With sticky sessions, the load
balancer adds a cookie to HTTP responses that identifies the Amazon EC2 instance that served the
request. When a subsequent request is received from the same client, the load balancer uses the
cookie to send the request to the same instance.

With cross-zone load balancing, each load balancer node for your Classic Load Balancer distributes
requests evenly across the registered instances in all enabled Availability Zones. If cross-zone load
balancing is disabled, each load balancer node distributes requests evenly across the registered
instances in its Availability Zone only.

When an instance is removed from the load balancer because it has become unhealthy or the
environment is scaling down, connection draining gives the instance time to complete requests
before closing the connection between the instance and the load balancer. You can change the
amount of time given to instances to send a response, or disable connection draining completely.

Note

Connection draining is enabled by default when you create an environment with the Elastic
Beanstalk console or the EB CLI. For other clients, you can enable it with configuration
options.

You can use advanced load balancer settings to configure listeners on arbitrary ports, modify
additional sticky session settings, and configure the load balancer to connect to EC2 instances
securely. These settings are available through configuration options that you can set by using
configuration files in your source code, or directly on an environment by using the Elastic Beanstalk
API. Many of these settings are also available in the Elastic Beanstalk console. In addition, you can
configure a load balancer to upload access logs to Amazon S3.

Classic Load Balancer 376

https://docs.amazonaws.cn/elasticloadbalancing/latest/classic/elb-healthchecks.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/classic/elb-sticky-sessions.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/classic/enable-disable-crosszone-lb.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/classic/config-conn-drain.html

Amazon Elastic Beanstalk Developer Guide

Configuring a Classic Load Balancer using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure a Classic Load Balancer's ports, HTTPS
certificate, and other settings, during environment creation or later when your environment is
running.

Note

The Classic Load Balancer (CLB) option is disabled on the Create Environment console
wizard. If you have an existing environment configured with a Classic Load Balancer you
can create a new one by cloning the existing environment using either the Elastic Beanstalk
console or the EB CLI. You also have the option to use the EB CLI or the Amazon CLI to
create a new environment configured with a Classic Load Balancer. These command line
tools will create a new environment with a CLB even if one doesn’t already exist in your
account.

To configure a running environment's Classic Load Balancer in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Load balancer configuration category, choose Edit.

Note

If the Load balancer configuration category doesn't have an Edit button, your
environment doesn't have a load balancer. To learn how to set one up, see Changing
environment type.

5. Make the Classic Load Balancer configuration changes that your environment requires.

6. To save the changes choose Apply at the bottom of the page.

Classic Load Balancer settings

• Listeners

Classic Load Balancer 377

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Sessions

• Cross-zone load balancing

• Connection draining

• Health check

Listeners

Use this list to specify listeners for your load balancer. Each listener routes incoming client traffic
on a specified port using a specified protocol to your instances. Initially, the list shows the default
listener, which routes incoming HTTP traffic on port 80 to your environment's instance servers that
are listening to HTTP traffic on port 80.

Note

Although you cannot delete the port 80 default listener, you can disable it, which achieves
the same functionality by blocking traffic.

To configure an existing listener

1. Select the check box next to its table entry, choose Actions, and then choose the action you
want.

2. If you chose Edit, use the Classic Load Balancer listener dialog box to edit settings, and then
choose Save.

Classic Load Balancer 378

Amazon Elastic Beanstalk Developer Guide

For example, you can edit the default listener and change the Protocol from HTTP to TCP if you
want the load balancer to forward a request as is. This prevents the load balancer from rewriting
headers (including X-Forwarded-For). The technique doesn't work with sticky sessions.

To add a listener

1. Choose Add listener.

2. In the Classic Load Balancer listener dialog box, configure the settings you want, and then
choose Add.

Adding a secure listener is a common use case. The example in the following image adds a listener
for HTTPS traffic on port 443. This listener routes the incoming traffic to environment instance
servers listening to HTTPS traffic on port 443.

Classic Load Balancer 379

Amazon Elastic Beanstalk Developer Guide

Before you can configure an HTTPS listener, ensure that you have a valid SSL certificate. Do one of
the following:

• If Amazon Certificate Manager (ACM) is available in your Amazon Region, create or import a
certificate using ACM. For more information about requesting an ACM certificate, see Request a
Certificate in the Amazon Certificate Manager User Guide. For more information about importing
third-party certificates into ACM, see Importing Certificates in the Amazon Certificate Manager
User Guide.

• If ACM isn't available in your Amazon Region, upload your existing certificate and key to IAM.
For more information about creating and uploading certificates to IAM, see Working with Server
Certificates in the IAM User Guide.

For more detail on configuring HTTPS and working with certificates in Elastic Beanstalk, see
Configuring HTTPS for your Elastic Beanstalk environment.

For SSL certificate, choose the ARN of your SSL certificate. For example, arn:aws-
cn:iam::123456789012:server-certificate/abc/certs/build, or arn:aws-
cn:acm:us-west-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678.

Classic Load Balancer 380

https://docs.amazonaws.cn/general/latest/gr/acm.html
https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request.html
https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request.html
https://docs.amazonaws.cn/acm/latest/userguide/import-certificate.html
https://docs.amazonaws.cn/general/latest/gr/acm.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingServerCerts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingServerCerts.html

Amazon Elastic Beanstalk Developer Guide

For details about configuring HTTPS and working with certificates in Elastic Beanstalk, see
Configuring HTTPS for your Elastic Beanstalk environment.

Sessions

Select or clear the Session stickiness enabled box to enable or disable sticky sessions. Use Cookie
duration to configure a sticky session's duration, up to 1000000 seconds. On the Load balancer
ports list, select listener ports that the default policy (AWSEB-ELB-StickinessPolicy) applies
to.

Classic Load Balancer 381

Amazon Elastic Beanstalk Developer Guide

Cross-zone load balancing

Select or clear the Load balancing across multiple Availability Zones enabled box to enable or
disable cross-zone load balancing.

Connection draining

Select or clear the Connection draining enabled box to enable or disable connection draining. Set
the Draining timeout, up to 3600 seconds.

Classic Load Balancer 382

Amazon Elastic Beanstalk Developer Guide

Health check

Use the following settings to configure load balancer health checks:

• Health check path – The path to which the load balancer sends health check requests. If you
don't set the path, the load balancer attempts to make a TCP connection on port 80 to verify
health.

• Timeout – The amount of time, in seconds, to wait for a health check response.

• Interval – The amount of time, in seconds, between health checks of an individual instance. The
interval must be greater than the timeout.

• Unhealthy threshold, Healthy threshold – The number of health checks that must fail or pass,
respectively, before Elastic Load Balancing changes an instance's health state.

Classic Load Balancer 383

Amazon Elastic Beanstalk Developer Guide

Note

The Elastic Load Balancing health check doesn't affect the health check behavior of an
environment's Auto Scaling group. Instances that fail an Elastic Load Balancing health
check are not automatically replaced by Amazon EC2 Auto Scaling unless you manually
configure Amazon EC2 Auto Scaling to do so. See Auto Scaling health check setting for
your Elastic Beanstalk environment for details.

For more information about health checks and how they influence your environment's overall
health, see Basic health reporting.

Configuring a Classic Load Balancer using the EB CLI

The EB CLI prompts you to choose a load balancer type when you run eb create.

$ eb create
Enter Environment Name
(default is my-app): test-env
Enter DNS CNAME prefix
(default is my-app): test-env-DLW24ED23SF

Select a load balancer type
1) classic
2) application
3) network
(default is 1):

Press Enter to select classic.

You can also specify a load balancer type by using the --elb-type option.

$ eb create test-env --elb-type classic

Classic Load Balancer configuration namespaces

You can find settings related to Classic Load Balancers in the following namespaces:

• aws:elb:healthcheck – Configure the thresholds, check interval, and timeout for load
balancer health checks.

Classic Load Balancer 384

Amazon Elastic Beanstalk Developer Guide

• aws:elasticbeanstalk:application – Configure the health check URL.

• aws:elb:loadbalancer – Enable cross-zone load balancing. Assign security groups to the load
balancer and override the default security group that Elastic Beanstalk creates. This namespace
also includes deprecated options for configuring the standard and secure listeners that have
been replaced by options in the aws:elb:listener namespace.

• aws:elb:listener – Configure the default listener on port 80, a secure listener on port 443,
or additional listeners for any protocol on any port. If you specify aws:elb:listener as the
namespace, settings apply to the default listener on port 80. If you specify a port (for example,
aws:elb:listener:443), a listener is configured on that port.

• aws:elb:policies – Configure additional settings for your load balancer. Use options in this
namespace to configure listeners on arbitrary ports, modify additional sticky session settings,
and configure the load balancer to connect to Amazon EC2 instances securely.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Example .ebextensions/loadbalancer-terminatehttps.config

The following example configuration file creates an HTTPS listener on port 443, assigns a
certificate that the load balancer uses to terminate the secure connection, and disables the default
listener on port 80. The load balancer forwards the decrypted requests to the EC2 instances in your
environment on HTTP:80.

option_settings:
 aws:elb:listener:443:
 ListenerProtocol: HTTPS
 SSLCertificateId: arn:aws-cn:acm:us-
west-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678
 InstancePort: 80
 InstanceProtocol: HTTP
 aws:elb:listener:
 ListenerEnabled: false

Configuring an Application Load Balancer

When you enable load balancing, your Amazon Elastic Beanstalk environment is equipped with an
Elastic Load Balancing load balancer to distribute traffic among the instances in your environment.

Application Load Balancer 385

Amazon Elastic Beanstalk Developer Guide

Elastic Load Balancing supports several load balancer types. To learn about them, see the Elastic
Load Balancing User Guide. Elastic Beanstalk can create a load balancer for you, or let you specify a
shared load balancer that you've created.

This topic describes the configuration of an Application Load Balancer that Elastic Beanstalk
creates and dedicates to your environment. See also the section called “Shared Application Load
Balancer”. For information about configuring all the load balancer types that Elastic Beanstalk
supports, see the section called “Load balancer”.

Note

You can choose the type of load balancer that your environment uses only during
environment creation. You can change settings to manage the behavior of your running
environment's load balancer, but you can't change its type. You also can't switch from a
dedicated to a shared load balancer or vice versa.

Introduction

An Application Load Balancer inspects traffic at the application network protocol layer to identify
the request's path so that it can direct requests for different paths to different destinations.

When your environment uses an Application Load Balancer, Elastic Beanstalk configures it by
default to perform the same function as a Classic Load Balancer. The default listener accepts
HTTP requests on port 80 and distributes them to the instances in your environment. You can
add a secure listener on port 443 with a certificate to decrypt HTTPS traffic, configure health
check behavior, and push access logs from the load balancer to an Amazon Simple Storage Service
(Amazon S3) bucket.

Note

Unlike a Classic Load Balancer or a Network Load Balancer, an Application Load Balancer
can't have transport layer (layer 4) TCP or SSL/TLS listeners. It supports only HTTP and
HTTPS listeners. Additionally, it can't use backend authentication to authenticate HTTPS
connections between the load balancer and backend instances.

In an Elastic Beanstalk environment, you can use an Application Load Balancer to direct traffic for
certain paths to a different process on your web server instances. With a Classic Load Balancer,

Application Load Balancer 386

https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/
https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/
https://docs.amazonaws.cn/elasticloadbalancing/latest/application/

Amazon Elastic Beanstalk Developer Guide

all traffic to a listener is routed to a single process on the backend instances. With an Application
Load Balancer, you can configure multiple rules on the listener to route requests to certain paths to
different backend process. You configure each process with the port that the process listens on.

For example, you could run a login process separately from your main application. While the main
application on your environment's instances accepts the majority of requests and listens on port
80, your login process listens on port 5000 and accepts requests to the /login path. All incoming
requests from clients come in on port 80. With an Application Load Balancer, you can configure
a single listener for incoming traffic on port 80, with two rules that route traffic to two separate
processes, depending on the path in the request. You add a custom rule that routes traffic to /
login to the login process listening on port 5000. The default rule routes all other traffic to the
main application process listening on port 80.

An Application Load Balancer rule maps a request to a target group. In Elastic Beanstalk, a target
group is represented by a process. You can configure a process with a protocol, port, and health
check settings. The process represents the process running on the instances in your environment.
The default process is a listener on port 80 of the reverse proxy (nginx or Apache) that runs in front
of your application.

Note

Outside of Elastic Beanstalk, a target group maps to a group of instances. A listener can
use rules and target groups to route traffic to different instances based on the path. Within
Elastic Beanstalk, all of your instances in your environment are identical, so the distinction
is made between processes listening on different ports.

A Classic Load Balancer uses a single health check path for the entire environment. With an
Application Load Balancer, each process has a separate health check path that is monitored by the
load balancer and Elastic Beanstalk-enhanced health monitoring.

To use an Application Load Balancer, your environment must be in a default or
custom VPC, and must have a service role with the standard set of permissions.
If you have an older service role, you might need to update the permissions
on it to include elasticloadbalancing:DescribeTargetHealth and
elasticloadbalancing:DescribeLoadBalancers. For more information about Application
Load Balancers, see What is an Application Load Balancer?.

Application Load Balancer 387

https://docs.amazonaws.cn/elasticloadbalancing/latest/application/

Amazon Elastic Beanstalk Developer Guide

Note

The Application Load Balancer health check doesn't use the Elastic Beanstalk health check
path. Instead, it uses the specific path configured for each process separately.

Configuring an Application Load Balancer using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure an Application Load Balancer's listeners,
processes, and rules, during environment creation or later when your environment is running.

To configure an Application Load Balancer in the Elastic Beanstalk console during environment
creation

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments.

3. Choose Create a new environment to start creating your environment.

4. On the wizard's main page, before choosing Create environment, choose Configure more
options.

5. Choose the High availability configuration preset.

Alternatively, in the Capacity configuration category, configure a Load balanced environment
type. For details, see Capacity.

6. In the Load balancer configuration category, choose Edit.

7. Select the Application Load Balancer and Dedicated options, if they aren't already selected.

Application Load Balancer 388

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

8. Make any Application Load Balancer configuration changes that your environment requires.

9. Choose Save, and then make any other configuration changes that your environment requires.

10. Choose Create environment.

To configure a running environment's Application Load Balancer in the Elastic Beanstalk
console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Load balancer configuration category, choose Edit.

Note

If the Load balancer configuration category doesn't have an Edit button, your
environment doesn't have a load balancer. To learn how to set one up, see Changing
environment type.

5. Make the Application Load Balancer configuration changes that your environment requires.

Application Load Balancer 389

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

Application Load Balancer settings

• Listeners

• Processes

• Rules

• Access log capture

Listeners

Use this list to specify listeners for your load balancer. Each listener routes incoming client traffic
on a specified port using a specified protocol to one or more processes on your instances. Initially,
the list shows the default listener, which routes incoming HTTP traffic on port 80 to a process
named default.

To configure an existing listener

1. Select the check box next to its table entry, and then choose Actions, Edit.

2. Use the Application Load Balancer listener dialog box to edit settings, and then choose Save.

To add a listener

1. Choose Add listener.

2. In the Application Load Balancer listener dialog box, configure the settings you want, and
then choose Add.

Application Load Balancer 390

Amazon Elastic Beanstalk Developer Guide

Use the Application Load Balancer listener dialog box settings to choose the port and protocol on
which the listener listens to traffic, and the process to route the traffic to. If you choose the HTTPS
protocol, configure SSL settings.

Before you can configure an HTTPS listener, ensure that you have a valid SSL certificate. Do one of
the following:

• If Amazon Certificate Manager (ACM) is available in your Amazon Region, create or import a
certificate using ACM. For more information about requesting an ACM certificate, see Request a
Certificate in the Amazon Certificate Manager User Guide. For more information about importing
third-party certificates into ACM, see Importing Certificates in the Amazon Certificate Manager
User Guide.

• If ACM isn't available in your Amazon Region, upload your existing certificate and key to IAM.
For more information about creating and uploading certificates to IAM, see Working with Server
Certificates in the IAM User Guide.

For more detail on configuring HTTPS and working with certificates in Elastic Beanstalk, see
Configuring HTTPS for your Elastic Beanstalk environment.

Application Load Balancer 391

https://docs.amazonaws.cn/general/latest/gr/acm.html
https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request.html
https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request.html
https://docs.amazonaws.cn/acm/latest/userguide/import-certificate.html
https://docs.amazonaws.cn/general/latest/gr/acm.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingServerCerts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingServerCerts.html

Amazon Elastic Beanstalk Developer Guide

Processes

Use this list to specify processes for your load balancer. A process is a target for listeners to route
traffic to. Each listener routes incoming client traffic on a specified port using a specified protocol
to one or more processes on your instances. Initially, the list shows the default process, which
listens to incoming HTTP traffic on port 80.

You can edit the settings of an existing process, or add a new process. To start editing a process on
the list or adding a process to it, use the same steps listed for the listener list. The Environment
process dialog box opens.

Application Load Balancer's environment process dialog box settings

• Definition

• Health check

• Sessions

Definition

Use these settings to define the process: its Name, and the Port and Protocol on which it listens to
requests.

Application Load Balancer 392

Amazon Elastic Beanstalk Developer Guide

Health check

Use the following settings to configure process health checks:

• HTTP code – The HTTP status code designating a healthy process.

• Path – The health check request path for the process.

• Timeout – The amount of time, in seconds, to wait for a health check response.

• Interval – The amount of time, in seconds, between health checks of an individual instance. The
interval must be greater than the timeout.

• Unhealthy threshold, Healthy threshold – The number of health checks that must fail or pass,
respectively, before Elastic Load Balancing changes an instance's health state.

• Deregistration delay – The amount of time, in seconds, to wait for active requests to complete
before deregistering an instance.

Application Load Balancer 393

Amazon Elastic Beanstalk Developer Guide

Application Load Balancer 394

Amazon Elastic Beanstalk Developer Guide

Note

The Elastic Load Balancing health check doesn't affect the health check behavior of an
environment's Auto Scaling group. Instances that fail an Elastic Load Balancing health
check are not automatically replaced by Amazon EC2 Auto Scaling unless you manually
configure Amazon EC2 Auto Scaling to do so. See Auto Scaling health check setting for
your Elastic Beanstalk environment for details.

For more information about health checks and how they influence your environment's overall
health, see Basic health reporting.

Sessions

Select or clear the Stickiness policy enabled box to enable or disable sticky sessions. Use Cookie
duration to configure a sticky session's duration, up to 604800 seconds.

Application Load Balancer 395

Amazon Elastic Beanstalk Developer Guide

Rules

Use this list to specify custom listener rules for your load balancer. A rule maps requests that the
listener receives on a specific path pattern to a target process. Each listener can have multiple
rules, routing requests on different paths to different processes on your instances.

Rules have numeric priorities that determine the precedence in which they are applied to incoming
requests. For each new listener you add, Elastic Beanstalk adds a default rule that routes all the
listener's traffic to the default process. The default rule's precedence is the lowest; it's applied if
no other rule for the same listener matches the incoming request. Initially, if you haven't added
custom rules, the list is empty. Default rules of all listeners aren't displayed.

You can edit the settings of an existing rule, or add a new rule. To start editing a rule on the list
or adding a rule to it, use the same steps listed for the listener list. The Listener rule dialog box
opens, with the following settings:

• Name – The rule's name.

• Listener port – The port of the listener that the rule applies to.

• Priority – The rule's priority. A lower priority number has higher precedence. Priorities of a
listener's rules must be unique.

• Match conditions – A list of request URL conditions that the rule applies to. There are two types
of conditions: HostHeader (the URL's domain part), and PathPattern (the URL's path part). You
can add up to five conditions. Each condition value is up to 128 characters long, and can include
wildcard characters.

• Process – The process to which the load balancer routes requests that match the rule.

Application Load Balancer 396

Amazon Elastic Beanstalk Developer Guide

When editing any existing rule, you can't change its Name and Listener port.

Access log capture

Use these settings to configure Elastic Load Balancing to capture logs with detailed information
about requests sent to your Application Load Balancer. Access log capture is disabled by default.
When Store logs is enabled, Elastic Load Balancing stores the logs in the S3 bucket that you
configure. The Prefix setting specifies a top-level folder in the bucket for the logs. Elastic Load
Balancing places the logs in a folder named AWSLogs under your prefix. If you don't specify a
prefix, Elastic Load Balancing places its folder at the root level of the bucket.

Application Load Balancer 397

Amazon Elastic Beanstalk Developer Guide

Note

If the Amazon S3 bucket that you configure for access log capture isn't the bucket that
Elastic Beanstalk created for your account, be sure to add a user policy with the appropriate
permissions to your Amazon Identity and Access Management (IAM) users. The managed
user policies that Elastic Beanstalk provides only cover permissions to Elastic Beanstalk-
managed resources.

For details about access logs, including permissions and other requirements, see Access logs for
your Application Load Balancer.

Example: Application Load Balancer with a secure listener and two processes

In this example, your application requires end-to-end traffic encryption and a separate process for
handling administrative requests.

To configure your environment's Application Load Balancer to meet these requirements, you
remove the default listener, add an HTTPS listener, indicate that the default process listens to port
443 on HTTPS, and add a process and a listener rule for admin traffic on a different path.

Application Load Balancer 398

https://docs.amazonaws.cn/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/application/load-balancer-access-logs.html

Amazon Elastic Beanstalk Developer Guide

To configure the load balancer for this example

1. Add a secure listener. For Port, type 443. For Protocol, select HTTPS. For SSL certificate, select
the ARN of your SSL certificate. For example, arn:aws-cn:iam::123456789012:server-
certificate/abc/certs/build, or arn:aws-cn:acm:us-
west-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678.

For Default process, keep default selected.

You can now see your additional listener on the list.

Application Load Balancer 399

Amazon Elastic Beanstalk Developer Guide

2. Disable the default port 80 HTTP listener. For the default listener, turn off the Enabled option.

3. Configure the default process to HTTPS. Select the default process, and then for Actions,
choose Edit. For Port, type 443. For Protocol, select HTTPS.

4. Add an admin process. For Name, type admin. For Port, type 443. For Protocol, select HTTPS.
Under Health check, for Path type /admin.

Application Load Balancer 400

Amazon Elastic Beanstalk Developer Guide

5. Add a rule for admin traffic. For Name, type admin. For Listener port, type 443. For Match
conditions, add a PathPattern with the value /admin/*. For Process, select admin.

Application Load Balancer 401

Amazon Elastic Beanstalk Developer Guide

Configuring an Application Load Balancer using the EB CLI

The EB CLI prompts you to choose a load balancer type when you run eb create.

$ eb create
Enter Environment Name
(default is my-app): test-env
Enter DNS CNAME prefix
(default is my-app): test-env-DLW24ED23SF

Select a load balancer type

Application Load Balancer 402

Amazon Elastic Beanstalk Developer Guide

1) classic
2) application
3) network
(default is 2):

You can also specify a load balancer type with the --elb-type option.

$ eb create test-env --elb-type application

Application Load Balancer namespaces

You can find settings related to Application Load Balancers in the following namespaces:

• aws:elasticbeanstalk:environment – Choose the load balancer type for the environment.
The value for an Application Load Balancer is application.

You can't set this option in configuration files (.Ebextensions).

• aws:elbv2:loadbalancer – Configure access logs and other settings that apply to the
Application Load Balancer as a whole.

• aws:elbv2:listener – Configure listeners on the Application Load Balancer. These settings
map to the settings in aws:elb:listener for Classic Load Balancers.

• aws:elbv2:listenerrule – Configure rules that route traffic to different processes,
depending on the request path. Rules are unique to Application Load Balancers.

• aws:elasticbeanstalk:environment:process – Configure health checks and specify
the port and protocol for the processes that run on your environment's instances. The
port and protocol settings map to the instance port and instance protocol settings in
aws:elb:listener for a listener on a Classic Load Balancer. Health check settings map to
the settings in the aws:elb:healthcheck and aws:elasticbeanstalk:application
namespaces.

Example .ebextensions/alb-access-logs.config

The following configuration file enables access log uploads for an environment with an Application
Load Balancer.

option_settings:
 aws:elbv2:loadbalancer:

Application Load Balancer 403

Amazon Elastic Beanstalk Developer Guide

 AccessLogsS3Bucket: amzn-s3-demo-bucket
 AccessLogsS3Enabled: 'true'
 AccessLogsS3Prefix: beanstalk-alb

Example .ebextensions/alb-default-process.config

The following configuration file modifies health check and stickiness settings on the default
process.

option_settings:
 aws:elasticbeanstalk:environment:process:default:
 DeregistrationDelay: '20'
 HealthCheckInterval: '15'
 HealthCheckPath: /
 HealthCheckTimeout: '5'
 HealthyThresholdCount: '3'
 UnhealthyThresholdCount: '5'
 Port: '80'
 Protocol: HTTP
 StickinessEnabled: 'true'
 StickinessLBCookieDuration: '43200'

Example .ebextensions/alb-secure-listener.config

The following configuration file adds a secure listener and a matching process on port 443.

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 Protocol: HTTPS
 SSLCertificateArns: arn:aws-cn:acm:us-
west-2:123456789012:certificate/21324896-0fa4-412b-bf6f-f362d6eb6dd7
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'
 Protocol: HTTPS

Example .ebextensions/alb-admin-rule.config

The following configuration file adds a secure listener with a rule that routes traffic with a request
path of /admin to a process named admin that listens on port 4443.

Application Load Balancer 404

Amazon Elastic Beanstalk Developer Guide

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 Protocol: HTTPS
 Rules: admin
 SSLCertificateArns: arn:aws-cn:acm:us-
west-2:123456789012:certificate/21324896-0fa4-412b-bf6f-f362d6eb6dd7
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'
 Protocol: HTTPS
 aws:elasticbeanstalk:environment:process:admin:
 HealthCheckPath: /admin
 Port: '4443'
 Protocol: HTTPS
 aws:elbv2:listenerrule:admin:
 PathPatterns: /admin/*
 Priority: 1
 Process: admin

Configuring a shared Application Load Balancer

When you enable load balancing, your Amazon Elastic Beanstalk environment is equipped with an
Elastic Load Balancing load balancer to distribute traffic among the instances in your environment.
Elastic Load Balancing supports several load balancer types. To learn about them, see the Elastic
Load Balancing User Guide. Elastic Beanstalk can create a load balancer for you, or enable you to
specify a shared load balancer that you've created.

This topic describes the configuration of a shared Application Load Balancer that you create and
associate with your environment. See also the section called “Application Load Balancer”. For
information about configuring all the load balancer types that Elastic Beanstalk supports, see Load
balancer for your Elastic Beanstalk environment.

Note

You can choose the type of load balancer that your environment uses only during
environment creation. You can change settings to manage the behavior of your running
environment's load balancer, but you can't change its type. You also can't switch from a
dedicated to a shared load balancer or vice versa.

Shared Application Load Balancer 405

https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/
https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/
https://docs.amazonaws.cn/elasticloadbalancing/latest/application/

Amazon Elastic Beanstalk Developer Guide

Introduction

A shared load balancer is a load balancer that you create and manage yourself using the
Amazon Elastic Compute Cloud (Amazon EC2) service, and then use in multiple Elastic Beanstalk
environments.

When you create a load-balanced, scaling environment and choose to use an Application Load
Balancer, Elastic Beanstalk creates a load balancer dedicated to your environment by default. To
learn what an Application Load Balancer is and how it works in an Elastic Beanstalk environment,
see the introduction to configuring an Application Load Balancer for Elastic Beanstalk.

In some situations you might want to save the cost of having multiple dedicated load balancers.
This can be helpful when you have multiple environments, for example, if your application is a suite
of microservices instead of a monolithic service. In such cases you can choose to use a shared load
balancer.

To use a shared load balancer, first create it in Amazon EC2 and add one or more listeners. During
the creation of an Elastic Beanstalk environment, you then provide the load balancer and choose a
listener port. Elastic Beanstalk associates the listener with the default process in your environment.
You can add custom listener rules to route traffic from specific host headers and paths to other
environment processes.

Elastic Beanstalk adds a tag to the shared load balancer. The tag name is
elasticbeanstalk:shared-elb-environment-count, and its value is the number of
environments sharing this load balancer.

Using a shared load balancer is different from using a dedicated one in several ways.

Regarding Dedicated Application Load
Balancer

Shared Application Load Balancer

Managemen
t

Elastic Beanstalk creates and
manages the load balancer,
listeners, listener rules, and
processes (target groups).
Elastic Beanstalk also removes
them when you terminate your
environment. Elastic Beanstalk

You create and manage the load balancer and
listeners outside of Elastic Beanstalk. Elastic
Beanstalk creates and manages a default rule
and a default process, and you can add rules
and processes. Elastic Beanstalk removes the
listener rules and processes that were added
during environment creation.

Shared Application Load Balancer 406

Amazon Elastic Beanstalk Developer Guide

Regarding Dedicated Application Load
Balancer

Shared Application Load Balancer

can set load balancer access log
capture, if you choose that option.

Listener
rules

Elastic Beanstalk creates a default
rule for each listener, to route all
traffic to the listener's default
process.

Elastic Beanstalk associates a default rule only
with a port 80 listener, if one exists. If you
choose a different default listener port, you
have to associate the default rule with it (the
Elastic Beanstalk console and EB CLI do this
for you).

To resolve listener rule condition conflicts
across environments sharing the load
balancer, Elastic Beanstalk adds the environme
nt's CNAME to the listener rule as a host
header condition.

Elastic Beanstalk treats rule priority settings as
relative across environments sharing the load
balancer, and maps them to absolute priorities
during creation.

Security
groups

Elastic Beanstalk creates a default
security group and attaches it to
the load balancer.

You can configure one or more security groups
to use for the load balancer. If you don't,
Elastic Beanstalk checks if an existing security
group that Elastic Beanstalk manages is
already attached to the load balancer. If not,
Elastic Beanstalk creates a security group
and attaches it to the load balancer. Elastic
Beanstalk deletes this security group when the
last environment sharing the load balancer
terminates.

Shared Application Load Balancer 407

Amazon Elastic Beanstalk Developer Guide

Regarding Dedicated Application Load
Balancer

Shared Application Load Balancer

Updates You can update your Application
Load Balancer after environment
creation. You can edit listeners,
listener rules, and processes. You
can configure load balancer access
log capture.

You can't use Elastic Beanstalk to configure
access log capture in your Application Load
Balancer, and you can't update listeners and
listener rules after environment creation. You
can only update processes (target groups). To
configure access log capture, and to update
listeners and listener rules, use Amazon EC2.

Configuring a shared Application Load Balancer using the Elastic Beanstalk
console

You can use the Elastic Beanstalk console to configure a shared Application Load Balancer during
environment creation. You can select one of your account's sharable load balancers for use in the
environment, select the default listener port, and configure additional processes and listener rules.

You can't edit your shared Application Load Balancer configuration in the Application Load
Balancer console after your environment is created. To configure listeners, listener rules, processes
(target groups), and access log capture, use Amazon EC2.

To configure an Application Load Balancer in the Elastic Beanstalk console during environment
creation

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments.

3. Choose Create a new environment to start creating your environment.

4. On the wizard's main page, before choosing Create environment, choose Configure more
options.

5. Choose the High availability configuration preset.

Alternatively, in the Capacity configuration category, configure a Load balanced environment
type. For details, see Capacity.

6. In the Load balancer configuration category, choose Edit.

Shared Application Load Balancer 408

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

7. Select the Application Load Balancer option, if it isn't already selected, and then select the
Shared option.

8. Make any shared Application Load Balancer configuration changes that your environment
requires.

9. Choose Save, and then make any other configuration changes that your environment requires.

10. Choose Create environment.

Shared Application Load Balancer settings

• Shared Application Load Balancer

• Processes

• Rules

Shared Application Load Balancer

Use this section to choose a shared Application Load Balancer for your environment and configure
default traffic routing.

Before you can configure a shared Application Load Balancer here, use Amazon EC2 to define at
least one Application Load Balancer for sharing, with at least one listener, in your account. If you

Shared Application Load Balancer 409

Amazon Elastic Beanstalk Developer Guide

haven't done so already, you can choose Manage load balancers. Elastic Beanstalk opens the
Amazon EC2 console in a new browser tab.

When you're done configuring shared load balancers outside of Elastic Beanstalk, configure the
following settings on this console section:

• Load balancer ARN – The shared load balancer to use in this environment. Select from a list of
load balancers or enter a load balancer Amazon Resource Name (ARN).

• Default listener port – A listener port that the shared load balancer listens on. Select from a
list of existing listener ports. Traffic from this listener with the environment's CNAME in the host
header is routed to a default process in this environment.

Processes

Use this list to specify processes for your shared load balancer. A process is a target for listeners to
route traffic to. Initially, the list shows the default process, which receives traffic from the default
listener.

Shared Application Load Balancer 410

Amazon Elastic Beanstalk Developer Guide

To configure an existing process

1. Select the check box next to its table entry, and then choose Actions, Edit.

2. Use the Environment process dialog box to edit settings, and then choose Save.

To add a process

1. Choose Add process.

2. In the Environment process dialog box, configure the settings you want, and then choose Add.

Application Load Balancer's environment process dialog box settings

• Definition

• Health check

• Sessions

Definition

Use these settings to define the process: its Name, and the Port and Protocol on which it listens to
requests.

Shared Application Load Balancer 411

Amazon Elastic Beanstalk Developer Guide

Health check

Use the following settings to configure process health checks:

• HTTP code – The HTTP status code designating a healthy process.

• Path – The health check request path for the process.

• Timeout – The amount of time, in seconds, to wait for a health check response.

• Interval – The amount of time, in seconds, between health checks of an individual instance. The
interval must be greater than the timeout.

• Unhealthy threshold, Healthy threshold – The number of health checks that must fail or pass,
respectively, before Elastic Load Balancing changes an instance's health state.

• Deregistration delay – The amount of time, in seconds, to wait for active requests to complete
before deregistering an instance.

Shared Application Load Balancer 412

Amazon Elastic Beanstalk Developer Guide

Shared Application Load Balancer 413

Amazon Elastic Beanstalk Developer Guide

Note

The Elastic Load Balancing health check doesn't affect the health check behavior of an
environment's Auto Scaling group. Instances that fail an Elastic Load Balancing health
check are not automatically replaced by Amazon EC2 Auto Scaling unless you manually
configure Amazon EC2 Auto Scaling to do so. See Auto Scaling health check setting for
your Elastic Beanstalk environment for details.

For more information about health checks and how they influence your environment's overall
health, see Basic health reporting.

Sessions

Select or clear the Stickiness policy enabled box to enable or disable sticky sessions. Use Cookie
duration to configure a sticky session's duration, up to 604800 seconds.

Rules

Use this list to specify custom listener rules for your shared load balancer. A rule maps requests
that the listener receives on a specific path pattern to a target process. Each listener can have

Shared Application Load Balancer 414

Amazon Elastic Beanstalk Developer Guide

multiple rules, routing requests on different paths to different processes on instances of the
different environments sharing the listener.

Rules have numeric priorities that determine the precedence in which they are applied to incoming
requests. Elastic Beanstalk adds a default rule that routes all the default listener's traffic to the
default process of your new environment. The default rule's precedence is the lowest; it's applied
if no other rule for the same listener matches the incoming request. Initially, if you haven't added
custom rules, the list is empty. The default rule isn't displayed.

You can edit the settings of an existing rule, or add a new rule. To start editing a rule on the list
or adding a rule to it, use the same steps listed for the process list. The Listener rule dialog box
opens, with the following settings:

• Name – The rule's name.

• Listener port – The port of the listener that the rule applies to.

• Priority – The rule's priority. A lower priority number has higher precedence. Priorities of a
listener's rules must be unique. Elastic Beanstalk treats rule priorities as relative across sharing
environments, and maps them to absolute priorities during creation.

Shared Application Load Balancer 415

Amazon Elastic Beanstalk Developer Guide

• Match conditions – A list of request URL conditions that the rule applies to. There are two types
of conditions: HostHeader (the URL's domain part), and PathPattern (the URL's path part). One
condition is reserved for the environment subdomain, and you can add up to four conditions.
Each condition value is up to 128 characters in length, and can include wildcard characters.

• Process – The process to which the load balancer routes requests that match the rule.

Shared Application Load Balancer 416

Amazon Elastic Beanstalk Developer Guide

Example: use a shared Application Load Balancer for a secure micro-service-based
application

In this example, your application consists of several micro services, each implemented as an Elastic
Beanstalk environment. In addition, you require end-to-end traffic encryption. We'll demonstrate
one of the micro-service environments, which has a main process for user requests and a separate
process for handling administrative requests.

To meet these requirements, use Amazon EC2 to create an Application Load Balancer that you'll
share among your micro services. Add a secure listener on port 443 and the HTTPS protocol. Then
add multiple SSL certificates to the listener—one per micro-service domain. For details about
creating the Application Load Balancer and secure listener, see Create an Application Load Balancer
and Create an HTTPS listener for your Application Load Balancer in the User Guide for Application
Load Balancers.

In Elastic Beanstalk, configure each micro-service environment to use the shared Application Load
Balancer and set the default listener port to 443. In the case of the particular environment that
we're demonstrating here, indicate that the default process listens to port 443 on HTTPS, and add
a process and a listener rule for admin traffic on a different path.

To configure the shared load balancer for this example

1. In the Shared Application Load Balancer section, select your load balancer, and then, for
Default listener port, select 443. The listener port should already be selected if it's the only
listener that the load balancer has.

Shared Application Load Balancer 417

https://docs.amazonaws.cn/elasticloadbalancing/latest/application/create-application-load-balancer.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/application/create-https-listener.html

Amazon Elastic Beanstalk Developer Guide

2. Configure the default process to HTTPS. Select the default process, and then for Actions,
choose Edit. For Port, enter 443. For Protocol, select HTTPS.

3. Add an admin process. For Name, enter admin. For Port, enter 443. For Protocol, select HTTPS.
Under Health check, for Path enter /admin.

Shared Application Load Balancer 418

Amazon Elastic Beanstalk Developer Guide

4. Add a rule for admin traffic. For Name, enter admin. For Listener port, enter 443. For Match
conditions, add a PathPattern with the value /admin/*. For Process, select admin.

Shared Application Load Balancer 419

Amazon Elastic Beanstalk Developer Guide

Configuring a shared Application Load Balancer using the EB CLI

The EB CLI prompts you to choose a load balancer type when you run eb create. If you choose
application (the default), and if your account has at least one sharable Application Load
Balancer, the EB CLI also asks you if you want to use a shared Application Load Balancer. If you
answer y, you are also prompted to select the load balancer and default port.

$ eb create
Enter Environment Name
(default is my-app): test-env

Shared Application Load Balancer 420

Amazon Elastic Beanstalk Developer Guide

Enter DNS CNAME prefix
(default is my-app): test-env-DLW24ED23SF

Select a load balancer type
1) classic
2) application
3) network
(default is 2):

Your account has one or more sharable load balancers. Would you like your new
 environment to use a shared load balancer?(y/N) y

Select a shared load balancer
1)MySharedALB1 - arn:aws-cn:elasticloadbalancing:us-west-2:123456789012:loadbalancer/
app/MySharedALB1/6d69caa75b15d46e
2)MySharedALB2 - arn:aws-cn:elasticloadbalancing:us-west-2:123456789012:loadbalancer/
app/MySharedALB2/e574ea4c37ad2ec8
(default is 1): 2

Select a listener port for your shared load balancer
1) 80
2) 100
3) 443
(default is 1): 3

You can also specify a shared load balancer using command options.

$ eb create test-env --elb-type application --shared-lb MySharedALB2 --shared-lb-
port 443

Shared Application Load Balancer namespaces

You can find settings related to shared Application Load Balancers in the following namespaces:

• aws:elasticbeanstalk:environment – Choose the load balancer type for the environment,
and tell Elastic Beanstalk that you'll use a shared load balancer.

You can't set these two options in configuration files (.Ebextensions).

• aws:elbv2:loadbalancer – Configure the shared Application Load Balancer ARN and security
groups.

Shared Application Load Balancer 421

Amazon Elastic Beanstalk Developer Guide

• aws:elbv2:listener – Associate listeners of the shared Application Load Balancer with
environment processes by listing listener rules.

• aws:elbv2:listenerrule – Configure listener rules that route traffic to different processes,
depending on the request path. Rules are unique to Application Load Balancers—both dedicated
and shared.

• aws:elasticbeanstalk:environment:process – Configure health checks and specify the
port and protocol for the processes that run on your environment's instances.

Example .ebextensions/application-load-balancer-shared.config

To get started with a shared Application Load Balancer, use the Elastic Beanstalk console, EB CLI, or
API to set the load balancer type to application and choose to use a shared load balancer. Use a
configuration file to configure the shared load balancer.

option_settings:
 aws:elbv2:loadbalancer:
 SharedLoadBalancer: arn:aws-cn:elasticloadbalancing:us-
west-2:123456789012:loadbalancer/app/MySharedALB2/e574ea4c37ad2ec8

Note

You can configure this option only during environment creation.

Example .ebextensions/alb-shared-secure-listener.config

The following configuration file selects a default secure listener on port 443 for the shared load
balancer, and sets the default process to listen to port 443.

option_settings:
 aws:elbv2:loadbalancer:
 SharedLoadBalancer: arn:aws-cn:elasticloadbalancing:us-
west-2:123456789012:loadbalancer/app/MySharedALB2/e574ea4c37ad2ec8
 aws:elbv2:listener:443:
 rules: default
 aws:elasticbeanstalk:environment:process:default:
 Port: '443'
 Protocol: HTTPS

Shared Application Load Balancer 422

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/alb-shared-admin-rule.config

The following configuration file builds on the previous example and adds a rule that routes traffic
with a request path of /admin to a process named admin that listens on port 4443.

option_settings:
 aws:elbv2:loadbalancer:
 SharedLoadBalancer: arn:aws-cn:elasticloadbalancing:us-
west-2:123456789012:loadbalancer/app/MySharedALB2/e574ea4c37ad2ec8
 aws:elbv2:listener:443:
 rules: default,admin
 aws:elasticbeanstalk:environment:process:default:
 Port: '443'
 Protocol: HTTPS
 aws:elasticbeanstalk:environment:process:admin:
 HealthCheckPath: /admin
 Port: '4443'
 Protocol: HTTPS
 aws:elbv2:listenerrule:admin:
 PathPatterns: /admin/*
 Priority: 1
 Process: admin

Configuring a Network Load Balancer

When you enable load balancing, your Amazon Elastic Beanstalk environment is equipped with an
Elastic Load Balancing load balancer to distribute traffic among the instances in your environment.
Elastic Load Balancing supports several load balancer types. To learn about them, see the Elastic
Load Balancing User Guide. Elastic Beanstalk can create a load balancer for you, or let you specify a
shared load balancer that you've created.

This topic describes the configuration of a Network Load Balancer that Elastic Beanstalk creates
and dedicates to your environment. For information about configuring all the load balancer types
that Elastic Beanstalk supports, see Load balancer for your Elastic Beanstalk environment.

Note

You can choose the type of load balancer that your environment uses only during
environment creation. You can change settings to manage the behavior of your running
environment's load balancer, but you can't change its type.

Network Load Balancer 423

https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/
https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/
https://docs.amazonaws.cn/elasticloadbalancing/latest/network/

Amazon Elastic Beanstalk Developer Guide

Introduction

With a Network Load Balancer, the default listener accepts TCP requests on port 80 and distributes
them to the instances in your environment. You can configure health check behavior, configure the
listener port, or add a listener on another port.

Note

Unlike a Classic Load Balancer or an Application Load Balancer, a Network Load Balancer
can't have application layer (layer 7) HTTP or HTTPS listeners. It only supports transport
layer (layer 4) TCP listeners. HTTP and HTTPS traffic can be routed to your environment
over TCP. To establish secure HTTPS connections between web clients and your
environment, install a self-signed certificate on the environment's instances, and configure
the instances to listen on the appropriate port (typically 443) and terminate HTTPS
connections. The configuration varies per platform. See Configuring HTTPS Termination at
the instance for instructions. Then configure your Network Load Balancer to add a listener
that maps to a process listening on the appropriate port.

A Network Load Balancer supports active health checks. These checks are based on messages
to the root (/) path. In addition, a Network Load Balancer supports passive health checks. It
automatically detects faulty backend instances and routes traffic only to healthy instances.

Configuring a Network Load Balancer using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure a Network Load Balancer's listeners and
processes during environment creation, or later when your environment is running.

To configure a Network Load Balancer in the Elastic Beanstalk console during environment
creation

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments.

3. Choose Create a new environment to start creating your environment.

4. On the wizard's main page, before choosing Create environment, choose Configure more
options.

5. Choose the High availability configuration preset.

Network Load Balancer 424

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Alternatively, in the Capacity configuration category, configure a Load balanced environment
type. For details, see Capacity.

6. In the Load balancer configuration category, choose Edit.

7. Select the Network Load Balancer option, if it isn't already selected.

8. Make any Network Load Balancer configuration changes that your environment requires.

9. Choose Save, and then make any other configuration changes that your environment requires.

10. Choose Create environment.

To configure a running environment's Network Load Balancer in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Load balancer configuration category, choose Edit.

Note

If the Load balancer configuration category doesn't have an Edit button, your
environment doesn't have a load balancer. To learn how to set one up, see Changing
environment type.

5. Make the Network Load Balancer configuration changes that your environment requires.

6. To save the changes choose Apply at the bottom of the page.

Network Load Balancer 425

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Network Load Balancer settings

• Listeners

• Processes

Listeners

Use this list to specify listeners for your load balancer. Each listener routes incoming client traffic
on a specified port to a process on your instances. Initially, the list shows the default listener, which
routes incoming traffic on port 80 to a process named default, which listens to port 80.

To configure an existing listener

1. Select the check box next to its table entry, and then choose Actions, Edit.

2. Use the Network Load Balancer listener dialog box to edit settings, and then choose Save.

To add a listener

1. Choose Add listener.

2. In the Network Load Balancer listener dialog box, configure the required settings, and then
choose Add.

Use the Network Load Balancer listener dialog box to configure the port on which the listener
listens to traffic, and to choose the process to which you want to route traffic (specified by the port
that the process listens to).

Network Load Balancer 426

Amazon Elastic Beanstalk Developer Guide

Processes

Use this list to specify processes for your load balancer. A process is a target for listeners to route
traffic to. Each listener routes incoming client traffic on a specified port to a process on your
instances. Initially, the list shows the default process, which listens to incoming traffic on port 80.

Network Load Balancer 427

Amazon Elastic Beanstalk Developer Guide

You can edit the settings of an existing process, or add a new process. To start editing a process on
the list or adding a process to it, use the same steps listed for the listener list. The Environment
process dialog box opens.

Network Load Balancer's environment process dialog box settings

• Definition

• Health check

Definition

Use these settings to define the process: its Name and the Process port on which it listens to
requests.

Health check

Use the following settings to configure process health checks:

• Interval – The amount of time, in seconds, between health checks of an individual instance.

• Healthy threshold – The number of health checks that must pass before Elastic Load Balancing
changes an instance's health state. (For Network Load Balancer, Unhealthy threshold is a read-
only setting that is always equal to the healthy threshold value.)

• Deregistration delay – The amount of time, in seconds, to wait for active requests to complete
before deregistering an instance.

Network Load Balancer 428

Amazon Elastic Beanstalk Developer Guide

Note

The Elastic Load Balancing health check doesn't affect the health check behavior of an
environment's Auto Scaling group. Instances that fail an Elastic Load Balancing health
check will not automatically be replaced by Amazon EC2 Auto Scaling unless you manually
configure Amazon EC2 Auto Scaling to do so. See Auto Scaling health check setting for
your Elastic Beanstalk environment for details.

For more information about health checks and how they influence your environment's overall
health, see Basic health reporting.

Network Load Balancer 429

Amazon Elastic Beanstalk Developer Guide

Example: Network Load Balancer for an environment with end-to-end encryption

In this example, your application requires end-to-end traffic encryption. To configure your
environment's Network Load Balancer to meet these requirements, you configure the default
process to listen to port 443, add a listener to port 443 that routes traffic to the default process,
and disable the default listener.

To configure the load balancer for this example

1. Configure the default process. Select the default process, and then, for Actions, choose Edit.
For Process port, type 443.

2. Add a port 443 listener. Add a new listener. For Listener port, type 443. For Process port, make
sure that 443 is selected.

Network Load Balancer 430

Amazon Elastic Beanstalk Developer Guide

You can now see your additional listener on the list.

3. Disable the default port 80 listener. For the default listener, turn off the Enabled option.

Network Load Balancer 431

Amazon Elastic Beanstalk Developer Guide

Configuring a Network Load Balancer using the EB CLI

The EB CLI prompts you to choose a load balancer type when you run eb create.

$ eb create
Enter Environment Name
(default is my-app): test-env
Enter DNS CNAME prefix
(default is my-app): test-env-DLW24ED23SF

Select a load balancer type
1) classic
2) application
3) network
(default is 1): 3

You can also specify a load balancer type with the --elb-type option.

$ eb create test-env --elb-type network

Network Load Balancer namespaces

You can find settings related to Network Load Balancers in the following namespaces:

• aws:elasticbeanstalk:environment – Choose the load balancer type for the environment.
The value for a Network Load Balancer is network.

• aws:elbv2:listener – Configure listeners on the Network Load Balancer. These settings map
to the settings in aws:elb:listener for Classic Load Balancers.

• aws:elasticbeanstalk:environment:process – Configure health checks and specify
the port and protocol for the processes that run on your environment's instances. The
port and protocol settings map to the instance port and instance protocol settings in
aws:elb:listener for a listener on a Classic Load Balancer. Health check settings map to
the settings in the aws:elb:healthcheck and aws:elasticbeanstalk:application
namespaces.

Example .ebextensions/network-load-balancer.config

To get started with a Network Load Balancer, use a configuration file to set the load balancer type
to network.

Network Load Balancer 432

Amazon Elastic Beanstalk Developer Guide

option_settings:
 aws:elasticbeanstalk:environment:
 LoadBalancerType: network

Note

You can set the load balancer type only during environment creation.

Example .ebextensions/nlb-default-process.config

The following configuration file modifies health check settings on the default process.

option_settings:
 aws:elasticbeanstalk:environment:process:default:
 DeregistrationDelay: '20'
 HealthCheckInterval: '10'
 HealthyThresholdCount: '5'
 UnhealthyThresholdCount: '5'
 Port: '80'
 Protocol: TCP

Example .ebextensions/nlb-secure-listener.config

The following configuration file adds a listener for secure traffic on port 443 and a matching target
process that listens to port 443.

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'

The DefaultProcess option is named this way because of Application Load Balancers, which
can have non-default listeners on the same port for traffic to specific paths (see Application Load
Balancer for details). For a Network Load Balancer the option specifies the only target process for
this listener.

In this example, we named the process https because it listens to secure (HTTPS) traffic. The
listener sends traffic to the process on the designated port using the TCP protocol, because a

Network Load Balancer 433

Amazon Elastic Beanstalk Developer Guide

Network Load Balancer works only with TCP. This is okay, because network traffic for HTTP and
HTTPS is implemented on top of TCP.

Configuring access logs

You can use configuration files to configure your environment's load balancer to upload access logs
to an Amazon S3 bucket. See the following example configuration files on GitHub for instructions:

• loadbalancer-accesslogs-existingbucket.config – Configure the load balancer to
upload access logs to an existing Amazon S3 bucket.

• loadbalancer-accesslogs-newbucket.config – Configure the load balancer to upload
access logs to a new bucket.

Adding a database to your Elastic Beanstalk environment

Elastic Beanstalk provides coupled database integration with Amazon Relational Database Service
(Amazon RDS). You can use Elastic Beanstalk to add a MySQL, PostgreSQL, Oracle, or SQL Server
database to an existing environment or a new one when you create it. When you add a database
instance that's coupled to an environment, Elastic Beanstalk provides the connection information
to your application. It does this by setting the environment properties for the database hostname,
port, user name, password, and database name.

Advantages of using a coupled database

If you haven't used a database instance with your application before, we recommend that you first
use the process described in this topic to add a database to a test environment using the Elastic
Beanstalk service. By doing this, you can verify that your application can read the environment
properties, construct a connection string, and connect to a database instance, without the
additional configuration work required for a database external to Elastic Beanstalk.

Considerations when going to production

After you verify that your application works correctly with the database, you may consider moving
towards a production environment. At this point you have the option to decouple the database
from your Elastic Beanstalk environment to move towards a configuration that offers greater
flexibility. The decoupled database can remain operational as an external Amazon RDS database
instance. The health of the environment isn't affected by decoupling the database. If you need
to terminate the environment, you can do so and also choose the option to keep the database
available and operational outside of Elastic Beanstalk.

Configuring access logs 434

https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/loadbalancer-accesslogs-existingbucket.config
https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/loadbalancer-accesslogs-newbucket.config
http://www.amazonaws.cn/rds/
http://www.amazonaws.cn/rds/

Amazon Elastic Beanstalk Developer Guide

Advantages of moving to a decoupled database

Using an external database has several advantages. You can connect to the external database
from multiple environments, use database types that aren't supported with integrated databases,
and perform blue/green deployments. As an alternative to using a decoupled database that
Elastic Beanstalk created, you can also create a database instance outside of your Elastic Beanstalk
environment. Both options result in a database instance that's external to your Elastic Beanstalk
environment and will require additional security group and connection string configuration. For
more information, see Using Elastic Beanstalk with Amazon RDS.

Sections

• Database lifecycle

• Adding an Amazon RDS DB instance to your environment using the console

• Connecting to the database

• Configuring an integrated RDS DB instance using the console

• Configuring an integrated RDS DB instance using configuration files

• Decoupling an RDS DB instance using the console

• Decoupling an RDS DB instance using configuration files

Database lifecycle

You can choose what you want to happen to the database after you decouple it from your Elastic
Beanstalk environment. The options that you can choose from are collectively referred to as
deletion policies. The following deletion policies apply to a database after you decouple it from an
Elastic Beanstalk environment or terminate the Elastic Beanstalk environment.

• Snapshot — Before Elastic Beanstalk terminates the database, it saves a snapshot of it. You
can restore a database from a snapshot when you add a DB instance to an Elastic Beanstalk
environment or when you create a standalone database. For more information about creating a
new standalone DB instance from a snapshot, see Restoring from a DB snapshot in the Amazon
RDS User Guide. You might incur charges for storing database snapshots. For more information,
see the Backup Storage section of Amazon RDS Pricing.

• Delete — Elastic Beanstalk terminates the database. After it's terminated, the database instance
is no longer available for any operation.

• Retain — The database instance isn't terminated. It remains available and operational, though
decoupled from Elastic Beanstalk. You can then configure one or multiple environments to

Database lifecycle 435

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_RestoreFromSnapshot.html
http://www.amazonaws.cn/rds/pricing/

Amazon Elastic Beanstalk Developer Guide

connect to the database as an external Amazon RDS database instance. For more information,
see Using Elastic Beanstalk with Amazon RDS.

Adding an Amazon RDS DB instance to your environment using the
console

You can add a DB instance to your environment by using the Elastic Beanstalk console.

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

You can configure the following options:

• Snapshot – Choose an existing database snapshot. Elastic Beanstalk restores the snapshot
and adds it to your environment. The default value is None. When the value is None, you can
configure a new database using the other settings on this page.

• Engine – Choose a database engine.

• Engine version – Choose a specific version of the database engine.

• Instance class – Choose the DB instance class. For information about DB instance classes, see
http://www.amazonaws.cn/rds/.

• Storage – Choose the amount of storage to provision for your database. You can increase
allocated storage later, but you can't decrease it. For information about storage allocation, see
Features.

• Username – Enter a user name of your choice using a combination of only numbers and letters.

• Password – Enter a password of your choice containing 8–16 printable ASCII characters
(excluding /, \, and @).

Adding an Amazon RDS DB instance to your environment using the console 436

https://console.amazonaws.cn/elasticbeanstalk
http://www.amazonaws.cn/rds/
https://www.amazonaws.cn/rds/#features

Amazon Elastic Beanstalk Developer Guide

• Availability – Choose High (Multi-AZ) to run a warm backup in a second Availability Zone for
high availability.

• Database deletion policy – The deletion policy determines what happens to the database after
it's decoupled from your environment. It can be set to the following values: Create Snapshot,
Retain, or Delete. These values are described in Database lifecycle in this same topic.

Note

Elastic Beanstalk creates a master user for the database using the user name and password
you provide. To learn more about the master user and its privileges, see Master User
Account Privileges.

It takes about 10 minutes to add a DB instance. When the update is complete the new database is
coupled to your environment. The hostname and other connection information for the DB instance
are available to your application through the following environment properties.

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

Adding an Amazon RDS DB instance to your environment using the console 437

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/UsingWithRDS.MasterAccounts.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/UsingWithRDS.MasterAccounts.html

Amazon Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

Connecting to the database

Use the connectivity information to connect to your database from inside your application through
environment variables. For more information about using Amazon RDS with your applications, see
the following topics.

• Java SE – Connecting to a database (Java SE platforms)

• Java with Tomcat – Connecting to a database (Tomcat platforms)

• Node.js – Connecting to a database

• .NET – Connecting to a database

• PHP – Connecting to a database with a PDO or MySQLi

• Python – Connecting to a database

• Ruby – Connecting to a database

Configuring an integrated RDS DB instance using the console

You can view and modify configuration settings for your database instance in the Database section
on the environment's Configuration page in the Elastic Beanstalk console.

To configure your environment's DB instance in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

Connecting to the database 438

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

You can modify the Instance class, Storage, Password, Availability, and Database deletion policy
settings after database creation. If you change the instance class, Elastic Beanstalk re-provisions
the DB instance.

If you no longer need Elastic Beanstalk to associate the database to the environment, you can
choose to decouple it by selecting Decouple database. It’s important to understand the options
and considerations involved with this operation. For more information, see the section called
“Decoupling an RDS DB instance using the console”.

Warning

Don't modify settings on the coupled database instance outside of the functionality that's
provided by Elastic Beanstalk (for example, in the Amazon RDS console). If you do, your
Amazon RDS DB configuration might be out of sync with your environment's definition.
When you update or restart your environment, the settings specified in the environment
override any settings you made outside of Elastic Beanstalk.
If you need to modify settings that Elastic Beanstalk doesn't directly support, use Elastic
Beanstalk configuration files.

Configuring an integrated RDS DB instance using configuration files

You can configure your environment's database instance using configuration files. Use the options
in the aws:rds:dbinstance namespace. The following example modifies the allocated database
storage size to 100 GB.

Example .ebextensions/db-instance-options.config

option_settings:
 aws:rds:dbinstance:
 DBAllocatedStorage: 100

If you want to configure DB instance properties that Elastic Beanstalk doesn't support, you can still
use a configuration file, and specify your settings using the resources key. The following example
sets values to the StorageType and Iops Amazon RDS properties.

Example .ebextensions/db-instance-properties.config

Resources:

Configuring an integrated RDS DB instance using configuration files 439

Amazon Elastic Beanstalk Developer Guide

 AWSEBRDSDatabase:
 Type: AWS::RDS::DBInstance
 Properties:
 StorageType:io1
 Iops: 1000

Decoupling an RDS DB instance using the console

You can decouple your database from an Elastic Beanstalk environment without affecting the
health of the environment. Consider the following requirements before you decouple the database:

• What should happen to the database after it’s decoupled?

You can choose to create a snapshot of the database and then terminate it, retain the database
operational as a standalone database external to Elastic Beanstalk, or permanently delete the
database. The Database deletion policy setting determines this result. For a detailed description
of the deletion policies, see Database lifecycle in this same topic.

• Do you need make any changes to the database configuration settings before decoupling it?

If you need to make any configuration changes to the database, you should apply them before
decoupling the database. This includes changes to the Database deletion policy. Any pending
changes that are submitted simultaneously with the Decouple database setting will be ignored,
while only the decouple setting is applied.

To decouple a DB instance from an environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Review all of the configurations values in the Database settings section, especially the
Database deletion policy, which determines what happens to the database after it's
decoupled.

Decoupling an RDS DB instance using the console 440

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

If all of the other configuration settings are correct, skip to Step 6 to decouple the database.

Warning

It’s important to apply the Database deletion policy setting separately from Decouple
database. If you select Apply with the intent to save both Decouple database and
a newly selected Database deletion policy, the new deletion policy that you chose
will be ignored. Elastic Beanstalk will decouple the database following the prior-set
deletion policy. If the prior-set deletion policy is Delete or Create Snapshot, you
risk losing the database instead of following the intended pending policy.

If any of the configuration settings require updates do the following:

Decoupling an RDS DB instance using the console 441

Amazon Elastic Beanstalk Developer Guide

1. Make the required modifications in the Database settings panel.

2. Choose Apply. It will take a few minutes to save the configuration changes for your
database.

3. Go back to Step 3 and choose Configuration from the navigation pane.

6. Go to the Database connection section of the pane.

7. Choose Decouple database.

8. Choose Apply to initiate the database decoupling operation.

The deletion policy setting determines the outcome for the database and the length of time that's
required to decouple the database.

• If the deletion policy is set to Delete, the database is deleted. The operation can take
approximately 10-20 minutes, depending on the size of database.

• If the deletion policy is set to Snapshot, a snapshot of the database is created. Then, the
database is deleted. The length of time required for this process varies according to the size of
the database.

• If the deletion policy is set to Retain, the database remains operational external to the Elastic
Beanstalk environment. It usually takes less than five minutes to decouple a database.

If you decided to retain the database external to your Elastic Beanstalk environment, you'll need
to take additional steps to configure it. For more information, see Using Elastic Beanstalk with
Amazon RDS. If you plan to use the database that you decouple for a production environment,
verify the storage type that the database uses is suitable for your workload. For more information,
see DB Instance Storage and Modifying a DB instance in the Amazon RDS User Guide.

Decoupling an RDS DB instance using the console 442

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html

Amazon Elastic Beanstalk Developer Guide

Decoupling an RDS DB instance using configuration files

You can decouple your DB instance from an Elastic Beanstalk environment without affecting the
health of the environment. The database instance follows the database deletion policy that was
applied when the database was decoupled.

Both of the options required to decouple the database are in the the section called
“aws:rds:dbinstance” namespace. They are as follows:

• The DBDeletionPolicy option sets the deletion policy. It can be set to the following values:
Snapshot, Delete, or Retain. These values are described in Database lifecycle in this same
topic.

• The HasCoupledDatabase option determines if your environment has a coupled database.

• If toggled to true, Elastic Beanstalk creates a new DB instance coupled to your environment.

• If toggled to false, Elastic Beanstalk starts decoupling the DB instance from your
environment.

If you want to change your database configuration before you decouple it, apply any configuration
changes first, in a separate operation. This includes changing the DBDeletionPolicy
configuration. After your changes are applied, run a separate command to set the decoupling
option. If you submit other configuration settings and the decouple setting at the same time, the
other configuration option settings are ignored while the decouple setting is applied.

Warning

It’s important that you run the commands to apply the DBDeletionPolicy and
HasCoupledDatabase settings as two separate operations. If the active deletion policy
is already set to Delete or Snapshot, you risk losing the database. The database follows
the deletion policy that's currently active, rather than the pending deletion policy that you
intended.

To decouple a DB instance from an environment

Follow these steps to decouple the database from your Elastic Beanstalk environment. You can
use the EB CLI or the Amazon CLI to complete the steps. For more information, see Advanced
environment customization with configuration files.

Decoupling an RDS DB instance using configuration files 443

Amazon Elastic Beanstalk Developer Guide

1. If you want to change the deletion policy, set up a configuration file in the following format. In
this example, the deletion policy is set to retain.

Example

option_settings:
 aws:rds:dbinstance:
 DBDeletionPolicy: Retain

2. Run the command using your preferred tool to complete the configuration update.

3. Set up a configuration file to set HasCoupledDatabase to false.

Example

option_settings:
 aws:rds:dbinstance:
 HasCoupledDatabase: false

4. Run the command using your preferred tool to complete the configuration update.

The deletion policy setting determines the outcome for the database and the length of time that's
required to decouple the database.

• If the deletion policy is set to Delete, the database is deleted. The operation can take
approximately 10-20 minutes, depending on the size of database.

• If the deletion policy is set to Snapshot, a snapshot of the database is created. Then, the
database is deleted. The length of time required for this process varies according to the size of
the database.

• If the deletion policy is set to Retain, the database remains operational external to the Elastic
Beanstalk environment. It usually takes less than five minutes to decouple a database.

If you decided to retain the database external to your Elastic Beanstalk environment, you'll need
to take additional steps to configure it. For more information, see Using Elastic Beanstalk with
Amazon RDS. If you plan to use the database that you decouple for a production environment,
verify the storage type that the database uses is suitable for your workload. For more information,
see DB Instance Storage and Modifying a DB instance in the Amazon RDS User Guide.

Decoupling an RDS DB instance using configuration files 444

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html

Amazon Elastic Beanstalk Developer Guide

Your Amazon Elastic Beanstalk environment security

Elastic Beanstalk provides several options that control the service access (security) of your
environment and of the Amazon EC2 instances in it. This topic discusses the configuration of these
options.

Sections

• Configuring your environment security

• Environment security configuration namespaces

Configuring your environment security

You can modify your Elastic Beanstalk environment security configuration in the Elastic Beanstalk
console.

To configure environment service access (security) in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Service access configuration category, choose Edit.

The following settings are available.

Settings

• Service role

• EC2 key pair

• IAM instance profile

Security 445

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Service role

Select a service role to associate with your Elastic Beanstalk environment. Elastic Beanstalk
assumes the service role when it accesses other Amazon services on your behalf. For details, see
Managing Elastic Beanstalk service roles.

EC2 key pair

You can securely log in to the Amazon Elastic Compute Cloud (Amazon EC2) instances provisioned
for your Elastic Beanstalk application with an Amazon EC2 key pair. For instructions on creating a
key pair, see Creating a Key Pair Using Amazon EC2 in the Amazon EC2 User Guide.

Note

When you create a key pair, Amazon EC2 stores a copy of your public key. If you no longer
need to use it to connect to any environment instances, you can delete it from Amazon
EC2. For details, see Deleting Your Key Pair in the Amazon EC2 User Guide.

Configuring your environment security 446

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-key-pairs.html#delete-key-pair

Amazon Elastic Beanstalk Developer Guide

Choose an EC2 key pair from the drop-down menu to assign it to your environment's instances.
When you assign a key pair, the public key is stored on the instance to authenticate the private key,
which you store locally. The private key is never stored on Amazon.

For more information about connecting to Amazon EC2 instances, see Connect to Your Instance
and Connecting to Linux/UNIX Instances from Windows using PuTTY in the Amazon EC2 User
Guide.

IAM instance profile

An EC2 instance profile is an IAM role that is applied to instances launched in your Elastic Beanstalk
environment. Amazon EC2 instances assume the instance profile role to sign requests to Amazon
and access APIs, for example, to upload logs to Amazon S3.

The first time you create an environment in the Elastic Beanstalk console, Elastic Beanstalk
prompts you to create an instance profile with a default set of permissions. You can add
permissions to this profile to provide your instances access to other Amazon services. For details,
see Managing Elastic Beanstalk instance profiles.

Note

Previously Elastic Beanstalk created a default EC2 instance profile named aws-
elasticbeanstalk-ec2-role the first time an Amazon account created an
environment. This instance profile included default managed policies. If your account
already has this instance profile, it will remain available for you to assign to your
environments.
However, recent Amazon security guidelines don’t allow an Amazon service to
automatically create roles with trust policies to other Amazon services, EC2 in this case.
Because of these security guidelines, Elastic Beanstalk no longer creates a default aws-
elasticbeanstalk-ec2-role instance profile.

Note

There is another aspect of EC2 instance security that designates firewall rules for EC2
instances. This is controlled by EC2 security groups. For more information, see The Amazon
EC2 instances for your Elastic Beanstalk environment.

Configuring your environment security 447

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/putty.html

Amazon Elastic Beanstalk Developer Guide

Environment security configuration namespaces

Elastic Beanstalk provides configuration options in the following namespaces to enable you to
customize the security of your environment:

• aws:elasticbeanstalk:environment – Configure the environment's service role using the
ServiceRole option.

• aws:autoscaling:launchconfiguration – Configure permissions for the
environment's Amazon EC2 instances using the EC2KeyName, IamInstanceProfile,
DisableDefaultEC2SecurityGroup, and SecurityGroups options.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Tagging resources in your Elastic Beanstalk environments

You can apply tags to your Amazon Elastic Beanstalk environments. Tags are key-value pairs
associated with Amazon resources. For information about Elastic Beanstalk resource tagging, use
cases, tag key and value constraints, and supported resource types, see Tagging Elastic Beanstalk
application resources.

Elastic Beanstalk applies environment tags to the environment resource itself, as well as to other
Amazon resources that Elastic Beanstalk creates for the environment. You can use tags to manage
permissions at the specific resource level within an environment. For more information, see
Tagging Your Amazon EC2 Resources in the Amazon EC2 User Guide.

By default, Elastic Beanstalk applies a few tags to your environment:

• elasticbeanstalk:environment-name – The name of the environment.

• elasticbeanstalk:environment-id – The environment ID.

• Name – Also the name of the environment. Name is used in the Amazon EC2 dashboard to
identify and sort resources.

You can't edit these default tags.

Environment security configuration namespaces 448

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/Using_Tags.html

Amazon Elastic Beanstalk Developer Guide

You can specify tags when you create the Elastic Beanstalk environment. In an existing
environment, you can add or remove tags, and update the values of existing tags. An environment
can have up to 50 tags including the default tags.

Adding tags during environment creation

When you use the Elastic Beanstalk console to create an environment, you can specify tag keys and
values on the Modify tags configuration page of the Create New Environment wizard.

If you use the EB CLI to create an environment, use the --tags option with eb create to add tags.

~/workspace/my-app$ eb create --tags mytag1=value1,mytag2=value2

With the Amazon CLI or other API-based clients, use the --tags parameter on the create-
environment command.

$ aws elasticbeanstalk create-environment \
 --tags Key=mytag1,Value=value1 Key=mytag2,Value=value2 \
 --application-name my-app --environment-name my-env --cname-prefix my-app --
version-label v1 --template-name my-saved-config

Saved configurations include user-defined tags. When you apply a saved configuration that
contains tags during environment creation, those tags are applied to the new environment, as long
as you don't specify any new tags. If you add tags to an environment using one of the preceding
methods, any tags defined in the saved configuration are discarded.

Adding tags during environment creation 449

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-environment.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-environment.html

Amazon Elastic Beanstalk Developer Guide

Managing tags of an existing environment

You can add, update, and delete tags in an existing Elastic Beanstalk environment. Elastic Beanstalk
applies the changes to your environment's resources.

However, you can't edit the default tags that Elastic Beanstalk applies to your environment.

To manage an environment's tags in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Tags.

The tag management page shows the list of tags that currently exist in the environment.

4. Add, update, or delete tags:

• To add a tag, enter it into the empty boxes at the bottom of the list. To add another tag,
choose Add tag and Elastic Beanstalk adds another pair of empty boxes.

Managing tags of an existing environment 450

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• To update a tag's key or value, edit the respective box in the tag's row.

• To delete a tag, choose Remove next to the tag's value box.

5. To save the changes choose Apply at the bottom of the page.

If you use the EB CLI to update your environment, use eb tags to add, update, delete, or list tags.

For example, the following command lists the tags in your default environment.

~/workspace/my-app$ eb tags --list

The following command updates the tag mytag1 and deletes the tag mytag2.

~/workspace/my-app$ eb tags --update mytag1=newvalue --delete mytag2

For a complete list of options and more examples, see eb tags.

With the Amazon CLI or other API-based clients, use the list-tags-for-resource command to list the
tags of an environment.

$ aws elasticbeanstalk list-tags-for-resource --resource-arn "arn:aws-
cn:elasticbeanstalk:us-west-2:my-account-id:environment/my-app/my-env"

Use the update-tags-for-resource command to add, update, or delete tags in an environment.

$ aws elasticbeanstalk update-tags-for-resource \
 --tags-to-add Key=mytag1,Value=newvalue --tags-to-remove mytag2 \
 --resource-arn "arn:aws-cn:elasticbeanstalk:us-west-2:my-account-
id:environment/my-app/my-env"

Specify both tags to add and tags to update in the --tags-to-add parameter of update-tags-
for-resource. A nonexisting tag is added, and an existing tag's value is updated.

Note

To use these two Amazon CLI commands with an Elastic Beanstalk environment, you need
the environment's ARN. You can retrieve the ARN by using the following command.

$ aws elasticbeanstalk describe-environments

Managing tags of an existing environment 451

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/list-tags-for-resource.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-tags-for-resource.html

Amazon Elastic Beanstalk Developer Guide

Environment variables and other software settings

The Configure updates, monitoring, and logging configuration page lets you configure the
software on the Amazon Elastic Compute Cloud (Amazon EC2) instances that run your application.
You can configure environment variables, Amazon X-Ray debugging, instance log storing and
streaming, and platform-specific settings.

Topics

• Configure platform-specific settings

• Configuring environment properties (environment variables)

• Software setting namespaces

• Accessing environment properties

• Configuring Amazon X-Ray debugging

• Viewing your Elastic Beanstalk environment logs

Configure platform-specific settings

In addition to the standard set of options available for all environments, most Elastic Beanstalk
platforms let you specify language-specific or framework-specific settings. These appear in the
Platform software section of the Configure updates, monitoring, and logging page, and can take
the following forms.

• Preset environment properties – The Ruby platform uses environment properties for framework
settings, such as RACK_ENV and BUNDLE_WITHOUT.

• Placeholder environment properties – The Tomcat platform defines an environment property
named JDBC_CONNECTION_STRING that is not set to any value. This type of setting was more
common on older platform versions.

• Configuration options – Most platforms define configuration options in platform-
specific or shared namespaces, such as aws:elasticbeanstalk:xray or
aws:elasticbeanstalk:container:python.

To configure platform-specific settings in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

Environment variables and software settings 452

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Under Platform software, make necessary option setting changes.

6. To save the changes choose Apply at the bottom of the page.

For information about platform-specific options, and about getting environment property values in
your code, see the platform topic for your language or framework:

• Docker – the section called “Environment configuration”

• Go – Using the Elastic Beanstalk Go platform

• Java SE – Using the Elastic Beanstalk Java SE platform

• Tomcat – Using the Elastic Beanstalk Tomcat platform

• .NET Core on Linux – Using the Elastic Beanstalk .NET core on Linux platform

• .NET – Using the Elastic Beanstalk .NET Windows platform

• Node.js – Using the Elastic Beanstalk Node.js platform

• PHP – Using the Elastic Beanstalk PHP platform

• Python – Using the Elastic Beanstalk Python platform

• Ruby – Using the Elastic Beanstalk Ruby platform

Configuring environment properties (environment variables)

You can use environment properties, (also known as environment variables), to pass endpoints,
debug settings, and other information to your application. Environment variables help you run
your application in multiple environments for different purposes, such as development, testing,
staging, and production.

In addition, when you add a database to your environment, Elastic Beanstalk sets environment
variables, such as RDS_HOSTNAME, that you can read in your application code to construct a
connection object or string.

Configuring environment properties (environment variables) 453

Amazon Elastic Beanstalk Developer Guide

To configure environment variables in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll down to Runtime environment variables.

6. Select Add environment variable.

7. For Source select Plain text.

Note

The Secrets Manager and SSM Parameter Store values in the drop-down are for
configuring environment variables as secrets to store sensitive data, such as credentials
and API keys. For more information, see Using Elastic Beanstalk with Amazon Secrets
Manager and Amazon Systems Manager Parameter Store.

8. Enter the Environment variable name and Environment variable value pairs.

9. If you need to add more variables repeat Step 6 through Step 8.

10. To save the changes choose Apply at the bottom of the page.

Environment property limits

• Keys can contain any alphanumeric characters and the following symbols: _ . : / + \ - @

The symbols listed are valid for environment property keys, but might not be valid for
environment variable names on your environment's platform. For compatibility with all
platforms, limit environment properties to the following pattern: [A-Z_][A-Z0-9_]*

• Values can contain any alphanumeric characters, white space, and the following symbols:
_ . : / = + \ - @ ' "

Configuring environment properties (environment variables) 454

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Note

Some characters in environment property values must be escaped. Use the backslash
character (\) to represent some special characters and control characters. The following
list includes examples for representing some characters that need to be escaped:

• backslash (\) — to represent use \\

• single quote (') — to represent use \'

• double quote (") — to represent use \"

• Keys and values are case sensitive.

• The combined size of all environment properties cannot exceed 4,096 bytes when stored as
strings with the format key=value.

Software setting namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

You can use Elastic Beanstalk configuration files to set environment properties and configuration
options in your source code. Use the aws:elasticbeanstalk:application:environment
namespace to define environment properties.

Example .ebextensions/options.config

option_settings:
 aws:elasticbeanstalk:application:environment:
 API_ENDPOINT: www.example.com/api

If you use configuration files or Amazon CloudFormation templates to create custom resources, you
can use an Amazon CloudFormation function to get information about the resource and assign it to
an environment property dynamically during deployment. The following example from the elastic-
beanstalk-samples GitHub repository uses the Ref function to get the ARN of an Amazon SNS topic
that it creates, and assigns it to an environment property named NOTIFICATION_TOPIC.

Software setting namespaces 455

https://github.com/awsdocs/elastic-beanstalk-samples/
https://github.com/awsdocs/elastic-beanstalk-samples/

Amazon Elastic Beanstalk Developer Guide

Notes

• If you use an Amazon CloudFormation function to define an environment property,
the Elastic Beanstalk console displays the value of the property before the function
is evaluated. You can use the get-config platform script to confirm the values of
environment properties that are available to your application.

• The Multicontainer Docker platform doesn't use Amazon CloudFormation to create
container resources. As a result, this platform doesn't support defining environment
properties using Amazon CloudFormation functions.

Example .Ebextensions/sns-topic.config

Resources:
 NotificationTopic:
 Type: AWS::SNS::Topic

option_settings:
 aws:elasticbeanstalk:application:environment:
 NOTIFICATION_TOPIC: '`{"Ref" : "NotificationTopic"}`'

You can also use this feature to propagate information from Amazon CloudFormation pseudo
parameters. This example gets the current region and assigns it to a property named AWS_REGION.

Example .Ebextensions/env-regionname.config

option_settings:
 aws:elasticbeanstalk:application:environment:
 AWS_REGION: '`{"Ref" : "AWS::Region"}`'

Most Elastic Beanstalk platforms define additional namespaces with options for configuring
software that runs on the instance, such as the reverse proxy that relays requests to your
application. For more information about the namespaces available for your platform, see the
following:

• Go – Go configuration namespace

• Java SE – Java SE configuration namespace

• Tomcat – Tomcat configuration namespaces

Software setting namespaces 456

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/resource-configuration/sns-topic.config
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/instance-configuration/env-regionname.config

Amazon Elastic Beanstalk Developer Guide

• .NET Core on Linux – .NET Core on Linux configuration namespace

• .NET – The aws:elasticbeanstalk:container:dotnet:apppool namespace

• Node.js – Node.js configuration namespace

• PHP – Namespaces for configuration

• Python – Python configuration namespaces

• Ruby – Ruby configuration namespaces

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

Accessing environment properties

In most cases, you access environment properties in your application code like an environment
variable. In general, however, environment properties are passed only to the application and can't
be viewed by connecting an instance in your environment and running env.

• Go – os.Getenv

endpoint := os.Getenv("API_ENDPOINT")

• Java SE – System.getenv

String endpoint = System.getenv("API_ENDPOINT");

• Tomcat – System.getProperty and System.getenv

Tomcat platform versions released on or after March 26, 2025, can also use System.getenv
to access plaintext environment variables. You can continue to use System.getProperty to
access plaintext environment variables. However, environment variables stored as secrets are
only available using System.getenv.

String endpoint = System.getProperty("API_ENDPOINT");

String endpoint = System.getenv("API_ENDPOINT");

Accessing environment properties 457

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-03-26-windows.html

Amazon Elastic Beanstalk Developer Guide

Important

The addition of System.getenv access for environment variables in Tomcat platform
versions released on or after March 26, 2025 may cause unexpected behavior in
applications that give environment variables precedence over Java system properties or
when explicitly switching from System.getProperty to System.getenv. For more
information and recommended actions, see Using the Elastic Beanstalk Tomcat platform.

• .NET Core on Linux – Environment.GetEnvironmentVariable

string endpoint = Environment.GetEnvironmentVariable("API_ENDPOINT");

• .NET – appConfig

NameValueCollection appConfig = ConfigurationManager.AppSettings;
string endpoint = appConfig["API_ENDPOINT"];

• Node.js – process.env

var endpoint = process.env.API_ENDPOINT

• PHP – $_SERVER

$endpoint = $_SERVER['API_ENDPOINT'];

• Python – os.environ

import os
endpoint = os.environ['API_ENDPOINT']

• Ruby – ENV

endpoint = ENV['API_ENDPOINT']

Outside of application code, such as in a script that runs during deployment, you can access
environment properties with the get-config platform script. See the elastic-beanstalk-samples
GitHub repository for example configurations that use get-config.

Accessing environment properties 458

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-03-26-windows.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/java-tomcat-platform.html
https://github.com/awsdocs/elastic-beanstalk-samples/search?utf8=%E2%9C%93&q=get-config

Amazon Elastic Beanstalk Developer Guide

Configuring Amazon X-Ray debugging

You can use the Amazon Elastic Beanstalk console or a configuration file to run the Amazon X-Ray
daemon on the instances in your environment. X-Ray is an Amazon service that gathers data about
the requests that your application serves, and uses it to construct a service map that you can use to
identify issues with your application and opportunities for optimization.

Note

Some regions don't offer X-Ray. If you create an environment in one of these regions, you
can't run the X-Ray daemon on the instances in your environment.
For information about the Amazon services offered in each Region, see Region Table.

X-Ray provides an SDK that you can use to instrument your application code, and a daemon
application that relays debugging information from the SDK to the X-Ray API.

Debugging 459

http://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/

Amazon Elastic Beanstalk Developer Guide

Supported platforms

You can use the X-Ray SDK with the following Elastic Beanstalk platforms:

• Go - version 2.9.1 and later

• Java 8 - version 2.3.0 and later

• Java 8 with Tomcat 8 - version 2.4.0 and later

• Node.js - version 3.2.0 and later

• Windows Server - all platform versions released on or after December 18th, 2016

• Python - version 2.5.0 and later

On supported platforms, you can use a configuration option to run the X-Ray daemon on the
instances in your environment. You can enable the daemon in the Elastic Beanstalk console or by
using a configuration file.

To upload data to X-Ray, the X-Ray daemon requires IAM permissions in the
AWSXrayWriteOnlyAccess managed policy. These permissions are included in the Elastic Beanstalk
instance profile. If you don't use the default instance profile, see Giving the Daemon Permission to
Send Data to X-Ray in the Amazon X-Ray Developer Guide.

Debugging with X-Ray requires the use of the X-Ray SDK. See the Getting Started with Amazon X-
Ray in the Amazon X-Ray Developer Guide for instructions and sample applications.

If you use a platform version that doesn't include the daemon, you can still run it with a script
in a configuration file. For more information, see Downloading and Running the X-Ray Daemon
Manually (Advanced) in the Amazon X-Ray Developer Guide.

Sections

• Configuring debugging

• The aws:elasticbeanstalk:xray namespace

Configuring debugging

You can enable the X-Ray daemon on a running environment in the Elastic Beanstalk console.

Debugging 460

https://docs.amazonaws.cn/xray/latest/devguide/xray-daemon.html#xray-daemon-permissions
https://docs.amazonaws.cn/xray/latest/devguide/xray-daemon.html#xray-daemon-permissions
https://docs.amazonaws.cn/xray/latest/devguide/xray-gettingstarted.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-gettingstarted.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-daemon-beanstalk.html#xray-daemon-beanstalk-manual
https://docs.amazonaws.cn/xray/latest/devguide/xray-daemon-beanstalk.html#xray-daemon-beanstalk-manual

Amazon Elastic Beanstalk Developer Guide

To enable debugging in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Amazon X-Ray section, select Activated.

6. To save the changes choose Apply at the bottom of the page.

You can also enable this option during environment creation. For more information, see The create
new environment wizard.

The aws:elasticbeanstalk:xray namespace

You can use the XRayEnabled option in the aws:elasticbeanstalk:xray namespace to
enable debugging.

To enable debugging automatically when you deploy your application, set the option in a
configuration file in your source code, as follows.

Example .ebextensions/debugging.config

option_settings:
 aws:elasticbeanstalk:xray:
 XRayEnabled: true

Viewing your Elastic Beanstalk environment logs

Amazon Elastic Beanstalk provides two ways to regularly view logs from the Amazon EC2 instances
that run your application:

• Configure your Elastic Beanstalk environment to upload rotated instance logs to the
environment's Amazon S3 bucket.

• Configure the environment to stream instance logs to Amazon CloudWatch Logs.

Log viewing 461

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

When you configure instance log streaming to CloudWatch Logs, Elastic Beanstalk creates
CloudWatch Logs log groups for proxy and deployment logs on the Amazon EC2 instances, and
transfers these log files to CloudWatch Logs in real time. For more information about instance logs,
see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk environment.

In addition to instance logs, if you enable enhanced health for your environment, you can configure
the environment to stream health information to CloudWatch Logs. When the environment's
health status changes, Elastic Beanstalk adds a record to a health log group, with the new status
and a description of the cause of the change. For information about environment health streaming,
see Streaming Elastic Beanstalk environment health information to Amazon CloudWatch Logs.

Configuring instance log viewing

To view instance logs, you can enable instance log rotation and log streaming in the Elastic
Beanstalk console.

To configure instance log rotation and log streaming in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the S3 log storage section, select Activated beneath Rotate logs to enable uploading
rotated logs to Amazon S3.

6. in the Instance log streaming to CloudWatch Logs section, configure the following settings:

• Log streaming – Select Activated to enable log streaming.

• Retention – Specify the number of days to retain logs in CloudWatch Logs.

• Lifecycle – Set to Delete logs upon termination to delete logs from CloudWatch Logs
immediately if the environment is terminated, instead of waiting for them to expire.

7. To save the changes choose Apply at the bottom of the page.

After you enable log streaming, you can return to the Software configuration category or page and
find the Log Groups link. Click this link to see your instance logs in the CloudWatch console.

Log viewing 462

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Configuring environment health log viewing

To view environment health logs, you can enable environment health log streaming in the Elastic
Beanstalk console.

To configure environment health log streaming in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Go to the Monitoring section.

6. Under Health event streaming to CloudWatch Logs, configure the following settings:

• Log streaming – Choose to Activated to enable log streaming.

• Retention – Specify the number of days to retain logs in CloudWatch Logs.

• Lifecycle – Set to Delete logs upon termination to delete logs from CloudWatch Logs
immediately if the environment is terminated, instead of waiting for them to expire.

7. To save the changes choose Apply at the bottom of the page.

Log viewing namespaces

The following namespaces contain settings for log viewing:

• aws:elasticbeanstalk:hostmanager – Configure uploading rotated logs to Amazon S3.

• aws:elasticbeanstalk:cloudwatch:logs – Configure instance log streaming to
CloudWatch.

• aws:elasticbeanstalk:cloudwatch:logs:health – Configure environment health
streaming to CloudWatch.

Elastic Beanstalk environment notifications with Amazon SNS

You can configure your Amazon Elastic Beanstalk environment to use Amazon Simple Notification
Service (Amazon SNS) to notify you of important events that affect your application. To receive

Notifications 463

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

emails from Amazon whenever an error occurs or the health of your environment changes, specify
an email address when you create an environment or later on.

Note

Elastic Beanstalk uses Amazon SNS for notifications. For information about Amazon SNS
pricing, see http://www.amazonaws.cn/sns/pricing/.

When you configure notifications for your environment, Elastic Beanstalk creates an Amazon SNS
topic for your environment on your behalf. To send messages to an Amazon SNS topic, Elastic
Beanstalk must have the required permission. For more information, see Configuring permissions
to send notifications.

When a notable event occurs, Elastic Beanstalk sends a message to the topic. Then, Amazon SNS
relays the messages that it receives to the topic's subscribers. Notable events include environment
creation errors and all changes in environment and instance health. Events for Amazon EC2
Auto Scaling operations (like adding and removing instances from the environment) and other
informational events don't trigger notifications.

You can enter an email address in the Elastic Beanstalk console when you create an environment or
sometime afterwards. This will create an Amazon SNS topic and subscribe to it. Elastic Beanstalk
manages the lifecycle of the topic, and deletes it when your environment is terminated or when
you remove your email address in the environment management console.

The aws:elasticbeanstalk:sns:topics namespace provides options for configuring an
Amazon SNS topic by using configuration files, a CLI, or an SDK. By using one of these methods,
you can configure the type of subscriber and the endpoint. For type of subscriber, you can choose
an Amazon SQS queue or HTTP URL.

Notifications 464

http://www.amazonaws.cn/sns/pricing/

Amazon Elastic Beanstalk Developer Guide

You can only turn Amazon SNS notifications on or off. The frequency of notifications sent to the
topic can be high, depending on the size and composition of your environment. For configuring
notifications to be sent on specific circumstances, you have other options. You can set up event-
driven rules with Amazon EventBridge that notify you when Elastic Beanstalk emits events that
meet specific criteria. Or, alternatively, you can configure your environment to publish custom
metrics and set Amazon CloudWatch alarms to notify you when those metrics reach an unhealthy
threshold.

Configuring notifications using the Elastic Beanstalk console

You can enter an email address in the Elastic Beanstalk console to create an Amazon SNS topic for
your environment.

To configure notifications in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll down to the Email notifications section.

6. Enter an email address.

7. To save the changes choose Apply at the bottom of the page.

When you enter an email address for notifications, Elastic Beanstalk creates an Amazon SNS topic
for your environment and adds a subscription. Amazon SNS sends an email to the subscribed
address to confirm the subscription. You must click the link in the confirmation email to activate
the subscription and receive notifications.

Configuring notifications using configuration options

Use the options in the aws:elasticbeanstalk:sns:topics namespace to configure Amazon
SNS notifications for your environment. You can set these options by using configuration files, a
CLI, or an SDK.

Configuring notifications using the Elastic Beanstalk console 465

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Notification Endpoint – The email address, Amazon SQS queue, or URL to send notifications
to. If you set this option, then an SQS queue and a subscription for the specified endpoint
are created. If the endpoint isn't an email address, you must also set the Notification
Protocol option. SNS validates the value of Notification Endpoint based on the value of
Notification Protocol. Setting this option multiple times creates additional subscriptions
to the topic. If you remove this option, the topic is deleted.

• Notification Protocol – The protocol that's used to send notifications to the Notification
Endpoint. This option defaults to email. Set this option to email-json to send JSON-
formatted emails, http or https to post JSON-formatted notifications to an HTTP endpoint, or
sqs to send notifications to an SQS queue.

Note

Amazon Lambda notifications aren't supported.

• Notification Topic ARN – After setting a notification endpoint for your environment, read this
setting to get the ARN of the SNS topic. You can also set this option to use an existing SNS topic
for notifications. A topic that you attach to your environment though this option isn't deleted
when you change this option or terminate the environment.

To configure Amazon SNS notifications, you need to have the required permissions. If your IAM
user uses the Elastic Beanstalk AdministratorAccess-AWSElasticBeanstalk managed user policy,
then you should already have the required permissions to configure the default Amazon SNS
topic that Elastic Beanstalk creates for your environment. However, if you configure an Amazon
SNS topic that Elastic Beanstalk doesn't manage, then you need to add the following policy to
your user role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:SetTopicAttributes",
 "sns:GetTopicAttributes",
 "sns:Subscribe",
 "sns:Unsubscribe",
 "sns:Publish"
],

Configuring notifications using configuration options 466

Amazon Elastic Beanstalk Developer Guide

 "Resource": [
 "arn:aws-cn:sns:us-west-2:123456789012:sns_topic_name"
]
 }
]
}

• Notification Topic Name – Set this option to customize the name of the Amazon SNS topic used
for environment notifications. If a topic with the same name already exists, Elastic Beanstalk
attaches that topic to the environment.

Warning

If you attach an existing SNS topic to an environment with Notification Topic
Name, Elastic Beanstalk will delete the topic in the event that you terminate the
environment or change this setting sometime in the future.

If you change this option, the Notification Topic ARN is also changed. If a topic is already
attached to the environment, Elastic Beanstalk deletes the old topic and creates a new topic and
subscription.

By using a custom topic name, you must also provide an ARN of an externally created custom
topic. The managed user policy doesn't automatically detect a topic with a custom name, so you
must provide custom Amazon SNS permissions to your IAM users. Use a policy similar to the one
that's used for a custom topic ARN, but include the following additions:

• Include two more actions in the Actions list, specifically: sns:CreateTopic,
sns:DeleteTopic

• If you're changing the Notification Topic Name from one custom topic name to another,
you must also include the ARNs of both topics in the Resource list. Alternatively, include a
regular expression that covers both topics. This way Elastic Beanstalk has permissions to delete
the old topic and create the new one.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Configuring notifications using configuration options 467

Amazon Elastic Beanstalk Developer Guide

Configuring permissions to send notifications

This section discusses security considerations that are related to notifications that use Amazon
SNS. There are two distinct cases:

• Use the default Amazon SNS topic that Elastic Beanstalk creates for your environment.

• Provide an external Amazon SNS topic through configuration options.

The default access policy for an Amazon SNS topic allows only the topic owner to publish or
subscribe to it. However, through the proper policy configuration, Elastic Beanstalk can be granted
permission to publish to an Amazon SNS topic in either one of the two cases described in this
section. The following subsections provide more information.

Permissions for a default topic

When you configure notifications for your environment, Elastic Beanstalk creates an Amazon SNS
topic for your environment. To send messages to an Amazon SNS topic, Elastic Beanstalk must
have the required permission. If your environment uses the service role that the Elastic Beanstalk
console or the EB CLI generated for it, or your account's monitoring service-linked role, then you
don't need to do anything else. These managed roles include the necessary permission that allows
Elastic Beanstalk to send messages to the Amazon SNS topic.

However, if you provided a custom service role when you created your environment, make sure that
this custom service role includes the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws-cn:sns:us-west-2:123456789012:ElasticBeanstalkNotifications*"
]
 }
]
}

Configuring permissions to send notifications 468

Amazon Elastic Beanstalk Developer Guide

Permissions for an external topic

Configuring notifications using configuration options explains how you can replace the Amazon
SNS topic that Elastic Beanstalk provides with another Amazon SNS topic. If you replaced the
topic, Elastic Beanstalk must verify that you have permission to publish to this SNS topic for you
to be able to associate the SNS topic with the environment. You should have sns:Publish. The
service role uses the same permission. To verify that this is the case, Elastic Beanstalk sends a test
notification to SNS as part of your action to create or update the environment. If this test fails,
then your attempt to create or update the environment also fails. Elastic Beanstalk displays a
message that explains the reason for this failure.

If you provide a custom service role for your environment, make sure that your custom service role
includes the following policy to allow Elastic Beanstalk to send messages to the Amazon SNS topic.
In the following code, replace sns_topic_name with the name of the Amazon SNS topic that you
provided in the configuration options.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws-cn:sns:us-west-2:123456789012:sns_topic_name"
]
 }
]
}

For more information about Amazon SNS access control, see Example cases for Amazon SNS access
control in the Amazon Simple Notification Service Developer Guide.

Configuring permissions to send notifications 469

https://docs.amazonaws.cn/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.amazonaws.cn/sns/latest/dg/sns-access-policy-use-cases.html

Amazon Elastic Beanstalk Developer Guide

Configuring Amazon Virtual Private Cloud (Amazon VPC) with
Elastic Beanstalk

Amazon Virtual Private Cloud (Amazon VPC) is the networking service that routes traffic securely
to the EC2 instances that run your application in Elastic Beanstalk. If you don't configure a VPC
when you launch your environment, Elastic Beanstalk uses the default VPC.

You can launch your environment in a custom VPC to customize networking and security settings.
Elastic Beanstalk lets you choose which subnets to use for your resources, and how to configure
IP addresses for the instances and load balancer in your environment. An environment is locked
to a VPC when you create it, but you can change subnet and IP address settings on a running
environment.

Configuring VPC settings in the Elastic Beanstalk console

If you chose a custom VPC when you created your environment, you can modify its VPC settings in
the Elastic Beanstalk console.

To configure your environment's VPC settings

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Network configuration category, choose Edit.

The following settings are available.

Options

• VPC

• Load balancer visibility

• Load balancer subnets

• Instance public IP address

• Instance subnets

Amazon VPC 470

https://docs.amazonaws.cn/vpc/latest/userguide/
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Database subnets

VPC

Choose a VPC for your environment. You can only change this setting during environment creation.

Load balancer visibility

For a load-balanced environment, choose the load balancer scheme. By default, the load balancer
is public, with a public IP address and domain name. If your application only serves traffic from
within your VPC or a connected VPN, deselect this option and choose private subnets for your load
balancer to make the load balancer internal and disable access from the Internet.

Load balancer subnets

For a load-balanced environment, choose the subnets that your load balancer uses to serve traffic.
For a public application, choose public subnets. Use subnets in multiple availability zones for high
availability. For an internal application, choose private subnets and disable load balancer visibility.

Configuring VPC settings in the Elastic Beanstalk console 471

Amazon Elastic Beanstalk Developer Guide

Instance public IP address

If you choose public subnets for your application instances, enable public IP addresses to make
them routable from the Internet.

Instance subnets

Choose subnets for your application instances. Choose at least one subnet for each availability
zone that your load balancer uses. If you choose private subnets for your instances, your VPC must
have a NAT gateway in a public subnet that the instances can use to access the Internet.

Configuring VPC settings in the Elastic Beanstalk console 472

Amazon Elastic Beanstalk Developer Guide

Database subnets

When you run an Amazon RDS database attached to your Elastic Beanstalk environment, choose
subnets for your database instances. For high availability, make the database multi-AZ and choose
a subnet for each availability zone. To ensure that your application can connect to your database,
run both in the same subnets.

The aws:ec2:vpc namespace

You can use the configuration options in the aws:ec2:vpc namespace to configure your
environment's network settings.

The following configuration file uses options in this namespace to set the environment's VPC and
subnets for a public-private configuration. In order to set the VPC ID in a configuration file, the
file must be included in the application source bundle during environment creation. See Setting
configuration options during environment creation for other methods of configuring these settings
during environment creation.

The aws:ec2:vpc namespace 473

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/vpc.config – Public-private

option_settings:
 aws:ec2:vpc:
 VPCId: vpc-087a68c03b9c50c84
 AssociatePublicIpAddress: 'false'
 ELBScheme: public
 ELBSubnets: subnet-0fe6b36bcb0ffc462,subnet-032fe3068297ac5b2
 Subnets: subnet-026c6117b178a9c45,subnet-0839e902f656e8bd1

This example shows a public-public configuration, where the load balancer and EC2 instances run
in the same public subnets.

Example .ebextensions/vpc.config – Public-public

option_settings:
 aws:ec2:vpc:
 VPCId: vpc-087a68c03b9c50c84
 AssociatePublicIpAddress: 'true'
 ELBScheme: public
 ELBSubnets: subnet-0fe6b36bcb0ffc462,subnet-032fe3068297ac5b2
 Subnets: subnet-0fe6b36bcb0ffc462,subnet-032fe3068297ac5b2

Migrating Elastic Beanstalk environments from EC2-Classic to a VPC

This topic describes different options for how to migrate your Elastic Beanstalk environments from
an EC2-Classic network platform to an Amazon Virtual Private Cloud (Amazon VPC) network.

If you created your Amazon account before December 4, 2013, you might have environments that
use the EC2-Classic network configuration in some Amazon Web Services Regions. All Amazon
accounts created on or after December 4, 2013 are already VPC-only in every Amazon Region. The
only exemptions are if Amazon EC2-Classic was enabled as a result of a support request.

Note

You can view the network configuration settings for your environment in the Network
configuration category on the Configuration overview page of the Elastic Beanstalk
console.

Migrating from EC2-Classic to a VPC 474

https://docs.amazonaws.cn/vpc/latest/userguide/
https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Why you should migrate

Amazon EC2-Classic will reach its end of standard support on August 15, 2022. To avoid
interruptions to your workloads, we recommend that you migrate from Amazon EC2-Classic to
a VPC before August 15, 2022. We also request that you don't launch any Amazon resources on
Amazon EC2-Classic in the future and use Amazon VPC instead.

When you migrate your Elastic Beanstalk environments from Amazon EC2-Classic to Amazon
VPC, you must create a new Amazon account. You must also re-create your Amazon EC2-
Classic environments in your new Amazon account. No additional configuration work for
your environments is required to use the default VPC. If the default VPC doesn't meet your
requirements, manually create a custom VPC and associate it with your environments.

Alternatively, if your existing Amazon account has resources that you can't migrate to a new
Amazon account, add a VPC into your current account. Then, configure your environments to use
the VPC.

For more information, see the EC2-Classic Networking is Retiring - Here's How to Prepare blog
post.

Migrate an environment from EC2-Classic into a new Amazon account
(recommended)

If you don't already have an Amazon account that was created on or after December 4, 2013,
create a new account. You will migrate your environments into this new account.

1. Your new Amazon account provides a default VPC to its environments. If you don't need to
create a custom VPC, skip to step 2.

You can create a custom VPC in one of the following ways:

• Create a VPC quickly using the Amazon VPC console wizard with one of the available
configuration options. For more information, see Amazon VPC console wizard
configurations.

• Create a custom VPC on the Amazon VPC console if you have more specific requirements
for your VPC. We recommend you do this, for example, if your use case requires a specific
number of subnets. For more information, see VPCs and subnets.

• Create a VPC using the elastic-beanstalk-samples repository on the GitHub website if you
prefer to use Amazon CloudFormation templates with your Elastic Beanstalk environments.

Migrating from EC2-Classic to a VPC 475

https://www.amazonaws.cn/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_wizard.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_wizard.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Subnets.html
https://github.com/awsdocs/elastic-beanstalk-samples/

Amazon Elastic Beanstalk Developer Guide

This repository includes Amazon CloudFormation templates. For more information, see
Using Elastic Beanstalk with Amazon VPC.

Note

You can also create a custom VPC at the same time you recreate the environment in
your new Amazon account using the create new environment wizard. If you use the
wizard and choose to create a custom VPC, the wizard redirects you to the Amazon
VPC console.

2. In your new Amazon account, create a new environment. We recommend that the environment
includes the same configuration as your existing environment in the Amazon account that
you're migrating from. You can do this by using one of the following approaches.

Note

If your new environment must use the same CNAME after you migrate, terminate the
original environment on the EC2-Classic platform. This releases the CNAME for use.
However, doing so can result in downtime for that environment and can also risk that
another customer might select your CNAME between you terminating your EC2-Classic
environment and creating the new one. For more information, see Terminate an Elastic
Beanstalk environment.
For environments that have their own proprietary domain name, the CNAME doesn't
have this issue. You can just update your Domain Name System (DNS) to forward
requests to your new CNAME.

• Use the create new environment wizard on the Elastic Beanstalk console. The wizard
provides an option to create a custom VPC. If you don't choose to create a custom VPC, a
default VPC is assigned.

• Use the Elastic Beanstalk Command Line Interface (EB CLI) to re-create your environment
in your new Amazon account. One of the examples in the eb create command description
demonstrates the creation of an environment in a custom VPC. If you don't provide a VPC
ID, the environment uses the default VPC.

By using this approach, you can use a saved configurations file across the two Amazon
accounts. As a result, you don't need to manually enter all the configuration information.

Migrating from EC2-Classic to a VPC 476

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

However, you must save the configuration settings for the EC2-Classic environment that
you're migrating with the eb config save command. Copy the saved configuration file to a
new directory for the new account environment.

Note

You must edit some of the data in the saved configuration file before you can
use it in the new account. You must also update information that pertains to
your previous account with the correct data for your new account. For example,
you must replace the Amazon Resource Name (ARN) of the Amazon Identity and
Access Management (IAM) role with the IAM role ARN for the new account.

If you use the eb create command with the cfg, the new environment is created using the
specified saved configuration file. For more information, see Using Elastic Beanstalk saved
configurations.

Migrate an environment from EC2-Classic within your same Amazon account

Your existing Amazon account might have resources that you can't migrate to a new Amazon
account. In this case you must re-create your environments and manually configure a VPC for every
environment you create.

Migrate your environments to a custom VPC

Prerequisites

Before you begin, you must have a VPC. You can create a non-default (custom) VPC in one of the
following ways:

• Create a VPC quickly using the Amazon VPC console wizard with one of the available
configuration options. For more information, see Amazon VPC console wizard configurations.

• Create a custom VPC on the Amazon VPC console if you have more specific requirements for
your VPC. We recommend you do this, for example, if your use case requires a specific number of
subnets. For more information, see VPCs and subnets.

• Create a VPC using the elastic-beanstalk-samples repository on the GitHub website if you
prefer to use Amazon CloudFormation templates with your Elastic Beanstalk environments. This

Migrating from EC2-Classic to a VPC 477

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_wizard.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Subnets.html
https://github.com/awsdocs/elastic-beanstalk-samples/

Amazon Elastic Beanstalk Developer Guide

repository includes Amazon CloudFormation templates. For more information, see Using Elastic
Beanstalk with Amazon VPC.

In the following steps, you use the generated VPC ID and subnet IDs when you configure the VPC in
the new environment.

1. Create a new environment that includes the same configuration as your existing environment.
You can do this by using one of the following approaches.

Note

The Saved Configurations feature can help you re-create your environments in the
new account. This feature can save an environment’s configuration, so you can apply
it when you create or update other environments. For more information, see Using
Elastic Beanstalk saved configurations.

• Using the Elastic Beanstalk console, apply a saved configuration from your EC2-Classic
environment when you configure the new environment. This configuration will use the
VPC. For more information, see Using Elastic Beanstalk saved configurations.

• Using Elastic Beanstalk Command Line Interface (EB CLI), run the eb create command to
re-create your environment. Provide the parameters of your original environment and the
VPC identifier. One of the examples in the eb create command description shows how to
create an environment in a custom VPC.

• Use the Amazon Command Line Interface (Amazon CLI), and re-create your environment
using the elasticbeanstalk create-environment command. Provide the parameters of
your original environment with the VPC identifier. For instructions, see Creating Elastic
Beanstalk environments with the Amazon CLI.

2. Swap the CNAMEs of the existing environment with the new environment. This way, the new
environment that you created can be referenced with the familiar address. You can use the EB
CLI or the Amazon CLI.

• Using the EB CLI, swap the environment CNAMEs by running the eb swap command.
For more information, see Setting up the EB command line interface (EB CLI) to manage
Elastic Beanstalk.

Migrating from EC2-Classic to a VPC 478

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Using the Amazon CLI, swap the environment CNAMEs with the elasticbeanstalk swap-
environment-cnames command. For more information, see the Amazon CLI Command
Reference.

Your Elastic Beanstalk environment's Domain name

By default, your environment is available to users at a subdomain of elasticbeanstalk.com.
When you create an environment, you can choose a hostname for your application. The subdomain
and domain are autopopulated to region.elasticbeanstalk.com.

To route users to your environment, Elastic Beanstalk registers a CNAME record that points to your
environment's load balancer. You can see URL of your environment's application with the current
value of the CNAME in the environment overview page of the Elastic Beanstalk console.

Choose the URL on the overview page, or choose Go to environment on the navigation pane, to
navigate to your application's web page.

You can change the CNAME on your environment by swapping it with the CNAME of another
environment. For instructions, see Blue/Green deployments with Elastic Beanstalk.

If you own a domain name, you can use Amazon Route 53 to resolve it to your environment. You
can purchase a domain name with Amazon Route 53, or use one that you purchase from another
provider.

To purchase a domain name with Route 53, see Registering a New Domain in the Amazon Route 53
Developer Guide.

Domain name 479

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/swap-environment-cnames.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/swap-environment-cnames.html
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/domain-register.html

Amazon Elastic Beanstalk Developer Guide

To learn more about using a custom domain, see Routing Traffic to an Amazon Elastic Beanstalk
Environment in the Amazon Route 53 Developer Guide.

Important

If you terminate an environment, you must also delete any CNAME mappings that you
created, as other customers can reuse an available hostname. Be sure to delete DNS records
that point to your terminated environment to prevent a dangling DNS entry. A dangling
DNS entry can expose internet traffic destined for your domain to security vulnerabilities. It
can also present other risks.
For more information, see Protection from dangling delegation records in Route 53 in the
Amazon Route 53 Developer Guide. You can also learn more about dangling DNS entries
in Enhanced Domain Protections for Amazon CloudFront Requests in the Amazon Security
Blog.

Domain name 480

https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/routing-to-beanstalk-environment.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/routing-to-beanstalk-environment.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/protection-from-dangling-dns.html
https://amazonaws-china.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/

Amazon Elastic Beanstalk Developer Guide

Configuring Elastic Beanstalk environments (advanced)

When you create an Amazon Elastic Beanstalk environment, Elastic Beanstalk provisions and
configures all of the Amazon resources required to run and support your application. In addition to
configuring your environment's metadata and update behavior, you can customize these resources
by providing values for configuration options. For example, you may want to add an Amazon SQS
queue and an alarm on queue depth, or you might want to add an Amazon ElastiCache cluster.

Most of the configuration options have default values that are applied automatically by Elastic
Beanstalk. You can override these defaults with configuration files, saved configurations, command
line options, or by directly calling the Elastic Beanstalk API. The EB CLI and Elastic Beanstalk
console also apply recommended values for some options.

You can easily customize your environment at the same time that you deploy your application
version by including a configuration file with your source bundle. When customizing the software
on your instance, it is more advantageous to use a configuration file than to create a custom AMI
because you do not need to maintain a set of AMIs.

When deploying your applications, you may want to customize and configure the software that
your application depends on. These files could be either dependencies required by the application
—for example, additional packages from the yum repository—or they could be configuration files
such as a replacement for httpd.conf to override specific settings that are defaulted by Amazon
Elastic Beanstalk.

Topics

• Configuration options

• Advanced environment customization with configuration files (.ebextensions)

• Using Elastic Beanstalk saved configurations

• Environment manifest (env.yaml)

• Using a custom Amazon machine image (AMI) in your Elastic Beanstalk environment

• Serving static files

• Configuring HTTPS for your Elastic Beanstalk environment

481

Amazon Elastic Beanstalk Developer Guide

Configuration options

Elastic Beanstalk defines a large number of configuration options that you can use to configure
your environment's behavior and the resources that it contains. Configuration options are
organized into namespaces like aws:autoscaling:asg, which defines options for an
environment's Auto Scaling group.

The Elastic Beanstalk console and EB CLI set configuration options when you create an
environment, including options that you set explicitly, and recommended values defined by the
client. You can also set configuration options in saved configurations and configuration files. If the
same option is set in multiple locations, the value used is determined by the order of precedence.

Configuration option settings can be composed in text format and saved prior to environment
creation, applied during environment creation using any supported client, and added, modified or
removed after environment creation. For a detailed breakdown of all of the available methods for
working with configuration options at each of these three stages, read the following topics:

• Setting configuration options before environment creation

• Setting configuration options during environment creation

• Setting configuration options after environment creation

For a complete list of namespaces and options, including default and supported values for each,
see General options for all environments and Platform specific options.

Precedence

During environment creation, configuration options are applied from multiple sources with the
following precedence, from highest to lowest:

• Settings applied directly to the environment – Settings specified during a create environment
or update environment operation on the Elastic Beanstalk API by any client, including the Elastic
Beanstalk console, EB CLI, Amazon CLI, and SDKs. The Elastic Beanstalk console and EB CLI also
apply recommended values for some options that apply at this level unless overridden.

• Saved Configurations – Settings for any options that are not applied directly to the environment
are loaded from a saved configuration, if specified.

Configuration options 482

Amazon Elastic Beanstalk Developer Guide

• Configuration Files (.ebextensions) – Settings for any options that are not applied directly to
the environment, and also not specified in a saved configuration, are loaded from configuration
files in the .ebextensions folder at the root of the application source bundle.

Configuration files are executed in alphabetical order. For example,
.ebextensions/01run.config is executed before .ebextensions/02do.config.

• Default Values – If a configuration option has a default value, it only applies when the option is
not set at any of the above levels.

If the same configuration option is defined in more than one location, the setting with the highest
precedence is applied. When a setting is applied from a saved configuration or settings applied
directly to the environment, the setting is stored as part of the environment's configuration. These
settings can be removed with the Amazon CLI or with the EB CLI.

Settings in configuration files are not applied directly to the environment and cannot be
removed without modifying the configuration files and deploying a new application version. If a
setting applied with one of the other methods is removed, the same setting will be loaded from
configuration files in the source bundle.

For example, say you set the minimum number of instances in your environment to 5 during
environment creation, using either the Elastic Beanstalk console, a command line option, or a saved
configuration. The source bundle for your application also includes a configuration file that sets the
minimum number of instances to 2.

When you create the environment, Elastic Beanstalk sets the MinSize option in the
aws:autoscaling:asg namespace to 5. If you then remove the option from the environment
configuration, the value in the configuration file is loaded, and the minimum number of instances
is set to 2. If you then remove the configuration file from the source bundle and redeploy, Elastic
Beanstalk uses the default setting of 1.

Recommended values

The Elastic Beanstalk Command Line Interface (EB CLI) and Elastic Beanstalk console provide
recommended values for some configuration options. These values can be different from the
default values and are set at the API level when your environment is created. Recommended
values allow Elastic Beanstalk to improve the default environment configuration without making
backwards incompatible changes to the API.

Recommended values 483

Amazon Elastic Beanstalk Developer Guide

For example, both the EB CLI and Elastic Beanstalk console set the configuration option for EC2
instance type (InstanceType in the aws:autoscaling:launchconfiguration namespace).
Each client provides a different way of overriding the default setting. In the console you can choose
a different instance type from a drop down menu on the Configuration Details page of the Create
New Environment wizard. With the EB CLI, you can use the --instance_type parameter for eb
create.

Because the recommended values are set at the API level, they will override values for the same
options that you set in configuration files or saved configurations. The following options are set:

Elastic Beanstalk console

• Namespace: aws:autoscaling:launchconfiguration

Option Names: IamInstanceProfile, EC2KeyName, InstanceType

• Namespace: aws:autoscaling:updatepolicy:rollingupdate

Option Names: RollingUpdateType and RollingUpdateEnabled

• Namespace: aws:elasticbeanstalk:application

Option Name: Application Healthcheck URL

• Namespace: aws:elasticbeanstalk:command

Option Name: DeploymentPolicy, BatchSize and BatchSizeType

• Namespace: aws:elasticbeanstalk:environment

Option Name: ServiceRole

• Namespace: aws:elasticbeanstalk:healthreporting:system

Option Name: SystemType and HealthCheckSuccessThreshold

• Namespace: aws:elasticbeanstalk:sns:topics

Option Name: Notification Endpoint

• Namespace: aws:elasticbeanstalk:sqsd

Option Name: HttpConnections

• Namespace: aws:elb:loadbalancer

Option Name: CrossZone

Recommended values 484

Amazon Elastic Beanstalk Developer Guide

• Namespace: aws:elb:policies

Option Names: ConnectionDrainingTimeout and ConnectionDrainingEnabled

EB CLI

• Namespace: aws:autoscaling:launchconfiguration

Option Names: IamInstanceProfile, InstanceType

• Namespace: aws:autoscaling:updatepolicy:rollingupdate

Option Names: RollingUpdateType and RollingUpdateEnabled

• Namespace: aws:elasticbeanstalk:command

Option Name: BatchSize and BatchSizeType

• Namespace: aws:elasticbeanstalk:environment

Option Name: ServiceRole

• Namespace: aws:elasticbeanstalk:healthreporting:system

Option Name: SystemType

• Namespace: aws:elb:loadbalancer

Option Name: CrossZone

• Namespace: aws:elb:policies

Option Names: ConnectionDrainingEnabled

Setting configuration options before environment creation

Amazon Elastic Beanstalk supports a large number of configuration options that let you modify the
settings that are applied to resources in your environment. Several of these options have default
values that can be overridden to customize your environment. Other options can be configured to
enable additional features.

Elastic Beanstalk supports two methods of saving configuration option settings. Configuration files
in YAML or JSON format can be included in your application's source code in a directory named
Before environment creation 485

Amazon Elastic Beanstalk Developer Guide

.ebextensions and deployed as part of your application source bundle. You create and manage
configuration files locally.

Saved configurations are templates that you create from a running environment or JSON options
file and store in Elastic Beanstalk. Existing saved configurations can also be extended to create a
new configuration.

Note

Settings defined in configuration files and saved configurations have lower precedence
than settings configured during or after environment creation, including recommended
values applied by the Elastic Beanstalk console and EB CLI. See Precedence for details.

Options can also be specified in a JSON document and provided directly to Elastic Beanstalk when
you create or update an environment with the EB CLI or Amazon CLI. Options provided directly to
Elastic Beanstalk in this manner override all other methods.

For a full list of available options, see Configuration options.

Methods

• Configuration files (.ebextensions)

• Saved configurations

• JSON document

• EB CLI configuration

Configuration files (.ebextensions)

Use .ebextensions to configure options that are required to make your application work, and
provide default values for other options that can be overridden at a higher level of precedence.
Options specified in .ebextensions have the lowest level of precedence and are overridden by
settings at any other level.

To use configuration files, create a folder named .ebextensions at the top level of your project's
source code. Add a file with the extension .config and specify options in the following manner:

option_settings:
 - namespace: namespace

Before environment creation 486

Amazon Elastic Beanstalk Developer Guide

 option_name: option name
 value: option value
 - namespace: namespace
 option_name: option name
 value: option value

For example, the following configuration file sets the application's health check url to /health:

healthcheckurl.config

option_settings:
 - namespace: aws:elasticbeanstalk:application
 option_name: Application Healthcheck URL
 value: /health

In JSON:

{
 "option_settings" :
 [
 {
 "namespace" : "aws:elasticbeanstalk:application",
 "option_name" : "Application Healthcheck URL",
 "value" : "/health"
 }
]
}

This configures the Elastic Load Balancing load balancer in your Elastic Beanstalk environment to
make an HTTP request to the path /health to each EC2 instance to determine if it is healthy or
not.

Note

YAML relies on consistent indentation. Match the indentation level when replacing content
in an example configuration file and ensure that your text editor uses spaces, not tab
characters, to indent.

Include the .ebextensions directory in your Application Source Bundle and deploy it to a new or
existing Elastic Beanstalk environment.

Before environment creation 487

Amazon Elastic Beanstalk Developer Guide

Configuration files support several sections in addition to option_settings for customizing
the software and files that run on the servers in your environment. For more information, see
.Ebextensions.

Saved configurations

Create a saved configuration to save settings that you have applied to an existing environment
during or after environment creation by using the Elastic Beanstalk console, EB CLI, or Amazon CLI.
Saved configurations belong to an application and can be applied to new or existing environments
for that application.

Clients

• Elastic Beanstalk console

• EB CLI

• Amazon CLI

Elastic Beanstalk console

To create a saved configuration (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Save configuration.

4. Use the on-screen dialog box to complete the action.

Saved configurations are stored in the Elastic Beanstalk S3 bucket in a folder named after your
application. For example, configurations for an application named my-app in the us-west-2
region for account number 123456789012 can be found at s3://elasticbeanstalk-us-
west-2-123456789012/resources/templates/my-app.

EB CLI

The EB CLI also provides subcommands for interacting with saved configurations under eb config:

Before environment creation 488

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

To create a saved configuration (EB CLI)

1. Save the attached environment's current configuration:

~/project$ eb config save --cfg my-app-v1

The EB CLI saves the configuration to ~/project/.elasticbeanstalk/
saved_configs/my-app-v1.cfg.yml

2. Modify the saved configuration locally if needed.

3. Upload the saved configuration to S3:

~/project$ eb config put my-app-v1

Amazon CLI

Create a saved configuration from a running environment with aws elasticbeanstalk
create-configuration-template

To create a saved configuration (Amazon CLI)

1. Identify your Elastic Beanstalk environment's environment ID with describe-environments:

$ aws elasticbeanstalk describe-environments --environment-name my-env
{
 "Environments": [
 {
 "ApplicationName": "my-env",
 "EnvironmentName": "my-env",
 "VersionLabel": "89df",
 "Status": "Ready",
 "Description": "Environment created from the EB CLI using \"eb create
\"",
 "EnvironmentId": "e-vcghmm2zwk",
 "EndpointURL": "awseb-e-v-AWSEBLoa-1JUM8159RA11M-43V6ZI1194.us-
west-2.elb.amazonaws.com.cn",
 "SolutionStackName": "64bit Amazon Linux 2015.03 v2.0.2 running Multi-
container Docker 1.7.1 (Generic)",
 "CNAME": "my-env-nfptuqaper.elasticbeanstalk.com",
 "Health": "Green",
 "AbortableOperationInProgress": false,

Before environment creation 489

Amazon Elastic Beanstalk Developer Guide

 "Tier": {
 "Version": " ",
 "Type": "Standard",
 "Name": "WebServer"
 },
 "HealthStatus": "Ok",
 "DateUpdated": "2015-10-01T00:24:04.045Z",
 "DateCreated": "2015-09-30T23:27:55.768Z"
 }
]
}

2. Save the environment's current configuration with create-configuration-template:

$ aws elasticbeanstalk create-configuration-template --environment-id e-vcghmm2zwk
 --application-name my-app --template-name v1

Elastic Beanstalk saves the configuration to your Elastic Beanstalk bucket in Amazon S3.

JSON document

If you use the Amazon CLI to create and update environments, you can also provide configuration
options in JSON format. A library of configuration files in JSON is useful if you use the Amazon CLI
to create and manage environments.

For example, the following JSON document sets the application's health check url to /health:

~/ebconfigs/healthcheckurl.json

[
 {
 "Namespace": "aws:elasticbeanstalk:application",
 "OptionName": "Application Healthcheck URL",
 "Value": "/health"
 }
]

EB CLI configuration

In addition to supporting saved configurations and direct environment configuration
with eb config commands, the EB CLI has a configuration file with an option named

Before environment creation 490

Amazon Elastic Beanstalk Developer Guide

default_ec2_keyname that you can use to specify an Amazon EC2 key pair for SSH access to the
instances in your environment. The EB CLI uses this option to set the EC2KeyName configuration
option in the aws:autoscaling:launchconfiguration namespace.

~/workspace/my-app/.elasticbeanstalk/config.yml

branch-defaults:
 master:
 environment: my-env
 develop:
 environment: my-env-dev
deploy:
 artifact: ROOT.war
global:
 application_name: my-app
 default_ec2_keyname: my-keypair
 default_platform: Tomcat 8 Java 8
 default_region: us-west-2
 profile: null
 sc: git

Setting configuration options during environment creation

When you create an Amazon Elastic Beanstalk environment by using the Elastic Beanstalk console,
EB CLI, Amazon CLI, an SDK, or the Elastic Beanstalk API, you can provide values for configuration
options to customize your environment and the Amazon resources that are launched within it.

For anything other than a one-off configuration change, you can store configuration files locally, in
your source bundle, or in Amazon S3.

This topic includes procedures for all of the methods to set configuration options during
environment creation.

Clients

• In the Elastic Beanstalk console

• Using the EB CLI

• Using the Amazon CLI

During creation 491

Amazon Elastic Beanstalk Developer Guide

In the Elastic Beanstalk console

When you create an Elastic Beanstalk environment in the Elastic Beanstalk console, you can provide
configuration options using configuration files, saved configurations, and forms in the Create New
Environment wizard.

Methods

• Using configuration files (.ebextensions)

• Using a saved configuration

• Using the new environment wizard

Using configuration files (.ebextensions)

Include .config files in your application source bundle in a folder named .ebextensions.

For details about configuration files, see .Ebextensions.

~/workspace/my-app-v1.zip
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- index.php
`-- styles.css

Upload the source bundle to Elastic Beanstalk normally, during environment creation.

The Elastic Beanstalk console applies recommended values for some configuration options and has
form fields for others. Options configured by the Elastic Beanstalk console are applied directly to
the environment and override settings in configuration files.

Using a saved configuration

When you create a new environment using the Elastic Beanstalk console, one of the first steps is to
choose a configuration. The configuration can be a predefined configuration, typically the latest
version of a platform such as PHP or Tomcat, or it can be a saved configuration.

To apply a saved configuration during environment creation (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

During creation 492

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. In the navigation pane, find your application's name and choose Saved configurations.

4. Select the saved configuration you want to apply, and then choose Launch environment.

5. Proceed through the wizard to create your environment.

Saved configurations are application-specific. See Saved configurations for details on creating
saved configurations.

Using the new environment wizard

Most of the standard configuration options are presented on the Configure more options page of
the Create New Environment wizard. If you create an Amazon RDS database or configure a VPC for
your environment, additional configuration options are available for those resources.

To set configuration options during environment creation (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications.

3. Choose or create an application.

4. Choose Actions, and then choose Create environment.

5. Proceed through the wizard, and choose Configure more options.

6. Choose any of the configuration presets, and then choose Edit in one or more of the
configuration categories to change a group of related configuration options.

7. When you are done making option selections, choose Create environment.

Any options that you set in the new environment wizard are set directly on the environment and
override any option settings in saved configurations or configuration files (.ebextensions) that
you apply. You can remove settings after the environment is created using the EB CLI or Amazon
CLI to allow the settings in saved configurations or configuration files to surface.

For details about the new environment wizard, see The create new environment wizard.

Using the EB CLI

Methods

During creation 493

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Using configuration files (.ebextensions)

• Using saved configurations

• Using command line options

Using configuration files (.ebextensions)

Include .config files in your project folder under .ebextensions to deploy them with your
application code.

For details about configuration files, see .Ebextensions.

~/workspace/my-app/
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- .elasticbeanstalk
| `-- config.yml
|-- index.php
`-- styles.css

Create your environment and deploy your source code to it with eb create.

~/workspace/my-app$ eb create my-env

Using saved configurations

To apply a saved configuration when you create an environment with eb create, use the --cfg
option.

~/workspace/my-app$ eb create --cfg savedconfig

You can store the saved configuration in your project folder or in your Elastic Beanstalk storage
location on Amazon S3. In the previous example, the EB CLI first looks for a saved configuration file
named savedconfig.cfg.yml in the folder .elasticbeanstalk/saved_configs/. Do not
include the file name extensions (.cfg.yml) when applying a saved configuration with --cfg.

~/workspace/my-app/
|-- .ebextensions

During creation 494

Amazon Elastic Beanstalk Developer Guide

| `-- healthcheckurl.config
|-- .elasticbeanstalk
| |-- saved_configs
| | `-- savedconfig.cfg.yml
| `-- config.yml
|-- index.php
`-- styles.css

If the EB CLI does not find the configuration locally, it looks in the Elastic Beanstalk storage
location in Amazon S3. For details on creating, editing, and uploading saved configurations, see
Saved configurations.

Using command line options

The EB CLI eb create command has several options that you can use to set configuration
options during environment creation. You can use these options to add an RDS database to your
environment, configure a VPC, or override recommended values.

For example, the EB CLI uses the t2.micro instance type by default. To choose a different instance
type, use the --instance_type option.

$ eb create my-env --instance_type t2.medium

To create an Amazon RDS database instance and attach it to your environment, use the --
database options.

$ eb create --database.engine postgres --database.username dbuser

If you leave out the environment name, database password, or any other parameters that are
required to create your environment, the EB CLI prompts you to enter them.

See eb create for a full list of available options and usage examples.

Using the Amazon CLI

When you use the create-environment command to create an Elastic Beanstalk environment
with the Amazon CLI, the Amazon CLI does not apply any recommended values. All configuration
options are defined in configuration files in the source bundle that you specify.

Methods

During creation 495

Amazon Elastic Beanstalk Developer Guide

• Using configuration files (.ebextensions)

• Using a saved configuration

• Using command line options

Using configuration files (.ebextensions)

To apply configuration files to an environment that you create with the Amazon CLI, include them
in the application source bundle that you upload to Amazon S3.

For details about configuration files, see .Ebextensions.

~/workspace/my-app-v1.zip
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- index.php
`-- styles.css

To upload an application source bundle and create an environment with the Amazon CLI

1. If you don't already have an Elastic Beanstalk bucket in Amazon S3, create one with create-
storage-location.

$ aws elasticbeanstalk create-storage-location
{
 "S3Bucket": "elasticbeanstalk-us-west-2-123456789012"
}

2. Upload your application source bundle to Amazon S3.

$ aws s3 cp sourcebundle.zip s3://elasticbeanstalk-us-west-2-123456789012/my-app/
sourcebundle.zip

3. Create the application version.

$ aws elasticbeanstalk create-application-version --application-name my-app --
version-label v1 --description MyAppv1 --source-bundle S3Bucket="elasticbeanstalk-
us-west-2-123456789012",S3Key="my-app/sourcebundle.zip" --auto-create-application

4. Create the environment.

During creation 496

Amazon Elastic Beanstalk Developer Guide

$ aws elasticbeanstalk create-environment --application-name my-app --environment-
name my-env --version-label v1 --solution-stack-name "64bit Amazon Linux 2015.03
 v2.0.0 running Tomcat 8 Java 8"

Using a saved configuration

To apply a saved configuration to an environment during creation, use the --template-name
parameter.

$ aws elasticbeanstalk create-environment --application-name my-app --environment-name
 my-env --template-name savedconfig --version-label v1

When you specify a saved configuration, do not also specify a solution stack name. Saved
configurations already specify a solution stack and Elastic Beanstalk will return an error if you try
to use both options.

Using command line options

Use the --option-settings parameter to specify configuration options in JSON format.

$ aws elasticbeanstalk create-environment --application-name my-app --environment-name
 my-env --version-label v1 --template-name savedconfig --option-settings '[
 {
 "Namespace": "aws:elasticbeanstalk:application",
 "OptionName": "Application Healthcheck URL",
 "Value": "/health"
 }
]

To load the JSON from a file, use the file:// prefix.

$ aws elasticbeanstalk create-environment --application-name my-app --environment-
name my-env --version-label v1 --template-name savedconfig --option-settings file://
healthcheckurl.json

Elastic Beanstalk applies option settings that you specify with the --option-settings option
directly to your environment. If the same options are specified in a saved configuration or
configuration file, --option-settings overrides those values.

During creation 497

Amazon Elastic Beanstalk Developer Guide

Setting configuration options after environment creation

You can modify the option settings on a running environment by applying saved configurations,
uploading a new source bundle with configuration files (.ebextensions), or using a JSON
document. The EB CLI and Elastic Beanstalk console also have client-specific functionality for
setting and updating configuration options.

When you set or change a configuration option, you can trigger a full environment
update, depending on the severity of the change. For example, changes to options in the
aws:autoscaling:launchconfiguration, such as InstanceType, require that the Amazon
EC2 instances in your environment are reprovisioned. This triggers a rolling update. Other
configuration changes can be applied without any interruption or reprovisioning.

You can remove option settings from an environment with EB CLI or Amazon CLI commands.
Removing an option that has been set directly on an environment at an API level allows settings in
configuration files, which are otherwise masked by settings applied directly to an environment, to
surface and take effect.

Settings in saved configurations and configuration files can be overridden by setting the same
option directly on the environment with one of the other configuration methods. However, these
can only be removed completely by applying an updated saved configuration or configuration
file. When an option is not set in a saved configuration, in a configuration file, or directly on an
environment, the default value applies, if there is one. See Precedence for details.

Clients

• The Elastic Beanstalk console

• The EB CLI

• The Amazon CLI

The Elastic Beanstalk console

You can update configuration option settings in the Elastic Beanstalk console by deploying an
application source bundle that contains configuration files, applying a saved configuration, or
modifying the environment directly with the Configuration page in the environment management
console.

Methods

• Using configuration files (.ebextensions)

After creation 498

Amazon Elastic Beanstalk Developer Guide

• Using a saved configuration

• Using the Elastic Beanstalk console

Using configuration files (.ebextensions)

Update configuration files in your source directory, create a new source bundle, and deploy the
new version to your Elastic Beanstalk environment to apply the changes.

For details about configuration files, see .Ebextensions.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Changes made to configuration files will not override option settings in saved configurations or
settings applied directly to the environment at the API level. See Precedence for details.

Using a saved configuration

Apply a saved configuration to a running environment to apply option settings that it defines.

To apply a saved configuration to a running environment (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. In the navigation pane, find your application's name and choose Saved configurations.

4. Select the saved configuration you want to apply, and then choose Load.

After creation 499

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

5. Select an environment, and then choose Load.

Settings defined in a saved configuration override settings in configuration files, and are overridden
by settings configured using the environment management console.

See Saved configurations for details on creating saved configurations.

Using the Elastic Beanstalk console

The Elastic Beanstalk console presents many configuration options on the Configuration page for
each environment.

To change configuration options on a running environment (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. Find the configuration page you want to edit:

• If you see the option you're interested in, or you know which configuration category it's in,
choose Edit in the configuration category for it.

• To look for an option, turn on Table View, and then enter search terms into the search
box. As you type, the list gets shorter and shows only options that match your search
terms.

When you see the option you're looking for, choose Edit in the configuration category that
contains it.

After creation 500

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

5. Change settings, and then choose Save.

6. Repeat the previous two steps in additional configuration categories, as needed.

7. Choose Apply.

Changes made to configuration options in the environment management console are applied
directly to the environment. These changes override settings for the same options in configuration
files or saved configurations. For details, see Precedence.

For details about changing configuration options on a running environment using the Elastic
Beanstalk console, see the topics under Configuring Elastic Beanstalk environments.

The EB CLI

You can update configuration option settings with the EB CLI by deploying source code that
contains configuration files, applying settings from a saved configuration, or modifying the
environment configuration directly with the eb config command.

Methods

• Using configuration files (.ebextensions)

• Using a saved configuration

• Using eb config

• Using eb setenv

After creation 501

Amazon Elastic Beanstalk Developer Guide

Using configuration files (.ebextensions)

Include .config files in your project folder under .ebextensions to deploy them with your
application code.

For details about configuration files, see .Ebextensions.

~/workspace/my-app/
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- .elasticbeanstalk
| `-- config.yml
|-- index.php
`-- styles.css

Deploy your source code with eb deploy.

~/workspace/my-app$ eb deploy

Using a saved configuration

You can use the eb config command to apply a saved configuration to a running environment.
Use the --cfg option with the name of the saved configuration to apply its settings to your
environment.

$ eb config --cfg v1

In this example, v1 is the name of a previously created and saved configuration file.

Settings applied to an environment with this command override settings that were applied during
environment creation, and settings defined in configuration files in your application source bundle.

Using eb config

The EB CLI's eb config command lets you set and remove option settings directly on an
environment by using a text editor.

When you run eb config, the EB CLI shows settings applied to your environment from all sources,
including configuration files, saved configurations, recommended values, options set directly on
the environment, and API defaults.

After creation 502

Amazon Elastic Beanstalk Developer Guide

Note

eb config does not show environment properties. To set environment properties that you
can read from within your application, use eb setenv.

The following example shows settings applied in the
aws:autoscaling:launchconfiguration namespace. These settings include:

• Two recommended values, for IamInstanceProfile and InstanceType, applied by the EB
CLI during environment creation.

• The option EC2KeyName, set directly on the environment during creation based on repository
configuration.

• API default values for the other options.

ApplicationName: tomcat
DateUpdated: 2015-09-30 22:51:07+00:00
EnvironmentName: tomcat
SolutionStackName: 64bit Amazon Linux 2015.03 v2.0.1 running Tomcat 8 Java 8
settings:
...
aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: null
 EC2KeyName: my-key
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 ImageId: ami-1f316660
 InstanceType: t2.micro
...

To set or change configuration options with eb config

1. Run eb config to view your environment's configuration.

~/workspace/my-app/$ eb config

2. Change any of the setting values using the default text editor.

aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: null

After creation 503

Amazon Elastic Beanstalk Developer Guide

 EC2KeyName: my-key
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 ImageId: ami-1f316660
 InstanceType: t2.medium

3. Save the temporary configuration file and exit.

4. The EB CLI updates your environment configuration.

Setting configuration options with eb config overrides settings from all other sources.

You can also remove options from your environment with eb config.

To remove configuration options (EB CLI)

1. Run eb config to view your environment's configuration.

~/workspace/my-app/$ eb config

2. Replace any value shown with the string null. You can also delete the entire line containing
the option that you want to remove.

aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: null
 EC2KeyName: my-key
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 ImageId: ami-1f316660
 InstanceType: null

3. Save the temporary configuration file and exit.

4. The EB CLI updates your environment configuration.

Removing options from your environment with eb config allows settings for the same options to
surface from configuration files in your application source bundle. See Precedence for details.

Using eb setenv

To set environment properties with the EB CLI, use eb setenv.

~/workspace/my-app/$ eb setenv ENVVAR=TEST
INFO: Environment update is starting.
INFO: Updating environment my-env's configuration settings.

After creation 504

Amazon Elastic Beanstalk Developer Guide

INFO: Environment health has transitioned from Ok to Info. Command is executing on all
 instances.
INFO: Successfully deployed new configuration to environment.

This command sets environment properties in the
aws:elasticbeanstalk:application:environment namespace. Environment properties set
with eb setenv are available to your application after a short update process.

View environment properties set on your environment with eb printenv.

~/workspace/my-app/$ eb printenv
 Environment Variables:
 ENVVAR = TEST

The Amazon CLI

You can update configuration option settings with the Amazon CLI by deploying a source bundle
that contains configuration files, applying a remotely stored saved configuration, or modifying the
environment directly with the aws elasticbeanstalk update-environment command.

Methods

• Using configuration files (.ebextensions)

• Using a saved configuration

• Using command line options

Using configuration files (.ebextensions)

To apply configuration files to a running environment with the Amazon CLI, include them in the
application source bundle that you upload to Amazon S3.

For details about configuration files, see .Ebextensions.

~/workspace/my-app-v1.zip
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- index.php
`-- styles.css

After creation 505

Amazon Elastic Beanstalk Developer Guide

To upload an application source bundle and apply it to a running environment (Amazon CLI)

1. If you don't already have an Elastic Beanstalk bucket in Amazon S3, create one with create-
storage-location:

$ aws elasticbeanstalk create-storage-location
{
 "S3Bucket": "elasticbeanstalk-us-west-2-123456789012"
}

2. Upload your application source bundle to Amazon S3.

$ aws s3 cp sourcebundlev2.zip s3://elasticbeanstalk-us-west-2-123456789012/my-app/
sourcebundlev2.zip

3. Create the application version.

$ aws elasticbeanstalk create-application-version --application-
name my-app --version-label v2 --description MyAppv2 --source-bundle
 S3Bucket="elasticbeanstalk-us-west-2-123456789012",S3Key="my-app/
sourcebundlev2.zip"

4. Update the environment.

$ aws elasticbeanstalk update-environment --environment-name my-env --version-label
 v2

Using a saved configuration

You can apply a saved configuration to a running environment with the --template-name option
on the aws elasticbeanstalk update-environment command.

The saved configuration must be in your Elastic Beanstalk bucket in a path named after your
application under resources/templates. For example, the v1 template for the my-app
application in the US West (Oregon) Region (us-west-2) for account 123456789012 is located at
s3://elasticbeanstalk-us-west-2-123456789012/resources/templates/my-app/v1

After creation 506

Amazon Elastic Beanstalk Developer Guide

To apply a saved configuration to a running environment (Amazon CLI)

• Specify the saved configuration in an update-environment call with the --template-name
option.

$ aws elasticbeanstalk update-environment --environment-name my-env --template-
name v1

Elastic Beanstalk places saved configurations in this location when you create them with aws
elasticbeanstalk create-configuration-template. You can also modify saved
configurations locally and place them in this location yourself.

Using command line options

To change configuration options with a JSON document (Amazon CLI)

1. Define your option settings in JSON format in a local file.

2. Run update-environment with the --option-settings option.

$ aws elasticbeanstalk update-environment --environment-name my-env --option-
settings file://~/ebconfigs/as-zero.json

In this example, as-zero.json defines options that configure the environment with a minimum
and maximum of zero instances. This stops the instances in the environment without terminating
the environment.

~/ebconfigs/as-zero.json

[
 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "MinSize",
 "Value": "0"
 },
 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "MaxSize",
 "Value": "0"
 },

After creation 507

Amazon Elastic Beanstalk Developer Guide

 {
 "Namespace": "aws:autoscaling:updatepolicy:rollingupdate",
 "OptionName": "RollingUpdateEnabled",
 "Value": "false"
 }
]

Note

Setting configuration options with update-environment overrides settings from all other
sources.

You can also remove options from your environment with update-environment.

To remove configuration options (Amazon CLI)

• Run the update-environment command with the --options-to-remove option.

$ aws elasticbeanstalk update-environment --environment-name my-env --options-to-
remove Namespace=aws:autoscaling:launchconfiguration,OptionName=InstanceType

Removing options from your environment with update-environment allows settings for the
same options to surface from configuration files in your application source bundle. If an option
isn't configured using any of these methods, the API default value applies, if one exists. See
Precedence for details.

General options for all environments

Namespaces

• aws:autoscaling:asg

• aws:autoscaling:launchconfiguration

• aws:autoscaling:scheduledaction

• aws:autoscaling:trigger

• aws:autoscaling:updatepolicy:rollingupdate

• aws:ec2:instances

General options 508

Amazon Elastic Beanstalk Developer Guide

• aws:ec2:vpc

• aws:elasticbeanstalk:application

• aws:elasticbeanstalk:application:environment

• aws:elasticbeanstalk:application:environmentsecrets

• aws:elasticbeanstalk:cloudwatch:logs

• aws:elasticbeanstalk:cloudwatch:logs:health

• aws:elasticbeanstalk:command

• aws:elasticbeanstalk:environment

• aws:elasticbeanstalk:environment:process:default

• aws:elasticbeanstalk:environment:process:process_name

• aws:elasticbeanstalk:environment:proxy:staticfiles

• aws:elasticbeanstalk:healthreporting:system

• aws:elasticbeanstalk:hostmanager

• aws:elasticbeanstalk:managedactions

• aws:elasticbeanstalk:managedactions:platformupdate

• aws:elasticbeanstalk:monitoring

• aws:elasticbeanstalk:sns:topics

• aws:elasticbeanstalk:sqsd

• aws:elasticbeanstalk:trafficsplitting

• aws:elasticbeanstalk:xray

• aws:elb:healthcheck

• aws:elb:loadbalancer

• aws:elb:listener

• aws:elb:listener:listener_port

• aws:elb:policies

• aws:elb:policies:policy_name

• aws:elbv2:listener:default

• aws:elbv2:listener:listener_port

• aws:elbv2:listenerrule:rule_name

General options 509

Amazon Elastic Beanstalk Developer Guide

• aws:elbv2:loadbalancer

• aws:rds:dbinstance

aws:autoscaling:asg

Configure your environment's Auto Scaling group. For more information, see the section called
“Auto Scaling group”.

Namespace: aws:autoscaling:asg

Name Description Default Valid values

Availability
Zones

Availability Zones (AZs) are distinct
locations within an Amazon Region
that are engineered to be isolated
from failures in other AZs. They
provide inexpensive, low-latency
network connectivity to other AZs in
the same Region. Choose the number
of AZs for your instances.

Any Any

Any 1

Any 2

Any 3

Cooldown Cooldown periods help prevent
Amazon EC2 Auto Scaling from
initiating additional scaling activities
before the effects of previous activitie
s are visible. A cooldown period is
the amount of time, in seconds, after
a scaling activity completes before
another scaling activity can start.

360 0 to 10000

Custom
Availability
Zones

Define the AZs for your instances. None us-east-1a

us-east-1b

us-east-1c

us-east-1d

us-east-1e

General options 510

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

eu-centra
l-1

EnableCap
acityReba
lancing

Specifies whether to enable the
Capacity Rebalancing feature for Spot
Instances in your Auto Scaling Group.
For more information, see Capacity
Rebalancing in the Amazon EC2 Auto
Scaling User Guide.

This option is only relevant when
EnableSpot is set to true in the
aws:ec2:instances namespace,
and there is at least one Spot Instance
in your Auto Scaling group.

false true

false

MinSize The minimum number of instances
that you want in your Auto Scaling
group.

1 1 to 10000

MaxSize The maximum number of instances
that you want in your Auto Scaling
group.

4 1 to 10000

aws:autoscaling:launchconfiguration

Configure the Amazon Elastic Compute Cloud (Amazon EC2) instances for your environment.

The instances that are used for your environment are created using either an Amazon EC2 launch
template or an Auto Scaling group launch configuration resource. The following options work with
both of these resource types.

For more information, see the section called “Amazon EC2 instances”. You can also reference more
information about Amazon Elastic Block Store (EBS) in Amazon EBS chapter in the Amazon EC2
User Guide.

General options 511

https://docs.amazonaws.cn/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AmazonEBS.html

Amazon Elastic Beanstalk Developer Guide

Namespace: aws:autoscaling:launchconfiguration

Name Description Default Valid values

DisableDe
faultEC2S
ecurityGr
oup

When set to the default value of
false, Elastic Beanstalk creates a
default security group that allows
traffic from the internet or load
balancer on the standard ports for
HTTP (80). It attaches this security
group to the EC2 instances of the
environment when it creates the
environment.

When set to true Elastic Beanstalk
will not assign the default security
group to the EC2 instances for a
new environment. For an existing
environment, Elastic Beanstalk will
unassign the default EC2 security
group from your environment's EC2
instances. As a result, you must also
set the following configurations:

• The SecurityGroups option of
this namespace will require at least
one value to define your custom
security group(s).

• For environments with a load
balancer, you will also need to set
the SecurityGroups options in
another namespace to configure
custom security groups for the
load balancer. For application load
balancers, set the option in the
aws:elbv2:loadbalancer namespace
. For classic load balancers, set the

false true

false

General options 512

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

option in the aws:elb:loadbalancer
namespace.

• For more information, see Managing
EC2 security groups.

If a value is specified for EC2KeyNam
e in an environment that has
DisableDefaultEC2SecurityGr
oup set to true a default security
group will not be associated with the
EC2 instances.

General options 513

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

DisableIM
DSv1

Set to true to disable Instance
Metadata Service Version 1 (IMDSv1)
and enforce IMDSv2.

Set to false to enable both IMDSv1
and IMDSv2.

The instances for your environme
nt default as follows, based on the
platform operating system:

• Windows server, AL2 and earlier –
enable both IMDSv1 and IMDSv2
(DisableIMDSv1 defaults to false)

• AL2023 – enable only IMDSv2
(DisableIMDSv1 defaults to true)

For more information, see Configuring
the instance metadata service.

Important

This option setting can cause
Elastic Beanstalk to migrate
an existing environment
with launch configurations
to launch templates. Doing
so requires the necessary
permissions to manage
launch templates. These
permissions are included in
our managed policy. If you use
custom policies instead of our
managed policies, environme
nt creation or updates might

false – platforms
based on Windows
server, Amazon
Linux 2 and earlier

true – platforms
based on Amazon
Linux 2023

true

false

General options 514

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

fail when you update your
environment configura
tion. For more information
and other considerations,
see Migrating your Elastic
Beanstalk environment to
launch templates .

EC2KeyNam
e

You can use a key pair to securely log
into your EC2 instance.

If a value is specified for EC2KeyNam
e in an environment that has
DisableDefaultEC2SecurityGr
oup set to true a default security
group will not be associated with the
EC2 instances.

Note

If you use the Elastic
Beanstalk console to create
an environment, you can't set
this option in a configuration
file. The console overrides this
option with a recommended
value.

None

General options 515

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

IamInstan
ceProfile

An instance profile enables Amazon
Identity and Access Management
(IAM) users and Amazon services to
access temporary security credentials
to make Amazon API calls. Specify the
instance profile's name or its ARN.

Examples:

• aws-elasticbeanstalk-ec2-
role

• arn:aws-cn:iam::12
3456789012:instance-
profile/aws-elasticbeanst
alk-ec2-role

Note

If you use the Elastic Beanstalk
console or EB CLI to create
an environment, you can't set
this option in a configuration
file. The console and EB CLI
override this option with a
recommended value.

None Instance profile
name or ARN.

ImageId You can override the default Amazon
Machine Image (AMI) by specifying
your own custom AMI ID.

Example: ami-1f316660

None

General options 516

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

InstanceT
ype

The instance type that's used to
run your application in an Elastic
Beanstalk environment.

Important

The InstanceType option
is obsolete. It's replaced by
the newer and more powerful
InstanceTypes option in
the aws:ec2:instances
namespace. You can use this
new option to specify a list of
one or more instance types for
your environment. The first
value on that list is equivalent
to the value of the InstanceT
ype option that's included in
the aws:autoscaling:la
unchconfiguration
namespace that's described
here. We recommend that
you specify instance types
by using the new option. If
specified, the new option takes
precedence over the previous
one. For more information,
see the section called “The
aws:ec2:instances namespace”.

The instance types that are available
depend on the Availability Zones and
Region used. If you choose a subnet,
the Availability Zone that contains

Varies by account
and Region.

One EC2
instance type.

Varies by
account, Region,
and Availability
Zone. You can
obtain a list of
Amazon EC2
instance types
filtered by these
values. For more
information,
see Available
instance types in
the Amazon EC2
User Guide.

General options 517

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

that subnet determines the available
instance types.

• Elastic Beanstalk doesn't support
Amazon EC2 Mac instance types.

• For more information about
Amazon EC2 instance families and
types, see Instance types in the
Amazon EC2 User Guide.

• For more information on the
available instance types across
Regions, see Available instance
types in the Amazon EC2 User Guide.

Note

If you use the Elastic Beanstalk
console or EB CLI to create
an environment, you can't set
this option in a configuration
file. The console and EB CLI
override this option with a
recommended value.

General options 518

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

LaunchTem
plateTagP
ropagatio
nEnabled

Set to true to enable the propagati
on of environment tags to the launch
templates for specific resources
provisioned to the environment.

Elastic Beanstalk can only propagate
tags to launch templates for the
following resources:

• EBS volumes

• EC2 instances

• EC2 network interfaces

• Amazon CloudFormation launch
templates that define a resource

This constraint exists because
CloudFormation only allows tags
on template creation for specific
resources. For more information
see TagSpecification in the Amazon
CloudFormation User Guide.

Important

• Changing this option value
from false to true for an
existing environment may
be a breaking change for
previously existing tags.

• When this feature is
enabled, the propagation
of tags will require EC2
replacement, which can
result in downtime. You can

false true

false

General options 519

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-launchtemplate-tagspecification.html

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

enable rolling updates to
apply configuration changes
in batches and prevent
downtime during the update
process. For more informati
on, see Configuration
changes.

For more information about launch
templates, see the following:

• Launch templates in the Amazon
EC2 Auto Scaling User Guide

• Working with templates in the
Amazon CloudFormation User Guide

• Elastic Beanstalk template snippets
in the Amazon CloudFormation User
Guide

For more information about this
option, see Tag propagation to launch
templates.

Monitorin
gInterval

The interval (in minutes) that you
want Amazon CloudWatch metrics to
be returned at.

5 minute 1 minute

5 minute

General options 520

https://docs.amazonaws.cn/autoscaling/ec2/userguide/launch-templates.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/quickref-elasticbeanstalk.html

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

SecurityG
roups

Lists the Amazon EC2 security group
IDs to assign to the EC2 instances
in the Auto Scaling group to define
firewall rules for the instances.

Use this option along with
DisableDefaultEC2SecurityGr
oup to attach your own custom
security groups that define firewall
rules for the EC2 instances. For more
information, see Load balanced
(multi-instance) environments.

Important

You may need to complete
some additional configura
tion to prevent incoming
traffic to your EC2 instances
from being blocked. This only
applies to multi-instance
environments with custom
EC2 security groups. The EC2
security groups must include
an inbound rule that grants
access to traffic routed from
the load balancer. For more
information, see Managing
EC2 security groups in multi-
instance environments.

You can provide a single string of
comma-separated values that contain
existing Amazon EC2 security groups

elasticbe
anstalk-d
efault

General options 521

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

IDs or references to AWS::EC2::Security
Group resources created in the
template.

You must provide at least one
value for this option if DisableDe
faultEC2SecurityGroup for
this namespace is set to true.

General options 522

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

 SSHSource
Restriction

Used to lock down SSH access to an
environment. For example, you can
lock down SSH access to the EC2
instances so that only a bastion host
can access the instances in the private
subnet.

This string takes the following form:

protocol, fromPort, toPort,
source_restriction

protocol

The protocol for the ingress rule.

fromPort

The starting port number.

toPort

The ending port number.

source_restriction

The Classless Inter-Domain
Routing (CIDR) range or the
security group that traffic must
route through. Specify the security
group with the security group ID.

To specify a security group from
another account, include the
Amazon account ID before the
security group ID, separated by a
forward slash. The other account
must be in the same Amazon
Region. Note the syntax: aws-

None

General options 523

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

account-id /security-
group-id . For example:
123456789012 /sg-99999999

Examples:

• tcp, 22, 22, 54.240.19
6.185/32

• tcp, 22, 22, my-security-
group-id

• tcp, 22, 22, 123456789012/
their-security-group-id

General options 524

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

BlockDevi
ceMappings

Attach additional Amazon EBS
volumes or instance store volumes on
all of the instances in the Auto Scaling
group.

Important

This option setting can cause
Elastic Beanstalk to migrate
an existing environment
with launch configurations
to launch templates. Doing
so requires the necessary
permissions to manage
launch templates. These
permissions are included in
our managed policy. If you use
custom policies instead of our
managed policies, environme
nt creation or updates might
fail when you update your
environment configura
tion. For more information
and other considerations,
see Migrating your Elastic
Beanstalk environment to
launch templates .

When mapping instance store
volumes, you only need to map the
device name to a volume name.
However, we recommend, when
mapping Amazon EBS volumes, you
additionally specify some or all of the

None • size — must
be between
500 and
16384 GiB

• throughput
— must be
between 125
and 1000
mebibytes per
second (MiB/s)

General options 525

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

following fields (each field must be
separated by a colon):

• snapshot ID

• size, in GB

• delete on terminate (true or
false)

• storage type (only for gp3, gp2,
standard, st1, sc1, or io1)

• IOPS (only for gp3 or io1)

• throughput (only for gp3)

The following example attaches
three Amazon EBS volumes, one
blank 100GB gp2 volume and one
snapshot, one blank 20GB io1 volume
with 2000 provisioned IOPS, and an
instance store volume ephemeral
0 . Multiple instance store volumes
can be attached if the instance type
supports it.

/dev/sdj=:100:true:gp2,/dev
/sdh=snap-51eef269,/dev/
sdi=:20:true:io1:2000,/
dev/sdb=ephemeral0

General options 526

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

RootVolum
eType

Volume type (magnetic, general
purpose SSD or provisioned IOPS
SSD) to use for the root Amazon EBS
volume attached to the EC2 instances
for your environment.

Important

This option setting can cause
Elastic Beanstalk to migrate
an existing environment
with launch configurations
to launch templates. Doing
so requires the necessary
permissions to manage
launch templates. These
permissions are included in
our managed policy. If you use
custom policies instead of our
managed policies, environme
nt creation or updates might
fail when you update your
environment configura
tion. For more information
and other considerations,
see Migrating your Elastic
Beanstalk environment to
launch templates .

Varies by platform. standard
for magnetic
storage.

gp2 or gp3 for
general purpose
SSD.

io1 for
provisioned IOPS
SSD.

General options 527

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

RootVolum
eSize

The storage capacity of the root
Amazon EBS volume in whole GB.

Required if you set RootVolum
eType to provisioned IOPS SSD.

For example, "64".

Varies per platform
for magnetic
storage and general
purpose SSD.

None for provision
ed IOPS SSD.

10 to 16384
GB for general
purpose and
provisioned IOPS
SSD.

8 to 1024 GB for
magnetic.

RootVolum
eIOPS

The desired input/output operation
s per second (IOPS) for a provisioned
IOPS SSD root volume or for a general
purpose gp3 SSD root volume.

The maximum ratio of IOPS to volume
size is 500 to 1. For example, a volume
with 3000 IOPS must be at least 6 GiB.

None 100 to 20000
for io1 provision
ed IOPS SSD
root volumes.

3000 to 16000
for general
purpose gp3
SSD root
volumes.

RootVolum
eThroughp
ut

The desired throughput of mebibytes
per second (MiB/s) to provision for the
Amazon EBS root volume attached to
your environment's EC2 instance.

Note

This option is only applicable
to gp3 storage types.

None 125 to 1000

aws:autoscaling:scheduledaction

Configure scheduled actions for your environment's Auto Scaling group. For each action, specify a
resource_name in addition to the option name, namespace, and value for each setting. See The
aws:autoscaling:scheduledaction namespace for examples.

General options 528

Amazon Elastic Beanstalk Developer Guide

Namespace: aws:autoscaling:scheduledaction

Name Description Default Valid values

StartTime For one-time actions, choose the
date and time to run the action. For
recurrent actions, choose when to
activate the action.

None A ISO-8601
timestamp
 unique across all
scheduled scaling
actions.

EndTime A date and time in the future (in the
UTC/GMT time zone) when you want
the scheduled scaling action to stop
repeating. If you don't specify an
EndTime, the action recurs according
to the Recurrence expression.

Example: 2015-04-28T04:07:2Z

When a scheduled action ends,
Amazon EC2 Auto Scaling doesn't
automatically revert to its previous
settings. Configure a second
scheduled action to return to the
original settings as needed.

None A ISO-8601
timestamp
 unique across all
scheduled scaling
actions.

MaxSize The maximum instance count to
apply when the action runs.

None 0 to 10000

MinSize The minimum instance count to
apply when the action runs.

None 0 to 10000

DesiredCapacity Set the initial desired capacity for
the Auto Scaling group. After the
scheduled action is applied, triggers
adjust the desired capacity based on
their settings.

None 0 to 10000

General options 529

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

Recurrence The frequency that you want the
scheduled action to occur at. If you
don't specify a recurrence, then the
scaling action occurs only once, as
specified by the StartTime .

None A Cron expressio
n.

Suspend Set to true to deactivate a recurrent
scheduled action temporarily.

false true

false

aws:autoscaling:trigger

Configure scaling triggers for your environment's Auto Scaling group.

Note

Three options in this namespace determine how long the metric for a trigger can remain
beyond its defined limits before the trigger initates. These options are related as follows:
BreachDuration = Period * EvaluationPeriods
The default values for these options (5, 5, and 1, respectively) satisfy this equation. If you
specify inconsistent values, Elastic Beanstalk might modify one of the values so that the
equation is still satisfied.

Namespace: aws:autoscaling:trigger

Name Description Default Valid values

BreachDuration The amount of time, in minutes, a
metric can be beyond its defined
limit (as specified in the UpperThre
shold and LowerThreshold)
before the trigger is invoked.

5 1 to 600

General options 530

http://en.wikipedia.org/wiki/Cron

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

LowerBreachScaleIn
crement

How many Amazon EC2 instances to
remove when performing a scaling
activity.

-1

LowerThreshold If the measurement falls below this
number for the breach duration, a
trigger is invoked.

2000000 0 to 20000000

MeasureName The metric that's used for your Auto
Scaling trigger.

Note

HealthyHostCount ,
UnhealthyHostCount
and TargetResponseTime

 are only applicable
for environments with a
dedicated load balancer.
These aren't valid metric
values for environments
configured with a shared load
balancer. For more informati
on about load balancer types,
see Load balancer for your
Elastic Beanstalk environme
nt.

NetworkOu
t

CPUUtiliz
ation

NetworkIn

NetworkOut

DiskWriteOps

DiskReadB
ytes

DiskReadOps

DiskWrite
Bytes

Latency

RequestCount

HealthyHo
stCount

Unhealthy
HostCount

TargetRes
ponseTime

General options 531

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

Period Specifies how frequently Amazon
CloudWatch measures the metrics for
your trigger. The value is the number
of minutes between two consecutive
periods.

5 1 to 600

EvaluationPeriods The number of consecutive evaluatio
n periods that's used to determine if
a breach is occurring.

1 1 to 600

Statistic The Statistic the trigger uses, such as
Average.

Average Minimum

Maximum

Sum

Average

Unit The unit for the trigger measureme
nt, such as Bytes.

Bytes Seconds

Percent

Bytes

Bits

Count

Bytes/Second

Bits/Second

Count/Second

None

UpperBreachScaleIn
crement

Specifies how many Amazon EC2
instances to add when performing a
scaling activity.

1

General options 532

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

UpperThreshold If the measurement is higher than
this number for the breach duration,
a trigger is invoked.

6000000 0 to 20000000

aws:autoscaling:updatepolicy:rollingupdate

Configure rolling updates your environment's Auto Scaling group.

Namespace: aws:autoscaling:updatepolicy:rollingupdate

Name Description Default Valid values

MaxBatchSize The number of
instances included
in each batch of the
rolling update.

One-third of
the minimum
size of the Auto
Scaling group,
rounded to the
next highest
integer.

1 to 10000

MinInstancesInService The minimum
number of instances
that must be in
service within the
Auto Scaling group
while other instances
are terminated.

The minimum
size of the Auto
Scaling group or
one fewer than
the maximum
size of the Auto
Scaling group,
whichever is
lower.

0 to 9999

RollingUpdateEnabled If true, it enables
rolling updates for
an environment.
Rolling updates are
useful when you
need to make small,

false true

false

General options 533

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

frequent updates to
your Elastic Beanstalk
 software applicati
on and you want to
avoid application
downtime.

Setting this value
to true automatic
ally enables the
MaxBatchS
ize , MinInstan
cesInService ,
and PauseTime
options. Setting any
of those options
also automatically
sets the RollingUp
dateEnabled
option value to true.
Setting this option
to false disables
rolling updates.

Note

If you use
the Elastic
Beanstalk
console or
EB CLI to
create an
environment,
you can't set
this option in

General options 534

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

a configura
tion file.
The console
and EB CLI
override this
option with a
recommend
ed value.

General options 535

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

RollingUpdateType This includes three
types: time-base
d rolling updates,
health-based
rolling updates, and
immutable updates.

Time-based rolling
updates apply a
PauseTime between
batches. Health-
based rolling
updates wait for
new instances to
pass health checks
before moving on
to the next batch.
Immutable updates
launch a full set of
instances in a new
Auto Scaling group.

Note

If you use
the Elastic
Beanstalk
console or
EB CLI to
create an
environment,
you can't set
this option in
a configura
tion file.

Time Time

Health

Immutable

General options 536

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

The console
and EB CLI
override this
option with a
recommend
ed value.

PauseTime The amount of
time (in seconds,
minutes, or hours)
the Elastic Beanstalk
service waits after it
completed updates
to one batch of
instances and before
it continues on to the
next batch.

Automatically
computed based
on instance type
and container.

PT0S* (0 seconds)
to PT1H (1 hour)

Timeout The maximum
amount of time
(in minutes or
hours) to wait for all
instances in a batch
of instances to pass
health checks before
canceling the update.

PT30M (30
minutes)

PT5M* (5 minutes)
to PT1H (1 hour)

*ISO8601 duration
format: PT#H#M#S
where each # is the
number of hours,
minutes, and/or
seconds, respectiv
ely.

aws:ec2:instances

Configure your environment's instances, including Spot options. This namespace complements
aws:autoscaling:launchconfiguration and aws:autoscaling:asg.

For more information, see the section called “Auto Scaling group”.

General options 537

http://en.wikipedia.org/wiki/ISO_8601#Durations

Amazon Elastic Beanstalk Developer Guide

Namespace: aws:ec2:instances

Name Description DefaultValid values

EnableSpot Enable Spot Instance requests for
your environment. When false,
some options in this namespace don't
take effect.

Important

This option setting can cause
Elastic Beanstalk to migrate
an existing environment
with launch configurations
to launch templates. Doing
so requires the necessary
permissions to manage
launch templates. These
permissions are included in
our managed policy. If you
use custom policies instead
of our managed policies,
environment creation or
updates might fail when
you update your environme
nt configuration. For more
information and other
considerations, see Migrating
your Elastic Beanstalk
 environment to launch
templates .

false true

false

InstanceTypes

A comma-separated list of instance
types that you want your environme
nt to use (for example, t2.micro,
t3.micro).

A
list
of
two

One to forty EC2
instance types. We
recommend at least
two.

General options 538

Amazon Elastic Beanstalk Developer Guide

Name Description DefaultValid values

When EnableSpot is true and
SpotAllocationStrategy is
set to capacity-optimized-
prioritized , the list of values
specified in this option determines
the instance type priority for the Spot
Instance allocation strategy.

When Spot Instances are not
activated (EnableSpot is false),
only the first instance type on the list
is used.

The first instance type on the list
in this option is equivalent to the
value of the InstanceType option
in the aws:autoscaling:la
unchconfiguration namespace.
We don't recommend using the latter
option because it's obsolete. If you
specify both, the first instance type
on the list in the InstanceTypes
option is used, and InstanceType
is ignored.

The instance types that are available
depend on the Availability Zones and
Region used. If you choose a subnet,
the Availability Zone that contains
that subnet determines the available
instance types.

• Elastic Beanstalk doesn't support
Amazon EC2 Mac instance types.

• For more information about
Amazon EC2 instance families and

instance
types.

Varies
by
account
and
Region.

Varies by account,
Region, and Availability
Zone. You can obtain
a list of Amazon EC2
instance types filtered
by these values. For
more information, see
Available instance types
in the Amazon EC2 User
Guide.

The instance types must
all be part of the same
architecture (arm64,
x86_64, i386).

Supported
Architectures
is also part of this
namespace. If you
provide any values
for Supported
Architectures ,
the value(s) you enter
for InstanceTypes
must belong to one,
and only one, of the
architectures you
provide for Supported
Architectures .

General options 539

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes

Amazon Elastic Beanstalk Developer Guide

Name Description DefaultValid values

types, see Instance types in the
Amazon EC2 User Guide.

• For more information on the
available instance types across
Regions, see Available instance
types in the Amazon EC2 User
Guide.

Note

Some older Amazon accounts
might provide Elastic
Beanstalk with default
instance types that don't
support Spot Instances
(for example, t1.micro). If
you activate Spot Instance
requests and you get an error
about an instance type that
doesn’t support Spot, be sure
to configure instance types
that support Spot. To choose
Spot Instance types, use the
Spot Instance Advisor.

When you update your environme
nt configuration and remove one
or more instance types from the
InstanceTypes option, Elastic
Beanstalk terminates any Amazon
EC2 instances running on any of
the removed instance types. Your
environment's Auto Scaling group

General options 540

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://aws.amazon.com/ec2/spot/instance-advisor/

Amazon Elastic Beanstalk Developer Guide

Name Description DefaultValid values

then launches new instances, as
necessary to complete the desired
capacity, using your current specified
instance types.

SpotAllocationStra
tegy

Specifies the spot instance allocatio
n strategy that determines how Spot
Instances are allocated from the
available spot capacity pools.

If set to capacity-optimized
-prioritized , the order of the
values in InstanceTypes sets the
instance type priority for allocation.

This option is relevant only when
EnableSpot is true.

capacity-
optimized

capacity-
optimized

price-capacity-
optimized

capacity-
optimized-
prioritized

lowest-price

SpotFleet
OnDemandBase

The minimum number of On-Demand
Instances that your Auto Scaling
group provisions before considering
Spot Instances as your environment
scales up.

This option is relevant only when
EnableSpot is true.

0 0 to MaxSize option
in aws:autos
caling:asg
namespace

General options 541

Amazon Elastic Beanstalk Developer Guide

Name Description DefaultValid values

SpotFleet
OnDemandA
boveBaseP
ercentage

The percentage of On-Demand
Instances as part of additional
capacity that your Auto Scaling group
provisions beyond the SpotOnDem
andBase instances.

This option is relevant only when
EnableSpot is true.

0
for a
single-
in
stance
environme
nt

70
for a
load-
bala
nced
environme
nt

0 to 100

SpotMaxPrice The maximum price per unit hour, in
USD, that you're willing to pay for a
Spot Instance. For recommendations
about maximum price options for
Spot Instances, see Spot Instance
pricing history in the Amazon EC2
User Guide.

This option is relevant only when
EnableSpot is true.

On-
Demand
price,
for
each
instance
type.
The
option's
value
in
this
case
is
null.

0.001 to 20.0

null

General options 542

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-spot-instances-history.html

Amazon Elastic Beanstalk Developer Guide

Name Description DefaultValid values

SupportedArchitect
ures

A comma-separated list of EC2
instance architecture types that you'll
use for your environment.

Elastic Beanstalk supports instance
types based on the following
processor architectures:

• Amazon Graviton 64-bit Arm
architecture (arm64)

• 64-bit architecture (x86_64)

• 32-bit architecture (i386)

For more information about
processor architecture and Amazon
EC2 instance types see the section
called “Amazon EC2 instance types”.

None arm64

x86_64

i386

Note

The 32-bit
architecture
i386 is not
supported by
the majority of
Elastic Beanstalk
platforms. We
recommended
that you choose
the x86_64 or
arm64 architect
ure types
instead.

aws:ec2:vpc

Configure your environment to launch resources in a custom Amazon Virtual Private Cloud
(Amazon VPC). If you don't configure settings in this namespace, Elastic Beanstalk launches
resources in the default VPC.

Namespace: aws:ec2:vpc

Name Description Default Valid
values

VPCId The ID for your Amazon VPC. None

General options 543

https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Subnets The IDs of the Auto Scaling group subnet or subnets.
If you have multiple subnets, specify the value as
a single comma-separated string of subnet IDs (for
example, "subnet-11111111,subnet-222
22222").

None

ELBSubnets The IDs of the subnet or subnets for the elastic
load balancer. If you have multiple subnets, specify
the value as a single comma-separated string of
subnet IDs (for example, "subnet-11111111,s
ubnet-22222222").

None

ELBScheme Specify internal if you want to create an internal
load balancer in your Amazon VPC so that your Elastic
Beanstalk application can't be accessed from outside
your Amazon VPC. If you specify a value other than
public or internal, Elastic Beanstalk ignores the
value.

public public

internal

DBSubnets Contains the IDs of the database subnets. This is only
used if you want to add an Amazon RDS DB Instance
as part of your application. If you have multiple
subnets, specify the value as a single comma-sep
arated string of subnet IDs (for example, "subnet-1
1111111,subnet-22222222").

None

General options 544

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Associate
PublicIpA
ddress

Specifies whether to launch instances with public IP
addresses in your Amazon VPC. Instances with public
IP addresses don't require a NAT device to communica
te with the Internet. You must set the value to true if
you want to include your load balancer and instances
in a single public subnet.

This option has no effect on a single-instance
environment, which always has a single Amazon EC2
instance with an Elastic IP address. The option is
relevant to load-balanced, scalable environments.

None true

false

aws:elasticbeanstalk:application

Configure a health check path for your application. For more information, see Basic health
reporting.

Namespace: aws:elasticbeanstalk:application

Name Description DefaultValid values

Application
Healthcheck URL

The path where health check requests
are sent to. If this path isn't set, the
load balancer attempts to make a
TCP connection on port 80 to verify
the health status of your applicati
on. Set to a path starting with / to
send an HTTP GET request to that
path. You can also include a protocol
(HTTP, HTTPS, TCP, or SSL) and port
before the path to check HTTPS
connectivity or use a non-default
port.

None Valid values include:

/ (HTTP GET to root
path)

/health

HTTPS:443/

HTTPS:443/ health

General options 545

Amazon Elastic Beanstalk Developer Guide

Name Description DefaultValid values

Note

If you use the Elastic
Beanstalk console to create
an environment, you can't set
this option in a configuration
file. The console overrides this
option with a recommended
value.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

aws:elasticbeanstalk:application:environment

Configure environment properties for your application.

Namespace: aws:elasticbeanstalk:application:environment

Name Description Default Valid values

Any environment
variable name.

Pass in key-value pairs. None Any environment
variable value.

See Environment variables and other software settings for more information.

aws:elasticbeanstalk:application:environmentsecrets

Configure environment variables to serve as environment secrets for your application. Environment
secrets store Amazon Secrets Manager secrets or Amazon Systems Manager Parameter Store
parameters.

General options 546

Amazon Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:application:environmentsecrets

Name Description DefaultValid values

OptionName Specifies the name of the environme
nt variable to hold the secret store or
parameter store value.

None Any environment
variable name.

Value Specifies the ARN for the value
stored in Amazon Secrets Manager or
Amazon Systems Manager Parameter
 Store. During instance bootstrap
ping Elastic Beanstalk initiates the
environment variable to the value
stored in this ARN resource.

Note

Ensure that the necessary
permissions are in place
for your environment's EC2
instance profile role to access
the secret and parameter
ARNs. For more information,
see Required IAM permissions.

None Valid ARN value for
an Amazon Secrets
Manager secret or
Amazon Systems
Manager Parameter
Store parameter value.

For more information, see Configuring secrets as environment variables.

aws:elasticbeanstalk:cloudwatch:logs

Configure instance log streaming for your application.

General options 547

Amazon Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:cloudwatch:logs

Name Description Default Valid
values

StreamLogs Specifies whether to create groups in CloudWatch
Logs for proxy and deployment logs, and stream logs
from each instance in your environment.

false true

false

DeleteOnT
erminate

Specifies whether to delete the log groups when the
environment is terminated. If false, the logs are
kept RetentionInDays days.

false true

false

Retention
InDays

The number of days to keep log events before they
expire.

7 1, 3, 5,
7, 14,
30, 60,
90, 120,
150,
180,
365,
400,
545,
731,
1827,
3653

aws:elasticbeanstalk:cloudwatch:logs:health

Configure environment health log streaming for your application.

Namespace: aws:elasticbeanstalk:cloudwatch:logs:health

Name Description Default Valid
values

HealthStr
eamingEna
bled

For environments with enhanced health reporting
enabled, specifies whether to create a group in
CloudWatch Logs for environment health and archive

false true

false

General options 548

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Elastic Beanstalk environment health data. For
information about enabling enhanced health, see
aws:elasticbeanstalk:healthreporting
:system .

DeleteOnT
erminate

Specifies whether to delete the log group when the
environment is terminated. If false, the health data
is kept RetentionInDays days.

false true

false

Retention
InDays

The number of days to keep the archived health data
before it expires.

7 1, 3, 5,
7, 14,
30, 60,
90, 120,
150,
180,
365,
400,
545,
731,
1827,
3653

aws:elasticbeanstalk:command

Configure the deployment policy for your application code. For more information, see the section
called “Deployment options”.

Namespace: aws:elasticbeanstalk:command

Name Description Default Valid
values

Deploymen
tPolicy

Choose a deployment policy for application
version deployments.

AllAtOnce AllAtOnce

General options 549

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Note

If you use the Elastic Beanstalk
console to create an environment, you
can't set this option in a configuration
file. The console overrides this option
with a recommended value.

Rolling

RollingWi
thAdditio
nalBatch

Immutable

TrafficSp
litting

Timeout The amount of time, in seconds, to wait
for an instance to complete executing
 commands.

Elastic Beanstalk internally adds 240 seconds
(four minutes) to the Timeout value. For
example, the effective timeout by default is
840 seconds (600 + 240), or 14 minutes.

600 1 to 3600

BatchSizeType The type of number that's specified in
BatchSize.

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this option
in a configuration file. The console
and EB CLI override this option with a
recommended value.

Percentag
e

Percentag
e

Fixed

General options 550

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

BatchSize The percentage or the fixed number of
Amazon EC2 instances in the Auto Scaling
group to simultaneously perform deploymen
ts on. Valid values vary depending on the
BatchSizeType setting used.

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this option
in a configuration file. The console
and EB CLI override this option with a
recommended value.

100 1 to 100
(Percentag
e).

1 to
aws:autos
caling:as
g::MaxSize
(Fixed)

IgnoreHea
lthCheck

Don't cancel a deployment due to failed
health checks.

false true

false

aws:elasticbeanstalk:environment

Configure your environment's architecture and service role.

Namespace: aws:elasticbeanstalk:environment

Name Description Default Valid values

Environme
ntType

Set to SingleInstance to launch one
EC2 instance with no load balancer.

LoadBalan
ced

SingleIns
tance

LoadBalan
ced

ServiceRole The name of an IAM role that Elastic
Beanstalk uses to manage resources for the

None IAM role
name, path/

General options 551

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

environment. Specify a role name (optional
ly prefixed with a custom path) or its ARN.

Examples:

• aws-elasticbeanstalk-servic
e-role

• custom-path /custom-role

• arn:aws-cn:iam::12345678901
2:role/aws-elasticbeanstalk
-service-role

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this
option in a configuration file. The
console and EB CLI override this
option with a recommended value.

name, or
ARN

LoadBalan
cerType

The type of load balancer for your
environment. For more information, see the
section called “Load balancer”.

classic classic

applicati
on

network

General options 552

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

LoadBalan
cerIsShared

Specifies whether the environment's load
balancer is dedicated or shared. This option
can only be set for an Application Load
Balancer. It can't be changed after the
environment is created.

When false, the environment has its
own dedicated load balancer, created,
and managed by Elastic Beanstalk. When
true, the environment uses a shared load
balancer, created by you and specified in
the SharedLoadBalancer option of the
aws:elbv2:loadbalancer namespace.

false true

false

aws:elasticbeanstalk:environment:process:default

Configure your environment's default process.

Namespace: aws:elasticbeanstalk:environment:process:default

Name Description Default Valid values

DeregistrationDelay The amount of time,
in seconds, to wait
for active requests
to complete before
deregistering.

20 0 to 3600

HealthCheckInterval The interval of
time, in seconds,
that Elastic Load
Balancing checks the
health of the Amazon
EC2 instances of your
application.

With classic or
application load
balancer: 15

With network load
balancer: 30

With classic or
application load
balancer: 5 to 300

With network load
balancer: 10, 30

General options 553

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

HealthCheckPath The path that HTTP
requests for health
checks are sent to.

/ A routable path.

HealthCheckTimeout The amount of time,
in seconds, to wait
for a response during
a health check.

This option is
only applicable to
environments with
an application load
balancer.

5 1 to 60

HealthyThresholdCo
unt

The number
of consecutive
successful requests
before Elastic Load
Balancing changes
the instance health
status.

With classic or
application load
balancer: 3

With network load
balancer: 5

2 to 10

MatcherHTTPCode A comma-separated
list of HTTP code(s)
that indicate that an
instance is healthy.

This option is
only applicable to
environments with a
network or applicati
on load balancer.

200 With application load
balancer: 200 to 499

With network load
balancer: 200 to 399

Port Port that the process
listens on.

80 1 to 65535

General options 554

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

Protocol The protocol that the
process uses.

With an applicati
on load balancer,
you can only set this
option to HTTP or
HTTPS.

With a network load
balancer, you can
only set this option to
TCP.

With classic or
application load
balancer: HTTP

With network load
balancer: TCP

TCP

HTTP

HTTPS

StickinessEnabled Set to true to enable
sticky sessions.

This option is
only applicable to
environments with
an application load
balancer.

'false' 'false'

'true'

StickinessLBCookie
Duration

The lifetime, in
seconds, of the sticky
session cookie.

This option is
only applicable to
environments with
an application load
balancer.

86400 (one day) 1 to 604800

General options 555

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

StickinessType Set to lb_cookie
 to use cookies for

sticky sessions.

This option is
only applicable to
environments with
an application load
balancer.

lb_cookie lb_cookie

UnhealthyThreshold
Count

The number
of consecutive
unsuccessful requests
before Elastic Load
Balancing changes
the instance health
status.

5 2 to 10

aws:elasticbeanstalk:environment:process:process_name

Configure additional processes for your environment.

Namespace: aws:elasticbeanstalk:environment:process:process_name

Name Description Default Valid values

DeregistrationDelay The amount of time,
in seconds, to wait
for active requests
to complete before
deregistering.

20 0 to 3600

HealthCheckInterval The interval, in
seconds, that Elastic
Load Balancing
checks the health

With classic or
application load
balancer: 15

With classic or
application load
balancer: 5 to 300

General options 556

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

of Amazon EC2
instances for your
application.

With network load
balancer: 30

With network load
balancer: 10, 30

HealthCheckPath The path that HTTP
requests for health
checks are sent to.

/ A routable path.

HealthCheckTimeout The amount of time,
in seconds, to wait
for a response during
a health check.

This option is
only applicable to
environments with
an application load
balancer.

5 1 to 60

HealthyThresholdCo
unt

The number
of consecutive
successful requests
before Elastic Load
Balancing changes
the instance health
status.

With classic or
application load
balancer: 3

With network load
balancer: 5

2 to 10

General options 557

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

MatcherHTTPCode A comma-separated
list of HTTP code(s)
that indicates that an
instance is healthy.

This option is
only applicable to
environments with a
network or applicati
on load balancer.

200 With application load
balancer: 200 to 499

With network load
balancer: 200 to 399

Port The port that the
process listens on.

80 1 to 65535

Protocol The protocol that the
process uses.

With an applicati
on load balancer,
you can only set this
option to HTTP or
HTTPS.

With a network load
balancer, you can
only set this option to
TCP.

With classic or
application load
balancer: HTTP

With network load
balancer: TCP

TCP

HTTP

HTTPS

StickinessEnabled Set to true to enable
sticky sessions.

This option is
only applicable to
environments with
an application load
balancer.

'false' 'false'

'true'

General options 558

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

StickinessLBCookie
Duration

The lifetime, in
seconds, of the sticky
session cookie.

This option is
only applicable to
environments with
an application load
balancer.

86400 (one day) 1 to 604800

StickinessType Set to lb_cookie
 to use cookies for

sticky sessions.

This option is
only applicable to
environments with
an application load
balancer.

lb_cookie lb_cookie

UnhealthyThreshold
Count

The number
of consecutive
unsuccessful requests
before Elastic Load
Balancing changes
the instance health
status.

5 2 to 10

aws:elasticbeanstalk:environment:proxy:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

General options 559

Amazon Elastic Beanstalk Developer Guide

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

Note

This namespace applies to platform branches based on Amazon Linux 2 and later. If your
environment uses a platform version based on Amazon Linux AMI (preceding Amazon Linux
2), refer to the section called “Platform specific options” for platform-specific static file
namespaces.

Namespace: aws:elasticbeanstalk:environment:proxy:staticfiles

Name Value

The path where the proxy server serves the
files. Start the value with /.

For example, specify /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

The name of the folder containing the files.

For example, specify staticimages to serve
files from a folder named staticimages at
the top level of your source bundle.

aws:elasticbeanstalk:healthreporting:system

Configure enhanced health reporting for your environment.

Namespace: aws:elasticbeanstalk:healthreporting:system

Name Description Default Valid
values

SystemType The health reporting system (basic or
enhanced). Enhanced health reporting requires
a service role and a version 2 or newer platform
version.

basic basic

enhanced

General options 560

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Note

If you use the Elastic Beanstalk console
or EB CLI to create an environment, you
can't set this option in a configuration
file. The console and EB CLI override this
option with a recommended value.

ConfigDocument A JSON document that describes the environme
nt and instance metrics to publish to CloudWatc
h.

None

EnhancedH
ealthAuthEnabled

Enables authorization for the internal API
that Elastic Beanstalk uses to communica
te enhanced health information from your
environment instances to the Elastic Beanstalk
 service.

For more information, see the section called
“Enhanced health roles”.

Note

This option is only applicable to
enhanced health reporting (such
as when SystemType is set to
enhanced).

true true

false

General options 561

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

HealthChe
ckSuccess
Threshold

Lowers the threshold for instances to pass
health checks.

Note

If you use the Elastic Beanstalk console
to create an environment, you can't set
this option in a configuration file. The
console overrides this option with a
recommended value.

Ok Ok

Warning

Degraded

Severe

aws:elasticbeanstalk:hostmanager

Configure the EC2 instances in your environment to upload rotated logs to Amazon S3.

Namespace: aws:elasticbeanstalk:hostmanager

Name Description Default Valid
values

LogPublic
ationControl

Copy the log files of the Amazon EC2 instances
for your application to the Amazon S3 bucket
that's associated with your application.

false true

false

aws:elasticbeanstalk:managedactions

Configure managed platform updates for your environment.

Namespace: aws:elasticbeanstalk:managedactions

Name Description Default Valid values

ManagedActionsEnab
led

Enable managed platform
updates.

false true

false

General options 562

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

When you set this to true, you
must also specify a Preferred
StartTime and UpdateLev
el .

PreferredStartTime Configure a maintenance
window for managed actions in
UTC.

For example, "Tue:09:00" .

None Day and time
in the

day:hour:minute

format.

ServiceRoleForMana
gedUpdates

The name of an IAM role
that Elastic Beanstalk uses to
perform managed platform
updates for your environment.

You can use either the same
role that you specified
for the ServiceRole
option of the aws:elast
icbeanstalk:enviro
nment namespace, or your
account's managed updates
service-linked role. In the latter
case, if the account doesn't
have a managed-updates
service-linked role yet, Elastic
Beanstalk creates it.

None Same as
ServiceRo
le

or

AWSServic
eRoleForE
lasticBea
nstalkMan
agedUpdat
es

aws:elasticbeanstalk:managedactions:platformupdate

Configure managed platform updates for your environment.

General options 563

Amazon Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:managedactions:platformupdate

Name Description Default Valid values

UpdateLevel The highest level of
update to apply with
managed platform updates.
Platforms are versioned
 major.minor.patch. For
example, 2.0.8 has a major
version of 2, a minor version of
0, and a patch version of 8.

None patch for
patch version
updates only.

minor for
both minor
and patch
version
updates.

InstanceRefreshEna
bled

Enable weekly instance
replacement.

This requires ManagedAc
tionsEnabled to be set to
true.

false true

false

aws:elasticbeanstalk:monitoring

Configure your environment to terminate EC2 instances that fail health checks.

Namespace: aws:elasticbeanstalk:monitoring

Name Description Default Valid values

Automatically
Terminate Unhealthy
Instances

Terminate an instance if it fails
health checks.

Note

This option was only
supported on legacy
environments. It
determined the health
of an instance based on

true true

false

General options 564

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

being able to reach it
and on other instance-
based metrics.
Elastic Beanstalk
doesn't provide a
way to automatically
terminate instances
based on application
health.

aws:elasticbeanstalk:sns:topics

Configure notifications for your environment.

Namespace: aws:elasticbeanstalk:sns:topics

Name Description Default Valid values

Notification
Endpoint

The endpoint where you want to
be notified of important events
affecting your application.

Note

If you use the Elastic
Beanstalk console to
create an environment,
you can't set this option
in a configuration file.
The console overrides this
option with a recommend
ed value.

None

Notification
Protocol

The protocol that's used to send
notifications to your endpoint.

email http

General options 565

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

https

email

email-json

sqs

Notification
Topic ARN

The Amazon Resource Name
(ARN) for the topic you subscribed
to.

None

Notification
Topic Name

The name of the topic you
subscribed to.

None

aws:elasticbeanstalk:sqsd

Configure the Amazon SQS queue for a worker environment.

Namespace: aws:elasticbeanstalk:sqsd

Name Description Default Valid values

WorkerQue
ueURL

The URL of the queue that the
daemon in the worker environme
nt tier reads messages from.

Note

When you don't specify
a value, the queue
that Elastic Beanstalk
automatically creates
is a standard Amazon
SQS queue. When you
provide a value, you can
provide the URL of either

automatic
ally
generated

If you don't specify a value,
then Elastic Beanstalk
automatically creates a
queue.

General options 566

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

a standard or a FIFO
Amazon SQS queue. Be
aware that if you provide a
FIFO queue, periodic tasks
aren't supported.

HttpPath The relative path to the applicati
on that HTTP POST messages are
sent to.

/

MimeType The MIME type of the message
that's sent in the HTTP POST
request.

applicati
on/
json

application/json

application/x-www-
form-urlencoded

application/xml

text/plain

Custom MIME type.

HttpConne
ctions

The maximum number of
concurrent connections to any
applications that are within an
Amazon EC2 instance.

Note

If you use the Elastic
Beanstalk console to
create an environment,
you can't set this option
in a configuration file.
The console overrides this
option with a recommend
ed value.

50 1 to 100

General options 567

https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

ConnectTi
meout

The amount of time, in seconds, to
wait for successful connections to
an application.

5 1 to 60

Inactivit
yTimeout

The amount of time, in seconds, to
wait for a response on an existing
connection to an application.
The message is reprocessed until
the daemon receives a 200 (OK)
response from the application in
the worker environment tier or the
RetentionPeriod expires.

299 1 to 36000

Visibilit
yTimeout

The amount of time, in seconds,
an incoming message from the
Amazon SQS queue is locked for
processing. After the configure
d amount of time has passed,
then the message is again made
visible in the queue for any other
daemon to read.

300 0 to 43200

ErrorVisi
bilityTimeout

The amount of time, in seconds,
that elapses before Elastic
Beanstalk returns a message to
the Amazon SQS queue after a
processing attempt fails with an
explicit error.

2 seconds 0 to 43200 seconds

Retention
Period

The amount of time, in seconds,
a message is valid and is actively
processed for.

345600 60 to 1209600

General options 568

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

MaxRetries The maximum number of
attempts that Elastic Beanstalk
attempts to send the message
to the web application that will
process it before moving the
message to the dead-letter queue.

10 1 to 100

aws:elasticbeanstalk:trafficsplitting

Configure traffic-splitting deployments for your environment.

This namespace applies when you set the DeploymentPolicy option of the
aws:elasticbeanstalk:command namespace to TrafficSplitting. For more information about
deployment policies, see the section called “Deployment options”.

Namespace: aws:elasticbeanstalk:trafficsplitting

Name Description Default Valid values

NewVersio
nPercent

The initial percentage of incoming
client traffic that Elastic Beanstalk
shifts to environment instances
running the new application
version you're deploying.

10 1 to 100

Evaluatio
nTime

The time period, in minutes, that
Elastic Beanstalk waits after an
initial healthy deployment before
proceeding to shift all incoming
client traffic to the new applicati
on version that you're deploying.

5 3 to 600

aws:elasticbeanstalk:xray

Run the Amazon X-Ray daemon to relay trace information from your X-Ray integrated application.

General options 569

Amazon Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:xray

Name Description Default Valid values

XRayEnabled Set to true to run the X-Ray daemon on
the instances in your environment.

false true

false

aws:elb:healthcheck

Configure healthchecks for a Classic Load Balancer.

Namespace: aws:elb:healthcheck

Name Description Default Valid
values

HealthyTh
reshold

The number of consecutive successful requests before
Elastic Load Balancing changes the instance health
status.

3 2 to 10

Interval The interval that Elastic Load Balancing checks the
health of your application's Amazon EC2 instances at.

10 5 to 300

Timeout The amount of time, in seconds, that Elastic Load
Balancing waits for a response before it considers the
instance nonresponsive.

5 2 to 60

Unhealthy
Threshold

The number of consecutive unsuccessful requests
before Elastic Load Balancing changes the instance
health status.

5 2 to 10

(deprecated)
Target

The destination on a backend instance that health
checks are sent to. Use Application Healthche
ck URL in the aws:elasticbeanstalk:applic
ation namespace instead.

TCP:80 Target
in the
format
PROTOCOL:PORT/
PATH

General options 570

Amazon Elastic Beanstalk Developer Guide

aws:elb:loadbalancer

Configure your environment's Classic Load Balancer.

Several of the options in this namespace are no longer supported in favor of listener-specific
options in the aws:elb:listener namespace. With these options that aren't supported anymore, you
can only configure two listeners (one secure and one unsecure) on standard ports.

Namespace: aws:elb:loadbalancer

Name Description Default Valid
values

CrossZone Configure the load balancer to route traffic
evenly across all instances in all Availability
Zones rather than only within each zone.

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this
option in a configuration file. The
console and EB CLI override this
option with a recommended value.

false true

false

SecurityGroups Assign one or more security groups that
you created to the load balancer.

Required if DisableDefaultEC2S
ecurityGroup (aws:autoscaling:la
unchconfiguration) is set to true. Load
balanced environments that have opted
out of the default Elastic Beanstalk EC2
security group must provide one or more
security groups with this option. For more
information, see Managing EC2 security
groups.

None One or
more
security
group IDs.

General options 571

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

ManagedSecurityGro
up

Assign an existing security group to the
load balancer for your environment,
instead of creating a new one. To use this
setting, update the SecurityGroups
setting in this namespace to include your
security group’s ID, and remove the ID
of the security group that was created
automatically, if one was created.

To allow traffic from the load balancer to
your environment’s EC2 instances, Elastic
Beanstalk adds a rule to the security group
of the instances that allows inbound traffic
from the managed security group.

None A security
group ID.

(deprecated)
LoadBalancerHTTPPo
rt

The port to listen on for the unsecure
listener.

80 OFF

80

(deprecated)
LoadBalancerPortPr
otocol

The protocol to use on the unsecure
listener.

HTTP HTTP

TCP

(deprecated)
LoadBalancerHTTPSP
ort

The port to listen on for the secure listener. OFF OFF

443

8443

(deprecated)
LoadBalancerSSLPor
tProtocol

The protocol to use on the secure listener. HTTPS HTTPS

SSL

(deprecated)
SSLCertificateId

The Amazon Resource Name (ARN) of
an SSL certificate to bind to the secure
listener.

None

General options 572

Amazon Elastic Beanstalk Developer Guide

aws:elb:listener

Configure the default listener (port 80) on a Classic Load Balancer.

Namespace: aws:elb:listener

Name Description Default Valid
values

ListenerProtocol The protocol used by the listener. HTTP HTTP TCP

InstancePort The port that this listener uses to
communicate with the EC2 instances.

80 1 to 65535

InstanceProtocol The protocol that this listener uses to
communicate with the EC2 instances.

It must be at the same internet protocol
layer as the ListenerProtocol . It also
must have the same security level as any
other listener using the same InstanceP
ort as this listener.

For example, if ListenerProtocol is
HTTPS (application layer, using a secure
connection), you can set InstanceP
rotocol to HTTP (also at the applicati
on layer, using an insecure connection). If,
in addition, you set InstancePort to
80, you must set InstanceProtocol to
HTTP in all other listeners with InstanceP
ort set to 80.

HTTP
when
ListenerP
rotocol
is HTTP

TCP when
ListenerP
rotocol
is TCP

HTTP or
HTTPS
when
ListenerP
rotocol
is HTTP or
HTTPS

TCP or
SSL when
ListenerP
rotocol
is TCP or
SSL

PolicyNames A comma-separated list of policy names
to apply to the port for this listener. We
recommend that you use the LoadBalan
cerPorts option of the aws:elb:policies
namespace instead.

None

General options 573

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

ListenerEnabled Specifies whether this listener is enabled.
If you specify false, the listener isn't
included in the load balancer.

true true

false

aws:elb:listener:listener_port

Configure additional listeners on a Classic Load Balancer.

Namespace: aws:elb:listener:listener_port

Name Description Default Valid
values

ListenerProtocol The protocol used by the listener. HTTP HTTP
HTTPS TCP
SSL

InstancePort The port that this listener uses to
communicate with the EC2 instances.

The
same as
listener_
port .

1 to 65535

InstanceProtocol The protocol that this listener uses to
communicate with the EC2 instances.

It must be at the same internet protocol
layer as the ListenerProtocol . It also
must have the same security level as any
other listener using the same InstanceP
ort as this listener.

For example, if ListenerProtocol is
HTTPS (application layer, using a secure
connection), you can set InstanceP
rotocol to HTTP (also at the applicati

HTTP
when
ListenerP
rotocol
is HTTP or
HTTPS

TCP when
ListenerP
rotocol
is TCP or
SSL

HTTP or
HTTPS
when
ListenerP
rotocol
is HTTP or
HTTPS

TCP or
SSL when
ListenerP
rotocol

General options 574

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

on layer, using an insecure connection). If,
in addition, you set InstancePort to
80, you must set InstanceProtocol to
HTTP in all other listeners with InstanceP
ort set to 80.

is TCP or
SSL

PolicyNames A comma-separated list of policy names
to apply to the port for this listener.
We suggest that you use the LoadBalan
cerPorts option of the aws:elb:policies
namespace instead.

None

SSLCertificateId The Amazon Resource Name (ARN) of an
SSL certificate to bind to the listener.

None

ListenerEnabled Specifies whether this listener is enabled.
If you specify false, the listener isn't
included in the load balancer.

true if
any other
option is
set. false
otherwise.

true
false

aws:elb:policies

Modify the default stickiness and global load balancer policies for a Classic Load Balancer.

Namespace: aws:elb:policies

Name Description Default Valid values

ConnectionDraining
Enabled

Specifies whether the load balancer
maintains existing connections to
instances that have become unhealthy
or deregistered to complete in-progress
requests.

false true

false

General options 575

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this
option in a configuration file.
The console and EB CLI override
this option with a recommended
value.

ConnectionDraining
Timeout

The maximum number of seconds that
the load balancer maintains existing
connections to an instance during
connection draining before forcibly
closing the connections.

Note

If you use the Elastic Beanstalk
console to create an environme
nt, you can't set this option in a
configuration file. The console
overrides this option with a
recommended value.

20 1 to 3600

ConnectionSettingI
dleTimeout

The amount of time, in seconds, that the
load balancer waits for any data to be
sent or received over the connection. If
no data has been sent or received after
this time period elapses, the load balancer
closes the connection.

60 1 to 3600

General options 576

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

LoadBalancerPorts A comma-separated list of the listener
ports that the default policy (AWSEB-ELB
-StickinessPolicy) applies to.

None You can use
:all to
indicate all
listener ports

Stickiness Cookie
Expiration

The amount of time, in seconds, that each
cookie is valid. Uses the default policy
(AWSEB-ELB-StickinessPolicy) .

0 0 to 1000000

Stickiness Policy Binds a user's session to a specific server
instance so that all requests coming
from the user during the session are sent
to the same server instance. Uses the
default policy (AWSEB-ELB-Stickine
ssPolicy) .

false true false

aws:elb:policies:policy_name

Create additional load balancer policies for a Classic Load Balancer.

Namespace: aws:elb:policies:policy_name

Name Description Default Valid values

CookieName The name of the application-genera
ted cookie that controls the session
lifetimes of a AppCookieStickines
sPolicyType policy. This policy can
be associated only with HTTP/HTTPS
listeners.

None

InstancePorts A comma-separated list of the instance
ports that this policy applies to.

None A list of ports,
or :all

LoadBalancerPorts A comma-separated list of the listener
ports that this policy applies to.

None A list of ports,
or :all

General options 577

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

ProxyProtocol For a ProxyProtocolPolicyType
policy, specifies whether to include the
IP address and port of the originating
request for TCP messages. This policy can
be associated only with TCP/SSL listeners.

None true false

PublicKey The contents of a public key for a
PublicKeyPolicyType policy to
use when authenticating the backend
server or servers. This policy can't be
applied directly to backend servers or
listeners. It must be part of a BackendSe
rverAuthenticationPolicyTyp
e policy.

None

PublicKeyPolicyNam
es

A comma-separated list of policy names
(from the PublicKeyPolicyType
policies) for a BackendServerAuthe
nticationPolicyType policy that
controls authentication to a backend
server or servers. This policy can be
associated only with backend servers that
are using HTTPS/SSL.

None

SSLProtocols A comma-separated list of SSL protocols
to be enabled for a SSLNegoti
ationPolicyType policy that
defines the ciphers and protocols that are
accepted by the load balancer. This policy
can be associated only with HTTPS/SSL
listeners.

None

General options 578

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

SSLReferencePolicy The name of a predefined security policy
that adheres to Amazon security best
practices and that you want to activate
for a SSLNegotiationPolicyType
policy that defines the ciphers and
protocols that are accepted by the load
balancer. This policy can be associated
only with HTTPS/SSL listeners.

None

Stickiness Cookie
Expiration

The amount of time, in seconds, that each
cookie is valid.

0 0 to 1000000

Stickiness Policy Binds a user's session to a specific server
instance so that all requests coming from
the user during the session are sent to the
same server instance.

false true false

aws:elbv2:listener:default

Configure the default listener (port 80) on an Application Load Balancer or a Network Load
Balancer.

This namespace doesn't apply to an environment that uses a shared load balancer. Shared load
balancers don't have a default listener.

Namespace: aws:elbv2:listener:default

Name Description Default Valid values

DefaultProcess The name of the
process to forward
traffic to when no
rules match.

default A process name.

ListenerEnabled Set to false to
disable the listener.

true true

false

General options 579

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

You can use this
option to disable the
default listener on
port 80.

Protocol The protocol of traffic
to process.

With application load
balancer: HTTP

With network load
balancer: TCP

With application
load balancer: HTTP,
HTTPS

With network load
balancer: TCP

Rules A list of rules to apply
to the listener

This option is
only applicable to
environments with
an Application Load
Balancer.

None A comma-separated
list of rule names.

SSLCertificateArns The Amazon
Resource Name (ARN)
of the SSL certifica
te to bind to the
listener.

This option is
only applicable to
environments with
an Application Load
Balancer.

None The ARN of a certifica
te stored in IAM or
ACM.

General options 580

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

SSLPolicy Specify a security
policy to apply to the
listener.

This option is
only applicable to
environments with
an Application Load
Balancer.

None (ELB default) The name of a load
balancer security
policy.

aws:elbv2:listener:listener_port

Configure additional listeners on an Application Load Balancer or a Network Load Balancer.

Note

For a shared Application Load Balancer, you can specify only the Rule option. The other
options aren't applicable to shared load balancers.

Namespace: aws:elbv2:listener:listener_port

Name Description Default Valid values

DefaultProcess The name of the
process where traffic
is forwarded when no
rules match.

default A process name.

ListenerEnabled Set to false to
disable the listener.
You can use this
option to disable the
default listener on
port 80.

true true

false

General options 581

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

Protocol The protocol of traffic
to process.

With application load
balancer: HTTP

With network load
balancer: TCP

With application
load balancer: HTTP,
HTTPS

With network load
balancer: TCP

Rules List of rules to apply
to the listener

This option is
applicable only to
environments with
an Application Load
Balancer.

If your environme
nt uses a shared
Application Load
Balancer, and you
don't specify this
option for any
listener, Elastic
Beanstalk automatic
ally associates the
default rule with a
port 80 listener.

None A comma-separated
list of rule names.

General options 582

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

SSLCertificateArns The Amazon
Resource Name (ARN)
of the SSL certifica
te to bind to the
listener.

This option is
only applicable to
environments with
an Application Load
Balancer.

None The ARN of a certifica
te stored in IAM or
ACM.

SSLPolicy Specify a security
policy to apply to the
listener.

This option is
only applicable to
environments with
an Application Load
Balancer.

None (ELB default) The name of a load
balancer security
policy.

aws:elbv2:listenerrule:rule_name

Define listener rules for an Application Load Balancer. If a request matches the host names or paths
in a rule, the load balancer forwards it to the specified process. To use a rule, add it to a listener
with the Rules option in the aws:elbv2:listener:listener_port namespace.

Note

This namespace isn't applicable to environments with a network load balancer.

General options 583

Amazon Elastic Beanstalk Developer Guide

Namespace: aws:elbv2:listenerrule:rule_name

Name Description Default Valid values

HostHeade
rs

A list of host names to match. For example,
my.example.com .

Dedicated
load
balancer:
None

Shared load
balancer:
The
environme
nt's CNAME

Each name can
contain up to 128
characters. A pattern
can include both
uppercase and
lowercase letters,
numbers, hyphens
(–), and up to three
wildcard characters (*
matches zero or more
characters; ? matches
exactly one character
). You can list more
than one name,
each separated by
a comma. Applicati
on Load Balancer
supports up to
five combined
HostHeader and
PathPattern rules.

For more informati
on, see Host
conditions in the User
Guide for Application
Load Balancers.

PathPatte
rns

The path patterns to match (for example, /
img/*).

This option is only applicable to environme
nts with an application load balancer.

None Each pattern can
contain up to
128 characters. A
pattern can include
uppercase and
lowercase letters,

General options 584

https://docs.amazonaws.cn/elasticloadbalancing/latest/application/load-balancer-listeners.html#host-conditions
https://docs.amazonaws.cn/elasticloadbalancing/latest/application/load-balancer-listeners.html#host-conditions

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

numbers, hyphens
(–), and up to three
wildcard characters (*
matches zero or more
characters; ? matches
exactly one character
). You can add
multiple comma-sep
arated path patterns.
Application Load
Balancer supports
up to five combined
HostHeader and
PathPattern rules.

For more informati
on, see Path
conditions in the User
Guide for Application
Load Balancers.

Priority The precedence of this rule when multiple
rules match. The lower number takes
precedence. No two rules can have the
same priority.

With a shared load balancer, Elastic
Beanstalk treats rule priorities as relative
across sharing environments, and maps
them to absolute priorities during creation.

1 1 to 1000

Process The name of the process to forward traffic
when this rule matches the request.

default A process name.

General options 585

https://docs.amazonaws.cn/elasticloadbalancing/latest/application/load-balancer-listeners.html#path-conditions
https://docs.amazonaws.cn/elasticloadbalancing/latest/application/load-balancer-listeners.html#path-conditions

Amazon Elastic Beanstalk Developer Guide

aws:elbv2:loadbalancer

Configure an Application Load Balancer.

For a shared load balancer, only the SharedLoadBalancer and SecurityGroups options are
valid.

Note

This namespace isn't applicable to environments with a Network Load Balancer.

Namespace: aws:elbv2:loadbalancer

Name Description Default Valid values

AccessLogsS3Bucket The Amazon S3 bucket where
access logs are stored. The bucket
must be in the same Region as the
environment and allow the load
balancer write access.

None A bucket name.

AccessLogsS3Enabled Enable access log storage. false true

false

AccessLogsS3Prefix A prefix to prepend to access
log names. By default, the load
balancer uploads logs to a directory
named AWSLogs in the bucket you
specify. Specify a prefix to place the
AWSLogs directory inside another
directory.

None

IdleTimeout The amount of time, in seconds,
to wait for a request to complete
before closing connections to client
and instance.

None 1 to 3600

General options 586

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

ManagedSecurityGro
up

Assign an existing security group to
your environment’s load balancer,
instead of creating a new one.
To use this setting, update the
SecurityGroups setting in
this namespace to include your
security group’s ID, and remove
the automatically created security
group’s ID, if one exists.

To allow traffic from the load
balancer to the EC2 instances for
your environment, Elastic Beanstalk
adds a rule to the security group of
your instances that allows inbound
traffic from the managed security
group.

The
security
group
that
Elastic
Beanstalk
s
creates
for
your
load
balancer.

A security group ID.

General options 587

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

SecurityGroups A list of security groups to attach to
the load balancer.

Required if DisableDefaultEC2S
ecurityGroup (aws:autos
caling:launchconfiguration) is set to
true. Load balanced environments
that have opted out of the default
Elastic Beanstalk EC2 security group
must provide one or more security
groups with this option. For more
information, see Managing EC2
security groups.

For a shared load balancer, if you
don't specify this value, Elastic
Beanstalk checks if an existing
security group that it manages
is already attached to the load
balancer. If one isn't attached to
the load balancer, Elastic Beanstalk
creates a security group and
attaches it to the load balancer.
Elastic Beanstalk deletes this
security group when the last
environment sharing the load
balancer terminates.

The load balancer security groups
are used to set up the Amazon EC2
instance security group ingress rule.

The
security
group
that
Elastic
Beanstalk
creates
for
your
load
balancer.

Comma-separated
list of security group
IDs.

General options 588

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

SharedLoadBalancer The Amazon Resource Name
(ARN) of a shared load balancer.
This option is relevant only to an
Application Load Balancer. It's
required when the LoadBalan
cerIsShared option of the
aws:elasticbeanstalk:environment
namespace is set to true. You can't
change the shared load balancer
ARN after the environment is
created.

Criteria for a valid value:

• It must be a valid, active load
balancer in the Amazon Region
where the environment is located.

• It must be in the same Amazon
Virtual Private Cloud (Amazon
VPC) as the environment.

• It can't be a load balancer that
was created by Elastic Beanstalk
as the dedicated load balancer
for another environment. You
can identify these dedicated load
balancers by using the prefix
awseb-.

Example:

arn:aws-cn:elastic
loadbalancing:us-w
est-2:123456789012
:loadbalancer/app/

None ARN of a valid load
balancer that meets
all of the criteria
described here.

General options 589

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

FrontEndLB/0dbf78d
8ad96abbc

aws:rds:dbinstance

Configure an attached Amazon RDS DB instance.

Namespace: aws:rds:dbinstance

Name Description Default Valid values

DBAllocat
edStorage

The allocated database storage size,
specified in gigabytes.

MySQL: 5

Oracle: 10

sqlserver-se:
200

sqlserver-ex:
30

sqlserver-web:
30

MySQL: 5-1024

Oracle: 10-1024

sqlserver: cannot
be modified

DBDeletio
nPolicy

Specifies whether to retain, delete, or
create snapshot of the DB instance when
an environment is terminated.

This option works in conjunction with
HasCoupledDatabase , also an option
of this namespace.

Warning

Deleting a DB instance results in
permanent data loss.

Delete Delete

Retain

Snapshot

General options 590

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

DBEngine The name of the database engine to use
for this instance.

mysql mysql

oracle-se1

sqlserver-
ex

sqlserver-
web

sqlserver-
se

postgres

DBEngineV
ersion

The version number of the database
engine.

5.5

DBInstanc
eClass

The database instance type. db.t2.mic
ro

(db.m1.lar
ge for an
environment
not running
in an Amazon
VPC)

For more
informati
on, see DB
Instance Class
in the Amazon
Relational
Database Service
User Guide.

DBPassword The name of master user password for the
database instance.

None

DBSnapsho
tIdentifier

The identifier for the DB snapshot to
restore from.

None

DBUser The name of master user for the DB
Instance.

ebroot

General options 591

http://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

HasCouple
dDatabase

Specifies whether a DB instance is coupled
to your environment. If toggled to true,
Elastic Beanstalk creates a new DB
instance coupled to your environment.
If toggled to false, Elastic Beanstalk
initiates decoupling of the DB instance
from your environment.

This option works in conjunction with
DBDeletionPolicy , also an option of
this namespace.

Note

Note: If you toggle this value
back to true after decoupling
the previous database, Elastic
Beanstalk creates a new database
with the previous database option
settings. However, to maintain the
security of your environment, it
doesn't retain the existing DBUser
and DBPassword settings. You
need to specify DBUser and
DBPassword again.

false true

false

MultiAZDa
tabase

Specifies whether a database instance
Multi-AZ deployment needs to be created.
For more information about Multi-AZ
deployments with Amazon Relationa
l Database Service (RDS), see Regions
and Availability Zones in the Amazon
Relational Database Service User Guide.

false true

false

General options 592

http://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
http://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

Amazon Elastic Beanstalk Developer Guide

Platform specific options

Some Elastic Beanstalk platforms define option namespaces that are specific to the platform.
These namespaces and their options are listed below for each platform.

Note

Previously, in platform versions based on Amazon Linux AMI (preceding Amazon Linux
2), the following two features and their respective namespaces were considered to be
platform-specific features, and were listed here per platform:

• Proxy configuration for static files –
aws:elasticbeanstalk:environment:proxy:staticfiles

• Amazon X-Ray support – aws:elasticbeanstalk:xray

In Amazon Linux 2 platform versions, Elastic Beanstalk implements these features in a
consistent way across all supporting platforms. The related namespace are now listed in
the the section called “General options” page. We only kept mention of them on this page
for platforms who had differently-named namespaces.

Platforms

• Docker platform options

• Go platform options

• Java SE platform options

• Java with Tomcat platform options

• .NET Core on Linux platform options

• .NET platform options

• Node.js platform options

• PHP platform options

• Python platform options

• Ruby platform options

Platform specific options 593

Amazon Elastic Beanstalk Developer Guide

Docker platform options

The following Docker-specific configuration options apply to the Docker and Preconfigured Docker
platforms.

Note

These configuration options do not apply to

• Docker platform (Amazon Linux 2) with Docker Compose

• Multicontainer Docker platform (Amazon Linux AMI AL1) - this platform is retired

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Specifies the web server to use as a proxy. nginx nginx

none – Amazon Linux
AM and Docker w/DC
only

Go platform options

Amazon Linux AMI (pre-Amazon Linux 2) platform options

Namespace: aws:elasticbeanstalk:container:golang:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

Platform specific options 594

Amazon Elastic Beanstalk Developer Guide

Name Value

Path where the proxy server will serve the
files.

Example: /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

Name of the folder containing the files.

Example: staticimages to serve files from
a folder named staticimages at the top
level of your source bundle.

Java SE platform options

Amazon Linux AMI (pre-Amazon Linux 2) platform options

Namespace: aws:elasticbeanstalk:container:java:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

Name Value

Path where the proxy server will serve the
files.

Example: /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

Name of the folder containing the files.

Example: staticimages to serve files from
a folder named staticimages at the top
level of your source bundle.

Platform specific options 595

Amazon Elastic Beanstalk Developer Guide

Java with Tomcat platform options

Namespace: aws:elasticbeanstalk:application:environment

Name Description Default Valid
values

JDBC_CONN
ECTION_STRING

The connection string to an external database. n/a n/a

See Environment variables and other software settings for more information.

Namespace: aws:elasticbeanstalk:container:tomcat:jvmoptions

Name Description Default Valid
values

JVM Options Pass command-line options to the JVM at
startup.

n/a n/a

Xmx Maximum JVM heap sizes. 256m n/a

XX:MaxPermSize Section of the JVM heap that is used to store
class definitions and associated metadata.

Note

This option only applies to Java
versions earlier than Java 8, and
isn't supported on Elastic Beanstalk
Tomcat platforms based on Amazon
Linux 2 and later.

64m n/a

Xms Initial JVM heap sizes. 256m n/a

optionName Specify arbitrary JVM options in addition to
the those defined by the Tomcat platform.

n/a n/a

Platform specific options 596

Amazon Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

GzipCompr
ession

Set to false to disable response compressi
on.

Only valid on Amazon Linux AMI (preceding
Amazon Linux 2) platform versions.

true true

false

ProxyServ
er

Set the proxy to use on your environment's
instances. If you set this option to apache,
Elastic Beanstalk uses Apache 2.4.

Set to apache/2.2 if your application
isn't ready to migrate away from Apache
2.2 due to incompatible proxy configura
tion settings. This value is only valid on
Amazon Linux AMI (preceding Amazon Linux
2) platform versions.

Set to nginx to use nginx. This is the
default starting with Amazon Linux 2
platform versions.

For more information, see Configuring the
proxy server.

nginx
(Amazon
Linux 2)

apache
(Amazon
Linux
AMI)

apache

apache/2.2 –
Amazon Linux AMI only

nginx

.NET Core on Linux platform options

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Specifies the web server to use as a proxy. nginx nginx

none

Platform specific options 597

https://httpd.apache.org/docs/2.4/
https://httpd.apache.org/docs/2.2/
https://httpd.apache.org/docs/2.2/
https://www.nginx.com/

Amazon Elastic Beanstalk Developer Guide

.NET platform options

Namespace: aws:elasticbeanstalk:container:dotnet:apppool

Name Description Default Valid
values

Target Runtime Choose the version of .NET Framework for
your application.

4.0 2.0

4.0

Enable 32-bit
Applications

Set to True to run 32-bit applications. False True

False

Node.js platform options

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Set the proxy to use on your environment's
instances.

nginx apache

nginx

Amazon Linux AMI (pre-Amazon Linux 2) platform options

Namespace: aws:elasticbeanstalk:container:nodejs

Name Description Default Valid values

NodeComma
nd

Command used to start the Node.js
application. If an empty string is specified
, app.js is used, then server.js , then
npm start in that order.

"" n/a

NodeVersi
on

Version of Node.js. For example, 4.4.6

Supported Node.js versions vary between
Node.js platform versions. See Node.js in

varies varies

Platform specific options 598

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

the Amazon Elastic Beanstalk Platforms
 document for a list of the currently
supported versions.

Note

When support for the version
of Node.js that you are using is
removed from the platform, you
must change or remove the version
setting prior to doing a platform
update. This might occur when a
security vulnerability is identified
for one or more versions of Node.js.
When this happens, attemptin
g to update to a new version of
the platform that doesn't support
the configured NodeVersion fails.
To avoid needing to create a new
environment, change the NodeVersi
on configuration option to a
Node.js version that is supported
by both the old platform version
and the new one, or remove the
option setting, and then perform
the platform update.

GzipCompr
ession

Specifies if gzip compression is enabled.
If ProxyServer is set to none, then gzip
compression is disabled.

false true

false

Platform specific options 599

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

ProxyServ
er

Specifies which web server should be
used to proxy connections to Node.js. If
ProxyServer is set to none, then static file
mappings doesn't take effect and gzip
compression is disabled.

nginx apache

nginx

none

Namespace: aws:elasticbeanstalk:container:nodejs:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

Note

Static file settings do not apply if
aws:elasticbeanstalk:container:nodejs::ProxyFiles is set to none.

Name Value

Path where the proxy server will serve the
files.

Example: /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

Name of the folder containing the files.

Example: staticimages to serve files from
a folder named staticimages at the top
level of your source bundle.

Platform specific options 600

Amazon Elastic Beanstalk Developer Guide

PHP platform options

Namespace: aws:elasticbeanstalk:container:php:phpini

Name Description Default Valid values

document_root Specify the child directory of your
project that is treated as the public-fa
cing web root.

/ A blank string is
treated as /, or
specify a string
starting with /

memory_limit Amount of memory allocated to the PHP
environment.

256M n/a

zlib.outp
ut_compression

Specifies whether or not PHP should use
compression for output.

Off On

Off

true

false

allow_url
_fopen

Specifies if PHP's file functions are
allowed to retrieve data from remote
locations, such as websites or FTP
servers.

On On

Off

true

false

display_errors Specifies if error messages should be
part of the output.

Off On

Off

max_execu
tion_time

Sets the maximum time, in seconds,
a script is allowed to run before it is
terminated by the environment.

60 0 to 922337203
6854775807
(PHP_INT_MAX)

composer_
options

Sets custom options to use when
installing dependencies using Composer
through the composer.phar install

n/a n/a

Platform specific options 601

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid values

command. For more information, see
install on the getcomposer.org website.

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Set the proxy to use on your environment's
instances.

nginx apache

nginx

Note

For more information about the PHP platform, see Using the Elastic Beanstalk PHP
platform.

Python platform options

Namespace: aws:elasticbeanstalk:application:environment

Name Description Default Valid
values

DJANGO_SETTINGS_MO
DULE

Specifies which settings file to use. n/a n/a

See Environment variables and other software settings for more information.

Namespace: aws:elasticbeanstalk:container:python

Name Description Default Valid
values

WSGIPath The file that contains the WSGI application. This file
must have an application callable.

On Amazon
Linux 2

n/a

Platform specific options 602

https://getcomposer.org/doc/03-cli.md#install-i

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Python
platform
versions:
applicati
on

On Amazon
Linux AMI
Python
platform
versions:
applicati
on.py

NumProces
ses

The number of daemon processes that should be
started for the process group when running WSGI
applications.

1 n/a

NumThread
s

The number of threads to be created to handle
requests in each daemon process within the process
group when running WSGI applications.

15 n/a

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Set the proxy to use on your environment's
instances.

nginx apache

nginx

Platform specific options 603

Amazon Elastic Beanstalk Developer Guide

Amazon Linux AMI (pre-Amazon Linux 2) platform options

Namespace: aws:elasticbeanstalk:container:python:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

By default, the proxy server in a Python environment serves any files in a folder named static at
the /static path.

Namespace: aws:elasticbeanstalk:container:python:staticfiles

Name Value

Path where the proxy server will serve the
files.

Example: /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

Name of the folder containing the files.

Example: staticimages to serve files from
a folder named staticimages at the top
level of your source bundle.

Ruby platform options

Namespace: aws:elasticbeanstalk:application:environment

Name Description Default Valid
values

RAILS_SKIP_MIGRATI
ONS

Specifies whether to run `rake
db:migrate` on behalf of the users'
applications; or whether it should be
skipped. This is only applicable to Rails 3
applications.

false true

false

Platform specific options 604

Amazon Elastic Beanstalk Developer Guide

Name Description Default Valid
values

RAILS_SKIP_ASSET_C
OMPILATION

Specifies whether the container should
run `rake assets:precompile`
on behalf of the users' applications; or
whether it should be skipped. This is
also only applicable to Rails 3 applicati
ons.

false true

false

BUNDLE_WITHOUT A colon (:) separated list of groups to
ignore when installing dependencies
from a Gemfile.

test:deve
lopment

n/a

RACK_ENV Specifies what environment stage an
application can be run in. Examples
of common environments include
development, production, test.

productio
n

n/a

See Environment variables and other software settings for more information.

Custom options

Use the aws:elasticbeanstalk:customoption namespace to define options and values that
can be read in Resources blocks in other configuration files. Use custom options to collect user
specified settings in a single configuration file.

For example, you may have a complex configuration file that defines a resource that can be
configured by the user launching the environment. If you use Fn::GetOptionSetting to retrieve
the value of a custom option, you can put the definition of that option in a different configuration
file, where it is more easily discovered and modified by the user.

Also, because they are configuration options, custom options can be set at the API level to override
values set in a configuration file. See Precedence for more information.

Custom options are defined like any other option:

option_settings:
 aws:elasticbeanstalk:customoption:

Custom options 605

Amazon Elastic Beanstalk Developer Guide

 option name: option value

For example, the following configuration file creates an option named ELBAlarmEmail and sets
the value to someone@example.com:

option_settings:
 aws:elasticbeanstalk:customoption:
 ELBAlarmEmail: someone@example.com

Elsewhere, a configuration file defines an SNS topic that reads the option with
Fn::GetOptionSetting to populate the value of the Endpoint attribute:

Resources:
 MySNSTopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 - Endpoint:
 Fn::GetOptionSetting:
 OptionName: ELBAlarmEmail
 DefaultValue: nobody@example.com
 Protocol: email

You can find more example snippets using Fn::GetOptionSetting at Adding and customizing
Elastic Beanstalk environment resources.

Advanced environment customization with configuration files
(.ebextensions)

You can add Amazon Elastic Beanstalk configuration files (.ebextensions) to your web
application's source code to configure your environment and customize the Amazon resources
that it contains. Configuration files are YAML- or JSON-formatted documents with a .config file
extension that you place in a folder named .ebextensions and deploy in your application source
bundle.

Example .ebextensions/network-load-balancer.config

This example makes a simple configuration change. It modifies a configuration option to set the
type of your environment's load balancer to Network Load Balancer.

.Ebextensions 606

Amazon Elastic Beanstalk Developer Guide

option_settings:
 aws:elasticbeanstalk:environment:
 LoadBalancerType: network

We recommend using YAML for your configuration files, because it's more readable than JSON.
YAML supports comments, multi-line commands, several alternatives for using quotes, and more.
However, you can make any configuration change in Elastic Beanstalk configuration files identically
using either YAML or JSON.

Tip

When you are developing or testing new configuration files, launch a clean environment
running the default application and deploy to that. Poorly formatted configuration files will
cause a new environment launch to fail unrecoverably.

The option_settings section of a configuration file defines values for configuration options.
Configuration options let you configure your Elastic Beanstalk environment, the Amazon resources
in it, and the software that runs your application. Configuration files are only one of several ways
to set configuration options.

The Resources section lets you further customize the resources in your application's environment,
and define additional Amazon resources beyond the functionality provided by configuration
options. You can add and configure any resources supported by Amazon CloudFormation, which
Elastic Beanstalk uses to create environments.

The other sections of a configuration file (packages, sources, files, users, groups,
commands, container_commands, and services) let you configure the EC2 instances that
are launched in your environment. Whenever a server is launched in your environment, Elastic
Beanstalk runs the operations defined in these sections to prepare the operating system and
storage system for your application.

For examples of commonly used .ebextensions, see the Elastic Beanstalk Configuration Files
Repository.

Requirements

• Location – Elastic Beanstalk will process all .ebextensions folders present in your
deployment. However, we recommend that you place all of your configuration files in a single

.Ebextensions 607

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files

Amazon Elastic Beanstalk Developer Guide

folder, named .ebextensions, in the root of your source bundle. Folders starting with a dot
can be hidden by file browsers, so make sure that the folder is added when you create your
source bundle. For more information, see Create an Elastic Beanstalk application source bundle.

• Naming – Configuration files must have the .config file extension.

• Formatting – Configuration files must conform to YAML or JSON specifications.

When using YAML, always use spaces to indent keys at different nesting levels. For more
information about YAML, see YAML Ain't Markup Language (YAML™) Version 1.1.

• Uniqueness – Use each key only once in each configuration file.

Warning

If you use a key (for example, option_settings) twice in the same configuration file,
one of the sections will be dropped. Combine duplicate sections into a single section, or
place them in separate configuration files.

The process for deploying varies slightly depending on the client that you use to manage your
environments. See the following sections for details:

• Elastic Beanstalk console

• EB CLI

• Amazon CLI

Topics

• Option settings

• Customizing software on Linux servers

• Customizing software on Windows servers

• Adding and customizing Elastic Beanstalk environment resources

Option settings

You can use the option_settings key to modify the Elastic Beanstalk configuration and
define variables that can be retrieved from your application using environment variables. Some

Option settings 608

http://yaml.org/spec/current.html

Amazon Elastic Beanstalk Developer Guide

namespaces allow you to extend the number of parameters, and specify the parameter names. For
a list of namespaces and configuration options, see Configuration options.

Option settings can also be applied directly to an environment during environment creation or an
environment update. Settings applied directly to the environment override the settings for the
same options in configuration files. If you remove settings from an environment's configuration,
settings in configuration files will take effect. See Precedence for details.

Syntax

The standard syntax for option settings is an array of objects, each having a namespace,
option_name and value key.

option_settings:
 - namespace: namespace
 option_name: option name
 value: option value
 - namespace: namespace
 option_name: option name
 value: option value

The namespace key is optional. If you do not specify a namespace, the default used is
aws:elasticbeanstalk:application:environment:

option_settings:
 - option_name: option name
 value: option value
 - option_name: option name
 value: option value

Elastic Beanstalk also supports a shorthand syntax for option settings that lets you specify options
as key-value pairs underneath the namespace:

option_settings:
 namespace:
 option name: option value
 option name: option value

Option settings 609

Amazon Elastic Beanstalk Developer Guide

Examples

The following examples set a Tomcat platform-specific option in the
aws:elasticbeanstalk:container:tomcat:jvmoptions namespace and an environment
property named MYPARAMETER.

In standard YAML format:

Example .ebextensions/options.config

option_settings:
 - namespace: aws:elasticbeanstalk:container:tomcat:jvmoptions
 option_name: Xmx
 value: 256m
 - option_name: MYPARAMETER
 value: parametervalue

In shorthand format:

Example .ebextensions/options.config

option_settings:
 aws:elasticbeanstalk:container:tomcat:jvmoptions:
 Xmx: 256m
 aws:elasticbeanstalk:application:environment:
 MYPARAMETER: parametervalue

In JSON:

Example .ebextensions/options.config

{
 "option_settings": [
 {
 "namespace": "aws:elasticbeanstalk:container:tomcat:jvmoptions",
 "option_name": "Xmx",
 "value": "256m"
 },
 {
 "option_name": "MYPARAMETER",
 "value": "parametervalue"
 }
]

Option settings 610

Amazon Elastic Beanstalk Developer Guide

}

Customizing software on Linux servers

This section describes the type of information you can include in a configuration file to customize
the software on your EC2 instances running Linux. For general information about customizing and
configuring your Elastic Beanstalk environments, see Configuring Elastic Beanstalk environments.
For information about customizing software on your EC2 instances running Windows, see
Customizing software on Windows servers.

You may want to customize and configure the software that your application depends on. You
can add commands to be executed during instance provisioning; define Linux users and groups;
and download or directly create files on your environment instances. These files might be either
dependencies required by the application—for example, additional packages from the yum
repository—or they might be configuration files such as a replacement for a proxy configuration
file to override specific settings that are defaulted by Elastic Beanstalk.

Notes

• On Amazon Linux 2 platforms, instead of providing files and commands in .ebextensions
configuration files, we highly recommend that you use Buildfile. Procfile, and platform
hooks whenever possible to configure and run custom code on your environment
instances during instance provisioning. For details about these mechanisms, see the
section called “Extending Linux platforms”.

• YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces, not
tab characters, to indent.

Configuration files support the following keys that affect the Linux server your application runs on.

Keys

• Packages

• Groups

• Users

• Sources

• Files

Linux server 611

Amazon Elastic Beanstalk Developer Guide

• Commands

• Services

• Container commands

• Example: Using custom Amazon CloudWatch metrics

Keys are processed in the order that they are listed here.

Watch your environment's events while developing and testing configuration files. Elastic Beanstalk
ignores a configuration file that contains validation errors, like an invalid key, and doesn't process
any of the other keys in the same file. When this happens, Elastic Beanstalk adds a warning event
to the event log.

Packages

You can use the packages key to download and install prepackaged applications and components.

Syntax

packages:
 name of package manager:
 package name: version
 ...
 name of package manager:
 package name: version
 ...
 ...

You can specify multiple packages under each package manager's key.

Supported package formats

Elastic Beanstalk currently supports the following package managers: yum, rubygems, python, and
rpm. Packages are processed in the following order: rpm, yum, and then rubygems and python.
There is no ordering between rubygems and python. Within each package manager, package
installation order isn't guaranteed. Use a package manager supported by your operating system.

Note

Elastic Beanstalk supports two underlying package managers for Python, pip and
easy_install. However, in the syntax of the configuration file, you must specify the package

Linux server 612

Amazon Elastic Beanstalk Developer Guide

manager name as python. When you use a configuration file to specify a Python package
manager, Elastic Beanstalk uses Python 2.7. If your application relies on a different version
of Python, you can specify the packages to install in a requirements.txt file. For more
information, see Specifying dependencies using a requirements file on Elastic Beanstalk.

Specifying versions

Within each package manager, each package is specified as a package name and a list of versions.
The version can be a string, a list of versions, or an empty string or list. An empty string or list
indicates that you want the latest version. For rpm manager, the version is specified as a path to a
file on disk or a URL. Relative paths are not supported.

If you specify a version of a package, Elastic Beanstalk attempts to install that version even if a
newer version of the package is already installed on the instance. If a newer version is already
installed, the deployment fails. Some package managers support multiple versions, but others may
not. Please check the documentation for your package manager for more information. If you do
not specify a version and a version of the package is already installed, Elastic Beanstalk does not
install a new version—it assumes that you want to keep and use the existing version.

Example snippet

The following snippet specifies a version URL for rpm, requests the latest version from yum, and
version 0.10.2 of chef from rubygems.

packages:
 yum:
 libmemcached: []
 ruby-devel: []
 gcc: []
 rpm:
 epel: http://download.fedoraproject.org/pub/epel/5/i386/epel-release-5-4.noarch.rpm
 rubygems:
 chef: '0.10.2'

Groups

You can use the groups key to create Linux/UNIX groups and to assign group IDs. To create a
group, add a new key-value pair that maps a new group name to an optional group ID. The groups
key can contain one or more group names. The following table lists the available keys.

Linux server 613

Amazon Elastic Beanstalk Developer Guide

Syntax

groups:
 name of group: {}
 name of group:
 gid: "group id"

Options

gid

A group ID number.

If a group ID is specified, and the group already exists by name, the group creation will fail. If
another group has the specified group ID, the operating system may reject the group creation.

Example snippet

The following snippet specifies a group named groupOne without assigning a group ID and a group
named groupTwo that specified a group ID value of 45.

groups:
 groupOne: {}
 groupTwo:
 gid: "45"

Users

You can use the users key to create Linux/UNIX users on the EC2 instance.

Syntax

users:
 name of user:
 groups:
 - name of group
 uid: "id of the user"
 homeDir: "user's home directory"

Linux server 614

Amazon Elastic Beanstalk Developer Guide

Options

uid

A user ID. The creation process fails if the user name exists with a different user ID. If the user ID
is already assigned to an existing user, the operating system may reject the creation request.

groups

A list of group names. The user is added to each group in the list.

homeDir

The user's home directory.

Users are created as noninteractive system users with a shell of /sbin/nologin. This is by design
and cannot be modified.

Example snippet

users:
 myuser:
 groups:
 - group1
 - group2
 uid: "50"
 homeDir: "/tmp"

Sources

You can use the sources key to download an archive file from a public URL and unpack it in a
target directory on the EC2 instance.

Syntax

sources:
 target directory: location of archive file

Supported formats

Supported formats are tar, tar+gzip, tar+bz2, and zip. You can reference external locations
such as Amazon Simple Storage Service (Amazon S3) (e.g., https://amzn-s3-demo-
bucket.s3.amazonaws.com/myobject) as long as the URL is publicly accessible.

Linux server 615

Amazon Elastic Beanstalk Developer Guide

Example snippet

The following example downloads a public .zip file from an Amazon S3 bucket and unpacks it into
/etc/myapp:

sources:
 /etc/myapp: https://amzn-s3-demo-bucket.s3.amazonaws.com/myobject

Note

Multiple extractions should not reuse the same target path. Extracting another source to
the same target path will replace rather than append to the contents.

Files

You can use the files key to create files on the EC2 instance. The content can be either inline
in the configuration file, or the content can be pulled from a URL. The files are written to disk in
lexicographic order.

You can use the files key to download private files from Amazon S3 by providing an instance
profile for authorization.

If the file path you specify already exists on the instance, the existing file is retained with the
extension .bak appended to its name.

Syntax

files:
 "target file location on disk":
 mode: "six-digit octal value"
 owner: name of owning user for file
 group: name of owning group for file
 source: URL
 authentication: authentication name:

 "target file location on disk":
 mode: "six-digit octal value"
 owner: name of owning user for file
 group: name of owning group for file
 content: |
 # this is my

Linux server 616

Amazon Elastic Beanstalk Developer Guide

 # file content
 encoding: encoding format
 authentication: authentication name:

Options

content

String content to add to the file. Specify either content or source, but not both.

source

URL of a file to download. Specify either content or source, but not both.

encoding

The encoding format of the string specified with the content option.

Valid values: plain | base64

group

Linux group that owns the file.

owner

Linux user that owns the file.

mode

A six-digit octal value representing the mode for this file. Not supported for Windows systems.
Use the first three digits for symlinks and the last three digits for setting permissions. To create
a symlink, specify 120xxx, where xxx defines the permissions of the target file. To specify
permissions for a file, use the last three digits, such as 000644.

authentication

The name of a Amazon CloudFormation authentication method to use. You can add
authentication methods to the Auto Scaling group metadata with the Resources key. See below
for an example.

Example snippet

files:
 "/home/ec2-user/myfile" :
 mode: "000755"

Linux server 617

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-authentication.html

Amazon Elastic Beanstalk Developer Guide

 owner: root
 group: root
 source: http://foo.bar/myfile

 "/home/ec2-user/myfile2" :
 mode: "000755"
 owner: root
 group: root
 content: |
 this is my
 file content

Example using a symlink. This creates a link /tmp/myfile2.txt that points at the existing file /
tmp/myfile1.txt.

files:
 "/tmp/myfile2.txt" :
 mode: "120400"
 content: "/tmp/myfile1.txt"

The following example uses the Resources key to add an authentication method named S3Auth
and uses it to download a private file from an Amazon S3 bucket:

Resources:
 AWSEBAutoScalingGroup:
 Metadata:
 AWS::CloudFormation::Authentication:
 S3Auth:
 type: "s3"
 buckets: ["amzn-s3-demo-bucket2"]
 roleName:
 "Fn::GetOptionSetting":
 Namespace: "aws:autoscaling:launchconfiguration"
 OptionName: "IamInstanceProfile"
 DefaultValue: "aws-elasticbeanstalk-ec2-role"

files:
 "/tmp/data.json" :
 mode: "000755"
 owner: root
 group: root
 authentication: "S3Auth"

Linux server 618

Amazon Elastic Beanstalk Developer Guide

 source: https://elasticbeanstalk-us-west-2-123456789012.s3-us-
west-2.amazonaws.com.cn/data.json

Commands

You can use the commands key to execute commands on the EC2 instance. The commands run
before the application and web server are set up and the application version file is extracted.

The specified commands run as the root user, and are processed in alphabetical order by name. By
default, commands run in the root directory. To run commands from another directory, use the cwd
option.

To troubleshoot issues with your commands, you can find their output in instance logs.

Syntax

commands:
 command name:
 command: command to run
 cwd: working directory
 env:
 variable name: variable value
 test: conditions for command
 ignoreErrors: true

Options

command

Either an array (block sequence collection in YAML syntax) or a string specifying the command
to run. Some important notes:

• If you use a string, you don't need to enclose the entire string in quotes. If you do use quotes,
escape literal occurrences of the same type of quote.

• If you use an array, you don't need to escape space characters or enclose command
parameters in quotes. Each array element is a single command argument. Don't use an array
to specify multiple commands.

The following examples are all equivalent:

commands:
 command1:

Linux server 619

http://yaml.org/spec/1.2/spec.html#id2759963

Amazon Elastic Beanstalk Developer Guide

 command: git commit -m "This is a comment."
 command2:
 command: "git commit -m \"This is a comment.\""
 command3:
 command: 'git commit -m "This is a comment."'
 command4:
 command:
 - git
 - commit
 - -m
 - This is a comment.

To specify multiple commands, use a literal block scalar, as shown in the following example.

commands:
 command block:
 command: |
 git commit -m "This is a comment."
 git push

env

(Optional) Sets environment variables for the command. This property overwrites, rather than
appends, the existing environment.

cwd

(Optional) The working directory. If not specified, commands run from the root directory (/).

test

(Optional) A command that must return the value true (exit code 0) in order for Elastic
Beanstalk to process the command, such as a shell script, contained in the command key.

ignoreErrors

(Optional) A boolean value that determines if other commands should run if the command
contained in the command key fails (returns a nonzero value). Set this value to true if you want
to continue running commands even if the command fails. Set it to false if you want to stop
running commands if the command fails. The default value is false.

Example snippet

The following example snippet runs a Python script.

Linux server 620

http://yaml.org/spec/1.2/spec.html#id2760844

Amazon Elastic Beanstalk Developer Guide

commands:
 python_install:
 command: myscript.py
 cwd: /home/ec2-user
 env:
 myvarname: myvarvalue
 test: "[-x /usr/bin/python]"

Services

You can use the services key to define which services should be started or stopped when the
instance is launched. The services key also allows you to specify dependencies on sources,
packages, and files so that if a restart is needed due to files being installed, Elastic Beanstalk takes
care of the service restart.

Syntax

services:
 sysvinit:
 name of service:
 enabled: "true"
 ensureRunning: "true"
 files:
 - "file name"
 sources:
 - "directory"
 packages:
 name of package manager:
 "package name[: version]"
 commands:
 - "name of command"

Options

ensureRunning

Set to true to ensure that the service is running after Elastic Beanstalk finishes.

Set to false to ensure that the service is not running after Elastic Beanstalk finishes.

Omit this key to make no changes to the service state.

Linux server 621

Amazon Elastic Beanstalk Developer Guide

enabled

Set to true to ensure that the service is started automatically upon boot.

Set to false to ensure that the service is not started automatically upon boot.

Omit this key to make no changes to this property.

files

A list of files. If Elastic Beanstalk changes one directly via the files block, the service is restarted.

sources

A list of directories. If Elastic Beanstalk expands an archive into one of these directories, the
service is restarted.

packages

A map of the package manager to a list of package names. If Elastic Beanstalk installs or
updates one of these packages, the service is restarted.

commands

A list of command names. If Elastic Beanstalk runs the specified command, the service is
restarted.

Example snippet

The following is an example snippet:

services:
 sysvinit:
 myservice:
 enabled: true
 ensureRunning: true

Container commands

You can use the container_commands key to execute commands that affect your application
source code. Container commands run after the application and web server have been set up
and the application version archive has been extracted, but before the application version is
deployed. Non-container commands and other customization operations are performed prior to
the application source code being extracted.

Linux server 622

Amazon Elastic Beanstalk Developer Guide

The specified commands run as the root user, and are processed in alphabetical order by name.
Container commands are run from the staging directory, where your source code is extracted prior
to being deployed to the application server. Any changes you make to your source code in the
staging directory with a container command will be included when the source is deployed to its
final location.

Note

The output of your container commands are logged in the cfn-init-cmd.log instance
log. For more information about retrieving and viewing instance logs, see Viewing logs
from Amazon EC2 instances.

You can use leader_only to only run the command on a single instance, or configure a test to
only run the command when a test command evaluates to true. Leader-only container commands
are only executed during environment creation and deployments, while other commands and
server customization operations are performed every time an instance is provisioned or updated.
Leader-only container commands are not executed due to launch configuration changes, such as a
change in the AMI Id or instance type.

Syntax

container_commands:
 name of container_command:
 command: "command to run"
 leader_only: true
 name of container_command:
 command: "command to run"

Options

command

A string or array of strings to run.

env

(Optional) Set environment variables prior to running the command, overriding any existing
value.

Linux server 623

Amazon Elastic Beanstalk Developer Guide

cwd

(Optional) The working directory. By default, this is the staging directory of the unzipped
application.

leader_only

(Optional) Only run the command on a single instance chosen by Elastic Beanstalk. Leader-only
container commands are run before other container commands. A command can be leader-only
or have a test, but not both (leader_only takes precedence).

test

(Optional) Run a test command that must return the true in order to run the container
command. A command can be leader-only or have a test, but not both (leader_only takes
precedence).

ignoreErrors

(Optional) Do not fail deployments if the container command returns a value other than 0
(success). Set to true to enable.

Example snippet

The following is an example snippet.

container_commands:
 collectstatic:
 command: "django-admin.py collectstatic --noinput"
 01syncdb:
 command: "django-admin.py syncdb --noinput"
 leader_only: true
 02migrate:
 command: "django-admin.py migrate"
 leader_only: true
 99customize:
 command: "scripts/customize.sh"

Example: Using custom Amazon CloudWatch metrics

This topic provides a configuration example that integrates Elastic Beanstalk metrics with Amazon
CloudWatch agent for platforms based on Amazon Linux 2 and later. The configuration example
uses files and commands in an .ebextensions configuration file.

Linux server 624

Amazon Elastic Beanstalk Developer Guide

Amazon CloudWatch is a web service that enables you to monitor, manage, and publish various
metrics, as well as configure alarm actions based on data from metrics. You can define custom
metrics for your own use, and Elastic Beanstalk will push those metrics to Amazon CloudWatch.
Once Amazon CloudWatch contains your custom metrics, you can view those in the Amazon
CloudWatch console.

The Amazon CloudWatch agent

The Amazon CloudWatch agent enables CloudWatch metric and log collection from both
Amazon EC2 instances and on-premises servers across operating systems. The agent supports
metrics collected at the system level. It also supports custom log and metric collection from
your applications or services. For more information about the Amazon CloudWatch agent, see
Collecting metrics and logs with the CloudWatch agent in the Amazon CloudWatch User Guide.

Note

Elastic Beanstalk Enhanced Health Reporting has native support for publishing a wide
range of instance and environment metrics to CloudWatch. See Publishing Amazon
CloudWatch custom metrics for an environment for details.

Topics

• .Ebextensions configuration file

• Permissions

• Viewing metrics in the CloudWatch console

.Ebextensions configuration file

This example uses files and commands in an .ebextensions configuration file to configure and run
the Amazon CloudWatch agent on the Amazon Linux 2 platform. The agent is prepackaged with
Amazon Linux 2. If you're using a different operating system, additional steps for installing the
agent may be necessary. For more information, see Installing the CloudWatch agent in the Amazon
CloudWatch User Guide.

To use this sample, save it to a file named cloudwatch.config in a directory named
.ebextensions at the top level of your project directory, then deploy your application using the
Elastic Beanstalk console (include the .ebextensions directory in your source bundle) or the EB CLI.

Linux server 625

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html

Amazon Elastic Beanstalk Developer Guide

For more information about configuration files, see Advanced environment customization with
configuration files (.ebextensions).

This file has two sections:

• files — This section adds the agent configuration file. It indicates which metrics and logs
the agent should send to Amazon CloudWatch. In this example, we're only sending the
mem_used_percent metric. For a complete listing of system level metrics supported by the
Amazon CloudWatch agent, see Metrics collected by the CloudWatch agent in the Amazon
CloudWatch User Guide.

• container_commands — This section contains the command that starts the agent, passing
in the configuration file as a parameter. For more details about container_commands, see
Container commands.

.ebextensions/cloudwatch.config

files:
 "/opt/aws/amazon-cloudwatch-agent/bin/config.json":
 mode: "000600"
 owner: root
 group: root
 content: |
 {
 "agent": {
 "metrics_collection_interval": 60,
 "run_as_user": "root"
 },
 "metrics": {
 "namespace": "System/Linux",
 "append_dimensions": {
 "AutoScalingGroupName": "${aws:AutoScalingGroupName}"
 },
 "metrics_collected": {
 "mem": {
 "measurement": [
 "mem_used_percent"
]
 }
 }
 }
 }

Linux server 626

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/metrics-collected-by-CloudWatch-agent.html

Amazon Elastic Beanstalk Developer Guide

container_commands:
 start_cloudwatch_agent:
 command: /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl -a
 append-config -m ec2 -s -c file:/opt/aws/amazon-cloudwatch-agent/bin/config.json

Permissions

The instances in your environment need the proper IAM permissions in order to publish custom
Amazon CloudWatch metrics using the Amazon CloudWatch agent. You grant permissions to
your environment's instances by adding them to the environment's instance profile. You can add
permissions to the instance profile before or after deploying your application.

To grant permissions to publish CloudWatch metrics

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, choose Roles.

3. Choose your environment's instance profile role. By default, when you create an environment
with the Elastic Beanstalk console or EB CLI, this is aws-elasticbeanstalk-ec2-role.

4. Choose the Permissions tab.

5. Under Permissions Policies, in the Permissions section, choose Attach policies.

6. Under Attach Permissions, choose the Amazon managed policy
CloudWatchAgentServerPolicy. Then click Attach policy.

For more information about managing policies, see Working with Policies in the IAM User Guide.

Viewing metrics in the CloudWatch console

After deploying the CloudWatch configuration file to your environment, check the Amazon
CloudWatch console to view your metrics. Custom metrics will be located in the CWAgent
namespace.

For more information, see Viewing available metrics in the Amazon CloudWatch User Guide.

Customizing software on Windows servers

You may want to customize and configure the software that your application depends on. These
files could be either dependencies required by the application—for example, additional packages
or services that need to be run. For general information on customizing and configuring your
Elastic Beanstalk environments, see Configuring Elastic Beanstalk environments.

Windows server 627

https://console.amazonaws.cn/iam/
http://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingPolicies.html
https://console.amazonaws.cn/cloudwatch/home
https://console.amazonaws.cn/cloudwatch/home
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/viewing_metrics_with_cloudwatch.html

Amazon Elastic Beanstalk Developer Guide

Note

YAML relies on consistent indentation. Match the indentation level when replacing content
in an example configuration file and ensure that your text editor uses spaces, not tab
characters, to indent.

Configuration files support the following keys that affect the Windows server on which your
application runs.

Keys

• Packages

• Sources

• Files

• Commands

• Services

• Container commands

Keys are processed in the order that they are listed here.

Note

Older (non-versioned) .NET platform versions do not process configuration files in the
correct order. Learn more at Migrating across major versions of the Elastic Beanstalk
Windows server platform.

Watch your environment's events while developing and testing configuration files. Elastic Beanstalk
ignores a configuration file that contains validation errors, like an invalid key, and doesn't process
any of the other keys in the same file. When this happens, Elastic Beanstalk adds a warning event
to the event log.

Packages

Use the packages key to download and install prepackaged applications and components.

Windows server 628

Amazon Elastic Beanstalk Developer Guide

In Windows environments, Elastic Beanstalk supports downloading and installing MSI packages.
(Linux environments support additional package managers. For details, see Packages on the
Customizing Software on Linux Servers page.)

You can reference any external location, such as an Amazon Simple Storage Service (Amazon S3)
object, as long as the URL is publicly accessible.

If you specify several msi: packages, their installation order isn't guaranteed.

Syntax

Specify a name of your choice as the package name, and a URL to an MSI file location as the value.
You can specify multiple packages under the msi: key.

packages:
 msi:
 package name: package url
 ...

Examples

The following example specifies a URL to download mysql from https://dev.mysql.com/.

packages:
 msi:
 mysql: https://dev.mysql.com/get/Downloads/Connector-Net/mysql-connector-
net-8.0.11.msi

The following example specifies an Amazon S3 object as the MSI file location.

packages:
 msi:
 mymsi: https://amzn-s3-demo-bucket.s3.amazonaws.com/myobject.msi

Sources

Use the sources key to download an archive file from a public URL and unpack it in a target
directory on the EC2 instance.

Syntax

sources:

Windows server 629

Amazon Elastic Beanstalk Developer Guide

 target directory: location of archive file

Supported formats

In Windows environments, Elastic Beanstalk supports the .zip format. (Linux environments support
additional formats. For details, see Sources on the Customizing Software on Linux Servers page.)

You can reference any external location, such as an Amazon Simple Storage Service (Amazon S3)
object, as long as the URL is publicly accessible.

Example

The following example downloads a public .zip file from an Amazon S3 and unpacks it into c:/
myproject/myapp.

sources:
 "c:/myproject/myapp": https://amzn-s3-demo-bucket.s3.amazonaws.com/myobject.zip

Files

Use the files key to create files on the EC2 instance. The content can be either inline in the
configuration file, or from a URL. The files are written to disk in lexicographic order. To download
private files from Amazon S3, provide an instance profile for authorization.

Syntax

files:
 "target file location on disk":
 source: URL
 authentication: authentication name:

 "target file location on disk":
 content: |
 this is my content
 encoding: encoding format

Options

content

(Optional) A string.

Windows server 630

Amazon Elastic Beanstalk Developer Guide

source

(Optional) The URL from which the file is loaded. This option cannot be specified with the
content key.

encoding

(Optional) The encoding format. This option is only used for a provided content key value. The
default value is plain.

Valid values: plain | base64

authentication

(Optional) The name of a Amazon CloudFormation authentication method to use. You can add
authentication methods to the Auto Scaling group metadata with the Resources key.

Examples

The following example shows the two ways to provide file content: from a URL, or inline in the
configuration file.

files:
 "c:\\targetdirectory\\targetfile.txt":
 source: http://foo.bar/myfile

 "c:/targetdirectory/targetfile.txt":
 content: |
 # this is my file
 # with content

Note

If you use a backslash (\) in your file path, you must precede that with another backslash
(the escape character) as shown in the previous example.

The following example uses the Resources key to add an authentication method named S3Auth
and uses it to download a private file from an Amazon S3 :

files:

Windows server 631

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-authentication.html

Amazon Elastic Beanstalk Developer Guide

 "c:\\targetdirectory\\targetfile.zip":
 source: https://elasticbeanstalk-us-west-2-123456789012.s3.amazonaws.com/prefix/
myfile.zip
 authentication: S3Auth

Resources:
 AWSEBAutoScalingGroup:
 Metadata:
 AWS::CloudFormation::Authentication:
 S3Auth:
 type: "s3"
 s: ["amzn-s3-demo-bucket"]
 roleName:
 "Fn::GetOptionSetting":
 Namespace: "aws:autoscaling:launchconfiguration"
 OptionName: "IamInstanceProfile"
 DefaultValue: "aws-elasticbeanstalk-ec2-role"

Commands

Use the commands key to execute commands on the EC2 instance. The commands are processed in
alphabetical order by name, and they run before the application and web server are set up and the
application version file is extracted.

The specified commands run as the Administrator user.

To troubleshoot issues with your commands, you can find their output in instance logs.

Syntax

commands:
 command name:
 command: command to run

Options

command

Either an array or a string specifying the command to run. If you use an array, you don't need to
escape space characters or enclose command parameters in quotation marks.

Windows server 632

Amazon Elastic Beanstalk Developer Guide

cwd

(Optional) The working directory. By default, Elastic Beanstalk attempts to find the directory
location of your project. If not found, it uses c:\Windows\System32 as the default.

env

(Optional) Sets environment variables for the command. This property overwrites, rather than
appends, the existing environment.

ignoreErrors

(Optional) A Boolean value that determines if other commands should run if the command
contained in the command key fails (returns a nonzero value). Set this value to true if you want
to continue running commands even if the command fails. Set it to false if you want to stop
running commands if the command fails. The default value is false.

test

(Optional) A command that must return the value true (exit code 0) in order for Elastic
Beanstalk to process the command contained in the command key.

waitAfterCompletion

(Optional) Seconds to wait after the command completes before running the next command.
The default value is 60 seconds. You can also specify forever.

Important

System reboots during deployment are not supported. If the system reboots as a result
of a command, instance initialization will fail, causing the deployment to fail.
As a workaround, you can use this .ebextensions configuration to schedule
reboots after deployment is complete.

Example

The following example saves the output of the set command to the specified file. If there is a
subsequent command, Elastic Beanstalk runs that command immediately after this command
completes. If this command requires a reboot, Elastic Beanstalk reboots the instance immediately
after the command completes.

Windows server 633

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/instance-configuration/windows-configuration/scheduled-restart.config

Amazon Elastic Beanstalk Developer Guide

commands:
 test:
 command: set > c:\\myapp\\set.txt
 waitAfterCompletion: 0

Services

Use the services key to define which services should be started or stopped when the instance is
launched. The services key also enables you to specify dependencies on sources, packages, and
files so that if a restart is needed due to files being installed, Elastic Beanstalk takes care of the
service restart.

Syntax

services:
 windows:
 name of service:
 files:
 - "file name"
 sources:
 - "directory"
 packages:
 name of package manager:
 "package name[: version]"
 commands:
 - "name of command"

Options

ensureRunning

(Optional) Set to true to ensure that the service is running after Elastic Beanstalk finishes.

Set to false to ensure that the service is not running after Elastic Beanstalk finishes.

Omit this key to make no changes to the service state.

enabled

(Optional) Set to true to ensure that the service is started automatically upon boot.

Set to false to ensure that the service is not started automatically upon boot.

Windows server 634

Amazon Elastic Beanstalk Developer Guide

Omit this key to make no changes to this property.

files

A list of files. If Elastic Beanstalk changes one directly via the files block, the service is restarted.

sources

A list of directories. If Elastic Beanstalk expands an archive into one of these directories, the
service is restarted.

packages

A map of the package manager to a list of package names. If Elastic Beanstalk installs or
updates one of these packages, the service is restarted.

commands

A list of command names. If Elastic Beanstalk runs the specified command, the service is
restarted.

Example

services:
 windows:
 myservice:
 enabled: true
 ensureRunning: true

Container commands

Use the container_commands key to execute commands that affect your application source
code. Container commands run after the application and web server have been set up and the
application version archive has been extracted, but before the application version is deployed. Non-
container commands and other customization operations are performed prior to the application
source code being extracted.

Container commands are run from the staging directory, where your source code is extracted prior
to being deployed to the application server. Any changes you make to your source code in the
staging directory with a container command will be included when the source is deployed to its
final location.

Windows server 635

Amazon Elastic Beanstalk Developer Guide

To troubleshoot issues with your container commands, you can find their output in instance logs.

Use the leader_only option to only run the command on a single instance, or configure
a test to only run the command when a test command evaluates to true. Leader-only
container commands are only executed during environment creation and deployments, while
other commands and server customization operations are performed every time an instance
is provisioned or updated. Leader-only container commands are not executed due to launch
configuration changes, such as a change in the AMI Id or instance type.

Syntax

container_commands:
 name of container_command:
 command: command to run

Options

command

A string or array of strings to run.

env

(Optional) Set environment variables prior to running the command, overriding any existing
value.

cwd

(Optional) The working directory. By default, this is the staging directory of the unzipped
application.

leader_only

(Optional) Only run the command on a single instance chosen by Elastic Beanstalk. Leader-only
container commands are run before other container commands. A command can be leader-only
or have a test, but not both (leader_only takes precedence).

test

(Optional) Run a test command that must return the true in order to run the container
command. A command can be leader-only or have a test, but not both (leader_only takes
precedence).

Windows server 636

Amazon Elastic Beanstalk Developer Guide

ignoreErrors

(Optional) Do not fail deployments if the container command returns a value other than 0
(success). Set to true to enable.

waitAfterCompletion

(Optional) Seconds to wait after the command completes before running the next command.
The default value is 60 seconds. You can also specify forever.

Important

System reboots during deployment are not supported. If the system reboots as a result
of a command, instance initialization will fail, causing the deployment to fail.
As a workaround, you can use this .ebextensions configuration to schedule
reboots after deployment is complete.

Example

The following example saves the output of the set command to the specified file. Elastic Beanstalk
runs the command on one instance, and reboots the instance immediately after the command
completes.

container_commands:
 foo:
 command: set > c:\\myapp\\set.txt
 leader_only: true
 waitAfterCompletion: 0

Adding and customizing Elastic Beanstalk environment resources

You may want to customize your environment resources that are part of your Elastic Beanstalk
environment. For example, you may want to add an Amazon SQS queue and an alarm on queue
depth, or you might want to add an Amazon ElastiCache cluster. You can easily customize
your environment at the same time that you deploy your application version by including a
configuration file with your source bundle.

You can use the Resources key in a configuration file to create and customize Amazon
resources in your environment. Resources defined in configuration files are added to the Amazon

Custom resources 637

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/instance-configuration/windows-configuration/scheduled-restart.config

Amazon Elastic Beanstalk Developer Guide

CloudFormation template used to launch your environment. All Amazon CloudFormation resources
types are supported.

Note

Whenever you add a resource that isn't managed by Elastic Beanstalk, be sure to add
a user policy with the appropriate permissions to your Amazon Identity and Access
Management (IAM) users. The managed user policies that Elastic Beanstalk provides only
cover permissions to Elastic Beanstalk-managed resources.

For example, the following configuration file adds an Auto Scaling lifecycle hook to the default
Auto Scaling group created by Elastic Beanstalk:

~/my-app/.ebextensions/as-hook.config

Resources:
 hookrole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument: {
 "Version" : "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": ["autoscaling.amazonaws.com.cn"]
 },
 "Action": ["sts:AssumeRole"]
 }]
 }
 Policies: [{
 "PolicyName": "SNS",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Resource": "*",
 "Action": [
 "sqs:SendMessage",
 "sqs:GetQueueUrl",
 "sns:Publish"
]

Custom resources 638

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

Amazon Elastic Beanstalk Developer Guide

 }
]
 }
 }]
 hooktopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 - Endpoint: "my-email@example.com"
 Protocol: email
 lifecyclehook:
 Type: AWS::AutoScaling::LifecycleHook
 Properties:
 AutoScalingGroupName: { "Ref" : "AWSEBAutoScalingGroup" }
 LifecycleTransition: autoscaling:EC2_INSTANCE_TERMINATING
 NotificationTargetARN: { "Ref" : "hooktopic" }
 RoleARN: { "Fn::GetAtt" : ["hookrole", "Arn"] }

This example defines three resources, hookrole, hooktopic and lifecyclehook. The first two
resources are an IAM role, which grants Amazon EC2 Auto Scaling permission to publish messages
to Amazon SNS, and an SNS topic, which relays messages from the Auto Scaling group to an email
address. Elastic Beanstalk creates these resources with the specified properties and types.

The final resource, lifecyclehook, is the lifecycle hook itself:

 lifecyclehook:
 Type: AWS::AutoScaling::LifecycleHook
 Properties:
 AutoScalingGroupName: { "Ref" : "AWSEBAutoScalingGroup" }
 LifecycleTransition: autoscaling:EC2_INSTANCE_TERMINATING
 NotificationTargetARN: { "Ref" : "hooktopic" }
 RoleARN: { "Fn::GetAtt" : ["hookrole", "Arn"] }

The lifecycle hook definition uses two functions to populate values for the hook's properties.
{ "Ref" : "AWSEBAutoScalingGroup" } retrieves the name of the Auto Scaling group
created by Elastic Beanstalk for the environment. AWSEBAutoScalingGroup is one of the
standard resource names provided by Elastic Beanstalk.

For AWS::IAM::Role, Ref only returns the name of the role, not the ARN. To get the ARN for the
RoleARN parameter, you use another intrinsic function, Fn::GetAtt instead, which can get any

Custom resources 639

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html#d0e48356

Amazon Elastic Beanstalk Developer Guide

attribute from a resource. RoleARN: { "Fn::GetAtt" : ["hookrole", "Arn"] } gets the
Arn attribute from the hookrole resource.

{ "Ref" : "hooktopic" } gets the ARN of the Amazon SNS topic created earlier in the
configuration file. The value returned by Ref varies per resource type and can be found in the
Amazon CloudFormation User Guide topic for the AWS::SNS::Topic resource type.

Modifying the resources that Elastic Beanstalk creates for your environment

The resources that Elastic Beanstalk creates for your environment have names. You can use
these names to get information about the resources with a function, or modify properties on
the resources to customize their behavior. This topic describes the Amazon resources that Elastic
Beanstalk uses in the different types of environments.

Note

The previous topic Custom resources provides some uses cases and examples for
customizing environment resources. You can also find more examples of configuration files
in the later topic Custom resource examples.

Web server environments have the following resources.

Web server environments

• AWSEBAutoScalingGroup (AWS::AutoScaling::AutoScalingGroup) – The Auto Scaling group
attached to your environment.

• One of the following two resources.

• AWSEBAutoScalingLaunchConfiguration (AWS::AutoScaling::LaunchConfiguration) – The
launch configuration attached to your environment's Auto Scaling group.

• AWSEBEC2LaunchTemplate (AWS::EC2::LaunchTemplate) – The Amazon EC2 launch template
used by your environment's Auto Scaling group.

Note

If your environment uses functionality that requires Amazon EC2 launch templates, and
your user policy lacks the required permissions, creating or updating the environment

Custom resources 640

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html#d0e62250
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-as-group.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-as-launchconfig.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-launchtemplate.html

Amazon Elastic Beanstalk Developer Guide

might fail. Use the AdministratorAccess-AWSElasticBeanstalk managed user policy, or
add the required permissions to your custom policy.

• AWSEBEnvironmentName (AWS::ElasticBeanstalk::Environment) – Your environment.

• AWSEBSecurityGroup (AWS::EC2::SecurityGroup) – The security group attached to your Auto
Scaling group.

• AWSEBRDSDatabase (AWS::RDS::DBInstance) – The Amazon RDS DB instance attached to your
environment (if applicable).

In a load-balanced environment, you can access additional resources related to the load balancer.
Classic load balancers have a resource for the load balancer and one for the security group
attached to it. Application and network load balancers have additional resources for the load
balancer's default listener, listener rule, and target group.

Load-balanced environments

• AWSEBLoadBalancer (AWS::ElasticLoadBalancing::LoadBalancer) – Your environment's classic
load balancer.

• AWSEBV2LoadBalancer (AWS::ElasticLoadBalancingV2::LoadBalancer) – Your environment's
application or network load balancer.

• AWSEBLoadBalancerSecurityGroup (AWS::EC2::SecurityGroup) – In a custom Amazon Virtual
Private Cloud (Amazon VPC) only, the name of the security group that Elastic Beanstalk creates
for the load balancer. In a default VPC or EC2 classic, Elastic Load Balancing assigns a default
security group to the load balancer.

• AWSEBV2LoadBalancerListener (AWS::ElasticLoadBalancingV2::Listener) – A listener that
allows the load balancer to check for connection requests and forward them to one or more
target groups.

• AWSEBV2LoadBalancerListenerRule (AWS::ElasticLoadBalancingV2::ListenerRule) – Defines
which requests an Elastic Load Balancing listener takes action on and the action that it takes.

• AWSEBV2LoadBalancerTargetGroup (AWS::ElasticLoadBalancingV2::TargetGroup) – An Elastic
Load Balancing target group that routes requests to one or more registered targets, such as
Amazon EC2 instances.

Worker environments have resources for the SQS queue that buffers incoming requests, and a
Amazon DynamoDB table that the instances use for leader election.

Custom resources 641

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-beanstalk-environment.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
https://docs.amazonaws.cn/vpc/latest/userguide/
https://docs.amazonaws.cn/vpc/latest/userguide/
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listenerrule.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-targetgroup.html

Amazon Elastic Beanstalk Developer Guide

Worker environments

• AWSEBWorkerQueue (AWS::SQS::Queue) – The Amazon SQS queue from which the daemon pulls
requests that need to be processed.

• AWSEBWorkerDeadLetterQueue (AWS::SQS::Queue) – The Amazon SQS queue that stores
messages that cannot be delivered or otherwise were not successfully processed by the daemon.

• AWSEBWorkerCronLeaderRegistry (AWS::DynamoDB::Table) – The Amazon DynamoDB table
that is the internal registry used by the daemon for periodic tasks.

Other Amazon CloudFormation template keys

We've already introduced configuration file keys from Amazon CloudFormation such as
Resources, files, and packages. Elastic Beanstalk adds the contents of configurations files
to the Amazon CloudFormation template that supports your environment, so you can use other
Amazon CloudFormation sections to perform advanced tasks in your configuration files.

Keys

• Parameters

• Outputs

• Mappings

Parameters

Parameters are an alternative to Elastic Beanstalk's own custom options that you can use to define
values that you use in other places in your configuration files. Like custom options, you can use
parameters to gather user configurable values in one place. Unlike custom options, you can not use
Elastic Beanstalk's API to set parameter values, and the number of parameters you can define in a
template is limited by Amazon CloudFormation.

One reason you might want to use parameters is to make your configuration files double as
Amazon CloudFormation templates. If you use parameters instead of custom options, you can use
the configuration file to create the same resource in Amazon CloudFormation as its own stack.
For example, you could have a configuration file that adds an Amazon EFS file system to your
environment for testing, and then use the same file to create an independent file system that isn't
tied to your environment's lifecycle for production use.

Custom resources 642

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

Amazon Elastic Beanstalk Developer Guide

The following example shows the use of parameters to gather user-configurable values at the top
of a configuration file.

Example Loadbalancer-accesslogs-existingbucket.config – Parameters

Parameters:
 bucket:
 Type: String
 Description: "Name of the Amazon S3 bucket in which to store load balancer logs"
 Default: "amzn-s3-demo-bucket"
 bucketprefix:
 Type: String
 Description: "Optional prefix. Can't start or end with a /, or contain the word
 AWSLogs"
 Default: ""

Outputs

You can use an Outputs block to export information about created resources to Amazon
CloudFormation. You can then use the Fn::ImportValue function to pull the value into a
Amazon CloudFormation template outside of Elastic Beanstalk.

The following example creates an Amazon SNS topic and exports its ARN to Amazon
CloudFormation with the name NotificationTopicArn.

Example sns-topic.config

Resources:
 NotificationTopic:
 Type: AWS::SNS::Topic

Outputs:
 NotificationTopicArn:
 Description: Notification topic ARN
 Value: { "Ref" : "NotificationTopic" }
 Export:
 Name: NotificationTopicArn

In a configuration file for a different environment, or a Amazon CloudFormation template outside
of Elastic Beanstalk, you can use the Fn::ImportValue function to get the exported ARN. This
example assigns the exported value to an environment property named TOPIC_ARN.

Custom resources 643

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/resource-configuration/loadbalancer-accesslogs-existingbucket.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/resource-configuration/sns-topic.config

Amazon Elastic Beanstalk Developer Guide

Example env.config

option_settings:
 aws:elasticbeanstalk:application:environment:
 TOPIC_ARN: '`{ "Fn::ImportValue" : "NotificationTopicArn" }`'

Mappings

You can use a mapping to store key-value pairs organized by namespace. A mapping can help you
organize values that you use throughout your configs, or change a parameter value depending on
another value. For example, the following configuration sets the value of an account ID parameter
based on the current region.

Example Loadbalancer-accesslogs-newbucket.config – Mappings

Mappings:
 Region2ELBAccountId:
 us-east-1:
 AccountId: "111122223333"
 us-west-2:
 AccountId: "444455556666"
 us-west-1:
 AccountId: "123456789012"
 eu-west-1:
 AccountId: "777788889999"
...
 Principal:
 AWS:
 ? "Fn::FindInMap"
 :
 - Region2ELBAccountId
 -
 Ref: "AWS::Region"
 - AccountId

Functions

You can use functions in your configuration files to populate values for resource properties with
information from other resources or from Elastic Beanstalk configuration option settings. Elastic
Beanstalk supports Amazon CloudFormation functions (Ref, Fn::GetAtt, Fn::Join), and one
Elastic Beanstalk-specific function, Fn::GetOptionSetting.

Custom resources 644

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/resource-configuration/loadbalancer-accesslogs-newbucket.config

Amazon Elastic Beanstalk Developer Guide

Functions

• Ref

• Fn::GetAtt

• Fn::Join

• Fn::GetOptionSetting

Ref

Use Ref to retrieve the default string representation of an Amazon resource. The value returned by
Ref depends on the resource type, and sometimes depends on other factors as well. For example,
a security group (AWS::EC2::SecurityGroup) returns either the name or ID of the security group,
depending on if the security group is in a default Amazon Virtual Private Cloud (Amazon VPC), EC2
classic, or a custom VPC.

{ "Ref" : "resource name" }

Note

For details on each resource type, including the return value(s) of Ref, see Amazon
Resource Types Reference in the Amazon CloudFormation User Guide.

From the sample Auto Scaling lifecycle hook:

Resources:
 lifecyclehook:
 Type: AWS::AutoScaling::LifecycleHook
 Properties:
 AutoScalingGroupName: { "Ref" : "AWSEBAutoScalingGroup" }

You can also use Ref to retrieve the value of a Amazon CloudFormation parameter defined
elsewhere in the same file or in a different configuration file.

Fn::GetAtt

Use Fn::GetAtt to retrieve the value of an attribute on an Amazon resource.

Custom resources 645

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
https://docs.amazonaws.cn/vpc/latest/userguide/
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

Amazon Elastic Beanstalk Developer Guide

{ "Fn::GetAtt" : ["resource name", "attribute name"] }

From the sample Auto Scaling lifecycle hook:

Resources:
 lifecyclehook:
 Type: AWS::AutoScaling::LifecycleHook
 Properties:
 RoleARN: { "Fn::GetAtt" : ["hookrole", "Arn"] }

See Fn::GetAtt for more information.

Fn::Join

Use Fn::Join to combine strings with a delimiter. The strings can be hard-coded or use the
output from Fn::GetAtt or Ref.

{ "Fn::Join" : ["delimiter", ["string1", "string2"]] }

See Fn::Join for more information.

Fn::GetOptionSetting

Use Fn::GetOptionSetting to retrieve the value of a configuration option setting applied to the
environment.

"Fn::GetOptionSetting":
 Namespace: "namespace"
 OptionName: "option name"
 DefaultValue: "default value"

From the storing private keys example:

Resources:
 AWSEBAutoScalingGroup:
 Metadata:
 AWS::CloudFormation::Authentication:
 S3Auth:
 type: "s3"
 buckets: ["elasticbeanstalk-us-west-2-123456789012"]

Custom resources 646

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-getatt.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-join.html

Amazon Elastic Beanstalk Developer Guide

 roleName:
 "Fn::GetOptionSetting":
 Namespace: "aws:autoscaling:launchconfiguration"
 OptionName: "IamInstanceProfile"
 DefaultValue: "aws-elasticbeanstalk-ec2-role"

Custom resource examples

The following is a list of example configuration files that you can use to customize your Elastic
Beanstalk environments:

• DynamoDB, CloudWatch, and SNS

• Elastic Load Balancing and CloudWatch

• ElastiCache

• RDS and CloudWatch

• SQS, SNS, and CloudWatch

Subtopics of this page provide some extended examples for adding and configuring custom
resources in an Elastic Beanstalk environment.

Examples

• Example: ElastiCache

• Example: SQS, CloudWatch, and SNS

• Example: DynamoDB, CloudWatch, and SNS

Example: ElastiCache

The following samples add an Amazon ElastiCache cluster to EC2-Classic and EC2-VPC (both
default and custom Amazon Virtual Private Cloud (Amazon VPC)) platforms. For more information
about these platforms and how you can determine which ones EC2 supports for your region and
your Amazon account, see https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-supported-
platforms.html. Then refer to the section in this topic that applies to your platform.

• EC2-classic platforms

• EC2-VPC (default)

• EC2-VPC (custom)

Custom resources 647

https://elasticbeanstalk.s3.amazonaws.com/extensions/DynamoDB-with-CloudWatch-Alarms.config
https://elasticbeanstalk.s3.amazonaws.com/extensions/ELB-Alarms.config
https://elasticbeanstalk.s3.amazonaws.com/extensions/ElastiCache.config
https://elasticbeanstalk.s3.amazonaws.com/extensions/RDS-Alarms.config
https://elasticbeanstalk.s3.amazonaws.com/extensions/SNS.config
https://docs.amazonaws.cn/vpc/latest/userguide/
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-supported-platforms.html

Amazon Elastic Beanstalk Developer Guide

EC2-classic platforms

This sample adds an Amazon ElastiCache cluster to an environment with instances launched into
the EC2-Classic platform. All of the properties that are listed in this example are the minimum
required properties that must be set for each resource type. You can download the example at
ElastiCache example.

Note

This example creates Amazon resources, which you might be charged for. For more
information about Amazon pricing, see http://www.amazonaws.cn/pricing/. Some services
are part of the Amazon Free Usage Tier. If you are a new customer, you can test drive these
services for free. See http://www.amazonaws.cn/free/ for more information.

To use this example, do the following:

1. Create an .ebextensions directory in the top-level directory of your source bundle.

2. Create two configuration files with the .config extension and place them in your
.ebextensions directory. One configuration file defines the resources, and the other
configuration file defines the options.

3. Deploy your application to Elastic Beanstalk.

YAML relies on consistent indentation. Match the indentation level when replacing content in an
example configuration file and ensure that your text editor uses spaces, not tab characters, to
indent.

Create a configuration file (e.g., elasticache.config) that defines the resources. In this
example, we create the ElastiCache cluster by specifying the name of the ElastiCache cluster
resource (MyElastiCache), declaring its type, and then configuring the properties for the cluster.
The example references the name of the ElastiCache security group resource that gets created
and defined in this configuration file. Next, we create an ElastiCache security group. We define the
name for this resource, declare its type, and add a description for the security group. Finally, we
set the ingress rules for the ElastiCache security group to allow access only from instances inside
the ElastiCache security group (MyCacheSecurityGroup) and the Elastic Beanstalk security group
(AWSEBSecurityGroup). The parameter name, AWSEBSecurityGroup, is a fixed resource name
provided by Elastic Beanstalk. You must add AWSEBSecurityGroup to your ElastiCache security

Custom resources 648

https://elasticbeanstalk.s3.amazonaws.com/extensions/ElastiCache.config
http://www.amazonaws.cn/pricing/
http://www.amazonaws.cn/free/

Amazon Elastic Beanstalk Developer Guide

group ingress rules in order for your Elastic Beanstalk application to connect to the instances in
your ElastiCache cluster.

#This sample requires you to create a separate configuration file that defines the
 custom option settings for CacheCluster properties.

Resources:
 MyElastiCache:
 Type: AWS::ElastiCache::CacheCluster
 Properties:
 CacheNodeType:
 Fn::GetOptionSetting:
 OptionName : CacheNodeType
 DefaultValue: cache.m1.small
 NumCacheNodes:
 Fn::GetOptionSetting:
 OptionName : NumCacheNodes
 DefaultValue: 1
 Engine:
 Fn::GetOptionSetting:
 OptionName : Engine
 DefaultValue: memcached
 CacheSecurityGroupNames:
 - Ref: MyCacheSecurityGroup
 MyCacheSecurityGroup:
 Type: AWS::ElastiCache::SecurityGroup
 Properties:
 Description: "Lock cache down to webserver access only"
 MyCacheSecurityGroupIngress:
 Type: AWS::ElastiCache::SecurityGroupIngress
 Properties:
 CacheSecurityGroupName:
 Ref: MyCacheSecurityGroup
 EC2SecurityGroupName:
 Ref: AWSEBSecurityGroup

For more information about the resources used in this example configuration file, see the following
references:

• AWS::ElastiCache::CacheCluster

• AWS::ElastiCache::SecurityGroup

• AWS::ElastiCache:SecurityGroupIngress

Custom resources 649

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-security-group.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-security-group-ingress.html

Amazon Elastic Beanstalk Developer Guide

Create a separate configuration file called options.config and define the custom option
settings.

option_settings:
 "aws:elasticbeanstalk:customoption":
 CacheNodeType : cache.m1.small
 NumCacheNodes : 1
 Engine : memcached

These lines tell Elastic Beanstalk to get the values for the CacheNodeType, NumCacheNodes,
and Engine properties from the CacheNodeType, NumCacheNodes, and Engine values in a
config file (options.config in our example) that contains an option_settings section with an
aws:elasticbeanstalk:customoption section that contains a name-value pair that contains the
actual value to use. In the example above, this means cache.m1.small, 1, and memcached would be
used for the values. For more information about Fn::GetOptionSetting, see Functions.

EC2-VPC (default)

This sample adds an Amazon ElastiCache cluster to an environment with instances launched into
the EC2-VPC platform. Specifically, the information in this section applies to a scenario where EC2
launches instances into the default VPC. All of the properties in this example are the minimum
required properties that must be set for each resource type. For more information about default
VPCs, see Your Default VPC and Subnets.

Note

This example creates Amazon resources, which you might be charged for. For more
information about Amazon pricing, see http://www.amazonaws.cn/pricing/. Some services
are part of the Amazon Free Usage Tier. If you are a new customer, you can test drive these
services for free. See http://www.amazonaws.cn/free/ for more information.

To use this example, do the following:

1. Create an .ebextensions directory in the top-level directory of your source bundle.

2. Create two configuration files with the .config extension and place them in your
.ebextensions directory. One configuration file defines the resources, and the other
configuration file defines the options.

3. Deploy your application to Elastic Beanstalk.

Custom resources 650

https://docs.amazonaws.cn/vpc/latest/userguide/default-vpc.html
http://www.amazonaws.cn/pricing/
http://www.amazonaws.cn/free/

Amazon Elastic Beanstalk Developer Guide

YAML relies on consistent indentation. Match the indentation level when replacing content in an
example configuration file and ensure that your text editor uses spaces, not tab characters, to
indent.

Now name the resources configuration file elasticache.config. To create the ElastiCache
cluster, this example specifies the name of the ElastiCache cluster resource (MyElastiCache),
declares its type, and then configures the properties for the cluster. The example references the ID
of the security group resource that we create and define in this configuration file.

Next, we create an EC2 security group. We define the name for this resource, declare its type, add
a description, and set the ingress rules for the security group to allow access only from instances
inside the Elastic Beanstalk security group (AWSEBSecurityGroup). (The parameter name,
AWSEBSecurityGroup, is a fixed resource name provided by Elastic Beanstalk. You must add
AWSEBSecurityGroup to your ElastiCache security group ingress rules in order for your Elastic
Beanstalk application to connect to the instances in your ElastiCache cluster.)

The ingress rules for the EC2 security group also define the IP protocol and port numbers on which
the cache nodes can accept connections. For Redis, the default port number is 6379.

#This sample requires you to create a separate configuration file that defines the
 custom option settings for CacheCluster properties.

Resources:
 MyCacheSecurityGroup:
 Type: "AWS::EC2::SecurityGroup"
 Properties:
 GroupDescription: "Lock cache down to webserver access only"
 SecurityGroupIngress :
 - IpProtocol : "tcp"
 FromPort :
 Fn::GetOptionSetting:
 OptionName : "CachePort"
 DefaultValue: "6379"
 ToPort :
 Fn::GetOptionSetting:
 OptionName : "CachePort"
 DefaultValue: "6379"
 SourceSecurityGroupName:
 Ref: "AWSEBSecurityGroup"
 MyElastiCache:

Custom resources 651

Amazon Elastic Beanstalk Developer Guide

 Type: "AWS::ElastiCache::CacheCluster"
 Properties:
 CacheNodeType:
 Fn::GetOptionSetting:
 OptionName : "CacheNodeType"
 DefaultValue : "cache.t2.micro"
 NumCacheNodes:
 Fn::GetOptionSetting:
 OptionName : "NumCacheNodes"
 DefaultValue : "1"
 Engine:
 Fn::GetOptionSetting:
 OptionName : "Engine"
 DefaultValue : "redis"
 VpcSecurityGroupIds:
 -
 Fn::GetAtt:
 - MyCacheSecurityGroup
 - GroupId

Outputs:
 ElastiCache:
 Description : "ID of ElastiCache Cache Cluster with Redis Engine"
 Value :
 Ref : "MyElastiCache"

For more information about the resources used in this example configuration file, see the following
references:

• AWS::ElastiCache::CacheCluster

• AWS::EC2::SecurityGroup

Next, name the options configuration file options.config and define the custom option
settings.

option_settings:
 "aws:elasticbeanstalk:customoption":
 CacheNodeType : cache.t2.micro
 NumCacheNodes : 1
 Engine : redis
 CachePort : 6379

Custom resources 652

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html

Amazon Elastic Beanstalk Developer Guide

These lines tell Elastic Beanstalk to get the values for the CacheNodeType, NumCacheNodes,
Engine, and CachePort properties from the CacheNodeType, NumCacheNodes, Engine,
and CachePort values in a config file (options.config in our example). That file
includes an aws:elasticbeanstalk:customoption section (under option_settings)
that contains name-value pairs with the actual values to use. In the preceding example,
cache.t2.micro, 1, redis, and 6379 would be used for the values. For more information about
Fn::GetOptionSetting, see Functions.

EC2-VPC (custom)

If you create a custom VPC on the EC2-VPC platform and specify it as the VPC into which EC2
launches instances, the process of adding an Amazon ElastiCache cluster to your environment
differs from that of a default VPC. The main difference is that you must create a subnet group for
the ElastiCache cluster. All of the properties in this example are the minimum required properties
that must be set for each resource type.

Note

This example creates Amazon resources, which you might be charged for. For more
information about Amazon pricing, see http://www.amazonaws.cn/pricing/. Some services
are part of the Amazon Free Usage Tier. If you are a new customer, you can test drive these
services for free. See http://www.amazonaws.cn/free/ for more information.

To use this example, do the following:

1. Create an .ebextensions directory in the top-level directory of your source bundle.

2. Create two configuration files with the .config extension and place them in your
.ebextensions directory. One configuration file defines the resources, and the other
configuration file defines the options.

3. Deploy your application to Elastic Beanstalk.

YAML relies on consistent indentation. Match the indentation level when replacing content in an
example configuration file and ensure that your text editor uses spaces, not tab characters, to
indent.

Now name the resources configuration file elasticache.config. To create the ElastiCache
cluster, this example specifies the name of the ElastiCache cluster resource (MyElastiCache),

Custom resources 653

http://www.amazonaws.cn/pricing/
http://www.amazonaws.cn/free/

Amazon Elastic Beanstalk Developer Guide

declares its type, and then configures the properties for the cluster. The properties in the example
reference the name of the subnet group for the ElastiCache cluster as well as the ID of security
group resource that we create and define in this configuration file.

Next, we create an EC2 security group. We define the name for this resource, declare its type, add
a description, the VPC ID, and set the ingress rules for the security group to allow access only from
instances inside the Elastic Beanstalk security group (AWSEBSecurityGroup). (The parameter
name, AWSEBSecurityGroup, is a fixed resource name provided by Elastic Beanstalk. You must
add AWSEBSecurityGroup to your ElastiCache security group ingress rules in order for your
Elastic Beanstalk application to connect to the instances in your ElastiCache cluster.)

The ingress rules for the EC2 security group also define the IP protocol and port numbers on which
the cache nodes can accept connections. For Redis, the default port number is 6379. Finally, this
example creates a subnet group for the ElastiCache cluster. We define the name for this resource,
declare its type, and add a description and ID of the subnet in the subnet group.

Note

We recommend that you use private subnets for the ElastiCache cluster. For more
information about a VPC with a private subnet, see https://docs.amazonaws.cn/vpc/latest/
userguide/VPC_Scenario2.html.

#This sample requires you to create a separate configuration file that defines the
 custom option settings for CacheCluster properties.

Resources:
 MyElastiCache:
 Type: "AWS::ElastiCache::CacheCluster"
 Properties:
 CacheNodeType:
 Fn::GetOptionSetting:
 OptionName : "CacheNodeType"
 DefaultValue : "cache.t2.micro"
 NumCacheNodes:
 Fn::GetOptionSetting:
 OptionName : "NumCacheNodes"
 DefaultValue : "1"
 Engine:
 Fn::GetOptionSetting:

Custom resources 654

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Scenario2.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Scenario2.html

Amazon Elastic Beanstalk Developer Guide

 OptionName : "Engine"
 DefaultValue : "redis"
 CacheSubnetGroupName:
 Ref: "MyCacheSubnets"
 VpcSecurityGroupIds:
 - Ref: "MyCacheSecurityGroup"
 MyCacheSecurityGroup:
 Type: "AWS::EC2::SecurityGroup"
 Properties:
 GroupDescription: "Lock cache down to webserver access only"
 VpcId:
 Fn::GetOptionSetting:
 OptionName : "VpcId"
 SecurityGroupIngress :
 - IpProtocol : "tcp"
 FromPort :
 Fn::GetOptionSetting:
 OptionName : "CachePort"
 DefaultValue: "6379"
 ToPort :
 Fn::GetOptionSetting:
 OptionName : "CachePort"
 DefaultValue: "6379"
 SourceSecurityGroupId:
 Ref: "AWSEBSecurityGroup"
 MyCacheSubnets:
 Type: "AWS::ElastiCache::SubnetGroup"
 Properties:
 Description: "Subnets for ElastiCache"
 SubnetIds:
 Fn::GetOptionSetting:
 OptionName : "CacheSubnets"
Outputs:
 ElastiCache:
 Description : "ID of ElastiCache Cache Cluster with Redis Engine"
 Value :
 Ref : "MyElastiCache"

For more information about the resources used in this example configuration file, see the following
references:

• AWS::ElastiCache::CacheCluster

• AWS::EC2::SecurityGroup

Custom resources 655

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html

Amazon Elastic Beanstalk Developer Guide

• AWS::ElastiCache::SubnetGroup

Next, name the options configuration file options.config and define the custom option
settings.

Note

In the following example, replace the example CacheSubnets and VpcId values with your
own subnets and VPC.

option_settings:
 "aws:elasticbeanstalk:customoption":
 CacheNodeType : cache.t2.micro
 NumCacheNodes : 1
 Engine : redis
 CachePort : 6379
 CacheSubnets:
 - subnet-1a1a1a1a
 - subnet-2b2b2b2b
 - subnet-3c3c3c3c
 VpcId: vpc-4d4d4d4d

These lines tell Elastic Beanstalk to get the values for the CacheNodeType,
NumCacheNodes, Engine, CachePort, CacheSubnets, and VpcId properties from
the CacheNodeType, NumCacheNodes, Engine, CachePort, CacheSubnets, and
VpcId values in a config file (options.config in our example). That file includes an
aws:elasticbeanstalk:customoption section (under option_settings) that contains
name-value pairs with sample values. In the example above, cache.t2.micro, 1, redis, 6379,
subnet-1a1a1a1a, subnet-2b2b2b2b, subnet-3c3c3c3c, and vpc-4d4d4d4d would be used
for the values. For more information about Fn::GetOptionSetting, see Functions.

Example: SQS, CloudWatch, and SNS

This example adds an Amazon SQS queue and an alarm on queue depth to the environment. The
properties that you see in this example are the minimum required properties that you must set for
each of these resources. You can download the example at SQS, SNS, and CloudWatch.

Custom resources 656

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-subnetgroup.html
https://elasticbeanstalk.s3.amazonaws.com/extensions/SNS.config

Amazon Elastic Beanstalk Developer Guide

Note

This example creates Amazon resources, which you might be charged for. For more
information about Amazon pricing, see http://www.amazonaws.cn/pricing/. Some services
are part of the Amazon Free Usage Tier. If you are a new customer, you can test drive these
services for free. See http://www.amazonaws.cn/free/ for more information.

To use this example, do the following:

1. Create an .ebextensions directory in the top-level directory of your source bundle.

2. Create two configuration files with the .config extension and place them in your
.ebextensions directory. One configuration file defines the resources, and the other
configuration file defines the options.

3. Deploy your application to Elastic Beanstalk.

YAML relies on consistent indentation. Match the indentation level when replacing content in an
example configuration file and ensure that your text editor uses spaces, not tab characters, to
indent.

Create a configuration file (e.g., sqs.config) that defines the resources. In this example, we create
an SQS queue and define the VisbilityTimeout property in the MySQSQueue resource. Next,
we create an SNS Topic and specify that email gets sent to someone@example.com when the
alarm is fired. Finally, we create a CloudWatch alarm if the queue grows beyond 10 messages.
In the Dimensions property, we specify the name of the dimension and the value representing
the dimension measurement. We use Fn::GetAtt to return the value of QueueName from
MySQSQueue.

#This sample requires you to create a separate configuration file to define the custom
 options for the SNS topic and SQS queue.
Resources:
 MySQSQueue:
 Type: AWS::SQS::Queue
 Properties:
 VisibilityTimeout:
 Fn::GetOptionSetting:
 OptionName: VisibilityTimeout
 DefaultValue: 30

Custom resources 657

http://www.amazonaws.cn/pricing/
http://www.amazonaws.cn/free/

Amazon Elastic Beanstalk Developer Guide

 AlarmTopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 - Endpoint:
 Fn::GetOptionSetting:
 OptionName: AlarmEmail
 DefaultValue: "nobody@amazon.com"
 Protocol: email
 QueueDepthAlarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: "Alarm if queue depth grows beyond 10 messages"
 Namespace: "AWS/SQS"
 MetricName: ApproximateNumberOfMessagesVisible
 Dimensions:
 - Name: QueueName
 Value : { "Fn::GetAtt" : ["MySQSQueue", "QueueName"] }
 Statistic: Sum
 Period: 300
 EvaluationPeriods: 1
 Threshold: 10
 ComparisonOperator: GreaterThanThreshold
 AlarmActions:
 - Ref: AlarmTopic
 InsufficientDataActions:
 - Ref: AlarmTopic

Outputs :
 QueueURL:
 Description : "URL of newly created SQS Queue"
 Value : { Ref : "MySQSQueue" }
 QueueARN :
 Description : "ARN of newly created SQS Queue"
 Value : { "Fn::GetAtt" : ["MySQSQueue", "Arn"]}
 QueueName :
 Description : "Name newly created SQS Queue"
 Value : { "Fn::GetAtt" : ["MySQSQueue", "QueueName"]}

For more information about the resources used in this example configuration file, see the following
references:

• AWS::SQS::Queue

Custom resources 658

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html

Amazon Elastic Beanstalk Developer Guide

• AWS::SNS::Topic

• AWS::CloudWatch::Alarm

Create a separate configuration file called options.config and define the custom option
settings.

option_settings:
 "aws:elasticbeanstalk:customoption":
 VisibilityTimeout : 30
 AlarmEmail : "nobody@example.com"

These lines tell Elastic Beanstalk to get the values for the VisibilityTimeout and Subscription
Endpoint properties from the VisibilityTimeout and Subscription Endpoint values in a
config file (options.config in our example) that contains an option_settings section with an
aws:elasticbeanstalk:customoption section that contains a name-value pair that contains the
actual value to use. In the example above, this means 30 and "nobody@amazon.com" would be
used for the values. For more information about Fn::GetOptionSetting, see the section called
“Functions”.

Example: DynamoDB, CloudWatch, and SNS

This configuration file sets up the DynamoDB table as a session handler for a PHP-based
application using the Amazon SDK for PHP 2. To use this example, you must have an IAM instance
profile, which is added to the instances in your environment and used to access the DynamoDB
table.

You can download the sample that we'll use in this step at DynamoDB session Support example.
The sample contains the following files:

• The sample application, index.php

• A configuration file, dynamodb.config, to create and configure a DynamoDB table and other
Amazon resources and install software on the EC2 instances that host the application in an
Elastic Beanstalk environment

• A configuration file, options.config, that overrides the defaults in dynamodb.config with
specific settings for this particular installation

index.php

Custom resources 659

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html
https://elasticbeanstalk.s3.amazonaws.com/extensions/PHP-DynamoDB-Session-Support.zip

Amazon Elastic Beanstalk Developer Guide

<?php

// Include the SDK using the Composer autoloader
require '../vendor/autoload.php';

use Aws\DynamoDb\DynamoDbClient;

// Grab the session table name and region from the configuration file
list($tableName, $region) = file(__DIR__ . '/../sessiontable');
$tableName = rtrim($tableName);
$region = rtrim($region);

// Create a DynamoDB client and register the table as the session handler
$dynamodb = DynamoDbClient::factory(array('region' => $region));
$handler = $dynamodb->registerSessionHandler(array('table_name' => $tableName,
 'hash_key' => 'username'));

// Grab the instance ID so we can display the EC2 instance that services the request
$instanceId = file_get_contents("http://169.254.169.254/latest/meta-data/instance-id");
?>
<h1>Elastic Beanstalk PHP Sessions Sample</h1>
<p>This sample application shows the integration of the Elastic Beanstalk PHP
container and the session support for DynamoDB from the AWS SDK for PHP 2.
Using DynamoDB session support, the application can be scaled out across
multiple web servers. For more details, see the
PHP Developer Center.</p>

<form id="SimpleForm" name="SimpleForm" method="post" action="index.php">
<?php
echo 'Request serviced from instance ' . $instanceId . '
';
echo '
';

if (isset($_POST['continue'])) {
 session_start();
 $_SESSION['visits'] = $_SESSION['visits'] + 1;
 echo 'Welcome back ' . $_SESSION['username'] . '
';
 echo 'This is visit number ' . $_SESSION['visits'] . '
';
 session_write_close();
 echo '
';
 echo '<input type="Submit" value="Refresh" name="continue" id="continue"/>';
 echo '<input type="Submit" value="Delete Session" name="killsession"
 id="killsession"/>';
} elseif (isset($_POST['killsession'])) {

Custom resources 660

Amazon Elastic Beanstalk Developer Guide

 session_start();
 echo 'Goodbye ' . $_SESSION['username'] . '
';
 session_destroy();
 echo 'Username: <input type="text" name="username" id="username" size="30"/>
';
 echo '
';
 echo '<input type="Submit" value="New Session" name="newsession" id="newsession"/>';
} elseif (isset($_POST['newsession'])) {
 session_start();
 $_SESSION['username'] = $_POST['username'];
 $_SESSION['visits'] = 1;
 echo 'Welcome to a new session ' . $_SESSION['username'] . '
';
 session_write_close();
 echo '
';
 echo '<input type="Submit" value="Refresh" name="continue" id="continue"/>';
 echo '<input type="Submit" value="Delete Session" name="killsession"
 id="killsession"/>';
} else {
 echo 'To get started, enter a username.
';
 echo '
';
 echo 'Username: <input type="text" name="username" id="username" size="30"/>
';
 echo '<input type="Submit" value="New Session" name="newsession" id="newsession"/>';
}
?>
</form>

.ebextensions/dynamodb.config

Resources:
 SessionTable:
 Type: AWS::DynamoDB::Table
 Properties:
 KeySchema:
 HashKeyElement:
 AttributeName:
 Fn::GetOptionSetting:
 OptionName : SessionHashKeyName
 DefaultValue: "username"
 AttributeType:
 Fn::GetOptionSetting:
 OptionName : SessionHashKeyType
 DefaultValue: "S"
 ProvisionedThroughput:
 ReadCapacityUnits:

Custom resources 661

Amazon Elastic Beanstalk Developer Guide

 Fn::GetOptionSetting:
 OptionName : SessionReadCapacityUnits
 DefaultValue: 1
 WriteCapacityUnits:
 Fn::GetOptionSetting:
 OptionName : SessionWriteCapacityUnits
 DefaultValue: 1

 SessionWriteCapacityUnitsLimit:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: { "Fn::Join" : ["", [{ "Ref" : "AWSEBEnvironmentName" }, "
 write capacity limit on the session table."]]}
 Namespace: "AWS/DynamoDB"
 MetricName: ConsumedWriteCapacityUnits
 Dimensions:
 - Name: TableName
 Value: { "Ref" : "SessionTable" }
 Statistic: Sum
 Period: 300
 EvaluationPeriods: 12
 Threshold:
 Fn::GetOptionSetting:
 OptionName : SessionWriteCapacityUnitsAlarmThreshold
 DefaultValue: 240
 ComparisonOperator: GreaterThanThreshold
 AlarmActions:
 - Ref: SessionAlarmTopic
 InsufficientDataActions:
 - Ref: SessionAlarmTopic

 SessionReadCapacityUnitsLimit:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: { "Fn::Join" : ["", [{ "Ref" : "AWSEBEnvironmentName" }, " read
 capacity limit on the session table."]]}
 Namespace: "AWS/DynamoDB"
 MetricName: ConsumedReadCapacityUnits
 Dimensions:
 - Name: TableName
 Value: { "Ref" : "SessionTable" }
 Statistic: Sum
 Period: 300
 EvaluationPeriods: 12

Custom resources 662

Amazon Elastic Beanstalk Developer Guide

 Threshold:
 Fn::GetOptionSetting:
 OptionName : SessionReadCapacityUnitsAlarmThreshold
 DefaultValue: 240
 ComparisonOperator: GreaterThanThreshold
 AlarmActions:
 - Ref: SessionAlarmTopic
 InsufficientDataActions:
 - Ref: SessionAlarmTopic

 SessionThrottledRequestsAlarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: { "Fn::Join" : ["", [{ "Ref" : "AWSEBEnvironmentName" }, ":
 requests are being throttled."]]}
 Namespace: AWS/DynamoDB
 MetricName: ThrottledRequests
 Dimensions:
 - Name: TableName
 Value: { "Ref" : "SessionTable" }
 Statistic: Sum
 Period: 300
 EvaluationPeriods: 1
 Threshold:
 Fn::GetOptionSetting:
 OptionName: SessionThrottledRequestsThreshold
 DefaultValue: 1
 ComparisonOperator: GreaterThanThreshold
 AlarmActions:
 - Ref: SessionAlarmTopic
 InsufficientDataActions:
 - Ref: SessionAlarmTopic

 SessionAlarmTopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 - Endpoint:
 Fn::GetOptionSetting:
 OptionName: SessionAlarmEmail
 DefaultValue: "nobody@amazon.com"
 Protocol: email

files:

Custom resources 663

Amazon Elastic Beanstalk Developer Guide

 "/var/app/sessiontable":
 mode: "000444"
 content: |
 `{"Ref" : "SessionTable"}`
 `{"Ref" : "AWS::Region"}`

 "/var/app/composer.json":
 mode: "000744"
 content:
 {
 "require": {
 "aws/aws-sdk-php": "*"
 }
 }

container_commands:
 "1-install-composer":
 command: "cd /var/app; curl -s http://getcomposer.org/installer | php"
 "2-install-dependencies":
 command: "cd /var/app; php composer.phar install"
 "3-cleanup-composer":
 command: "rm -Rf /var/app/composer.*"

In the sample configuration file, we first create the DynamoDB table and configure the primary
key structure for the table and the capacity units to allocate sufficient resources to provide
the requested throughput. Next, we create CloudWatch alarms for WriteCapacity and
ReadCapacity. We create an SNS topic that sends email to "nobody@amazon.com" if the alarm
thresholds are breached.

After we create and configure our Amazon resources for our environment, we need to customize
the EC2 instances. We use the files key to pass the details of the DynamoDB table to the EC2
instances in our environment as well as add a "require" in the composer.json file for the Amazon
SDK for PHP 2. Finally, we run container commands to install composer, the required dependencies,
and then remove the installer.

.ebextensions/options.config

option_settings:
 "aws:elasticbeanstalk:customoption":
 SessionHashKeyName : username
 SessionHashKeyType : S
 SessionReadCapacityUnits : 1

Custom resources 664

Amazon Elastic Beanstalk Developer Guide

 SessionReadCapacityUnitsAlarmThreshold : 240
 SessionWriteCapacityUnits : 1
 SessionWriteCapacityUnitsAlarmThreshold : 240
 SessionThrottledRequestsThreshold : 1
 SessionAlarmEmail : me@example.com

Replace the SessionAlarmEmail value with the email where you want alarm notifications
sent. The options.config file contains the values used for some of the variables defined in
dynamodb.config. For example, dynamodb.config contains the following lines:

Subscription:
 - Endpoint:
 Fn::GetOptionSetting:
 OptionName: SessionAlarmEmail
 DefaultValue: "nobody@amazon.com"

These lines that tell Elastic Beanstalk to get the value for the Endpoint property from the
SessionAlarmEmail value in a config file (options.config in our sample application) that
contains an option_settings section with an aws:elasticbeanstalk:customoption section that
contains a name-value pair that contains the actual value to use. In the example above, this means
SessionAlarmEmail would be assigned the value nobody@amazon.com.

For more information about the CloudFormation resources used in this example, see the following
references:

• AWS::DynamoDB::Table

• AWS::CloudWatch::Alarm

• AWS::SNS::Topic

Using Elastic Beanstalk saved configurations

You can save your environment's configuration as an object in Amazon Simple Storage Service
(Amazon S3) that can be applied to other environments during environment creation, or applied
to a running environment. Saved configurations are YAML formatted templates that define an
environment's platform version, tier, configuration option settings, and tags.

You can apply tags to a saved configuration when you create it, and edit tags of existing saved
configurations. The tags applied to a saved configuration aren't related to the tags specified in a

Saved configurations 665

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html

Amazon Elastic Beanstalk Developer Guide

saved configuration using the Tags: key. The latter are applied to an environment when you apply
the saved configuration to the environment. For details, see Tagging saved configurations.

Note

You can create and apply saved configurations to your Elastic Beanstalk environments using
several methods. These include the Elastic Beanstalk console, the EB CLI, and the Amazon
CLI.
See the following topics for examples of alternate methods for creating and applying saved
configurations:

• Setting configuration options before environment creation

• Setting configuration options during environment creation

• Setting configuration options after environment creation

Create a saved configuration from the current state of your environment in the Elastic Beanstalk
management console.

To save an environment's configuration

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Save configuration.

4. Use the on-screen form to name the saved configuration. Optionally, provide a brief
description, and add tag keys and values.

5. Choose Save.

Saved configurations 666

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

The saved configuration includes any settings that you have applied to the environment with
the console or any other client that uses the Elastic Beanstalk API. You can then apply the saved
configuration to your environment at a later date to restore it to its previous state, or apply it to a
new environment during environment creation.

Saved configurations 667

Amazon Elastic Beanstalk Developer Guide

You can download a configuration using the EB CLI the section called “eb config” command, as
shown in the following example. NAME is the name of your saved configuration.

eb config get NAME

To apply a saved configuration during environment creation (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. In the navigation pane, find your application's name and choose Saved configurations.

4. Select the saved configuration you want to apply, and then choose Launch environment.

5. Proceed through the wizard to create your environment.

Saved configurations don't include settings applied with configuration files in your application's
source code. If the same setting is applied in both a configuration file and saved configuration,
the setting in the saved configuration takes precedence. Likewise, options specified in the Elastic
Beanstalk console override options in saved configurations. For more information, see Precedence.

Saved configurations are stored in the Elastic Beanstalk S3 bucket in a folder named after your
application. For example, configurations for an application named my-app in the us-west-2
region for account number 123456789012 can be found at s3://elasticbeanstalk-us-
west-2-123456789012/resources/templates/my-app/.

View the contents of a saved configuration by opening it in a text editor. The following example
configuration shows the configuration of a web server environment launched with the Elastic
Beanstalk management console.

EnvironmentConfigurationMetadata:
 Description: Saved configuration from a multicontainer Docker environment created
 with the Elastic Beanstalk Management Console
 DateCreated: '1520633151000'
 DateModified: '1520633151000'
Platform:
 PlatformArn: arn:aws-cn:elasticbeanstalk:us-west-2::platform/Java 8 running on 64bit
 Amazon Linux/2.5.0
OptionSettings:

Saved configurations 668

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

 aws:elasticbeanstalk:command:
 BatchSize: '30'
 BatchSizeType: Percentage
 aws:elasticbeanstalk:sns:topics:
 Notification Endpoint: me@example.com
 aws:elb:policies:
 ConnectionDrainingEnabled: true
 ConnectionDrainingTimeout: '20'
 aws:elb:loadbalancer:
 CrossZone: true
 aws:elasticbeanstalk:environment:
 ServiceRole: aws-elasticbeanstalk-service-role
 aws:elasticbeanstalk:application:
 Application Healthcheck URL: /
 aws:elasticbeanstalk:healthreporting:system:
 SystemType: enhanced
 aws:autoscaling:launchconfiguration:
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 InstanceType: t2.micro
 EC2KeyName: workstation-uswest2
 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateType: Health
 RollingUpdateEnabled: true
EnvironmentTier:
 Type: Standard
 Name: WebServer
AWSConfigurationTemplateVersion: 1.1.0.0
Tags:
 Cost Center: WebApp Dev

You can modify the contents of a saved configuration and save it in the same location in Amazon
S3. Any properly formatted saved configuration stored in the right location can be applied to an
environment by using the Elastic Beanstalk management console.

The following keys are supported.

• AWSConfigurationTemplateVersion (required) – The configuration template version (1.1.0.0).

AWSConfigurationTemplateVersion: 1.1.0.0

• Platform – The Amazon Resource Name (ARN) of the environment's platform version. You can
specify the platform by ARN or solution stack name.

Saved configurations 669

Amazon Elastic Beanstalk Developer Guide

Platform:
 PlatformArn: arn:aws-cn:elasticbeanstalk:us-west-2::platform/Java 8 running on
 64bit Amazon Linux/2.5.0

• SolutionStack – The full name of the solution stack used to create the environment.

SolutionStack: 64bit Amazon Linux 2017.03 v2.5.0 running Java 8

• OptionSettings – Configuration option settings to apply to the environment. For example, the
following entry sets the instance type to t2.micro.

OptionSettings:
 aws:autoscaling:launchconfiguration:
 InstanceType: t2.micro

• Tags – Up to 47 tags to apply to resources created within the environment.

Tags:
 Cost Center: WebApp Dev

• EnvironmentTier – The type of environment to create. For a web server environment, you can
exclude this section (web server is the default). For a worker environment, use the following.

EnvironmentTier:
 Name: Worker
 Type: SQS/HTTP

Note

You can create and apply saved configurations to your Elastic Beanstalk environments using
several methods. These include the Elastic Beanstalk console, the EB CLI, and the Amazon
CLI.
See the following topics for examples of alternate methods for creating and applying saved
configurations:

• Setting configuration options before environment creation

• Setting configuration options during environment creation

Saved configurations 670

Amazon Elastic Beanstalk Developer Guide

• Setting configuration options after environment creation

Tagging saved configurations

You can apply tags to your Amazon Elastic Beanstalk saved configurations. Tags are key-value pairs
associated with Amazon resources. For information about Elastic Beanstalk resource tagging, use
cases, tag key and value constraints, and supported resource types, see Tagging Elastic Beanstalk
application resources.

You can specify tags when you create a saved configuration. In an existing saved configuration, you
can add or remove tags, and update the values of existing tags. You can add up to 50 tags to each
saved configuration.

Adding tags during saved configuration creation

When you use the Elastic Beanstalk console to save a configuration, you can specify tag keys and
values on the Save Configuration page.

If you use the EB CLI to save a configuration, use the --tags option with eb config to add tags.

~/workspace/my-app$ eb config --tags mytag1=value1,mytag2=value2

With the Amazon CLI or other API-based clients, add tags by using the --tags parameter on the
create-configuration-template command.

$ aws elasticbeanstalk create-configuration-template \
 --tags Key=mytag1,Value=value1 Key=mytag2,Value=value2 \
 --application-name my-app --template-name my-template --solution-stack-
name solution-stack

Managing tags of an existing saved configuration

You can add, update, and delete tags in an existing Elastic Beanstalk saved configuration.

To manage a saved configuration's tags using the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

Tagging saved configurations 671

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-configuration-template.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

3. In the navigation pane, find your application's name and choose Saved configurations.

4. Select the saved configuration you want to manage.

5. Choose Actions, and then choose Manage tags.

6. Use the on-screen form to add, update, or delete tags.

7. To save the changes choose Apply at the bottom of the page.

If you use the EB CLI to update your saved configuration, use eb tags to add, update, delete, or list
tags.

For example, the following command lists the tags in a saved configuration.

~/workspace/my-app$ eb tags --list --resource "arn:aws-cn:elasticbeanstalk:us-
west-2:my-account-id:configurationtemplate/my-app/my-template"

The following command updates the tag mytag1 and deletes the tag mytag2.

~/workspace/my-app$ eb tags --update mytag1=newvalue --delete mytag2 \
 --resource "arn:aws-cn:elasticbeanstalk:us-west-2:my-account-
id:configurationtemplate/my-app/my-template"

For a complete list of options and more examples, see eb tags.

With the Amazon CLI or other API-based clients, use the list-tags-for-resource command to list the
tags of a saved configuration.

$ aws elasticbeanstalk list-tags-for-resource --resource-arn "arn:aws-
cn:elasticbeanstalk:us-west-2:my-account-id:configurationtemplate/my-app/my-template"

Use the update-tags-for-resource command to add, update, or delete tags in a saved
configuration.

$ aws elasticbeanstalk update-tags-for-resource \
 --tags-to-add Key=mytag1,Value=newvalue --tags-to-remove mytag2 \
 --resource-arn "arn:aws-cn:elasticbeanstalk:us-west-2:my-account-
id:configurationtemplate/my-app/my-template"

Tagging saved configurations 672

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/list-tags-for-resource.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-tags-for-resource.html

Amazon Elastic Beanstalk Developer Guide

Specify both tags to add and tags to update in the --tags-to-add parameter of update-tags-
for-resource. A nonexisting tag is added, and an existing tag's value is updated.

Note

To use some of the EB CLI and Amazon CLI commands with an Elastic Beanstalk saved
configuration, you need the saved configuration's ARN. To construct the ARN, first use the
following command to retrieve the saved configuration's name.

$ aws elasticbeanstalk describe-applications --application-names my-app

Look for the ConfigurationTemplates key in the command's output. This element
shows the saved configuration's name. Use this name where my-template is specified in
the commands mentioned on this page.

Environment manifest (env.yaml)

You can include a YAML formatted environment manifest in the root of your application source
bundle to configure the environment name, solution stack and environment links to use when
creating your environment.

This file format includes support for environment groups. To use groups, specify the environment
name in the manifest with a + symbol at the end. When you create or update the environment,
specify the group name with --group-name (Amazon CLI) or --env-group-suffix (EB CLI). For
more information on groups, see Creating and updating groups of Elastic Beanstalk environments.

The following example manifest defines a web server environment with a link to a worker
environment component that it is dependent upon. The manifest uses groups to allow creating
multiple environments with the same source bundle:

~/myapp/frontend/env.yaml

AWSConfigurationTemplateVersion: 1.1.0.0
SolutionStack: 64bit Amazon Linux 2015.09 v2.0.6 running Multi-container Docker 1.7.1
 (Generic)
OptionSettings:
 aws:elasticbeanstalk:command:
 BatchSize: '30'

env.yaml 673

Amazon Elastic Beanstalk Developer Guide

 BatchSizeType: Percentage
 aws:elasticbeanstalk:sns:topics:
 Notification Endpoint: me@example.com
 aws:elb:policies:
 ConnectionDrainingEnabled: true
 ConnectionDrainingTimeout: '20'
 aws:elb:loadbalancer:
 CrossZone: true
 aws:elasticbeanstalk:environment:
 ServiceRole: aws-elasticbeanstalk-service-role
 aws:elasticbeanstalk:application:
 Application Healthcheck URL: /
 aws:elasticbeanstalk:healthreporting:system:
 SystemType: enhanced
 aws:autoscaling:launchconfiguration:
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 InstanceType: t2.micro
 EC2KeyName: workstation-uswest2
 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateType: Health
 RollingUpdateEnabled: true
Tags:
 Cost Center: WebApp Dev
CName: front-A08G28LG+
EnvironmentName: front+
EnvironmentLinks:
 "WORKERQUEUE" : "worker+"

The following keys are supported.

• AWSConfigurationTemplateVersion (required) – The configuration template version (1.1.0.0).

AWSConfigurationTemplateVersion: 1.1.0.0

• Platform – The Amazon Resource Name (ARN) of the environment's platform version. You can
specify the platform by ARN or solution stack name.

Platform:
 PlatformArn: arn:aws-cn:elasticbeanstalk:us-west-2::platform/Java 8 running on
 64bit Amazon Linux/2.5.0

• SolutionStack – The full name of the solution stack used to create the environment.

env.yaml 674

Amazon Elastic Beanstalk Developer Guide

SolutionStack: 64bit Amazon Linux 2017.03 v2.5.0 running Java 8

• OptionSettings – Configuration option settings to apply to the environment. For example, the
following entry sets the instance type to t2.micro.

OptionSettings:
 aws:autoscaling:launchconfiguration:
 InstanceType: t2.micro

• Tags – Up to 47 tags to apply to resources created within the environment.

Tags:
 Cost Center: WebApp Dev

• EnvironmentTier – The type of environment to create. For a web server environment, you can
exclude this section (web server is the default). For a worker environment, use the following.

EnvironmentTier:
 Name: Worker
 Type: SQS/HTTP

• CName – The CNAME for the environment. Include a + character at the end of the name to
enable groups.

CName: front-A08G28LG+

• EnvironmentName – The name of the environment to create. Include a + character at the end of
the name to enable groups.

EnvironmentName: front+

With groups enabled, you must specify a group name when you create the environments. Elastic
Beanstalk appends the group name to the environment name with a hyphen. For example,
with the environment name front+ and the group name dev, Elastic Beanstalk will create the
environment with the name front-dev.

• EnvironmentLinks – A map of variable names and environment names of dependencies. The
following example makes the worker+ environment a dependency and tells Elastic Beanstalk to
save the link information to a variable named WORKERQUEUE.

env.yaml 675

Amazon Elastic Beanstalk Developer Guide

EnvironmentLinks:
 "WORKERQUEUE" : "worker+"

The value of the link variable varies depending on the type of the linked environment. For a web
server environment, the link is the environment's CNAME. For a worker environment, the link is
the name of the environment's Amazon Simple Queue Service (Amazon SQS) queue.

The CName, EnvironmentName and EnvironmentLinks keys can be used to create environment
groups and links to other environments. These features are currently supported when using the EB
CLI, Amazon CLI or an SDK.

Using a custom Amazon machine image (AMI) in your Elastic
Beanstalk environment

This section explains when to consider using a custom AMI and provides the procedures to
configure and manage the custom AMI in your environment. When you create an Amazon Elastic
Beanstalk environment, you can specify an Amazon Machine Image (AMI) to use instead of the
standard Elastic Beanstalk AMI included in your platform version. A custom AMI can improve
provisioning times when instances are launched in your environment if you need to install a lot of
software that isn't included in the standard AMIs.

The use of configuration files is effective to customize your environment quickly and consistently.
Although applying configurations can start to take a long time during environment creation and
updates. If you do a lot of server configuration in configuration files, you can reduce this time by
making a custom AMI that already has the software and configuration that you need.

A custom AMI also allows you to make changes to low-level components, such as the Linux kernel,
that are difficult to implement or take a long time to apply in configuration files. To create a
custom AMI, launch an Elastic Beanstalk platform AMI in Amazon EC2, customize the software and
configuration to your needs, and then stop the instance and save an AMI from it.

Creating a custom AMI

You can use EC2 Image Builder to create and manage custom AMIs as an alternative to these
procedures. For more information, see the Image Builder User Guide.

Custom image 676

https://www.amazonaws.cn/image-builder
https://docs.amazonaws.cn/imagebuilder/latest/userguide/what-is-image-builder.html

Amazon Elastic Beanstalk Developer Guide

To identify the base Elastic Beanstalk AMI

1. In a command window, run a command like the following. For more information, see describe-
platform-version in the Amazon CLI Command Reference.

Specify the Amazon Region where you want to use your custom AMI, and replace the platform
ARN and version number with the Elastic Beanstalk platform that your application is based on.

Example - Mac OS / Linux OS

$ aws elasticbeanstalk describe-platform-version --region us-west-2 \
 --platform-arn "arn:aws-cn:elasticbeanstalk:us-west-2::platform/Node.js 20
 running on 64bit Amazon Linux 2023/6.1.7" \
 --query PlatformDescription.CustomAmiList
[
 {
 "VirtualizationType": "pv",
 "ImageId": ""
 },
 {
 "VirtualizationType": "hvm",
 "ImageId": "ami-020ae06fdda6a0f66"
 }
]

Example - Windows OS

C:\> aws elasticbeanstalk describe-platform-version --region us-east-2 --platform-
arn"arn:aws-cn:elasticbeanstalk:us-east-2::platform/
IIS 10.0 running on 64bit Windows Server 2022/2.15.3" --query
 PlatformDescription.CustomAmiList
[
 {
 "VirtualizationType": "pv",
 "ImageId": ""
 },
 {
 "VirtualizationType": "hvm",
 "ImageId": "ami-020ae06fdda6a0f66"
 }
]

Creating a custom AMI 677

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/describe-platform-version.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/describe-platform-version.html

Amazon Elastic Beanstalk Developer Guide

2. Take note of the ImageId value that looks like ami-020ae06fdda6a0f66 in the result.

The value is the stock Elastic Beanstalk AMI for the platform version, EC2 instance architecture,
and Amazon Region that are relevant for your application. If you need to create AMIs for multiple
platforms, architectures or Amazon Regions, repeat this process to identify the correct base AMI for
each combination.

Note

Don't create an AMI from an instance that has been launched in an Elastic Beanstalk
environment. Elastic Beanstalk makes changes to instances during provisioning that can
cause issues in the saved AMI. Saving an image from an instance in an Elastic Beanstalk
environment will also make the version of your application that was deployed to the
instance a fixed part of the image.

For Linux, it is also possible to create a custom AMI from a community AMI that wasn't published
by Elastic Beanstalk. You can use the latest Amazon Linux AMI as a starting point. When you
launch an environment with a Linux AMI that isn't managed by Elastic Beanstalk, Elastic Beanstalk
attempts to install platform software (language, framework, proxy server, etc.) and additional
components to support features such as Enhanced Health Reporting.

Note

Custom AMIs based on Windows Server require the stock Elastic Beanstalk AMI returned
from describe-platform-version, as shown earlier in Step 1.

Although Elastic Beanstalk can use an AMI that isn't managed by Elastic Beanstalk, the increase in
provisioning time that results from Elastic Beanstalk installing missing components can reduce or
eliminate the benefits of creating a custom AMI in the first place. Other Linux distributions might
work with some troubleshooting but are not officially supported. If your application requires a
specific Linux distribution, one alternative is to create a Docker image and run it on the Elastic
Beanstalk Docker platform or Multicontainer Docker platform.

To create a custom AMI

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

Creating a custom AMI 678

http://www.amazonaws.cn/amazon-linux-ami/
https://console.amazonaws.cn/ec2/

Amazon Elastic Beanstalk Developer Guide

2. Choose Launch Instance.

3. If you identified a base Elastic Beanstalk AMI (using describe-platform-version) or an
Amazon Linux AMI, enter its AMI ID in the search box. Then press Enter.

You can also search the list for another community AMI that suits your needs.

Note

We recommend that you choose an AMI that uses HVM virtualization. These AMIs show
Virtualization type: hvm in their description.
For more information, see Virtualization types in the Amazon EC2 User Guide.

4. Choose Select to select the AMI.

5. Select an instance type, and then choose Next: Configure Instance Details.

6. (For retired Amazon Linux AMI (AL1) platforms) Skip this step if your environment runs on a
supported Linux-based platform or on a Windows platform.

Expand the Advanced Details section and paste the following text in the User Data field.

#cloud-config
 repo_releasever: repository version number
 repo_upgrade: none

The repository version number is the year and month version in the AMI name. For example,
AMIs based on the March 2015 release of Amazon Linux have a repository version number
2015.03. For an Elastic Beanstalk image, this matches the date shown in the solution stack
name for your platform version based on Amazon Linux AMI (preceding Amazon Linux 2).

Note

The repo_releasever setting configures the lock-on-launch feature for an Amazon
Linux AMI. This causes the AMI to use a fixed, specific repository version when it
launches. This feature isn't supported on Amazon Linux 2—don't specify it if your
environment uses a current Amazon Linux 2 platform branch. The setting is required if
you're using a custom AMI with Elastic Beanstalk only on Amazon Linux AMI platform
branches (preceding Amazon Linux 2).

Creating a custom AMI 679

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ComponentsAMIs.html#virtualization_types

Amazon Elastic Beanstalk Developer Guide

The repo_upgrade setting disables the automatic installation of security updates. It's
required to use a custom AMI with Elastic Beanstalk.

7. Proceed through the wizard to launch the EC2 instance. When prompted, select a key pair that
you have access to so that you can connect to the instance for the next steps.

8. Connect to the instance with SSH or RDP.

9. Perform any customizations you want.

10. (Windows platforms) Run the EC2Config service Sysprep. For information about EC2Config,
see Configuring a Windows Instance Using the EC2Config Service. Ensure that Sysprep is
configured to generate a random password that can be retrieved from the Amazon Web
Services Management Console.

11. In the Amazon EC2 console, stop the EC2 instance. Then on the Instance Actions menu,
choose Create Image (EBS AMI).

12. To avoid incurring additional Amazon charges, terminate the EC2 instance.

To use your custom AMI in an Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. For AMI ID, enter your custom AMI ID.

6. To save the changes choose Apply at the bottom of the page.

When you create a new environment with the custom AMI, you should use the same platform
version that you used as a base to create the AMI.

Managing an environment with a custom AMI

Platform updates

When using a custom AMI, Elastic Beanstalk will continue to use the same custom AMI in an
environment when its platform version is updated, regardless of whether the update is applied

Managing a custom AMI 680

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/launching-an-instance.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/UsingConfig_WinAMI.html
http://docs.amazonaws.cn/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

manually or via managed platform updates. The environment will not be reset to use the stock AMI
of the new platform version.

We recommend that you create a new custom AMI based on the stock AMI of the new platform
version. Doing so will apply the patches available in the new platform version and will also
minimize deployment failures due to incompatible package or library versions.

For more information about creating a new custom AMI, see the Creating a custom AMI earlier in
this topic.

Removing a custom AMI

If you would like to remove a custom AMI from an environment and reset it to use the stock AMI
for the environment’s platform version, use the following CLI command.

aws elasticbeanstalk update-environment \
 --application-name my-application \
 --environment-name my-environment \
 --region us-east-1 \
 --options-to-remove Namespace=aws:autoscaling:launchconfiguration,OptionName=ImageId

Note

To avoid disruption of your service, test your application with a stock AMI before applying
this change to your production environment.

Cleaning up a custom AMI

When you are done with a custom AMI and don't need it to launch Elastic Beanstalk environments
anymore, consider cleaning it up to minimize storage cost. Cleaning up a custom AMI involves
deregistering it from Amazon EC2 and deleting other associated resources. For details, see
Deregistering Your Linux AMI or Deregistering Your Windows AMI.

Preserving access to an Amazon Machine Image (AMI) for a retired
platform

Elastic Beanstalk sets a platform branch status to retired when the operating system or major
component used by the branch reaches End of Life. The base Elastic Beanstalk AMI for the platform

Cleaning up a custom AMI 681

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/deregister-ami.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/deregister-ami.html

Amazon Elastic Beanstalk Developer Guide

branch may also be made private to prevent the use of this out-of-date AMI. Environments using
AMIs that have been made private will no longer be able to launch instances.

If you're unable to migrate your application to a supported environment before it's retired, your
environment may be in this situation. The need to update an environment for a Beanstalk platform
branch, where its base Elastic Beanstalk AMI has been made private, may arise. An alternative
approach is available. You can update an existing environment based on a copy of the base Elastic
Beanstalk AMI used by your environment.

This topic offers some steps and a standalone script to update an existing environment based on
a copy of the base Elastic Beanstalk AMI used by your environment. Once you're able to migrate
your application to a supported platform you can continue to use the standard procedures for
maintaining your application and supported environments.

Manual steps

To update an environment based on an AMI copy of the base Elastic Beanstalk AMI

1. Determine which AMI your environment is using. This command returns the AMI used by the
Elastic Beanstalk environment that you provide in the parameters. The returned value is used
as the source-ami-id in the next step.

In a command window, run a command like the following. For more information, see describe-
configuration-settings in the Amazon CLI Command Reference.

Specify the Amazon Region that stores the source AMI you want to copy. Replace the
application name and environment name with those based on the source AMI. Enter the text
for the query parameter as shown.

Example

>aws elasticbeanstalk describe-configuration-settings \
 --application-name my-application \
 --environment-name my-environment \
 --region us-east-2 \
 --query "ConfigurationSettings[0].OptionSettings[?OptionName=='ImageId'] |
 [0].Value"

2. Copy the AMI into your account. This command returns the new AMI that results from
copying the source-ami-id that was returned in the prior step.

AMI based on retired platform 682

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/describe-configuration-settings.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/describe-configuration-settings.html

Amazon Elastic Beanstalk Developer Guide

Note

Be sure to make a note of the new AMI id that is output by this command. You'll need
to enter it in the next step, replacing copied-ami-id in the example command.

In a command window, run a command like the following. For more information, see copy-
image in the Amazon CLI Command Reference.

Specify the Amazon Region of the source AMI you want to copy (--source-region) and the
Region where you want to use your new custom AMI (--region). Replace source-ami-id with
the AMI of the image that you're copying. The source-ami-id was returned by the command in
the prior step. Replace new-ami-name with a name to describe the new AMI in the destination
Region. The script that follows this procedure generates the new AMI name by appending the
string "Copy of" to the beginning of the name of the source-ami-id.

>aws ec2 copy-image \
 --region us-east-2 \
 --source-image-id source-ami-id \
 --source-region us-east-2 \
 --name new-ami-name

3. Update an environment to use the copied AMI. After the command runs it returns the status
of the environment.

In a command window, run a command like the following. For more information, see update-
environment in the Amazon CLI Command Reference.

Specify the Amazon Region of the environment and application you need to update. Replace
the application name and environment name with those you need to associate with the copied-
ami-id from the prior step. For the --option-setttings parameter, replace copied-ami-id
with the AMI id you noted from the output of the prior command.

>aws elasticbeanstalk update-environment \
 --application-name my-application \
 --environment-name my-environment \
 --region us-east-2 \

AMI based on retired platform 683

https://docs.amazonaws.cn/cli/latest/reference/ec2/copy-image.html
https://docs.amazonaws.cn/cli/latest/reference/ec2/copy-image.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html

Amazon Elastic Beanstalk Developer Guide

 --option-settings
 "Namespace=aws:autoscaling:launchconfiguration,OptionName=ImageId,Value=copied-
ami-id"

Note

To minimize storage costs, consider cleaning up your custom AMI when you don't need it to
launch Elastic Beanstalk environments anymore. For more information, see Cleaning up a
custom AMI.

Standalone script

The following script provides the same results as the previous manual steps. Download the script
by selecting this link: copy_ami_and_update_env.zip.

Script source: copy_ami_and_update_env.sh

#!/bin/bash

set -ue

USAGE="This script is used to copy an AMI used by your Elastic Beanstalk environment
 into your account to use in your environment.\n\n"
USAGE+="Usage:\n\n"
USAGE+="./$(basename $0) [OPTIONS]\n"
USAGE+="OPTIONS:\n"
USAGE+="\t--application-name <application-name>\tThe name of your Elastic Beanstalk
 application.\n"
USAGE+="\t--environment-name <environment-name>\tThe name of your Elastic Beanstalk
 environment.\n"
USAGE+="\t--region <region> \t\t\tThe AWS region your Elastic Beanstalk environment is
 deployed to.\n"
USAGE+="\n\n"
USAGE+="Script Usage Example(s):\n"
USAGE+="./$(basename $0) --application-name my-application --environment-name my-
environment --region us-east-1\n"

if [$# -eq 0]; then
 echo -e $USAGE
 exit

AMI based on retired platform 684

samples/copy_ami_and_update_env.zip

Amazon Elastic Beanstalk Developer Guide

fi

while [[$# -gt 0]]; do
 case $1 in
 --application-name) APPLICATION_NAME="$2"; shift ;;
 --environment-name) ENVIRONMENT_NAME="$2"; shift ;;
 --region) REGION="$2"; shift ;;
 *) echo "Unknown option $1" ; echo -e $USAGE ; exit ;;
 esac
 shift
done

aws_cli_version="$(aws --version)"
if [$? -ne 0]; then
 echo "aws CLI not found. Please install it: https://docs.aws.amazon.com/cli/latest/
userguide/getting-started-install.html. Exiting."
 exit 1
fi
echo "Using aws CLI version: ${aws_cli_version}"

account=$(aws sts get-caller-identity --query "Account" --output text)
echo "Using account ${account}"

environment_ami_id=$(aws elasticbeanstalk describe-configuration-settings \
 --application-name "$APPLICATION_NAME" \
 --environment-name "$ENVIRONMENT_NAME" \
 --region "$REGION" \
 --query "ConfigurationSettings[0].OptionSettings[?OptionName=='ImageId'] | [0].Value"
 \
 --output text)
echo "Image associated with environment ${ENVIRONMENT_NAME} is ${environment_ami_id}"

owned_image=$(aws ec2 describe-images \
 --owners self \
 --image-ids "$environment_ami_id" \
 --region "$REGION" \
 --query "Images[0]" \
 --output text)
if ["$owned_image" != "None"]; then
 echo "${environment_ami_id} is already owned by account ${account}. Exiting."
 exit
fi

source_image_name=$(aws ec2 describe-images \

AMI based on retired platform 685

Amazon Elastic Beanstalk Developer Guide

 --image-ids "$environment_ami_id" \
 --region "$REGION" \
 --query "Images[0].Name" \
 --output text)
if ["$source_image_name" = "None"]; then
 echo "Cannot find ${environment_ami_id}. Please contact AWS support if you need
 additional help: https://aws.amazon.com/support."
 exit 1
fi

copied_image_name="Copy of ${source_image_name}"
copied_ami_id=$(aws ec2 describe-images \
 --owners self \
 --filters Name=name,Values="${copied_image_name}" \
 --region "$REGION" \
 --query "Images[0].ImageId" \
 --output text)
if ["$copied_ami_id" != "None"]; then
 echo "Detected that ${environment_ami_id} has already been copied by account
 ${account}. Skipping image copy."
else
 echo "Copying ${environment_ami_id} to account ${account} with name
 ${copied_image_name}"
 copied_ami_id=$(aws ec2 copy-image \
 --source-image-id "$environment_ami_id" \
 --source-region "$REGION" \
 --name "$copied_image_name" \
 --region "$REGION" \
 --query "ImageId" \
 --output text)
 echo "New AMI ID is ${copied_ami_id}"

 echo "Waiting for ${copied_ami_id} to become available"
 aws ec2 wait image-available \
 --image-ids "$copied_ami_id" \
 --region "$REGION"
 echo "${copied_ami_id} is now available"
fi

echo "Updating environment ${ENVIRONMENT_NAME} to use ${copied_ami_id}"
environment_status=$(aws elasticbeanstalk update-environment \
 --application-name "$APPLICATION_NAME" \
 --environment-name "$ENVIRONMENT_NAME" \

AMI based on retired platform 686

Amazon Elastic Beanstalk Developer Guide

 --option-settings
 "Namespace=aws:autoscaling:launchconfiguration,OptionName=ImageId,Value=
${copied_ami_id}" \
 --region "$REGION" \
 --query "Status" \
 --output text)
echo "Environment ${ENVIRONMENT_NAME} is now ${environment_status}"

echo "Waiting for environment ${ENVIRONMENT_NAME} update to complete"
aws elasticbeanstalk wait environment-updated \
 --application-name "$APPLICATION_NAME" \
 --environment-names "$ENVIRONMENT_NAME" \
 --region "$REGION"
echo "Environment ${ENVIRONMENT_NAME} update complete"

Note

You must have the Amazon CLI installed to execute the script. For installation instructions,
see Install or update the latest version of the Amazon CLI in the Amazon Command Line
Interface User Guide.
After installing the Amazon CLI, you must also configure it to use the Amazon account that
owns the environment. For more information, see Configure the Amazon CLI in the Amazon
Command Line Interface User Guide. The account must also have permissions to create an
AMI and update the Elastic Beanstalk environment.

These steps describe the process that the script follows.

1. Print the account in use.

2. Determine which AMI is used by the environment (source AMI).

3. Check if the source AMI is already owned by the account. If yes, exit.

4. Determine the name of the source AMI so it can be used in the new AMI name. This also serves
to confirm access to the source AMI.

5. Check if the source AMI has already been copied to the account. This is done by searching for
AMIs with the name of the copied AMI owned by the account. If the AMI name has been changed
in between script executions, it will copy the image again.

6. If the source AMI has not already been copied, copy the source AMI to the account and wait for
the new AMI to be available.

AMI based on retired platform 687

https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-configure.html

Amazon Elastic Beanstalk Developer Guide

7. Update the environment configuration to use the new AMI.

8. Wait for the environment update to complete.

After you extract the script from the copy_ami_and_update_env.zip file, run it by executing the
following example. Replace the application name and environment name in the example with your
own values.

>sh copy_ami_and_update_env.sh \
 --application-name my-application \
 --environment-name my-environment \
 --region us-east-1

Note

To minimize storage costs, consider cleaning up your custom AMI when you don't need it to
launch Elastic Beanstalk environments anymore. For more information, see Cleaning up a
custom AMI.

Serving static files

To improve performance, you can configure the proxy server to serve static files (for example,
HTML or images) from a set of directories inside your web application. When the proxy server
receives a request for a file under the specified path, it serves the file directly instead of routing the
request to your application.

Elastic Beanstalk supports configuring the proxy to serve static files on most platform branches
based on Amazon Linux 2. The one exception is Docker.

Note

On the Python and Ruby platforms, Elastic Beanstalk configures some static file folders by
default. For details, see the static file configuration sections for Python and Ruby. You can
configure additional folders as explained on this page.

Static files 688

samples/copy_ami_and_update_env.zip

Amazon Elastic Beanstalk Developer Guide

Configure static files using the console

To configure the proxy server to serve static files

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll to the Platform software section and locate the Static files group.

a. To add a static file mapping, select Add static files. In the extra row that appears you'll
enter a path for serving static files and the directory that contains the static files to serve.

• In the Path field, start the path name with a slash (/) (for example, "/images").

• In the Directory field, specify a directory name located in the root of your application's
source code. Don't start it with a slash (for example, "static/image-files").

Note

If you aren't seeing the Static files section, you have to add at least one mapping
by using a configuration file. For details, see the section called “Configure static
files using configuration options” on this page.

b. To remove a mapping, select Remove.

6. To save the changes choose Apply at the bottom of the page.

Configure static files using configuration options

You can use a configuration file to configure static file paths and directory locations using
configuration options. You can add a configuration file to your application's source bundle and
deploy it during environment creation or a later deployment.

If your environment uses a platform branch based on Amazon Linux 2, use the
aws:elasticbeanstalk:environment:proxy:staticfiles namespace.

Configure static files using the console 689

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

The following example configuration file tells the proxy server to serve files in the statichtml
folder at the path /html, and files in the staticimages folder at the path /images.

Example .ebextensions/static-files.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:staticfiles:
 /html: statichtml
 /images: staticimages

If your Elastic Beanstalk environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the following additional information:

Amazon Linux AMI platform-specific namespaces

On Amazon Linux AMI platform branches, static file configuration namespaces vary by platform.
For details, see one of the following pages:

• Go configuration namespace

• Java SE configuration namespace

• Tomcat configuration namespaces

• Node.js configuration namespace

• Python configuration namespaces

Configuring HTTPS for your Elastic Beanstalk environment

This topics in this section explain how to configure HTTPS for your Elastic Beanstalk environment.
HTTPS is a must for any application that transmits user data or login information.

If you've purchased and configured a custom domain name for your Elastic Beanstalk environment,
you can use HTTPS to allow users to connect to your web site securely.

If you don't own a domain name, you can still use HTTPS with a self-signed certificate for
development and testing purposes. For more information, see Server certificates.

Configuring HTTPS Termination at the load balancer

A load balancer distributes requests to the EC2 instances running your application. A load balancer
also eliminates the need to expose your instances directly to the internet. The simplest way to use
HTTPS with an Elastic Beanstalk multi-instance environment is to configure a secure listener for

HTTPS 690

Amazon Elastic Beanstalk Developer Guide

the load balancer. The connection between the client and the load balancer remains secure, so you
can configure the load balancer to terminate HTTPS. The back end connections between the load
balancer and EC2 instances use HTTP, so no additional configuration of the instances is required.
For detailed instructions to configure a secure listenter, see Configuring HTTPS Termination at the
load balancer.

Configuring HTTPS Termination at the EC2 instance

If you run your application in a single instance environment, or need to secure the connection all
the way to the EC2 instances behind the load balancer, you can configure the proxy server that runs
on the instance to terminate HTTPS. Configuring your instances to terminate HTTPS connections
requires the use of configuration files to modify the software running on the instances, and to
modify security groups to allow secure connections. For more information, see Configuring HTTPS
Termination at the instance.

Configuring HTTPS end-to-end

For end-to-end HTTPS in a load-balanced environment, you can combine instance and load
balancer termination to encrypt both connections. By default, if you configure the load balancer to
forward traffic using HTTPS, it will trust any certificate presented to it by the backend instances.
For maximum security, you can attach policies to the load balancer that prevent it from connecting
to instances that don't present a public certificate that it trusts. For more information, see
Configuring end-to-end encryption in a load-balanced Elastic Beanstalk environment.

Configuring HTTPS with TCP Passthrough

You can also configure the load balancer to relay HTTPS traffic without decrypting it. For more
information, see Configuring your environment's load balancer for TCP Passthrough.

Note

The Does it have Snakes? sample application on GitHub includes configuration files and
instructions for each method of configuring HTTPS with a Tomcat web application. See the
readme file and HTTPS instructions for details.

Topics

• Server certificates

• Configuring HTTPS Termination at the load balancer

HTTPS 691

https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes/blob/master/README.md
https://github.com/awslabs/eb-tomcat-snakes/blob/master/src/.ebextensions/inactive/HTTPS.md

Amazon Elastic Beanstalk Developer Guide

• Configuring HTTPS Termination at the instance

• Configuring end-to-end encryption in a load-balanced Elastic Beanstalk environment

• Configuring your environment's load balancer for TCP Passthrough

• Configuring HTTP to HTTPS redirection

Server certificates

This topic describes the different types of certificates you can use to configure HTTPS and when
to apply each. The subtopics in this section provide instructions to create your own certificate and
how to upload it.

Amazon Certificate Manager (ACM)

ACM is the preferred tool to provision, manage, and deploy your server certificates. You can do so
programmatically or using the Amazon CLI. With ACM you can create a trusted certificate for your
domain names for free.

ACM certificates can only be used with Amazon load balancers and Amazon CloudFront
distributions, and ACM is available only in certain Amazon Regions. To use an ACM certificate with
Elastic Beanstalk, see Configuring HTTPS Termination at the load balancer. For more information
about ACM see the Amazon Certificate Manager User Guide.

Note

For a list of regions where ACM is available, see ACM endpoints and quotas in the Amazon
Web Services General Reference.

If ACM is not available in your Amazon Region, you can upload a third-party or self-signed
certificate and private key to Amazon Identity and Access Management (IAM). You can use the
Amazon CLI to upload the certificate. Certificates stored in IAM can be used with load balancers
and CloudFront distributions. For more information, see Upload a certificate to IAM.

Third party certificate

If ACM is not available in your region, you can purchase a trusted certificate from a third party. A
third-party certificate can be used to decrypt HTTPS traffic at your load balancer, on the backend
instances, or both.

Server certificates 692

https://docs.amazonaws.cn/acm/latest/userguide/acm-overview.html
https://docs.amazonaws.cn/general/latest/gr/acm.html

Amazon Elastic Beanstalk Developer Guide

Self-signed certificate

For development and testing, you can create and sign a certificate yourself with open source tools.
Self-signed certificates are free and easy to create, but cannot be used for front-end decryption on
public sites. If you attempt to use a self-signed certificate for an HTTPS connection to a client, the
user's browser displays an error message indicating that your web site is unsafe. You can, however,
use a self-signed certificate to secure backend connections without issue.

Create and sign an X509 certificate

You can create an X509 certificate for your application with OpenSSL. OpenSSL is a standard, open
source library that supports a wide range of cryptographic functions, including the creation and
signing of x509 certificates. For more information about OpenSSL, visit www.openssl.org.

Note

You only need to create a certificate locally if you want to use HTTPS in a single instance
environment or re-encrypt on the backend with a self-signed certificate. If you own a
domain name, you can create a certificate in Amazon and use it with a load-balanced
environment for free by using Amazon Certificate Manager (ACM). See Request a Certificate
in the Amazon Certificate Manager User Guide for instructions.

Run openssl version at the command line to see if you already have OpenSSL installed. If
you don't, you can build and install the source code using the instructions at the public GitHub
repository, or use your favorite package manager. OpenSSL is also installed on Elastic Beanstalk's
Linux images, so a quick alternative is to connect to an EC2 instance in a running environment by
using the EB CLI's eb ssh command:

~/eb$ eb ssh
[ec2-user@ip-255-55-55-255 ~]$ openssl version
OpenSSL 1.0.1k-fips 8 Jan 2015

You need to create an RSA private key to create your certificate signing request (CSR). To create
your private key, use the openssl genrsa command:

[ec2-user@ip-255-55-55-255 ~]$ openssl genrsa 2048 > privatekey.pem
Generating RSA private key, 2048 bit long modulus
...
+++

Server certificates 693

https://www.openssl.org/
https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request.html
https://github.com/openssl/openssl
https://github.com/openssl/openssl

Amazon Elastic Beanstalk Developer Guide

...............+++
e is 65537 (0x10001)

privatekey.pem

The name of the file where you want to save the private key. Normally, the openssl genrsa
command prints the private key contents to the screen, but this command pipes the output to a
file. Choose any file name, and store the file in a secure place so that you can retrieve it later. If
you lose your private key, you won't be able to use your certificate.

A CSR is a file you send to a certificate authority (CA) to apply for a digital server certificate. To
create a CSR, use the openssl req command:

$ openssl req -new -key privatekey.pem -out csr.pem
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Enter the information requested and press Enter. The following table describes and shows
examples for each field.

Name Description Example

Country Name The two-letter ISO abbreviation for your
country.

US = United States

State or Province The name of the state or province where
your organization is located. You cannot
abbreviate this name.

Washington

Locality Name The name of the city where your organizat
ion is located.

Seattle

Organization
Name

The full legal name of your organization. Do
not abbreviate your organization name.

Example Corporation

Server certificates 694

Amazon Elastic Beanstalk Developer Guide

Name Description Example

Organizational
Unit

Optional, for additional organization
information.

Marketing

Common Name The fully qualified domain name for your
web site. This must match the domain name
that users see when they visit your site,
otherwise certificate errors will be shown.

www.example.com

Email address The site administrator's email address. someone@example.com

You can submit the signing request to a third party for signing, or sign it yourself for development
and testing. Self-signed certificates can also be used for backend HTTPS between a load balancer
and EC2 instances.

To sign the certificate, use the openssl x509 command. The following example uses the private key
from the previous step (privatekey.pem) and the signing request (csr.pem) to create a public
certificate named public.crt that is valid for 365 days.

$ openssl x509 -req -days 365 -in csr.pem -signkey privatekey.pem -out public.crt
Signature ok
subject=/C=us/ST=washington/L=seattle/O=example corporation/OU=marketing/
CN=www.example.com/emailAddress=someone@example.com
Getting Private key

Keep the private key and public certificate for later use. You can discard the signing request. Always
store the private key in a secure location and avoid adding it to your source code.

To use the certificate with the Windows Server platform, you must convert it to a PFX format. Use
the following command to create a PFX certificate from the private key and public certificate files:

$ openssl pkcs12 -export -out example.com.pfx -inkey privatekey.pem -in public.crt
Enter Export Password: password
Verifying - Enter Export Password: password

Now that you have a certificate, you can upload it to IAM for use with a load balancer, or configure
the instances in your environment to terminate HTTPS.

Server certificates 695

Amazon Elastic Beanstalk Developer Guide

Upload a certificate to IAM

To use your certificate with your Elastic Beanstalk environment's load balancer, upload the
certificate and private key to Amazon Identity and Access Management (IAM). You can use a
certificate stored in IAM with Elastic Load Balancing load balancers and Amazon CloudFront
distributions.

Note

Amazon Certificate Manager (ACM) is the preferred tool to provision, manage, and deploy
your server certificates. For more information about requesting an ACM certificate, see
Request a Certificate in the Amazon Certificate Manager User Guide. For more information
about importing third-party certificates into ACM, see Importing Certificates in the Amazon
Certificate Manager User Guide. Use IAM to upload a certificate only if ACM is not available
in your Amazon Region.

You can use the Amazon Command Line Interface (Amazon CLI) to upload your certificate. The
following command uploads a self-signed certificate named https-cert.crt with a private key
named private-key.pem:

$ aws iam upload-server-certificate --server-certificate-name elastic-beanstalk-x509 --
certificate-body file://https-cert.crt --private-key file://private-key.pem
{
 "ServerCertificateMetadata": {
 "ServerCertificateId": "AS5YBEIONO2Q7CAIHKNGC",
 "ServerCertificateName": "elastic-beanstalk-x509",
 "Expiration": "2017-01-31T23:06:22Z",
 "Path": "/",
 "Arn": "arn:aws-cn:iam::123456789012:server-certificate/elastic-beanstalk-
x509",
 "UploadDate": "2016-02-01T23:10:34.167Z"
 }
}

The file:// prefix tells the Amazon CLI to load the contents of a file in the current directory.
elastic-beanstalk-x509 specifies the name to call the certificate in IAM.

If you purchased a certificate from a certificate authority and received a certificate chain file,
upload that as well by including the --certificate-chain option:

Server certificates 696

https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request.html
https://docs.amazonaws.cn/acm/latest/userguide/import-certificate.html
https://docs.amazonaws.cn/general/latest/gr/acm.html
https://docs.amazonaws.cn/general/latest/gr/acm.html

Amazon Elastic Beanstalk Developer Guide

$ aws iam upload-server-certificate --server-certificate-name elastic-beanstalk-x509 --
certificate-chain file://certificate-chain.pem --certificate-body file://https-cert.crt
 --private-key file://private-key.pem

Make note of the Amazon Resource Name (ARN) for your certificate. You'll use it when you update
your load balancer configuration settings to use HTTPS.

Note

A certificate uploaded to IAM stays stored even after it's no longer used in any
environment's load balancer. It contains sensitive data. When you no longer need the
certificate for any environment, be sure to delete it. For details about deleting a certificate
from IAM, see https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_server-
certs.html#delete-server-certificate.

For more information about server certificates in IAM, see Working with Server Certificates in the
IAM User Guide.

Storing private keys securely in Amazon S3

The private key that you use to sign your public certificate is private and should not be committed
to source code. You can avoid storing private keys in configuration files by uploading them to
Amazon S3, and configuring Elastic Beanstalk to download the file from Amazon S3 during
application deployment.

The following example shows the Resources and files sections of a configuration file downloads a
private key file from an Amazon S3 bucket.

Example .ebextensions/privatekey.config

Resources:
 AWSEBAutoScalingGroup:
 Metadata:
 AWS::CloudFormation::Authentication:
 S3Auth:
 type: "s3"
 buckets: ["elasticbeanstalk-us-west-2-123456789012"]
 roleName:

Server certificates 697

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_server-certs.html#delete-server-certificate
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_server-certs.html#delete-server-certificate
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_server-certs.html

Amazon Elastic Beanstalk Developer Guide

 "Fn::GetOptionSetting":
 Namespace: "aws:autoscaling:launchconfiguration"
 OptionName: "IamInstanceProfile"
 DefaultValue: "aws-elasticbeanstalk-ec2-role"
files:
 # Private key
 "/etc/pki/tls/certs/server.key":
 mode: "000400"
 owner: root
 group: root
 authentication: "S3Auth"
 source: https://elasticbeanstalk-us-west-2-123456789012.s3.us-
west-2.amazonaws.com.cn/server.key

Replace the bucket name and URL in the example with your own. The first entry in this file adds
an authentication method named S3Auth to the environment's Auto Scaling group's metadata. If
you have configured a custom instance profile for your environment, that will be used, otherwise
the default value of aws-elasticbeanstalk-ec2-role is applied. The default instance profile
has permission to read from the Elastic Beanstalk storage bucket. If you use a different bucket, add
permissions to the instance profile.

The second entry uses the S3Auth authentication method to download the private key from the
specified URL and save it to /etc/pki/tls/certs/server.key. The proxy server can then read
the private key from this location to terminate HTTPS connections at the instance.

The instance profile assigned to your environment's EC2 instances must have permission to read
the key object from the specified bucket. Verify that the instance profile has permission to read
the object in IAM, and that the permissions on the bucket and object do not prohibit the instance
profile.

To view a bucket's permissions

1. Open the Amazon S3 Management Console.

2. Choose a bucket.

3. Choose Properties and then choose Permissions.

4. Verify that your account is a grantee on the bucket with read permission.

5. If a bucket policy is attached, choose Bucket policy to view the permissions assigned to the
bucket.

Server certificates 698

https://console.amazonaws.cn/s3/home

Amazon Elastic Beanstalk Developer Guide

Configuring HTTPS Termination at the load balancer

To update your Amazon Elastic Beanstalk environment to use HTTPS, you need to configure an
HTTPS listener for the load balancer in your environment. Two types of load balancer support an
HTTPS listener: Classic Load Balancer and Application Load Balancer.

You can use the Elastic Beanstalk console or a configuration file to configure a secure listener and
assign the certificate.

Note

Single-instance environments don't have a load balancer and don't support HTTPS
termination at the load balancer.

Configuring a secure listener using the Elastic Beanstalk console

To assign a certificate to your environment's load balancer

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Load balancer configuration category, choose Edit.

Note

If the Load balancer configuration category doesn't have an Edit button, your
environment doesn't have a load balancer.

5. On the Modify load balancer page, the procedure varies depending on the type of load
balancer associated with your environment.

• Classic Load Balancer

a. Choose Add listener.

b. In the Classic Load Balancer listener dialog box, configure the following settings:

Terminate HTTPS at the load balancer 699

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• For Listener port, type the incoming traffic port, typically 443.

• For Listener protocol, choose HTTPS.

• For Instance port, type 80.

• For Instance protocol, choose HTTP.

• For SSL certificate, choose your certificate.

c. Choose Add.

• Application Load Balancer

a. Choose Add listener.

b. In the Application Load Balancer listener dialog box, configure the following
settings:

• For Port, type the incoming traffic port, typically 443.

• For Protocol, choose HTTPS.

• For SSL certificate, choose your certificate.

c. Choose Add.

Note

For Classic Load Balancer and Application Load Balancer, if the drop-down
menu doesn't show any certificates, you should create or upload a certificate for
your custom domain name in Amazon Certificate Manager (ACM) (preferred).
Alternatively, upload a certificate to IAM with the Amazon CLI.

• Network Load Balancer

a. Choose Add listener.

b. In the Network Load Balancer listener dialog box, for Port, type the incoming traffic
port, typically 443.

c. Choose Add.

6. To save the changes choose Apply at the bottom of the page.

Terminate HTTPS at the load balancer 700

https://docs.amazonaws.cn/acm/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

Configuring a secure listener using a configuration file

You can configure a secure listener on your load balancer with one of the following configuration
files.

Example .ebextensions/securelistener-clb.config

Use this example when your environment has a Classic Load Balancer. The example uses options in
the aws:elb:listener namespace to configure an HTTPS listener on port 443 with the specified
certificate, and to forward the decrypted traffic to the instances in your environment on port 80.

option_settings:
 aws:elb:listener:443:
 SSLCertificateId: arn:aws-cn:acm:us-west-2:1234567890123:certificate/
####################################
 ListenerProtocol: HTTPS
 InstancePort: 80

Replace the highlighted text with the ARN of your certificate. The certificate can be one that you
created or uploaded in Amazon Certificate Manager (ACM) (preferred), or one that you uploaded to
IAM with the Amazon CLI.

For more information about Classic Load Balancer configuration options, see Classic Load Balancer
configuration namespaces.

Example .ebextensions/securelistener-alb.config

Use this example when your environment has an Application Load Balancer. The example uses
options in the aws:elbv2:listener namespace to configure an HTTPS listener on port 443 with
the specified certificate. The listener routes traffic to the default process.

option_settings:
 aws:elbv2:listener:443:
 ListenerEnabled: 'true'
 Protocol: HTTPS
 SSLCertificateArns: arn:aws-cn:acm:us-west-2:1234567890123:certificate/
####################################

Terminate HTTPS at the load balancer 701

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/securelistener-nlb.config

Use this example when your environment has a Network Load Balancer. The example uses options
in the aws:elbv2:listener namespace to configure a listener on port 443. The listener routes
traffic to the default process.

option_settings:
 aws:elbv2:listener:443:
 ListenerEnabled: 'true'

Configuring a security group

If you configure your load balancer to forward traffic to an instance port other than port 80, you
must add a rule to your security group that allows inbound traffic over the instance port from your
load balancer. If you create your environment in a custom VPC, Elastic Beanstalk adds this rule for
you.

You add this rule by adding a Resources key to a configuration file in the .ebextensions
directory for your application.

The following example configuration file adds an ingress rule to the AWSEBSecurityGroup
security group. This allows traffic on port 1000 from the load balancer's security group.

Example .ebextensions/sg-ingressfromlb.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 1000
 FromPort: 1000
 SourceSecurityGroupId: {"Fn::GetAtt" : ["AWSEBLoadBalancerSecurityGroup",
 "GroupId"]}

Configuring HTTPS Termination at the instance

You can use configuration files to configure the proxy server that passes traffic to your application
to terminate HTTPS connections. This is useful if you want to use HTTPS with a single instance
environment, or if you configure your load balancer to pass traffic through without decrypting it.

Terminate HTTPS at the instance 702

Amazon Elastic Beanstalk Developer Guide

To enable HTTPS, you must allow incoming traffic on port 443 to the EC2 instance that your Elastic
Beanstalk application is running on. You do this by using the Resources key in the configuration
file to add a rule for port 443 to the ingress rules for the AWSEBSecurityGroup security group.

The following snippet adds an ingress rule to the AWSEBSecurityGroup security group that
opens port 443 to all traffic for a single instance environment:

.ebextensions/https-instance-securitygroup.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

In a load-balanced environment in a default Amazon Virtual Private Cloud (Amazon VPC), you
can modify this policy to only accept traffic from the load balancer. See Configuring end-to-end
encryption in a load-balanced Elastic Beanstalk environment for an example.

Platforms

• Terminating HTTPS on EC2 instances running Docker

• Terminating HTTPS on EC2 instances running Go

• Terminating HTTPS on EC2 instances running Java SE

• Terminating HTTPS on EC2 instances running Node.js

• Terminating HTTPS on EC2 instances running PHP

• Terminating HTTPS on EC2 instances running Python

• Terminating HTTPS on EC2 instances running Ruby

• Terminating HTTPS on EC2 instances running Tomcat

• Terminating HTTPS on Amazon EC2 instances running .NET Core on Linux

• Terminating HTTPS on Amazon EC2 instances running .NET

Terminate HTTPS at the instance 703

https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

Terminating HTTPS on EC2 instances running Docker

For Docker containers, you use a configuration file to enable HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The files key creates the following files on the instance:

/etc/nginx/conf.d/https.conf

Configures the nginx server. This file is loaded when the nginx service starts.

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

Terminate HTTPS at the instance 704

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/https-instance.config

files:
 /etc/nginx/conf.d/https.conf:
 mode: "000644"
 owner: root
 group: root
 content: |
 # HTTPS Server

 server {
 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://docker;
 proxy_http_version 1.1;

 proxy_set_header Connection "";
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
 }

 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

Terminate HTTPS at the instance 705

Amazon Elastic Beanstalk Developer Guide

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Go

For Go container types, you enable HTTPS with a configuration file and an nginx configuration file
that configures the nginx server to use HTTPS.

Terminate HTTPS at the instance 706

Amazon Elastic Beanstalk Developer Guide

Add the following snippet to your configuration file, replacing the certificate and private key
placeholders as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The Resources key enables port 443 on the security group used by your environment's
instance.

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key restarts the nginx server after everything is configured so that
the server loads the nginx configuration file.

Terminate HTTPS at the instance 707

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/https-instance.config

files:
 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01restart_nginx:
 command: "service nginx restart"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

Place the following in a file with the .conf extension in the .ebextensions/nginx/conf.d/
directory of your source bundle (e.g., .ebextensions/nginx/conf.d/https.conf). Replace
app_port with the port number that your application listens on. This example configures the
nginx server to listen on port 443 using SSL. For more information about these configuration files
on the Go platform, see Configuring the proxy server.

Example .ebextensions/nginx/conf.d/https.conf

HTTPS server

server {
 listen 443;
 server_name localhost;

Terminate HTTPS at the instance 708

Amazon Elastic Beanstalk Developer Guide

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://localhost:app_port;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
}

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminate HTTPS at the instance 709

Amazon Elastic Beanstalk Developer Guide

Terminating HTTPS on EC2 instances running Java SE

For Java SE container types, you enable HTTPS with an .ebextensions configuration file, and an
nginx configuration file that configures the nginx server to use HTTPS.

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, see Reverse
proxy configuration.

Add the following snippet to your configuration file, replacing the certificate and private key
placeholders as instructed, and save it in the .ebextensions directory. The configuration file
performs the following tasks:

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

Terminate HTTPS at the instance 710

Amazon Elastic Beanstalk Developer Guide

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key restarts the nginx server after everything is configured so that
the server loads the nginx configuration file.

Example .ebextensions/https-instance.config

files:
 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01restart_nginx:
 command: "service nginx restart"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

Place the following in a file with the .conf extension in the .ebextensions/nginx/conf.d/
directory of your source bundle (e.g., .ebextensions/nginx/conf.d/https.conf). Replace
app_port with the port number that your application listens on. This example configures the
nginx server to listen on port 443 using SSL. For more information about these configuration files
on the Java SE platform, see Configuring the proxy server.

Terminate HTTPS at the instance 711

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/nginx/conf.d/https.conf

HTTPS server

server {
 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://localhost:app_port;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
}

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443

Terminate HTTPS at the instance 712

Amazon Elastic Beanstalk Developer Guide

 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Node.js

The following example configuration file extends the default nginx configuration to listen on port
443 and terminate SSL/TLS connections with a public certificate and private key.

If you configured your environment for enhanced health reporting, you need to configure nginx to
generate access logs. To do that, uncomment the block of lines under the comment that reads #
For enhanced health... by removing the leading # characters.

Example .ebextensions/https-instance.config

files:
 /etc/nginx/conf.d/https.conf:
 mode: "000644"
 owner: root
 group: root
 content: |
 # HTTPS server

 server {
 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 # For enhanced health reporting support, uncomment this block:

 #if ($time_iso8601 ~ "^(\d{4})-(\d{2})-(\d{2})T(\d{2})") {
 # set $year $1;
 # set $month $2;

Terminate HTTPS at the instance 713

Amazon Elastic Beanstalk Developer Guide

 # set $day $3;
 # set $hour $4;
 #}
 #access_log /var/log/nginx/healthd/application.log.$year-$month-$day-$hour
 healthd;
 #access_log /var/log/nginx/access.log main;

 location / {
 proxy_pass http://nodejs;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
 }

 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

The files key creates the following files on the instance:

/etc/nginx/conf.d/https.conf

Configures the nginx server. This file is loaded when the nginx service starts.

Terminate HTTPS at the instance 714

Amazon Elastic Beanstalk Developer Guide

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

Terminate HTTPS at the instance 715

Amazon Elastic Beanstalk Developer Guide

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running PHP

For PHP container types, you use a configuration file to enable the Apache HTTP Server to use
HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory.

The configuration file performs the following tasks:

• The packages key uses yum to install mod24_ssl.

• The files key creates the following files on the instance:

/etc/httpd/conf.d/ssl.conf

Configures the Apache server. This file loads when the Apache service starts.

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Terminate HTTPS at the instance 716

Amazon Elastic Beanstalk Developer Guide

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

Example .ebextensions/https-instance.config

packages:
 yum:
 mod24_ssl : []

files:
 /etc/httpd/conf.d/ssl.conf:
 mode: "000644"
 owner: root
 group: root
 content: |
 LoadModule ssl_module modules/mod_ssl.so
 Listen 443
 <VirtualHost *:443>
 <Proxy *>

Terminate HTTPS at the instance 717

Amazon Elastic Beanstalk Developer Guide

 Order deny,allow
 Allow from all
 </Proxy>

 SSLEngine on
 SSLCertificateFile "/etc/pki/tls/certs/server.crt"
 SSLCertificateKeyFile "/etc/pki/tls/certs/server.key"
 SSLCipherSuite EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH
 SSLProtocol All -SSLv2 -SSLv3
 SSLHonorCipherOrder On
 SSLSessionTickets Off

 Header always set Strict-Transport-Security "max-age=63072000;
 includeSubdomains; preload"
 Header always set X-Frame-Options DENY
 Header always set X-Content-Type-Options nosniff

 ProxyPass / http://localhost:80/ retry=0
 ProxyPassReverse / http://localhost:80/
 ProxyPreserveHost on
 RequestHeader set X-Forwarded-Proto "https" early

 </VirtualHost>

 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

Terminate HTTPS at the instance 718

Amazon Elastic Beanstalk Developer Guide

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Python

For Python container types using Apache HTTP Server with the Web Server Gateway Interface
(WSGI), you use a configuration file to enable the Apache HTTP Server to use HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The packages key uses yum to install mod24_ssl.

• The files key creates the following files on the instance:

Terminate HTTPS at the instance 719

Amazon Elastic Beanstalk Developer Guide

/etc/httpd/conf.d/ssl.conf

Configures the Apache server. If your application is not named application.py, replace the
highlighted text in the value for WSGIScriptAlias with the local path to your application.
For example, a django application's may be at django/wsgi.py. The location should match
the value of the WSGIPath option that you set for your environment.

Depending on your application requirements, you may also need to add other directories to
the python-path parameter.

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key stops the httpd service after everything has been configured so
that the service uses the new https.conf file and certificate.

Terminate HTTPS at the instance 720

Amazon Elastic Beanstalk Developer Guide

Note

The example works only in environments using the Python platform.

Example .ebextensions/https-instance.config

packages:
 yum:
 mod24_ssl : []

files:
 /etc/httpd/conf.d/ssl.conf:
 mode: "000644"
 owner: root
 group: root
 content: |
 LoadModule wsgi_module modules/mod_wsgi.so
 WSGIPythonHome /opt/python/run/baselinenv
 WSGISocketPrefix run/wsgi
 WSGIRestrictEmbedded On
 Listen 443
 <VirtualHost *:443>
 SSLEngine on
 SSLCertificateFile "/etc/pki/tls/certs/server.crt"
 SSLCertificateKeyFile "/etc/pki/tls/certs/server.key"

 Alias /static/ /opt/python/current/app/static/
 <Directory /opt/python/current/app/static>
 Order allow,deny
 Allow from all
 </Directory>

 WSGIScriptAlias / /opt/python/current/app/application.py

 <Directory /opt/python/current/app>
 Require all granted
 </Directory>

 WSGIDaemonProcess wsgi-ssl processes=1 threads=15 display-name=%{GROUP} \
 python-path=/opt/python/current/app \
 python-home=/opt/python/run/venv \
 home=/opt/python/current/app \

Terminate HTTPS at the instance 721

Amazon Elastic Beanstalk Developer Guide

 user=wsgi \
 group=wsgi
 WSGIProcessGroup wsgi-ssl

 </VirtualHost>

 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01killhttpd:
 command: "killall httpd"
 02waitforhttpddeath:
 command: "sleep 3"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Terminate HTTPS at the instance 722

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Ruby

For Ruby container types, the way you enable HTTPS depends on the type of application server
used.

Topics

• Configure HTTPS for Ruby with Puma

• Configure HTTPS for Ruby with Passenger

Configure HTTPS for Ruby with Puma

For Ruby container types that use Puma as the application server, you use a configuration file to
enable HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The files key creates the following files on the instance:

/etc/nginx/conf.d/https.conf

Configures the nginx server. This file is loaded when the nginx service starts.

Terminate HTTPS at the instance 723

Amazon Elastic Beanstalk Developer Guide

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key restarts the nginx server after everything is configured so that
the server uses the new https.conf file.

Example .ebextensions/https-instance.config

files:
 /etc/nginx/conf.d/https.conf:
 content: |
 # HTTPS server

 server {

Terminate HTTPS at the instance 724

Amazon Elastic Beanstalk Developer Guide

 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://my_app;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }

 location /assets {
 alias /var/app/current/public/assets;
 gzip_static on;
 gzip on;
 expires max;
 add_header Cache-Control public;
 }

 location /public {
 alias /var/app/current/public;
 gzip_static on;
 gzip on;
 expires max;
 add_header Cache-Control public;
 }
 }

 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |

Terminate HTTPS at the instance 725

Amazon Elastic Beanstalk Developer Guide

 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01restart_nginx:
 command: "service nginx restart"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Configure HTTPS for Ruby with Passenger

For Ruby container types that use Passenger as the application server, you use both a configuration
file and a JSON file to enable HTTPS.

Terminate HTTPS at the instance 726

Amazon Elastic Beanstalk Developer Guide

To configure HTTPS for Ruby with Passenger

1. Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with
the contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when
replacing content in an example configuration file and ensure that your text
editor uses spaces, not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site
certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with
the contents of the private key used to create the certificate request or self-signed
certificate.

Terminate HTTPS at the instance 727

Amazon Elastic Beanstalk Developer Guide

Example .Ebextensions snippet for configuring HTTPS for Ruby with Passenger

files:
 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

2. Create a text file and add the following JSON to the file. Save it in your source bundle's root
directory with the name passenger-standalone.json. This JSON file configures Passenger
to use HTTPS.

Important

This JSON file must not contain a byte order mark (BOM). If it does, the Passenger
JSON library will not read the file correctly and the Passenger service will not start.

Example passenger-standalone.json

{
 "ssl" : true,
 "ssl_port" : 443,
 "ssl_certificate" : "/etc/pki/tls/certs/server.crt",

Terminate HTTPS at the instance 728

Amazon Elastic Beanstalk Developer Guide

 "ssl_certificate_key" : "/etc/pki/tls/certs/server.key"
}

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Tomcat

For Tomcat container types, you use a configuration file to enable the Apache HTTP Server to use
HTTPS when acting as the reverse proxy for Tomcat.

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Terminate HTTPS at the instance 729

Amazon Elastic Beanstalk Developer Guide

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

/opt/elasticbeanstalk/hooks/appdeploy/post/99_start_httpd.sh

Creates a post-deployment hook script to restart the httpd service.

Example .ebextensions/https-instance.config

files:
 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

 /opt/elasticbeanstalk/hooks/appdeploy/post/99_start_httpd.sh:
 mode: "000755"
 owner: root
 group: root

Terminate HTTPS at the instance 730

Amazon Elastic Beanstalk Developer Guide

 content: |
 #!/usr/bin/env bash
 sudo service httpd restart

You must also configure your environment's proxy server to listen on port 443. The following
Apache 2.4 configuration adds a listener on port 443. To learn more, see Configuring the proxy
server.

Example .ebextensions/httpd/conf.d/ssl.conf

Listen 443
<VirtualHost *:443>
 ServerName server-name
 SSLEngine on
 SSLCertificateFile "/etc/pki/tls/certs/server.crt"
 SSLCertificateKeyFile "/etc/pki/tls/certs/server.key"

 <Proxy *>
 Require all granted
 </Proxy>
 ProxyPass / http://localhost:8080/ retry=0
 ProxyPassReverse / http://localhost:8080/
 ProxyPreserveHost on

 ErrorLog /var/log/httpd/elasticbeanstalk-ssl-error_log

</VirtualHost>

Your certificate vendor may include intermediate certificates that you can install for better
compatibility with mobile clients. Configure Apache with an intermediate certificate authority (CA)
bundle by adding the following to your SSL configuration file (see Extending and overriding the
default Apache configuration — Amazon Linux AMI (AL1) for the location):

• In the ssl.conf file contents, specify the chain file:

SSLCertificateKeyFile "/etc/pki/tls/certs/server.key"
SSLCertificateChainFile "/etc/pki/tls/certs/gd_bundle.crt"
SSLCipherSuite EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH

• Add a new entry to the files key with the contents of the intermediate certificates:

Terminate HTTPS at the instance 731

Amazon Elastic Beanstalk Developer Guide

files:
 /etc/pki/tls/certs/gd_bundle.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 First intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 Second intermediate certificate
 -----END CERTIFICATE-----

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminate HTTPS at the instance 732

Amazon Elastic Beanstalk Developer Guide

Terminating HTTPS on Amazon EC2 instances running .NET Core on Linux

For .NET Core on Linux container types, you enable HTTPS with an .ebextensions configuration
file, and an nginx configuration file that configures the nginx server to use HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
placeholders as instructed, and save it in the .ebextensions directory. The configuration file
performs the following tasks:

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key restarts the nginx server after everything is configured so that
the server loads the nginx configuration file.

Terminate HTTPS at the instance 733

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/https-instance.config

files:
 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01restart_nginx:
 command: "systemctl restart nginx"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

Place the following in a file with the .conf extension in the .platform/nginx/conf.d/
directory of your source bundle (for example, .platform/nginx/conf.d/https.conf). Replace
app_port with the port number that your application listens on. This example configures the
nginx server to listen on port 443 using SSL. For more information about these configuration files
on the .NET Core on Linux platform, see the section called “Proxy server”.

Example .platform/nginx/conf.d/https.conf

HTTPS server

server {
 listen 443 ssl;
 server_name localhost;

Terminate HTTPS at the instance 734

Amazon Elastic Beanstalk Developer Guide

 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://localhost:app_port;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
}

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on Amazon EC2 instances running .NET

The following configuration file creates and runs a Windows PowerShell script that performs the
following tasks:

Terminate HTTPS at the instance 735

Amazon Elastic Beanstalk Developer Guide

• Checks for an existing HTTPS certificate binding to port 443.

• Gets the PFX certificate from an Amazon S3 bucket.

Note

Add an AmazonS3ReadOnlyAccess policy to the aws-elasticbeanstalk-ec2-role
to access the SSL certificate in the Amazon S3 bucket.

• Gets the password from Amazon Secrets Manager.

Note

Add a statement in aws-elasticbeanstalk-ec2-role that allows the
secretsmanager:GetSecretValue action for the secret that contains the certificate
password

• Installs the certificate.

• Binds the certificate to port 443.

Note

To remove the HTTP endpoint (port 80), include the Remove-WebBinding command
under the Remove the HTTP binding section of the example.

Example .ebextensions/https-instance-dotnet.config

files:
 "C:\\certs\\install-cert.ps1":
 content: |
 import-module webadministration
 ## Settings - replace the following values with your own
 $bucket = "amzn-s3-demo-bucket" ## S3 bucket name
 $certkey = "example.com.pfx" ## S3 object key for your PFX certificate
 $secretname = "example_secret" ## Amazon Secrets Manager name for a secret that
 contains the certificate's password
 ##

 # Set variables
 $certfile = "C:\cert.pfx"

Terminate HTTPS at the instance 736

Amazon Elastic Beanstalk Developer Guide

 $pwd = Get-SECSecretValue -SecretId $secretname | select -expand SecretString

 # Clean up existing binding
 if (Get-WebBinding "Default Web Site" -Port 443) {
 Echo "Removing WebBinding"
 Remove-WebBinding -Name "Default Web Site" -BindingInformation *:443:
 }
 if (Get-Item -path IIS:\SslBindings\0.0.0.0!443) {
 Echo "Deregistering WebBinding from IIS"
 Remove-Item -path IIS:\SslBindings\0.0.0.0!443
 }

 # Download certificate from S3
 Read-S3Object -BucketName $bucket -Key $certkey -File $certfile

 # Install certificate
 Echo "Installing cert..."
 $securepwd = ConvertTo-SecureString -String $pwd -Force -AsPlainText
 $cert = Import-PfxCertificate -FilePath $certfile cert:\localMachine\my -Password
 $securepwd

 # Create site binding
 Echo "Creating and registering WebBinding"
 New-WebBinding -Name "Default Web Site" -IP "*" -Port 443 -Protocol https
 New-Item -path IIS:\SslBindings\0.0.0.0!443 -value $cert -Force

 ## Remove the HTTP binding
 ## (optional) Uncomment the following line to unbind port 80
 # Remove-WebBinding -Name "Default Web Site" -BindingInformation *:80:
 ##

 # Update firewall
 netsh advfirewall firewall add rule name="Open port 443" protocol=TCP
 localport=443 action=allow dir=OUT

commands:
 00_install_ssl:
 command: powershell -NoProfile -ExecutionPolicy Bypass -file C:\\certs\\install-
cert.ps1

In a single instance environment, you must also modify the instance's security group to allow traffic
on port 443. The following configuration file retrieves the security group's ID using an Amazon
CloudFormation function and adds a rule to it.

Terminate HTTPS at the instance 737

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Configuring end-to-end encryption in a load-balanced Elastic Beanstalk
environment

Terminating secure connections at the load balancer and using HTTP on the backend might be
sufficient for your application. Network traffic between Amazon resources can't be listened to by
instances that are not part of the connection, even if they are running under the same account.

However, if you are developing an application that needs to comply with strict external regulations,
you might be required to secure all network connections. You can use the Elastic Beanstalk console
or configuration files to make your Elastic Beanstalk environment's load balancer connect to
backend instances securely to meet these requirements. The following procedure focuses on
configuration files.

First, add a secure listener to your load balancer, if you haven't already.

You must also configure the instances in your environment to listen on the secure port and
terminate HTTPS connections. The configuration varies per platform. See Configuring HTTPS
Termination at the instance for instructions. You can use a self-signed certificate for the EC2
instances without issue.

Next, configure the listener to forward traffic using HTTPS on the secure port used by your
application. Use one of the following configuration files, based on the type of load balancer that
your environment uses.

.ebextensions/https-reencrypt-clb.config

End-to-end encryption 738

Amazon Elastic Beanstalk Developer Guide

Use this configuration file with a Classic Load Balancer. In addition to configuring the load balancer,
the configuration file also changes the default health check to use port 443 and HTTPS, to ensure
that the load balancer can connect securely.

option_settings:
 aws:elb:listener:443:
 InstancePort: 443
 InstanceProtocol: HTTPS
 aws:elasticbeanstalk:application:
 Application Healthcheck URL: HTTPS:443/

.ebextensions/https-reencrypt-alb.config

Use this configuration file with an Application Load Balancer.

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 Protocol: HTTPS
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'
 Protocol: HTTPS

.ebextensions/https-reencrypt-nlb.config

Use this configuration file with a Network Load Balancer.

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'

The DefaultProcess option is named this way because of Application Load Balancers, which
can have nondefault listeners on the same port for traffic to specific paths (see Application Load
Balancer for details). For a Network Load Balancer the option specifies the only target process for
this listener.

End-to-end encryption 739

Amazon Elastic Beanstalk Developer Guide

In this example, we named the process https because it listens to secure (HTTPS) traffic. The
listener sends traffic to the process on the designated port using the TCP protocol, because a
Network Load Balancer works only with TCP. This is okay, because network traffic for HTTP and
HTTPS is implemented on top of TCP.

Note

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding
options. You must remove these settings if you want to use configuration files to configure
the same. See Recommended values for details.

In the next task, you need to modify the load balancer's security group to allow traffic. Depending
on the Amazon Virtual Private Cloud (Amazon VPC) in which you launch your environment—the
default VPC or a custom VPC—the load balancer's security group will vary. In a default VPC, Elastic
Load Balancing provides a default security group that all load balancers can use. In an Amazon VPC
that you create, Elastic Beanstalk creates a security group for the load balancer to use.

To support both scenarios, you can create a security group and tell Elastic Beanstalk to use it. The
following configuration file creates a security group and attaches it to the load balancer.

.ebextensions/https-lbsecuritygroup.config

option_settings:
 # Use the custom security group for the load balancer
 aws:elb:loadbalancer:
 SecurityGroups: '`{ "Ref" : "loadbalancersg" }`'
 ManagedSecurityGroup: '`{ "Ref" : "loadbalancersg" }`'

Resources:
 loadbalancersg:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: load balancer security group
 VpcId: vpc-########
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 443
 ToPort: 443
 CidrIp: 0.0.0.0/0
 - IpProtocol: tcp

End-to-end encryption 740

https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

 FromPort: 80
 ToPort: 80
 CidrIp: 0.0.0.0/0
 SecurityGroupEgress:
 - IpProtocol: tcp
 FromPort: 80
 ToPort: 80
 CidrIp: 0.0.0.0/0

Replace the highlighted text with your default or custom VPC ID. The previous example includes
ingress and egress over port 80 to allow HTTP connections. You can remove those properties if you
want to allow only secure connections.

Finally, add ingress and egress rules that allow communication over port 443 between the load
balancer's security group and the instances' security group.

.ebextensions/https-backendsecurity.config

Resources:
 # Add 443-inbound to instance security group (AWSEBSecurityGroup)
 httpsFromLoadBalancerSG:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 SourceSecurityGroupId: {"Fn::GetAtt" : ["loadbalancersg", "GroupId"]}
 # Add 443-outbound to load balancer security group (loadbalancersg)
 httpsToBackendInstances:
 Type: AWS::EC2::SecurityGroupEgress
 Properties:
 GroupId: {"Fn::GetAtt" : ["loadbalancersg", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 DestinationSecurityGroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}

Doing this separately from security group creation enables you to restrict the source and
destination security groups without creating a circular dependency.

End-to-end encryption 741

Amazon Elastic Beanstalk Developer Guide

After you have completed all the previous tasks, the load balancer connects to your backend
instances securely using HTTPS. The load balancer doesn't care if your instance's certificate is self-
signed or issued by a trusted certificate authority, and will accept any certificate presented to it.

You can change this behavior by adding policies to the load balancer that tell it to trust only a
specific certificate. The following configuration file creates two policies. One policy specifies a
public certificate, and the other tells the load balancer to only trust that certificate for connections
to instance port 443.

.ebextensions/https-backendauth.config

option_settings:
 # Backend Encryption Policy
 aws:elb:policies:backendencryption:
 PublicKeyPolicyNames: backendkey
 InstancePorts: 443
 # Public Key Policy
 aws:elb:policies:backendkey:
 PublicKey: |
 -----BEGIN CERTIFICATE-----
 ##
 ##
 ##
 ##
 ##
 -----END CERTIFICATE-----

Replace the highlighted text with the contents of your EC2 instance's public certificate.

Configuring your environment's load balancer for TCP Passthrough

If you do not want the load balancer in your Amazon Elastic Beanstalk environment to decrypt the
HTTPS traffic, you can configure the secure listener to relay requests to backend instances as-is.

Important

Configuring the load balancer to relay HTTPS traffic without decrypting it presents a
disadvantage. The load balancer cannot see the encrypted requests and thus cannot
optimize routing or report response metrics.

TCP Passthrough 742

Amazon Elastic Beanstalk Developer Guide

First configure your environment's EC2 instances to terminate HTTPS. Test the configuration on a
single instance environment to make sure everything works before adding a load balancer to the
mix.

Add a configuration file to your project to configure a listener on port 443 that passes TCP packets
as-is to port 443 on backend instances:

.ebextensions/https-lb-passthrough.config

option_settings:
 aws:elb:listener:443:
 ListenerProtocol: TCP
 InstancePort: 443
 InstanceProtocol: TCP

In a default Amazon Virtual Private Cloud (Amazon VPC), you also need to add a rule to the
instances' security group to allow inbound traffic on 443 from the load balancer:

.ebextensions/https-instance-securitygroup.config

Resources:
 443inboundfromloadbalancer:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 SourceSecurityGroupName: { "Fn::GetAtt": ["AWSEBLoadBalancer",
 "SourceSecurityGroup.GroupName"] }

In a custom VPC, Elastic Beanstalk updates the security group configuration for you.

Configuring HTTP to HTTPS redirection

This topic describes how to handle HTTP traffic to your application if end users still initiate it. You
do this by configuring HTTP to HTTPS redirection, sometimes referred to as forcing HTTPS.

To configure redirection, you first configure your environment to handle HTTPS traffic. Then you
redirect HTTP traffic to HTTPS. These two steps are discussed in the following subsections.

HTTP to HTTPS redirection 743

https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

Configure your environment to handle HTTPS traffic

Depending on your environment's load balancing configuration, do one of the following:

• Load-balanced environment – Configure your load balancer to terminate HTTPS.

• Single-instance environment – Configure your application to terminate HTTPS connections at
the instance. This configuration depends on your environment's platform.

Redirect HTTP traffic to HTTPS

To redirect HTTP traffic to HTTPS for your application you can either configure the web servers on
your environment's instances or you can configure the environment's Application Load Balancer.

Configure the instance web servers

This method works on any web server environment. Configure web servers on your Amazon EC2
instances to respond to HTTP traffic with an HTTP redirection response status.

This configuration depends on your environment's platform. Find the folder for your platform in
the https-redirect collection on GitHub, and use the example configuration file in that folder.

If your environment uses Elastic Load Balancing health checks, the load balancer expects a healthy
instance to respond to the HTTP health check messages with HTTP 200 (OK) responses. Therefore,
your web server shouldn't redirect these messages to HTTPS. The example configuration files in
https-redirect handle this requirement correctly.

Configure the load balancer

This method works if you have a load-balanced environment that uses an Application Load
Balancer. An Application Load Balancer can send redirection responses as HTTP traffic comes in. In
this case, you don't need to configure redirection on your environment's instances.

We have two example configuration files on GitHub that show how to configure an Application
Load Balancer for redirection.

• The alb-http-to-https-redirection-full.config configuration file creates an HTTPS
listener on port 443, and modifies the default port 80 listener to redirect incoming HTTP traffic
to HTTPS.

HTTP to HTTPS redirection 744

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/https-redirect
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/https-redirect
https://github.com/awsdocs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/alb-http-to-https-redirection-full.config

Amazon Elastic Beanstalk Developer Guide

• The alb-http-to-https-redirection.config configuration file expects the 443 listener to
be defined. To define it, you can use standard Elastic Beanstalk configuration namespaces, or the
Elastic Beanstalk console. Then it takes care of modifying the port 80 listener for redirection.

HTTP to HTTPS redirection 745

https://github.com/awsdocs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/alb-http-to-https-redirection.config

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk platforms

Amazon Elastic Beanstalk provides a variety of platforms on which you can build your applications.
You design your web application to one of these platforms, and Elastic Beanstalk deploys your
code to the platform version you selected to create an active application environment.

Elastic Beanstalk provides platforms for different programming languages and application servers.
Some platforms have multiple concurrently-supported versions.

Topics

• Elastic Beanstalk platforms glossary

• Shared responsibility model for Elastic Beanstalk platform maintenance

• Elastic Beanstalk platform support policy

• Elastic Beanstalk platform release schedule

• Elastic Beanstalk supported platforms

• Elastic Beanstalk Linux platforms

• Extending Elastic Beanstalk Linux platforms

Elastic Beanstalk platforms glossary

Following are key terms related to Amazon Elastic Beanstalk platforms and their lifecycle.

Runtime

The programming language-specific runtime software (framework, libraries, interpreter, vm,
etc.) required to run your application code.

Elastic Beanstalk Components

Software components that Elastic Beanstalk adds to a platform to enable Elastic Beanstalk
functionality. For example, the enhanced health agent is necessary for gathering and reporting
health information.

Platform

A combination of an operating system (OS), runtime, web server, application server, and
Elastic Beanstalk components. Platforms provide components that are available to run your
application.

Platforms glossary 746

Amazon Elastic Beanstalk Developer Guide

Platform Version

A combination of specific versions of an operating system (OS), runtime, web server, application
server, and Elastic Beanstalk components. You create an Elastic Beanstalk environment based
on a platform version and deploy your application to it.

A platform version has a semantic version number of the form X.Y.Z, where X is the major
version, Y is the minor version, and Z is the patch version.

A platform version can be in one of the following states:

• Recommended – The latest platform version in a supported platform branch. This version
contains the most up-to-date components and is recommended for use in production
environments.

• Not Recommended – Any platform version that is not the latest version in its platform
branch. While these versions may remain functional, we strongly recommend updating to
the latest platform version. You can use managed platform updates to help stay up-to-date
automatically.

You can verify if a platform version is recommended using the AWS CLI command describe-
platform-version and checking the PlatformLifecycleState field.

Platform Branch

A line of platform versions sharing specific (typically major) versions of some of their
components, such as the operating system (OS), runtime, or Elastic Beanstalk components. For
example: Python 3.13 running on 64bit Amazon Linux 2023; IIS 10.0 running on 64bit Windows
Server 2025. Platform branches receive updates in the form of new platform versions. Each
successive platform version in a branch is an update to the previous one.

The recommended version in each supported platform branch is available to you
unconditionally for environment creation. A previous platform version is available to you if you
were using an environment with it at the time the platform version was superceded by a new
platform version. Previous platform versions lack the most up-to-date components and aren't
recommended for use.

A platform branch can be in one of the following states:

• Supported – A current platform branch. It consists entirely of supported components.
Supported components have not reached End of Life (EOL), as designated by their
suppliers. It receives ongoing platform updates, and is recommended for use in production

Platforms glossary 747

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/describe-platform-version.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/describe-platform-version.html

Amazon Elastic Beanstalk Developer Guide

environments. For a list of supported platform branches, see Elastic Beanstalk supported
platforms in the Amazon Elastic Beanstalk Platforms guide.

• Beta – A preview, pre-release platform branch. It's experimental in nature. It may receive
ongoing platform updates for a while, but has no long-term support. A beta platform branch
isn't recommended for use in production environments. Use it only for evaluation. For a list of
beta platform branches, see Elastic Beanstalk Platform Versions in Public Beta in the Amazon
Elastic Beanstalk Platforms guide.

• Deprecated – A platform branch where one or more components (such as the runtime or
operating system) are approaching End of Life (EOL) or have reached EOL, as designated
by their suppliers. While a deprecated platform branch continues to receive new platform
versions until its retirement date, components that have reached EOL don't receive updates.
For example, if a runtime version reaches EOL, the platform branch will be marked as
deprecated but will continue to receive operating system updates until the platform branch
retirement date. The platform branch will not continue to receive updates to the EOL runtime
version. A deprecated platform branch isn't recommended for use.

• Retired – A platform branch that no longer receives any updates. Retired platform branches
aren't available to create new Elastic Beanstalk environments using the Elastic Beanstalk
console. If your environment uses a retired platform branch, you must update to a supported
platform branch to continue receiving updates. A retired platform branch isn't recommended
for use. For more details about retired platform branches, see the section called “Platform
support policy”. For a list of platform branches scheduled for retirement, see Retiring
platform branch schedule. To see past retired platform branches, see Retired platform branch
history.

If your environment uses a deprecated or retired platform branch, we recommend that you
update it to a platform version in a supported platform branch. For details, see the section
called “Platform updates”.

You can verify the state of a platform branch using the AWS CLI command describe-platform-
version and checking the PlatformBranchLifecycleState field.

Platform Update

A release of new platform versions that contain updates to some components of the platform
—OS, runtime, web server, application server, and Elastic Beanstalk components. Platform
updates follow semantic version taxonomy, and can have three levels:

Platforms glossary 748

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-beta.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/platforms-schedule.html#platforms-support-policy.depracation
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/platforms-schedule.html#platforms-support-policy.depracation
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/platforms-schedule.html#platforms-support-policy.retired
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/platforms-schedule.html#platforms-support-policy.retired
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/describe-platform-version.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/describe-platform-version.html

Amazon Elastic Beanstalk Developer Guide

• Major update – An update that has changes that are incompatible with existing platform
versions. You may need to modify your application to run correctly on a new major version. A
major update has a new major platform version number.

• Minor update – An update that has changes that are backward compatible with existing
platform versions in most cases. Depending on your application, you may need to modify
your application to run correctly on a new minor version. A minor update has a new minor
platform version number.

• Patch update – An update that consists of maintenance releases (bug fixes, security updates,
and performance improvements) that are backward compatible with an existing platform
version. A patch update has a new patch platform version number.

Managed Updates

An Elastic Beanstalk feature that automatically applies patch and minor updates to the
operating system (OS), runtime, web server, application server, and Elastic Beanstalk
components for an Elastic Beanstalk supported platform version. A managed update applies a
newer platform version in the same platform branch to your environment. You can configure
managed updates to apply only patch updates, or minor and patch updates. You can also
disable managed updates completely.

For more information, see Managed platform updates.

Shared responsibility model for Elastic Beanstalk platform
maintenance

Amazon and our customers share responsibility for achieving a high level of software component
security and compliance. This shared model reduces your operational burden.

For details, see the Amazon Shared Responsibility Model.

Amazon Elastic Beanstalk helps you perform your side of the shared responsibility model by
providing a managed updates feature. This feature automatically applies patch and minor updates
for an Elastic Beanstalk supported platform version. If a managed update fails, Elastic Beanstalk
notifies you of the failure to ensure that you are aware of it and can take immediate action.

For more information, see Managed platform updates.

In addition, Elastic Beanstalk does the following:

Shared responsibility model 749

http://www.amazonaws.cn/compliance/shared-responsibility-model/

Amazon Elastic Beanstalk Developer Guide

• Publishes its platform support policy and retirement schedule for the coming 12 months.

• Releases patch, minor, and major updates of operating system (OS), runtime, application server,
and web server components typically within 30 days of their availability. Elastic Beanstalk
is responsible for creating updates to Elastic Beanstalk components that are present on its
supported platform versions. All other updates come directly from their suppliers (owners or
community).

We announce all updates to our supported platforms in our release notes in the Amazon Elastic
Beanstalk Release Notes guide. We also provide a list of all supported platforms and their
components, along with a platform history, in the Amazon Elastic Beanstalk Platforms guide. For
more information see Supported platforms and component history.

You are responsible to do the following:

• Update all the components that you control (identified as Customer in the Amazon Shared
Responsibility Model). This includes ensuring the security of your application, your data, and any
components that your application requires and that you downloaded.

• Ensure that your Elastic Beanstalk environments are running on a supported platform version,
and migrate any environment running on a retired platform version to a supported version.

• If you’re using a custom Amazon machine image (AMI) for your Elastic Beanstalk environment,
patch, maintain, and test your custom AMI so that it remains current and compatible with
a supported Elastic Beanstalk platform version. For more information about managing
environments with a custom AMI, see Using a custom Amazon machine image (AMI) in your
Elastic Beanstalk environment.

• Resolve all issues that come up in failed managed update attempts and retry the update.

• Patch the OS, runtime, application server, and web server yourself if you opted out of Elastic
Beanstalk managed updates. You can do this by applying platform updates manually or directly
patching the components on all relevant environment resources.

• Manage the security and compliance of any Amazon services that you use outside of Elastic
Beanstalk according to the Amazon Shared Responsibility Model.

Shared responsibility model 750

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/relnotes.html
http://www.amazonaws.cn/compliance/shared-responsibility-model/
http://www.amazonaws.cn/compliance/shared-responsibility-model/
http://www.amazonaws.cn/compliance/shared-responsibility-model/

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk platform support policy

Elastic Beanstalk supports platform branches that still receive ongoing minor and patch updates
from their suppliers (owners or community). For a complete definition of related terms, see Elastic
Beanstalk platforms glossary.

Retired platform branches

When a component of a supported platform branch is marked End of Life (EOL) by its supplier,
Elastic Beanstalk marks the platform branch as retired. Components of a platform branch include
the following: operating system (OS), runtime language version, application server, or web server.

Once a platform branch is marked as retired the following policies apply:

• Elastic Beanstalk stops providing maintenance updates, including security updates.

• Elastic Beanstalk no longer provides technical support for retired platform branches.

• Elastic Beanstalk no longer makes the platform branch available to new Elastic Beanstalk
customers for deployments to new environments. There is a 90 day grace period from the
published retirement date for existing customers with active environments that are running on
retired platform branches.

Note

A retired platform branch will not be available in the Elastic Beanstalk console. However,
it will be available through the Amazon CLI, EB CLI and EB API for customers that have
existing environments based on the retired platform branch. Existing customers can also
use the Clone environment and Rebuild environment consoles.

For a list of platform branches that are scheduled for retirement see the Retiring platform branch
schedule in the Elastic Beanstalk platform schedule topic that follows.

For more information about what to expect when your environment’s platform branch retires, see
Platform retirement FAQ.

Platform support policy 751

Amazon Elastic Beanstalk Developer Guide

Beyond the 90 day grace period

Our policy for retired platform branches does not remove access to environments nor delete
resources. However, existing customers running an Elastic Beanstalk environment on a retired
platform branch should be aware of the risks of doing so. Such environments can end up in an
unpredictable situation, because Elastic Beanstalk isn't able to provide security updates, technical
support, or hotfixes for retired platform branches due to the supplier marking their component
EOL.

For example, a detrimental and critical security vulnerability may surface in an environment
running on a retired platform branch. Or an EB API action may stop working for the environment
if it becomes incompatible with the Elastic Beanstalk service over time. The opportunity for these
types of risks increases the longer an environment on a retired platform branch remains active. To
continue to benefit from important security, performance, and functionality enhancements offered
by component suppliers in more recent releases, we strongly encourage you to update all your
Elastic Beanstalk environments to a supported platform version.

If your application should encounter issues while running on a retired platform branch and
you're not able to migrate it to a supported platform, you'll need to consider other alternatives.
Workarounds include encapsulating the application into a Docker image to run it as a Docker
container. This would allow a customer to use any of our Docker solutions, such as our Elastic
Beanstalk AL2023/AL2 Docker platforms, or other Docker based services such as Amazon ECS
or Amazon EKS. Non-Docker alternatives include our Amazon CodeDeploy service, which allows
complete customization of the runtimes you desire.

Elastic Beanstalk platform release schedule

In addition to the monthly cadence release of new platform branch versions, our release
maintenance also includes the following processes:

• Release of new platform branches – These typically introduce a new major version of a run-time
language, operating system or application server.

• Retirement of platform branches – We must retire a platform branch when one of its components
reaches End of Life (EOL). For more information about our policy for retired branches, see Elastic
Beanstalk platform support policy

Topics

Beyond the 90 day grace period 752

Amazon Elastic Beanstalk Developer Guide

• Planning resources

• Upcoming platform branch releases

• Retiring platform branch schedule

• Retired platform branch history

• Retired server and operation system history

Planning resources

The following resources can help you plan maintenance and support for your application running
on an Elastic Beanstalk platform.

• Amazon Elastic Beanstalk Platforms guide — This guide provides a detailed component list
for each of our platform branches. It also provides a platform history by release date with the
same details. This guide can inform you when specific components of your platform branch
changed. If your application starts behaving differently, you can also cross-reference the date of
the occurrence in the platforms guide to see if there were any platform changes that might have
affected your application.

• Amazon Elastic Beanstalk Release Notes — Our Release Notes announce all of our platform
releases, both minor and major. This includes our monthly platform updates, security releases,
hotfixes, and retirement announcements. You can subscribe to our RSS feeds from the Release
Notes documentation.

Upcoming platform branch releases

The following table lists upcoming Elastic Beanstalk platform branches and their target release
date. These dates are tentative and subject to change.

Runtime version / platform
branch

Operating System Target release date

Corretto 25 Amazon Linux 2023 October 2025

Corretto 25 with Tomcat 11 Amazon Linux 2023 October 2025

Python 3.14 Amazon Linux 2023 November 2025

Planning resources 753

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/welcome.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/relnotes.html

Amazon Elastic Beanstalk Developer Guide

Runtime version / platform
branch

Operating System Target release date

Node.js 24 Amazon Linux 2023 November 2025

.NET 10 Amazon Linux 2023 December 2025

PHP 8.5 Amazon Linux 2023 January 2026

Ruby 3.5 Amazon Linux 2023 February 2026

Retiring platform branch schedule

This following table lists Elastic Beanstalk platform branches that are scheduled for retirement,
because some of their components are reaching their End of Life (EOL).

For a more detailed list of retiring platform branches that includes their specific components, see
retiring platform versions in the Amazon Elastic Beanstalk Platforms guide.

Runtime version / platform
branch

Operating System Target retirement date

Node.js 18 AL2023 Amazon Linux 2023 July 31, 2025

Node.js 18 AL2 Amazon Linux 2 July 31, 2025

Retired platform branch history

The following tables list Elastic Beanstalk platform branches that are already in retired status. You
can see a detailed history of these platform branches and their components in the Platform history
of the Amazon Elastic Beanstalk Platforms guide.

Retiring platform branch schedule 754

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-retiring.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history.html

Amazon Elastic Beanstalk Developer Guide

Amazon Linux 2023 (AL2023)

Runtime
version /
platform
branch

Retirement date

.NET 6 AL2023 April 8, 2025

Amazon Linux 2 (AL2)

Runtime
version /
platform
branch

Retirement date

Corretto 11 with
Tomcat 8.5 AL2

October 10, 2024

Corretto 8 with
Tomcat 8.5 AL2

October 10, 2024

Corretto 11 with
Tomcat 7 AL2

June 29, 2022

Corretto 8 with
Tomcat 7 AL2

June 29, 2022

Node.js 16 AL2 October 10, 2024

Node.js 14 AL2 October 10, 2024

Node.js 12 AL2 December 23, 2022

Node.js 10 AL2 June 29, 2022

PHP 8.0 AL2 October 10, 2024

PHP 7.4 AL2 June 9, 2023

Retired platform branch history 755

Amazon Elastic Beanstalk Developer Guide

Runtime
version /
platform
branch

Retirement date

PHP 7.3 AL2 June 29, 2022

PHP 7.2 AL2 June 29, 2022

Python 3.8 AL2 April 8, 2025

Python 3.7 AL2 October 10, 2024

Ruby 3.0 AL2 October 10, 2024

Ruby 2.7 AL2 October 10, 2024

Ruby 2.6 AL2 December 23, 2022

Ruby 2.5 AL2 June 29, 2022

Amazon Linux AMI (AL1)

Runtime
version /
platform
branch

Retirement date

Single Container
Docker

July 18, 2022

Multicontainer
Docker

July 18, 2022

Preconfig
ured Docker -
GlassFish 5.0
with Java 8

July 18, 2022

Retired platform branch history 756

Amazon Elastic Beanstalk Developer Guide

Runtime
version /
platform
branch

Retirement date

Go 1 July 18, 2022

Java 8 July 18, 2022

Java 7 July 18, 2022

Java 8 with
Tomcat 8.5

July 18, 2022

Java 7 with
Tomcat 7

July 18, 2022

Node.js July 18, 2022

PHP 7.2 - 7.3 July 18, 2022

Python 3.6 July 18, 2022

Ruby 2,4,
2.5, 2.6 with
Passenger

July 18, 2022

Ruby 2.4, 2.5,
2.6 with Puma

July 18, 2022

Go 1.3–1.10 October 31, 2020

Java 6 October 31, 2020

Node.js 4.x–8.x October 31, 2020

PHP 5.4–5.6 October 31, 2020

PHP 7.0–7.1 October 31, 2020

Retired platform branch history 757

Amazon Elastic Beanstalk Developer Guide

Runtime
version /
platform
branch

Retirement date

Python 2.6, 2.7,
3.4

October 31, 2020

Ruby 1.9.3 October 31, 2020

Ruby 2.0–2.3 October 31, 2020

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information, see Platform retirement FAQ.

Windows Server

Runtime
version /
platform
branch

Retirement date

IIS 8.5 running
on 64bit
Windows Server
(& Core) 2012
R2 version 0.1.0

June 29, 2022

IIS 8.5 running
on 64bit
Windows Server
(& Core) 2012
R2 version 1.2.0

June 29, 2022

Retired platform branch history 758

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

Runtime
version /
platform
branch

Retirement date

IIS 10.0 running
on 64bit
Windows Server
2016 (& Core)
version 1.2.0

June 29, 2022

IIS 8 running on
64bit Windows
Server 2012 R1
Platform Branch

June 22, 2022

IIS 8 running on
64bit Windows
Server 2012 R1
version 0.1.0

June 22, 2022

IIS 8 running on
64bit Windows
Server 2012 R1
version 1.2.0

June 22, 2022

Note

For more information about the retirement of the Windows 2012 R2 platform branches, see
Windows Server 2012 R2 platform branches retired in the Amazon Elastic Beanstalk Release
Notes.

Retired server and operation system history

The following tables provide a history of the operating systems, application servers, and web
servers that are no longer supported by Elastic Beanstalk platforms. All of the platform branches

Server and OS history 759

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2023-12-04-windows-2012-retire.html

Amazon Elastic Beanstalk Developer Guide

that utilized these components are now retired. The dates reflect the retirement date of the last
Elastic Beanstalk platform branch that included the component.

Operating Systems

OS version Platform retirement date

Windows Server
2012 R2 running
IIS 8.5

December 4, 2023

Windows Server
Core 2012 R2
running IIS 8.5

December 4, 2023

Amazon Linux
AMI (AL1)

July 18, 2022

Windows Server
2012 R1

June 22, 2022

Windows Server
2008 R2

October 28, 2019

Application servers

Application
server version

Platform retirement date

Tomcat 7 June 29, 2022 for Amazon Linux 2
(AL2) platforms

July 18, 2022 for Amazon Linux AMI
(AL1) platforms

Tomcat 8 October 31, 2020

Tomcat 6 October 31, 2020

Server and OS history 760

Amazon Elastic Beanstalk Developer Guide

Web servers

Web server
version

Platform retirement date

IIS 8 running on
64bit Windows
Server

June 22, 2022

Apache HTTP
Server 2.2

October 31, 2020

Nginx 1.12.2 October 31, 2020

Elastic Beanstalk supported platforms

Amazon Elastic Beanstalk provides a variety of platforms on which you can build your applications.
You design your web application to one of these platforms, and Elastic Beanstalk deploys your
code to the platform version you selected to create an active application environment.

Elastic Beanstalk provisions the resources needed to run your application, including one or more
Amazon EC2 instances. The software stack running on the Amazon EC2 instances depends on the
specific platform version you've selected for your environment.

The solution stack name for a platform branch

You can use the solution stack name for a given platform branch version to launch an environment
with the EB CLI, Elastic Beanstalk API, or the Amazon CLI. The Amazon Elastic Beanstalk Platforms
guide lists the solution stack name under the platform branch version in both the Elastic Beanstalk
Supported Platforms and Platform history sections.

To retrieve all of the solution stack names that you can use to create an environment, use the
ListAvailableSolutionStacks API or the aws elasticbeanstalk list-available-solution-
stacks in the Amazon CLI.

You can customize and configure the software that your application depends on in your platform.
Learn more at Customizing software on Linux servers and Customizing software on Windows
servers. Detailed release notes are available for recent releases at Amazon Elastic Beanstalk Release
Notes.

Supported platforms 761

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_ListAvailableSolutionStacks.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/

Amazon Elastic Beanstalk Developer Guide

Supported platforms and component history

The Amazon Elastic Beanstalk Platforms guide lists all of the current platform branch versions in
the Elastic Beanstalk Supported Platforms section. The Platforms guide also lists a platform history
for each platform, which includes a list of previous branch platform versions. To view the platform
history for each platform, select one of the following links.

• Docker

• Go

• Java SE

• Tomcat (running Java SE)

• .NET Core on Linux

• .NET on Windows Server

• Node.js

• PHP

• Python

• Ruby

Elastic Beanstalk Linux platforms

The Elastic Beanstalk Linux platforms provide an extensive amount of functionality out of the
box. You can extend the platforms in several ways to support your application. For details, see the
section called “Extending Linux platforms”.

Most of the platforms that Elastic Beanstalk supports are based on the Linux operating system.
Specifically, these platforms are based on Amazon Linux, a Linux distribution provided by Amazon.
Elastic Beanstalk Linux platforms use Amazon Elastic Compute Cloud (Amazon EC2) instances, and
these instances run Amazon Linux.

Topics

• Supported Amazon Linux versions

• List of Elastic Beanstalk Linux platforms

• Instance deployment workflow

• Instance deployment workflow for ECS running on Amazon Linux 2 and later

• Platform script tools for your Elastic Beanstalk environments

Supported platforms and component history 762

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-docker.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-go.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-javase.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-java.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-dotnetlinux.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-dotnet.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-nodejs.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-php.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-python.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-ruby.html

Amazon Elastic Beanstalk Developer Guide

Supported Amazon Linux versions

Amazon Elastic Beanstalk supports platforms based on Amazon Linux 2 and Amazon Linux 2023.

For more information about Amazon Linux 2 and Amazon Linux 2023, see the following:

• Amazon Linux 2 – Amazon Linux in the Amazon EC2 User Guide.

• Amazon Linux 2023 – What is Amazon Linux 2023? in the Amazon Linux 2023 User Guide

For details about supported platform versions, see Elastic Beanstalk supported platforms.

Note

You can migrate your application from an Elastic Beanstalk AL1 or AL2 platform branch to
the equivalent AL2023 platform branch. For more information, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Amazon Linux 2023

Amazon announced the general availability of Amazon Linux 2023 in March of 2023. The Amazon
Linux 2023 User Guide summarizes key differences between Amazon Linux 2 and Amazon Linux
2023. For more information, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the user
guide.

There is a high degree of compatibility between Elastic Beanstalk Amazon Linux 2 and Amazon
Linux 2023 platforms. Although there are some differences to note:

• Instance Metadata Service Version 1 (IMDSv1) – The DisableIMDSv1 option setting defaults to
true on AL2023 platforms. The default is false on AL2 platforms.

• pkg-repo instance tool – The pkg-repo tool is not available for environments running on AL2023
platforms. However,you can manually apply package and operating system updates to an
AL2023 instance. For more information, see Managing packages and operating system updates
in the Amazon Linux 2023 User Guide.

• Apache HTTPd configuration – The Apache httpd.conf file for AL2023 platforms has some
configuration settings that are different from those for AL2:

• Deny access to the server’s entire file system by default. These settings are described in Protect
Server Files by Default on the Apache website Security Tips page.

Supported Amazon Linux versions 763

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/amazon-linux-ami-basics.html
https://docs.amazonaws.cn/linux/al2023/ug/what-is-amazon-linux.html
https://www.amazonaws.cn/blogs/aws/amazon-linux-2023-a-cloud-optimized-linux-distribution-with-long-term-support/
https://docs.amazonaws.cn/linux/al2023/ug/compare-with-al2.html
https://docs.amazonaws.cn/linux/al2023/ug/managing-repos-os-updates.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html

Amazon Elastic Beanstalk Developer Guide

• Stop users from overriding security features you've configured. The configuration denies access
to set up of .htaccess in all directories, except for those specifically enabled. This setting is
described in Protecting System Settings on the Apache website Security Tips page. The Apache
HTTP Server Tutorial: .htaccess files page states this setting may help improve performance.

• Deny access to files with name pattern .ht*. This setting prevents web clients from viewing
.htaccess and .htpasswd files.

You can change any of the above configuration settings for your environment. For more
information, see Configuring Apache HTTPD.

List of Elastic Beanstalk Linux platforms

The following list provides the Linux platforms that Elastic Beanstalk supports for different
programming languages as well as for Docker containers. Elastic Beanstalk offers platforms based
on Amazon Linux 2 and Amazon Linux 2023 for all of them. To learn more about a platform, select
the corresponding link.

• Docker (and ECS Docker)

• Go

• Tomcat (running Java SE)

• Java SE

• .NET Core on Linux

• Node.js

• PHP

• Python

• Ruby

Instance deployment workflow

Note

The information in this section doesn't apply to the ECS running on Amazon Linux 2 and
Amazon Linux 2023 platform branches. For more information, see the next section Instance
deployment workflow for ECS running on Amazon Linux 2 and later.

List of Elastic Beanstalk Linux platforms 764

https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html

Amazon Elastic Beanstalk Developer Guide

With many ways to extend your environment's platform, it's useful to know what happens
whenever Elastic Beanstalk provisions an instance or runs a deployment to an instance. The
following diagram shows this entire deployment workflow. It depicts the different phases in a
deployment and the steps that Elastic Beanstalk takes in each phase.

Notes

• The diagram doesn't represent the complete set of steps that Elastic Beanstalk takes on
environment instances during deployment. We provide this diagram for illustration, to
provide you with the order and context for the execution of your customizations.

• For simplicity, the diagram mentions only the .platform/hooks/* hook subdirectories
(for application deployments), and not the .platform/confighooks/* hook
subdirectories (for configuration deployments). Hooks in the latter subdirectories run
during exactly the same steps as hooks in corresponding subdirectories shown in the
diagram.

Instance deployment workflow 765

Amazon Elastic Beanstalk Developer Guide

Instance deployment workflow 766

Amazon Elastic Beanstalk Developer Guide

The following list details the deployment phases and steps.

1. Initial steps

Elastic Beanstalk downloads and extracts your application. After each one of these steps, Elastic
Beanstalk runs one of the extensibility steps.

a. Runs commands found in the commands: section of any configuration file.

b. Runs any executable files found in the .platform/hooks/prebuild directory of your
source bundle (.platform/confighooks/prebuild for a configuration deployment).

2. Configure

Elastic Beanstalk configures your application and the proxy server.

a. Runs the commands found in the Buildfile in your source bundle.

b. Copies your custom proxy configuration files, if you have any in the .platform/nginx
directory of your source bundle, to their runtime location.

c. Runs commands found in the container_commands: section of any configuration file.

d. Runs any executable files found in the .platform/hooks/predeploy directory of your
source bundle (.platform/confighooks/predeploy for a configuration deployment).

3. Deploy

Elastic Beanstalk deploys and runs your application and the proxy server.

a. Runs the command found in the Procfile file in your source bundle.

b. Runs or reruns the proxy server with your custom proxy configuration files, if you have any.

c. Runs any executable files found in the .platform/hooks/postdeploy directory of your
source bundle (.platform/confighooks/postdeploy for a configuration deployment).

Instance deployment workflow for ECS running on Amazon Linux 2 and
later

The previous section describes the supported extensibility features throughout the phases of the
application deployment workflow. There are some differences for the Docker platform branches
ECS running on Amazon Linux 2 and later. This section explains how those concepts apply to this
specific platform branch.

Instance deployment workflow for ECS on AL2 and later 767

Amazon Elastic Beanstalk Developer Guide

With many ways to extend your environment's platform, it's useful to know what happens
whenever Elastic Beanstalk provisions an instance or runs a deployment to an instance. The
following diagram shows this entire deployment workflow for an environment based on the ECS
running on Amazon Linux 2 and ECS running on Amazon Linux 2023 platform branches. It depicts
the different phases in a deployment and the steps that Elastic Beanstalk takes in each phase.

Unlike the workflow described in the prior section, the deployment Configuration phase doesn't
support the following extensibility features: Buildfile commands, Procfile commands,
reverse proxy configuration.

Notes

• The diagram doesn't represent the complete set of steps that Elastic Beanstalk takes on
environment instances during deployment. We provide this diagram for illustration, to
provide you with the order and context for the execution of your customizations.

• For simplicity, the diagram mentions only the .platform/hooks/* hook subdirectories
(for application deployments), and not the .platform/confighooks/* hook
subdirectories (for configuration deployments). Hooks in the latter subdirectories run
during exactly the same steps as hooks in corresponding subdirectories shown in the
diagram.

Instance deployment workflow for ECS on AL2 and later 768

Amazon Elastic Beanstalk Developer Guide

The following list details the deployment workflow steps.

Instance deployment workflow for ECS on AL2 and later 769

Amazon Elastic Beanstalk Developer Guide

a. Runs any executable files found in the appdeploy/pre directory under EBhooksDir.

b. Runs any executable files found in the .platform/hooks/prebuild directory of your source
bundle (.platform/confighooks/prebuild for a configuration deployment).

c. Runs any executable files found in the .platform/hooks/predeploy directory of your source
bundle (.platform/confighooks/predeploy for a configuration deployment).

d. Runs any executable files found in the appdeploy/enact directory under EBhooksDir.

e. Runs any executable files found in the appdeploy/post directory under EBhooksDir.

f. Runs any executable files found in the .platform/hooks/postdeploy directory of your
source bundle (.platform/confighooks/postdeploy for a configuration deployment).

The reference to EBhooksDir represents the path of the platform hooks directory. To retrieve
directory path name use the get-config script tool on the command line of your environment
instance as shown:

$ /opt/elasticbeanstalk/bin/get-config platformconfig -k EBhooksDir

Platform script tools for your Elastic Beanstalk environments

This topic describes tools that Amazon Elastic Beanstalk provides for environments that use
Amazon Linux platforms. The tools are located on the Amazon EC2 instances of the Elastic
Beanstalk environments.

get-config

Use the get-config tool to retrieve plain text environment variable values and other platform
and instance information. The tool is available at /opt/elasticbeanstalk/bin/get-config.

get-config commands

Each get-config tool command returns a specific type of information. Use the following syntax
to run the commands of any of the tools.

$ /opt/elasticbeanstalk/bin/get-config command [options]

The following example runs the environment command.

Platform script tools 770

Amazon Elastic Beanstalk Developer Guide

$ /opt/elasticbeanstalk/bin/get-config environment -k PORT

Depending on the command and options you choose, the tool returns an object (JSON or YAML)
with key-value pairs or a single value.

You can test get-config by using SSH to connect to an EC2 instance in your Elastic Beanstalk
environment.

Note

When you run get-config for testing, some commands might require root user privileges
to access the underlying information. If you get an access permission error, run the
command again under sudo.
You don't need to add sudo when using the tool in the scripts that you deploy to your
environment. Elastic Beanstalk runs all your scripts as the root user.

The following sections describe the commands for the tools.

optionsettings – Configuration options

The get-config optionsettings command returns an object that's listing the configuration
options that are set on the environment and used by the platform on environment instances.
They're organized by namespace.

$ /opt/elasticbeanstalk/bin/get-config optionsettings
{"aws:elasticbeanstalk:application:environment":
{"JDBC_CONNECTION_STRING":""},"aws:elasticbeanstalk:container:tomcat:jvmoptions":{"JVM
 Options":"","Xms":"256m","Xmx":"256m"},"aws:elasticbeanstalk:environment:proxy":
{"ProxyServer":"nginx","StaticFiles":
[""]},"aws:elasticbeanstalk:healthreporting:system":
{"SystemType":"enhanced"},"aws:elasticbeanstalk:hostmanager":
{"LogPublicationControl":"false"}}

To return a specific configuration option value, use the --namespace (-n) option to specify a
namespace, and the --option-name (-o) option to specify an option name.

$ /opt/elasticbeanstalk/bin/get-config optionsettings -
n aws:elasticbeanstalk:container:php:phpini -o memory_limit
256M

Platform script tools 771

Amazon Elastic Beanstalk Developer Guide

environment – Environment properties

The get-config environment command returns an object containing a list of environment
properties, including both user-configured and provided by Elastic Beanstalk. The user-configured
properties are defined in the console as Plain text or with the configuration option namespace
aws:elasticbeanstalk:application:environment.

$ /opt/elasticbeanstalk/bin/get-config environment
{"JDBC_CONNECTION_STRING":"","RDS_PORT":"3306","RDS_HOSTNAME":"anj9aw1b0tbj6b.cijbpanmxz5u.us-
west-2.rds.amazonaws.com.cn","RDS_USERNAME":"testusername","RDS_DB_NAME":"ebdb","RDS_PASSWORD":"testpassword1923851"}

For example, Elastic Beanstalk provides environment properties for connecting to an integrated
Amazon RDS DB instance (for example, RDS_HOSTNAME). These RDS connection properties appear
in the output of get-config environment. However, they don't appear in the output of get-
config optionsettings. This is because they weren't set in configuration options.

To return a specific environment property, use the --key (-k) option to specify a property key.

$ /opt/elasticbeanstalk/bin/get-config environment -k TESTPROPERTY
testvalue

Note

The get-config tool cannot retrieve environment variables that store secrets. For more
information about how to programmatically retrieve values from secret or parameter
stores, see Using Secrets Manager or Using Systems Manager Parameter Store.

container – On-instance configuration values

The get-config container command returns an object that lists platform and environment
configuration values for environment instances.

The following example shows the output for the command on an Amazon Linux 2 Tomcat
environment.

$ /opt/elasticbeanstalk/bin/get-config container
{"common_log_list":["/var/log/eb-engine.log","/var/log/eb-
hooks.log"],"default_log_list":["/var/log/nginx/access.log","/var/log/nginx/

Platform script tools 772

Amazon Elastic Beanstalk Developer Guide

error.log"],"environment_name":"myenv-1da84946","instance_port":"80","log_group_name_prefix":"/
aws/elasticbeanstalk","proxy_server":"nginx","static_files":
[""],"xray_enabled":"false"}

To return the value of a specific key, use the --key (-k) option to specify the key.

$ /opt/elasticbeanstalk/bin/get-config container -k environment_name
myenv-1da84946

addons – Add-on configuration values

The get-config addons command returns an object that contains configuration information
of environment add-ons. Use it to retrieve the configuration of an Amazon RDS database that's
associated with the environment.

$ /opt/elasticbeanstalk/bin/get-config addons
{"rds":{"Description":"RDS Environment variables","env":
{"RDS_DB_NAME":"ebdb","RDS_HOSTNAME":"ea13k2wimu1dh8i.c18mnpu5rwvg.us-
west-2.rds.amazonaws.com","RDS_PASSWORD":"password","RDS_PORT":"3306","RDS_USERNAME":"user"}}}

You can restrict the result in two ways. To retrieve values for a specific add-on, use the --add-on
(-a) option to specify the add-on name.

$ /opt/elasticbeanstalk/bin/get-config addons -a rds
{"Description":"RDS Environment variables","env":
{"RDS_DB_NAME":"ebdb","RDS_HOSTNAME":"ea13k2wimu1dh8i.c18mnpu5rwvg.us-
west-2.rds.amazonaws.com","RDS_PASSWORD":"password","RDS_PORT":"3306","RDS_USERNAME":"user"}}

To return the value of a specific key within an add-on, add the --key (-k) option to specify the
key.

$ /opt/elasticbeanstalk/bin/get-config addons -a rds -k RDS_DB_NAME
ebdb

platformconfig – Constant configuration values

The get-config platformconfig command returns an object that contains platform
configuration information that's constant to the platform version. The output is the same on all
environments that run the same platform version. The output object for the command has two
embedded objects:

Platform script tools 773

Amazon Elastic Beanstalk Developer Guide

• GeneralConfig – Contains information that's constant across the latest versions of all Amazon
Linux 2 and Amazon Linux 2023 platform branches.

• PlatformSpecificConfig – Contains information that's constant for the platform version and
is specific to it.

The following example shows the output for the command on an environment that uses the
Tomcat 8.5 running Corretto 11 platform branch.

$ /opt/elasticbeanstalk/bin/get-config platformconfig
{"GeneralConfig":{"AppUser":"webapp","AppDeployDir":"/var/app/
current/","AppStagingDir":"/var/app/
staging/","ProxyServer":"nginx","DefaultInstancePort":"80"},"PlatformSpecificConfig":
{"ApplicationPort":"8080","JavaVersion":"11","TomcatVersion":"8.5"}}

To return the value of a specific key, use the --key (-k) option to specify the key. These keys are
unique across the two embedded objects. You don't need to specify the object that contains the
key.

$ /opt/elasticbeanstalk/bin/get-config platformconfig -k AppStagingDir
/var/app/staging/

get-config output options

Use the --output option to specify the output object format. Valid values are JSON (default) and
YAML. This is a global option. You must specify it before the command name.

The following example returns configuration option values in the YAML format.

$ /opt/elasticbeanstalk/bin/get-config --output YAML optionsettings
aws:elasticbeanstalk:application:environment:
 JDBC_CONNECTION_STRING: ""
aws:elasticbeanstalk:container:tomcat:jvmoptions:
 JVM Options: ""
 Xms: 256m
 Xmx: 256m
aws:elasticbeanstalk:environment:proxy:
 ProxyServer: nginx
 StaticFiles:
 - ""
aws:elasticbeanstalk:healthreporting:system:

Platform script tools 774

Amazon Elastic Beanstalk Developer Guide

 SystemType: enhanced
aws:elasticbeanstalk:hostmanager:
 LogPublicationControl: "false"

pkg-repo

Note

The pkg-repo tool is not available for environments based on Amazon Linux 2023
platforms. However, you can manually apply package and operating system updates to
an AL2023 instance. For more information, see Managing packages and operating system
updates in the Amazon Linux 2023 User Guide

In some urgent circumstances, you might need to update your Amazon EC2 instances with an
Amazon Linux 2 security patch that hasn't yet been released with the required Elastic Beanstalk
platform versions. You can't perform a manual update on your Elastic Beanstalk environments
by default. This is because the platform versions are locked to a specific version of the Amazon
Linux 2 repository. This lock ensures that instances run supported and consistent software versions.
For urgent cases, the pkg-repo tool allows a workaround to manually update yum packages on
Amazon Linux 2 if you need to install it on an environment before it's released in a new Elastic
Beanstalk platform version.

The pkg-repo tool on Amazon Linux 2 platforms provides the capability to unlock the yum
package repositories. You can then manually perform a yum update for a security patch.
Conversely, you can follow the update by using the tool to lock the yum package repositories to
prevent further updates. The pkg-repo tool is available at the /opt/elasticbeanstalk/bin/
pkg-repo directory of all the EC2 instances in your Elastic Beanstalk environments.

Changes using the pkg-repo tool are made only on the EC2 instance that the tool is used on. They
don’t affect other instances or prevent future updates to the environment. The examples that are
provided later in this topic explain how to apply the changes across all instances by calling the
pkg-repo commands from scripts and configuration files.

Warning

We don't recommend this tool for most users. Any manual changes applied to an unlocked
platform version are considered out of band. This option is only viable for those users in
urgent circumstances that can accept the following risks:

Platform script tools 775

https://docs.amazonaws.cn/linux/al2023/ug/managing-repos-os-updates.html
https://docs.amazonaws.cn/linux/al2023/ug/managing-repos-os-updates.html

Amazon Elastic Beanstalk Developer Guide

• Package versions can't be guaranteed to be consistent across all instances in your
environments.

• Environments that are modified using the pkg-repo tool aren't guaranteed to function
properly. They haven't been tested and verified on Elastic Beanstalk supported platforms.

We strongly recommend applying best practices that include testing and backout plans.
To help facilitate best practices, you can use the Elastic Beanstalk console and EB CLI to
clone an environment and swap environment URLs. For more information about using
these operations, see Blue/Green deployments in the Managing environments chapter of
this guide.

If you plan to manually edit yum repository configuration files, run the pkg-repo tool first. The
pkg-repo tool might not work as intended in an Amazon Linux 2 environment with manually
edited yum repository configuration files. This is because the tool might not recognize the
configuration changes.

For more information about the Amazon Linux package repository, see the Package repository
topic in the Amazon EC2 User Guide.

pkg-repo commands

Use the following syntax to run the pkg-repo tool commands.

$ /opt/elasticbeanstalk/bin/pkg-repo command [options]

The pkg-repo commands are the following:

• lock – locks the yum package repositories to a specific version

• unlock – unlocks the yum package repositories from a specific version

• status – lists all the yum package repositories and their current lock status

• help – shows general help or help for one command

The options apply to the commands as follows:

• lock, unlock and status – options: -h, --help, or none (default).

Platform script tools 776

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/amazon-linux-ami-basics.html#package-repository

Amazon Elastic Beanstalk Developer Guide

• help – options: lock, unlock, status, or none (default).

The following example runs the unlock command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo unlock
Amazon Linux 2 core package repo successfully unlocked
Amazon Linux 2 extras package repo successfully unlocked

The following example runs the lock command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo lock
Amazon Linux 2 core package repo successfully locked
Amazon Linux 2 extras package repo successfully locked

The following example runs the status command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo status
Amazon Linux 2 core package repo is currently UNLOCKED
Amazon Linux 2 extras package repo is currently UNLOCKED

The following example runs the help command for the lock command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo help lock

The following example runs the help command for the pkg-repo tool.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo help

You can test pkg-repo by using SSH to connect to an instance in your Elastic Beanstalk
environment. One SSH option is the EB CLI eb ssh command.

Note

The pkg-repo tool requires root user privileges to run. If you get an access permission
error, run the command again under sudo.
You don't need to add sudo when using the tool in the scripts or configuration files that
you deploy to your environment. Elastic Beanstalk runs all your scripts as the root user.

Platform script tools 777

Amazon Elastic Beanstalk Developer Guide

pkg-repo examples

The previous section provides command line examples for testing on an individual EC2 instance
of an Elastic Beanstalk environment. This approach can be helpful for testing. However, it updates
only one instance at a time, so it isn’t practical for applying changes to all of the instances in an
environment.

A more pragmatic approach is to use platform hook scripts or an .ebextensions configuration
file to apply the changes across all instances in a consistent manner.

The following example calls pkg-repo from a configuration file in the .ebextensions folder.
Elastic Beanstalk runs the commands in the update_package.config file when you deploy your
application source bundle.

.ebextensions
update_package.config

To receive the latest version of the docker package, this configuration specifies the docker package
in the yum update command.

update_package.config

commands:
 update_package:
 command: |
 /opt/elasticbeanstalk/bin/pkg-repo unlock
 yum update docker -y
 /opt/elasticbeanstalk/bin/pkg-repo lock
 yum clean all -y
 rm -rf /var/cache/yum

This configuration doesn't specify any packages in the yum update command. All available updates
are applied as a result.

update_package.config

commands:
 update_package:
 command: |
 /opt/elasticbeanstalk/bin/pkg-repo unlock

Platform script tools 778

Amazon Elastic Beanstalk Developer Guide

 yum update -y
 /opt/elasticbeanstalk/bin/pkg-repo lock
 yum clean all -y
 rm -rf /var/cache/yum

The following example calls pkg-repo from a bash script as a platform hook. Elastic Beanstalk
runs the update_package.sh script file that's located in the prebuild subdirectory.

.platform
hooks
 ### prebuild
 ### update_package.sh

To receive the latest version of the docker package, this script specifies the docker package in the
yum update command. If the package name is omitted, all the available updates are applied. The
prior configuration file example demonstrates this.

update_package.sh

#!/bin/bash

/opt/elasticbeanstalk/bin/pkg-repo unlock
yum update docker -y
/opt/elasticbeanstalk/bin/pkg-repo lock
yum clean all -y
rm -rf /var/cache/yum

download-source-bundle (Amazon Linux AMI only)

On Amazon Linux AMI platform branches (preceding Amazon Linux 2), Elastic Beanstalk
provides an additional tool, which is download-source-bundle. Use this tool to download
your application source code when deploying your platform. The tool is available at /opt/
elasticbeanstalk/bin/download-source-bundle.

The example script 00-unzip.sh is located in the appdeploy/pre folder on environment
instances. It demonstrates how to use download-source-bundle to download the application
source code to the /opt/elasticbeanstalk/deploy/appsource folder during deployment.

Platform script tools 779

Amazon Elastic Beanstalk Developer Guide

Extending Elastic Beanstalk Linux platforms

This topic describes how to extend your Linux platforms with your own commands, scripts,
software, and configurations. You may need to extend your platform to change the default proxy
server and configuration. Or you may need to customize how the platform builds or starts up your
application.

Topics

• Buildfile and Procfile

• Platform hooks

• Configuration files

• Reverse proxy configuration

• Application example with extensions

Buildfile and Procfile

Some platforms allow you to customize how you build or prepare your application, and to specify
the processes that run your application. Each individual platform topic specifically mentions
Buildfile and/or Procfile if the platform supports them. Look for your specific platform under
Platforms.

For all supporting platforms, syntax and semantics are identical, and are as described on this
page. Individual platform topics mention specific usage of these files for building and running
applications in their respective languages.

Buildfile

To specify a custom build and configuration command for your application, place a file named
Buildfile in the root directory of your application source. The file name is case sensitive. Use the
following syntax for your Buildfile.

<process_name>: <command>

The command in your Buildfile must match the following regular expression: ^[A-Za-
z0-9_-]+:\s*[^\s].*$

Extending Linux platforms 780

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk doesn't monitor the application that is run with a Buildfile. Use a Buildfile
for commands that run for short periods and terminate after completing their tasks. For long-
running application processes that should not exit, use a Procfile.

All paths in the Buildfile are relative to the root of the source bundle. In the following example
of a Buildfile, build.sh is a shell script located at the root of the source bundle.

Example Buildfile

make: ./build.sh

If you want to provide custom build steps, we recommend that you use predeploy platform
hooks for anything but the simplest commands, instead of a Buildfile. Platform hooks allow
richer scripts and better error handling. Platform hooks are described in the next section.

Procfile

To specify custom commands to start and run your application, place a file named Procfile in
the root directory of your application source. The file name is case sensitive. Use the following
syntax for your Procfile. You can specify one or more commands.

<process_name1>: <command1>
<process_name2>: <command2>
...

Each line in your Procfile must match the following regular expression: ^[A-Za-z0-9_-]+:
\s*[^\s].*$

Use a Procfile for long-running application processes that shouldn't exit. Elastic Beanstalk
expects processes run from the Procfile to run continuously. Elastic Beanstalk monitors these
processes and restarts any process that terminates. For short-running processes, use a Buildfile.

All paths in the Procfile are relative to the root of the source bundle. The following example
Procfile defines three processes. The first one, called web in the example, is the main web
application.

Example Procfile

web: bin/myserver
cache: bin/mycache

Buildfile and Procfile 781

Amazon Elastic Beanstalk Developer Guide

foo: bin/fooapp

Elastic Beanstalk configures the proxy server to forward requests to your main web application on
port 5000, and you can configure this port number. A common use for a Procfile is to pass this
port number to your application as a command argument. For details about proxy configuration,
see Reverse proxy configuration.

Elastic Beanstalk captures standard output and error streams from Procfile processes in log
files. Elastic Beanstalk names the log files after the process and stores them in /var/log. For
example, the web process in the preceding example generates logs named web-1.log and
web-1.error.log for stdout and stderr, respectively.

Platform hooks

Platform hooks are specifically designed to extend your environment's platform. These are custom
scripts and other executable files that you deploy as part of your application's source code, and
Elastic Beanstalk runs during various instance provisioning stages.

Note

Platform hooks aren't supported on Amazon Linux AMI platform versions (preceding
Amazon Linux 2).

Application deployment platform hooks

An application deployment occurs when you provide a new source bundle for deployment, or when
you make a configuration change that requires termination and recreation of all environment
instances.

To provide platform hooks that run during an application deployment, place the files under the
.platform/hooks directory in your source bundle, in one of the following subdirectories.

• prebuild – Files here run after the Elastic Beanstalk platform engine downloads and extracts
the application source bundle, and before it sets up and configures the application and web
server.

The prebuild files run after running commands found in the commands section of any
configuration file and before running Buildfile commands.

Platform hooks 782

Amazon Elastic Beanstalk Developer Guide

• predeploy – Files here run after the Elastic Beanstalk platform engine sets up and configures
the application and web server, and before it deploys them to their final runtime location.

The predeploy files run after running commands found in the container_commands section of
any configuration file and before running Procfile commands.

• postdeploy – Files here run after the Elastic Beanstalk platform engine deploys the application
and proxy server.

This is the last deployment workflow step.

Configuration deployment platform hooks

A configuration deployment occurs when you make configuration changes that only update
environment instances without recreating them. The following option updates cause a
configuration update.

• Environment properties and platform-specific settings

• Static files

• Amazon X-Ray daemon

• Log storage and streaming

• Application port (for details see Reverse proxy configuration)

To provide hooks that run during a configuration deployment, place them under the .platform/
confighooks directory in your source bundle. The same three subdirectories as for application
deployment hooks apply.

More about platform hooks

Hook files can be binary files, or script files starting with a #! line containing their interpreter
path, such as #!/bin/bash. All files must have execute permission. Use chmod +x to set execute
permission on your hook files. For all Amazon Linux 2023 and Amazon Linux 2 based platforms
versions that were released on or after April 29, 2022, Elastic Beanstalk automatically grants
execute permissions to all of the platform hook scripts. In this case you don't have to manually
grant execute permissions. For a list of these platform versions, refer to the April 29, 2022 Linux
release notes in the Amazon Elastic Beanstalk Release Notes Guide.

Platform hooks 783

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-04-29-linux.html#release-2022-04-29-linux.platforms

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk runs files in each one of these directories in lexicographical order of file names.
All files run as the root user. The current working directory (cwd) for platform hooks is the
application's root directory. For prebuild and predeploy files it's the application staging
directory, and for postdeploy files it's the current application directory. If one of the files fails
(exits with a non-zero exit code), the deployment aborts and fails.

A platform hooks text script may fail if it contains Windows Carriage Return / Line Feed (CRLF)
line break characters. If a file was saved in a Windows host, then transferred to a Linux server, it
may contain Windows CRLF line breaks. For platforms released on or after December 29, 2022,
Elastic Beanstalk automatically converts Windows CRLF characters to Linux Line Feed (LF) line break
characters in platform hooks text files. If you application runs on any Amazon Linux 2 platforms
that were release prior to this date, you'll need to convert the Windows CRLF characters to Linux
LF characters. One way to accomplish this is to create and save the script file on a Linux host. Tools
that convert these characters are also available on the internet.

Hook files have access to all environment properties that you've defined in application options, and
to the system environment variables HOME, PATH, and PORT.

To get values of environment variables and other configuration options into your platform hook
scripts, you can use the get-config utility that Elastic Beanstalk provides on environment
instances. For details, see the section called “Platform script tools”.

Configuration files

You can add configuration files to the .ebextensions directory of your application's source
code to configure various aspects of your Elastic Beanstalk environment. Among other things,
configuration files let you customize software and other files on your environment's instances and
run initialization commands on the instances. For more information, see the section called “Linux
server”.

You can also set configuration options using configuration files. Many of the options control
platform behavior, and some of these options are platform specific.

For platforms based on Amazon Linux 2 and Amazon Linux 2023, we recommend using Buildfile,
Procfile, and platform hooks to configure and run custom code on your environment instances
during instance provisioning. These mechanisms are described in the previous sections on this
page. You can still use commands and container commands in .ebextensions configuration files,
but they aren't as easy to work with. For example, writing command scripts inside a YAML file can

Configuration files 784

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-12-29-linux.html

Amazon Elastic Beanstalk Developer Guide

be challenging from a syntax standpoint. You still need to use .ebextensions configuration files
for any script that needs a reference to a Amazon CloudFormation resource.

Reverse proxy configuration

All Amazon Linux 2 and Amazon Linux 2023 platform versions use nginx as their default reverse
proxy server. The Tomcat, Node.js, PHP, and Python platform also support Apache HTTPD
as an alternative. To select Apache on these platforms, set the ProxyServer option in the
aws:elasticbeanstalk:environment:proxy namespace to apache. All platforms enable
proxy server configuration in a uniform way, as described in this section.

Note

On Amazon Linux AMI platform versions (preceding Amazon Linux 2) you might have to
configure proxy servers differently. You can find these legacy details under the respective
platform topics in this guide.

Elastic Beanstalk configures the proxy server on your environment's instances to forward web
traffic to the main web application on the root URL of the environment; for example, http://my-
env.elasticbeanstalk.com.

By default, Elastic Beanstalk configures the proxy to forward requests coming in on port 80 to
your main web application on port 5000. You can configure this port number by setting the PORT
environment property using the aws:elasticbeanstalk:application:environment namespace in a
configuration file, as shown in the following example.

option_settings:
 - namespace: aws:elasticbeanstalk:application:environment
 option_name: PORT
 value: <main_port_number>

For more information about setting environment variables for your application, see the section
called “Option settings”.

Your application should listen on the port that is configured for it in the proxy. If you change
the default port using the PORT environment property, your code can access it by reading
the value of the PORT environment variable. For example, call os.Getenv("PORT") in Go,

Reverse proxy configuration 785

Amazon Elastic Beanstalk Developer Guide

or System.getenv("PORT") in Java. If you configure your proxy to send traffic to multiple
application processes, you can configure several environment properties, and use their values in
both proxy configuration and your application code. Another option is to pass the port value to the
process as a command argument in the Procfile. For more information see Buildfile and Procfile.

Configuring nginx

Elastic Beanstalk uses nginx as the default reverse proxy to map your application to your Elastic
Load Balancing load balancer. Elastic Beanstalk provides a default nginx configuration that you can
extend or override completely with your own configuration.

Note

When you add or edit an nginx .conf configuration file, be sure to encode it as UTF-8.

To extend the Elastic Beanstalk default nginx configuration, add .conf configuration files to
a folder named .platform/nginx/conf.d/ in your application source bundle. The Elastic
Beanstalk nginx configuration includes .conf files in this folder automatically.

~/workspace/my-app/
|-- .platform
| `-- nginx
| `-- conf.d
| `-- myconf.conf
`-- other source files

To override the Elastic Beanstalk default nginx configuration completely, include a configuration in
your source bundle at .platform/nginx/nginx.conf:

~/workspace/my-app/
|-- .platform
| `-- nginx
| `-- nginx.conf
`-- other source files

If you override the Elastic Beanstalk nginx configuration, add the following line to your
nginx.conf to pull in the Elastic Beanstalk configurations for Enhanced health reporting and
monitoring in Elastic Beanstalk, automatic application mappings, and static files.

Reverse proxy configuration 786

Amazon Elastic Beanstalk Developer Guide

 include conf.d/elasticbeanstalk/*.conf;

Configuring Apache HTTPD

The Tomcat, Node.js, PHP, and Python platforms allow you to choose the Apache HTTPD proxy
server as an alternative to nginx. This isn't the default. The following example configures Elastic
Beanstalk to use Apache HTTPD.

Example .ebextensions/httpd-proxy.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache

You can extend the Elastic Beanstalk default Apache configuration with your additional
configuration files. Alternatively, you can override the Elastic Beanstalk default Apache
configuration completely.

To extend the Elastic Beanstalk default Apache configuration, add .conf configuration files to a
folder named .platform/httpd/conf.d in your application source bundle. The Elastic Beanstalk
Apache configuration includes .conf files in this folder automatically.

~/workspace/my-app/
|-- .ebextensions
| -- httpd-proxy.config
|-- .platform
| -- httpd
| -- conf.d
| -- port5000.conf
| -- ssl.conf
-- index.jsp

For example, the following Apache 2.4 configuration adds a listener on port 5000.

Example .platform/httpd/conf.d/port5000.conf

listen 5000
<VirtualHost *:5000>
 <Proxy *>
 Require all granted

Reverse proxy configuration 787

Amazon Elastic Beanstalk Developer Guide

 </Proxy>
 ProxyPass / http://localhost:8080/ retry=0
 ProxyPassReverse / http://localhost:8080/
 ProxyPreserveHost on

 ErrorLog /var/log/httpd/elasticbeanstalk-error_log
</VirtualHost>

To override the Elastic Beanstalk default Apache configuration completely, include a configuration
in your source bundle at .platform/httpd/conf/httpd.conf.

~/workspace/my-app/
|-- .ebextensions
| -- httpd-proxy.config
|-- .platform
| `-- httpd
| `-- conf
| `-- httpd.conf
`-- index.jsp

Note

If you override the Elastic Beanstalk Apache configuration, add the following lines to your
httpd.conf to pull in the Elastic Beanstalk configurations for Enhanced health reporting
and monitoring in Elastic Beanstalk, automatic application mappings, and static files.

IncludeOptional conf.d/elasticbeanstalk/*.conf

Application example with extensions

The following example demonstrates an application source bundle with several extensibility
features that Elastic Beanstalk Amazon Linux 2 and Amazon Linux 2023 platforms support: a
Procfile, .ebextensions configuration files, custom hooks, and proxy configuration files.

~/my-app/
|-- web.jar
|-- Procfile
|-- readme.md
|-- .ebextensions/

Application example with extensions 788

Amazon Elastic Beanstalk Developer Guide

| |-- options.config # Option settings
| `-- cloudwatch.config # Other .ebextensions sections, for example files and
 container commands
`-- .platform/
 |-- nginx/ # Proxy configuration
 | |-- nginx.conf
 | `-- conf.d/
 | `-- custom.conf
 |-- hooks/ # Application deployment hooks
 | |-- prebuild/
 | | |-- 01_set_secrets.sh
 | | `-- 12_update_permissions.sh
 | |-- predeploy/
 | | `-- 01_some_service_stop.sh
 | `-- postdeploy/
 | |-- 01_set_tmp_file_permissions.sh
 | |-- 50_run_something_after_app_deployment.sh
 | `-- 99_some_service_start.sh
 `-- confighooks/ # Configuration deployment hooks
 |-- prebuild/
 | `-- 01_set_secrets.sh
 |-- predeploy/
 | `-- 01_some_service_stop.sh
 `-- postdeploy/
 |-- 01_run_something_after_config_deployment.sh
 `-- 99_some_service_start.sh

Note

Some of these extensions aren't supported on Amazon Linux AMI platform versions
(preceding Amazon Linux 2).

Application example with extensions 789

Amazon Elastic Beanstalk Developer Guide

Deploying .NET Windows applications with Elastic
Beanstalk

Check out the .NET on Amazon Developer Center

Have you stopped by our .Net Developer Center? It's our one stop shop for all things .NET on
Amazon.
For more information see the .NET on Amazon Developer Center.

This chapter provides instructions for configuring and deploying your ASP.NET and .NET Core
Windows web applications to Amazon Elastic Beanstalk. Elastic Beanstalk makes it easy to deploy,
manage, and scale your .NET (Windows) web applications using Amazon Web Services.

You can deploy your application in just a few minutes using the Elastic Beanstalk Command Line
Interface (EB CLI) or by using the Elastic Beanstalk console. After you deploy your Elastic Beanstalk
application, you can continue to use the EB CLI to manage your application and environment, or
you can use the Elastic Beanstalk console, Amazon CLI, or the APIs.

This chapter provides the following tutorials:

• QuickStart for .NET Core on Windows — Step-by-step instructions to create and deploy a Hello
World .NET Core Windows application using the EB CLI.

• QuickStart for ASP.NET — Step-by-step instructions to create and deploy a Hello World ASP.NET
application using the Amazon Toolkit for Visual Studio.

If you need help with Windows .NET Core application development, there are several places you
can go:

• .NET Development Forum — Post your questions and get feedback.

• .NET Developer Center — One-stop shop for sample code, documentation, tools, and additional
resources.

• Amazon SDK for .NET Documentation — Read about setting up the SDK and running code
samples, features of the SDK, and detailed information about the API operations for the SDK.

790

https://www.amazonaws.cn/developer/language/net
https://forums.aws.csdn.net/forum.jspa?forumID=61
http://www.amazonaws.cn/net/
http://www.amazonaws.cn/documentation/sdk-for-net/

Amazon Elastic Beanstalk Developer Guide

Note

This platform does not support worker environments. For details, see Elastic Beanstalk
worker environments.

Topics

• QuickStart: Deploy a .NET Core on Windows application to Elastic Beanstalk

• QuickStart: Deploy an ASP.NET application to Elastic Beanstalk

• Setting up your .NET development environment

• Using the Elastic Beanstalk .NET Windows platform

• Adding an Amazon RDS DB instance to your .NET application environment

• The Amazon Toolkit for Visual Studio

• Migrating your on-premises .NET application to Elastic Beanstalk

• Recommendations for Windows Server retired components on Elastic Beanstalk

QuickStart: Deploy a .NET Core on Windows application to
Elastic Beanstalk

This QuickStart tutorial walks you through the process of creating a .NET Core on Windows
application and deploying it to an Amazon Elastic Beanstalk environment.

Note

Tutorial examples are intended for demonstration. Do not use the application for
production traffic.

Sections

• Your Amazon account

• Prerequisites

• Step 1: Create a .NET Core on Windows application

• Step 2: Run your application locally

QuickStart for .NET Core on Windows 791

Amazon Elastic Beanstalk Developer Guide

• Step 3: Deploy your .NET Core on Windows application with the EB CLI

• Step 4: Run your application on Elastic Beanstalk

• Step 5: Clean up

• Amazon resources for your application

• Next steps

• Deploy with the Elastic Beanstalk console

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account. Signing up
enables you to access Elastic Beanstalk and other Amazon services that you need.

If you already have an Amazon account, you can move on to Prerequisites.

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

Your Amazon account 792

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon Elastic Beanstalk Developer Guide

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol (>) and the name of the
current directory, when appropriate.

C:\eb-project> this is a command
this is output

EB CLI

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install EB CLI with setup script (recommended) and Configure the
EB CLI.

.NET Core on Windows

If you don't have the .NET SDK installed on your local machine, you can install it by following the
Download .NET link on the .NET documentation website.

Verify your .NET SDK installation by running the following command.

C:\> dotnet --info

Step 1: Create a .NET Core on Windows application

Create a project directory.

C:\> mkdir eb-dotnetcore
C:\> cd eb-dotnetcore

Prerequisites 793

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://dotnet.microsoft.com/en-us/download
https://learn.microsoft.com/en-us/dotnet/

Amazon Elastic Beanstalk Developer Guide

Next, create a sample Hello World RESTful web service application by running the following
commands.

C:\eb-dotnetcore> dotnet new web --name HelloElasticBeanstalk
C:\eb-dotnetcore> cd HelloElasticBeanstalk

Step 2: Run your application locally

Run the following command to run your application locally.

C:\eb-dotnetcore\HelloElasticBeasntalk> dotnet run

The output should look something like the following text.

info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:7222
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5228
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: C:\Users\Administrator\eb-dotnetcore\HelloElasticBeanstalk

Note

The dotnet command selects a port at random when running the application locally. In
this example the port is 5228. When you deploy the application to your Elastic Beanstalk
environment, the application will run on port 5000.

Enter the URL address http://localhost:port in your web browser. For this specific example,
the command is http://localhost:5228. The web browser should display “Hello World!”.

Step 3: Deploy your .NET Core on Windows application with the EB CLI

Run the following commands to create an Elastic Beanstalk environment for this application.

Step 2: Run your application locally 794

Amazon Elastic Beanstalk Developer Guide

To create an environment and deploy your .NET Core on Windows application

1. Run the following commands in the HelloElasticBeanstalk directory to publish and zip
your application.

C:\eb-dotnetcore\HelloElasticBeasntalk> dotnet publish -o site
C:\eb-dotnetcore\HelloElasticBeasntalk> cd site
C:\eb-dotnetcore\HelloElasticBeasntalk\site> Compress-Archive -Path * -
DestinationPath ../site.zip
C:\eb-dotnetcore\HelloElasticBeasntalk\site> cd ..

2. Create a new file in the HelloElasticBeanstalk called aws-windows-deployment-
manifest.json with the following contents:

{
 "manifestVersion": 1,
 "deployments": {
 "aspNetCoreWeb": [
 {
 "name": "test-dotnet-core",
 "parameters": {
 "appBundle": "site.zip",
 "iisPath": "/",
 "iisWebSite": "Default Web Site"
 }
 }
]
 }
}

3. Initialize your EB CLI repository with the eb init command.

C:\eb-dotnetcore\HelloElasticBeasntalk> eb init -p iis dotnet-windows-server-
tutorial --region us-west-2

This command creates an application named dotnet-windows-server-tutorial and
configures your local repository to create environments with the latest Windows server
platform version.

4. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a zip file for your application and starts it on port 5000.

Step 3: Deploy your .NET Core on Windows application with the EB CLI 795

Amazon Elastic Beanstalk Developer Guide

C:\eb-dotnetcore\HelloElasticBeasntalk> eb create dotnet-windows-server-env

It takes about five minutes for Elastic Beanstalk to create your environment.

Step 4: Run your application on Elastic Beanstalk

When the process to create your environment completes, open your website with eb open.

C:\eb-dotnetcore\HelloElasticBeasntalk> eb open

Congratulations! You've deployed a .NET Core on Windows application with Elastic Beanstalk! This
opens a browser window using the domain name created for your application.

Step 5: Clean up

You can terminate your environment when you finish working with your application. Elastic
Beanstalk terminates all Amazon resources associated with your environment.

To terminate your Elastic Beanstalk environment with the EB CLI run the following command.

C:\eb-dotnetcore\HelloElasticBeasntalk> eb terminate

Amazon resources for your application

You just created a single instance application. It serves as a straightforward sample application
with a single EC2 instance, so it doesn't require load balancing or auto scaling. For single instance
applications Elastic Beanstalk creates the following Amazon resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

Step 4: Run your application on Elastic Beanstalk 796

Amazon Elastic Beanstalk Developer Guide

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.eb.amazonaws.com.cn.

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances. You can also explore your new
environment using the Elastic Beanstalk console. For detailed steps, see Explore your environment
in the Getting started chapter of this guide.

Try more tutorials

If you'd like to try other tutorials with different example applications, see QuickStart for
ASP.NET.

After you deploy a sample application or two and are ready to start developing and running .NET
Core on Windows applications locally, see Setting up your .NET development environment

Deploy with the Elastic Beanstalk console

You can also use the Elastic Beanstalk console to launch the sample application. For detailed steps,
see Create an example application in the Getting started chapter of this guide.

Next steps 797

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

QuickStart: Deploy an ASP.NET application to Elastic Beanstalk

This QuickStart tutorial walks you through the process of creating a ASP.NET application and
deploying it to an Amazon Elastic Beanstalk environment.

Note

Tutorial examples are intended for demonstration. Do not use the application for
production traffic.

Sections

• Your Amazon account

• Prerequisites

• Step 1: Create a ASP.NET application

• Step 2: Run your application locally

• Step 3: Deploy your ASP.NET application with the Amazon Toolkit for Visual Studio

• Step 4: Run your application on Elastic Beanstalk

• Step 5: Clean up

• Amazon resources for your application

• Next steps

• Deploy with the Elastic Beanstalk console

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account. Signing up
enables you to access Elastic Beanstalk and other Amazon services that you need.

If you already have an Amazon account, you can move on to Prerequisites.

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

QuickStart for ASP.NET 798

Amazon Elastic Beanstalk Developer Guide

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

This QuickStart tutorial walks you through creating a "Hello World" application and deploying it to
an Elastic Beanstalk environment with Visual Studio and the Amazon Toolkit for Visual Studio.

Visual Studio

To download and install Visual Studio follow the instructions on the Visual Studio download page.
This example uses Visual Studio 2022. During the Visual Studio installation select these specific
items:

• On the Workloads tab — select ASP.NET and web development.

Prerequisites 799

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://visualstudio.microsoft.com/downloads/

Amazon Elastic Beanstalk Developer Guide

• On the Individual components tab — select .NET Framework 4.8 development tools and .NET
Framework project and item templates.

Amazon Toolkit for Visual Studio

To download and set up Amazon Toolkit for Visual Studio follow the instructions in the Getting
started topic of the Amazon Toolkit for Visual Studio User Guide.

Step 1: Create a ASP.NET application

Next, create an application that you'll deploy to an Elastic Beanstalk environment. We'll create a
"Hello World" ASP.NET web application.

To create an ASP.NET application

1. Launch Visual Studio. In the File menu, select New, then Project.

2. The Create a new project dialog box displays. Select ASP.NET web application (.NET
Framework), then select Next.

3. On the Configure your new project dialog, enter eb-aspnet for your Project name. From the
Framework dropdown menu select .NET Framework 4.8, then select Create.

Note the project directory. In this example, the project directory is C:\Users
\Administrator\source\repos\eb-aspnet\eb-aspnet.

4. The Create a new ASP.NET Web Application dialogue displays. Select the Empty template.
Next select Create.

At this point, you have created an empty ASP.NET web application project using Visual
Studio. Next, we'll create a web form that will serve as the entry point for the ASP.NET web
application.

5. From the Project menu, select Add New Item. On the Add New Item page, select Web Form
and name it Default.aspx. Next select Add.

6. Add the following to Default.aspx:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
 Inherits="eb_aspnet.Default" %>

<!DOCTYPE html>

Step 1: Create a ASP.NET application 800

https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/getting-set-up.html
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/getting-set-up.html

Amazon Elastic Beanstalk Developer Guide

<html xmlns="https://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Hello Elastic Beanstalk!</title>
</head>
<body>
 <form id="body" runat="server">
 <div>
 Hello Elastic Beanstalk! This is an ASP.NET on Windows Server
 application.
 </div>
 </form>
</body>
</html>

Step 2: Run your application locally

In Visual Studio, from the Debug menu select Start Debugging to run your application locally. The
page should display "Hello Elastic Beanstalk! This is an ASP.NET on Windows Server application."

Step 3: Deploy your ASP.NET application with the Amazon Toolkit for
Visual Studio

Follow these steps to create an Elastic Beanstalk environment and deploy your new application to
it.

To create an environment and deploy your ASP.NET application

1. In Solution Explorer, right-click your application, then select Publish to Amazon Elastic
Beanstalk.

2. Choose a name for your new Elastic Beanstalk application and environment.

3. Beyond this point, you may proceed with the defaults provided by Elastic Beanstalk or modify
any of the options and settings to your liking.

4. On the Review page, select Deploy. This will package your ASP.NET web application and
deploy it to Elastic Beanstalk.

It takes about five minutes for Elastic Beanstalk to create your environment. The Elastic
Beanstalk deployment feature will monitor your environment until it becomes available with
the newly deployed code. On the Env:<environment name> tab, you'll see the status for
your environment.

Step 2: Run your application locally 801

Amazon Elastic Beanstalk Developer Guide

Step 4: Run your application on Elastic Beanstalk

When the process to create your environment completes, the Env:<environment name> tab,
displays information about your environment and application, including the domain URL to launch
your application. Select this URL on this tab or copy and paste it into your web browser.

Congratulations! You've deployed a ASP.NET application with Elastic Beanstalk!

Step 5: Clean up

When you finish working with your application, you can terminate your environment in the Amazon
Toolkit for Visual Studio.

To terminate your environment

1. Expand the Elastic Beanstalk node and the application node in Amazon Explorer. Right-click
your application environment and select Terminate Environment.

2. When prompted, select Yes to confirm that you want to terminate the environment. It will
take a few minutes for Elastic Beanstalk to terminate the Amazon resources running in the
environment.

Amazon resources for your application

You just created a single instance application. It serves as a straightforward sample application
with a single EC2 instance, so it doesn't require load balancing or auto scaling. For single instance
applications Elastic Beanstalk creates the following Amazon resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

Step 4: Run your application on Elastic Beanstalk 802

Amazon Elastic Beanstalk Developer Guide

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.eb.amazonaws.com.cn.

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances. You can also explore your new
environment using the Elastic Beanstalk console. For detailed steps, see Explore your environment
in the Getting started chapter of this guide.

Try more tutorials

If you'd like to try other tutorials with different example applications, see QuickStart
for .NET Core on Windows.

After you deploy a sample application or two and are ready to start developing and running
ASP.NET applications locally, see Setting up your .NET development environment

Deploy with the Elastic Beanstalk console

You can also use the Elastic Beanstalk console to launch the sample application. For detailed steps,
see Create an example application in the Getting started chapter of this guide.

Next steps 803

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

Setting up your .NET development environment

This topic provides instructions to set up a .NET Windows development environment to test your
application locally prior to deploying it to Amazon Elastic Beanstalk. It also references websites
that provide installation instructions for useful tools.

Sections

• Installing an IDE

• Installing the Amazon Toolkit for Visual Studio

If you need to manage Amazon resources from within your application, install the Amazon SDK
for .NET. For example, you can use Amazon S3 to store and retrieve data.

With the Amazon SDK for .NET, you can get started in minutes with a single, downloadable
package complete with Visual Studio project templates, the Amazon .NET library, C# code samples,
and documentation. Practical examples are provided in C# for how to use the libraries to build
applications. Online video tutorials and reference documentation are provided to help you learn
how to use the libraries and code samples.

Visit the Amazon SDK for .NET homepage for more information and installation instructions.

Installing an IDE

Integrated development environments (IDEs) provide a wide range of features that facilitate
application development. If you haven't used an IDE for .NET development, try Visual Studio
Community to get started.

Visit the Visual Studio Community page to download and install Visual Studio Community.

Installing the Amazon Toolkit for Visual Studio

The Amazon Toolkit for Visual Studio is an open source plug-in for the Visual Studio IDE that
makes it easier for developers to develop, debug, and deploy .NET applications using Amazon. Visit
the Toolkit for Visual Studio homepage for installation instructions.

Using the Elastic Beanstalk .NET Windows platform

This topic describes how to configure, build, and run your ASP.NET and .NET Core Windows web
applications on Elastic Beanstalk.

Development environment 804

http://www.amazonaws.cn/sdk-for-net/
https://www.visualstudio.com/vs/community/
http://www.amazonaws.cn/visualstudio/

Amazon Elastic Beanstalk Developer Guide

Amazon Elastic Beanstalk supports a number of platforms for different versions of the .NET
programming framework and Windows Server. See .NET on Windows Server with IIS in the Amazon
Elastic Beanstalk Platforms document for a full list.

Elastic Beanstalk provides configuration options that you can use to customize the software that
runs on the EC2 instances in your Elastic Beanstalk environment. You can configure environment
variables needed by your application, enable log rotation to Amazon S3, and set .NET framework
settings.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

Configuring your .NET environment in the Elastic Beanstalk console

You can use the Elastic Beanstalk console to enable log rotation to Amazon S3, configure variables
that your application can read from the environment, and change .NET framework settings.

To configure your .NET environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Configuring your .NET environment in the Elastic Beanstalk console 805

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Container options

• Target .NET runtime – Set to 2.0 to run CLR v2.

• Enable 32-bit applications – Set to True to run 32-bit applications.

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. These settings are passed in as key-value
pairs to the application. Use System.GetEnvironmentVariable to read them. Identical keys
can exist in both web.config and as environment properties. Use the System.Configuration
namespace to read values from web.config.

NameValueCollection appConfig = ConfigurationManager.AppSettings;
string endpoint = appConfig["API_ENDPOINT"];

See Environment variables and other software settings for more information.

The aws:elasticbeanstalk:container:dotnet:apppool namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

The .NET platform defines options in the
aws:elasticbeanstalk:container:dotnet:apppool namespace that you can use to
configure the .NET runtime.

The aws:elasticbeanstalk:container:dotnet:apppool namespace 806

Amazon Elastic Beanstalk Developer Guide

The following example configuration file shows settings for each of the options available in this
namespace:

Example .ebextensions/dotnet-settings.config

option_settings:
 aws:elasticbeanstalk:container:dotnet:apppool:
 Target Runtime: 2.0
 Enable 32-bit Applications: True

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

Migrating across major versions of the Elastic Beanstalk Windows
server platform

Amazon Elastic Beanstalk has had several major versions of its Windows Server platform. This page
covers the main improvements for each major version, and what to consider before you migrate to
a later version.

The Windows Server platform is currently at version 2 (v2). If your application uses any Windows
Server platform version earlier than v2, we recommend that you migrate to v2.

What's new in major versions of the Windows server platform

Windows server platform V2

Version 2 (v2) of the Elastic Beanstalk Windows Server platform was released in February 2019.
V2 brings the behavior of the Windows Server platform closer to that of the Elastic Beanstalk
Linux-based platforms in several important ways. V2 is fully backward compatible with v1, making
migration from v1 easy.

The Windows Server platform now supports the following:

• Versioning – Each release gets a new version number, and you can refer to past versions (that are
still available to you) when creating and managing environments.

• Enhanced health – For details, see Enhanced health reporting and monitoring in Elastic
Beanstalk.

Major version migration 807

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2019-02-21-windows-v2.html

Amazon Elastic Beanstalk Developer Guide

• Immutable and Rolling with an Additional Batch deployments – For details about deployment
policies, see Deploying applications to Elastic Beanstalk environments.

• Immutable updates – For details about update types, see Configuration changes.

• Managed platform updates – For details, see Managed platform updates.

Note

The new deployment and update features depend on enhanced health. Enable enhanced
health to use them. For details, see Enabling Elastic Beanstalk enhanced health reporting.

Windows server platform V1

Version 1.0.0 (v1) of the Elastic Beanstalk Windows Server platform was released in October 2015.
This version changes the order in which Elastic Beanstalk processes commands in configuration
files during environment creation and updates.

Previous platform versions don't have a version number in the solution stack name:

• 64bit Windows Server 2012 R2 running IIS 8.5

• 64bit Windows Server Core 2012 R2 running IIS 8.5

• 64bit Windows Server 2012 running IIS 8

• 64bit Windows Server 2008 R2 running IIS 7.5

In earlier versions, the processing order for configuration files is inconsistent. During environment
creation, Container Commands run after the application source is deployed to IIS. During
a deployment to a running environment, container commands run before the new version is
deployed. During a scale up, configuration files are not processed at all.

In addition to this, IIS starts up before container commands run. This behavior has led some
customers to implement workarounds in container commands, pausing the IIS server before
commands run, and starting it again after they complete.

Version 1 fixes the inconsistency and brings the behavior of the Windows Server platform closer
to that of the Elastic Beanstalk Linux-based platforms. In the v1 platform, Elastic Beanstalk always
runs container commands before starting the IIS server.

Major version migration 808

Amazon Elastic Beanstalk Developer Guide

The v1 platform solution stacks have a v1 after the Windows Server version:

• 64bit Windows Server 2012 R2 v1.1.0 running IIS 8.5

• 64bit Windows Server Core 2012 R2 v1.1.0 running IIS 8.5

• 64bit Windows Server 2012 v1.1.0 running IIS 8

• 64bit Windows Server 2008 R2 v1.1.0 running IIS 7.5

Additionally, the v1 platform extracts the contents of your application source bundle to C:
\staging\ before running container commands. After container commands complete, the
contents of this folder are compressed into a .zip file and deployed to IIS. This workflow allows
you to modify the contents of your application source bundle with commands or a script before
deployment.

Migrating from earlier major versions of the Windows server platform

Read this section for migration considerations before you update your environment. To update
your environment's platform to a newer version, see Updating your Elastic Beanstalk environment's
platform version.

From V1 to V2

The Windows Server platform v2 doesn't support .NET Core 1.x and 2.0. If you're migrating your
application from Windows Server v1 to v2, and your application uses one of these .NET Core
versions, update your application to a .NET Core version that v2 supports. For a list of supported
versions, see .NET on Windows Server with IIS in the Amazon Elastic Beanstalk Platforms.

If your application uses a custom Amazon Machine Image (AMI), create a new custom AMI based
on a Windows Server platform v2 AMI. To learn more, see Using a custom Amazon machine image
(AMI) in your Elastic Beanstalk environment.

Note

The deployment and update features that are new to Windows Server v2 depend on
enhanced health. When you migrate an environment to v2, enhanced health is disabled.
Enable it to use these features. For details, see Enabling Elastic Beanstalk enhanced health
reporting.

Major version migration 809

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

Amazon Elastic Beanstalk Developer Guide

From pre-V1

In addition to considerations for migrating from v1, if you're migrating your application from a
Windows Server solution stack that's earlier than v1, and you currently use container commands,
remove any commands that you added to work around the processing inconsistencies when
you migrate to a newer version. Starting with v1, container commands are guaranteed to run
completely before the application source that is deployed and before IIS starts. This enables you to
make any changes to the source in C:\staging and modify IIS configuration files during this step
without issue.

For example, you can use the Amazon CLI to download a DLL file to your application source from
Amazon S3:

.ebextensions\copy-dll.config

container_commands:
 copy-dll:
 command: aws s3 cp s3://amzn-s3-demo-bucket/dlls/large-dll.dll .\lib\

For more information on using configuration files, see Advanced environment customization with
configuration files (.ebextensions).

Running multiple applications and ASP.NET core applications with a
deployment manifest

You can use a deployment manifest to tell Elastic Beanstalk how to deploy your application. By
using this method, you don't need to use MSDeploy to generate a source bundle for a single
ASP.NET application that runs at the root path of your website. Rather, you can use a manifest file
to run multiple applications at different paths. Or, alternatively, you can tell Elastic Beanstalk to
deploy and run the app with ASP.NET Core. You can also use a deployment manifest to configure
an application pool where to run your applications.

Deployment manifests add support for .NET Core applications to Elastic Beanstalk. You can deploy
a .NET Framework application without a deployment manifest. However, .NET Core applications
require a deployment manifest to run on Elastic Beanstalk. When you use a deployment manifest,
you create a site archive for each application, and then bundle the site archives in a second ZIP
archive that contains the deployment manifest.

Deployment manifests also add the ability to run multiple applications at different paths. A
deployment manifest defines an array of deployment targets, each with a site archive and a

Deployment manifest 810

Amazon Elastic Beanstalk Developer Guide

path at which IIS should run it. For example, you could run a web API at the /api path to serve
asynchronous requests, and a web app at the root path that consumes the API.

You can also use a deployment manifest to run multiple applications using application pools in IIS
or Kestrel. You can configure an application pool to restart your applications periodically, run 32-bit
applications, or use a specific version of the .NET Framework runtime.

For full customization, you can write your own deployment scripts in Windows PowerShell and tell
Elastic Beanstalk which scripts to run to install, uninstall, and restart your application.

Deployment manifests and related features require a Windows Server platform version 1.2.0 or
newer.

For detailed information about all available configuration options, properties, and advanced
features like skipping IIS resets, see the deployment manifest schema reference.

Sections

• .NET core apps

• Run multiple applications

• Configure application pools

• Define custom deployments

• Deployment manifest schema reference

.NET core apps

You can use a deployment manifest to run .NET Core applications on Elastic Beanstalk. .NET Core is
a cross-platform version of .NET that comes with a command line tool (dotnet). You can use it to
generate an application, run it locally, and prepare it for publishing.

To run a .NET Core application on Elastic Beanstalk, you can run dotnet publish and package
the output in a ZIP archive, not including any containing directories. Place the site archive in a
source bundle with a deployment manifest with a deployment target of type aspNetCoreWeb.

The following deployment manifest runs a .NET Core application from a site archive named
dotnet-core-app.zip at the root path.

Example aws-windows-deployment-manifest.json - .NET core

{

Deployment manifest 811

Amazon Elastic Beanstalk Developer Guide

 "manifestVersion": 1,
 "deployments": {
 "aspNetCoreWeb": [
 {
 "name": "my-dotnet-core-app",
 "parameters": {
 "archive": "dotnet-core-app.zip",
 "iisPath": "/"
 }
 }
]
 }
}

Bundle the manifest and site archive in a ZIP archive to create a source bundle.

Example dotnet-core-bundle.zip

.
|-- aws-windows-deployment-manifest.json
`-- dotnet-core-app.zip

The site archive contains the compiled application code, dependencies, and web.config file.

Example dotnet-core-app.zip

.
|-- Microsoft.AspNetCore.Hosting.Abstractions.dll
|-- Microsoft.AspNetCore.Hosting.Server.Abstractions.dll
|-- Microsoft.AspNetCore.Hosting.dll
|-- Microsoft.AspNetCore.Http.Abstractions.dll
|-- Microsoft.AspNetCore.Http.Extensions.dll
|-- Microsoft.AspNetCore.Http.Features.dll
|-- Microsoft.AspNetCore.Http.dll
|-- Microsoft.AspNetCore.HttpOverrides.dll
|-- Microsoft.AspNetCore.Server.IISIntegration.dll
|-- Microsoft.AspNetCore.Server.Kestrel.dll
|-- Microsoft.AspNetCore.WebUtilities.dll
|-- Microsoft.Extensions.Configuration.Abstractions.dll
|-- Microsoft.Extensions.Configuration.EnvironmentVariables.dll
|-- Microsoft.Extensions.Configuration.dll
|-- Microsoft.Extensions.DependencyInjection.Abstractions.dll
|-- Microsoft.Extensions.DependencyInjection.dll

Deployment manifest 812

Amazon Elastic Beanstalk Developer Guide

|-- Microsoft.Extensions.FileProviders.Abstractions.dll
|-- Microsoft.Extensions.FileProviders.Physical.dll
|-- Microsoft.Extensions.FileSystemGlobbing.dll
|-- Microsoft.Extensions.Logging.Abstractions.dll
|-- Microsoft.Extensions.Logging.dll
|-- Microsoft.Extensions.ObjectPool.dll
|-- Microsoft.Extensions.Options.dll
|-- Microsoft.Extensions.PlatformAbstractions.dll
|-- Microsoft.Extensions.Primitives.dll
|-- Microsoft.Net.Http.Headers.dll
|-- System.Diagnostics.Contracts.dll
|-- System.Net.WebSockets.dll
|-- System.Text.Encodings.Web.dll
|-- dotnet-core-app.deps.json
|-- dotnet-core-app.dll
|-- dotnet-core-app.pdb
|-- dotnet-core-app.runtimeconfig.json
`-- web.config

Run multiple applications

You can run multiple applications with a deployment manifest by defining multiple deployment
targets.

The following deployment manifest configures two .NET Core applications. The
WebApiSampleApp application implements a simple web API and serves asynchronous requests at
the /api path. The DotNetSampleApp application is a web application that serves requests at the
root path.

Example aws-windows-deployment-manifest.json - multiple apps

{
 "manifestVersion": 1,
 "deployments": {
 "aspNetCoreWeb": [
 {
 "name": "WebAPISample",
 "parameters": {
 "appBundle": "WebApiSampleApp.zip",
 "iisPath": "/api"
 }
 },
 {

Deployment manifest 813

Amazon Elastic Beanstalk Developer Guide

 "name": "DotNetSample",
 "parameters": {
 "appBundle": "DotNetSampleApp.zip",
 "iisPath": "/"
 }
 }
]
 }
}

A sample application with multiple applications is available here:

• Deployable source bundle - dotnet-multiapp-sample-bundle-v2.zip

• Source code - dotnet-multiapp-sample-source-v2.zip

Configure application pools

You can support multiple applications in your Windows environment. Two approaches are
available:

• You can use the out-of-process hosting model with the Kestrel web server. With this model, you
configure multiple applications to run in one application pool.

• You can use the in-process hosting model.With this model, you use multiple application pools
to run multiple applications with only one application in each pool. If you're using IIS server and
need to run multiple applications, you must use this approach.

To configure Kestrel to run multiple applications in one application pool, add
hostingModel="OutofProcess" in the web.config file. Consider the following examples.

Example web.config - for Kestrel out-of-process hosting model

<configuration>
<location path="." inheritInChildApplications="false">
<system.webServer>
<handlers>
<add
 name="aspNetCore"
 path="*" verb="*"
 modules="AspNetCoreModuleV2"
 resourceType="Unspecified" />

Deployment manifest 814

samples/dotnet-multiapp-sample-bundle-v2.zip
samples/dotnet-multiapp-sample-source-v2.zip

Amazon Elastic Beanstalk Developer Guide

</handlers>
<aspNetCore
 processPath="dotnet"
 arguments=".\CoreWebApp-5-0.dll"
 stdoutLogEnabled="false"
 stdoutLogFile=".\logs\stdout"
 hostingModel="OutofProcess" />
</system.webServer>
</location>
</configuration>

Example aws-windows-deployment-manifest.json - multiple applications

{
"manifestVersion": 1,
 "deployments": {"msDeploy": [
 {"name": "Web-app1",
 "parameters": {"archive": "site1.zip",
 "iisPath": "/"
 }
 },
 {"name": "Web-app2",
 "parameters": {"archive": "site2.zip",
 "iisPath": "/app2"
 }
 }
]
 }
}

IIS doesn't support multiple applications in one application pool because it uses the in-process
hosting model. Therefore, you need to configure multiple applications by assigning each
application to one application pool. In other words, assign only one application to one application
pool.

You can configure IIS to use different application pools in the aws-windows-deployment-
manifest.json file. Make the following updates as you refer to the next example file:

• Add an iisConfig section that includes a subsection called appPools.

• In the appPools block, list the application pools.

• In the deployments section, define a parameters section for each application.

Deployment manifest 815

Amazon Elastic Beanstalk Developer Guide

• For each application the parameters section specifies an archive, a path to run it, and an
appPool in which to run.

The following deployment manifest configures two application pools that restart their application
every 10 minutes. They also attach their applications to a .NET Framework web application that
runs at the path specified.

Example aws-windows-deployment-manifest.json - one application per application pool

{
"manifestVersion": 1,
 "iisConfig": {"appPools": [
 {"name": "MyFirstPool",
 "recycling": {"regularTimeInterval": 10}
 },
 {"name": "MySecondPool",
 "recycling": {"regularTimeInterval": 10}
 }
]
 },
 "deployments": {"msDeploy": [
 {"name": "Web-app1",
 "parameters": {
 "archive": "site1.zip",
 "iisPath": "/",
 "appPool": "MyFirstPool"
 }
 },
 {"name": "Web-app2",
 "parameters": {
 "archive": "site2.zip",
 "iisPath": "/app2",
 "appPool": "MySecondPool"
 }
 }
]
 }
}

Deployment manifest 816

Amazon Elastic Beanstalk Developer Guide

Define custom deployments

For even more control, you can completely customize an application deployment by defining a
custom deployment.

This deployment manifest instructs Elastic Beanstalk to execute PowerShell scripts in 32-bit mode.
It specifies three scripts: an install script (siteInstall.ps1) that runs during instance launch
and deployments, an uninstall script (siteUninstall.ps1) that executes before installing
new versions during deployments, and a restart script (siteRestart.ps1) that runs when you
select Restart App Server in the Amazon management console.

Example aws-windows-deployment-manifest.json - custom deployment

{
 "manifestVersion": 1,
 "deployments": {
 "custom": [
 {
 "name": "Custom site",
 "architecture" : 32,
 "scripts": {
 "install": {
 "file": "siteInstall.ps1"
 },
 "restart": {
 "file": "siteRestart.ps1"
 },
 "uninstall": {
 "file": "siteUninstall.ps1"
 }
 }
 }
]
 }
}

Include any artifacts required to run the application in your source bundle with the manifest and
scripts.

Example Custom-site-bundle.zip

.

Deployment manifest 817

Amazon Elastic Beanstalk Developer Guide

|-- aws-windows-deployment-manifest.json
|-- siteInstall.ps1
|-- siteRestart.ps1
|-- siteUninstall.ps1
`-- site-contents.zip

Deployment manifest schema reference

The deployment manifest is a JSON file that defines how Elastic Beanstalk should deploy and
configure your Windows applications. This section provides a comprehensive reference for all
supported properties and configuration options in the manifest schema.

Manifest structure

The deployment manifest follows a specific JSON schema with the following top-level structure:

Example Basic manifest structure

{
 "manifestVersion": 1,
 "skipIISReset": false,
 "iisConfig": {
 "appPools": [...]
 },
 "deployments": {
 "msDeploy": [...],
 "aspNetCoreWeb": [...],
 "custom": [...]
 }
}

Top-level properties

manifestVersion (required)

Type: Number

Default: 1

Valid values: 1

Specifies the version of the manifest schema. Currently, only version 1 is supported.

Deployment manifest 818

Amazon Elastic Beanstalk Developer Guide

skipIISReset (optional)

Type: Boolean

Default: false

Controls whether IIS is reset during application deployments. This flag affects both msDeploy
and aspNetCoreWeb deployment types.

Behavior:

• Not specified or false (default): IIS resets are performed during install, uninstall, and update
operations. This is the traditional behavior.

• true: IIS resets are skipped during deployment operations.

Benefits:

• Reduced downtime – Applications experience shorter service interruptions during
deployments.

• Faster deployments – Eliminates the time required for IIS to fully restart and reinitialize.

Note

When using skipIISReset, the RestartAppServer operation performs an IIS reset
regardless of this flag setting.

Example:

{
 "manifestVersion": 1,
 "skipIISReset": true,
 "deployments": {
 "aspNetCoreWeb": [
 {
 "name": "my-dotnet-core-app",
 "parameters": {
 "archive": "dotnet-core-app.zip",
 "iisPath": "/"
 }
 }

Deployment manifest 819

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_RestartAppServer.html

Amazon Elastic Beanstalk Developer Guide

]
 }
}

deployments (required)

Type: Object

Contains the deployment configurations for your applications. This object can include
msDeploy, aspNetCoreWeb, and custom deployment types.

iisConfig (optional)

Type: Object

Defines IIS configuration settings to apply before deploying applications. Currently supports
application pool configuration.

IIS configuration

The iisConfig section allows you to configure IIS settings before deploying your applications.
This is particularly useful for setting up application pools with specific configurations.

Application pools

Application pools provide isolation between applications and allow you to configure runtime
settings for groups of applications.

Example Application pool configuration

{
 "iisConfig": {
 "appPools": [
 {
 "name": "MyAppPool",
 "enable32Bit": false,
 "managedPipelineMode": "Integrated",
 "managedRuntimeVersion": "v4.0",
 "queueLength": 1000,
 "cpu": {
 "limitPercentage": 80,
 "limitAction": "Throttle",

Deployment manifest 820

Amazon Elastic Beanstalk Developer Guide

 "limitMonitoringInterval": 5
 },
 "recycling": {
 "regularTimeInterval": 1440,
 "requestLimit": 10000,
 "memory": 1048576,
 "privateMemory": 524288
 }
 }
]
 }
}

Application pool properties

name (required)

Type: String

The name of the application pool. This name is used to reference the pool in deployment
configurations.

enable32Bit (optional)

Type: Boolean

Enables a 32-bit application to run on a 64-bit version of Windows. Set to true for legacy
applications that require 32-bit compatibility.

managedPipelineMode (optional)

Type: String

Valid values: "Integrated", "Classic"

Specifies the request-processing mode for the application pool.

managedRuntimeVersion (optional)

Type: String

Valid values: "No Managed Code", "v2.0", "v4.0"

Specifies the .NET Framework version for the application pool.

Deployment manifest 821

Amazon Elastic Beanstalk Developer Guide

queueLength (optional)

Type: Integer

Maximum number of requests that HTTP.sys queues for the application pool before rejecting
additional requests.

CPU configuration

The cpu object configures CPU usage limits and monitoring for the application pool.

limitPercentage (optional)

Type: Number

Maximum percentage of CPU time that worker processes in the application pool can consume.

limitAction (optional)

Type: String

Valid values: "NoAction", "KillW3wp", "Throttle", "ThrottleUnderLoad"

Action to take when the CPU limit is reached.

limitMonitoringInterval (optional)

Type: Number

Reset period (in minutes) for CPU monitoring and throttling limits.

Recycling configuration

The recycling object configures when and how application pool worker processes are recycled.

regularTimeInterval (optional)

Type: Integer

Time interval (in minutes) after which the application pool recycles. Set to 0 to disable time-
based recycling.

Deployment manifest 822

Amazon Elastic Beanstalk Developer Guide

requestLimit (optional)

Type: Integer

Maximum number of requests the application pool processes before recycling.

memory (optional)

Type: Integer

Amount of virtual memory (in kilobytes) that triggers worker process recycling.

privateMemory (optional)

Type: Integer

Amount of private memory (in kilobytes) that triggers worker process recycling.

Deployment types

The deployments object contains arrays of deployment configurations for different application
types. Each deployment type has specific properties and use cases.

MSDeploy deployments

MSDeploy deployments are used for traditional .NET Framework applications that can be deployed
using Web Deploy (MSDeploy).

Example MSDeploy deployment configuration

{
 "deployments": {
 "msDeploy": [
 {
 "name": "WebApp",
 "description": "Main web application",
 "parameters": {
 "appBundle": "webapp.zip",
 "iisPath": "/",
 "appPool": "DefaultAppPool"
 }
 }
]
 }

Deployment manifest 823

Amazon Elastic Beanstalk Developer Guide

}

MSDeploy deployment properties

name (required)

Type: String

Unique name for the deployment. This name must be unique across all deployments in the
manifest.

description (optional)

Type: String

Human-readable description of the deployment.

parameters (required)

Type: Object

Configuration parameters for the MSDeploy operation.

scripts (optional)

Type: Object

PowerShell scripts to run at various stages of the deployment lifecycle.

MSDeploy parameters

appBundle (required)

Type: String

Path to the application bundle (ZIP file) relative to the manifest file. This bundle contains the
application files to deploy.

iisPath (optional)

Type: String

Default: "/"

Virtual directory path in IIS where the application will be deployed. Use "/" for the root path or
"/api" for a subdirectory.

Deployment manifest 824

Amazon Elastic Beanstalk Developer Guide

appPool (optional)

Type: String

Name of the application pool to run this application.

ASP.NET Core deployments

ASP.NET Core deployments are specifically designed for .NET Core and .NET 5+ applications.

Example ASP.NET Core deployment configuration

{
 "deployments": {
 "aspNetCoreWeb": [
 {
 "name": "CoreAPI",
 "description": "ASP.NET Core Web API",
 "parameters": {
 "appBundle": "coreapi.zip",
 "iisPath": "/api",
 "appPool": "CoreAppPool"
 }
 }
]
 }
}

ASP.NET Core deployments use the same property structure as MSDeploy deployments, with the
key difference being the runtime environment and hosting model used for the application.

ASP.NET Core deployment parameters

appBundle (required)

Type: String

Path to the application bundle relative to the manifest file. This can be either a ZIP archive or a
directory path containing the published ASP.NET Core application.

iisPath (optional)

Type: String

Deployment manifest 825

Amazon Elastic Beanstalk Developer Guide

Default: "/"

Virtual directory path in IIS for the ASP.NET Core application.

appPool (optional)

Type: String

Application pool for the ASP.NET Core application. The pool will be configured appropriately for
ASP.NET Core hosting.

Custom deployments

Custom deployments provide complete control over the deployment process through PowerShell
scripts. This deployment type is useful for complex scenarios that require custom installation,
configuration, or deployment logic.

Example Custom deployment configuration

{
 "deployments": {
 "custom": [
 {
 "name": "CustomService",
 "description": "Custom Windows service deployment",
 "architecture": 32,
 "scripts": {
 "install": {
 "file": "install-service.ps1"
 },
 "restart": {
 "file": "restart-service.ps1"
 },
 "uninstall": {
 "file": "uninstall-service.ps1",
 "ignoreErrors": true
 }
 }
 }
]
 }
}

Deployment manifest 826

Amazon Elastic Beanstalk Developer Guide

Custom deployment properties

name (required)

Type: String

Unique name for the custom deployment.

description (optional)

Type: String

Description of the custom deployment.

architecture (optional)

Type: Integer

Default: 32

Valid values: 32, 64

The architecture specification for execution mode of powershell scripts

scripts (required)

Type: Object

PowerShell scripts that define the deployment behavior. Custom deployments support
additional script types compared to other deployment types.

Deployment scripts

Deployment scripts are PowerShell scripts that run at specific points during the deployment
lifecycle. Different deployment types support different sets of script events.

Script events

The following script events are available depending on the deployment type:

Standard deployment scripts (msDeploy and aspNetCoreWeb)

preInstall

Runs before the application is installed or updated.

Deployment manifest 827

Amazon Elastic Beanstalk Developer Guide

postInstall

Runs after the application is installed or updated.

preRestart

Runs before the application is restarted.

postRestart

Runs after the application is restarted.

preUninstall

Runs before the application is uninstalled.

postUninstall

Runs after the application is uninstalled.

Custom deployment scripts (custom deployments only)

install

Primary installation script for custom deployments. This script is responsible for installing the
application or service.

restart

Script to restart the application or service. Called when the environment is restarted.

uninstall

Script to uninstall the application or service. Called during environment termination or
application removal.

Script properties

Each script is defined as an object with the following properties:

file (required)

Type: String

Path to the PowerShell script file relative to the manifest file. The script should have a .ps1
extension.

Deployment manifest 828

Amazon Elastic Beanstalk Developer Guide

ignoreErrors (optional)

Type: Boolean

Default: false

When set to true, deployment continues even if the script fails. Use this for non-critical scripts
or cleanup operations.

Example Script configuration example

{
 "scripts": {
 "preInstall": {
 "file": "backup-config.ps1",
 "ignoreErrors": true
 },
 "postInstall": {
 "file": "configure-app.ps1"
 }
 }
}

Using EC2 Fast Launch with Windows platform branches

The EC2 Fast Launch feature reduces Windows instance launch times in your Elastic Beanstalk
environments. The purpose of this topic is to guide you on using this feature with your Elastic
Beanstalk environments. Starting with Windows platform version 2.16.2, released on January 22,
2025, Elastic Beanstalk platform releases include base AMIs with EC2 Fast Launch enabled.

Default EC2 Fast Launch availability

The latest Elastic Beanstalk Windows platform versions include base AMIs with EC2 Fast Launch
automatically enabled, with no additional costs. However, when newer platform versions are
released, EC2 Fast Launch may not remain automatically enabled on base AMIs from older
platform versions.

We recommend upgrading to the latest Windows platform version to use base AMIs with
EC2 Fast Launch automatically enabled. However, if you need to continue using your existing
platform version, you can manually enable EC2 Fast Launch on your environment's base AMI. For
instructions, see Manually configuring EC2 Fast Launch.

EC2 Fast Launch 829

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-01-22-windows.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-01-22-windows.html

Amazon Elastic Beanstalk Developer Guide

Manually configuring EC2 Fast Launch

Note

Manually enabling EC2 Fast Launch may incur additional costs compared to using platform
versions with EC2 Fast Launch automatically enabled. For more information about EC2 Fast
Launch costs, see the Manage costs for EC2 Fast Launch underlying resources page in the
Amazon EC2 User Guide.

Follow these steps to enable EC2 Fast Launch on a Windows base AMI used by your Elastic
Beanstalk environment:

To manually enable EC2 Fast Launch for your Elastic Beanstalk environment

1. Identify your environment's base AMI:

Follow the steps in Creating a Custom AMI to identify your environment's base AMI ID. Note
that you don't need to create a custom AMI - you only need to follow the steps to locate your
current base AMI ID.

2. Enable EC2 Fast Launch on the AMI:

Use the instructions in Enable EC2 Fast Launch in the Amazon EC2 User Guide to configure EC2
Fast Launch for your AMI.

Adding an Amazon RDS DB instance to your .NET application
environment

This topic provides instructions to create an Amazon RDS using the Elastic Beanstalk console.
You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data
gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally by
another service. In these instructions the database is coupled to your environment and managed by
Elastic Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk,
see Adding a database to your Elastic Beanstalk environment.

Sections

Adding a database 830

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/win-fast-launch-manage-costs.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/win-fast-launch-configure.html

Amazon Elastic Beanstalk Developer Guide

• Adding a DB instance to your environment

• Downloading a driver

• Connecting to a database

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

Adding a DB instance to your environment 831

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading a driver

Download and install the EntityFramework package and a database driver for your development
environment with NuGet.

Common entity framework database providers for .NET

• SQL Server – Microsoft.EntityFrameworkCore.SqlServer

• MySQL – Pomelo.EntityFrameworkCore.MySql

• PostgreSQL – Npgsql.EntityFrameworkCore.PostgreSQL

Connecting to a database

Elastic Beanstalk provides connection information for attached DB instances in environment
properties. Use ConfigurationManager.AppSettings to read the properties and configure a
database connection.

Example Helpers.cs - connection string method

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Linq;
using System.Web;

namespace MVC5App.Models

Downloading a driver 832

Amazon Elastic Beanstalk Developer Guide

{
 public class Helpers
 {
 public static string GetRDSConnectionString()
 {
 var appConfig = ConfigurationManager.AppSettings;

 string dbname = appConfig["RDS_DB_NAME"];

 if (string.IsNullOrEmpty(dbname)) return null;

 string username = appConfig["RDS_USERNAME"];
 string password = appConfig["RDS_PASSWORD"];
 string hostname = appConfig["RDS_HOSTNAME"];
 string port = appConfig["RDS_PORT"];

 return "Data Source=" + hostname + ";Initial Catalog=" + dbname + ";User ID=" +
 username + ";Password=" + password + ";";
 }
 }
}

Use the connection string to initialize your database context.

Example DBContext.cs

using System.Data.Entity;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;

namespace MVC5App.Models
{
 public class RDSContext : DbContext
 {
 public RDSContext()
 : base(GetRDSConnectionString())
 {
 }

 public static RDSContext Create()
 {
 return new RDSContext();

Connecting to a database 833

Amazon Elastic Beanstalk Developer Guide

 }
 }
}

The Amazon Toolkit for Visual Studio

Visual Studio provides templates for different programming languages and application types.
You can start with any of these templates. The Amazon Toolkit for Visual Studio also provides
three project templates that bootstrap development of your application: Amazon Console Project,
Amazon Web Project, and Amazon Empty Project. For this example, you'll create a new ASP.NET
Web Application.

To create a new ASP.NET web application project

1. In Visual Studio, on the File menu, click New and then click Project.

2. In the New Project dialog box, click Installed Templates, click Visual C#, and then click Web.
Click ASP.NET Empty Web Application, type a project name, and then click OK.

To run a project

Do one of the following:

1. Press F5.

2. Select Start Debugging from the Debug menu.

Test locally

Visual Studio makes it easy for you to test your application locally. To test or run ASP.NET
web applications, you need a web server. Visual Studio offers several options, such as Internet
Information Services (IIS), IIS Express, or the built-in Visual Studio Development Server. To learn
about each of these options and to decide which one is best for you, see Web Servers in Visual
Studio for ASP.NET Web Projects.

Create an Elastic Beanstalk environment

After testing your application, you are ready to deploy it to Elastic Beanstalk.

The Amazon Toolkit for Visual Studio 834

http://msdn.microsoft.com/en-us/library/58wxa9w5.aspx
http://msdn.microsoft.com/en-us/library/58wxa9w5.aspx

Amazon Elastic Beanstalk Developer Guide

Note

Configuration file needs to be part of the project to be included in the archive.
Alternatively, instead of including the configuration files in the project, you can use Visual
Studio to deploy all files in the project folder. In Solution Explorer, right-click the project
name, and then click Properties. Click the Package/Publish Web tab. In the Items to
deploy section, select All Files in the Project Folder in the drop-down list.

To deploy your application to Elastic Beanstalk using the Amazon toolkit for Visual Studio

1. In Solution Explorer, right-click your application and then select Publish to Amazon.

2. In the Publish to Amazon wizard, enter your account information.

a. For Amazon account to use for deployment, select your account or select Other to enter
new account information.

b. For Region, select the region where you want to deploy your application. For information
about available Amazon Regions, see Amazon Elastic Beanstalk Endpoints and Quotas in
the Amazon Web Services General Reference. If you select a region that is not supported by
Elastic Beanstalk, then the option to deploy to Elastic Beanstalk will become unavailable.

c. Click Deploy new application with template and select Elastic Beanstalk. Then click
Next.

Create an Elastic Beanstalk environment 835

https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html

Amazon Elastic Beanstalk Developer Guide

3. On the Application page, enter your application details.

a. For Name, type the name of the application.

b. For Description, type a description of the application. This step is optional.

c. The version label of the application automatically appears in the Deployment version
label.

d. Select Deploy application incrementally to deploy only the changed files. An incremental
deployment is faster because you are updating only the files that changed instead of all
the files. If you choose this option, an application version will be set from the Git commit
ID. If you choose to not deploy your application incrementally, then you can update the
version label in the Deployment version label box.

Create an Elastic Beanstalk environment 836

Amazon Elastic Beanstalk Developer Guide

e. Click Next.

4. On the Environment page, describe your environment details.

a. Select Create a new environment for this application.

b. For Name, type a name for your environment.

c. For Description, characterize your environment. This step is optional.

d. Select the Type of environment that you want.

You can select either Load balanced, auto scaled or a Single instance environment. For
more information, see Environment types.

Create an Elastic Beanstalk environment 837

Amazon Elastic Beanstalk Developer Guide

Note

For single-instance environments, load balancing, auto scaling, and the health
check URL settings don't apply.

e. The environment URL automatically appears in the Environment URL once you move your
cursor to that box.

f. Click Check availability to make sure the environment URL is available.

g. Click Next.

5. On the Amazon Options page, configure additional options and security information for your
deployment.

a. For Container Type, select 64bit Windows Server 2012 running IIS 8 or 64bit Windows
Server 2008 running IIS 7.5.

Create an Elastic Beanstalk environment 838

Amazon Elastic Beanstalk Developer Guide

b. For Instance Type, select Micro.

c. For Key pair, select Create new key pair. Type a name for the new key pair—in this
example, we use myuswestkeypair—and then click OK. A key pair enables remote-
desktop access to your Amazon EC2 instances. For more information on Amazon EC2 key
pairs, see Using Credentials in the Amazon Elastic Compute Cloud User Guide.

d. Select an instance profile.

If you do not have an instance profile, select Create a default instance profile. For
information about using instance profiles with Elastic Beanstalk, see Managing Elastic
Beanstalk instance profiles.

e. If you have a custom VPC that you would like to use with your environment, click Launch
into VPC. You can configure the VPC information on the next page. For more information
about Amazon VPC, go to Amazon Virtual Private Cloud (Amazon VPC). For a list of
supported nonlegacy container types, see the section called “Why are some platform
versions marked legacy?”

Create an Elastic Beanstalk environment 839

http://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-credentials.html
http://www.amazonaws.cn/vpc/

Amazon Elastic Beanstalk Developer Guide

f. Click Next.

6. If you selected to launch your environment inside a VPC, the VPC Options page appears;
otherwise, the Additional Options page appears. Here you'll configure your VPC options.

Create an Elastic Beanstalk environment 840

Amazon Elastic Beanstalk Developer Guide

a. Select the VPC ID of the VPC in which you would like to launch your environment.

b. For a load-balanced, scalable environment, select private for ELB Scheme if you do not
want your elastic load balancer to be available to the Internet.

For a single-instance environment, this option is not applicable because the environment
doesn't have a load balancer. For more information, see Environment types.

c. For a load-balanced, scalable environment, select the subnets for the elastic load balancer
and the EC2 instances. If you created public and private subnets, make sure the elastic
load balancer and the EC2 instances are associated with the correct subnet. By default,
Amazon VPC creates a default public subnet using 10.0.0.0/24 and a private subnet using
10.0.1.0/24. You can view your existing subnets in the Amazon VPC console at https://
console.amazonaws.cn/vpc/.

Create an Elastic Beanstalk environment 841

https://console.amazonaws.cn/vpc/
https://console.amazonaws.cn/vpc/

Amazon Elastic Beanstalk Developer Guide

For a single-instance environment, your VPC only needs a public subnet for the instance.
Selecting a subnet for the load balancer is not applicable because the environment
doesn't have a load balancer. For more information, see Environment types.

d. For a load-balanced, scalable environment, select the security group you created for your
instances, if applicable.

For a single-instance environment, you don't need a NAT device. Select the default
security group. Elastic Beanstalk assigns an Elastic IP address to the instance that lets the
instance access the Internet.

e. Click Next.

7. On the Application Options page, configure your application options.

a. For Target framework, select .NET Framework 4.0.

b. Elastic Load Balancing uses a health check to determine whether the Amazon EC2
instances running your application are healthy. The health check determines an instance's
health status by probing a specified URL at a set interval. You can override the default URL
to match an existing resource in your application (e.g., /myapp/index.aspx) by entering
it in the Application health check URL box. For more information about application
health checks, see Health check.

c. Type an email address if you want to receive Amazon Simple Notification Service (Amazon
SNS) notifications of important events affecting your application.

d. The Application Environment section lets you specify environment variables on the
Amazon EC2 instances that are running your application. This setting enables greater
portability by eliminating the need to recompile your source code as you move between
environments.

e. Select the application credentials option you want to use to deploy your application.

Create an Elastic Beanstalk environment 842

Amazon Elastic Beanstalk Developer Guide

f. Click Next.

8. If you have previously set up an Amazon RDS database, the Amazon RDS DB Security Group
page appears. If you want to connect your Elastic Beanstalk environment to your Amazon RDS
DB Instance, then select one or more security groups. Otherwise, go on to the next step. When
you're ready, click Next.

Create an Elastic Beanstalk environment 843

Amazon Elastic Beanstalk Developer Guide

9. Review your deployment options. If everything is as you want, click Deploy.

Create an Elastic Beanstalk environment 844

Amazon Elastic Beanstalk Developer Guide

Your ASP.NET project will be exported as a web deploy file, uploaded to Amazon S3,
and registered as a new application version with Elastic Beanstalk. The Elastic Beanstalk
deployment feature will monitor your environment until it becomes available with the newly
deployed code. On the env:<environment name> tab, you will see status for your environment.

Terminating an environment

To avoid incurring charges for unused Amazon resources, you can terminate a running environment
using the Amazon Toolkit for Visual Studio.

Note

You can always launch a new environment using the same version later.

To terminate an environment

1. Expand the Elastic Beanstalk node and the application node in Amazon Explorer. Right-click
your application environment and select Terminate Environment.

2. When prompted, click Yes to confirm that you want to terminate the environment. It will
take a few minutes for Elastic Beanstalk to terminate the Amazon resources running in the
environment.

Terminating an environment 845

Amazon Elastic Beanstalk Developer Guide

Note

When you terminate your environment, the CNAME associated with the terminated
environment becomes available for anyone to use.

Deploying to your environment

Now that you have tested your application, it is easy to edit and redeploy your application and see
the results in moments.

To edit and redeploy your ASP.NET web application

1. In Solution Explorer, right-click your application, and then click Republish to Environment
<your environment name>. The Re-publish to Amazon Elastic Beanstalk wizard opens.

Deploy 846

Amazon Elastic Beanstalk Developer Guide

2. Review your deployment details and click Deploy.

Note

If you want to change any of your settings, you can click Cancel and use the Publish to
Amazon wizard instead. For instructions, see Create an Elastic Beanstalk environment.

Your updated ASP.NET web project will be exported as a web deploy file with the new version
label, uploaded to Amazon S3, and registered as a new application version with Elastic
Beanstalk. The Elastic Beanstalk deployment feature monitors your existing environment until
it becomes available with the newly deployed code. On the env:<environment name> tab,
you will see the status of your environment.

You can also deploy an existing application to an existing environment if, for instance, you need to
roll back to a previous application version.

To deploy an application version to an existing environment

1. Right-click your Elastic Beanstalk application by expanding the Elastic Beanstalk node in
Amazon Explorer. Select View Status.

2. In the App: <application name> tab, click Versions.

3. Click the application version you want to deploy and click Publish Version.

4. In the Publish Application Version wizard, click Next.

Deploy 847

Amazon Elastic Beanstalk Developer Guide

5. Review your deployment options, and click Deploy.

Deploy 848

Amazon Elastic Beanstalk Developer Guide

Your ASP.NET project will be exported as a web deploy file and uploaded to Amazon S3. The
Elastic Beanstalk deployment feature will monitor your environment until it becomes available
with the newly deployed code. On the env:<environment name> tab, you will see status for
your environment.

Managing your Elastic Beanstalk application environments

With the Amazon Toolkit for Visual Studio and the Amazon Management Console, you can
change the provisioning and configuration of the Amazon resources used by your application
environments. For information on how to manage your application environments using the
Amazon Management Console, see Creating environments in Elastic Beanstalk. This section
discusses the specific service settings you can edit in the Amazon Toolkit for Visual Studio as part
of your application environment configuration.

Managing environments 849

Amazon Elastic Beanstalk Developer Guide

Changing environment configurations settings

When you deploy your application, Elastic Beanstalk configures a number of Amazon cloud
computing services. You can control how these individual services are configured using the Amazon
Toolkit for Visual Studio.

To edit an application's environment settings

• Expand the Elastic Beanstalk node and your application node. Then right-click your Elastic
Beanstalk environment in Amazon Explorer. Select View Status.

You can now configure settings for the following:

• Server

• Load balancing

• Autoscaling

• Notifications

• Environment properties

Configuring EC2 server instances using the Amazon toolkit for Visual Studio

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that you use to launch and manage
server instances in Amazon's data centers. You can use Amazon EC2 server instances at any time,
for as long as you need, and for any legal purpose. Instances are available in different sizes and
configurations. For more information, go to Amazon EC2.

You can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration with the
Server tab inside your application environment tab in the Amazon Toolkit for Visual Studio.

Managing environments 850

http://www.amazonaws.cn/ec2/

Amazon Elastic Beanstalk Developer Guide

Amazon EC2 instance types

Instance type displays the instance types available to your Elastic Beanstalk application. Change
the instance type to select a server with the characteristics (including memory size and CPU power)
that are most appropriate to your application. For example, applications with intensive and long-
running operations can require more CPU or memory.

For more information about the Amazon EC2 instance types available for your Elastic Beanstalk
application, see Instance Types in the Amazon Elastic Compute Cloud User Guide.

Amazon EC2 security groups

You can control access to your Elastic Beanstalk application using an Amazon EC2 Security Group.
A security group defines firewall rules for your instances. These rules specify which ingress (i.e.,
incoming) network traffic should be delivered to your instance. All other ingress traffic will be
discarded. You can modify rules for a group at any time. The new rules are automatically enforced
for all running instances and instances launched in the future.

You can set up your Amazon EC2 security groups using the Amazon Management Console or by
using the Amazon Toolkit for Visual Studio. You can specify which Amazon EC2 Security Groups
control access to your Elastic Beanstalk application by entering the names of one or more Amazon
EC2 security group names (delimited by commas) into the EC2 Security Groups text box.

Managing environments 851

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Beanstalk Developer Guide

Note

Make sure port 80 (HTTP) is accessible from 0.0.0.0/0 as the source CIDR range if you want
to enable health checks for your application. For more information about health checks, see
Health checks.

To create a security group using the Amazon toolkit for Visual Studio

1. In Visual Studio, in Amazon Explorer, expand the Amazon EC2 node, and then double-click
Security Groups.

2. Click Create Security Group, and enter a name and description for your security group.

3. Click OK.

For more information on Amazon EC2 Security Groups, see Using Security Groups in the Amazon
Elastic Compute Cloud User Guide.

Amazon EC2 key pairs

You can securely log in to the Amazon EC2 instances provisioned for your Elastic Beanstalk
application with an Amazon EC2 key pair.

Important

You must create an Amazon EC2 key pair and configure your Elastic Beanstalk–provisioned
Amazon EC2 instances to use the Amazon EC2 key pair before you can access your Elastic
Beanstalk–provisioned Amazon EC2 instances. You can create your key pair using the
Publish to Amazon wizard inside the Amazon Toolkit for Visual Studio when you deploy
your application to Elastic Beanstalk. If you want to create additional key pairs using the
Toolkit, follow the steps below. Alternatively, you can set up your Amazon EC2 key pairs
using the Amazon Management Console. For instructions on creating a key pair for Amazon
EC2, see the Amazon Elastic Compute Cloud Getting Started Guide.

The Existing Key Pair text box lets you specify the name of an Amazon EC2 key pair you can use to
securely log in to the Amazon EC2 instances running your Elastic Beanstalk application.

Managing environments 852

http://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-network-security.html
https://console.amazonaws.cn/
http://docs.amazonaws.cn/AWSEC2/latest/GettingStartedGuide/

Amazon Elastic Beanstalk Developer Guide

To specify the name of an Amazon EC2 key pair

1. Expand the Amazon EC2 node and double-click Key Pairs.

2. Click Create Key Pair and enter the key pair name.

3. Click OK.

For more information about Amazon EC2 key pairs, go to Using Amazon EC2 Credentials in the
Amazon Elastic Compute Cloud User Guide. For more information about connecting to Amazon EC2
instances, see Listing and connecting to server instances.

Monitoring interval

By default, only basic Amazon CloudWatch metrics are enabled. They return data in five-minute
periods. You can enable more granular one-minute CloudWatch metrics by selecting 1 minute for
the Monitoring Interval in the Server section of the Configuration tab for your environment in the
Amazon Toolkit for Eclipse.

Note

Amazon CloudWatch service charges can apply for one-minute interval metrics. See
Amazon CloudWatch for more information.

Custom AMI ID

You can override the default AMI used for your Amazon EC2 instances with your own custom AMI
by entering the identifier of your custom AMI into the Custom AMI ID box in the Server section of
the Configuration tab for your environment in the Amazon Toolkit for Eclipse.

Important

Using your own AMI is an advanced task that you should do with care. If you need a custom
AMI, we recommend you start with the default Elastic Beanstalk AMI and then modify it.
To be considered healthy, Elastic Beanstalk expects Amazon EC2 instances to meet a set of
requirements, including having a running host manager. If these requirements are not met,
your environment might not work properly.

Managing environments 853

http://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-credentials.html
http://www.amazonaws.cn/cloudwatch/

Amazon Elastic Beanstalk Developer Guide

Configuring Elastic Load Balancing using the Amazon toolkit for Visual Studio

Elastic Load Balancing is an Amazon web service that helps you improve the availability and
scalability of your application. This service makes it easy for you to distribute application loads
between two or more Amazon EC2 instances. Elastic Load Balancing enables availability through
redundancy and supports traffic growth for your application.

Elastic Load Balancing lets you automatically distribute and balance the incoming application
traffic among all the instances you are running. The service also makes it easy to add new instances
when you need to increase the capacity of your application.

Elastic Beanstalk automatically provisions Elastic Load Balancing when you deploy an application.
You can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration with the Load
Balancer tab inside your application environment tab in Amazon Toolkit for Visual Studio.

The following sections describe the Elastic Load Balancing parameters you can configure for your
application.

Ports

The load balancer provisioned to handle requests for your Elastic Beanstalk application sends
requests to the Amazon EC2 instances that are running your application. The provisioned load
balancer can listen for requests on HTTP and HTTPS ports and route requests to the Amazon EC2
instances in your Amazon Elastic Beanstalk application. By default, the load balancer handles
requests on the HTTP port. At least one of the ports (either HTTP or HTTPS) must be turned on.

Managing environments 854

Amazon Elastic Beanstalk Developer Guide

Important

Make sure that the port you specified is not locked down; otherwise, users will not be able
to connect to your Elastic Beanstalk application.

Controlling the HTTP port

To turn off the HTTP port, select OFF for HTTP Listener Port. To turn on the HTTP port, you select
an HTTP port (for example, 80) from the list.

Note

To access your environment using a port other than the default port 80, such as port 8080,
add a listener to the existing load balancer and configure the new listener to listen on that
port.
For example, using the Amazon CLI for Classic load balancers, type the following command,
replacing LOAD_BALANCER_NAME with the name of your load balancer for Elastic
Beanstalk.

aws elb create-load-balancer-listeners --load-balancer-name LOAD_BALANCER_NAME
 --listeners "Protocol=HTTP, LoadBalancerPort=8080, InstanceProtocol=HTTP,
 InstancePort=80"

For example, using the Amazon CLI for Application Load Balancers, type the following
command, replacing LOAD_BALANCER_ARN with the ARN of your load balancer for Elastic
Beanstalk.

aws elbv2 create-listener --load-balancer-arn LOAD_BALANCER_ARN --protocol HTTP
 --port 8080

If you want Elastic Beanstalk to monitor your environment, do not remove the listener on
port 80.

Managing environments 855

https://docs.amazonaws.cn/cli/latest/reference/elb/create-load-balancer-listeners.html
https://docs.amazonaws.cn/cli/latest/reference/elbv2/create-listener.html

Amazon Elastic Beanstalk Developer Guide

Controlling the HTTPS port

Elastic Load Balancing supports the HTTPS/TLS protocol to enable traffic encryption for client
connections to the load balancer. Connections from the load balancer to the EC2 instances use
plaintext encryption. By default, the HTTPS port is turned off.

To turn on the HTTPS port

1. Create a new certificate using Amazon Certificate Manager (ACM) or upload a certificate and
key to Amazon Identity and Access Management (IAM). For more information about requesting
an ACM certificate, see Request a Certificate in the Amazon Certificate Manager User Guide. For
more information about importing third-party certificates into ACM, see Importing Certificates
in the Amazon Certificate Manager User Guide. If ACM is not available in your region, use
Amazon Identity and Access Management (IAM) to upload a third-party certificate. The ACM
and IAM services store the certificate and provide an Amazon Resource Name (ARN) for the
SSL certificate. For more information about creating and uploading certificates to IAM, see
Working with Server Certificates in IAM User Guide.

2. Specify the HTTPS port by selecting a port for HTTPS Listener Port.

3. For SSL Certificate ID, enter the Amazon Resources Name (ARN) of your SSL
certificate. For example, arn:aws-cn:iam::123456789012:server-
certificate/abc/certs/build or arn:aws-cn:acm:us-
west-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678. Use the
SSL certificate that you created or uploaded in step 1.

To turn off the HTTPS port, select OFF for HTTPS Listener Port.

Health checks

The health check definition includes a URL to be queried for instance health. By default, Elastic
Beanstalk uses TCP:80 for nonlegacy containers and HTTP:80 for legacy containers. You can
override the default URL to match an existing resource in your application (e.g., /myapp/
default.aspx) by entering it in the Application Health Check URL box. If you override the

Managing environments 856

https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request.html
https://docs.amazonaws.cn/acm/latest/userguide/import-certificate.html
https://docs.amazonaws.cn/general/latest/gr/acm.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingServerCerts.html

Amazon Elastic Beanstalk Developer Guide

default URL, then Elastic Beanstalk uses HTTP to query the resource. To check if you are using a
legacy container type, see the section called “Why are some platform versions marked legacy?”

You can control the settings for the health check using the EC2 Instance Health Check section of
the Load Balancing panel.

The health check definition includes a URL to be queried for instance health. Override the default
URL to match an existing resource in your application (e.g., /myapp/index.jsp) by entering it in
the Application Health Check URL box.

The following list describes the health check parameters you can set for your application.

• For Health Check Interval (seconds), enter the number of seconds Elastic Load Balancing waits
between health checks for your application's Amazon EC2 instances.

• For Health Check Timeout (seconds), specify the number of seconds Elastic Load Balancing
waits for a response before it considers the instance unresponsive.

• For Healthy Check Count Threshold and Unhealthy Check Count Threshold, specify the
number of consecutive successful or unsuccessful URL probes before Elastic Load Balancing
changes the instance health status. For example, specifying 5 for Unhealthy Check Count
Threshold means that the URL would have to return an error message or timeout five
consecutive times before Elastic Load Balancing considers the health check failed.

Sessions

By default, a load balancer routes each request independently to the server instance with the
smallest load. By comparison, a sticky session binds a user's session to a specific server instance so
that all requests coming from the user during the session are sent to the same server instance.

Elastic Beanstalk uses load balancer–generated HTTP cookies when sticky sessions are enabled
for an application. The load balancer uses a special load balancer–generated cookie to track the
application instance for each request. When the load balancer receives a request, it first checks
to see if this cookie is present in the request. If so, the request is sent to the application instance
specified in the cookie. If there is no cookie, the load balancer chooses an application instance

Managing environments 857

Amazon Elastic Beanstalk Developer Guide

based on the existing load balancing algorithm. A cookie is inserted into the response for binding
subsequent requests from the same user to that application instance. The policy configuration
defines a cookie expiry, which establishes the duration of validity for each cookie.

You can use the Sessions section on the Load Balancer tab to specify whether or not the load
balancer for your application allows session stickiness.

For more information on Elastic Load Balancing, go to the Elastic Load Balancing Developer Guide.

Configuring Auto Scaling using the Amazon toolkit for Visual Studio

Amazon EC2 Auto Scaling is an Amazon web service designed to automatically launch or terminate
Amazon EC2 instances based on user-defined triggers. Users can set up Auto Scaling groups
and associate triggers with these groups to automatically scale computing resources based on
metrics such as bandwidth usage or CPU utilization. Amazon EC2 Auto Scaling works with Amazon
CloudWatch to retrieve metrics for the server instances running your application.

Amazon EC2 Auto Scaling lets you take a group of Amazon EC2 instances and set various
parameters to have this group automatically increase or decrease in number. Amazon EC2 Auto
Scaling can add or remove Amazon EC2 instances from that group to help you seamlessly deal with
traffic changes to your application.

Amazon EC2 Auto Scaling also monitors the health of each Amazon EC2 instance that it launches.
If any instance terminates unexpectedly, Amazon EC2 Auto Scaling detects the termination and
launches a replacement instance. This capability enables you to maintain a fixed, desired number of
Amazon EC2 instances automatically.

Elastic Beanstalk provisions Amazon EC2 Auto Scaling for your application. You can edit the Elastic
Beanstalk environment's Amazon EC2 instance configuration with the Auto Scaling tab inside your
application environment tab in the Amazon Toolkit for Visual Studio.

Managing environments 858

http://docs.amazonaws.cn/ElasticLoadBalancing/latest/DeveloperGuide/

Amazon Elastic Beanstalk Developer Guide

The following section discusses how to configure Auto Scaling parameters for your application.

Launch the configuration

You can edit the launch configuration to control how your Elastic Beanstalk application provisions
Amazon EC2 Auto Scaling resources.

The Minimum Instance Count and Maximum Instance Count boxes let you specify the minimum
and maximum size of the Auto Scaling group that your Elastic Beanstalk application uses.

Note

To maintain a fixed number of Amazon EC2 instances, set Minimum Instance Count and
Maximum Instance Count to the same value.

Managing environments 859

Amazon Elastic Beanstalk Developer Guide

The Availability Zones box lets you specify the number of Availability Zones you want your
Amazon EC2 instances to be in. It is important to set this number if you want to build fault-tolerant
applications. If one Availability Zone goes down, your instances will still be running in your other
Availability Zones.

Note

Currently, it is not possible to specify which Availability Zone your instance will be in.

Triggers

A trigger is an Amazon EC2 Auto Scaling mechanism that you set to tell the system when you
want to increase (scale out) the number of instances, and when you want to decrease (scale in)
the number of instances. You can configure triggers to fire on any metric published to Amazon
CloudWatch, such as CPU utilization, and determine if the conditions you specified have been met.
When the upper or lower thresholds of the conditions you have specified for the metric have been
breached for the specified period of time, the trigger launches a long-running process called a
Scaling Activity.

You can define a scaling trigger for your Elastic Beanstalk application using Amazon Toolkit for
Visual Studio.

Amazon EC2 Auto Scaling triggers work by watching a specific Amazon CloudWatch metric for
an instance. Triggers include CPU utilization, network traffic, and disk activity. Use the Trigger
Measurement setting to select a metric for your trigger.

The following list describes the trigger parameters you can configure using the Amazon
Management Console.

• You can specify which statistic the trigger should use. You can select Minimum, Maximum, Sum,
or Average for Trigger Statistic.

Managing environments 860

Amazon Elastic Beanstalk Developer Guide

• For Unit of Measurement, specify the unit for the trigger measurement.

• The value in the Measurement Period box specifies how frequently Amazon CloudWatch
measures the metrics for your trigger. The Breach Duration is the amount of time a metric can
be beyond its defined limit (as specified for the Upper Threshold and Lower Threshold) before
the trigger fires.

• For Upper Breach Scale Increment and Lower Breach Scale Increment, specify how many
Amazon EC2 instances to add or remove when performing a scaling activity.

For more information on Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling section on
Amazon Elastic Compute Cloud Documentation.

Configuring notifications using Amazon toolkit for Visual Studio

Elastic Beanstalk uses the Amazon Simple Notification Service (Amazon SNS) to notify you of
important events affecting your application. To enable Amazon SNS notifications, simply enter
your email address in the Email Address box. To disable these notifications, remove your email
address from the box.

Configuring .NET containers using the Amazon toolkit for Visual Studio

The Container/.NET Options panel lets you fine-tune the behavior of your Amazon EC2 instances
and enable or disable Amazon S3 log rotation. You can use the Amazon Toolkit for Visual Studio to
configure your container information.

Note

You can modify your configuration settings with zero downtime by swapping the CNAME
for your environments. For more information, see Blue/Green deployments with Elastic
Beanstalk.

Managing environments 861

http://www.amazonaws.cn/documentation/ec2/

Amazon Elastic Beanstalk Developer Guide

If you want to, you can extend the number of parameters. For information about extending
parameters, see Option settings.

To access the Container/.NET options panel for your Elastic Beanstalk application

1. In Amazon Toolkit for Visual Studio, expand the Elastic Beanstalk node and your application
node.

2. In Amazon Explorer, double-click your Elastic Beanstalk environment.

3. At the bottom of the Overview pane, click the Configuration tab.

4. Under Container, you can configure container options.

.NET container options

You can choose the version of .NET Framework for your application. Choose either 2.0 or 4.0 for
Target runtime. Select Enable 32-bit Applications if you want to enable 32-bit applications.

Application settings

The Application Settings section lets you specify environment variables that you can read from
your application code.

Managing environments 862

Amazon Elastic Beanstalk Developer Guide

Managing accounts

If you want to set up different Amazon accounts to perform different tasks, such as testing,
staging, and production, you can add, edit, and delete accounts using the Amazon Toolkit for Visual
Studio.

To manage multiple accounts

1. In Visual Studio, on the View menu, click Amazon Explorer.

2. Beside the Account list, click the Add Account button.

The Add Account dialog box appears.

3. Fill in the requested information.

4. Your account information now appears on the Amazon Explorer tab. When you publish to
Elastic Beanstalk, you can select which account you would like to use.

Managing accounts 863

Amazon Elastic Beanstalk Developer Guide

Listing and connecting to server instances

You can view a list of Amazon EC2 instances running your Elastic Beanstalk application
environment through the Amazon Toolkit for Visual Studio or from the Amazon Management
Console. You can connect to these instances using Remote Desktop Connection. For information
about listing and connecting to your server instances using the Amazon Management Console, see
Listing and connecting to server instances. The following section steps you through viewing and
connecting you to your server instances using the Amazon Toolkit for Visual Studio.

To view and connect to Amazon EC2 instances for an environment

1. In Visual Studio, in Amazon Explorer, expand the Amazon EC2 node and double-click
Instances.

2. Right-click the instance ID for the Amazon EC2 instance running in your application's load
balancer in the Instance column and select Open Remote Desktop from the context menu.

Debug 864

Amazon Elastic Beanstalk Developer Guide

3. Select Use EC2 keypair to log on and paste the contents of your private key file that you used
to deploy your application in the Private key box. Alternatively, enter your user name and
password in the User name and Password text boxes.

Note

If the key pair is stored inside the Toolkit, the text box does not appear.

4. Click OK.

Monitoring application health

When you are running a production website, it is important to know that your application is
available and responding to requests. To assist with monitoring your application’s responsiveness,
Elastic Beanstalk provides features where you can monitor statistics about your application and
create alerts that trigger when thresholds are exceeded.

For information about the health monitoring provided by Elastic Beanstalk, see Basic health
reporting.

You can access operational information about your application by using either the Amazon Toolkit
for Visual Studio or the Amazon Management Console.

The toolkit displays your environment's status and application health in the Status field.

To monitor application health

1. In the Amazon Toolkit for Visual Studio, in Amazon Explorer, expand the Elastic Beanstalk
node, and then expand your application node.

2. Right-click your Elastic Beanstalk environment, and then click View Status.

3. On your application environment tab, click Monitoring.

Monitor 865

Amazon Elastic Beanstalk Developer Guide

The Monitoring panel includes a set of graphs showing resource usage for your particular
application environment.

Note

By default, the time range is set to the last hour. To modify this setting, in the Time
Range list, click a different time range.

You can use the Amazon Toolkit for Visual Studio or the Amazon Management Console to view
events associated with your application.

To view application events

1. In the Amazon Toolkit for Visual Studio, in Amazon Explorer, expand the Elastic Beanstalk
node and your application node.

2. Right-click your Elastic Beanstalk environment in Amazon Explorer and then click View Status.

3. In your application environment tab, click Events.

Monitor 866

Amazon Elastic Beanstalk Developer Guide

Deploying Elastic Beanstalk applications in .NET using the deployment
tool

The Amazon Toolkit for Visual Studio includes a deployment tool, a command line tool that
provides the same functionality as the deployment wizard in the Amazon Toolkit. You can use
the deployment tool in your build pipeline or in other scripts to automate deployments to Elastic
Beanstalk.

The deployment tool supports both initial deployments and redeployments. If you previously
deployed your application using the deployment tool, you can redeploy using the deployment
wizard within Visual Studio. Similarly, if you have deployed using the wizard, you can redeploy
using the deployment tool.

Note

The deployment tool does not apply recommended values for configuration options like
the console or EB CLI. Use configuration files to ensure that any settings that you need are
configured when you launch your environment.

This chapter walks you through deploying a sample .NET application to Elastic Beanstalk using
the deployment tool, and then redeploying the application using an incremental deployment.
For a more in-depth discussion about the deployment tool, including the parameter options, see
Deployment Tool.

Deployment tool 867

http://docs.amazonaws.cn/AWSToolkitVS/latest/UserGuide/tkv-deploy-beanstalk.html

Amazon Elastic Beanstalk Developer Guide

Prerequisites

To use the deployment tool, you need to install the Amazon Toolkit for Visual Studio. For
information on prerequisites and installation instructions, see Amazon Toolkit for Microsoft Visual
Studio.

The deployment tool is typically installed in one of the following directories on Windows:

32-bit 64-bit

C:\Program Files\AWS
Tools\Deployment Tool
\awsdeploy.exe

C:\Program Files (x86)\AWS Tools\Dep
loyment Tool\awsdeploy.exe

Deploy to Elastic Beanstalk

To deploy the sample application to Elastic Beanstalk using the deployment tool, you first need to
modify the ElasticBeanstalkDeploymentSample.txt configuration file, which is provided
in the Samples directory. This configuration file contains the information necessary to deploy
your application, including the application name, application version, environment name, and your
Amazon access credentials. After modifying the configuration file, you then use the command line
to deploy the sample application. Your web deploy file is uploaded to Amazon S3 and registered
as a new application version with Elastic Beanstalk. It will take a few minutes to deploy your
application. Once the environment is healthy, the deployment tool outputs a URL for the running
application.

To deploy a .NET application to Elastic Beanstalk

1. From the Samples subdirectory where the deployment tool is installed, open
ElasticBeanstalkDeploymentSample.txt and enter your Amazon access key and
Amazon secret key as in the following example.

AWS Access Key and Secret Key used to create and deploy the application
 instance
AWSAccessKey = AKIAIOSFODNN7EXAMPLE
AWSSecretKey = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Deployment tool 868

http://www.amazonaws.cn/visualstudio/
http://www.amazonaws.cn/visualstudio/

Amazon Elastic Beanstalk Developer Guide

Note

For API access, you need an access key ID and secret access key. Use IAM user access
keys instead of Amazon Web Services account root user access keys. For more
information about creating access keys, see Manage access keys for IAM users in the
IAM User Guide.

2. At the command line prompt, type the following:

C:\Program Files (x86)\AWS Tools\Deployment Tool>awsdeploy.exe /w Samples
\ElasticBeanstalkDeploymentSample.txt

It takes a few minutes to deploy your application. If the deployment succeeds, you will see the
message, Application deployment completed; environment health is Green.

Note

If you receive the following error, the CNAME already exists.

[Error]: Deployment to AWS Elastic Beanstalk failed with exception: DNS name
 (MyAppEnv.elasticbeanstalk.com) is not available.

Because a CNAME must be unique, you need to change Environment.CNAME in
ElasticBeanstalkDeploymentSample.txt.

3. In your web browser, navigate to the URL of your running application. The URL will be in the
form <CNAME.elasticbeanstalk.com> (e.g., MyAppEnv.elasticbeanstalk.com).

Migrating your on-premises .NET application to Elastic
Beanstalk

Amazon Elastic Beanstalk provides a streamlined migration path for your Windows applications
running on Internet Information Services (IIS) through the Elastic Beanstalk Command Line
Interface (EB CLI). The eb migrate command automatically discovers your IIS sites, applications,
and virtual directories, preserves their configurations, and deploys them to the Amazon Cloud.

Migrating on-premises application 869

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon Elastic Beanstalk Developer Guide

This built-in migration capability offers a simpler approach that reduces the complexity and time
typically associated with cloud migrations. The migration process helps maintain application
functionality and configuration integrity during the transition to Amazon.

For complete, detailed instructions about migrating your IIS applications to Amazon Elastic
Beanstalk, refer to the Migrating IIS applications chapter in this guide.

Recommendations for Windows Server retired components on
Elastic Beanstalk

This topic provides recommendations if your applications are currently running on the retired
Windows Server 2012 R2 platform branches. It also addresses the deprecated support for the TLS
1.0 and 1.1 protocol versions on our Amazon service API endpoints and the impacted platform
branches.

Windows Server 2012 R2 platform branches retired

Elastic Beanstalk retired Windows Server 2012 R2 platform branches on December 4, 2023, and
made the AMIs associated with those platforms private on April 10, 2024. This action prevents the
launching of instances in your Windows Server 2012 environments that use the default Beanstalk
AMI.

If you have any environments running on retired Windows platform branches we recommend that
you migrate them to one of the following Windows Server platforms, which are current and fully
supported:

• Windows Server 2022 with IIS 10.0 version 2.x

• Windows Server 2019 with IIS 10.0 version 2.x

For full migration considerations, see Migrating from earlier major versions of the Windows server
platform.

For more information about platform deprecation, see Elastic Beanstalk platform support policy.

Note

If you cannot migrate to these fully supported platforms, we recommend using custom
AMIs created with Windows Server 2012 R2 or Windows Server 2012 R2 Core AMIs as

Retired component recommendations 870

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2023-12-04-windows-2012-retire.html

Amazon Elastic Beanstalk Developer Guide

the base image, if you have not done so already. For detailed instructions, see Preserving
access to an Amazon Machine Image (AMI) for a retired platform. Reach out to the Amazon
Support Center if you need temporary access to an AMI while you perform one of these
migration steps.

TLS 1.2 Compatibility

As of December 31, 2023, Amazon started fully enforcing TLS 1.2 across all Amazon API endpoints.
This action removed the ability to use TLS versions 1.0 and 1.1 with all Amazon APIs. This
information was originally communicated on June 28, 2022. To avoid the risk of availability impact,
upgrade any environments running the platform versions identified here to a newer version as
soon as possible, if you have not done so already.

Potential impact

Elastic Beanstalk platforms versions that run TLS v1.1 or earlier are impacted. This change impacts
environment actions that include but are not limited to the following: configuration deployments,
application deployments, auto scaling, new environment launch, log rotation, enhanced health
reports, and publishing application logs to the Amazon S3 bucket that's associated with your
applications.

Affected Windows Platform Versions

Customers with Elastic Beanstalk environments on the following platform version are advised to
upgrade each of their corresponding environments to Windows platform version 2.8.3 or later,
released on Feb 18, 2022.

• Windows Server 2019 — platform version 2.8.2 or prior versions

Customers with Elastic Beanstalk environments on the following platform versions are advised to
upgrade each of their corresponding environments to Windows platform version 2.10.7 or later,
released on Dec 28, 2022.

• Windows Server 2016 — platform version 2.10.6 or prior versions

• Windows Server 2012 — all platform versions; this platform was retired on December 4, 2023

• Windows Server 2008 — all platform versions; this platform was retired on October 28, 2019

TLS 1.2 Compatibility 871

https://console.amazonaws.cn/support/home#/
https://console.amazonaws.cn/support/home#/
https://amazonaws-china.com/blogs/security/tls-1-2-required-for-aws-endpoints/
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-02-18-windows.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-12-28-windows.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2023-12-04-windows-2012-retire.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2019-10-28-windows.html

Amazon Elastic Beanstalk Developer Guide

For a list of the most recent and supported Windows Server platform versions, see Supported
Platforms in the Amazon Elastic Beanstalk Platforms guide.

For details and best practices about updating your environment, see Updating your Elastic
Beanstalk environment's platform version.

TLS 1.2 Compatibility 872

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

Amazon Elastic Beanstalk Developer Guide

Deploying .NET core (Linux) applications with Elastic
Beanstalk

Check out the .NET on Amazon Developer Center

Have you stopped by our .Net Developer Center? It's our one stop shop for all things .NET on
Amazon.
For more information see the .NET on Amazon Developer Center.

This chapter provides instructions for configuring and deploying your .NET core (Linux) web
application to Amazon Elastic Beanstalk. Elastic Beanstalk makes it easy to deploy, manage, and
scale your .NET core (Linux) web applications using Amazon Web Services.

You can deploy your application in just a few minutes using the Elastic Beanstalk Command Line
Interface (EB CLI) or by using the Elastic Beanstalk console. After you deploy your Elastic Beanstalk
application, you can continue to use the EB CLI to manage your application and environment, or
you can use the Elastic Beanstalk console, Amazon CLI, or the APIs.

Follow the steps in the QuickStart for .NET Core on Linux for step-by-step instructions to create
and deploy an ASP.NET Core Hello World web application with the EB CLI.

Topics

• QuickStart: Deploy a .NET Core on Linux application to Elastic Beanstalk

• Setting up your .NET core on Linux development environment for Elastic Beanstalk

• Using the Elastic Beanstalk .NET core on Linux platform

• The Amazon Toolkit for Visual Studio - Working with .Net Core on Elastic Beanstalk

• Migrating from .NET on Windows Server platform to the .NET Core on Linux platform on Elastic
Beanstalk

QuickStart: Deploy a .NET Core on Linux application to Elastic
Beanstalk

This QuickStart tutorial walks you through the process of creating a .NET Core on Linux application
and deploying it to an Amazon Elastic Beanstalk environment.

QuickStart for .NET Core on Linux 873

https://www.amazonaws.cn/developer/language/net

Amazon Elastic Beanstalk Developer Guide

Note

Tutorial examples are intended for demonstration. Do not use the application for
production traffic.

Sections

• Your Amazon account

• Prerequisites

• Step 1: Create a .NET Core on Linux application

• Step 2: Run your application locally

• Step 3: Deploy your .NET Core on Linux application with the EB CLI

• Step 4: Run your application on Elastic Beanstalk

• Step 5: Clean up

• Amazon resources for your application

• Next steps

• Deploy with the Elastic Beanstalk console

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account. Signing up
enables you to access Elastic Beanstalk and other Amazon services that you need.

If you already have an Amazon account, you can move on to Prerequisites.

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Your Amazon account 874

http://www.amazonaws.cn/

Amazon Elastic Beanstalk Developer Guide

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

EB CLI

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install EB CLI with setup script (recommended) and Configure the
EB CLI.

Prerequisites 875

http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Elastic Beanstalk Developer Guide

.NET Core on Linux

If you don't have the .NET SDK installed on your local machine, you can install it by following the
Download .NET link on the .NET documentation website.

Verify your .NET SDK installation by running the following command.

~$ dotnet --info

Step 1: Create a .NET Core on Linux application

Create a project directory.

~$ mkdir eb-dotnetcore
~$ cd eb-dotnetcore

Next, create a sample Hello World application by running the following commands.

~/eb-dotnetcore$ dotnet new web --name HelloElasticBeanstalk
~/eb-dotnetcore$ cd HelloElasticBeanstalk

Step 2: Run your application locally

Run the following command to run your application locally.

~/eb-dotnetcore/HelloElasticBeasntalk$ dotnet run

The output should look something like the following text.

Building...
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: https://localhost:7294
info: Microsoft.Hosting.Lifetime[14]
 Now listening on: http://localhost:5052
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development

Step 1: Create a .NET Core on Linux application 876

https://dotnet.microsoft.com/en-us/download
https://learn.microsoft.com/en-us/dotnet/

Amazon Elastic Beanstalk Developer Guide

info: Microsoft.Hosting.Lifetime[0]

Note

The dotnet command selects a port at random when running the application locally. In
this example the port is 5052. When you deploy the application to your Elastic Beanstalk
environment, the application will run on port 5000.

Enter the URL address http://localhost:port in your web browser. For this specific example,
the command is http://localhost:5052. The web browser should display “Hello World!”.

Step 3: Deploy your .NET Core on Linux application with the EB CLI

Run the following commands to create an Elastic Beanstalk environment for this application.

To create an environment and deploy your .NET Core on Linux application

1. Compile and publish your application to a folder for deployment to the Elastic Beanstalk
environment you're about to create.

~$ cd eb-dotnetcore/HelloElasticBeanstalk
~/eb-dotnetcore/HelloElasticBeanstalk$ dotnet publish -o site

2. Navigate to the site directory where you just published your app.

~/eb-dotnetcore/HelloElasticBeanstalk$ cd site

3. Initialize your EB CLI repository with the eb init command.

Be aware of the following details regarding the platform branch version that you specify in the
command:

• Replace x.y.z in the following command with the latest version of the platform branch
.NET 6 on AL2023.

• To locate the latest platform branch version see .NET Core on Linux Supported platforms in
the Amazon Elastic Beanstalk Platforms guide.

• An example of a solution stack name that includes the version number is 64bit-amazon-
linux-2023-v3.1.1-running-.net-6. In this example the branch version is 3.1.1.

Step 3: Deploy your .NET Core on Linux application with the EB CLI 877

https://docs.amazonaws.cn/https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.dotnetlinux

Amazon Elastic Beanstalk Developer Guide

~eb-dotnetcore/HelloElasticBeanstalk/site$ eb init -p 64bit-amazon-linux-2023-
vx.y.z-running-.net-6 dotnetcore-tutorial --region us-west-2
Application dotnetcore-tutorial has been created.

This command creates an application named dotnetcore-tutorial and configures your
local repository to create environments with the .NET Core on Linux platform version specified
in the command.

4. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~eb-dotnetcore/HelloElasticBeanstalk/site$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

5. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a zip file for your application and starts it on port 5000.

to

~eb-dotnetcore/HelloElasticBeanstalk/site$ eb create dotnet-tutorial

It takes about five minutes for Elastic Beanstalk to create your environment.

Step 4: Run your application on Elastic Beanstalk

When the process to create your environment completes, open your website with eb open.

~eb-dotnetcore/HelloElasticBeanstalk/site$ eb open

Congratulations! You've deployed a .NET Core on Linux application with Elastic Beanstalk! This
opens a browser window using the domain name created for your application.

Step 4: Run your application on Elastic Beanstalk 878

Amazon Elastic Beanstalk Developer Guide

Step 5: Clean up

You can terminate your environment when you finish working with your application. Elastic
Beanstalk terminates all Amazon resources associated with your environment.

To terminate your Elastic Beanstalk environment with the EB CLI run the following command.

~eb-dotnetcore/HelloElasticBeanstalk/site$ eb terminate

Amazon resources for your application

You just created a single instance application. It serves as a straightforward sample application
with a single EC2 instance, so it doesn't require load balancing or auto scaling. For single instance
applications Elastic Beanstalk creates the following Amazon resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.eb.amazonaws.com.cn.

Step 5: Clean up 879

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances. You can also explore your new
environment using the Elastic Beanstalk console. For detailed steps, see Explore your environment
in the Getting started chapter of this guide.

After you deploy a sample application or two and are ready to start developing and running .NET
Core on Linux applications locally, see Setting up your .NET core on Linux development
environment for Elastic Beanstalk.

Deploy with the Elastic Beanstalk console

You can also use the Elastic Beanstalk console to launch the sample application. For detailed steps,
see Create an example application in the Getting started chapter of this guide.

Setting up your .NET core on Linux development environment
for Elastic Beanstalk

This topic provides instructions to set up a .NET core on Linux development environment to
test your application locally prior to deploying it to Amazon Elastic Beanstalk. It also references
websites that provide installation instructions for useful tools.

Sections

• Installing the .NET Core SDK

• Installing an IDE

• Installing the Amazon Toolkit for Visual Studio

Installing the .NET Core SDK

You can use the .NET Core SDK to develop applications that run on Linux.

See the .NET downloads page to download and install the .NET Core SDK.

Next steps 880

https://dotnet.microsoft.com/download

Amazon Elastic Beanstalk Developer Guide

Installing an IDE

Integrated development environments (IDEs) provide a range of features that facilitate application
development. If you haven't used an IDE for .NET development, try Visual Studio Community to get
started.

See the Visual Studio Community page to download and install Visual Studio Community.

Installing the Amazon Toolkit for Visual Studio

The Amazon Toolkit for Visual Studio is an open source plugin for the Visual Studio IDE that makes
it easier for developers to develop, debug, and deploy .NET applications using Amazon. See the
Toolkit for Visual Studio homepage for installation instructions.

Using the Elastic Beanstalk .NET core on Linux platform

This topic describes how to configure, build, and run your .NET core on Linux applications on Elastic
Beanstalk.

Amazon Elastic Beanstalk supports a number of platform branches for different .NET Core
framework versions that run on the Linux operating system. See .NET core on Linux in the Amazon
Elastic Beanstalk Platforms for a full list.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

.NET Core on Linux platform considerations

Proxy server

The Elastic Beanstalk .NET Core on Linux platform includes a reverse proxy that forwards requests
to your application. By default, Elastic Beanstalk uses NGINX as the proxy server. You can choose
to use no proxy server, and configure Kestrel as your web server. Kestrel is included by default in
ASP.NET Core project templates.

Application structure

You can publish runtime-dependent applications that use the .NET Core runtime provided by Elastic
Beanstalk. You can also publish self-contained applications that include the .NET Core runtime

Installing an IDE 881

https://www.visualstudio.com/vs/community/
http://www.amazonaws.cn/visualstudio/
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.dotnetlinux
https://www.nginx.com/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel

Amazon Elastic Beanstalk Developer Guide

and your application's dependencies in the source bundle. To learn more, see the section called
“Bundling applications”.

Platform configuration

To configure the processes that run on the server instances in your environment, include an
optional Procfile in your source bundle. A Procfile is required if you have more than one
application in your source bundle.

We recommend that you always provide a Procfile in the source bundle with your application.
This way you precisely control which processes Elastic Beanstalk runs for your application.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

Configuring your .NET Core on Linux environment

The .NET Core on Linux platform settings enable you to fine-tune the behavior of your Amazon
EC2 instances. You can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration
using the Elastic Beanstalk console.

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your .NET Core on Linux environment using the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

Configuring your .NET Core on Linux environment 882

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Environment properties

The Environment Properties section enables you to specify environment configuration settings on
the Amazon EC2 instances that are running your application. Environment properties are passed in
as key-value pairs to the application.

Inside the .NET Core on Linux environment running in Elastic Beanstalk, environment variables are
accessible using Environment.GetEnvironmentVariable("variable-name"). For example,
you could read a property named API_ENDPOINT to a variable with the following code.

string endpoint = Environment.GetEnvironmentVariable("API_ENDPOINT");

See Environment variables and other software settings for more information.

.NET Core on Linux configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

The .NET Core on Linux platform supports options in the following namespace, in addition to the
options supported for all Elastic Beanstalk environments:

.NET Core on Linux configuration namespace 883

Amazon Elastic Beanstalk Developer Guide

• aws:elasticbeanstalk:environment:proxy – Choose to use NGINX or no proxy server.
Valid values are nginx or none.

The following example configuration file shows the use of the .NET Core on Linux-specific
configuration options.

Example .ebextensions/proxy-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: none

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

Bundling applications for the .NET Core on Linux Elastic Beanstalk
platform

You can run both runtime-dependent and self-contained .NET Core applications on Amazon Elastic
Beanstalk.

A runtime-dependent application uses a .NET Core runtime that Elastic Beanstalk provides to run
your application. Elastic Beanstalk uses the runtimeconfig.json file in your source bundle to
determine the runtime to use for your application. Elastic Beanstalk chooses the latest compatible
runtime available for your application.

A self-contained application includes the .NET Core runtime, your application, and its
dependencies. To use a version of the .NET Core runtime that Elastic Beanstalk doesn't include in its
platforms, provide a self-contained application.

Examples

You can compile both self-contained and runtime-dependent applications with the dotnet
publish command. To learn more about publishing .NET Core apps, see .NET Core application
publishing overview in the .NET Core documentation.

The following example file structure defines a single application that uses a .NET Core runtime that
Elastic Beanstalk provides.

Bundling applications 884

https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying

Amazon Elastic Beanstalk Developer Guide

appsettings.Development.json
appsettings.json
dotnetcoreapp.deps.json
dotnetcoreapp.dll
dotnetcoreapp.pdb
dotnetcoreapp.runtimeconfig.json
web.config
Procfile
.ebextensions
.platform

You can include multiple applications in your source bundle. The following example defines two
applications to run on the same web server. To run multiple applications, you must include a
Procfile in your source bundle. For a full example application, see dotnet-core-linux-multiple-
apps.zip.

DotnetMultipleApp1
Amazon.Extensions.Configuration.SystemsManager.dll
appsettings.Development.json
appsettings.json
AWSSDK.Core.dll
AWSSDK.Extensions.NETCore.Setup.dll
AWSSDK.SimpleSystemsManagement.dll
DotnetMultipleApp1.deps.json
DotnetMultipleApp1.dll
DotnetMultipleApp1.pdb
DotnetMultipleApp1.runtimeconfig.json
Microsoft.Extensions.PlatformAbstractions.dll
Newtonsoft.Json.dll
web.config
DotnetMultipleApp2
Amazon.Extensions.Configuration.SystemsManager.dll
appsettings.Development.json
appsettings.json
AWSSDK.Core.dll
AWSSDK.Extensions.NETCore.Setup.dll
AWSSDK.SimpleSystemsManagement.dll
DotnetMultipleApp2.deps.json
DotnetMultipleApp2.dll
DotnetMultipleApp2.pdb
DotnetMultipleApp2.runtimeconfig.json
Microsoft.Extensions.PlatformAbstractions.dll

Bundling applications 885

samples/dotnet-core-linux-multiple-apps.zip
samples/dotnet-core-linux-multiple-apps.zip

Amazon Elastic Beanstalk Developer Guide

Newtonsoft.Json.dll
web.config
Procfile
.ebextensions
.platform

Using a Procfile to configure your .NET Core on Linux Elastic Beanstalk
environment

To run multiple applications on the same web server, you must include a Procfile in your source
bundle that tells Elastic Beanstalk which applications to run.

We recommend that you always provide a Procfile in the source bundle with your application.
This way you precisely control which processes Elastic Beanstalk runs for your application and
which arguments these processes receive.

The following example uses a Procfile to specify two applications for Elastic Beanstalk to run on
the same web server.

Example Procfile

web: dotnet ./dotnet-core-app1/dotnetcoreapp1.dll
web2: dotnet ./dotnet-core-app2/dotnetcoreapp2.dll

For details about writing and using a Procfile, see Buildfile and Procfile.

Configuring the proxy server

Amazon Elastic Beanstalk uses NGINX as the reverse proxy to relay requests to your application.
Elastic Beanstalk provides a default NGINX configuration that you can either extend or override
completely with your own configuration.

By default, Elastic Beanstalk configures the NGINX proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

Note

The port that your application listens on doesn't affect the port that the NGINX server
listens on to receive requests from the load balancer.

Procfile 886

https://www.nginx.com/

Amazon Elastic Beanstalk Developer Guide

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, see Reverse
proxy configuration.

The following example configuration file extends your environment's NGINX configuration. The
configuration directs requests to /api to a second web application that listens on port 5200 on
the web server. By default, Elastic Beanstalk forwards requests to a single application that listens
on port 5000.

Example 01_custom.conf

location /api {
 proxy_pass http://127.0.0.1:5200;
 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection $http_connection;
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
}

The Amazon Toolkit for Visual Studio - Working with .Net Core
on Elastic Beanstalk

This topic shows how you can do the following tasks using the Amazon Toolkit for Visual Studio:

• Create an ASP.NET Core web application using a Visual Studio template.

• Create an Elastic Beanstalk Amazon Linux environment.

• Deploy the ASP.NET Core web application to the new Amazon Linux environment.

This topic also explores how you can use the Amazon Toolkit for Visual Studio to manage your
Elastic Beanstalk application environments and monitor your application's health.

The Amazon Toolkit for Visual Studio 887

Amazon Elastic Beanstalk Developer Guide

The Amazon Toolkit for Visual Studio is a plugin to the Visual Studio IDE. With the toolkit you can
deploy and manage applications in Elastic Beanstalk while you are working in your Visual Studio
environment.

Sections

• Prerequisites

• Create a new application project

• Create an Elastic Beanstalk environment and deploy your application

• Terminating an environment

• Managing your Elastic Beanstalk application environments

• Monitoring application health

Prerequisites

Before you begin this tutorial, you need to install the Amazon Toolkit for Visual Studio. For
instructions, see Setting up the Amazon Toolkit for Visual Studio.

If you have never used the toolkit before, the first thing you'll need to do after installing the
toolkit is to register your Amazon credentials with the toolkit. For more information about this, see
Providing Amazon Credentials.

Create a new application project

If you don't have a .NET Core application project in Visual Studio, you can easily create one using
one of the Visual Studio project templates.

To create a new ASP.NET Core web application project

1. In Visual Studio, on the File menu, choose New and then choose Project.

2. In the Create a new project dialog box, select C#, select Linux, and then select Cloud.

3. From the list of project templates that displays select ASP.NET Core Web Application, and
then select Next.

Note

If you don't see ASP.NET Core Web Application listed in the project templates, you can
install it in Visual Studio.

Prerequisites 888

https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/getting-set-up.html
https://docs.amazonaws.cn/toolkit-for-visual-studio/latest/user-guide/credentials.html

Amazon Elastic Beanstalk Developer Guide

1. Scroll to the bottom of the template list and select the Install more tools and
features link that is located under the template list.

2. If you are prompted to allow the Visual Studio application to make changes to your
device, select Yes.

3. Choose the Workloads tab, then select ASP.NET and web development.

4. Select the Modify button. The Visual Studio Installer installs the project template.

5. After the installer completes, exit the panel to return to where you left off in Visual
Studio .

4. In the Configure your new project dialog box, enter a Project name. The Solution name
defaults to your project name. Next, choose Create.

5. In the Create a new ASP.NET Core web application dialog box, select .NET Core, and then
select ASP.NET Core 3.1. From the list of application types that are displayed, select Web
Application, then select the Create button.

Visual Studio displays the Creating Project dialog box when it creates your application. After Visual
Studio completes generating your application, a panel with your application name is displayed.

Create an Elastic Beanstalk environment and deploy your application

This section describes how to create an Elastic Beanstalk environment for your application and
deploy your application to that environment.

To create a new environment and deploy your application

1. In Visual Studio select View, then Solution Explorer.

2. In Solution Explorer, open the context (right-click) menu for your application, and then select
Publish to Amazon Elastic Beanstalk.

3. In the Publish to Amazon Elastic Beanstalk wizard, enter your account information.

a. For Account profile to use, select your default account or choose the Add another
account icon to enter new account information.

b. For Region, select the Region where you want to deploy your application. For information
about available Amazon Regions, see Amazon Elastic Beanstalk Endpoints and Quotas in
the Amazon Web Services General Reference. If you select a Region that is not supported by
Elastic Beanstalk, then the option to deploy to Elastic Beanstalk is unavailable.

Create an Elastic Beanstalk environment and deploy your application 889

https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html

Amazon Elastic Beanstalk Developer Guide

c. Select Create a new application environment, then choose Next.

4. On the Application Environment dialog box, enter the details for your new application
environment.

5. On the next Amazon options dialog box, set Amazon EC2 options and other Amazon related
options for your deployed application.

a. For Container type select 64bit Amazon Linux 2 v<n.n.n> running .NET Core.

Note

We recommend you select the current platform version of Linux. This version
contains the most recent security and bug fixes that are included in our latest
Amazon Machine Image (AMI).

b. For Instance Type, select t2.micro. (Choosing a micro instance type minimizes the cost
associated with running the instance.)

c. For Key pair, select Create new key pair. Enter a name for the new key pair, and then
choose OK. (In this example, we use myuseastkeypair.) A key pair enables remote-
desktop access to your Amazon EC2 instances. For more information about Amazon EC2
key pairs, see Using Credentials in the Amazon Elastic Compute Cloud User Guide.

d. For a simple, low traffic application, select Single instance environment. For more
information, see Environment types

e. Select Next.

For more information about the Amazon options that are not used in this example consider
the following pages:

• For Use custom AMI, see Using a custom Amazon machine image (AMI) in your Elastic
Beanstalk environment.

• If you don't select Single instance environment, you need to choose a Load balance type.
See Load balancer for your Elastic Beanstalk environment for more information.

• Elastic Beanstalk uses the default Amazon VPC (Amazon Virtual Private Cloud) configuration
if you didn't choose Use non-default VPC. For more information see Using Elastic Beanstalk
with Amazon VPC.

Create an Elastic Beanstalk environment and deploy your application 890

http://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-credentials.html
https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

• Choosing the Enable Rolling Deployments option splits a deployment into batches to avoid
potential downtime during deployments. For more information, see Deploying applications
to Elastic Beanstalk environments.

• Choosing the Relational Database Access option connects your Elastic Beanstalk
environment to a previously created Amazon RDS database with Amazon RDS DB Security
Groups. For more information, see Controlling Access with Security Groups in the Amazon
RDS User Guide.

6. Select Next on the Permissions dialog box.

7. Select Next on the Applications Options dialog box.

8. Review your deployment options. After you've verified your settings are correct, select Deploy.

Your ASP.NET Core web application is exported as a web deploy file. This file is then uploaded
to Amazon S3 and registered as a new application version with Elastic Beanstalk. The Elastic
Beanstalk deployment feature monitors your environment until it is available with the newly
deployed code. The Status for your environment is displayed on the Env:<environment name> tab.
After the status updates to Environment is healthy, you can select the URL address to launch the
web application.

Terminating an environment

To avoid incurring charges for unused Amazon resources, you can use the Amazon Toolkit for Visual
Studio to terminate a running environment.

Note

You can always launch a new environment using the same version later.

To terminate an environment

1. Expand the Elastic Beanstalk node and the application node. In Amazon Explorer open
the context (right-click) menu for your application environment and select Terminate
Environment.

2. When prompted, select Yes to confirm that you want to terminate the environment. It
takes a few minutes for Elastic Beanstalk to terminate the Amazon resources running in the
environment.

Terminating an environment 891

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html

Amazon Elastic Beanstalk Developer Guide

The Status for your environment on the Env:<environment name> tab changes to Terminating and
is eventually Terminated.

Note

When you terminate your environment, the CNAME associated with the terminated
environment becomes available for anyone to use.

Managing your Elastic Beanstalk application environments

This section describes the specific service settings you can edit in the Amazon Toolkit for Visual
Studio as part of your application environment configuration. With the Amazon Toolkit for Visual
Studio and the Amazon Management Console, you can change the provisioning and configuration
of the Amazon resources used by your application environments. For information on how to
manage your application environments using the Amazon Management Console, see Creating
environments in Elastic Beanstalk.

Changing environment configurations settings

When you deploy your application, Elastic Beanstalk configures several connected Amazon cloud
computing services. You can control how these individual services are configured by using the
Amazon Toolkit for Visual Studio.

To edit an application's environment settings

1. In Visual Studio, on the File menu, choose Amazon Explorer.

2. Expand the Elastic Beanstalk node and your application node. Open the context (right-click)
menu for your application environment and select View Status.

You can now configure settings for the following:

• Amazon X-Ray

• Server

• Load Balancer (only applies to multiple-instance environments)

• Auto Scaling (only applies to multiple-instance environments)

• Notifications

• Container

Managing environments 892

Amazon Elastic Beanstalk Developer Guide

• Advanced Configuration Options

Configuring Amazon X-Ray using the Amazon toolkit for Visual Studio

Amazon X-Ray provides request tracing, exception collection, and profiling capabilities. With the
Amazon X-Ray panel, you can enable or disable X-Ray for your application. For more information
about X-Ray, see the Amazon X-Ray Developer Guide.

Configuring EC2 instances using the Amazon toolkit for Visual Studio

You can use Amazon Elastic Compute Cloud (Amazon EC2) to launch and manage server instances
in Amazon's data centers. You can use Amazon EC2 server instances at any time, for as long as you
need, and for any legal purpose. Instances are available in different sizes and configurations. For
more information, see Amazon EC2.

You can edit your Amazon EC2 instance configuration with the Server tab inside your application
environment tab in the Amazon Toolkit for Visual Studio.

Managing environments 893

https://docs.amazonaws.cn/xray/latest/devguide/
http://www.amazonaws.cn/ec2/

Amazon Elastic Beanstalk Developer Guide

Amazon EC2 instance types

Instance type displays the instance types available to your Elastic Beanstalk application. Change
the instance type to select a server with the characteristics (including memory size and CPU power)
that are most appropriate to your application. For example, applications with intensive and long-
running operations can require more CPU or memory.

For more information about the Amazon EC2 instance types available for your Elastic Beanstalk
application, see Instance Types in the Amazon Elastic Compute Cloud User Guide.

Amazon EC2 security groups

You can control access to your Elastic Beanstalk application using an Amazon EC2 Security Group. A
security group defines firewall rules for your instances. These rules specify which incoming network
traffic should be delivered to your instance. All other incoming traffic is discarded. You can modify
rules for a group at any time. The new rules are automatically enforced for all running instances
and instances launched in the future.

You can specify which Amazon EC2 Security Groups control access to your Elastic Beanstalk
application. To do this, enter the names of specific Amazon EC2 security groups (separating
multiple secruity groups with commas) into the EC2 Security Groups text box. You can do this
either by using the Amazon Management Console or the Amazon Toolkit for Visual Studio.

To create a security group using the Amazon toolkit for Visual Studio

1. In Visual Studio, in Amazon Explorer, expand the Amazon EC2 node, and then select Security
Groups.

2. Select Create Security Group, and enter a name and description for your security group.

3. Select OK.

Managing environments 894

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Beanstalk Developer Guide

For more information on Amazon EC2 Security Groups, see Using Security Groups in the Amazon
Elastic Compute Cloud User Guide.

Amazon EC2 key pairs

You can securely log in to the Amazon EC2 instances provisioned for your Elastic Beanstalk
application with an Amazon EC2 key pair.

Important

You must create an Amazon EC2 key pair and configure your Amazon EC2 instances
provisioned by Elastic Beanstalk to be able to access these instances. You can create your
key pair using the Publish to Amazon wizard inside the Amazon Toolkit for Visual Studio
when you deploy your application to Elastic Beanstalk. If you want to create additional key
pairs using the Toolkit, follow the steps described here. Alternatively, you can set up your
Amazon EC2 key pairs using the Amazon Management Console. For instructions on creating
a key pair for Amazon EC2, see the Amazon Elastic Compute Cloud Getting Started Guide.

The Existing Key Pair text box lets you specify the name of an Amazon EC2 key pair that you
can use to securely log in to the Amazon EC2 instances that are running your Elastic Beanstalk
application.

To specify the name of an Amazon EC2 key pair

1. Expand the Amazon EC2 node and select Key Pairs.

2. Select Create Key Pair and enter the key pair name.

3. Select OK.

For more information about Amazon EC2 key pairs, go to Using Amazon EC2 Credentials in the
Amazon Elastic Compute Cloud User Guide. For more information about connecting to Amazon EC2
instances, see

Monitoring interval

By default, only basic Amazon CloudWatch metrics are enabled. They return data in five-minute
periods. You can enable more granular one-minute CloudWatch metrics by selecting 1 minute for
the Monitoring Interval in the Server section of the Configuration tab for your environment in the
Amazon Toolkit for Eclipse.

Managing environments 895

http://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-network-security.html
https://console.amazonaws.cn/
http://docs.amazonaws.cn/AWSEC2/latest/GettingStartedGuide/
http://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-credentials.html

Amazon Elastic Beanstalk Developer Guide

Note

Amazon CloudWatch service charges can apply for one-minute interval metrics. See
Amazon CloudWatch for more information.

Custom AMI ID

You can override the default AMI used for your Amazon EC2 instances with your own custom AMI
by entering the identifier of your custom AMI into the Custom AMI ID box in the Server section of
the Configuration tab for your environment in the Amazon Toolkit for Eclipse.

Important

Using your own AMI is an advanced task that you should do with care. If you need a custom
AMI, we recommend you start with the default Elastic Beanstalk AMI and then modify it.
To be considered healthy, Elastic Beanstalk expects Amazon EC2 instances to meet a set of
requirements, including having a running host manager. If these requirements are not met,
your environment might not work properly.

Configuring Elastic Load Balancing using the Amazon toolkit for Visual Studio

Elastic Load Balancing is an Amazon web service that helps you improve the availability and
scalability of your application. This service makes it easy for you to distribute application loads
between two or more Amazon EC2 instances. Elastic Load Balancing improves availability through
providing additional redundancy and supports traffic growth for your application.

With Elastic Load Balancing, you can automatically distribute and balance incoming application
traffic among all your running instances. You can also easily add new instances when increasing the
capacity of your application is required.

Elastic Beanstalk automatically provisions Elastic Load Balancing when you deploy an application.
You can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration with the Load
Balancer tab inside your application environment tab in Amazon Toolkit for Visual Studio.

Managing environments 896

http://www.amazonaws.cn/cloudwatch/

Amazon Elastic Beanstalk Developer Guide

The following sections describe the Elastic Load Balancing parameters you can configure for your
application.

Ports

The load balancer provisioned to handle requests for your Elastic Beanstalk application sends
requests to the Amazon EC2 instances that are running your application. The provisioned load
balancer can listen for requests on HTTP and HTTPS ports and route requests to the Amazon EC2
instances in your Amazon Elastic Beanstalk application. By default, the load balancer handles
requests on the HTTP port. For this to work, at least one of the ports (either HTTP or HTTPS) must
be turned on.

Managing environments 897

Amazon Elastic Beanstalk Developer Guide

Important

Make sure that the port that you specified is not locked down; otherwise, you won't be able
to connect to your Elastic Beanstalk application.

Controlling the HTTP port

To turn off the HTTP port, select OFF for HTTP Listener Port. To turn on the HTTP port, you select
an HTTP port (for example, 80) from the list.

Note

To access your environment using a port other than the default port 80, such as port 8080,
add a listener to the existing load balancer and configure the new listener to listen on that
port.
For example, using the Amazon CLI for Classic load balancers, type the following command,
replacing LOAD_BALANCER_NAME with the name of your load balancer for Elastic
Beanstalk.

aws elb create-load-balancer-listeners --load-balancer-name LOAD_BALANCER_NAME
 --listeners "Protocol=HTTP, LoadBalancerPort=8080, InstanceProtocol=HTTP,
 InstancePort=80"

For example, using the Amazon CLI for Application Load Balancers, type the following
command, replacing LOAD_BALANCER_ARN with the ARN of your load balancer for Elastic
Beanstalk.

aws elbv2 create-listener --load-balancer-arn LOAD_BALANCER_ARN --protocol HTTP
 --port 8080

If you want Elastic Beanstalk to monitor your environment, do not remove the listener on
port 80.

Managing environments 898

https://docs.amazonaws.cn/cli/latest/reference/elb/create-load-balancer-listeners.html
https://docs.amazonaws.cn/cli/latest/reference/elbv2/create-listener.html

Amazon Elastic Beanstalk Developer Guide

Controlling the HTTPS port

Elastic Load Balancing supports the HTTPS/TLS protocol to enable traffic encryption for client
connections to the load balancer. Connections from the load balancer to the EC2 instances use
plaintext encryption. By default, the HTTPS port is turned off.

To turn on the HTTPS port

1. Create a new certificate using Amazon Certificate Manager (ACM) or upload a certificate and
key to Amazon Identity and Access Management (IAM). For more information about requesting
an ACM certificate, see Request a Certificate in the Amazon Certificate Manager User Guide. For
more information about importing third-party certificates into ACM, see Importing Certificates
in the Amazon Certificate Manager User Guide. If ACM is not available in your region, use
Amazon Identity and Access Management (IAM) to upload a third-party certificate. The ACM
and IAM services store the certificate and provide an Amazon Resource Name (ARN) for the
SSL certificate. For more information about creating and uploading certificates to IAM, see
Working with Server Certificates in IAM User Guide.

2. Specify the HTTPS port by selecting a port for HTTPS Listener Port.

3. For SSL Certificate ID, enter the Amazon Resources Name (ARN) of your SSL
certificate. For example, arn:aws-cn:iam::123456789012:server-
certificate/abc/certs/build or arn:aws-cn:acm:us-
west-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678. Use the
SSL certificate that you created or uploaded in step 1.

To turn off the HTTPS port, select OFF for HTTPS Listener Port.

Health checks

The health check definition includes a URL to be queried for instance health. By default, Elastic
Beanstalk uses TCP:80 for nonlegacy containers and HTTP:80 for legacy containers. You can
override the default URL to match an existing resource in your application (for example, /myapp/
default.aspx) by entering it in the Application Health Check URL box. If you override the

Managing environments 899

https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-request.html
https://docs.amazonaws.cn/acm/latest/userguide/import-certificate.html
https://docs.amazonaws.cn/general/latest/gr/acm.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingServerCerts.html

Amazon Elastic Beanstalk Developer Guide

default URL, then Elastic Beanstalk uses HTTP to query the resource. To check if you are using a
legacy container type, see the section called “Why are some platform versions marked legacy?”

You can control the settings for the health check using the EC2 Instance Health Check section of
the Load Balancing panel.

The health check definition includes a URL to be queried for instance health. Override the default
URL to match an existing resource in your application (for example, /myapp/index.jsp) by
entering it in the Application Health Check URL box.

The following list describes the health check parameters you can set for your application.

• For Health Check Interval (seconds), enter the number of seconds Elastic Load Balancing waits
between health checks for your application's Amazon EC2 instances.

• For Health Check Timeout (seconds), specify the number of seconds Elastic Load Balancing
waits for a response before it considers the instance unresponsive.

• For Healthy Check Count Threshold and Unhealthy Check Count Threshold, specify the
number of consecutive successful or unsuccessful URL probes before Elastic Load Balancing
changes the instance health status. For example, specifying 5 for Unhealthy Check Count
Threshold means that the URL must return an error message or timeout five consecutive times
before Elastic Load Balancing considers the health check as failed.

Sessions

By default, a load balancer routes each request independently to the server instance with the
smallest load. By comparison, a sticky session binds a user's session to a specific server instance so
that all requests coming from the user during the session are sent to the same server instance.

Elastic Beanstalk uses load balancer–generated HTTP cookies when sticky sessions are enabled
for an application. The load balancer uses a special load balancer–generated cookie to track
the application instance for each request. When the load balancer receives a request, it first
checks to see if this cookie is present in the request. If it is present, the request is sent to the
application instance that is specified in the cookie. If there is no cookie, the load balancer chooses

Managing environments 900

Amazon Elastic Beanstalk Developer Guide

an application instance based on the existing load balancing algorithm. A cookie is inserted into
the response for binding subsequent requests from the same user to that application instance.
The policy configuration defines a cookie expiry, which establishes the duration of validity for each
cookie.

You can use the Sessions section on the Load Balancer tab to specify whether the load balancer
for your application allows session stickiness.

For more information on Elastic Load Balancing, see the Elastic Load Balancing Developer Guide.

Configuring Auto Scaling using the Amazon toolkit for Visual Studio

Amazon EC2 Auto Scaling is an Amazon web service that is designed to automatically launch or
terminate Amazon EC2 instances based on user-defined triggers. You can set up Auto Scaling
groups and associate triggers with these groups to automatically scale computing resources based
on metrics such as bandwidth usage or CPU utilization. Amazon EC2 Auto Scaling works with
Amazon CloudWatch to retrieve metrics for the server instances running your application.

Amazon EC2 Auto Scaling lets you take a group of Amazon EC2 instances and set various
parameters to have this group automatically increase or decrease in number. Amazon EC2 Auto
Scaling can add or remove Amazon EC2 instances from that group to help you seamlessly deal with
traffic changes to your application.

Amazon EC2 Auto Scaling also monitors the health of each Amazon EC2 instance that it launches.
If any instance terminates unexpectedly, Amazon EC2 Auto Scaling detects the termination and
launches a replacement instance. This capability enables you to maintain a fixed, desired number of
Amazon EC2 instances automatically.

Elastic Beanstalk provisions Amazon EC2 Auto Scaling for your application. You can edit the Elastic
Beanstalk environment's Amazon EC2 instance configuration with the Auto Scaling tab inside your
application environment tab in the Amazon Toolkit for Visual Studio.

Managing environments 901

http://docs.amazonaws.cn/ElasticLoadBalancing/latest/DeveloperGuide/

Amazon Elastic Beanstalk Developer Guide

The following section discusses how to configure Auto Scaling parameters for your application.

Launch the configuration

You can edit the launch configuration to control how your Elastic Beanstalk application provisions
Amazon EC2 Auto Scaling resources.

The Minimum Instance Count and Maximum Instance Count boxes let you specify the minimum
and maximum size of the Auto Scaling group that your Elastic Beanstalk application uses.

Managing environments 902

Amazon Elastic Beanstalk Developer Guide

Note

To maintain a fixed number of Amazon EC2 instances, set Minimum Instance Count and
Maximum Instance Count to the same value.

The Availability Zones box lets you specify the number of Availability Zones you want your
Amazon EC2 instances to be in. It is important to set this number if you want to build fault-
tolerant applications. If one Availability Zone goes down, your instances will still run in your other
Availability Zones.

Note

Currently, it is not possible to specify which Availability Zone your instance will be in.

Triggers

A trigger is an Amazon EC2 Auto Scaling mechanism that you set to tell the system when you want
to increase (scale out) or decrease (scale in) the number of instances. You can configure triggers to
fire on any metric published to Amazon CloudWatch (for example, CPU utilization) and determine if
the conditions you specified have been met. When the upper or lower thresholds of the conditions
you have specified for the metric have been breached for the specified period of time, the trigger
launches a long-running process called a Scaling Activity.

You can define a scaling trigger for your Elastic Beanstalk application using Amazon Toolkit for
Visual Studio.

Amazon EC2 Auto Scaling triggers work by monitoring a specific Amazon CloudWatch metric of
a particular instance. Metrics include CPU utilization, network traffic, and disk activity. Use the
Trigger Measurement setting to select a metric for your trigger.

Managing environments 903

Amazon Elastic Beanstalk Developer Guide

The following list describes the trigger parameters you can configure using the Amazon
Management Console.

• You can specify which statistic the trigger should use. You can select Minimum, Maximum, Sum,
or Average for Trigger Statistic.

• For Unit of Measurement, specify the unit for the trigger measurement.

• The value in the Measurement Period box specifies how frequently Amazon CloudWatch
measures the metrics for your trigger. The Breach Duration is the amount of time a metric can
go beyond its defined limit (as specified for the Upper Threshold and Lower Threshold) before
the trigger fires.

• For Upper Breach Scale Increment and Lower Breach Scale Increment, specify how many
Amazon EC2 instances to add or remove when performing a scaling activity.

For more information on Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling section on
Amazon Elastic Compute Cloud Documentation.

Configuring notifications using Amazon toolkit for Visual Studio

Elastic Beanstalk uses the Amazon Simple Notification Service (Amazon SNS) to notify you of
important events affecting your application. To enable Amazon SNS notifications, enter your email
address in the Email Address box. To disable these notifications, remove your email address from
the box.

Managing environments 904

http://www.amazonaws.cn/documentation/ec2/

Amazon Elastic Beanstalk Developer Guide

Configuring additional environment options using Amazon toolkit for Visual
Studio

Elastic Beanstalk defines a large number of configuration options that you can use to configure
your environment's behavior and the resources that it contains. Configuration options are
organized into namespaces like aws:autoscaling:asg. Each namespace defines options for an
environment's Auto Scaling group. The Advanced panel lists the configuration option namespaces
in alphabetical order that you can update after environment creation.

For a complete list of namespaces and options, including default and supported values for each,
see General options for all environments and .NET Core on Linux platform options.

Configuring .NET Core containers using the Amazon toolkit for Visual Studio

The Container panel lets you specify environment variables that you can read from your
application code.

Monitoring application health

This topic explains how to monitor the health of your application's website. It's important to know
that your production website is available and responding to requests. Elastic Beanstalk provides

Monitor 905

Amazon Elastic Beanstalk Developer Guide

features to help you monitor your application's responsiveness. It monitors statistics about your
application and alerts you when thresholds are exceeded.

For information about the health monitoring provided by Elastic Beanstalk, see Basic health
reporting.

You can access operational information about your application by using either the AmazonToolkit
for Visual Studio or the Amazon Management Console.

The toolkit displays your environment's status and application health in the Status field.

To monitor application health

1. In the Amazon Toolkit for Visual Studio, in Amazon Explorer, expand the Elastic Beanstalk
node, and then expand your application node.

2. Open the context (right-click) menu for your application environment and select View Status.

3. On your application environment tab, select Monitoring.

The Monitoring panel includes a set of graphs showing resource usage for your particular
application environment.

Note

By default, the time range is set to the last hour. To modify this setting, in the Time
Range list, select a different time range.

You can use the Amazon Toolkit for Visual Studio or the Amazon Management Console to view
events associated with your application.

To view application events

1. In the Amazon Toolkit for Visual Studio, in Amazon Explorer, expand the Elastic Beanstalk
node and your application node.

2. Open the context (right-click) menu for your application environment and select View Status.

3. In your application environment tab, select Events.

Monitor 906

Amazon Elastic Beanstalk Developer Guide

Migrating from .NET on Windows Server platform to the .NET
Core on Linux platform on Elastic Beanstalk

You can migrate applications that run on .NET on Windows Server platforms to the .NET Core
on Linux platforms. Following are some considerations when migrating from Windows to Linux
platforms.

Considerations for migrating to the .NET Core on Linux platform

Area Changes and information

Applicati
on
configura
tion

On Windows platforms, you use a deployment manifest to specify the applicati
ons that run in your environment. The .NET Core on Linux platforms use a Procfile
to specify the applications that run on your environment's instances. For details
on bundling applications, see the section called “Bundling applications”.

Proxy
server

On Windows platforms, you use IIS as your application's proxy server. The .NET
Core on Linux platforms include nginx as a reverse proxy by default. You can
choose to use no proxy server and use Kestrel as your application's web server. To
learn more, see the section called “Proxy server”.

Routing On Windows platforms, you use IIS in your application code and include a
deployment manifest to configure the IIS path. For the .NET Core on Linux
platform, you use ASP .NET Core routing in your application code, and update
your environment's nginx configuration. To learn more, see the section called
“Proxy server”.

Logs The Linux and Windows platforms stream different logs. For details, see the
section called “How Elastic Beanstalk sets up CloudWatch Logs”.

Migration from Windows to Linux 907

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.1

Amazon Elastic Beanstalk Developer Guide

Deploying Go applications with Elastic Beanstalk

This chapter provides instructions for configuring and deploying your Go web application to
Amazon Elastic Beanstalk. Elastic Beanstalk makes it easy to deploy, manage, and scale your Go
web applications using Amazon Web Services.

You can deploy your application in just a few minutes using the Elastic Beanstalk Command Line
Interface (EB CLI) or by using the Elastic Beanstalk console. After you deploy your Elastic Beanstalk
application, you can continue to use the EB CLI to manage your application and environment, or
you can use the Elastic Beanstalk console, Amazon CLI, or the APIs.

Follow the QuickStart for Go for step-by-step instructions to create and deploy a Hello World Go
web application with the EB CLI.

Topics

• QuickStart: Deploy a Go application to Elastic Beanstalk

• Setting up your Go development environment for Elastic Beanstalk

• Using the Elastic Beanstalk Go platform

QuickStart: Deploy a Go application to Elastic Beanstalk

This QuickStart tutorial walks you through the process of creating a Go application and deploying
it to an Amazon Elastic Beanstalk environment.

Note

Tutorial examples are intended for demonstration. Do not use the application for
production traffic.

Sections

• Your Amazon account

• Prerequisites

• Step 1: Create a Go application

• Step 2: Deploy your Go application with the EB CLI

• Step 3: Run your application on Elastic Beanstalk

QuickStart for Go 908

Amazon Elastic Beanstalk Developer Guide

• Step 4: Clean up

• Amazon resources for your application

• Next steps

• Deploy with the Elastic Beanstalk console

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account. Signing up
enables you to access Elastic Beanstalk and other Amazon services that you need.

If you already have an Amazon account, you can move on to Prerequisites.

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

Your Amazon account 909

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon Elastic Beanstalk Developer Guide

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

EB CLI

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install EB CLI with setup script (recommended) and Configure the
EB CLI.

Step 1: Create a Go application

Create a project directory.

~$ mkdir eb-go
~$ cd eb-go

Next, create an application that you'll deploy using Elastic Beanstalk. We'll create a "Hello World"
RESTful web service.

This example prints a customized greeting that varies based on the path used to access the service.

Create a text file in this directory named application.go with the following contents.

Example ~/eb-go/application.go

package main

Prerequisites 910

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Elastic Beanstalk Developer Guide

import (
 "fmt"
 "net/http"
)

func handler(w http.ResponseWriter, r *http.Request) {
 if r.URL.Path == "/" {
 fmt.Fprintf(w, "Hello World! Append a name to the URL to say hello. For example, use
 %s/Mary to say hello to Mary.", r.Host)
 } else {
 fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:])
 }
}

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":5000", nil)
}

Step 2: Deploy your Go application with the EB CLI

Next, you create your application environment and deploy your configured application with Elastic
Beanstalk.

To create an environment and deploy your Go application

1. Initialize your EB CLI repository with the eb init command.

~/eb-go$ eb init -p go go-tutorial --region us-west-2
Application go-tutorial has been created.

This command creates an application named go-tutorial and configures your local
repository to create environments with the latest Go platform version.

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/eb-go$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.

Step 2: Deploy your Go application with the EB CLI 911

Amazon Elastic Beanstalk Developer Guide

1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a zip file for your application and starts it on port 5000.

~/eb-go$ eb create go-env

It takes about five minutes for Elastic Beanstalk to create your environment.

Step 3: Run your application on Elastic Beanstalk

When the process to create your environment completes, open your website with eb open.

~/eb-go$ eb open

Congratulations! You've deployed a Go application with Elastic Beanstalk! This opens a browser
window using the domain name created for your application.

Step 4: Clean up

You can terminate your environment when you finish working with your application. Elastic
Beanstalk terminates all Amazon resources associated with your environment.

To terminate your Elastic Beanstalk environment with the EB CLI run the following command.

~/eb-go$ eb terminate

Amazon resources for your application

You just created a single instance application. It serves as a straightforward sample application
with a single EC2 instance, so it doesn't require load balancing or auto scaling. For single instance
applications Elastic Beanstalk creates the following Amazon resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

Step 3: Run your application on Elastic Beanstalk 912

Amazon Elastic Beanstalk Developer Guide

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.eb.amazonaws.com.cn.

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances. You can also explore your new
environment using the Elastic Beanstalk console. For detailed steps, see Explore your environment
in the Getting started chapter of this guide.

After you deploy a sample application or two and are ready to start developing and running Go
applications locally, see Setting up your Go development environment for Elastic Beanstalk.

Deploy with the Elastic Beanstalk console

You can also use the Elastic Beanstalk console to launch the sample application. For detailed steps,
see Create an example application in the Getting started chapter of this guide.

Next steps 913

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

Setting up your Go development environment for Elastic
Beanstalk

This topic provides instructions to set up a Go development environment to test your application
locally prior to deploying it to Amazon Elastic Beanstalk. It also references websites that provide
installation instructions for useful tools.

Installing Go

To run Go applications locally, install Go. If you don't need a specific version, get the latest version
that Elastic Beanstalk supports. For a list of supported versions, see Go in the Amazon Elastic
Beanstalk Platforms document.

Download Go at https://golang.org/doc/install.

Installing the Amazon SDK for Go

If you need to manage Amazon resources from within your application, install the Amazon SDK for
Go by using the following command.

$ go get github.com/aws/aws-sdk-go

For more information, see Amazon SDK for Go.

Using the Elastic Beanstalk Go platform

This topic describes how to configure, build, and run your Go applications on Elastic Beanstalk.

Amazon Elastic Beanstalk supports a number of platform branches for different versions of the Go
programming language. See Go in the Amazon Elastic Beanstalk Platforms document for a full list.

For simple Go applications, there are two ways to deploy your application:

• Provide a source bundle with a source file at the root called application.go that contains
the main package for your application. Elastic Beanstalk builds the binary using the following
command:

go build -o bin/application application.go

Development environment 914

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.go
https://golang.org/doc/install
http://www.amazonaws.cn/sdk-for-go/
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.go

Amazon Elastic Beanstalk Developer Guide

After the application is built, Elastic Beanstalk starts it on port 5000.

• Provide a source bundle with a binary file called application. The binary file can be located
either at the root of the source bundle or in the bin/ directory of the source bundle. If you
place the application binary file in both locations, Elastic Beanstalk uses the file in the bin/
directory.

Elastic Beanstalk launches this application on port 5000.

In both cases, with our supported Go platform branches, you can also provide module
requirements in a file called go.mod. For more information, see Migrating to Go Modules in the Go
blog.

For more complex Go applications, there are two ways to deploy your application:

• Provide a source bundle that includes your application source files, along with a Buildfile and
a Procfile. The Buildfile includes a command to build the application, and the Procfile includes
instructions to run the application.

• Provide a source bundle that includes your application binary files, along with a Procfile. The
Procfile includes instructions to run the application.

The Go platform includes a proxy server to serve static assets and forward traffic to your
application. You can extend or override the default proxy configuration for advanced scenarios.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Configuring your Go environment

The Go platform settings let you fine-tune the behavior of your Amazon EC2 instances. You can
edit the Elastic Beanstalk environment's Amazon EC2 instance configuration using the Elastic
Beanstalk console.

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

Configuring your Go environment 915

https://blog.golang.org/migrating-to-go-modules

Amazon Elastic Beanstalk Developer Guide

To configure your Go environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

Inside the Go environment running in Elastic Beanstalk, environment variables are accessible using
the os.Getenv function. For example, you could read a property named API_ENDPOINT to a
variable with the following code:

Configuring your Go environment 916

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

endpoint := os.Getenv("API_ENDPOINT")

See Environment variables and other software settings for more information.

Go configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

The Go platform doesn't define any platform-specific namespaces. You can configure the proxy to
serve static files by using the aws:elasticbeanstalk:environment:proxy:staticfiles
namespace. For details and an example, see the section called “Static files”.

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Go platform

If your Elastic Beanstalk Go environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Go configuration namespaces — Amazon Linux AMI (AL1)

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to

Go configuration namespace 917

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

Note

The information in this topic only applies to platform branches based on Amazon Linux AMI
(AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux AMI
(AL1) platform versions and require different configuration settings.

The Amazon Linux AMI Go platform supports one platform-specific configuration
namespace in addition to the namespaces supported by all platforms. The
aws:elasticbeanstalk:container:golang:staticfiles namespace lets you define
options that map paths on your web application to folders in your application source bundle that
contain static content.

For example, this configuration file tells the proxy server to serve files in the staticimages folder
at the path /images:

Example .ebextensions/go-settings.config

option_settings:
 aws:elasticbeanstalk:container:golang:staticfiles:
 /html: statichtml
 /images: staticimages

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

Configuring custom start commands with a Procfile on Elastic
Beanstalk

To specify custom commands to start a Go application, include a file called Procfile at the root
of your source bundle.

For details about writing and using a Procfile, see Buildfile and Procfile.

Procfile 918

Amazon Elastic Beanstalk Developer Guide

Example Procfile

web: bin/server
queue_process: bin/queue_processor
foo: bin/fooapp

You must call the main application web, and list it as the first command in your Procfile. Elastic
Beanstalk exposes the main web application on the root URL of the environment; for example,
http://my-go-env.elasticbeanstalk.com.

Elastic Beanstalk also runs any application whose name does not have the web_ prefix, but these
applications are not available from outside of your instance.

Elastic Beanstalk expects processes run from the Procfile to run continuously. Elastic Beanstalk
monitors these applications and restarts any process that terminates. For short-running processes,
use a Buildfile command.

Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Go environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Procfile 919

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

Port passing — Amazon Linux AMI (AL1)

Note

The information in this topic only applies to platform branches based on Amazon Linux AMI
(AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux AMI
(AL1) platform versions and require different configuration settings.

Elastic Beanstalk configures the nginx proxy to forward requests to your application on the port
number specified in the PORT environment property for your application. Your application should
always listen on that port. You can access this variable within your application by calling the
os.Getenv("PORT") method.

Elastic Beanstalk uses the port number specified in the PORT environment property for the port for
the first application in the Procfile, and then increments the port number for each subsequent
application in the Procfile by 100. If the PORT environment property is not set, Elastic Beanstalk
uses 5000 for the initial port.

In the preceding example, the PORT environment property for the web application is 5000, the
queue_process application is 5100, and the foo application is 5200.

You can specify the initial port by setting the PORT option with the
aws:elasticbeanstalk:application:environment namespace, as shown in the following example.

option_settings:
 - namespace: aws:elasticbeanstalk:application:environment
 option_name: PORT
 value: <first_port_number>

For more information about setting environment properties for your application, see Option
settings.

Custom build and configuration with a Buildfile on Elastic Beanstalk

To specify a custom build and configuration command for your Go application, include a file called
Buildfile at the root of your source bundle. The file name is case sensitive. Use the following
format for the Buildfile:

Buildfile 920

Amazon Elastic Beanstalk Developer Guide

<process_name>: <command>

The command in your Buildfile must match the following regular expression: ^[A-Za-
z0-9_]+:\s*.+$.

Elastic Beanstalk doesn't monitor the application that is run with a Buildfile. Use a Buildfile
for commands that run for short periods and terminate after completing their tasks. For long-
running application processes that should not exit, use the Procfile instead.

In the following example of a Buildfile, build.sh is a shell script that is located at the root of
the source bundle:

make: ./build.sh

All paths in the Buildfile are relative to the root of the source bundle. If you know in advance
where the files reside on the instance, you can include absolute paths in the Buildfile.

Configuring the proxy server

Elastic Beanstalk uses nginx as the reverse proxy to map your application to your Elastic Load
Balancing load balancer on port 80. Elastic Beanstalk provides a default nginx configuration that
you can either extend or override completely with your own configuration.

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

Note

The port that your application listens on doesn't affect the port that the nginx server
listens to receive requests from the load balancer.

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, see Reverse
proxy configuration.

Proxy configuration 921

Amazon Elastic Beanstalk Developer Guide

Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

If your Elastic Beanstalk Go environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the information in this section.

Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

Elastic Beanstalk uses nginx as the reverse proxy to map your application to your load balancer
on port 80. If you want to provide your own nginx configuration, you can override the default
configuration provided by Elastic Beanstalk by including the .ebextensions/nginx/
nginx.conf file in your source bundle. If this file is present, Elastic Beanstalk uses it in place of
the default nginx configuration file.

If you want to include directives in addition to those in the nginx.conf http block, you can also
provide additional configuration files in the .ebextensions/nginx/conf.d/ directory of your
source bundle. All files in this directory must have the .conf extension.

To take advantage of functionality provided by Elastic Beanstalk, such as Enhanced health
reporting and monitoring in Elastic Beanstalk, automatic application mappings, and static files, you
must include the following line in the server block of your nginx configuration file:

include conf.d/elasticbeanstalk/*.conf;

Proxy configuration 922

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

Deploying Java applications with Elastic Beanstalk

This chapter provides instructions for configuring and deploying your Java applications to Amazon
Elastic Beanstalk. Elastic Beanstalk makes it easy to deploy, manage, and scale your Java web
applications using Amazon Web Services.

You can deploy your application in just a few minutes using the Elastic Beanstalk Command Line
Interface (EB CLI) or by using the Elastic Beanstalk console. After you deploy your Elastic Beanstalk
application, you can continue to use the EB CLI to manage your application and environment, or
you can use the Elastic Beanstalk console, Amazon CLI, or the APIs.

Follow the QuickStart for Java for step-by-step instructions to create and deploy a Hello World Java
web application with the EB CLI. If you're interested in step-by-step instructions to create a simple
Hello World Java JSP application to deploy with the EB CLI to our Tomcat based platform, try the
QuickStart for Java on Tomcat.

The Java platform branches

Amazon Elastic Beanstalk supports two platforms for Java applications.

• Tomcat – A platform based on Apache Tomcat, an open source web container for applications
that use Java servlets and JavaServer Pages (JSPs) to serve HTTP requests. Tomcat facilitates
web application development by providing multithreading, declarative security configuration,
and extensive customization. Elastic Beanstalk has platform branches for each of Tomcat's
current major versions. For more information, see The Tomcat platform.

• Java SE – A platform for applications that don't use a web container, or use one other than
Tomcat, such as Jetty or GlassFish. You can include any library Java Archives (JARs) used by your
application in the source bundle that you deploy to Elastic Beanstalk. For more information, see
The Java SE platform.

Recent branches of both the Tomcat and Java SE platforms are based on Amazon Linux 2 and later,
and use Corretto—the Amazon Java SE distribution. The names of these platform branches include
the word Corretto instead of Java.

For a list of current platform versions, see Tomcat and Java SE in the Amazon Elastic Beanstalk
Platforms guide.

Amazon tools

923

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.java
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.javase

Amazon Elastic Beanstalk Developer Guide

Amazon provides several tools for working with Java and Elastic Beanstalk. Regardless of the
platform branch that you choose, you can use the Amazon SDK for Java to use other Amazon
services from within your Java application. The Amazon SDK for Java is a set of libraries that allow
you to use Amazon APIs from your application code without writing the raw HTTP calls from
scratch.

If you prefer to manage your applications from the command line, install the Elastic Beanstalk
Command Line Interface (EB CLI) and use it to create, monitor, and manage your Elastic Beanstalk
environments. If you run multiple environments for your application, the EB CLI integrates with Git
to let you associate each of your environments with a different Git branch.

Topics

• QuickStart: Deploy a Java application to Elastic Beanstalk

• QuickStart: Deploy a Java JSP web application for Tomcat to Elastic Beanstalk

• Setting up your Java development environment

• More Elastic Beanstalk example applications and tutorials for Java

• Using the Elastic Beanstalk Tomcat platform

• Using the Elastic Beanstalk Java SE platform

• Adding an Amazon RDS DB instance to your Java Elastic Beanstalk environment

• Java tools and resources

QuickStart: Deploy a Java application to Elastic Beanstalk

This QuickStart tutorial walks you through the process of creating a Java application and deploying
it to an Amazon Elastic Beanstalk environment.

Note

Tutorial examples are intended for demonstration. Do not use the application for
production traffic.

Sections

• Your Amazon account

• Prerequisites

QuickStart for Java 924

Amazon Elastic Beanstalk Developer Guide

• Step 1: Create a Java application

• Step 2: Run your application locally

• Step 3: Deploy your Java application with the EB CLI

• Step 4: Run your application on Elastic Beanstalk

• Step 5: Clean up

• Amazon resources for your application

• Next steps

• Deploy with the Elastic Beanstalk console

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account. Signing up
enables you to access Elastic Beanstalk and other Amazon services that you need.

If you already have an Amazon account, you can move on to Prerequisites.

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

Your Amazon account 925

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon Elastic Beanstalk Developer Guide

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

EB CLI

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install EB CLI with setup script (recommended)and Configure the EB
CLI.

Java and Maven

If you don't have Amazon Corretto installed on your local machine, you can install it by following
the installation instructions in the Amazon Corretto User Guide.

Verify your Java installation by running the following command.

~$ java -version

Prerequisites 926

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/corretto/latest/corretto-21-ug/amazon-linux-install.html

Amazon Elastic Beanstalk Developer Guide

This tutorial uses Maven. Follow the download and installation instructions on the Apache Maven
Project website. For more information about Maven see the Maven Users Centre on the Apache
Maven Project website.

Verify your Maven installation by running the following command.

~$ mvn -v

Step 1: Create a Java application

Create a project directory.

~$ mkdir eb-java
~$ cd eb-java

Next, create an application that you'll deploy using Elastic Beanstalk. We'll create a "Hello World"
RESTful web service.

This example uses the Spring Boot framework. This application opens a listener on port 5000.
Elastic Beanstalk forward requests to your application on port 5000 by default.

Create the following files:

This file creates a simple Spring Boot application.

Example ~/eb-java/src/main/java/com/example/Application.java

package com.example;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

This file creates a mapping that returns a String that we define here.

Step 1: Create a Java application 927

https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://maven.apache.org/users/index.html
https://spring.io/projects/spring-boot

Amazon Elastic Beanstalk Developer Guide

Example ~/eb-java/src/main/java/com/example/Controller.java

package com.example;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class Controller {

 @GetMapping("/")
 public String index() {
 return "Hello Elastic Beanstalk!";
 }
}

This file defines the Maven project configuration.

Example ~/eb-java/pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>3.2.3</version>
 </parent>

 <groupId>com.example</groupId>
 <artifactId>BeanstalkJavaExample</artifactId>
 <version>1.0-SNAPSHOT</version>

 <properties>
 <java.version>21</java.version>
 </properties>

 <dependencies>
 <dependency>

Step 1: Create a Java application 928

Amazon Elastic Beanstalk Developer Guide

 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

</project>

This properties file overrides the default port to be 5000. This is the default port that Elastic
Beanstalk sends traffic to for Java applications.

Example ~/eb-java/application.properties

server.port=5000

Step 2: Run your application locally

Package your application with the following command:

~/eb-java$ mvn clean package

Run your application locally with the following command:

~/eb-java$ java -jar target/BeanstalkJavaExample-1.0-SNAPSHOT.jar

While the application is running, navigate to http://127.0.0.1:5000/ in your browser. You
should see the text “Hello Elastic Beanstalk!”.

Step 3: Deploy your Java application with the EB CLI

Before deploying your Java application to Elastic Beanstalk, let’s clean the build application from
your directory and create a Buildfile and a Procfile to control how the application is built and run
on your Elastic Beanstalk environment.

Step 2: Run your application locally 929

Amazon Elastic Beanstalk Developer Guide

To prepare and configure for application deployment

1. Clean the built application.

~/eb-java$ mvn clean

2. Create your Buildfile.

Example ~/eb-java/Buildfile

build: mvn clean package

This Buildfile specifies the command used to build your application. If you don’t include a
Buildfile for a Java application, Elastic Beanstalk doesn't attempt to build your application.

3. Create your Procfile.

Example ~/eb-java/Procfile

web: java -jar target/BeanstalkJavaExample-1.0-SNAPSHOT.jar

This Procfile specifies the command used to run your application. If you don’t include a
Procfile for a Java application, Elastic Beanstalk assumes there is one JAR file in the root of
your source bundle and tries to run it with the java -jar command.

Now that you have set up the configuration files to build and start your application, you're ready to
deploy it.

To create an environment and deploy your Java application

1. Initialize your EB CLI repository with the eb init command.

~/eb-java eb init -p corretto java-tutorial --region us-west-2

Application java-tutorial has been created.

This command creates an application named java-tutorial and configures your local
repository to create environments with the latest Java platform version.

Step 3: Deploy your Java application with the EB CLI 930

Amazon Elastic Beanstalk Developer Guide

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/eb-java$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a zip file for your application and starts it on port 5000.

~/eb-java$ eb create java-env

It takes about five minutes for Elastic Beanstalk to create your environment.

Step 4: Run your application on Elastic Beanstalk

When the process to create your environment completes, open your website with eb open.

~/eb-java eb open

Congratulations! You've deployed a Java application with Elastic Beanstalk! This opens a browser
window using the domain name created for your application.

Step 5: Clean up

You can terminate your environment when you finish working with your application. Elastic
Beanstalk terminates all Amazon resources associated with your environment.

To terminate your Elastic Beanstalk environment with the EB CLI run the following command.

~/eb-java$ eb terminate

Step 4: Run your application on Elastic Beanstalk 931

Amazon Elastic Beanstalk Developer Guide

Amazon resources for your application

You just created a single instance application. It serves as a straightforward sample application
with a single EC2 instance, so it doesn't require load balancing or auto scaling. For single instance
applications Elastic Beanstalk creates the following Amazon resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.eb.amazonaws.com.cn.

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances. You can also explore your new
environment using the Elastic Beanstalk console. For detailed steps, see Explore your environment
in the Getting started chapter of this guide.

Amazon resources for your application 932

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

Try more tutorials

If you'd like to try other tutorials with different example applications, see Sample
applications and tutorials.

After you deploy a sample application or two and are ready to start developing and running Java
applications locally, see Setting up your Java development environment.

Deploy with the Elastic Beanstalk console

You can also use the Elastic Beanstalk console to launch the sample application. For detailed steps,
see Create an example application in the Getting started chapter of this guide.

QuickStart: Deploy a Java JSP web application for Tomcat to
Elastic Beanstalk

This tutorial walks you through the process of creating a simple Java web application using
JavaServer Pages (JSPs). If you'd like to bundle multiple web applications in the form of WAR
files in a single Elastic Beanstalk environment, see Bundling multiple WAR files for Tomcat
environments.

Note

Tutorial examples are intended for demonstration. Do not use the application for
production traffic.

Sections

• Your Amazon account

• Prerequisites

• Step 1: Create a Java JSP application

• Step 2: Deploy your Java JSP application with the EB CLI

• Step 3: Run your application on Elastic Beanstalk

• Step 4: Clean up

• Amazon resources for your application

Deploy with the console 933

Amazon Elastic Beanstalk Developer Guide

• Next steps

• Deploy with the Elastic Beanstalk console

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account. Signing up
enables you to access Elastic Beanstalk and other Amazon services that you need.

If you already have an Amazon account, you can move on to Prerequisites.

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

Your Amazon account 934

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html

Amazon Elastic Beanstalk Developer Guide

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

EB CLI

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install EB CLI with setup script (recommended) and Configure the
EB CLI.

Step 1: Create a Java JSP application

Create a project directory.

~$ mkdir eb-tomcat
~$ cd eb-tomcat

Next, create an application that you'll deploy using Elastic Beanstalk. We'll create a "Hello World"
web application.

Create a simple JSP file named index.jsp.

Example ~/eb-tomcat/index.jsp

<html>
 <body>
 <%out.println("Hello Elastic Beanstalk!");%>

Prerequisites 935

https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Elastic Beanstalk Developer Guide

 </body>
</html>

Step 2: Deploy your Java JSP application with the EB CLI

Run the following commands to create an Elastic Beanstalk environment for this application.

To create an environment and deploy your Java JSP application

1. Initialize your EB CLI repository with the eb init command.

~/eb-tomcat$ eb init -p tomcat tomcat-tutorial --region us-west-2

This command creates an application named tomcat-tutorial and configures your local
repository to create environments with the latest Tomcat platform version.

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/eb-go$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a zip file for your application and starts it on port 5000.

~/eb-tomcat$ eb create tomcat-env

It takes about five minutes for Elastic Beanstalk to create your environment.

Step 3: Run your application on Elastic Beanstalk

When the process to create your environment completes, open your website with eb open.

Step 2: Deploy your Java JSP application with the EB CLI 936

Amazon Elastic Beanstalk Developer Guide

~/eb-tomcat$ eb open

Congratulations! You've deployed a Java JSP application with Elastic Beanstalk! This opens a
browser window using the domain name created for your application.

Step 4: Clean up

You can terminate your environment when you finish working with your application. Elastic
Beanstalk terminates all Amazon resources associated with your environment.

To terminate your Elastic Beanstalk environment with the EB CLI run the following command.

~/eb-tomcat$ eb terminate

Amazon resources for your application

You just created a single instance application. It serves as a straightforward sample application
with a single EC2 instance, so it doesn't require load balancing or auto scaling. For single instance
applications Elastic Beanstalk creates the following Amazon resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

Step 4: Clean up 937

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

• Domain name – A domain name that routes to your web app in the form
subdomain.region.eb.amazonaws.com.cn.

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances. You can also explore your new
environment using the Elastic Beanstalk console. For detailed steps, see Explore your environment
in the Getting started chapter of this guide.

Try more tutorials

If you'd like to try other tutorials with different example applications, see Sample
applications and tutorials.

After you deploy a sample application or two and are ready to start developing and running Java
applications in a local Tomcat web container, see Setting up your Java development environment.

Deploy with the Elastic Beanstalk console

You can also use the Elastic Beanstalk console to launch the sample application. For detailed steps,
see Create an example application in the Getting started chapter of this guide.

Setting up your Java development environment

This topic provides instructions to set up a Java development environment to test your application
locally prior to deploying it to Amazon Elastic Beanstalk. It also references websites that provide
installation instructions for useful tools.

Sections

• Installing the Java development kit

• Installing a web container

Next steps 938

Amazon Elastic Beanstalk Developer Guide

• Downloading libraries

• Installing the Amazon SDK for Java

• Installing an IDE or text editor

Installing the Java development kit

Install the Java Development Kit (JDK). If you don't have a preference, get the latest version.
Download the JDK at oracle.com

The JDK includes the Java compiler, which you can use to build your source files into class files that
can be executed on an Elastic Beanstalk web server.

Installing a web container

If you don't already have another web container or framework, install a version of Tomcat that
Elastic Beanstalk supports for your Amazon Linux operating system. For a list of the current
versions of Apache Tomcat that Elastic Beanstalk supports, see Tomcat in the Amazon Elastic
Beanstalk Platforms document. Download the Tomcat version that applies to your environment
from the Apache Tomcat website.

Downloading libraries

Elastic Beanstalk platforms include few libraries by default. Download libraries that your
application will use and save them in your project folder to deploy in your application source
bundle.

If you've installed Tomcat locally, you can copy the servlet API and JavaServer Pages (JSP) API
libraries from the installation folder. If you deploy to a Tomcat platform version, you don't need
to include these files in your source bundle, but you do need to have them in your classpath to
compile any classes that use them.

JUnit, Google Guava, and Apache Commons provide several useful libraries. Visit their home pages
to learn more:

• Download JUnit

• Download Google Guava

• Download Apache Commons

Installing the Java development kit 939

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.java
http://tomcat.apache.org
https://github.com/junit-team/junit/wiki/Download-and-Install
https://code.google.com/p/guava-libraries/
http://commons.apache.org/downloads/

Amazon Elastic Beanstalk Developer Guide

Installing the Amazon SDK for Java

If you need to manage Amazon resources from within your application, install the Amazon SDK for
Java. For example, with the Amazon SDK for Java, you can use Amazon DynamoDB (DynamoDB)
to share session states of Apache Tomcat applications across multiple web servers. For more
information, see Manage Tomcat Session State with Amazon DynamoDB in the Amazon SDK for
Java documentation.

Visit the Amazon SDK for Java home page for more information and installation instructions.

Installing an IDE or text editor

Integrated development environments (IDEs) provide a wide range of features that facilitate
application development. If you haven't used an IDE for Java development, try Eclipse and IntelliJ
and see which works best for you.

• Install Eclipse IDE for Java EE Developers

• Install IntelliJ

An IDE might add files to your project folder that you might not want to commit to source control.
To prevent committing these files to source control, use .gitignore or your source control tool's
equivalent.

If you just want to begin coding and don't need all of the features of an IDE, consider installing
Sublime Text.

Note

On May 31, 2023, the Amazon Toolkit for Eclipse reached end of life and is no longer
supported by Amazon. For additional details regarding the end of life cycle for the Amazon
Toolkit for Eclipse, see the README.md file on the Amazon Toolkit for Eclipse GitHub
repository.

Installing the Amazon SDK for Java 940

http://docs.amazonaws.cn/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-tomcat-session-manager.html
http://www.amazonaws.cn/sdk-for-java/
https://www.eclipse.org/downloads/
https://www.jetbrains.com/idea/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://docs.amazonaws.cn/toolkit-for-eclipse/v1/user-guide/welcome.html
https://github.com/aws/aws-toolkit-eclipse

Amazon Elastic Beanstalk Developer Guide

More Elastic Beanstalk example applications and tutorials for
Java

This section provides additional applications and tutorials. The QuickStart for Java and QuickStart
for Java on Tomcat topics located earlier in this topic walk you through launching a sample Java
application with the EB CLI.

To get started with Java applications on Amazon Elastic Beanstalk, all you need is an application
source bundle to upload as your first application version and to deploy to an environment. When
you create an environment, Elastic Beanstalk allocates all of the Amazon resources needed to run a
scalable web application.

Launching an environment with a sample Java application

Elastic Beanstalk provides single page sample applications for each platform as well as more
complex examples that show the use of additional Amazon resources such as Amazon RDS and
language or platform-specific features and APIs.

The single page samples are the same code that you get when you create an environment without
supplying your own source code. The more complex examples are hosted on GitHub and may need
to be compiled or built prior to deploying to an Elastic Beanstalk environment.

Samples

Name Supported versions Environme
nt
type

Source Description

Tomcat
(single
page)

All Tomcat with Corretto
platform branches

Web
Server

Worker

java-
tomcat-
v1_cn.
zip

Tomcat web application with a single page
(index.jsp) configured to be displayed
at the website root.

For worker environments, this sample
includes a cron.yaml file that
configures a scheduled task that calls
scheduled.jsp once per minute. When
scheduled.jsp is called, it writes to
a log file at /tmp/sample-app.log .

Sample applications and tutorials 941

samples/java-tomcat-v1_cn.zip
samples/java-tomcat-v1_cn.zip
samples/java-tomcat-v1_cn.zip
samples/java-tomcat-v1_cn.zip

Amazon Elastic Beanstalk Developer Guide

Name Supported versions Environme
nt
type

Source Description

Finally, a configuration file is included
in .ebextensions that copies the
logs from /tmp/ to the locations read
by Elastic Beanstalk when you request
environment logs.

If you enable X-Ray integration on an
environment running this sample, the
application shows additional content
regarding X-Ray and provides an option to
generate debug information that you can
view in the X-Ray console.

Corretto
(single
page)

Corretto 11

Corretto 8

Web
Server

corretto.
zip

Corretto application with Buildfile
and Procfile configuration files.

If you enable X-Ray integration on an
environment running this sample, the
application shows additional content
regarding X-Ray and provides an option to
generate debug information that you can
view in the X-Ray console.

Launching an environment with a sample Java application 942

samples/corretto.zip
samples/corretto.zip

Amazon Elastic Beanstalk Developer Guide

Name Supported versions Environme
nt
type

Source Description

ScorekeepJava 8 Web
Server

Clone
the
repo at
GitHub.co
m

Scorekeep is a RESTful web API that
uses the Spring framework to provide
an interface for creating and managing
users, sessions, and games. The API is
bundles with an Angular 1.5 web app that
consumes the API over HTTP.

The application uses features of the Java
SE platform to download dependencies
and build on-instance, minimizing the
size of the souce bundle. The application
also includes nginx configuration files that
override the default configuration to serve
the frontend web app statically on port 80
through the proxy, and route requests to
paths under /api to the API running on
localhost:5000 .

Scorekeep also includes an xray branch
that shows how to instrument a Java
application for use with Amazon X-Ray.
It shows instrumentation of incoming
HTTP requests with a servlet filter,
automatic and manual Amazon SDK client
instrumentation, recorder configuration,
and instrumentation of outgoing HTTP
requests and SQL clients.

See the readme for instructions or use the
Amazon X-Ray getting started tutorial to
try the application with X-Ray.

Launching an environment with a sample Java application 943

https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://docs.amazonaws.cn/xray/latest/devguide/xray-gettingstarted.html

Amazon Elastic Beanstalk Developer Guide

Name Supported versions Environme
nt
type

Source Description

Does
it
Have
Snakes?

Tomcat 8 with Java 8 Web
Server

Clone
the
repo at
GitHub.co
m

Does it Have Snakes? is a Tomcat web
application that shows the use of Elastic
Beanstalk configuration files, Amazon
RDS, JDBC, PostgreSQL, Servlets, JSPs,
Simple Tag Support, Tag Files, Log4J,
Bootstrap, and Jackson.

The source code for this project includes
a minimal build script that compiles
the servlets and models into class files
and packages the required files into a
Web Archive that you can deploy to an
Elastic Beanstalk environment. See the
readme file in the project repository for
full instructions.

Locust
Load
Generator

Java 8 Web
Server

Clone
the
repo at
GitHub.co
m

Web application that you can use to load
test another web application running in
a different Elastic Beanstalk environme
nt. Shows the use of Buildfile and
Procfile files, DynamoDB, and Locust,
an open source load testing tool.

Download any of the sample applications and deploy it to Elastic Beanstalk by following these
steps:

To launch an environment with a sample application (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Applications. Select an existing application in the list. You can
also choose to create one, following the instructions in Managing applications .

3. On the application overview page, choose Create new environment.

Launching an environment with a sample Java application 944

https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
http://locust.io/
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

The following image displays the application overview page.

This launches the Create environment wizard. The wizard provides a set of steps for you to
create a new environment.

4. For Environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

Note

The .NET on Windows Server platform doesn't support the worker environment tier.

The Application information fields default, based on the application that you previously
chose.

In the Environment information grouping the Environment name defaults, based on the
application name. If you prefer a different environment name you can enter another value in
the field. You can optionally enter a Domain name; otherwise Elastic Beanstalk autogenerates
a value. You can also optionally enter an Environment description.

5. For Platform, select the platform and platform branch that match the language your
application uses.

Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

Launching an environment with a sample Java application 945

Amazon Elastic Beanstalk Developer Guide

6. For Application code, you have some choices for launching a sample application.

• To launch the default sample application without supplying the source code, choose
Sample application. This action chooses the single page application that Elastic Beanstalk
provides for the platform you previously selected.

• If you downloaded a sample application from this guide or another source, do the
following steps.

a. Select Upload your code.

b. Next choose Local file, then under Upload application, select Choose file.

c. Your computer's operating system will present you with an interface to select the
local file that you downloaded. Select the source bundle file and continue.

7. For Presets, choose Single instance.

8. Choose Next.

9. The Configure service access page displays.

The following image illustrates the Configure service access page.

10. Choose a value from the Existing Service Roles dropdown.

Launching an environment with a sample Java application 946

Amazon Elastic Beanstalk Developer Guide

11. (Optional) If you previously created an EC2 key pair, you can select it from the EC2 key pair
field dropdown. You would use it to securely log in to the Amazon EC2 instance that Elastic
Beanstalk provisions for your application. If you skip this step, you can always create and
assign an EC2 key pair after the environment is created. For more information, see EC2 key
pair.

12. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following items, based on the values displayed in your list.

• If aws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
dropdown list.

• If another value displays in the list, and it’s the default EC2 instance profile intended for
your environments, select it from the dropdown list.

• If the EC2 instance profile dropdown list doesn't list any values, you'll need to create an
instance profile.

Create an instance profile

To create an instance profile, we'll take a detour to another procedure on this
same page. Go to the end of this procedure and expand the procedure that
follows, Create IAM Role for EC2 instance profile.
Complete the steps in Create IAM Role for EC2 instance profile to create an IAM
Role that you can subsequently select for the EC2 instance profile. Then return
back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

13.
Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

14. The Review page displays a summary of all your choices.

Launching an environment with a sample Java application 947

Amazon Elastic Beanstalk Developer Guide

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

• Environment name

• Domain name

• Platform version

• Processor

• VPC

• Tier

You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

• Instance type, root volume, key pair, and Amazon Identity and Access Management (IAM)
role

• Internal Amazon RDS database

• Load balancer

For details on all available settings, see The create new environment wizard.

15. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Launching an environment with a sample Java application 948

Amazon Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

To create the EC2 instance profile

1. Choose Create role.

2. For Trusted entity type, choose Amazon service.

3. For Use case, choose Elastic Beanstalk – Compute.

4. Choose Next.

5. Verify that Permissions policies include the following, then choose Next:

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

6. Choose Create role.

7. Return to the Configure service access tab, refresh the list, then select the newly created EC2
instance profile.

Launching an environment with a sample Java application 949

Amazon Elastic Beanstalk Developer Guide

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a completely different application at any time. Deploying a new application version
is very quick because it doesn't require provisioning or restarting EC2 instances.

After you've deployed a sample application or two and are ready to start developing and running
Java applications locally, see the next section to set up a Java development environment with all of
the tools and libraries that you will need.

Using the Elastic Beanstalk Tomcat platform

This topic describes how to configure, build, and run your Java applications that run on the Elastic
Beanstalk Tomcat platform.

The Amazon Elastic Beanstalk Tomcat platform is a set of platform versions for Java web
applications that can run in a Tomcat web container. Tomcat runs behind an nginx proxy server.
Each platform branch corresponds to a major version of Tomcat.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

The Elastic Beanstalk Tomcat platform includes a reverse proxy that forwards requests to your
application. You can use configuration options to configure the proxy server to serve static assets
from a folder in your source code to reduce the load on your application. For advanced scenarios,
you can include your own .conf files in your source bundle to extend the Elastic Beanstalk proxy
configuration or overwrite it completely.

Note

Elastic Beanstalk supports nginx (the default) and Apache HTTP Server as the proxy servers
on the Tomcat platform. If your Elastic Beanstalk Tomcat environment uses an Amazon
Linux AMI platform branch (preceding Amazon Linux 2), you also have the option of using

Next steps 950

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.java
https://www.nginx.com/
https://httpd.apache.org/

Amazon Elastic Beanstalk Developer Guide

Apache HTTP Server Version 2.2. Apache (latest) is the default on these older platform
branches.
On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully
supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

You must package Java applications in a web application archive (WAR) file with a specific
structure. For information on the required structure and how it relates to the structure of your
project directory, see Structuring your project folder.

To run multiple applications on the same web server, you can bundle multiple WAR files into a
single source bundle. Each application in a multiple WAR source bundle runs at the root path
(ROOT.war runs at myapp.elasticbeanstalk.com/) or at a path directly beneath it (app2.war
runs at myapp.elasticbeanstalk.com/app2/), as determined by the name of the WAR. In a
single WAR source bundle, the application always runs at the root path.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Topics

• Configuring your Tomcat environment

• Tomcat configuration namespaces

• Bundling multiple WAR files for Tomcat environments

• Structuring your project folder

• Configuring the proxy server

Configuring your Tomcat environment

The Elastic Beanstalk Tomcat platform provides a few platform-specific options in addition to the
standard options that all platforms have. These options enable you to configure the Java virtual

Configuring your Tomcat environment 951

https://httpd.apache.org/docs/2.2/
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

machine (JVM) that runs on your environment's web servers, and define system properties that
provide information configuration strings to your application.

You can use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure
variables that your application can read from the environment.

To configure your Tomcat environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Container options

You can specify these platform-specific options:

• Proxy server – The proxy server to use on your environment instances. By default, nginx is used.

JVM container options

The heap size in the Java virtual machine (JVM) determines how many objects your application can
create in memory before garbage collection occurs. You can modify the Initial JVM Heap Size (-
Xms option) and a Maximum JVM Heap Size (-Xmx option). A larger initial heap size allows more
objects to be created before garbage collection occurs, but it also means that the garbage collector
will take longer to compact the heap. The maximum heap size specifies the maximum amount of
memory the JVM can allocate when expanding the heap during heavy activity.

Note

The available memory depends on the Amazon EC2 instance type. For more information
about the EC2 instance types available for your Elastic Beanstalk environment, see Instance
Types in the Amazon Elastic Compute Cloud User Guide for Linux Instances.

Configuring your Tomcat environment 952

https://console.amazonaws.cn/elasticbeanstalk
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/introduction.html
http://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html
http://docs.amazonaws.cn/AWSEC2/latest/UserGuide/instance-types.html

Amazon Elastic Beanstalk Developer Guide

The permanent generation is a section of the JVM heap that stores class definitions and associated
metadata. To modify the size of the permanent generation, type the new size in the Maximum
JVM PermGen Size (-XX:MaxPermSize) option. This setting applies only to Java 7 and
earlier. This option was deprecated in JDK 8 and superseded by the MaxMetaspace Size (-
XX:MaxMetaspaceSize) option.

Important

JDK 17 removed support of the Java -XX:MaxPermSize option. Usage of this option with
an environment running on an Elastic Beanstalk platform branch with Corretto 17 will
result in an error. Elastic Beanstalk released its first platform branch running Tomcat with
Corretto 17 on July 13, 2023.
For more information see the following resources.

• Oracle Java documentation website: Removed Java Options

• Oracle Java documentation website: Class Metadata section in Other Considerations

For more information about Elastic Beanstalk platforms and their components, see Supported
Platforms in the Amazon Elastic Beanstalk Platforms guide.

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

Configuring your Tomcat environment 953

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2023-07-13-al2023.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html#removed-java-options
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/considerations.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html

Amazon Elastic Beanstalk Developer Guide

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

In the Environment Properties section, you can specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

The Tomcat platform defines a placeholder property named JDBC_CONNECTION_STRING for
Tomcat environments for passing a connection string to an external database.

Note

If you attach an RDS DB instance to your environment, construct the JDBC connection
string dynamically from the Amazon Relational Database Service (Amazon RDS)
environment properties provided by Elastic Beanstalk. Use JDBC_CONNECTION_STRING
only for database instances that are not provisioned using Elastic Beanstalk.
For more information about using Amazon RDS with your Java application, see Adding an
Amazon RDS DB instance to your Java Elastic Beanstalk environment.

For Tomcat platform versions released prior to March 26, 2025, environment variables are
accessible using System.getProperty(). For example, you could read a property named
API_ENDPOINT from a variable with the following code.

String endpoint = System.getProperty("API_ENDPOINT");

Tomcat platform versions released on or after March 26, 2025, can also use System.getenv
to access plaintext environment variables. You can continue to use System.getProperty to
access plaintext environment variables. However, environment variables stored as secrets are only
available using System.getenv. For example, you could read an environment variable named
API_KEY with the following code.

String apiKey = System.getenv("API_KEY");

Configuring your Tomcat environment 954

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-03-26-windows.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-03-26-windows.html

Amazon Elastic Beanstalk Developer Guide

Important

The addition of System.getenv() access for environment variables in Tomcat platform
versions released on or after March 26, 2025 may cause unexpected behavior in
applications that give environment variables precedence over Java system properties or
when explicitly switching from System.getProperty() to System.getenv().
Since system properties (passed via command line) require shell escaping for special
characters while environment variables do not, values may be resolved differently when
using environment variables instead of Java system properties.
If your application is affected, consider:

• Removing escape characters from your environment property values when using
System.getenv()

• Configuring your application to explicitly use System.getProperty()

• Testing your application thoroughly when upgrading to ensure consistent behavior

See Environment variables and other software settings for more information.

Tomcat configuration namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

The Tomcat platform supports options in the following namespaces, in addition to the options
supported for all Elastic Beanstalk environments:

• aws:elasticbeanstalk:container:tomcat:jvmoptions – Modify JVM settings. Options
in this namespace correspond to options in the management console, as follows:

• Xms – JVM command line options

• JVM Options – JVM command line options

• aws:elasticbeanstalk:environment:proxy – Choose the environment's proxy server.

The following example configuration file shows the use of the Tomcat-specific configuration
options.

Tomcat configuration namespaces 955

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-03-26-windows.html

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/tomcat-settings.config

option_settings:
 aws:elasticbeanstalk:container:tomcat:jvmoptions:
 Xms: 512m
 JVM Options: '-Xmn128m'
 aws:elasticbeanstalk:application:environment:
 API_ENDPOINT: mywebapi.zkpexsjtmd.us-west-2.elasticbeanstalk.com
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform

If your Elastic Beanstalk Tomcat environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Tomcat configuration namespaces — Amazon Linux AMI (AL1)

The Tomcat Amazon Linux AMI platform supports additional options in the following namespaces:

• aws:elasticbeanstalk:container:tomcat:jvmoptions – In addition to the options
mentioned earlier on this page for this namespace, older Amazon Linux AMI platform versions
also support:

• XX:MaxPermSize – Maximum JVM permanent generation size

Tomcat configuration namespaces 956

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

• aws:elasticbeanstalk:environment:proxy – In addition to choosing the proxy server,
also configure response compression.

The following example configuration file shows the use of the proxy namespace configuration
options.

Example .ebextensions/tomcat-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 GzipCompression: 'true'
 ProxyServer: nginx

Include Elastic Beanstalk configurations files — Amazon Linux AMI (AL1)

To deploy .ebextensions configuration files, include them in your application source. For a
single application, add your .ebextensions to a compressed WAR file by running the following
command:

Example

zip -ur your_application.war .ebextensions

For an application requiring multiple WAR files, see Bundling multiple WAR files for Tomcat
environments for further instructions.

Bundling multiple WAR files for Tomcat environments

If your web app comprises multiple web application components, you can simplify deployments
and reduce operating costs by running components in a single environment, instead of running a
separate environment for each component. This strategy is effective for lightweight applications
that don't require a lot of resources, and for development and test environments.

To deploy multiple web applications to your environment, combine each component's web
application archive (WAR) files into a single source bundle.

To create an application source bundle that contains multiple WAR files, organize the WAR files
using the following structure.

MyApplication.zip

Bundling WAR files 957

Amazon Elastic Beanstalk Developer Guide

.ebextensions
.platform
foo.war
bar.war
ROOT.war

When you deploy a source bundle containing multiple WAR files to an Amazon Elastic Beanstalk
environment, each application is accessible from a different path off of the root domain name.
The preceding example includes three applications: foo, bar, and ROOT. ROOT.war is a special
file name that tells Elastic Beanstalk to run that application at the root domain, so that the
three applications are available at http://MyApplication.elasticbeanstalk.com/
foo, http://MyApplication.elasticbeanstalk.com/bar, and http://
MyApplication.elasticbeanstalk.com.

The source bundle can include WAR files, an optional .ebextensions folder, and an optional
.platform folder. For details about these optional configuration folders, see the section called
“Extending Linux platforms”.

To launch an environment (console)

1. Open the Elastic Beanstalk console with this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application, or the Docker platform for container-based applications.

3. For Application code, choose Upload your code.

4. Choose Local file, choose Choose file, and then open the source bundle.

5. Choose Review and launch.

6. Review the available settings, and then choose Create app.

For information about creating source bundles, see Create an Elastic Beanstalk application source
bundle.

Structuring your project folder

To work when deployed to a Tomcat server, compiled Java Platform Enterprise Edition (Java EE)
web application archives (WAR files) must be structured according to certain guidelines. Your

Structuring your project folder 958

https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://docs.oracle.com/javaee/7/tutorial/packaging003.htm

Amazon Elastic Beanstalk Developer Guide

project directory doesn't have to meet the same standards, but it's a good idea to structure it in the
same way to simplify compiling and packaging. Structuring your project folder like the WAR file
contents also helps you understand how files are related and how they behave on a web server.

In the following recommended hierarchy, the source code for the web application is placed in a src
directory, to isolate it from the build script and the WAR file it generates.

~/workspace/my-app/
|-- build.sh - Build script that compiles classes and creates a WAR
|-- README.MD - Readme file with information about your project, notes
|-- ROOT.war - Source bundle artifact created by build.sh
`-- src - Source code folder
 |-- WEB-INF - Folder for private supporting files
 | |-- classes - Compiled classes
 | |-- lib - JAR libraries
 | |-- tags - Tag files
 | |-- tlds - Tag Library Descriptor files
 | `-- web.xml - Deployment Descriptor
 |-- com - Uncompiled classes
 |-- css - Style sheets
 |-- images - Image files
 |-- js - JavaScript files
 `-- default.jsp - JSP (JavaServer Pages) webpage

The src folder contents match what you will package and deploy to the server, with the exception
of the com folder. The com folder contains your uncompiled classes (.java files). These need to be
compiled and placed in the WEB-INF/classes directory to be accessible from your application
code.

The WEB-INF directory contains code and configurations that are not served publicly on the web
server. The other folders at the root of the source directory (css, images, and js) are publicly
available at the corresponding path on the web server.

The following example is identical to the preceding project directory, except that it contains more
files and subdirectories. This example project includes simple tags, model and support classes, and
a Java Server Pages (JSP) file for a record resource. It also includes a style sheet and JavaScript for
Bootstrap, a default JSP file, and an error page for 404 errors.

WEB-INF/lib includes a Java Archive (JAR) file containing the Java Database Connectivity (JDBC)
driver for PostgreSQL. WEB-INF/classes is empty because class files have not been compiled yet.

Structuring your project folder 959

http://getbootstrap.com/

Amazon Elastic Beanstalk Developer Guide

~/workspace/my-app/
|-- build.sh
|-- README.MD
|-- ROOT.war
`-- src
 |-- WEB-INF
 | |-- classes
 | |-- lib
 | | `-- postgresql-9.4-1201.jdbc4.jar
 | |-- tags
 | | `-- header.tag
 | |-- tlds
 | | `-- records.tld
 | `-- web.xml
 |-- com
 | `-- myapp
 | |-- model
 | | `-- Record.java
 | `-- web
 | `-- ListRecords.java
 |-- css
 | |-- bootstrap.min.css
 | `-- myapp.css
 |-- images
 | `-- myapp.png
 |-- js
 | `-- bootstrap.min.js
 |-- 404.jsp
 |-- default.jsp
 `-- records.jsp

Building a WAR file with a shell script

build.sh is a very simple shell script that compiles Java classes, constructs a WAR file, and copies
it to the Tomcat webapps directory for local testing.

cd src
javac -d WEB-INF/classes com/myapp/model/Record.java
javac -classpath WEB-INF/lib/*:WEB-INF/classes -d WEB-INF/classes com/myapp/model/
Record.java
javac -classpath WEB-INF/lib/*:WEB-INF/classes -d WEB-INF/classes com/myapp/web/
ListRecords.java

Structuring your project folder 960

Amazon Elastic Beanstalk Developer Guide

jar -cvf ROOT.war *.jsp images css js WEB-INF
cp ROOT.war /Library/Tomcat/webapps
mv ROOT.war ../

Inside the WAR file, you find the same structure that exists in the src directory in the preceding
example, excluding the src/com folder. The jar command automatically creates the META-INF/
MANIFEST.MF file.

~/workspace/my-app/ROOT.war
|-- META-INF
| `-- MANIFEST.MF
|-- WEB-INF
| |-- classes
| | `-- com
| | `-- myapp
| | |-- model
| | | `-- Records.class
| | `-- web
| | `-- ListRecords.class
| |-- lib
| | `-- postgresql-9.4-1201.jdbc4.jar
| |-- tags
| | `-- header.tag
| |-- tlds
| | `-- records.tld
| `-- web.xml
|-- css
| |-- bootstrap.min.css
| `-- myapp.css
|-- images
| `-- myapp.png
|-- js
| `-- bootstrap.min.js
|-- 404.jsp
|-- default.jsp
`-- records.jsp

Using .gitignore

To avoid committing compiled class files and WAR files to your Git repository, or seeing messages
about them appear when you run Git commands, add the relevant file types to a file named
.gitignore in your project folder.

Structuring your project folder 961

Amazon Elastic Beanstalk Developer Guide

~/workspace/myapp/.gitignore

*.zip
*.class

Configuring the proxy server

The Tomcat platform uses nginx (the default) or Apache HTTP Server as the reverse proxy to relay
requests from port 80 on the instance to your Tomcat web container listening on port 8080. Elastic
Beanstalk provides a default proxy configuration that you can extend or override completely with
your own configuration.

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, see Reverse
proxy configuration.

Configuring the proxy on the Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform

If your Elastic Beanstalk Tomcat environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Choosing a proxy server for your Tomcat environment — Amazon Linux AMI (AL1)

Tomcat platform versions based on Amazon Linux AMI (preceding Amazon Linux 2) use Apache 2.4
for the proxy by default. You can choose to use Apache 2.2 or nginx by including a configuration
file in your source code. The following example configures Elastic Beanstalk to use nginx.

Proxy configuration 962

https://www.nginx.com/
https://httpd.apache.org/
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html
https://httpd.apache.org/docs/2.4/
https://httpd.apache.org/docs/2.2/
https://www.nginx.com/

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/nginx-proxy.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: nginx

Migrating from Apache 2.2 to Apache 2.4 — Amazon Linux AMI (AL1)

If your application was developed for Apache 2.2, read this section to learn about migrating to
Apache 2.4.

Starting with Tomcat platform version 3.0.0 configurations, which were released with the Java
with Tomcat platform update on May 24, 2018, Apache 2.4 is the default proxy of the Tomcat
platform. The Apache 2.4 .conf files are mostly, but not entirely, backward compatible with those
of Apache 2.2. Elastic Beanstalk includes default .conf files that work correctly with each Apache
version. If your application doesn't customize Apache's configuration, as explained in Extending
and overriding the default Apache configuration — Amazon Linux AMI (AL1), it should migrate to
Apache 2.4 without any issues.

If your application extends or overrides Apache's configuration, you might have to make some
changes to migrate to Apache 2.4. For more information, see Upgrading to 2.4 from 2.2 on The
Apache Software Foundation's site. As a temporary measure, until you successfully migrate to
Apache 2.4, you can choose to use Apache 2.2 with your application by including the following
configuration file in your source code.

Example .ebextensions/apache-legacy-proxy.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache/2.2

For a quick fix, you can also select the proxy server in the Elastic Beanstalk console.

To select the proxy in your Tomcat environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Proxy configuration 963

https://httpd.apache.org/docs/2.2/
https://httpd.apache.org/docs/2.4/
http://www.amazonaws.cn/releasenotes/release-aws-elastic-beanstalk-platform-update-for-the-java-with-tomcat-platform-on-may-24-2018/
http://www.amazonaws.cn/releasenotes/release-aws-elastic-beanstalk-platform-update-for-the-java-with-tomcat-platform-on-may-24-2018/
https://httpd.apache.org/docs/current/upgrading.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. For Proxy server, choose Apache 2.2 (deprecated).

6. To save the changes choose Apply at the bottom of the page.

Extending and overriding the default Apache configuration — Amazon Linux AMI (AL1)

You can extend the Elastic Beanstalk default Apache configuration with your additional
configuration files. Alternatively, you can override the Elastic Beanstalk default Apache
configuration completely.

Note

• All Amazon Linux 2 platforms support a uniform proxy configuration feature. For details
about configuring the proxy server on Tomcat platform versions running Amazon Linux
2, see Reverse proxy configuration.

• If you're migrating your Elastic Beanstalk application to an Amazon Linux 2 platform, be
sure to also read the information in the section called “Migrate to AL2023/AL2”.

To extend the Elastic Beanstalk default Apache configuration, add .conf configuration files to
a folder named .ebextensions/httpd/conf.d in your application source bundle. The Elastic
Beanstalk Apache configuration includes .conf files in this folder automatically.

~/workspace/my-app/
|-- .ebextensions
| -- httpd

Proxy configuration 964

Amazon Elastic Beanstalk Developer Guide

| -- conf.d
| -- myconf.conf
| -- ssl.conf
-- index.jsp

For example, the following Apache 2.4 configuration adds a listener on port 5000.

Example .ebextensions/httpd/conf.d/port5000.conf

listen 5000
<VirtualHost *:5000>
 <Proxy *>
 Require all granted
 </Proxy>
 ProxyPass / http://localhost:8080/ retry=0
 ProxyPassReverse / http://localhost:8080/
 ProxyPreserveHost on

 ErrorLog /var/log/httpd/elasticbeanstalk-error_log
</VirtualHost>

To override the Elastic Beanstalk default Apache configuration completely, include a configuration
in your source bundle at .ebextensions/httpd/conf/httpd.conf.

~/workspace/my-app/
|-- .ebextensions
| `-- httpd
| `-- conf
| `-- httpd.conf
`-- index.jsp

If you override the Elastic Beanstalk Apache configuration, add the following lines to your
httpd.conf to pull in the Elastic Beanstalk configurations for Enhanced health reporting and
monitoring in Elastic Beanstalk, response compression, and static files.

IncludeOptional conf.d/*.conf
IncludeOptional conf.d/elasticbeanstalk/*.conf

If your environment uses Apache 2.2 as its proxy, replace the IncludeOptional directives with
Include. For details about the behavior of these two directives in the two Apache versions, see
Include in Apache 2.4, IncludeOptional in Apache 2.4, and Include in Apache 2.2.

Proxy configuration 965

https://httpd.apache.org/docs/2.4/mod/core.html#include
https://httpd.apache.org/docs/2.4/mod/core.html#includeoptional
https://httpd.apache.org/docs/2.2/mod/core.html#include

Amazon Elastic Beanstalk Developer Guide

Note

To override the default listener on port 80, include a file named 00_application.conf
at .ebextensions/httpd/conf.d/elasticbeanstalk/ to overwrite the Elastic
Beanstalk configuration.

For a working example, take a look at the Elastic Beanstalk default configuration file at /etc/
httpd/conf/httpd.conf on an instance in your environment. All files in the .ebextensions/
httpd folder in your source bundle are copied to /etc/httpd during deployments.

Extending the default nginx configuration — Amazon Linux AMI (AL1)

To extend Elastic Beanstalk's default nginx configuration, add .conf configuration files to a folder
named .ebextensions/nginx/conf.d/ in your application source bundle. The Elastic Beanstalk
nginx configuration includes .conf files in this folder automatically.

~/workspace/my-app/
|-- .ebextensions
| `-- nginx
| `-- conf.d
| |-- elasticbeanstalk
| | `-- my-server-conf.conf
| `-- my-http-conf.conf
`-- index.jsp

Files with the .conf extension in the conf.d folder are included in the http block of the default
configuration. Files in the conf.d/elasticbeanstalk folder are included in the server block
within the http block.

To override the Elastic Beanstalk default nginx configuration completely, include a configuration in
your source bundle at .ebextensions/nginx/nginx.conf.

~/workspace/my-app/
|-- .ebextensions
| `-- nginx
| `-- nginx.conf
`-- index.jsp

Proxy configuration 966

Amazon Elastic Beanstalk Developer Guide

Notes

• If you override the Elastic Beanstalk nginx configuration, add the following line to your
configuration's server block to pull in the Elastic Beanstalk configurations for the port
80 listener, response compression, and static files.

 include conf.d/elasticbeanstalk/*.conf;

• To override the default listener on port 80, include a file named 00_application.conf
at .ebextensions/nginx/conf.d/elasticbeanstalk/ to overwrite the Elastic
Beanstalk configuration.

• Also include the following line in your configuration's http block to pull in the Elastic
Beanstalk configurations for Enhanced health reporting and monitoring in Elastic
Beanstalk and logging.

 include conf.d/*.conf;

For a working example, take a look at the Elastic Beanstalk default configuration file at /etc/
nginx/nginx.conf on an instance in your environment. All files in the .ebextensions/nginx
folder in your source bundle are copied to /etc/nginx during deployments.

Using the Elastic Beanstalk Java SE platform

This topic describes how to configure, build, and run your Java applications that run on the Amazon
Elastic Beanstalk Java SE platform.

The Elastic Beanstalk Java SE platform is a set of platform versions for Java web applications that
can run on their own from a compiled JAR file. You can compile your application locally or upload
the source code with a build script to compile it on-instance. Java SE platform versions are grouped
into platform branches, each of which corresponds to a major version of Java.

The Java SE platform 967

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.javase

Amazon Elastic Beanstalk Developer Guide

Note

Elastic Beanstalk doesn't parse your application's JAR file. Keep files that Elastic Beanstalk
needs outside of the JAR file. For example, include the cron.yaml file of a worker
environment at the root of your application's source bundle, next to the JAR file.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

The Elastic Beanstalk Java SE platform includes an nginx server that acts as a reverse proxy,
serving cached static content and passing requests to your application. The platform provides
configuration options to configure the proxy server to serve static assets from a folder in your
source code to reduce the load on your application. For advanced scenarios, you can include your
own .conf files in your source bundle to extend Elastic Beanstalk's proxy configuration or overwrite
it completely.

If you only provide a single JAR file for your application source (on its own, not within a source
bundle), Elastic Beanstalk renames your JAR file to application.jar, and then runs it using
java -jar application.jar. To configure the processes that run on the server instances in
your environment, include an optional Procfile in your source bundle. A Procfile is required
if you have more than one JAR in your source bundle root, or if you want to customize the java
command to set JVM options.

We recommend that you always provide a Procfile in the source bundle alongside your
application. This way you precisely control which processes Elastic Beanstalk runs for your
application and which arguments these processes receive.

To compile Java classes and run other build commands on the EC2 instances in your environment
at deploy time, include a Buildfile in your application source bundle. A Buildfile lets you deploy
your source code as-is and build on the server instead of compiling JARs locally. The Java SE
platform includes common build tools to let you build on-server.

The Java SE platform 968

https://www.nginx.com/

Amazon Elastic Beanstalk Developer Guide

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Configuring your Java SE environment

The Java SE platform settings let you fine-tune the behavior of your Amazon EC2 instances. You
can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration using the Elastic
Beanstalk console.

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your Java SE environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

Configuring your Java SE environment 969

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

Inside the Java SE environment running in Elastic Beanstalk, environment variables are accessible
using the System.getenv(). For example, you could read a property named API_ENDPOINT to a
variable with the following code:

String endpoint = System.getenv("API_ENDPOINT");

See Environment variables and other software settings for more information.

Java SE configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

The Java SE platform doesn't define any platform-specific namespaces. You can configure the
proxy to serve static files by using the
aws:elasticbeanstalk:environment:proxy:staticfiles namespace. For details and an
example, see the section called “Static files”.

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Java SE platform

If your Elastic Beanstalk Java SE environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Java SE configuration namespace 970

Amazon Elastic Beanstalk Developer Guide

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Java SE configuration namespaces — Amazon Linux AMI (AL1)

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

The Java SE platform supports one platform-specific configuration
namespace in addition to the namespaces supported by all platforms. The
aws:elasticbeanstalk:container:java:staticfiles namespace lets you define options
that map paths on your web application to folders in your application source bundle that contain
static content.

For example, this option_settings snippet defines two options in the static files namespace. The
first maps the path /public to a folder named public, and the second maps the path /images
to a folder named img:

option_settings:
 aws:elasticbeanstalk:container:java:staticfiles:
 /html: statichtml
 /images: staticimages

The folders that you map using this namespace must be actual folders in the root of your source
bundle. You cannot map a path to a folder in a JAR file.

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

Java SE configuration namespace 971

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

Building JARs on-server with a Buildfile

You can build your application's class files and JAR(s) on the EC2 instances in your environment by
invoking a build command from a Buildfile file in your source bundle.

Commands in a Buildfile are only run once and must terminate upon completion, whereas
commands in a Procfile are expected to run for the life of the application and will be restarted if
they terminate. To run the JARs in your application, use a Procfile.

For details about the placement and syntax of a Buildfile, see Buildfile and Procfile.

The following Buildfile example runs Apache Maven to build a web application from source
code. For a sample application that uses this feature, see Java web application samples.

Example Buildfile

build: mvn assembly:assembly -DdescriptorId=jar-with-dependencies

The Java SE platform includes the following build tools, which you can invoke from your build
script:

• javac – Java compiler

• ant – Apache Ant

• mvn – Apache Maven

• gradle – Gradle

Configuring the application process with a Procfile

If you have more than one JAR file in the root of your application source bundle, you must
include a Procfile file that tells Elastic Beanstalk which JAR(s) to run. You can also include a
Procfile file for a single JAR application to configure the Java virtual machine (JVM) that runs
your application.

We recommend that you always provide a Procfile in the source bundle alongside your
application. This way you precisely control which processes Elastic Beanstalk runs for your
application and which arguments these processes receive.

For details about writing and using a Procfile see Buildfile and Procfile.

Buildfile 972

Amazon Elastic Beanstalk Developer Guide

Example Procfile

web: java -Xms256m -jar server.jar
cache: java -jar mycache.jar
web_foo: java -jar other.jar

The command that runs the main JAR in your application must be called web, and it must be
the first command listed in your Procfile. The nginx server forwards all HTTP requests that it
receives from your environment's load balancer to this application.

Elastic Beanstalk assumes that all entries in the Procfile should run at all times and automatically
restarts any application defined in the Procfile that terminates. To run commands that will
terminate and should not be restarted, use a Buildfile.

Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Java SE environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Port passing — Amazon Linux AMI (AL1)

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

If you use a Procfile to run multiple applications, Elastic Beanstalk on Amazon Linux AMI
platform versions expects each additional application to listen on a port 100 higher than the
previous one. Elastic Beanstalk sets the PORT variable accessible from within each application

Procfile 973

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

to the port that it expects the application to run on. You can access this variable within your
application code by calling System.getenv("PORT").

In the preceding Procfile example, the web application listens on port 5000, cache listens on
port 5100, and web_foo listens on port 5200. web configures its listening port by reading the
PORT variable, and adds 100 to that number to determine which port cache is listening on so that
it can send it requests.

Configuring the proxy server

Elastic Beanstalk uses nginx as the reverse proxy to map your application to your Elastic Load
Balancing load balancer on port 80. Elastic Beanstalk provides a default nginx configuration that
you can either extend or override completely with your own configuration.

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

Note

The port that your application listens on doesn't affect the port that the nginx server
listens to receive requests from the load balancer.

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, see Reverse
proxy configuration.

Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Java SE environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

Proxy configuration 974

https://www.nginx.com/

Amazon Elastic Beanstalk Developer Guide

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

To extend Elastic Beanstalk's default nginx configuration, add .conf configuration files to a folder
named .ebextensions/nginx/conf.d/ in your application source bundle. Elastic Beanstalk's
nginx configuration includes .conf files in this folder automatically.

~/workspace/my-app/
|-- .ebextensions
| `-- nginx
| `-- conf.d
| `-- myconf.conf
`-- web.jar

To override Elastic Beanstalk's default nginx configuration completely, include a configuration in
your source bundle at .ebextensions/nginx/nginx.conf:

~/workspace/my-app/
|-- .ebextensions
| `-- nginx
| `-- nginx.conf
`-- web.jar

If you override Elastic Beanstalk's nginx configuration, add the following line to your nginx.conf
to pull in Elastic Beanstalk's configurations for Enhanced health reporting and monitoring in Elastic
Beanstalk, automatic application mappings, and static files.

 include conf.d/elasticbeanstalk/*.conf;

The following example configuration from the Scorekeep sample application overrides Elastic
Beanstalk's default configuration to serve a static web application from the public subdirectory
of /var/app/current, where the Java SE platform copies the application source code. The /api
location forwards traffic to routes under /api/ to the Spring application listening on port 5000.
All other traffic is served by the web app at the root path.

Proxy configuration 975

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html
https://github.com/aws-samples/eb-java-scorekeep/

Amazon Elastic Beanstalk Developer Guide

Example

user nginx;
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
worker_processes auto;
worker_rlimit_nofile 33282;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

 include conf.d/*.conf;

 map $http_upgrade $connection_upgrade {
 default "upgrade";
 }

 server {
 listen 80 default_server;
 root /var/app/current/public;

 location / {
 }git pull

 location /api {
 proxy_pass http://127.0.0.1:5000;
 proxy_http_version 1.1;

 proxy_set_header Connection $connection_upgrade;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

Proxy configuration 976

Amazon Elastic Beanstalk Developer Guide

 access_log /var/log/nginx/access.log main;

 client_header_timeout 60;
 client_body_timeout 60;
 keepalive_timeout 60;
 gzip off;
 gzip_comp_level 4;

 # Include the Elastic Beanstalk generated locations
 include conf.d/elasticbeanstalk/01_static.conf;
 include conf.d/elasticbeanstalk/healthd.conf;
 }
}

Adding an Amazon RDS DB instance to your Java Elastic
Beanstalk environment

This topic provides instructions to create an Amazon RDS using the Elastic Beanstalk console. You
can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data that your
application gathers and modifies. The database can be attached to your environment and managed
by Elastic Beanstalk, or created and managed externally.

If you are using Amazon RDS for the first time, add a DB instance to a test environment by using
the Elastic Beanstalk console and verify that your application can connect to it.

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a database 977

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring an internal DB instance, see Adding a database to your
Elastic Beanstalk environment. For instructions on configuring an external database for use with
Elastic Beanstalk, see Using Elastic Beanstalk with Amazon RDS.

To connect to the database, add the appropriate driver JAR file to your application, load the driver
class in your code, and create a connection object with the environment properties provided by
Elastic Beanstalk.

Sections

• Downloading the JDBC driver

• Connecting to a database (Java SE platforms)

Adding a database 978

Amazon Elastic Beanstalk Developer Guide

• Connecting to a database (Tomcat platforms)

• Troubleshooting database connections

Downloading the JDBC driver

You will need the JAR file of the JDBC driver for the DB engine that you choose. Save the JAR
file in your source code and include it in your classpath when you compile the class that creates
connections to the database.

You can find the latest driver for your DB engine in the following locations:

• MySQL – MySQL Connector/J

• Oracle SE-1 – Oracle JDBC Driver

• Postgres – PostgreSQL JDBC Driver

• SQL Server – Microsoft JDBC Driver

To use the JDBC driver, call Class.forName() to load it before creating the connection with
DriverManager.getConnection() in your code.

JDBC uses a connection string in the following format:

jdbc:driver://hostname:port/dbName?user=userName&password=password

You can retrieve the hostname, port, database name, user name, and password from the
environment variables that Elastic Beanstalk provides to your application. The driver name is
specific to your database type and driver version. The following are example driver names:

• mysql for MySQL

• postgresql for PostgreSQL

• oracle:thin for Oracle Thin

• oracle:oci for Oracle OCI

• oracle:oci8 for Oracle OCI 8

• oracle:kprb for Oracle KPRB

• sqlserver for SQL Server

Downloading the JDBC driver 979

https://dev.mysql.com/downloads/connector/j/
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
https://jdbc.postgresql.org/
https://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx

Amazon Elastic Beanstalk Developer Guide

Connecting to a database (Java SE platforms)

In a Java SE environment, use System.getenv() to read the connection variables from the
environment. The following example code shows a class that creates a connection to a PostgreSQL
database.

private static Connection getRemoteConnection() {
 if (System.getenv("RDS_HOSTNAME") != null) {
 try {
 Class.forName("org.postgresql.Driver");
 String dbName = System.getenv("RDS_DB_NAME");
 String userName = System.getenv("RDS_USERNAME");
 String password = System.getenv("RDS_PASSWORD");
 String hostname = System.getenv("RDS_HOSTNAME");
 String port = System.getenv("RDS_PORT");
 String jdbcUrl = "jdbc:postgresql://" + hostname + ":" + port + "/" + dbName + "?
user=" + userName + "&password=" + password;
 logger.trace("Getting remote connection with connection string from environment
 variables.");
 Connection con = DriverManager.getConnection(jdbcUrl);
 logger.info("Remote connection successful.");
 return con;
 }
 catch (ClassNotFoundException e) { logger.warn(e.toString());}
 catch (SQLException e) { logger.warn(e.toString());}
 }
 return null;
 }

Connecting to a database (Tomcat platforms)

In a Tomcat environment, environment properties are provided as system properties that are
accessible with System.getProperty().

The following example code shows a class that creates a connection to a PostgreSQL database.

private static Connection getRemoteConnection() {
 if (System.getProperty("RDS_HOSTNAME") != null) {
 try {
 Class.forName("org.postgresql.Driver");
 String dbName = System.getProperty("RDS_DB_NAME");
 String userName = System.getProperty("RDS_USERNAME");

Connecting to a database (Java SE platforms) 980

Amazon Elastic Beanstalk Developer Guide

 String password = System.getProperty("RDS_PASSWORD");
 String hostname = System.getProperty("RDS_HOSTNAME");
 String port = System.getProperty("RDS_PORT");
 String jdbcUrl = "jdbc:postgresql://" + hostname + ":" + port + "/" + dbName + "?
user=" + userName + "&password=" + password;
 logger.trace("Getting remote connection with connection string from environment
 variables.");
 Connection con = DriverManager.getConnection(jdbcUrl);
 logger.info("Remote connection successful.");
 return con;
 }
 catch (ClassNotFoundException e) { logger.warn(e.toString());}
 catch (SQLException e) { logger.warn(e.toString());}
 }
 return null;
 }

If you have trouble getting a connection or running SQL statements, try placing the following code
in a JSP file. This code connects to a DB instance, creates a table, and writes to it.

<%@ page import="java.sql.*" %>
<%
 // Read RDS connection information from the environment
 String dbName = System.getProperty("RDS_DB_NAME");
 String userName = System.getProperty("RDS_USERNAME");
 String password = System.getProperty("RDS_PASSWORD");
 String hostname = System.getProperty("RDS_HOSTNAME");
 String port = System.getProperty("RDS_PORT");
 String jdbcUrl = "jdbc:mysql://" + hostname + ":" +
 port + "/" + dbName + "?user=" + userName + "&password=" + password;

 // Load the JDBC driver
 try {
 System.out.println("Loading driver...");
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded!");
 } catch (ClassNotFoundException e) {
 throw new RuntimeException("Cannot find the driver in the classpath!", e);
 }

 Connection conn = null;
 Statement setupStatement = null;
 Statement readStatement = null;

Connecting to a database (Tomcat platforms) 981

Amazon Elastic Beanstalk Developer Guide

 ResultSet resultSet = null;
 String results = "";
 int numresults = 0;
 String statement = null;

 try {
 // Create connection to RDS DB instance
 conn = DriverManager.getConnection(jdbcUrl);

 // Create a table and write two rows
 setupStatement = conn.createStatement();
 String createTable = "CREATE TABLE Beanstalk (Resource char(50));";
 String insertRow1 = "INSERT INTO Beanstalk (Resource) VALUES ('EC2 Instance');";
 String insertRow2 = "INSERT INTO Beanstalk (Resource) VALUES ('RDS Instance');";

 setupStatement.addBatch(createTable);
 setupStatement.addBatch(insertRow1);
 setupStatement.addBatch(insertRow2);
 setupStatement.executeBatch();
 setupStatement.close();

 } catch (SQLException ex) {
 // Handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
 } finally {
 System.out.println("Closing the connection.");
 if (conn != null) try { conn.close(); } catch (SQLException ignore) {}
 }

 try {
 conn = DriverManager.getConnection(jdbcUrl);

 readStatement = conn.createStatement();
 resultSet = readStatement.executeQuery("SELECT Resource FROM Beanstalk;");

 resultSet.first();
 results = resultSet.getString("Resource");
 resultSet.next();
 results += ", " + resultSet.getString("Resource");

 resultSet.close();
 readStatement.close();

Connecting to a database (Tomcat platforms) 982

Amazon Elastic Beanstalk Developer Guide

 conn.close();

 } catch (SQLException ex) {
 // Handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
 } finally {
 System.out.println("Closing the connection.");
 if (conn != null) try { conn.close(); } catch (SQLException ignore) {}
 }
%>

To display the results, place the following code in the body of the HTML portion of the JSP file.

<p>Established connection to RDS. Read first two rows: <%= results %></p>

Troubleshooting database connections

If you run into issues connecting to a database from within your application, review the web
container log and database.

Reviewing logs

You can view all the logs from your Elastic Beanstalk environment from within Eclipse. If you don't
have the Amazon Explorer view open, choose the arrow next to the orange Amazon icon in the
toolbar, and then choose Show Amazon Explorer View. Expand Amazon Elastic Beanstalk and
your environment name, and then open the context (right-click) menu for the server. Choose Open
in WTP Server Editor.

Choose the Log tab of the Server view to see the aggregate logs from your environment. To open
the latest logs, choose the Refresh button at the upper right corner of the page.

Scroll down to locate the Tomcat logs in /var/log/tomcat7/catalina.out. If you loaded the
webpage from our earlier example several times, you might see the following.

/var/log/tomcat7/catalina.out

INFO: Server startup in 9285 ms

Troubleshooting database connections 983

Amazon Elastic Beanstalk Developer Guide

Loading driver...
Driver loaded!
SQLException: Table 'Beanstalk' already exists
SQLState: 42S01
VendorError: 1050
Closing the connection.
Closing the connection.

All information that the web application sends to standard output appears in the web container
log. In the previous example, the application tries to create the table every time the page loads.
This results in catching a SQL exception on every page load after the first one.

As an example, the preceding is acceptable. But in actual applications, keep your database
definitions in schema objects, perform transactions from within model classes, and coordinate
requests with controller servlets.

Connecting to an RDS DB Instance

You can connect directly to the RDS DB instance in your Elastic Beanstalk environment by using the
MySQL client application.

First, open the security group to your RDS DB instance to allow traffic from your computer.

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Next to Endpoint, choose the Amazon RDS console link.

6. On the RDS Dashboard instance details page, under Security and Network, choose the
security group starting with rds- next to Security Groups.

Note

The database might have multiple entries labeled Security Groups. Use the first,
which starts with awseb, only if you have an older account that doesn't have a default
Amazon Virtual Private Cloud (Amazon VPC).

Troubleshooting database connections 984

https://console.amazonaws.cn/elasticbeanstalk
https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

7. In Security group details, choose the Inbound tab, and then choose Edit.

8. Add a rule for MySQL (port 3306) that allows traffic from your IP address, specified in CIDR
format.

9. Choose Save. The changes take effect immediately.

Return to the Elastic Beanstalk configuration details for your environment and note the endpoint.
You will use the domain name to connect to the RDS DB instance.

Install the MySQL client and initiate a connection to the database on port 3306. On Windows,
install MySQL Workbench from the MySQL home page and follow the prompts.

On Linux, install the MySQL client using the package manager for your distribution. The following
example works on Ubuntu and other Debian derivatives.

// Install MySQL client
$ sudo apt-get install mysql-client-5.5
...
// Connect to database
$ mysql -h aas839jo2vwhwb.cnubrrfwfka8.us-west-2.rds.amazonaws.com.cn -u username -
ppassword ebdb
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 117
Server version: 5.5.40-log Source distribution
...

After you have connected, you can run SQL commands to see the status of the database, whether
your tables and rows were created, and other information.

mysql> SELECT Resource from Beanstalk;
+--------------+
| Resource |
+--------------+
| EC2 Instance |
| RDS Instance |
+--------------+
2 rows in set (0.01 sec)

Troubleshooting database connections 985

Amazon Elastic Beanstalk Developer Guide

Java tools and resources

There are several places you can go to get additional help when developing your Java applications.

Resource Description

The Amazon Java Development
Forum

Post your questions and get feedback.

Java Developer Center One-stop shop for sample code, documentation, tools,
and additional resources.

Resources 986

https://forums.aws.csdn.net/forum.jspa?forumID=70
https://forums.aws.csdn.net/forum.jspa?forumID=70
http://www.amazonaws.cn/java/

Amazon Elastic Beanstalk Developer Guide

Deploying Node.js applications with Elastic Beanstalk

This chapter provides instructions for configuring and deploying your Node.js web application
to Amazon Elastic Beanstalk. It also provides walkthroughs for common tasks such as database
integration and working with the Express framework. Elastic Beanstalk makes it easy to deploy,
manage, and scale your Node.js web applications using Amazon Web Services.

You can deploy your application in just a few minutes using the Elastic Beanstalk Command Line
Interface (EB CLI) or by using the Elastic Beanstalk console. After you deploy your Elastic Beanstalk
application, you can continue to use the EB CLI to manage your application and environment, or
you can use the Elastic Beanstalk console, Amazon CLI, or the APIs.

Follow the QuickStart for Node.js for step-by-step instructions to create and deploy a Hello World
Node.js web application with the EB CLI.

Topics

• QuickStart: Deploy a Node.js application to Elastic Beanstalk

• Setting up your Node.js development environment for Elastic Beanstalk

• Using the Elastic Beanstalk Node.js platform

• More Elastic Beanstalk example applications and tutorials for Node.js

• Deploying a Node.js Express application to Elastic Beanstalk

• Deploying a Node.js Express application with clustering to Elastic Beanstalk

• Deploying a Node.js application with DynamoDB to Elastic Beanstalk

• Adding an Amazon RDS DB instance to your Node.js Elastic Beanstalk environment

• Node.js tools and resources

QuickStart: Deploy a Node.js application to Elastic Beanstalk

This QuickStart tutorial walks you through the process of creating a Node.js application and
deploying it to an Amazon Elastic Beanstalk environment.

Note

Tutorial examples are intended for demonstration. Do not use the application for
production traffic.

QuickStart for Node.js 987

Amazon Elastic Beanstalk Developer Guide

Sections

• Your Amazon account

• Prerequisites

• Step 1: Create a Node.js application

• Step 2: Run your application locally

• Step 3: Deploy your Node.js application with the EB CLI

• Step 4: Run your application on Elastic Beanstalk

• Step 5: Clean up

• Amazon resources for your application

• Next steps

• Deploy with the Elastic Beanstalk console

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account. Signing up
enables you to access Elastic Beanstalk and other Amazon services that you need.

If you already have an Amazon account, you can move on to Prerequisites.

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Your Amazon account 988

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/

Amazon Elastic Beanstalk Developer Guide

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

EB CLI

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install EB CLI with setup script (recommended) and Configure the
EB CLI.

Node.js

Install Node.js on your local machine by following How to install Node.js on the Node.js website.

Prerequisites 989

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://nodejs.org/en/learn/getting-started/how-to-install-nodejs

Amazon Elastic Beanstalk Developer Guide

Verify your Node.js installation by running the following command.

~$ node -v

Step 1: Create a Node.js application

Create a project directory.

~$ mkdir eb-nodejs
~$ cd eb-nodejs

Next, create an application that you'll deploy using Elastic Beanstalk. We'll create a "Hello World"
RESTful web service.

Example ~/eb-nodejs/server.js

const http = require('node:http');

const hostname = '127.0.0.1';
const port = 8080;

const server = http.createServer((req, res) => {
 res.statusCode = 200;
 res.setHeader('Content-Type', 'text/plain');
 res.end('Hello Elastic Beanstalk!\n');
});

server.listen(port, hostname, () => {
 console.log(`Server running at http://${hostname}:${port}/`);
});

This application opens a listener on port 8080. Elastic Beanstalk forwards requests to your
application on port 8080 by default for Node.js.

Step 2: Run your application locally

Run the following command to run your application locally.

~/eb-nodejs$ node server.js

Step 1: Create a Node.js application 990

Amazon Elastic Beanstalk Developer Guide

You should see the following text.

Server running at http://127.0.0.1:8080/

Enter the URL address http://127.0.0.1:8080/ in your web browser. The browser should
display “Hello Elastic Beanstalk!”.

Step 3: Deploy your Node.js application with the EB CLI

Run the following commands to create an Elastic Beanstalk environment for this application.

To create an environment and deploy your Node.js application

1. Initialize your EB CLI repository with the eb init command.

~/eb-nodejs$ eb init -p node.js nodejs-tutorial --region us-west-2

This command creates an application named nodejs-tutorial and configures your local
repository to create environments with the latest Node.js platform version.

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/eb-nodejs$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a zip file for your application and deploys it to an EC2 instance in the
environment. After deploying your application, Elastic Beanstalk starts it on port 8080.

~/eb-nodejs$ eb create nodejs-env

It takes about five minutes for Elastic Beanstalk to create your environment.

Step 3: Deploy your Node.js application with the EB CLI 991

Amazon Elastic Beanstalk Developer Guide

Step 4: Run your application on Elastic Beanstalk

When the process to create your environment completes, open your website with eb open.

~/eb-nodejs$ eb open

Congratulations! You've deployed a Node.js application with Elastic Beanstalk! This opens a
browser window using the domain name created for your application.

Step 5: Clean up

You can terminate your environment when you finish working with your application. Elastic
Beanstalk terminates all Amazon resources associated with your environment.

To terminate your Elastic Beanstalk environment with the EB CLI run the following command.

~/eb-nodejs$ eb terminate

Amazon resources for your application

You just created a single instance application. It serves as a straightforward sample application
with a single EC2 instance, so it doesn't require load balancing or auto scaling. For single instance
applications Elastic Beanstalk creates the following Amazon resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

Step 4: Run your application on Elastic Beanstalk 992

Amazon Elastic Beanstalk Developer Guide

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.eb.amazonaws.com.cn.

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances. You can also explore your new
environment using the Elastic Beanstalk console. For detailed steps, see Explore your environment
in the Getting started chapter of this guide.

Try more tutorials

If you'd like to try other tutorials with different example applications, see More Elastic
Beanstalk example applications and tutorials for Node.js.

After you deploy a sample application or two and are ready to start developing and running
Node.js applications locally, see Setting up your Node.js development environment for Elastic
Beanstalk.

Deploy with the Elastic Beanstalk console

You can also use the Elastic Beanstalk console to launch the sample application. For detailed steps,
see Create an example application in the Getting started chapter of this guide.

Next steps 993

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

Setting up your Node.js development environment for Elastic
Beanstalk

This topic provides instructions to set up a Node.js development environment to test your
application locally prior to deploying it to Amazon Elastic Beanstalk. It also references websites
that provide installation instructions for useful tools.

Topics

• Install Node.js

• Confirm npm installation

• Install the Amazon SDK for Node.js

• Install the Express generator

• Set up an Express framework and server

Install Node.js

Install Node.js to run Node.js applications locally. If you don't have a preference, get the latest
version supported by Elastic Beanstalk. See Node.js in the Amazon Elastic Beanstalk Platforms
document for a list of supported versions.

Download Node.js at nodejs.org.

Confirm npm installation

Node.js uses the npm package manager to help you install tools and frameworks for use in
your application. Since npm is distributed with Node.js, you will automatically install it when
you download and install Node.js. To confirm you have npm installed you can run the following
command:

$ npm -v

For more information on npm, visit the npmjs website.

Install the Amazon SDK for Node.js

If you need to manage Amazon resources from within your application, install the Amazon SDK for
JavaScript in Node.js. Install the SDK with npm:

Development environment 994

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://nodejs.org/en/
https://www.npmjs.com/get-npm

Amazon Elastic Beanstalk Developer Guide

$ npm install aws-sdk

Visit the Amazon SDK for JavaScript in Node.js homepage for more information.

Install the Express generator

Express is a web application framework that runs on Node.js. To use it, first install the Express
generator command line application. Once the Express generator is installed, you can run the
express command to generate a base project structure for your web application. Once the base
project, files, and dependencies are installed you can start up a local Express server on your
development machine.

Note

• These steps walk you through installing the Express generator on a Linux operating
system.

• For Linux, depending on your permission level to system directories, you might need to
prefix some of these commands with sudo.

To install the Express generator on your development environment

1. Create a working directory for your Express framework and server.

~$ mkdir node-express
~$ cd node-express

2. Install Express globally so that you have access to the express command.

~/node-express$ npm install -g express-generator

3. Depending on your operating system, you may need to set your path to run the express
command. The output from the previous step provides information if you need to set your
path variable. The following is an example for Linux.

~/node-express$ export PATH=$PATH:/usr/local/share/npm/bin/express

Install the Express generator 995

http://www.amazonaws.cn/sdk-for-node-js/

Amazon Elastic Beanstalk Developer Guide

When you follow the tutorials in this chapter, you'll need to run the express command from
different directories. Each tutorial sets up a base Express project structure in it's own directory.

You have now installed the Express command line generator. You can use it to create a framework
directory for your web application, set up dependencies, and start up the web app server. Next,
we'll go through the steps to accomplish this in the node-express directory that we created.

Set up an Express framework and server

Follow these steps to create the base Express framework directories and contents. The tutorials in
this chapter also include these steps to set up the base Express framework in each of the tutorial's
application directories.

To set up an Express framework and server

1. Run the express command. This generates package.json, app.js, and a few directories.

~/node-express$ express

When prompted, type y if you want to continue.

2. Set up local dependencies.

~/node-express$ npm install

3. Verify the web app server starts up.

~/node-express$ npm start

You should see output similar to the following:

> nodejs@0.0.0 start /home/local/user/node-express
> node ./bin/www

The server runs on port 3000 by default. To test it, run curl http://localhost:3000 in
another terminal, or open a browser on the local computer and enter URL address http://
localhost:3000.

Press Ctrl+C to stop the server.

Set up an Express framework and server 996

Amazon Elastic Beanstalk Developer Guide

Using the Elastic Beanstalk Node.js platform

This topic describes how to configure, build, and run your Node.js applications on Elastic Beanstalk.

Amazon Elastic Beanstalk supports a number of platform branches for different versions of the
Node.js programming language. See Node.js in the Amazon Elastic Beanstalk Platforms document
for a full list.

Elastic Beanstalk provides configuration options that you can use to customize the software that
runs on the EC2 instances in your Elastic Beanstalk environment. You can configure environment
variables required by your application, enable log rotation to Amazon S3, and map folders in your
application source that contain static files to paths served by the proxy server.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

You can include a Package.json file in your source bundle to install packages during deployment,
to provide a start command, and to specify the Node.js version that you want your application to
use. You can include an npm-shrinkwrap.json file to lock down dependency versions.

The Node.js platform includes a proxy server to serve static assets, forward traffic to your
application, and compress responses. You can extend or override the default proxy configuration
for advanced scenarios.

There are several options to start your application. You can add a Procfile to your source bundle
to specify the command that starts your application. If you don't provide a Procfile but provide
a package.json file, Elastic Beanstalk runs npm start. If you don't provide that either, Elastic
Beanstalk looks for the app.js or server.js file, in this order, and runs the script.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

The Node.js platform 997

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs

Amazon Elastic Beanstalk Developer Guide

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Configuring your Node.js environment

You can use the Node.js platform settings to fine-tune the behavior of your Amazon EC2 instances.
You can edit the Amazon EC2 instance configuration for your Elastic Beanstalk environment using
the Elastic Beanstalk console.

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your Node.js environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Container options

You can specify these platform-specific options:

• Proxy server – The proxy server to use on your environment instances. By default, NGINX is used.

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket that's associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Configuring your Node.js environment 998

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

Use the Environment Properties section to specify environment configuration settings on the
Amazon EC2 instances that are running your application. These settings are passed in as key-value
pairs to the application.

Inside the Node.js environment that runs in Amazon Elastic Beanstalk, you can access the
environment variables by running process.env.ENV_VARIABLE.

var endpoint = process.env.API_ENDPOINT

The Node.js platform sets the PORT environment variable to the port that the proxy server passes
traffic to. For more information, see Configuring the proxy server.

See Environment variables and other software settings for more information.

Configuring an Amazon Linux AMI (preceding Amazon Linux 2) Node.js environment

The following console software configuration categories are supported only on an Elastic Beanstalk
Node.js environment that uses an Amazon Linux AMI platform version (preceding Amazon Linux 2).

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current

Configuring your Node.js environment 999

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Container options — Amazon Linux AMI (AL1)

On the configuration page, specify the following:

• Proxy server – Specifies which web server to use to proxy connections to Node.js. By default,
NGINX is used. If you select none, static file mappings don't take effect, and GZIP compression is
disabled.

• Node.js version – Specifies the version of Node.js. For a list of supported Node.js versions, see
Node.js in the Amazon Elastic Beanstalk Platforms guide.

• GZIP compression – Specifies whether GZIP compression is enabled. By default, GZIP
compression is enabled.

• Node command – Lets you enter the command used to start the Node.js application. An empty
string (the default) means Elastic Beanstalk uses app.js, then server.js, and then npm
start.

Node.js configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

You can choose the proxy to use on the instances for your environment by using the
aws:elasticbeanstalk:environment:proxy namespace. The following example configures
your environment to use the Apache HTTPD proxy server.

Example .ebextensions/nodejs-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache

Node.js configuration namespace 1000

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs

Amazon Elastic Beanstalk Developer Guide

You can configure the proxy to serve static files by using the
aws:elasticbeanstalk:environment:proxy:staticfiles namespace. For more
information and an example, see the section called “Static files”.

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Node.js platform

If your Elastic Beanstalk Node.js environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), consider the specific configurations and recommendations in this
section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Node.js platform-specific configuration options — Amazon Linux AMI (AL1)

Elastic Beanstalk supports some platform-specific configurations options for Amazon Linux AMI
Node.js platform versions. You can choose which proxy server to run in front of your application,
choose a specific version of Node.js to run, and choose the command used to run your application.

For proxy server, you can use an NGINX or Apache proxy server. You can set the none value to the
ProxyServer option. With this setting, Elastic Beanstalk runs your application as standalone, not
behind any proxy server. If your environment runs a standalone application, update your code to
listen to the port that NGINX forwards traffic to.

var port = process.env.PORT || 8080;

Node.js configuration namespace 1001

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

app.listen(port, function() {
 console.log('Server running at http://127.0.0.1:%s', port);
});

Node.js language versions — Amazon Linux AMI (AL1)

In terms of supported language version, the Node.js Amazon Linux AMI platform is different to
other Elastic Beanstalk managed platforms. This is because each Node.js platform version supports
only a few Node.js language versions. For a list of supported Node.js versions, see Node.js in the
Amazon Elastic Beanstalk Platforms guide.

You can use a platform-specific configuration option to set the language version. For instructions,
see the section called “Configuring your Node.js environment”. Alternatively, use the Elastic
Beanstalk console to update the Node.js version that your environment uses as part of updating
your platform version.

Note

When support for the version of Node.js that you are using is removed from the platform,
you must change or remove the version setting prior to doing a platform update. This
might occur when a security vulnerability is identified for one or more versions of Node.js.
When this happens, attempting to update to a new version of the platform that doesn't
support the configured NodeVersion fails. To avoid needing to create a new environment,
change the NodeVersion configuration option to a Node.js version that is supported by both
the old platform version and the new one, or remove the option setting, and then perform
the platform update.

To configure your environment's Node.js version in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, under Platform, choose Change.

4. On the Update platform version dialog box, select a Node.js version.

Node.js configuration namespace 1002

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

5. Choose Save.

Node.js configuration namespaces — Amazon Linux AMI (AL1)

The Node.js Amazon Linux AMI platform defines additional options in
the aws:elasticbeanstalk:container:nodejs:staticfiles and
aws:elasticbeanstalk:container:nodejs namespaces.

The following configuration file tells Elastic Beanstalk to use npm start to run the application.
It also sets the proxy type to Apache and enables compression. Last, it configures the proxy to
serve static files from two source directories. One source is HTML files at the html path under
the website's root from the statichtml source directory. The other source is image files at the
images path under the website's root from the staticimages source directory.

Example .ebextensions/node-settings.config

option_settings:
 aws:elasticbeanstalk:container:nodejs:
 NodeCommand: "npm start"

Node.js configuration namespace 1003

Amazon Elastic Beanstalk Developer Guide

 ProxyServer: apache
 GzipCompression: true
 aws:elasticbeanstalk:container:nodejs:staticfiles:
 /html: statichtml
 /images: staticimages

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

Configuring custom start commands with a Procfile on Elastic
Beanstalk

You can include a file that's called Procfile at the root of your source bundle to specify the
command that starts your application.

Example Procfile

web: node index.js

For information about Procfile usage see Buildfile and Procfile.

Note

This feature replaces the legacy NodeCommand option in the
aws:elasticbeanstalk:container:nodejs namespace.

Configuring your application's dependencies on Elastic Beanstalk

Your application might have dependencies on some Node.js modules, such as the ones you specify
in require() statements. These modules are stored in a node_modules directory. When your
application runs, Node.js loads the modules from this directory. For more information, see Loading
from node_modules folders in the Node.js documentation.

You can specify these module dependencies using a package.json file. If Elastic Beanstalk
detects this file and a node_modules directory isn't present, Elastic Beanstalk runs npm install
as the webapp user. The npm install command installs the dependencies in the node_modules
directory, which Elastic Beanstalk creates beforehand. The npm install command accesses the

Procfile 1004

https://nodejs.org/api/modules.html#modules_loading_from_node_modules_folders
https://nodejs.org/api/modules.html#modules_loading_from_node_modules_folders

Amazon Elastic Beanstalk Developer Guide

packages listed in the package.json file from the public npm registry or other locations. For
more information, see the npm Docs website.

If Elastic Beanstalk detects the node_modules directory, Elastic Beanstalk doesn't run npm
install, even if a package.json file exists. Elastic Beanstalk assumes that the dependency
packages are available in the node_modules directory for Node.js to access and load.

The following sections provide more information about establishing your Node.js module
dependencies for your application.

Note

If you experience any deployment issues when Elastic Beanstalk is running npm install,
consider an alternate approach. Include the node_modules directory with the dependency
modules in your application source bundle. Doing so can circumvent issues with installing
dependencies from the public npm registry while you investigate the issue. Because
the dependency modules are sourced from a local directory, dong this might also help
reduce deployment time. For more information, see Including Node.js dependencies in a
node_modules directory

Specifying Node.js dependencies with a package.json file

Include a package.json file in the root of your project source to specify dependency packages
and to provide a start command. When a package.json file is present, and a node_modules
directory isn't present in the root of your project source, Elastic Beanstalk runs npm install as
the webapp user to install dependencies from the public npm registry. Elastic Beanstalk also uses
the start command to start your application. For more information about the package.json
file, see Specifying dependencies in a package.json file in the npm Docs website.

Use the scripts keyword to provide a start command. Currently, the scripts keyword is used
instead of the legacy NodeCommand option in the aws:elasticbeanstalk:container:nodejs
namespace.

Example package.json – Express

{
 "name": "my-app",
 "version": "0.0.1",

Configuring dependencies 1005

https://docs.npmjs.com/about-the-public-npm-registry
https://docs.npmjs.com/specifying-dependencies-and-devdependencies-in-a-package-json-file

Amazon Elastic Beanstalk Developer Guide

 "private": true,
 "dependencies": {
 "ejs": "latest",
 "aws-sdk": "latest",
 "express": "latest",
 "body-parser": "latest"
 },
 "scripts": {
 "start": "node app.js"
 }
 }

Production mode and dev dependencies

To specify your dependencies in the package.json file use the dependencies and devDependencies
attributes. The dependencies attribute designates packages required by your application in
production. The devDependencies attribute designates packages that are only needed for local
development and testing.

Elastic Beanstalk runs npm install as the webapp user with the following commands. The
command options vary depending on the npm version included on platform branch that your
application runs on.

• npm v6 — Elastic Beanstalk installs dependencies in production mode by default. It uses the
command npm install --production.

• npm v7 or greater — Elastic Beanstalk omits the devDependencies. It uses the command npm
install --omit=dev.

Both of the commands listed above do not install the packages that are devDependencies.

If you need to install the devDependencies packages, set the NPM_USE_PRODUCTION environment
property to false. With this setting we will not use the above options when running npm install.
This will result in the devDependencies packages being installed.

SSH and HTTPS

Starting with the March 7, 2023 Amazon Linux 2 platform release, you can also use the SSH and
HTTPS protocols to retrieve packages from a Git repository. Platform branch Node.js 16 supports
both the SSH and HTTPS protocols. Node.js 14 only supports the HTTPS protocol.

Configuring dependencies 1006

Amazon Elastic Beanstalk Developer Guide

Example package.json – Node.js 16 supports both HTTPS and SSH

 ...
 "dependencies": {
 "aws-sdk": "https://github.com/aws/aws-sdk-js.git",
 "aws-chime": "git+ssh://git@github.com:aws/amazon-chime-sdk-js.git"
 }

Versions and version ranges

Important

The feature to specify version ranges is not available for Node.js platform branches running
on AL2023. We only support one Node.js version within a specific Node.js branch on
AL2023. If your package.json file specifies a version range, we'll ignore it and default to
the platform branch version of Node.js.

Use the engines keyword in the package.json file to specify the Node.js version that you
want your application to use. You can also specify a version range using npm notation. For more
information about the syntax for version ranges, see Semantic Versioning using npm on the
Node.js website. The engines keyword in the Node.js package.json file replaces the legacy
NodeVersion option in the aws:elasticbeanstalk:container:nodejs namespace.

Example package.json – Single Node.js version

{
 ...
 "engines": { "node" : "14.16.0" }
 }

Example package.json – Node.js version range

{
 ...
 "engines": { "node" : ">=10 <11" }
 }

Configuring dependencies 1007

https://nodejs.dev/learn/semantic-versioning-using-npm

Amazon Elastic Beanstalk Developer Guide

When a version range is indicated, Elastic Beanstalk installs the latest Node.js version that the
platform has available within the range. In this example, the range indicates that the version
must be greater than or equal to version 10, but less than version 11. As a result, Elastic Beanstalk
installs the latest Node.js version 10.x.y, which is available on the supported platform.

Be aware that you can only specify a Node.js version that corresponds with your platform branch.
For example, if you're using the Node.js 16 platform branch, you can only specify a 16.x.y Node.js
version. You can use the version range options supported by npm to allow for more flexibility.
For valid Node.js versions for each platform branch, see Node.js in the Amazon Elastic Beanstalk
Platforms guide.

Note

When support for the version of Node.js that you are using is removed from the platform,
you must change or remove the Node.js version setting prior to doing a platform update.
This might occur when a security vulnerability is identified for one or more versions of
Node.js.
When this happens, attempting to update to a new version of the platform that doesn't
support the configured Node.js version fails. To avoid needing to create a new environment,
change the Node.js version setting in package.json to a Node.js version that is supported
by both the old platform version and the new one. You have the option to specify a Node.js
version range that includes a supported version, as described earlier in this topic. You also
have the option to remove the setting, and then deploy the new source bundle.

Including Node.js dependencies in a node_modules directory

To deploy dependency packages to environment instances together with your application code,
include them in a directory that's named node_modules in the root of your project source. For
more information, see Downloading and installing packages locally in the npm Docs website.

When you deploy a node_modules directory to an AL2023/AL2 Node.js platform version, Elastic
Beanstalk assumes that you're providing your own dependency packages, and avoids installing
dependencies that are specified in a package.json file. Node.js looks for dependencies in the
node_modules directory. For more information, see Loading from node_modules Folders in the
Node.js documentation.

Configuring dependencies 1008

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://docs.npmjs.com/downloading-and-installing-packages-locally
https://nodejs.org/api/modules.html#modules_loading_from_node_modules_folders

Amazon Elastic Beanstalk Developer Guide

Note

If you experience any deployment issues when Elastic Beanstalk is running npm install,
consider using the approach described in this topic as a workaround while you investigate
the issue.

Locking dependencies with npm shrinkwrap on Elastic Beanstalk

The Node.js platform runs npm install as the webapp user each time you deploy. When new
versions of your dependencies are available, they're installed when you deploy your application,
potentially causing the deployment to take a long time.

You can avoid upgrading dependencies by creating an npm-shrinkwrap.json file that locks
down your application's dependencies to the current version.

$ npm install
$ npm shrinkwrap
wrote npm-shrinkwrap.json

Include this file in your source bundle to ensure that dependencies are only installed once.

Configuring the proxy server

Elastic Beanstalk can use NGINX or Apache HTTPD as the reverse proxy to map your application
to your Elastic Load Balancing load balancer on port 80. The default is NGINX. Elastic Beanstalk
provides a default proxy configuration that you can either extend or completely override with your
own configuration.

By default, Elastic Beanstalk configures the proxy to forward requests to your application on port
5000. You can override the default port by setting the PORT environment property to the port that
your main application listens on.

Note

The port that your application listens on doesn't affect the port that the NGINX server
listens to receive requests from the load balancer.

npm shrinkwrap file 1009

Amazon Elastic Beanstalk Developer Guide

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, see Reverse
proxy configuration.

Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Node.js environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

The Node.js platform uses a reverse proxy to relay requests from port 80 on the instance to your
application that's listening on port 8081. Elastic Beanstalk provides a default proxy configuration
that you can either extend or completely override with your own configuration.

To extend the default configuration, add .conf files to /etc/nginx/conf.d with a configuration
file. For a specific example, see Terminating HTTPS on EC2 instances running Node.js.

The Node.js platform sets the PORT environment variable to the port that the proxy server passes
traffic to. Read this variable in your code to configure the port for your application.

 var port = process.env.PORT || 3000;

 var server = app.listen(port, function () {
 console.log('Server running at http://127.0.0.1:' + port + '/');
 });

Proxy configuration 1010

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

The default NGINX configuration forwards traffic to an upstream server that's named nodejs at
127.0.0.1:8081. It's possible to remove the default configuration and provide your own in a
configuration file.

Example .ebextensions/proxy.config

The following example removes the default configuration and adds a custom configuration that
forwards traffic to port 5000, instead of 8081.

files:
 /etc/nginx/conf.d/proxy.conf:
 mode: "000644"
 owner: root
 group: root
 content: |
 upstream nodejs {
 server 127.0.0.1:5000;
 keepalive 256;
 }

 server {
 listen 8080;

 if ($time_iso8601 ~ "^(\d{4})-(\d{2})-(\d{2})T(\d{2})") {
 set $year $1;
 set $month $2;
 set $day $3;
 set $hour $4;
 }
 access_log /var/log/nginx/healthd/application.log.$year-$month-$day-$hour
 healthd;
 access_log /var/log/nginx/access.log main;

 location / {
 proxy_pass http://nodejs;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 gzip on;

Proxy configuration 1011

Amazon Elastic Beanstalk Developer Guide

 gzip_comp_level 4;
 gzip_types text/html text/plain text/css application/json application/x-
javascript text/xml application/xml application/xml+rss text/javascript;

 location /static {
 alias /var/app/current/static;
 }

 }

 /opt/elasticbeanstalk/hooks/configdeploy/post/99_kill_default_nginx.sh:
 mode: "000755"
 owner: root
 group: root
 content: |
 #!/bin/bash -xe
 rm -f /etc/nginx/conf.d/00_elastic_beanstalk_proxy.conf
 service nginx stop
 service nginx start

container_commands:
 removeconfig:
 command: "rm -f /tmp/deployment/config/
#etc#nginx#conf.d#00_elastic_beanstalk_proxy.conf /etc/nginx/
conf.d/00_elastic_beanstalk_proxy.conf"

The example configuration (/etc/nginx/conf.d/proxy.conf) uses the default configuration at
/etc/nginx/conf.d/00_elastic_beanstalk_proxy.conf as a base to include the default
server block with compression and log settings, and a static file mapping.

The removeconfig command removes the default configuration for the container so that the
proxy server uses the custom configuration. Elastic Beanstalk recreates the default configuration
when each configuration is deployed. To account for this, in the following example, a post-
configuration-deployment hook (/opt/elasticbeanstalk/hooks/configdeploy/
post/99_kill_default_nginx.sh) is added. This removes the default configuration and
restarts the proxy server.

Proxy configuration 1012

Amazon Elastic Beanstalk Developer Guide

Note

The default configuration might change in future versions of the Node.js platform.
Use the latest version of the configuration as a base for your customizations to ensure
compatibility.

If you override the default configuration, you must define any static file mappings and GZIP
compression. This is because the platform can't apply the standard settings.

More Elastic Beanstalk example applications and tutorials for
Node.js

This section provides additional applications and tutorials. The QuickStart for Node.js topic located
previously in this topic walks you through launching the sample Node.js application with the EB
CLI.

To get started with Node.js applications on Amazon Elastic Beanstalk, all you need is an application
source bundle to upload as your first application version and to deploy to an environment.

Launching an environment with a sample Node.js application

Elastic Beanstalk provides single page sample applications for each platform as well as more
complex examples that show the use of additional Amazon resources such as Amazon RDS and
language or platform-specific features and APIs.

Note

Follow the steps in the source bundle README.md file to deploy it.

Samples

Environment
type

Source
bundle

Description

Web Server nodejs-
v1
_cn.zip

Single page application.

Sample applications and tutorials 1013

samples/nodejs-v1_cn.zip
samples/nodejs-v1_cn.zip
samples/nodejs-v1_cn.zip

Amazon Elastic Beanstalk Developer Guide

Environment
type

Source
bundle

Description

To launch the sample application with the EB CLI, see
QuickStart for Node.js.

You can also use the Elastic Beanstalk console to
launch the sample application. For detailed steps, see
Create an example application in the Getting started
chapter of this guide.

Web Server
with Amazon
RDS

nodejs-
ex
ample-
express-
rds.zip

Hiking log application that uses the Express framework
and an Amazon Relational Database Service (RDS).

Tutorial

Web Server
with Amazon
ElastiCache

nodejs-
ex
ample-
express-
elas
ticache.z
ip

Express web application that uses Amazon ElastiCache
for clustering. Clustering enhances your web applicati
on's high availability, performance, and security.

Tutorial

Web
Server with
DynamoDB,
Amazon SNS
and Amazon
SQS

nodejs-
ex
ample-
dyn
amo.zip

Express web site that collects user contact informati
on for a new company's marketing campaign. Uses the
Amazon SDK for JavaScript in Node.js to write entries
to a DynamoDB table, and Elastic Beanstalk configura
tion files to create resources in DynamoDB, Amazon
SNS and Amazon SQS.

Tutorial

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a completely different application at any time. Deploying a new application version

Next steps 1014

samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip

Amazon Elastic Beanstalk Developer Guide

is very quick because it doesn't require provisioning or restarting EC2 instances. For details about
application deployment, see Deploy a New Version of Your Application.

After you've deployed a sample application or two and are ready to start developing and running
Node.js applications locally, see Setting up your Node.js development environment for Elastic
Beanstalk to set up a Node.js development environment with all of the tools that you will need.

Deploying a Node.js Express application to Elastic Beanstalk

This section walks you through deploying a sample application to Elastic Beanstalk using the
Elastic Beanstalk Command Line Interface (EB CLI) and then updating the application to use the
Express framework.

Prerequisites

This tutorial requires the following prerequisites:

• The Node.js runtimes

• The default Node.js package manager software, npm

• The Express command line generator

• The Elastic Beanstalk Command Line Interface (EB CLI)

For details about installing the first three listed components and setting up your local development
environment, see Setting up your Node.js development environment for Elastic Beanstalk. For
this tutorial, you don't need to install the Amazon SDK for Node.js, which is also mentioned in the
referenced topic.

For details about installing and configuring the EB CLI, see Install EB CLI with setup script
(recommended) and Configure the EB CLI.

Create an Elastic Beanstalk environment

Your application directory

This tutorial uses a directory called nodejs-example-express-rds for the application source
bundle. Create the nodejs-example-express-rds directory for this tutorial.

~$ mkdir nodejs-example-express-rds

Tutorial - Express 1015

http://expressjs.com/

Amazon Elastic Beanstalk Developer Guide

Note

Each tutorial in this chapter uses it's own directory for the application source bundle. The
directory name matches the name of the sample application used by the tutorial.

Change your current working directory to nodejs-example-express-rds.

~$ cd nodejs-example-express-rds

Now, let's set up an Elastic Beanstalk environment running the Node.js platform and the sample
application. We'll use the Elastic Beanstalk command line interface (EB CLI).

To configure an EB CLI repository for your application and create an Elastic Beanstalk
environment running the Node.js platform

1. Create a repository with the eb init command.

~/nodejs-example-express-rds$ eb init --platform node.js --region <region>

This command creates a configuration file in a folder named .elasticbeanstalk that
specifies settings for creating environments for your application, and creates an Elastic
Beanstalk application named after the current folder.

2. Create an environment running a sample application with the eb create command.

~/nodejs-example-express-rds$ eb create --sample nodejs-example-express-rds

This command creates a load-balanced environment with the default settings for the Node.js
platform and the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured
to run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support
a specific language version, framework, web container, or combination of these. Most
platforms use either Apache or NGINX as a reverse proxy that sits in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

Create an Elastic Beanstalk environment 1016

Amazon Elastic Beanstalk Developer Guide

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance
running your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose
your instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer.
By default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is
terminated or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that
are created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the
instances in your environment and that are triggered if the load is too high or too low. When
an alarm is triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch
the resources in your environment and propagate configuration changes. The resources are
defined in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the
eb.amazonaws.com.cn domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix
for increased security. This practice defends your domain against cross-site request
forgery attempts (CSRF). For more information see the Set-Cookie page in the
Mozilla Developer Network.

3. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

Create an Elastic Beanstalk environment 1017

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

~/nodejs-example-express-rds$ eb open

You have now created a Node.js Elastic Beanstalk environment with a sample application. You can
update it with your own application. Next, we update the sample application to use the Express
framework.

Update the application to use Express

After you've created an environment with a sample application, you can update it with your own
application. In this procedure, we first run the express and npm install commands to set up the
Express framework in your application directory. Then we use the EB CLI to update your Elastic
Beanstalk environment with the updated application.

To update your application to use Express

1. Run the express command. This generates package.json, app.js, and a few directories.

~/nodejs-example-express-rds$ express

When prompted, type y if you want to continue.

Note

If the express command doesn't work, you may not have installed the Express
command line generator as described in the earlier Prerequisites section. Or the
directory path setting for your local machine may need to be set up to run the express
command. See the Prerequisites section for detailed steps about setting up your
development environment, so you can proceed with this tutorial.

2. Set up local dependencies.

~/nodejs-example-express-rds$ npm install

3. (Optional) Verify the web app server starts up.

~/nodejs-example-express-rds$ npm start

Update the application to use Express 1018

Amazon Elastic Beanstalk Developer Guide

You should see output similar to the following:

> nodejs@0.0.0 start /home/local/user/node-express
> node ./bin/www

The server runs on port 3000 by default. To test it, run curl http://localhost:3000 in
another terminal, or open a browser on the local computer and enter URL address http://
localhost:3000.

Press Ctrl+C to stop the server.

4. Deploy the changes to your Elastic Beanstalk environment with the eb deploy command.

~/nodejs-example-express-rds$ eb deploy

5. Once the environment is green and ready, refresh the URL to verify it worked. You should see a
web page that says Welcome to Express.

Next, let's update the Express application to serve static files and add a new page.

To configure static files and add a new page to your Express application

1. Add a second configuration file in the .ebextensions folder with the following content:

nodejs-example-express-rds/.ebextensions/staticfiles.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:staticfiles:
 /stylesheets: public/stylesheets

This setting configures the proxy server to serve files in the public folder at the /public
path of the application. Serving files statically from the proxy server reduces the load on your
application. For more information, see Static files earlier in this chapter.

2. (Optional) To confirm that static mappings are configured correctly, comment out the static
mapping configuration in nodejs-example-express-rds/app.js. This removes the
mapping from the node application.

// app.use(express.static(path.join(__dirname, 'public')));

Update the application to use Express 1019

Amazon Elastic Beanstalk Developer Guide

The static file mappings in the staticfiles.config file from the previous step should still
load the stylesheet successfully, even after you comment this line out. To verify that the static
file mappings are loaded through the proxy static file configuration, rather than the express
application, remove the values following option_settings:. After it has been removed from
both the static file configuration and the node application, the stylesheet will fail to load.

Remember to reset the contents of both the nodejs-example-express-rds/app.js and
staticfiles.config when you're done testing.

3. Add nodejs-example-express-rds/routes/hike.js. Type the following:

exports.index = function(req, res) {
 res.render('hike', {title: 'My Hiking Log'});
};

exports.add_hike = function(req, res) {
};

4. Update nodejs-example-express-rds/app.js to include three new lines.

First, add the following line to add a require for this route:

var hike = require('./routes/hike');

Your file should look similar to the following snippet:

var express = require('express');
var path = require('path');
var hike = require('./routes/hike');

Then, add the following two lines to nodejs-example-express-rds/app.js after var
app = express();

app.get('/hikes', hike.index);
app.post('/add_hike', hike.add_hike);

Your file should look similar to the following snippet:

var app = express();

Update the application to use Express 1020

Amazon Elastic Beanstalk Developer Guide

app.get('/hikes', hike.index);
app.post('/add_hike', hike.add_hike);

5. Copy nodejs-example-express-rds/views/index.jade to nodejs-example-
express-rds/views/hike.jade.

~/nodejs-example-express-rds$ cp views/index.jade views/hike.jade

6. Deploy the changes with the eb deploy command.

~/nodejs-example-express-rds$ eb deploy

7. Your environment will be updated after a few minutes. After your environment is green and
ready, verify it worked by refreshing your browser and appending hikes at the end of the URL
(e.g., http://node-express-env-syypntcz2q.elasticbeanstalk.com/hikes).

You should see a web page titled My Hiking Log.

You have now created a web application that uses the Express framework. In the next section, we'll
modify the application to use an Amazon Relational Database Service (RDS) to store a hiking log.

Update the application to use Amazon RDS

In this next step we update the application to use Amazon RDS for MySQL.

To update your application to use RDS for MySQL

1. To create an RDS for MySQL database coupled to your Elastic Beanstalk environment, follow
the instructions in the Adding a database topic included later in this chapter. Adding a
database instance takes about 10 minutes.

2. Update the dependencies section in the package.json with the following contents:

"dependencies": {
 "async": "^3.2.4",
 "express": "4.18.2",
 "jade": "1.11.0",
 "mysql": "2.18.1",
 "node-uuid": "^1.4.8",
 "body-parser": "^1.20.1",
 "method-override": "^3.0.0",
 "morgan": "^1.10.0",

Update the application to use Amazon RDS 1021

Amazon Elastic Beanstalk Developer Guide

 "errorhandler": "^1.5.1"
 }

3. Run npm install.

~/nodejs-example-express-rds$ npm install

4. Update app.js to connect to the database, create a table, and insert a single default hiking
log. Every time this app is deployed it will drop the previous hikes table and recreate it.

/**
 * Module dependencies.
 */

 const express = require('express')
 , routes = require('./routes')
 , hike = require('./routes/hike')
 , http = require('http')
 , path = require('path')
 , mysql = require('mysql')
 , async = require('async')
 , bodyParser = require('body-parser')
 , methodOverride = require('method-override')
 , morgan = require('morgan')
 , errorhandler = require('errorhandler');

const { connect } = require('http2');

const app = express()

app.set('views', __dirname + '/views')
app.set('view engine', 'jade')
app.use(methodOverride())
app.use(bodyParser.json())
app.use(bodyParser.urlencoded({ extended: true }))
app.use(express.static(path.join(__dirname, 'public')))

app.set('connection', mysql.createConnection({
host: process.env.RDS_HOSTNAME,
user: process.env.RDS_USERNAME,
password: process.env.RDS_PASSWORD,
port: process.env.RDS_PORT}));

Update the application to use Amazon RDS 1022

Amazon Elastic Beanstalk Developer Guide

function init() {
 app.get('/', routes.index);
 app.get('/hikes', hike.index);
 app.post('/add_hike', hike.add_hike);
}

const client = app.get('connection');
async.series([
 function connect(callback) {
 client.connect(callback);
 console.log('Connected!');
 },
 function clear(callback) {
 client.query('DROP DATABASE IF EXISTS mynode_db', callback);
 },
 function create_db(callback) {
 client.query('CREATE DATABASE mynode_db', callback);
 },
 function use_db(callback) {
 client.query('USE mynode_db', callback);
 },
 function create_table(callback) {
 client.query('CREATE TABLE HIKES (' +
 'ID VARCHAR(40), ' +
 'HIKE_DATE DATE, ' +
 'NAME VARCHAR(40), ' +
 'DISTANCE VARCHAR(40), ' +
 'LOCATION VARCHAR(40), ' +
 'WEATHER VARCHAR(40), ' +
 'PRIMARY KEY(ID))', callback);
 },
 function insert_default(callback) {
 const hike = {HIKE_DATE: new Date(), NAME: 'Hazard Stevens',
 LOCATION: 'Mt Rainier', DISTANCE: '4,027m vertical', WEATHER:'Bad', ID:
 '12345'};
 client.query('INSERT INTO HIKES set ?', hike, callback);
 }
], function (err, results) {
 if (err) {
 console.log('Exception initializing database.');
 throw err;
 } else {
 console.log('Database initialization complete.');

Update the application to use Amazon RDS 1023

Amazon Elastic Beanstalk Developer Guide

 init();
 }
});

module.exports = app

5. Add the following content to routes/hike.js. This will enable the routes to insert new
hiking logs into the HIKES database.

const uuid = require('node-uuid');
exports.index = function(req, res) {
 res.app.get('connection').query('SELECT * FROM HIKES', function(err,
rows) {
 if (err) {
 res.send(err);
 } else {
 console.log(JSON.stringify(rows));
 res.render('hike', {title: 'My Hiking Log', hikes: rows});
 }});
};
exports.add_hike = function(req, res){
 const input = req.body.hike;
 const hike = { HIKE_DATE: new Date(), ID: uuid.v4(), NAME: input.NAME,
 LOCATION: input.LOCATION, DISTANCE: input.DISTANCE, WEATHER: input.WEATHER};
 console.log('Request to log hike:' + JSON.stringify(hike));
 req.app.get('connection').query('INSERT INTO HIKES set ?', hike, function(err) {
 if (err) {
 res.send(err);
 } else {
 res.redirect('/hikes');
 }
 });
};

6. Replace the content of routes/index.js with the following:

/*
 * GET home page.
 */

exports.index = function(req, res){
 res.render('index', { title: 'Express' });
};

Update the application to use Amazon RDS 1024

Amazon Elastic Beanstalk Developer Guide

7. Add the following jade template to views/hike.jade to provide the user interface for
adding hiking logs.

extends layout

block content
 h1= title
 p Welcome to #{title}

 form(action="/add_hike", method="post")
 table(border="1")
 tr
 td Your Name
 td
 input(name="hike[NAME]", type="textbox")
 tr
 td Location
 td
 input(name="hike[LOCATION]", type="textbox")
 tr
 td Distance
 td
 input(name="hike[DISTANCE]", type="textbox")
 tr
 td Weather
 td
 input(name="hike[WEATHER]", type="radio", value="Good")
 | Good
 input(name="hike[WEATHER]", type="radio", value="Bad")
 | Bad
 input(name="hike[WEATHER]", type="radio", value="Seattle", checked)
 | Seattle
 tr
 td(colspan="2")
 input(type="submit", value="Record Hike")

 div
 h3 Hikes
 table(border="1")
 tr
 td Date
 td Name
 td Location

Update the application to use Amazon RDS 1025

Amazon Elastic Beanstalk Developer Guide

 td Distance
 td Weather
 each hike in hikes
 tr
 td #{hike.HIKE_DATE.toDateString()}
 td #{hike.NAME}
 td #{hike.LOCATION}
 td #{hike.DISTANCE}
 td #{hike.WEATHER}

8. Deploy the changes with the eb deploy command.

~/nodejs-example-express-rds$ eb deploy

Clean up

If you're done working with Elastic Beanstalk, you can terminate your environment.

Use the eb terminate command to terminate your environment and all of the resources that it
contains.

~/nodejs-example-express-rds$ eb terminate
The environment "nodejs-example-express-rds-env" and all associated instances will be
 terminated.
To confirm, type the environment name: nodejs-example-express-rds-env
INFO: terminateEnvironment is starting.
...

Deploying a Node.js Express application with clustering to
Elastic Beanstalk

This tutorial walks you through deploying a sample application to Elastic Beanstalk using the
Elastic Beanstalk Command Line Interface (EB CLI), and then updating the application to use
the Express framework, Amazon ElastiCache, and clustering. Clustering enhances your web
application's high availability, performance, and security. To learn more about Amazon ElastiCache,
go to What Is Amazon ElastiCache (Memcached)? in the Amazon ElastiCache (Memcached) User
Guide.

Clean up 1026

http://expressjs.com/
http://www.amazonaws.cn/elasticache/
https://docs.amazonaws.cn/AmazonElastiCache/latest/mem-ug/Introduction.html

Amazon Elastic Beanstalk Developer Guide

Note

This example creates Amazon resources, which you might be charged for. For more
information about Amazon pricing, see http://www.amazonaws.cn/pricing/. Some services
are part of the Amazon Free Usage Tier. If you are a new customer, you can test drive these
services for free. See http://www.amazonaws.cn/free/ for more information.

Prerequisites

This tutorial requires the following prerequisites:

• The Node.js runtimes

• The default Node.js package manager software, npm

• The Express command line generator

• The Elastic Beanstalk Command Line Interface (EB CLI)

For details about installing the first three listed components and setting up your local development
environment, see Setting up your Node.js development environment for Elastic Beanstalk. For
this tutorial, you don't need to install the Amazon SDK for Node.js, which is also mentioned in the
referenced topic.

For details about installing and configuring the EB CLI, see Install EB CLI with setup script
(recommended) and Configure the EB CLI.

Create an Elastic Beanstalk environment

Your application directory

This tutorial uses a directory called nodejs-example-express-elasticache for the
application source bundle. Create the nodejs-example-express-elasticache directory for
this tutorial.

~$ mkdir nodejs-example-express-elasticache

Prerequisites 1027

http://www.amazonaws.cn/pricing/
http://www.amazonaws.cn/free/

Amazon Elastic Beanstalk Developer Guide

Note

Each tutorial in this chapter uses it's own directory for the application source bundle. The
directory name matches the name of the sample application used by the tutorial.

Change your current working directory to nodejs-example-express-elasticache.

~$ cd nodejs-example-express-elasticache

Now, let's set up an Elastic Beanstalk environment running the Node.js platform and the sample
application. We'll use the Elastic Beanstalk command line interface (EB CLI).

To configure an EB CLI repository for your application and create an Elastic Beanstalk
environment running the Node.js platform

1. Create a repository with the eb init command.

~/nodejs-example-express-elasticache$ eb init --platform node.js --region <region>

This command creates a configuration file in a folder named .elasticbeanstalk that
specifies settings for creating environments for your application, and creates an Elastic
Beanstalk application named after the current folder.

2. Create an environment running a sample application with the eb create command.

~/nodejs-example-express-elasticache$ eb create --sample nodejs-example-express-
elasticache

This command creates a load-balanced environment with the default settings for the Node.js
platform and the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured
to run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support
a specific language version, framework, web container, or combination of these. Most
platforms use either Apache or NGINX as a reverse proxy that sits in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

Create an Elastic Beanstalk environment 1028

Amazon Elastic Beanstalk Developer Guide

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance
running your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose
your instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer.
By default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is
terminated or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that
are created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the
instances in your environment and that are triggered if the load is too high or too low. When
an alarm is triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch
the resources in your environment and propagate configuration changes. The resources are
defined in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the
eb.amazonaws.com.cn domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix
for increased security. This practice defends your domain against cross-site request
forgery attempts (CSRF). For more information see the Set-Cookie page in the
Mozilla Developer Network.

3. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

Create an Elastic Beanstalk environment 1029

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

~/nodejs-example-express-elasticache$ eb open

You have now created a Node.js Elastic Beanstalk environment with a sample application. You can
update it with your own application. Next, we update the sample application to use the Express
framework.

Update the application to use Express

Update the sample application in the Elastic Beanstalk environment to use the Express framework.

You can download the final source code from nodejs-example-express-elasticache.zip.

To update your application to use Express

After you've created an environment with a sample application, you can update it with your own
application. In this procedure, we first run the express and npm install commands to set up the
Express framework in your application directory.

1. Run the express command. This generates package.json, app.js, and a few directories.

~/nodejs-example-express-elasticache$ express

When prompted, type y if you want to continue.

Note

If the express command doesn't work, you may not have installed the Express
command line generator as described in the earlier Prerequisites section. Or the
directory path setting for your local machine may need to be set up to run the express
command. See the Prerequisites section for detailed steps about setting up your
development environment, so you can proceed with this tutorial.

2. Set up local dependencies.

~/nodejs-example-express-elasticache$ npm install

3. (Optional) Verify the web app server starts up.

Update the application to use Express 1030

samples/nodejs-example-express-elasticache.zip

Amazon Elastic Beanstalk Developer Guide

~/nodejs-example-express-elasticache$ npm start

You should see output similar to the following:

> nodejs@0.0.0 start /home/local/user/node-express
> node ./bin/www

The server runs on port 3000 by default. To test it, run curl http://localhost:3000 in
another terminal, or open a browser on the local computer and enter URL address http://
localhost:3000.

Press Ctrl+C to stop the server.

4. Rename nodejs-example-express-elasticache/app.js to nodejs-example-
express-elasticache/express-app.js.

~/nodejs-example-express-elasticache$ mv app.js express-app.js

5. Update the line var app = express(); in nodejs-example-express-elasticache/
express-app.js to the following:

var app = module.exports = express();

6. On your local computer, create a file named nodejs-example-express-elasticache/
app.js with the following code.

/**
 * Module dependencies.
 */

 const express = require('express'),
 session = require('express-session'),
 bodyParser = require('body-parser'),
 methodOverride = require('method-override'),
 cookieParser = require('cookie-parser'),
 fs = require('fs'),
 filename = '/var/nodelist',
 app = express();

let MemcachedStore = require('connect-memcached')(session);

Update the application to use Express 1031

Amazon Elastic Beanstalk Developer Guide

function setup(cacheNodes) {
 app.use(bodyParser.raw());
 app.use(methodOverride());
 if (cacheNodes.length > 0) {
 app.use(cookieParser());

 console.log('Using memcached store nodes:');
 console.log(cacheNodes);

 app.use(session({
 secret: 'your secret here',
 resave: false,
 saveUninitialized: false,
 store: new MemcachedStore({ 'hosts': cacheNodes })
 }));
 } else {
 console.log('Not using memcached store.');
 app.use(session({
 resave: false,
 saveUninitialized: false, secret: 'your secret here'
 }));
 }

 app.get('/', function (req, resp) {
 if (req.session.views) {
 req.session.views++
 resp.setHeader('Content-Type', 'text/html')
 resp.send(`You are session: ${req.session.id}. Views: ${req.session.views}`)
 } else {
 req.session.views = 1
 resp.send(`You are session: ${req.session.id}. No views yet, refresh the page!
`)
 }
 });

 if (!module.parent) {
 console.log('Running express without cluster. Listening on port %d',
 process.env.PORT || 5000)
 app.listen(process.env.PORT || 5000)
 }
}

console.log("Reading elastic cache configuration")

Update the application to use Express 1032

Amazon Elastic Beanstalk Developer Guide

// Load elasticache configuration.
fs.readFile(filename, 'UTF8', function (err, data) {
 if (err) throw err;

 let cacheNodes = []
 if (data) {
 let lines = data.split('\n');
 for (let i = 0; i < lines.length; i++) {
 if (lines[i].length > 0) {
 cacheNodes.push(lines[i])
 }
 }
 }

 setup(cacheNodes)
});

module.exports = app;

7. Replace the contents of the nodejs-example-express-elasticache/bin/www file with
the following:

#!/usr/bin/env node

/**
 * Module dependencies.
 */

const app = require('../app');
const cluster = require('cluster');
const debug = require('debug')('nodejs-example-express-elasticache:server');
const http = require('http');
const workers = {},
 count = require('os').cpus().length;

function spawn() {
 const worker = cluster.fork();
 workers[worker.pid] = worker;
 return worker;
}

/**

Update the application to use Express 1033

Amazon Elastic Beanstalk Developer Guide

 * Get port from environment and store in Express.
 */

const port = normalizePort(process.env.PORT || '3000');
app.set('port', port);

if (cluster.isMaster) {
 for (let i = 0; i < count; i++) {
 spawn();
 }

 // If a worker dies, log it to the console and start another worker.
 cluster.on('exit', function (worker, code, signal) {
 console.log('Worker ' + worker.process.pid + ' died.');
 cluster.fork();
 });

 // Log when a worker starts listening
 cluster.on('listening', function (worker, address) {
 console.log('Worker started with PID ' + worker.process.pid + '.');
 });

} else {
 /**
 * Create HTTP server.
 */

 let server = http.createServer(app);

 /**
 * Event listener for HTTP server "error" event.
 */

 function onError(error) {
 if (error.syscall !== 'listen') {
 throw error;
 }

 const bind = typeof port === 'string'
 ? 'Pipe ' + port
 : 'Port ' + port;

 // handle specific listen errors with friendly messages
 switch (error.code) {

Update the application to use Express 1034

Amazon Elastic Beanstalk Developer Guide

 case 'EACCES':
 console.error(bind + ' requires elevated privileges');
 process.exit(1);
 break;
 case 'EADDRINUSE':
 console.error(bind + ' is already in use');
 process.exit(1);
 break;
 default:
 throw error;
 }
 }

 /**
 * Event listener for HTTP server "listening" event.
 */

 function onListening() {
 const addr = server.address();
 const bind = typeof addr === 'string'
 ? 'pipe ' + addr
 : 'port ' + addr.port;
 debug('Listening on ' + bind);
 }

 /**
 * Listen on provided port, on all network interfaces.
 */

 server.listen(port);
 server.on('error', onError);
 server.on('listening', onListening);
}

/**
 * Normalize a port into a number, string, or false.
 */

function normalizePort(val) {
 const port = parseInt(val, 10);

 if (isNaN(port)) {
 // named pipe
 return val;

Update the application to use Express 1035

Amazon Elastic Beanstalk Developer Guide

 }

 if (port >= 0) {
 // port number
 return port;
 }

 return false;
}

8. Deploy the changes to your Elastic Beanstalk environment with the eb deploy command.

~/nodejs-example-express-elasticache$ eb deploy

9. Your environment will be updated after a few minutes. Once the environment is green and
ready, refresh the URL to verify it worked. You should see a web page that says "Welcome to
Express".

You can access the logs for your EC2 instances running your application. For instructions on
accessing your logs, see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk
environment.

Next, let's update the Express application to use Amazon ElastiCache.

To update your Express application to use Amazon ElastiCache

1. On your local computer, create an .ebextensions directory in the top-level
directory of your source bundle. In this example, we use nodejs-example-express-
elasticache/.ebextensions.

2. Create a configuration file nodejs-example-express-elasticache/.ebextensions/
elasticache-iam-with-script.config with the following snippet. For more information
about the configuration file, see Node.js configuration namespace. This creates an IAM user
with the permissions required to discover the elasticache nodes and writes to a file anytime
the cache changes. You can also copy the file from nodejs-example-express-elasticache.zip. For
more information on the ElastiCache properties, see Example: ElastiCache.

Update the application to use Express 1036

samples/nodejs-example-express-elasticache.zip

Amazon Elastic Beanstalk Developer Guide

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

Resources:
 MyCacheSecurityGroup:
 Type: 'AWS::EC2::SecurityGroup'
 Properties:
 GroupDescription: "Lock cache down to webserver access only"
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort:
 Fn::GetOptionSetting:
 OptionName: CachePort
 DefaultValue: 11211
 ToPort:
 Fn::GetOptionSetting:
 OptionName: CachePort
 DefaultValue: 11211
 SourceSecurityGroupName:
 Ref: AWSEBSecurityGroup
 MyElastiCache:
 Type: 'AWS::ElastiCache::CacheCluster'
 Properties:
 CacheNodeType:
 Fn::GetOptionSetting:
 OptionName: CacheNodeType
 DefaultValue: cache.t2.micro
 NumCacheNodes:
 Fn::GetOptionSetting:
 OptionName: NumCacheNodes
 DefaultValue: 1
 Engine:
 Fn::GetOptionSetting:
 OptionName: Engine
 DefaultValue: redis
 VpcSecurityGroupIds:
 -

Update the application to use Express 1037

Amazon Elastic Beanstalk Developer Guide

 Fn::GetAtt:
 - MyCacheSecurityGroup
 - GroupId
 AWSEBAutoScalingGroup :
 Metadata :
 ElastiCacheConfig :
 CacheName :
 Ref : MyElastiCache
 CacheSize :
 Fn::GetOptionSetting:
 OptionName : NumCacheNodes
 DefaultValue: 1
 WebServerUser :
 Type : AWS::IAM::User
 Properties :
 Path : "/"
 Policies:
 -
 PolicyName: root
 PolicyDocument :
 Statement :
 -
 Effect : Allow
 Action :
 - cloudformation:DescribeStackResource
 - cloudformation:ListStackResources
 - elasticache:DescribeCacheClusters
 Resource : "*"
 WebServerKeys :
 Type : AWS::IAM::AccessKey
 Properties :
 UserName :
 Ref: WebServerUser

Outputs:
 WebsiteURL:
 Description: sample output only here to show inline string function parsing
 Value: |
 http://`{ "Fn::GetAtt" : ["AWSEBLoadBalancer", "DNSName"] }`
 MyElastiCacheName:
 Description: Name of the elasticache
 Value:
 Ref : MyElastiCache
 NumCacheNodes:

Update the application to use Express 1038

Amazon Elastic Beanstalk Developer Guide

 Description: Number of cache nodes in MyElastiCache
 Value:
 Fn::GetOptionSetting:
 OptionName : NumCacheNodes
 DefaultValue: 1

files:
 "/etc/cfn/cfn-credentials" :
 content : |
 AWSAccessKeyId=`{ "Ref" : "WebServerKeys" }`
 AWSSecretKey=`{ "Fn::GetAtt" : ["WebServerKeys", "SecretAccessKey"] }`
 mode : "000400"
 owner : root
 group : root

 "/etc/cfn/get-cache-nodes" :
 content : |
 # Define environment variables for command line tools
 export AWS_ELASTICACHE_HOME="/home/ec2-user/elasticache/$(ls /home/ec2-user/
elasticache/)"
 export AWS_CLOUDFORMATION_HOME=/opt/aws/apitools/cfn
 export PATH=$AWS_CLOUDFORMATION_HOME/bin:$AWS_ELASTICACHE_HOME/bin:$PATH
 export AWS_CREDENTIAL_FILE=/etc/cfn/cfn-credentials
 export JAVA_HOME=/usr/lib/jvm/jre

 # Grab the Cache node names and configure the PHP page
 aws cloudformation list-stack-resources --stack `{ "Ref" :
 "AWS::StackName" }` --region `{ "Ref" : "AWS::Region" }` --output text | grep
 MyElastiCache | awk '{print $4}' | xargs -I {} aws elasticache describe-cache-
clusters --cache-cluster-id {} --region `{ "Ref" : "AWS::Region" }` --show-
cache-node-info --output text | grep '^ENDPOINT' | awk '{print $2 ":" $3}' >
 `{ "Fn::GetOptionSetting" : { "OptionName" : "NodeListPath", "DefaultValue" : "/
var/www/html/nodelist" } }`
 mode : "000500"
 owner : root
 group : root

 "/etc/cfn/hooks.d/cfn-cache-change.conf" :
 "content": |
 [cfn-cache-size-change]
 triggers=post.update
 path=Resources.AWSEBAutoScalingGroup.Metadata.ElastiCacheConfig
 action=/etc/cfn/get-cache-nodes
 runas=root

Update the application to use Express 1039

Amazon Elastic Beanstalk Developer Guide

sources :
 "/home/ec2-user/elasticache" : "https://elasticache-downloads.s3.amazonaws.com/
AmazonElastiCacheCli-latest.zip"

commands:
 make-elasticache-executable:
 command: chmod -R ugo+x /home/ec2-user/elasticache/*/bin/*

packages :
 "yum" :
 "aws-apitools-cfn" : []

container_commands:
 initial_cache_nodes:
 command: /etc/cfn/get-cache-nodes

3. On your local computer, create a configuration file nodejs-example-express-
elasticache/.ebextensions/elasticache_settings.config with the following
snippet to configure ElastiCache.

option_settings:
 "aws:elasticbeanstalk:customoption":
 CacheNodeType: cache.t2.micro
 NumCacheNodes: 1
 Engine: memcached
 NodeListPath: /var/nodelist

4. On your local computer, replace nodejs-example-express-elasticache/express-
app.js with the following snippet. This file reads the nodes list from disk (/var/nodelist)
and configures express to use memcached as a session store if nodes are present. Your file
should look like the following.

/**
 * Module dependencies.
 */

var express = require('express'),
 session = require('express-session'),
 bodyParser = require('body-parser'),
 methodOverride = require('method-override'),
 cookieParser = require('cookie-parser'),

Update the application to use Express 1040

Amazon Elastic Beanstalk Developer Guide

 fs = require('fs'),
 filename = '/var/nodelist',
 app = module.exports = express();

var MemcachedStore = require('connect-memcached')(session);

function setup(cacheNodes) {
 app.use(bodyParser.raw());
 app.use(methodOverride());
 if (cacheNodes) {
 app.use(cookieParser());

 console.log('Using memcached store nodes:');
 console.log(cacheNodes);

 app.use(session({
 secret: 'your secret here',
 resave: false,
 saveUninitialized: false,
 store: new MemcachedStore({'hosts': cacheNodes})
 }));
 } else {
 console.log('Not using memcached store.');
 app.use(cookieParser('your secret here'));
 app.use(session());
 }

 app.get('/', function(req, resp){
 if (req.session.views) {
 req.session.views++
 resp.setHeader('Content-Type', 'text/html')
 resp.write('Views: ' + req.session.views)
 resp.end()
 } else {
 req.session.views = 1
 resp.end('Refresh the page!')
 }
 });

 if (!module.parent) {
 console.log('Running express without cluster.');
 app.listen(process.env.PORT || 5000);
 }
}

Update the application to use Express 1041

Amazon Elastic Beanstalk Developer Guide

// Load elasticache configuration.
fs.readFile(filename, 'UTF8', function(err, data) {
 if (err) throw err;

 var cacheNodes = [];
 if (data) {
 var lines = data.split('\n');
 for (var i = 0 ; i < lines.length ; i++) {
 if (lines[i].length > 0) {
 cacheNodes.push(lines[i]);
 }
 }
 }
 setup(cacheNodes);
});

5. On your local computer, update package.json with the following contents:

 "dependencies": {
 "cookie-parser": "~1.4.4",
 "debug": "~2.6.9",
 "express": "~4.16.1",
 "http-errors": "~1.6.3",
 "jade": "~1.11.0",
 "morgan": "~1.9.1",
 "connect-memcached": "*",
 "express-session": "*",
 "body-parser": "*",
 "method-override": "*"
 }

6. Run npm install.

~/nodejs-example-express-elasticache$ npm install

7. Deploy the updated application.

~/nodejs-example-express-elasticache$ eb deploy

8. Your environment will be updated after a few minutes. After your environment is green and
ready, verify that the code worked.

Update the application to use Express 1042

Amazon Elastic Beanstalk Developer Guide

a. Check the Amazon CloudWatch console to view your ElastiCache metrics. To view your
ElastiCache metrics, select Metrics in the left pane, and then search for CurrItems. Select
ElastiCache > Cache Node Metrics, and then select your cache node to view the number
of items in the cache.

Note

Make sure you are looking at the same region that you deployed your application
to.

If you copy and paste your application URL into another web browser and refresh the
page, you should see your CurrItem count go up after 5 minutes.

b. Take a snapshot of your logs. For more information about retrieving logs, see Viewing logs
from Amazon EC2 instances in your Elastic Beanstalk environment.

c. Check the file /var/log/nodejs/nodejs.log in the log bundle. You should see
something similar to the following:

Using memcached store nodes:
['aws-my-1oys9co8zt1uo.1iwtrn.0001.use1.cache.amazonaws.com.cn:11211']

Update the application to use Express 1043

https://console.amazonaws.cn/cloudwatch/home

Amazon Elastic Beanstalk Developer Guide

Clean up

If you no longer want to run your application, you can clean up by terminating your environment
and deleting your application.

Use the eb terminate command to terminate your environment and the eb delete command
to delete your application.

To terminate your environment

From the directory where you created your local repository, run eb terminate.

$ eb terminate

This process can take a few minutes. Elastic Beanstalk displays a message once the environment is
successfully terminated.

Deploying a Node.js application with DynamoDB to Elastic
Beanstalk

This tutorial and its example application nodejs-example-dynamo.zip walks you through the
process of deploying a Node.js application that uses the Amazon SDK for JavaScript in Node.js to
interact with the Amazon DynamoDB service. You'll create a DynamoDB table that's in a database
that's decoupled, or external, from the Amazon Elastic Beanstalk environment. You'll also configure
the application to use a decoupled database. In a production environment, it's best practice to use
a database that's decoupled from the Elastic Beanstalk environment so that it's independent from
the environment's life cycle. This practice also enables you to perform blue/green deployments.

The example application illustrates the following:

• A DynamoDB table that stores user-provided text data.

• The configuration files to create the table.

• An Amazon Simple Notification Service topic.

• Use of a package.json file to install packages during deployment.

Sections

• Prerequisites

Clean up 1044

samples/nodejs-example-dynamo.zip

Amazon Elastic Beanstalk Developer Guide

• Create an Elastic Beanstalk environment

• Add permissions to your environment's instances

• Deploy the example application

• Create a DynamoDB table

• Update the application's configuration files

• Configure your environment for high availability

• Cleanup

• Next steps

Prerequisites

This tutorial requires the following prerequisites:

• The Node.js runtimes

• The default Node.js package manager software, npm

• The Express command line generator

• The Elastic Beanstalk Command Line Interface (EB CLI)

For details about installing the first three listed components and setting up your local development
environment, see Setting up your Node.js development environment for Elastic Beanstalk. For
this tutorial, you don't need to install the Amazon SDK for Node.js, which is also mentioned in the
referenced topic.

For details about installing and configuring the EB CLI, see Install EB CLI with setup script
(recommended) and Configure the EB CLI.

Create an Elastic Beanstalk environment

Your application directory

This tutorial uses a directory called nodejs-example-dynamo for the application source bundle.
Create the nodejs-example-dynamo directory for this tutorial.

~$ mkdir nodejs-example-dynamo

Prerequisites 1045

Amazon Elastic Beanstalk Developer Guide

Note

Each tutorial in this chapter uses it's own directory for the application source bundle. The
directory name matches the name of the sample application used by the tutorial.

Change your current working directory to nodejs-example-dynamo.

~$ cd nodejs-example-dynamo

Now, let's set up an Elastic Beanstalk environment running the Node.js platform and the sample
application. We'll use the Elastic Beanstalk command line interface (EB CLI).

To configure an EB CLI repository for your application and create an Elastic Beanstalk
environment running the Node.js platform

1. Create a repository with the eb init command.

~/nodejs-example-dynamo$ eb init --platform node.js --region <region>

This command creates a configuration file in a folder named .elasticbeanstalk that
specifies settings for creating environments for your application, and creates an Elastic
Beanstalk application named after the current folder.

2. Create an environment running a sample application with the eb create command.

~/nodejs-example-dynamo$ eb create --sample nodejs-example-dynamo

This command creates a load-balanced environment with the default settings for the Node.js
platform and the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured
to run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support
a specific language version, framework, web container, or combination of these. Most
platforms use either Apache or NGINX as a reverse proxy that sits in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

Create an Elastic Beanstalk environment 1046

Amazon Elastic Beanstalk Developer Guide

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance
running your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose
your instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer.
By default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is
terminated or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that
are created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the
instances in your environment and that are triggered if the load is too high or too low. When
an alarm is triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch
the resources in your environment and propagate configuration changes. The resources are
defined in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the
eb.amazonaws.com.cn domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix
for increased security. This practice defends your domain against cross-site request
forgery attempts (CSRF). For more information see the Set-Cookie page in the
Mozilla Developer Network.

3. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

Create an Elastic Beanstalk environment 1047

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

~/nodejs-example-dynamo$ eb open

You have now created a Node.js Elastic Beanstalk environment with a sample application. You can
update it with your own application. Next, we update the sample application to use the Express
framework.

Add permissions to your environment's instances

Your application runs on one or more EC2 instances behind a load balancer, serving HTTP
requests from the Internet. When it receives a request that requires it to use Amazon services, the
application uses the permissions of the instance it runs on to access those services.

The sample application uses instance permissions to write data to a DynamoDB table, and to send
notifications to an Amazon SNS topic with the SDK for JavaScript in Node.js. Add the following
managed policies to the default instance profile to grant the EC2 instances in your environment
permission to access DynamoDB and Amazon SNS:

• AmazonDynamoDBFullAccess

• AmazonSNSFullAccess

To add policies to the default instance profile

1. Open the Roles page in the IAM console.

2. Choose aws-elasticbeanstalk-ec2-role.

3. On the Permissions tab, choose Attach policies.

4. Select the managed policy for the additional services that your application uses. For this
tutorial, select AmazonSNSFullAccess and AmazonDynamoDBFullAccess.

5. Choose Attach policy.

See Managing Elastic Beanstalk instance profiles for more on managing instance profiles.

Deploy the example application

Now your environment is ready for you to deploy and run the example application for this tutorial:
nodejs-example-dynamo.zip .

Add permissions to your environment's instances 1048

https://console.amazonaws.cn/iam/home#roles
samples/nodejs-example-dynamo.zip

Amazon Elastic Beanstalk Developer Guide

To deploy and run the tutorial example application

1. Change your current working directory to the application directory nodejs-example-
dynamo.

~$ cd nodejs-example-dynamo

2. Download and extract the contents of the example application source bundle nodejs-example-
dynamo.zip to the application directory nodejs-example-dynamo.

3. Deploy the example application to your Elastic Beanstalk environment with the eb deploy
command.

~/nodejs-example-dynamo$ eb deploy

Note

By default, the eb deploy command creates a ZIP file of your project folder. You can
configure the EB CLI to deploy an artifact from your build process instead of creating a
ZIP file of your project folder. For more information, see Deploying an artifact instead
of the project folder.

4. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

~/nodejs-example-dynamo$ eb open

The site collects user contact information and uses a DynamoDB table to store the data. To add an
entry, choose Sign up today, enter a name and email address, and then choose Sign Up!. The web
app writes the form contents to the table and triggers an Amazon SNS email notification.

Deploy the example application 1049

samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip

Amazon Elastic Beanstalk Developer Guide

Right now, the Amazon SNS topic is configured with a placeholder email for notifications. You
will update the configuration soon, but in the meantime you can verify the DynamoDB table and
Amazon SNS topic in the Amazon Web Services Management Console.

To view the table

1. Open the Tables page in the DynamoDB console.

2. Find the table that the application created. The name starts with awseb and contains
StartupSignupsTable.

3. Select the table, choose Items, and then choose Start search to view all items in the table.

Deploy the example application 1050

https://console.amazonaws.cn/dynamodb/home?#tables:

Amazon Elastic Beanstalk Developer Guide

The table contains an entry for every email address submitted on the signup site. In addition
to writing to the table, the application sends a message to an Amazon SNS topic that has two
subscriptions, one for email notifications to you, and another for an Amazon Simple Queue Service
queue that a worker application can read from to process requests and send emails to interested
customers.

To view the topic

1. Open the Topics page in the Amazon SNS console.

2. Find the topic that the application created. The name starts with awseb and contains
NewSignupTopic.

3. Choose the topic to view its subscriptions.

The application (app.js) defines two routes. The root path (/) returns a webpage rendered from
an Embedded JavaScript (EJS) template with a form that the user fills out to register their name
and email address. Submitting the form sends a POST request with the form data to the /signup
route, which writes an entry to the DynamoDB table and publishes a message to the Amazon SNS
topic to notify the owner of the signup.

The sample application includes configuration files that create the DynamoDB table, Amazon SNS
topic, and Amazon SQS queue used by the application. This lets you create a new environment
and test the functionality immediately, but has the drawback of tying the DynamoDB table
to the environment. For a production environment, you should create the DynamoDB table
outside of your environment to avoid losing it when you terminate the environment or update its
configuration.

Create a DynamoDB table

To use an external DynamoDB table with an application running in Elastic Beanstalk, first create
a table in DynamoDB. When you create a table outside of Elastic Beanstalk, it is completely
independent of Elastic Beanstalk and your Elastic Beanstalk environments, and will not be
terminated by Elastic Beanstalk.

Create a table with the following settings:

• Table name – nodejs-tutorial

• Primary key – email

• Primary key type – String

Create a DynamoDB table 1051

https://console.amazonaws.cn/sns/v2/home?#/topics
https://github.com/awslabs/eb-node-express-sample/blob/master/app.js

Amazon Elastic Beanstalk Developer Guide

To create a DynamoDB table

1. Open the Tables page in the DynamoDB management console.

2. Choose Create table.

3. Type a Table name and Primary key.

4. Choose the primary key type.

5. Choose Create.

Update the application's configuration files

Update the configuration files in the application source to use the nodejs-tutorial table instead of
creating a new one.

To update the example application for production use

1. Change your current working directory to the application directory nodejs-example-
dynamo.

~$ cd nodejs-example-dynamo

2. Open .ebextensions/options.config and change the values of the following settings:

• NewSignupEmail – Your email address.

• STARTUP_SIGNUP_TABLE – nodejs-tutorial

Example .ebextensions/options.config

option_settings:
 aws:elasticbeanstalk:customoption:
 NewSignupEmail: you@example.com
 aws:elasticbeanstalk:application:environment:
 THEME: "flatly"
 AWS_REGION: '`{"Ref" : "AWS::Region"}`'
 STARTUP_SIGNUP_TABLE: nodejs-tutorial
 NEW_SIGNUP_TOPIC: '`{"Ref" : "NewSignupTopic"}`'
 aws:elasticbeanstalk:container:nodejs:
 ProxyServer: nginx
 aws:elasticbeanstalk:container:nodejs:staticfiles:

Update the application's configuration files 1052

https://console.amazonaws.cn/dynamodb/home?#tables:

Amazon Elastic Beanstalk Developer Guide

 /static: /static
 aws:autoscaling:asg:
 Cooldown: "120"
 aws:autoscaling:trigger:
 Unit: "Percent"
 Period: "1"
 BreachDuration: "2"
 UpperThreshold: "75"
 LowerThreshold: "30"
 MeasureName: "CPUUtilization"

This applies the following configurations for the application:

• The email address that the Amazon SNS topic uses for notifications is set to your address, or
the one you enter in the options.config file.

• The nodejs-tutorial table will be used instead of the one created by .ebextensions/
create-dynamodb-table.config.

3. Remove .ebextensions/create-dynamodb-table.config.

~/nodejs-tutorial$ rm .ebextensions/create-dynamodb-table.config

The next time you deploy the application, the table created by this configuration file will be
deleted.

4. Deploy the updated application to your Elastic Beanstalk environment with the eb deploy
command.

~/nodejs-example-dynamo$ eb deploy

5. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

~/nodejs-example-dynamo$ eb open

When you deploy, Elastic Beanstalk updates the configuration of the Amazon SNS topic and
deletes the DynamoDB table that it created when you deployed the first version of the application.

Update the application's configuration files 1053

Amazon Elastic Beanstalk Developer Guide

Now, when you terminate the environment, the nodejs-tutorial table will not be deleted. This
lets you perform blue/green deployments, modify configuration files, or take down your website
without risking data loss.

Open your site in a browser and verify that the form works as you expect. Create a few entries, and
then check the DynamoDB console to verify the table.

To view the table

1. Open the Tables page in the DynamoDB console.

2. Find the nodejs-tutorial table.

3. Select the table, choose Items, and then choose Start search to view all items in the table.

You can also see that Elastic Beanstalk deleted the table that it created previously.

Configure your environment for high availability

Finally, configure your environment's Auto Scaling group with a higher minimum instance count.
Run at least two instances at all times to prevent the web servers in your environment from being a
single point of failure, and to allow you to deploy changes without taking your site out of service.

To configure your environment's Auto Scaling group for high availability

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Auto Scaling group section, set Min instances to 2.

6. To save the changes choose Apply at the bottom of the page.

Cleanup

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Configure your environment for high availability 1054

https://console.amazonaws.cn/dynamodb/home?#tables:
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

You can also delete the external DynamoDB tables that you created.

To delete a DynamoDB table

1. Open the Tables page in the DynamoDB console.

2. Select a table.

3. Choose Actions, and then choose Delete table.

4. Choose Delete.

Next steps

The example application uses configuration files to configure software settings and create
Amazon resources as part of your environment. See Advanced environment customization with
configuration files (.ebextensions) for more information about configuration files and their use.

The example application for this tutorial uses the Express web framework for Node.js. For more
information about Express, see the official documentation at expressjs.com.

Finally, if you plan on using your application in a production environment, configure a custom
domain name for your environment and enable HTTPS for secure connections.

Next steps 1055

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/dynamodb/home?#tables:
https://expressjs.com

Amazon Elastic Beanstalk Developer Guide

Adding an Amazon RDS DB instance to your Node.js Elastic
Beanstalk environment

This topic provides instructions to create an Amazon RDS using the Elastic Beanstalk console.
You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data
gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally by
another service. In these instructions the database is coupled to your environment and managed by
Elastic Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk,
see Adding a database to your Elastic Beanstalk environment.

Sections

• Adding a DB instance to your environment

• Downloading a driver

• Connecting to a database

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Adding a database 1056

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading a driver

Add the database driver to your project's package.json file under dependencies.

Example package.json – Express with MySQL

{
 "name": "my-app",
 "version": "0.0.1",
 "private": true,
 "dependencies": {
 "ejs": "latest",
 "aws-sdk": "latest",
 "express": "latest",

Downloading a driver 1057

Amazon Elastic Beanstalk Developer Guide

 "body-parser": "latest",
 "mysql": "latest"
 },
 "scripts": {
 "start": "node app.js"
 }
}

Common driver packages for Node.js

• MySQL – mysql

• PostgreSQL – node-postgres

• SQL Server – node-mssql

• Oracle – node-oracledb

Connecting to a database

Elastic Beanstalk provides connection information for attached DB instances in environment
properties. Use process.env.VARIABLE to read the properties and configure a database
connection.

Example app.js – MySQL database connection

var mysql = require('mysql');

var connection = mysql.createConnection({
 host : process.env.RDS_HOSTNAME,
 user : process.env.RDS_USERNAME,
 password : process.env.RDS_PASSWORD,
 port : process.env.RDS_PORT
});

connection.connect(function(err) {
 if (err) {
 console.error('Database connection failed: ' + err.stack);
 return;
 }

 console.log('Connected to database.');
});

Connecting to a database 1058

https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/pg
https://www.npmjs.com/package/mssql
https://www.npmjs.com/package/oracledb

Amazon Elastic Beanstalk Developer Guide

connection.end();

For more information about constructing a connection string using node-mysql, see npmjs.org/
package/mysql.

Node.js tools and resources

There are several places you can go to get additional help when developing your Node.js
applications:

Resource Description

GitHub Install the Amazon SDK for Node.js using GitHub.

Amazon SDK for Node.js (Developer
Preview)

One-stop shop for sample code, documentation, tools,
and additional resources.

Resources 1059

https://npmjs.org/package/mysql
https://npmjs.org/package/mysql
https://github.com/aws/aws-sdk-js
http://www.amazonaws.cn/sdkfornodejs/
http://www.amazonaws.cn/sdkfornodejs/

Amazon Elastic Beanstalk Developer Guide

Deploying PHP applications with Elastic Beanstalk

You can deploy a PHP application in a few minutes using the Elastic Beanstalk Command Line
Interface (EB CLI) or the Elastic Beanstalk console. To learn how, start with the QuickStart tutorial,
then review the advanced examples.

Resources for deploying PHP applications to Elastic Beanstalk

• QuickStart for PHP — Step-by-step instructions to deploy a Hello World PHP application using
the EB CLI.

• Using the Elastic Beanstalk PHP platform — How to use platform features specifically for PHP.

• Advanced examples — How to tutorials for common PHP frameworks and applications, plus how
to add an Amazon RDS database to your environment.

For more info on developing with PHP in Amazon, see the following resources:

• GitHub — Install the Amazon SDK for PHP using GitHub.

• PHP Developer Center — Tools, docs, and sample code to develop PHP applications on Amazon.

• Amazon SDK for PHP FAQs — Get answers to commonly asked questions.

QuickStart: Deploy a PHP application to Elastic Beanstalk

In the following tutorial, you'll learn how to create and deploy a sample PHP application to an
Amazon Elastic Beanstalk environment using the EB CLI.

Warning - Not for production use!

Examples are intended for demonstration only. Do not use example applications in
production.

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account to use Elastic
Beanstalk.

QuickStart for PHP 1060

https://github.com/aws/aws-sdk-php/
http://www.amazonaws.cn/php/
http://docs.amazonaws.cn/aws-sdk-php/guide/latest/faq.html

Amazon Elastic Beanstalk Developer Guide

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

• Elastic Beanstalk Command Line Interface - For installation, see Install EB CLI with setup script
(recommended).

• PHP - Install PHP on your local machine by following Installation and Configuration instructions
on the PHP website.

Prerequisites 1061

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://www.php.net/manual/en/install.php

Amazon Elastic Beanstalk Developer Guide

Step 1: Create a PHP application

For this quick start, you will create a Hello World PHP application.

Create a project directory.

~$ mkdir eb-php
~$ cd eb-php

Next, create an index.php file in the project directory and add the following code.

Example index.php

<?php
 echo "Hello from a PHP application running in Elastic Beanstalk!";
?>

Step 2: Run your application locally

Use the following command to run your application locally.

php -S localhost:5000

Open a browser to http://localhost:5000.

You should see your hello message in the browser and log messages in your terminal.

Stop the local server by entering Control+c, so you can deploy the Elastic Beanstalk.

Step 3: Initialize and deploy your PHP application

Next, you will deploy your application to an environment using the Elastic Beanstalk console
or the EB CLI. For this tutorial, you'll use the EB CLI with the interactive option to initialize an
environment.

To initialize your environment and create an environment

1. Run the following init command.

eb init -i

Step 1: Create a PHP application 1062

http://localhost:5000

Amazon Elastic Beanstalk Developer Guide

The init command creates an application interactively. The application name will default to the
local folder which is eb-php.

For all prompts, except SSH access, accept the defaults to create an environment with the
latest PHP platform version. For troubleshooting instances, you can set up SSH access by re-
running the eb init -icommand at a later time, or connect using Amazon EC2 Instance
Connect or Session Manager.

2. Create an environment and deploy your application

Run the following command to create an environment named blue-env.

eb create blue-env

When you run the eb create command for the first time, Elastic Beanstalk automatically
builds a zip file of your application, called a source bundle. Next, Elastic Beanstalk creates an
environment with one or more Amazon EC2 instances, and then deploys the application into
the environment.

Deploying your application to Elastic Beanstalk might take up to five minutes.

Step 4: Browse your cloud application

When the process to create your environment completes, your application should be running and
listening for requests on port 5000. Connect to your application with the following command:

eb open

The eb open command opens a browser tab to a custom subdomain created for your application.

Step 5: Update and redeploy your application

After you have created an application and deployed to an environment, you can deploy a new
version of the application or a different application at any time. Deploying a new application
version is faster because it doesn't require provisioning or restarting Amazon EC2 instances.

Update your PHP code to include the REQUEST_TIME value from the server environment:

<?php

Step 4: Browse your cloud application 1063

Amazon Elastic Beanstalk Developer Guide

 echo "Hello from a PHP application running in Elastic Beanstalk!";

 $timestamp = $_SERVER['REQUEST_TIME'];
 echo '
Request time: ' . date('Y/m/d H:i:s', $timestamp);
?>

Redeploy your PHP code to Elastic Beanstalk with the following command:

eb deploy

When you run eb deploy, the EB CLI bundles up the contents of your project directory and deploys
it to your environment.

After the deploy finishes, refresh the page or reconnect to your application with eb open. You
should see your updates. If not, troubleshoot by running your local server again to verify your
changes.

Congratulations!

You've created, deployed, and updated a PHP application with Elastic Beanstalk!

Clean up

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

Clean up 1064

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

4. Use the on-screen dialog box to confirm environment termination.

Alternatively, you can terminate your environment with the EB CLI with the following command:

eb terminate

Next steps

You can explore your application environment using the Elastic Beanstalk console. For more info,
see Explore your environment.

For advanced examples using PHP, see Advanced examples for PHP in Elastic Beanstalk.

Using the Elastic Beanstalk PHP platform

Amazon Elastic Beanstalk provides and supports various platform branches for different versions
of PHP. The platforms support PHP web applications that run stand-alone or under Composer.
See PHP in the Amazon Elastic Beanstalk Platforms document for a full list of supported platform
branches.

Elastic Beanstalk provides configuration options that you can use to customize the software
that runs on the Amazon EC2 instances in your Elastic Beanstalk environment. You can configure
environment variables required by your application, enable log rotation to Amazon S3, map folders
in your application source that contain static files to paths served by the proxy server, and set
common PHP initialization settings.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

If you use Composer, you can include a composer.json file in your source bundle to install
packages during deployment.

Next steps 1065

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP

Amazon Elastic Beanstalk Developer Guide

For advanced PHP configuration and PHP settings that are not provided as configuration options,
you can use configuration files to provide an INI file that can extend and override the default
settings applied by Elastic Beanstalk, or install additional extensions.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

PHP platform topics

• Installing the Amazon SDK for PHP

• Considerations for PHP 8.1 on Amazon Linux 2

• Configuring your PHP environment

• Namespaces for configuration

• Installing your Elastic Beanstalk PHP application's dependencies

• Updating Composer on Elastic Beanstalk

• Extending php.ini in your Elastic Beanstalk configuration

Installing the Amazon SDK for PHP

If you need to manage Amazon resources from within your application, install the Amazon SDK for
PHP. For example, with the SDK for PHP, you can use Amazon DynamoDB (DynamoDB) to store user
and session information without creating a relational database.

To install the SDK for PHP with Composer

$ composer require aws/aws-sdk-php

For more information, see the Amazon SDK for PHP homepage. For instructions, see Install the
Amazon SDK for PHP.

Considerations for PHP 8.1 on Amazon Linux 2

Read this section if you're using the PHP 8.1 on Amazon Linux 2 platform branch.

Installing the Amazon SDK for PHP 1066

https://www.amazonaws.cn/sdk-for-php/
https://docs.amazonaws.cn/sdk-for-php/v3/developer-guide/getting-started_installation.html
https://docs.amazonaws.cn/sdk-for-php/v3/developer-guide/getting-started_installation.html

Amazon Elastic Beanstalk Developer Guide

Considerations for PHP 8.1 on Amazon Linux 2

Note

The information in this topic only applies to the PHP 8.1 on Amazon Linux 2 platform
branch. It does not apply to the PHP platform branches based on AL2023. It also does not
apply to the PHP 8.0 Amazon Linux 2 platform branch.

Elastic Beanstalk stores the PHP 8.1 related RPM packages for the PHP 8.1 on Amazon Linux 2
platform branch on the EC2 instances in a local directory, instead of the Amazon Linux repository.
You can use rpm -i to install packages. Starting with PHP 8.1 Platform Version 3.5.0, Elastic
Beanstalk stores the PHP 8.1 related RPM packages in the following local EC2 directory.

/opt/elasticbeanstalk/RPMS

The following example installs the php-debuginfo package.

$rpm -i /opt/elasticbeanstalk/RPMS/php-debuginfo-8.1.8-1.amzn2.x86_64.rpm

The version in the package name will vary according to the actual version that's listed in the EC2
local directory /opt/elasticbeanstalk/RPMS. Use the same syntax to install other PHP 8.1
RPM packages.

Expand the following section to display a list of RPM packages we provide.

RPM Packages

The following list provides the RMP packages that the Elastic Beanstalk PHP 8.1 platform provides
on Amazon Linux 2. These are located in the local directory /opt/elasticbeanstalk/RPMS.

The version numbers 8.1.8-1 and 3.7.0-1 in the listed package names are only an example.

• php-8.1.8-1.amzn2.x86_64.rpm

• php-bcmath-8.1.8-1.amzn2.x86_64.rpm

• php-cli-8.1.8-1.amzn2.x86_64.rpm

• php-common-8.1.8-1.amzn2.x86_64.rpm

• php-dba-8.1.8-1.amzn2.x86_64.rpm

Considerations for PHP 8.1 on Amazon Linux 2 1067

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-10-03-linux.html

Amazon Elastic Beanstalk Developer Guide

• php-dbg-8.1.8-1.amzn2.x86_64.rpm

• php-debuginfo-8.1.8-1.amzn2.x86_64.rpm

• php-devel-8.1.8-1.amzn2.x86_64.rpm

• php-embedded-8.1.8-1.amzn2.x86_64.rpm

• php-enchant-8.1.8-1.amzn2.x86_64.rpm

• php-fpm-8.1.8-1.amzn2.x86_64.rpm

• php-gd-8.1.8-1.amzn2.x86_64.rpm

• php-gmp-8.1.8-1.amzn2.x86_64.rpm

• php-intl-8.1.8-1.amzn2.x86_64.rpm

• php-ldap-8.1.8-1.amzn2.x86_64.rpm

• php-mbstring-8.1.8-1.amzn2.x86_64.rpm

• php-mysqlnd-8.1.8-1.amzn2.x86_64.rpm

• php-odbc-8.1.8-1.amzn2.x86_64.rpm

• php-opcache-8.1.8-1.amzn2.x86_64.rpm

• php-pdo-8.1.8-1.amzn2.x86_64.rpm

• php-pear-1.10.13-1.amzn2.noarch.rpm

• php-pgsql-8.1.8-1.amzn2.x86_64.rpm

• php-process-8.1.8-1.amzn2.x86_64.rpm

• php-pspell-8.1.8-1.amzn2.x86_64.rpm

• php-snmp-8.1.8-1.amzn2.x86_64.rpm

• php-soap-8.1.8-1.amzn2.x86_64.rpm

• php-sodium-8.1.8-1.amzn2.x86_64.rpm

• php-xml-8.1.8-1.amzn2.x86_64.rpm

• php-pecl-imagick-3.7.0-1.amzn2.x86_64.rpm

• php-pecl-imagick-debuginfo-3.7.0-1.amzn2.x86_64.rpm

• php-pecl-imagick-devel-3.7.0-1.amzn2.noarch.rpm

You can use the PEAR and PECL packages to install common extensions. For more information
about PEAR, see the PEAR PHP Extension and Application Repository website. For more
information about PECL, see the PECL extension website.

Considerations for PHP 8.1 on Amazon Linux 2 1068

https://pear.php.net
https://pecl.php.net

Amazon Elastic Beanstalk Developer Guide

The following example commands install the Memcached extensions.

$pecl install memcache

Or you could also use the following:

$pear install pecl/memcache

The following example commands install the Redis extensions.

$pecl install redis

Or you could also use the following:

$pear install pecl/redis

Configuring your PHP environment

You can use the Elastic Beanstalk console to enable log rotation to Amazon S3, configure variables
that your application can read from the environment, and change PHP settings.

To configure your PHP environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

PHP settings

• Proxy server – The proxy server to use on your environment instances. By default, nginx is used.

• Document root – The folder that contains your site's default page. If your welcome page is not
at the root of your source bundle, specify the folder that contains it relative to the root path. For
example, /public if the welcome page is in a folder named public.

Configuring your PHP environment 1069

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Memory limit – The maximum amount of memory that a script is allowed to allocate. For
example, 512M.

• Zlib output compression – Set to On to compress responses.

• Allow URL fopen – Set to Off to prevent scripts from downloading files from remote locations.

• Display errors – Set to On to show internal error messages for debugging.

• Max execution time – The maximum time in seconds that a script is allowed to run before the
environment terminates it.

Log options

The Log Options section has two settings:

• Instance profile– Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. These settings are passed in as key-value
pairs to the application.

Your application code can access environment properties by using $_SERVER or the get_cfg_var
function.

Configuring your PHP environment 1070

Amazon Elastic Beanstalk Developer Guide

$endpoint = $_SERVER['API_ENDPOINT'];

See Environment variables and other software settings for more information.

Namespaces for configuration

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

The following namespaces configure both your proxy service and PHP specific options:

• aws:elasticbeanstalk:environment:proxy:staticfiles – configure the environment
proxy to serve static files. You define mappings of virtual paths to application directories.

• aws:elasticbeanstalk:environment:proxy – specify the environment's proxy server.

• aws:elasticbeanstalk:container:php:phpini – configure PHP specific options. This
namespace includes composer_options, which is not available on the Elastic Beanstalk
console. This option sets the custom options to use when installing dependencies using
Composer through the composer.phar install command. For more information about this
command, including available options, see install on the getcomposer.org website.

The following example configuration file specifies a static files option that maps a directory named
staticimages to the path /images, and shows settings for each of the options available in the
aws:elasticbeanstalk:container:php:phpini namespace:

Example .ebextensions/php-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache
 aws:elasticbeanstalk:environment:proxy:staticfiles:
 /images: staticimages
 aws:elasticbeanstalk:container:php:phpini:
 document_root: /public
 memory_limit: 128M
 zlib.output_compression: "Off"
 allow_url_fopen: "On"
 display_errors: "Off"

Namespaces for configuration 1071

https://getcomposer.org/doc/03-cli.md#install-i

Amazon Elastic Beanstalk Developer Guide

 max_execution_time: 60
 composer_options: vendor/package

Note

The aws:elasticbeanstalk:environment:proxy:staticfiles namespace isn't
defined on Amazon Linux AMI PHP platform branches (preceding Amazon Linux 2).

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

Installing your Elastic Beanstalk PHP application's dependencies

This topic describes how to configure you application to install other PHP packages that it requires.
Your application might have dependencies on other PHP packages. You can configure your
application to install these dependencies on the environment's Amazon Elastic Compute Cloud
(Amazon EC2) instances. Alternatively, you can include your application's dependencies in the
source bundle and deploy them with the application. The following section discuss both of these
ways.

Use a Composer file to install dependencies on instances

Use a composer.json file in the root of your project source to use composer to install packages
that your application requires on your environment's Amazon EC2 instances.

Example composer.json

{
 "require": {
 "monolog/monolog": "1.0.*"
 }
}

When a composer.json file is present, Elastic Beanstalk runs composer.phar install
to install dependencies. You can add options to append to the command by setting the
composer_options option in the aws:elasticbeanstalk:container:php:phpini
namespace.

Installing dependencies 1072

Amazon Elastic Beanstalk Developer Guide

Include dependencies in source bundle

If your application has a large number of dependencies, installing them might take a long time.
This can increase deployment and scaling operations, because dependencies are installed on every
new instance.

To avoid the negative impact on deployment time, use Composer in your development
environment to resolve dependencies and install them into the vendor folder.

To include dependencies in your application source bundle

1. Run the following command:

% composer install

2. Include the generated vendor folder in the root of your application source bundle.

When Elastic Beanstalk finds a vendor folder on the instance, it ignores the composer.json file
(even if it exists). Your application then uses dependencies from the vendor folder.

Updating Composer on Elastic Beanstalk

This topic describes how to configure Elastic Beanstalk to keep Composer up to date. You may
have to update Composer if you see an error when you try to install packages with a Composer
file, or if you're unable to use the latest platform version. Between platform updates, you can
update Composer in your environment instances through the use of configuration files in your
.ebextensions folder.

You can self-update Composer with the following configuration.

commands:
 01updateComposer:
 command: /usr/bin/composer.phar self-update 2.7.0

The following option setting sets the COMPOSER_HOME environment variable, which configures the
location of the Composer cache.

option_settings:
 - namespace: aws:elasticbeanstalk:application:environment

Updating Composer 1073

Amazon Elastic Beanstalk Developer Guide

 option_name: COMPOSER_HOME
 value: /home/webapp/composer-home

You can combine both of these in the same configuration file in your .ebextensions folder.

Example .ebextensions/composer.config

commands:
 01updateComposer:
 command: /usr/bin/composer.phar self-update 2.7.0

option_settings:
 - namespace: aws:elasticbeanstalk:application:environment
 option_name: COMPOSER_HOME
 value: /home/webapp/composer-home

Note

Due to updates to the Composer installation in the February 22, 2024, AL2023 platform
release and the February 28, 2024, AL2 platform release, the Composer self-update may
fail if COMPOSER_HOME is set when the self-update executes.
The following combined commands will fail to execute: export COMPOSER_HOME=/home/
webapp/composer-home && /usr/bin/composer.phar self-update 2.7.0
However, the previous example will work. In the previous example, the option setting for
COMPOSER_HOME will not be passed to the 01updateComposer execution, and it will not
be set when the self-update command executes.

Important

If you omit the version number from the composer.phar self-update command,
Composer will update to the latest version available every time you deploy your source
code, and when new instances are provisioned by Auto Scaling. This could cause scaling
operations and deployments to fail if a version of Composer is released that is incompatible
with your application.

For more information about the Elastic Beanstalk PHP Platforms, including the version of
Composer, see PHP platform versions in the document Amazon Elastic Beanstalk Platforms.

Updating Composer 1074

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2024-02-22-al2023.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2024-02-28-al2.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP

Amazon Elastic Beanstalk Developer Guide

Extending php.ini in your Elastic Beanstalk configuration

Use a configuration file with a files block to add a .ini file to /etc/php.d/ on the instances in
your environment. The main configuration file, php.ini, pulls in settings from files in this folder in
alphabetical order. Many extensions are enabled by default by files in this folder.

Example .ebextensions/mongo.config

files:
 "/etc/php.d/99mongo.ini":
 mode: "000755"
 owner: root
 group: root
 content: |
 extension=mongo.so

Advanced examples for PHP in Elastic Beanstalk

To get started with PHP applications on Amazon Elastic Beanstalk, you need an application source
bundle to upload as your first application version to deploy to an environment.

We recommend the QuickStart for PHP to get started with a simple PHP application deployed with
the EB CLI.

Advanced PHP examples

• Adding an Amazon RDS DB instance to your PHP Elastic Beanstalk environment

• Deploying a Laravel application to Elastic Beanstalk

• Deploying a CakePHP application to Elastic Beanstalk

• Deploying a Symfony application to Elastic Beanstalk

• Deploying a high-availability PHP application with an external Amazon RDS database to Elastic
Beanstalk

• Deploying a high-availability WordPress website with an external Amazon RDS database to
Elastic Beanstalk

• Deploying a high-availability Drupal website with an external Amazon RDS database to Elastic
Beanstalk

Extending php.ini 1075

Amazon Elastic Beanstalk Developer Guide

Adding an Amazon RDS DB instance to your PHP Elastic Beanstalk
environment

This topic provides instructions to create an Amazon RDS using the Elastic Beanstalk console.
You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data
gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally by
another service. In these instructions the database is coupled to your environment and managed by
Elastic Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk,
see Adding a database to your Elastic Beanstalk environment.

Sections

• Adding a DB instance to your environment

• Downloading a driver

• Connecting to a database with a PDO or MySQLi

• Connecting to a database with Symfony

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Adding a database 1076

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading a driver

To use PHP Data Objects (PDO) to connect to the database, install the driver that matches the
database engine that you chose.

• MySQL – PDO_MYSQL

• PostgreSQL – PDO_PGSQL

• Oracle – PDO_OCI

• SQL Server – PDO_SQLSRV

For more information, see http://php.net/manual/en/pdo.installation.php.

Adding a database 1077

http://php.net/manual/en/ref.pdo-mysql.php
http://php.net/manual/en/ref.pdo-pgsql.php
http://php.net/manual/en/ref.pdo-oci.php
http://php.net/manual/en/ref.pdo-sqlsrv.php
http://php.net/manual/en/pdo.installation.php

Amazon Elastic Beanstalk Developer Guide

Connecting to a database with a PDO or MySQLi

You can use $_SERVER[`VARIABLE`] to read connection information from the environment.

For a PDO, create a Data Source Name (DSN) from the host, port, and name. Pass the DSN to the
constructor for the PDO with the database user name and password.

Example Connect to an RDS database with PDO - MySQL

<?php
$dbhost = $_SERVER['RDS_HOSTNAME'];
$dbport = $_SERVER['RDS_PORT'];
$dbname = $_SERVER['RDS_DB_NAME'];
$charset = 'utf8' ;

$dsn = "mysql:host={$dbhost};port={$dbport};dbname={$dbname};charset={$charset}";
$username = $_SERVER['RDS_USERNAME'];
$password = $_SERVER['RDS_PASSWORD'];

$pdo = new PDO($dsn, $username, $password);
?>

For other drivers, replace mysql with the name of your driver – pgsql, oci, or sqlsrv.

For MySQLi, pass the hostname, user name, password, database name, and port to the mysqli
constructor.

Example Connect to an RDS database with mysqli_connect()

$link = new mysqli($_SERVER['RDS_HOSTNAME'], $_SERVER['RDS_USERNAME'],
 $_SERVER['RDS_PASSWORD'], $_SERVER['RDS_DB_NAME'], $_SERVER['RDS_PORT']);

Connecting to a database with Symfony

For Symfony version 3.2 and newer, you can use %env(PROPERTY_NAME)% to set database
parameters in a configuration file based on the environment properties set by Elastic Beanstalk.

Example app/config/parameters.yml

parameters:

Adding a database 1078

https://php.net/manual/en/pdo.construct.php

Amazon Elastic Beanstalk Developer Guide

 database_driver: pdo_mysql
 database_host: '%env(RDS_HOSTNAME)%'
 database_port: '%env(RDS_PORT)%'
 database_name: '%env(RDS_DB_NAME)%'
 database_user: '%env(RDS_USERNAME)%'
 database_password: '%env(RDS_PASSWORD)%'

See External Parameters (Symfony 3.4) for more information.

For earlier versions of Symfony, environment variables are only accessible if they start with
SYMFONY__. This means that the Elastic Beanstalk-defined environment properties are not
accessible, and you must define your own environment properties to pass the connection
information to Symfony.

To connect to a database with Symfony 2, create an environment property for each parameter.
Then, use %property.name% to access the Symfony-transformed variable in a configuration
file. For example, an environment property named SYMFONY__DATABASE__USER is accessible as
database.user.

 database_user: "%database.user%"

See External Parameters (Symfony 2.8) for more information.

Deploying a Laravel application to Elastic Beanstalk

Laravel is an open source, model-view-controller (MVC) framework for PHP. This tutorial walks
you through the process of generating a Laravel application, deploying it to an Amazon Elastic
Beanstalk environment, and configuring it to connect to an Amazon Relational Database Service
(Amazon RDS) database instance.

Sections

• Prerequisites

• Launch an Elastic Beanstalk environment

• Install Laravel and generate a website

• Deploy your application

• Configure Composer settings

• Add a database to your environment

Tutorial - Laravel 1079

http://symfony.com/doc/3.4/configuration/external_parameters.html
http://symfony.com/doc/2.8/configuration/external_parameters.html

Amazon Elastic Beanstalk Developer Guide

• Cleanup

• Next steps

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Learn how to get started with
Elastic Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

Laravel 6 requires PHP 7.2 or later. It also requires the PHP extensions listed in the server
requirements topic in the official Laravel documentation. Follow the instructions to install PHP and
Composer.

For Laravel support and maintenance information, see the support policy topic on the official
Laravel documentation.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

Tutorial - Laravel 1080

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://laravel.com/docs/6.x/installation#server-requirements
https://laravel.com/docs/6.x/installation#server-requirements
https://laravel.com/docs/master/releases#support-policy
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Tutorial - Laravel 1081

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for
increased security. This practice defends your domain against cross-site request forgery
attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Install Laravel and generate a website

Composer can install Laravel and create a working project with one command:

~$ composer create-project --prefer-dist laravel/laravel eb-laravel

Composer installs Laravel and its dependencies, and generates a default project.

If you run into any issues installing Laravel, go to the installation topic in the official
documentation: https://laravel.com/docs/6.x.

Deploy your application

Create a source bundle containing the files created by Composer. The following command creates
a source bundle named laravel-default.zip. It excludes files in the vendor folder, which take
up a lot of space and are not necessary for deploying your application to Elastic Beanstalk.

Tutorial - Laravel 1082

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://laravel.com/docs/6.x

Amazon Elastic Beanstalk Developer Guide

~/eb-laravel$ zip ../laravel-default.zip -r * .[^.]* -x "vendor/*"

Upload the source bundle to Elastic Beanstalk to deploy Laravel to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Note

To optimize the source bundle further, initialize a Git repository and use the git archive
command to create the source bundle. The default Laravel project includes a .gitignore
file that tells Git to exclude the vendor folder and other files that are not required for
deployment.

Configure Composer settings

When the deployment completes, click the URL to open your Laravel application in the browser:

What's this? By default, Elastic Beanstalk serves the root of your project at the root path of the
website. In this case, though, the default page (index.php) is one level down in the public

Tutorial - Laravel 1083

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

folder. You can verify this by adding /public to the URL. For example, http://laravel.us-
west-2.elasticbeanstalk.com/public.

To serve the Laravel application at the root path, use the Elastic Beanstalk console to configure the
document root for the website.

To configure your website's document root

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. For Document Root, enter /public.

6. To save the changes choose Apply at the bottom of the page.

7. When the update is complete, click the URL to reopen your site in the browser.

So far, so good. Next you'll add a database to your environment and configure Laravel to connect
to it.

Add a database to your environment

Launch an RDS DB instance in your Elastic Beanstalk environment. You can use MySQL, SQLServer,
or PostgreSQL databases with Laravel on Elastic Beanstalk. For this example, we'll use MySQL.

Tutorial - Laravel 1084

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

To add an RDS DB instance to your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. For Engine, choose mysql.

6. Type a master username and password. Elastic Beanstalk will provide these values to your
application using environment properties.

7. To save the changes choose Apply at the bottom of the page.

Creating a database instance takes about 10 minutes. For more information about databases
coupled to an Elastic Beanstalk environment, see Adding a database to your Elastic Beanstalk
environment.

In the meantime, you can update your source code to read connection information from the
environment. Elastic Beanstalk provides connection details using environment variables, such as
RDS_HOSTNAME, that you can access from your application.

Laravel's database configuration is stored in a file named database.php in the config folder
in your project code. Find the mysql entry and modify the host, database, username, and
password variables to read the corresponding values from Elastic Beanstalk:

Example ~/Eb-laravel/config/database.php

...
 'connections' => [

 'sqlite' => [
 'driver' => 'sqlite',
 'database' => env('DB_DATABASE', database_path('database.sqlite')),
 'prefix' => '',
],

 'mysql' => [
 'driver' => 'mysql',

Tutorial - Laravel 1085

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

 'host' => env('RDS_HOSTNAME', '127.0.0.1'),
 'port' => env('RDS_PORT', '3306'),
 'database' => env('RDS_DB_NAME', 'forge'),
 'username' => env('RDS_USERNAME', 'forge'),
 'password' => env('RDS_PASSWORD', ''),
 'unix_socket' => env('DB_SOCKET', ''),
 'charset' => 'utf8mb4',
 'collation' => 'utf8mb4_unicode_ci',
 'prefix' => '',
 'strict' => true,
 'engine' => null,
],
...

To verify that the database connection is configured correctly, add code to index.php to connect
to the database and add some code to the default response:

Example ~/Eb-laravel/public/index.php

...
if(DB::connection()->getDatabaseName())
{
 echo "Connected to database ".DB::connection()->getDatabaseName();
}
$response->send();
...

When the DB instance has finished launching, bundle and deploy the updated application to your
environment.

To update your Elastic Beanstalk environment

1. Create a new source bundle:

~/eb-laravel$ zip ../laravel-v2-rds.zip -r * .[^.]* -x "vendor/*"

2. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

3. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

4. Choose Upload and Deploy.

Tutorial - Laravel 1086

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

5. Choose Browse, and upload laravel-v2-rds.zip.

6. Choose Deploy.

Deploying a new version of your application takes less than a minute. When the deployment is
complete, refresh the web page again to verify that the database connection succeeded:

Cleanup

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

Tutorial - Laravel 1087

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Next steps

For more information about Laravel, go to the Laravel official website at laravel.com.

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

In this tutorial, you used the Elastic Beanstalk console to configure composer options. To make this
configuration part of your application source, you can use a configuration file like the following.

Example .ebextensions/composer.config

option_settings:
 aws:elasticbeanstalk:container:php:phpini:
 document_root: /public

For more information, see Advanced environment customization with configuration files
(.ebextensions).

Running an Amazon RDS DB instance in your Elastic Beanstalk environment is great for
development and testing, but it ties the lifecycle of your database to your environment. See
Adding an Amazon RDS DB instance to your PHP Elastic Beanstalk environment for instructions on
connecting to a database running outside of your environment.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Tutorial - Laravel 1088

https://console.amazonaws.cn/rds
https://laravel.com/

Amazon Elastic Beanstalk Developer Guide

Deploying a CakePHP application to Elastic Beanstalk

CakePHP is an open source, MVC framework for PHP. This tutorial walks you through the process of
generating a CakePHP project, deploying it to an Elastic Beanstalk environment, and configuring it
to connect to an Amazon RDS database instance.

Sections

• Prerequisites

• Launch an Elastic Beanstalk environment

• Install CakePHP and generate a website

• Deploy your application

• Add a database to your environment

• Cleanup

• Next steps

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Learn how to get started with
Elastic Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

CakePHP 4 requires PHP 7.4 or later. It also requires the PHP extensions listed in the official
CakePHP installation documentation. You must install both PHP and Composer.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code.

Tutorial - CakePHP 1089

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://book.cakephp.org/4/en/installation.html

Amazon Elastic Beanstalk Developer Guide

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

Tutorial - CakePHP 1090

https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for
increased security. This practice defends your domain against cross-site request forgery
attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Install CakePHP and generate a website

Composer can install CakePHP and create a working project with one command:

~$ composer create-project --prefer-dist cakephp/app eb-cake

Composer installs CakePHP and around 20 dependencies, and generates a default project.

Tutorial - CakePHP 1091

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

If you run into any issues installing CakePHP, visit the installation topic in the official
documentation: http://book.cakephp.org/4.0/en/installation.html

Deploy your application

Create a source bundle containing the files created by Composer. The following command creates a
source bundle named cake-default.zip. It excludes files in the vendor folder, which take up a
lot of space and are not necessary for deploying your application to Elastic Beanstalk.

eb-cake zip ../cake-default.zip -r * .[^.]* -x "vendor/*"

Upload the source bundle to Elastic Beanstalk to deploy CakePHP to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Note

To optimize the source bundle further, initialize a Git repository and use the git
archive command to create the source bundle. The default Symfony project includes a
.gitignore file that tells Git to exclude the vendor folder and other files that are not
required for deployment.

When the process completes, click the URL to open your CakePHP application in the browser.

So far, so good. Next you'll add a database to your environment and configure CakePHP to connect
to it.

Tutorial - CakePHP 1092

http://book.cakephp.org/4.0/en/installation.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Add a database to your environment

Launch an Amazon RDS database instance in your Elastic Beanstalk environment. You can use
MySQL, SQLServer, or PostgreSQL databases with CakePHP on Elastic Beanstalk. For this example,
we'll use PostgreSQL.

To add an Amazon RDS DB instance to your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. Under Database, choose Edit.

5. For DB engine, choose postgres.

6. Type a master username and password. Elastic Beanstalk will provide these values to your
application using environment properties.

7. To save the changes choose Apply at the bottom of the page.

Creating a database instance takes about 10 minutes. In the meantime, you can update your
source code to read connection information from the environment. Elastic Beanstalk provides
connection details using environment variables such as RDS_HOSTNAME that you can access from
your application.

CakePHP's database configuration is in a file named app.php in the config folder in your project
code. Open this file and add some code that reads the environment variables from $_SERVER and
assigns them to local variables. Insert the highlighted lines in the below example after the first line
(<?php):

Example ~/Eb-cake/config/app.php

<?php
if (!defined('RDS_HOSTNAME')) {
 define('RDS_HOSTNAME', $_SERVER['RDS_HOSTNAME']);
 define('RDS_USERNAME', $_SERVER['RDS_USERNAME']);
 define('RDS_PASSWORD', $_SERVER['RDS_PASSWORD']);
 define('RDS_DB_NAME', $_SERVER['RDS_DB_NAME']);
}

Tutorial - CakePHP 1093

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

return [
...

The database connection is configured further down in app.php. Find the following section and
modify the default datasources configuration with the name of the driver that matches your
database engine (Mysql, Sqlserver, or Postgres), and set the host, username, password and
database variables to read the corresponding values from Elastic Beanstalk:

Example ~/Eb-cake/config/app.php

...
 /**
 * Connection information used by the ORM to connect
 * to your application's datastores.
 * Drivers include Mysql Postgres Sqlite Sqlserver
 * See vendor\cakephp\cakephp\src\Database\Driver for complete list
 */
 'Datasources' => [
 'default' => [
 'className' => 'Cake\Database\Connection',
 'driver' => 'Cake\Database\Driver\Postgres',
 'persistent' => false,
 'host' => RDS_HOSTNAME,
 /*
 * CakePHP will use the default DB port based on the driver selected
 * MySQL on MAMP uses port 8889, MAMP users will want to uncomment
 * the following line and set the port accordingly
 */
 //'port' => 'non_standard_port_number',
 'username' => RDS_USERNAME,
 'password' => RDS_PASSWORD,
 'database' => RDS_DB_NAME,
 /*
 * You do not need to set this flag to use full utf-8 encoding (internal
 default since CakePHP 3.6).
 */
 //'encoding' => 'utf8mb4',
 'timezone' => 'UTC',
 'flags' => [],
 'cacheMetadata' => true,
 'log' => false,
...

Tutorial - CakePHP 1094

Amazon Elastic Beanstalk Developer Guide

When the DB instance has finished launching, bundle up and deploy the updated application to
your environment:

To update your Elastic Beanstalk environment

1. Create a new source bundle:

~/eb-cake$ zip ../cake-v2-rds.zip -r * .[^.]* -x "vendor/*"

2. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

3. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

4. Choose Upload and Deploy.

5. Choose Browse and upload cake-v2-rds.zip.

6. Choose Deploy.

Deploying a new version of your application takes less than a minute. When the deployment is
complete, refresh the web page again to verify that the database connection succeeded:

Cleanup

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

Tutorial - CakePHP 1095

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Next steps

For more information about CakePHP, read the book at book.cakephp.org.

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

Running an Amazon RDS DB instance in your Elastic Beanstalk environment is great for
development and testing, but it ties the lifecycle of your database to your environment. See
Adding an Amazon RDS DB instance to your PHP Elastic Beanstalk environment for instructions on
connecting to a database running outside of your environment.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Tutorial - CakePHP 1096

https://console.amazonaws.cn/rds
http://book.cakephp.org/4.0/en/index.html

Amazon Elastic Beanstalk Developer Guide

Deploying a Symfony application to Elastic Beanstalk

Symfony is an open-source framework for developing dynamic PHP web applications. This tutorial
walks you through the process of generating a Symfony application and deploying it to an Amazon
Elastic Beanstalk environment.

Sections

• Prerequisites

• Launch an Elastic Beanstalk environment

• Install Symfony and generate a website

• Deploy your application

• Configure Composer settings

• Cleanup

• Next steps

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Learn how to get started with
Elastic Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

Symfony 4.4.9 requires PHP 7.1.3 or later. It also requires the PHP extensions listed in the technical
requirements topic in the official Symfony installation documentation. In this tutorial, we use PHP
7.2 and the corresponding Elastic Beanstalk platform version. Before you proceed, you must install
both PHP and Composer.

Tutorial - Symfony 1097

http://symfony.com/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://symfony.com/doc/4.4/setup.html
https://symfony.com/doc/4.4/setup.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP

Amazon Elastic Beanstalk Developer Guide

For Symfony support and maintenance information, see the symfony releases topic on the
Symfony website. For more information about updates related to PHP version support for Symfony
4.4.9, see the Symfony 4.4.9 release notes topic on the Symfony website.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

Tutorial - Symfony 1098

https://symfony.com/releases
https://symfony.com/blog/symfony-4-4-9-released
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for
increased security. This practice defends your domain against cross-site request forgery
attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Tutorial - Symfony 1099

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

Install Symfony and generate a website

Composer can install Symfony and create a working project with one command:

~$ composer create-project symfony/website-skeleton eb-symfony

Composer installs Symfony and its dependencies, and generates a default project.

If you run into any issues installing Symfony, go to the installation topic in the official Symfony
documentation.

Deploy your application

Go to the project directory.

~$ cd eb-symfony

Create a source bundle containing the files created by Composer. The following command creates
a source bundle named symfony-default.zip. It excludes files in the vendor folder, which take
up a lot of space and are not necessary for deploying your application to Elastic Beanstalk.

eb-symfony$ zip ../symfony-default.zip -r * .[^.]* -x "vendor/*"

Upload the source bundle to Elastic Beanstalk to deploy Symfony to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Tutorial - Symfony 1100

https://symfony.com/doc/4.4/setup.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Note

To optimize the source bundle further, initialize a Git repository and use the git
archive command to create the source bundle. The default Symfony project includes a
.gitignore file that tells Git to exclude the vendor folder and other files that are not
required for deployment.

Configure Composer settings

When the deployment completes, click the URL to open your Symfony application in the browser.

What's this? By default, Elastic Beanstalk serves the root of your project at the root path of
the web site. In this case, though, the default page (app.php) is one level down in the web
folder. You can verify this by adding /public to the URL. For example, http://symfony.us-
west-2.elasticbeanstalk.com/public.

To serve the Symfony application at the root path, use the Elastic Beanstalk console to configure
the document root for the web site.

To configure your web site's document root

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. For Document root, enter /public.

6. To save the changes choose Apply at the bottom of the page.

7. When the update is complete, click the URL to reopen your site in the browser.

Cleanup

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Tutorial - Symfony 1101

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

Next steps

For more information about Symfony, see What is Symfony? at symfony.com.

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

In this tutorial, you used the Elastic Beanstalk console to configure composer options. To make this
configuration part of your application source, you can use a configuration file like the following.

Example .ebextensions/composer.config

option_settings:
 aws:elasticbeanstalk:container:php:phpini:
 document_root: /public

For more information, see Advanced environment customization with configuration files
(.ebextensions).

Symfony uses its own configuration files to configure database connections. For instructions on
connecting to a database with Symfony, see Connecting to a database with Symfony.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Tutorial - Symfony 1102

https://console.amazonaws.cn/elasticbeanstalk
https://symfony.com/what-is-symfony

Amazon Elastic Beanstalk Developer Guide

Deploying a high-availability PHP application with an external Amazon
RDS database to Elastic Beanstalk

This tutorial walks you through the process of launching an RDS DB instance external to Amazon
Elastic Beanstalk, and configuring a high-availability environment running a PHP application to
connect to it. Running a DB instance external to Elastic Beanstalk decouples the database from
the lifecycle of your environment. This lets you connect to the same database from multiple
environments, swap out one database for another, or perform a blue/green deployment without
affecting your database.

The tutorial uses a sample PHP application that uses a MySQL database to store user-provided
text data. The sample application uses configuration files to configure PHP settings and to create a
table in the database for the application to use. It also shows how to use a Composer file to install
packages during deployment.

Sections

• Prerequisites

• Launch a DB instance in Amazon RDS

• Create an Elastic Beanstalk environment

• Configure security groups, environment properties, and scaling

• Deploy the sample application

• Cleanup

• Next steps

Prerequisites

Before you start, download the sample application source bundle from GitHub: eb-demo-php-
simple-app-1.3.zip

The procedures in this tutorial for Amazon Relational Database Service (Amazon RDS) tasks assume
that you are launching resources in a default Amazon Virtual Private Cloud (Amazon VPC). All new
accounts include a default VPC in each region. If you don't have a default VPC, the procedures will
vary. See Using Elastic Beanstalk with Amazon RDS for instructions for EC2-Classic and custom VPC
platforms.

Tutorial - HA production 1103

https://github.com/awslabs/eb-demo-php-simple-app
https://github.com/aws-samples/eb-demo-php-simple-app/releases/download/v1.3/eb-demo-php-simple-app-v1.3.zip
https://github.com/aws-samples/eb-demo-php-simple-app/releases/download/v1.3/eb-demo-php-simple-app-v1.3.zip
https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

Launch a DB instance in Amazon RDS

To use an external database with an application running in Elastic Beanstalk, first launch a DB
instance with Amazon RDS. When you launch an instance with Amazon RDS, it is completely
independent of Elastic Beanstalk and your Elastic Beanstalk environments, and will not be
terminated or monitored by Elastic Beanstalk.

Use the Amazon RDS console to launch a Multi-AZ MySQL DB instance. Choosing a Multi-AZ
deployment ensures that your database will fail over and continue to be available if the source DB
instance goes out of service.

To launch an RDS DB instance in a default VPC

1. Open the RDS console.

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. Choose Standard Create.

Important

Do not choose Easy Create. If you choose it, you can't configure the necessary settings
to launch this RDS DB.

5. Under Additional configuration, for Initial database name, type ebdb.

6. Review the default settings and adjust these settings according to your specific requirements.
Pay attention to the following options:

• DB instance class – Choose an instance size that has an appropriate amount of memory and
CPU power for your workload.

• Multi-AZ deployment – For high availability, set this to Create an Aurora Replica/Reader
node in a different AZ.

• Master username and Master password – The database username and password. Make a
note of these settings because you will use them later.

7. Verify the default settings for the remaining options, and then choose Create database.

Next, modify the security group attached to your DB instance to allow inbound traffic on the
appropriate port. This is the same security group that you will attach to your Elastic Beanstalk

Tutorial - HA production 1104

https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

environment later, so the rule that you add will grant ingress permission to other resources in the
same security group.

To modify the inbound rules on the security group that's attached to your RDS instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose the name of your DB instance to view its details.

4. In the Connectivity section, make a note of the Subnets, Security groups, and Endpoint that
are displayed on this page. This is so you can use this information later.

5. Under Security, you can see the security group that's associated with the DB instance. Open
the link to view the security group in the Amazon EC2 console.

6. In the security group details, choose Inbound.

7. Choose Edit.

8. Choose Add Rule.

9. For Type, choose the DB engine that your application uses.

10. For Source, type sg- to view a list of available security groups. Choose the security group
that's associated with the Auto Scaling group that's used with your Elastic Beanstalk
environment. This is so that Amazon EC2 instances in the environment can have access to the
database.

11. Choose Save.

Creating a DB instance takes about 10 minutes. In the meantime, create your Elastic Beanstalk
environment.

Tutorial - HA production 1105

https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

Create an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code. After you launch the environment, you
can configure the environment to connect to the database, then deploy the sample application
that you downloaded from GitHub.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

Tutorial - HA production 1106

https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for
increased security. This practice defends your domain against cross-site request forgery
attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains. The RDS DB instance that you
launched is outside of your environment, so you are responsible for managing its lifecycle.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Tutorial - HA production 1107

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

Configure security groups, environment properties, and scaling

Add the security group of your DB instance to your running environment. This procedure causes
Elastic Beanstalk to reprovision all instances in your environment with the additional security group
attached.

To add a security group to your environment

• Do one of the following:

• To add a security group using the Elastic Beanstalk console

a. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web
Services Region.

b. In the navigation pane, choose Environments, and then choose the name of your
environment from the list.

c. In the navigation pane, choose Configuration.

d. In the Instances configuration category, choose Edit.

e. Under EC2 security groups, choose the security group to attach to the instances, in
addition to the instance security group that Elastic Beanstalk creates.

f. To save the changes choose Apply at the bottom of the page.

g. Read the warning, and then choose Confirm.

• To add a security group using a configuration file, use the securitygroup-
addexisting.config example file.

Next, use environment properties to pass the connection information to your environment. The
sample application uses a default set of properties that match the ones that Elastic Beanstalk
configures when you provision a database within your environment.

To configure environment properties for an Amazon RDS DB instance

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Tutorial - HA production 1108

https://console.amazonaws.cn/elasticbeanstalk
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

5. In the Environment properties section, define the variables that your application reads to
construct a connection string. For compatibility with environments that have an integrated
RDS DB instance, use the following names and values. You can find all values, except for your
password, in the RDS console.

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab
on the Amazon RDS console:
DB Name.

RDS_USERNAME The username that you
configured for your
database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your
database.

Not available for reference
in the Amazon RDS console.

Tutorial - HA production 1109

https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

Finally, configure your environment's Auto Scaling group with a higher minimum instance count.
Run at least two instances at all times to prevent the web servers in your environment from being a
single point of failure, and to allow you to deploy changes without taking your site out of service.

To configure your environment's Auto Scaling group for high availability

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Auto Scaling group section, set Min instances to 2.

6. To save the changes choose Apply at the bottom of the page.

Tutorial - HA production 1110

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Deploy the sample application

Now your environment is ready to run the sample application and connect to Amazon RDS. Deploy
the sample application to your environment.

Note

Download the source bundle from GitHub, if you haven't already: eb-demo-php-simple-
app-1.3.zip

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

The site collects user comments and uses a MySQL database to store the data. To add a comment,
choose Share Your Thought, enter a comment, and then choose Submit Your Thought. The web
app writes the comment to the database so that any instance in the environment can read it, and it
won't be lost if instances go out of service.

Tutorial - HA production 1111

https://github.com/aws-samples/eb-demo-php-simple-app/releases/download/v1.3/eb-demo-php-simple-app-v1.3.zip
https://github.com/aws-samples/eb-demo-php-simple-app/releases/download/v1.3/eb-demo-php-simple-app-v1.3.zip
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Cleanup

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

Tutorial - HA production 1112

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/rds

Amazon Elastic Beanstalk Developer Guide

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Next steps

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

The sample application uses configuration files to configure PHP settings and create a table in
the database if it doesn't already exist. You can also use a configuration file to configure the
security group settings of your instances during environment creation to avoid time-consuming
configuration updates. See Advanced environment customization with configuration files
(.ebextensions) for more information.

For development and testing, you might want to use the Elastic Beanstalk functionality for adding
a managed DB instance directly to your environment. For instructions on setting up a database
inside your environment, see Adding a database to your Elastic Beanstalk environment.

If you need a high-performance database, consider using Amazon Aurora. Amazon Aurora is a
MySQL-compatible database engine that offers commercial database features at low cost. To
connect your application to a different database, repeat the security group configuration steps and
update the RDS-related environment properties.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Deploying a high-availability WordPress website with an external
Amazon RDS database to Elastic Beanstalk

This tutorial describes how to launch an Amazon RDS DB instance that is external to Amazon
Elastic Beanstalk, then how to configure a high-availability environment running a WordPress
website to connect to it. The website uses Amazon Elastic File System (Amazon EFS) as the shared
storage for uploaded files.

Tutorial - HA WordPress 1113

http://www.amazonaws.cn/rds/aurora/

Amazon Elastic Beanstalk Developer Guide

Running a DB instance external to Elastic Beanstalk decouples the database from the lifecycle
of your environment. This lets you connect to the same database from multiple environments,
swap out one database for another, or perform a blue/green deployment without affecting your
database.

Note

For current information about the compatibility of PHP releases with WordPress versions,
see PHP Compatibility and WordPress Versions on the WordPress website. You should
refer to this information before you upgrade to a new release of PHP for your WordPress
implementations.

Topics

• Prerequisites

• Launch a DB instance in Amazon RDS

• Download WordPress

• Launch an Elastic Beanstalk environment

• Configure security groups and environment properties

• Configure and deploy your application

• Install WordPress

• Update keys and salts

• Remove access restrictions

• Configure your Auto Scaling group

• Upgrade WordPress

• Clean up

• Next steps

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Learn how to get started with
Elastic Beanstalk to launch your first Elastic Beanstalk environment.

Tutorial - HA WordPress 1114

https://make.wordpress.org/core/handbook/references/php-compatibility-and-wordpress-versions/

Amazon Elastic Beanstalk Developer Guide

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

Default VPC

The Amazon Relational Database Service (Amazon RDS) procedures in this tutorial assume that you
are launching resources in a default Amazon Virtual Private Cloud (Amazon VPC). All new accounts
include a default VPC in each Amazon Region. If you don't have a default VPC, the procedures will
vary. See Using Elastic Beanstalk with Amazon RDS for instructions for EC2-Classic and custom VPC
platforms.

Amazon Regions

The sample application uses Amazon EFS, which only works in Amazon Regions that support
Amazon EFS. To learn about supported Amazon Regions, see Amazon Elastic File System Endpoints
and Quotas in the Amazon Web Services General Reference.

Launch a DB instance in Amazon RDS

When you launch an instance with Amazon RDS, it's completely independent of Elastic Beanstalk
and your Elastic Beanstalk environments, and will not be terminated or monitored by Elastic
Beanstalk.

In the following steps you'll use the Amazon RDS console to:

• Launch a database with the MySQL engine.

• Enable a Multi-AZ deployment. This creates a standby in a different Availability Zone (AZ) to
provide data redundancy, eliminate I/O freezes, and minimize latency spikes during system
backups.

To launch an RDS DB instance in a default VPC

1. Open the RDS console.

Tutorial - HA WordPress 1115

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/vpc/latest/userguide/
https://docs.amazonaws.cn/general/latest/gr/elasticfilesystem.html
https://docs.amazonaws.cn/general/latest/gr/elasticfilesystem.html
https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. Choose Standard Create.

Important

Do not choose Easy Create. If you choose it, you can't configure the necessary settings
to launch this RDS DB.

5. Under Additional configuration, for Initial database name, type ebdb.

6. Review the default settings and adjust these settings according to your specific requirements.
Pay attention to the following options:

• DB instance class – Choose an instance size that has an appropriate amount of memory and
CPU power for your workload.

• Multi-AZ deployment – For high availability, set this to Create an Aurora Replica/Reader
node in a different AZ.

• Master username and Master password – The database username and password. Make a
note of these settings because you will use them later.

7. Verify the default settings for the remaining options, and then choose Create database.

After your DB instance is created, modify the security group attached to it in order to allow
inbound traffic on the appropriate port..

Note

This is the same security group that you'll attach to your Elastic Beanstalk environment
later, so the rule that you add now will grant ingress permission to other resources in the
same security group.

To modify the inbound rules on the security group that's attached to your RDS instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose the name of your DB instance to view its details.

Tutorial - HA WordPress 1116

https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

4. In the Connectivity section, make a note of the Subnets, Security groups, and Endpoint that
are displayed on this page. This is so you can use this information later.

5. Under Security, you can see the security group that's associated with the DB instance. Open
the link to view the security group in the Amazon EC2 console.

6. In the security group details, choose Inbound.

7. Choose Edit.

8. Choose Add Rule.

9. For Type, choose the DB engine that your application uses.

10. For Source, type sg- to view a list of available security groups. Choose the security group
that's associated with the Auto Scaling group that's used with your Elastic Beanstalk
environment. This is so that Amazon EC2 instances in the environment can have access to the
database.

11. Choose Save.

Creating a DB instance takes about 10 minutes. In the meantime, download WordPress and create
your Elastic Beanstalk environment.

Download WordPress

To prepare to deploy WordPress using Amazon Elastic Beanstalk, you must copy the WordPress files
to your computer and provide the correct configuration information.

To create a WordPress project

1. Download WordPress from wordpress.org.

Tutorial - HA WordPress 1117

https://wordpress.org/download/

Amazon Elastic Beanstalk Developer Guide

~$curl https://wordpress.org/wordpress-6.2.tar.gz -o wordpress.tar.gz

2. Download the configuration files from the sample repository.

~$ wget https://github.com/aws-samples/eb-php-wordpress/releases/download/v1.1/eb-
php-wordpress-v1.zip

3. Extract WordPress and change the name of the folder.

 ~$ tar -xvf wordpress.tar.gz
 ~$ mv wordpress wordpress-beanstalk
 ~$ cd wordpress-beanstalk

4. Extract the configuration files over the WordPress installation.

 ~/wordpress-beanstalk$ unzip ../eb-php-wordpress-v1.zip
 creating: .ebextensions/
 inflating: .ebextensions/dev.config
 inflating: .ebextensions/efs-create.config
 inflating: .ebextensions/efs-mount.config
 inflating: .ebextensions/loadbalancer-sg.config
 inflating: .ebextensions/wordpress.config
 inflating: LICENSE
 inflating: README.md
 inflating: wp-config.php

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. After you launch the
environment, you can configure it to connect to the database, then deploy the WordPress code to
the environment.

In the following steps, you'll use the Elastic Beanstalk console to:

• Create an Elastic Beanstalk application using the managed PHP platform.

• Accept the default settings and sample code.

Tutorial - HA WordPress 1118

Amazon Elastic Beanstalk Developer Guide

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about five minutes and creates the following resources.

Elastic Beanstalk created resources

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

Tutorial - HA WordPress 1119

https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for
increased security. This practice defends your domain against cross-site request forgery
attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Because the Amazon RDS instance that you launched is outside of your environment, you are
responsible for managing its lifecycle.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Configure security groups and environment properties

Add the security group of your DB instance to your running environment. This procedure causes
Elastic Beanstalk to reprovision all instances in your environment with the additional security group
attached.

Tutorial - HA WordPress 1120

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

To add a security group to your environment

• Do one of the following:

• To add a security group using the Elastic Beanstalk console

a. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web
Services Region.

b. In the navigation pane, choose Environments, and then choose the name of your
environment from the list.

c. In the navigation pane, choose Configuration.

d. In the Instances configuration category, choose Edit.

e. Under EC2 security groups, choose the security group to attach to the instances, in
addition to the instance security group that Elastic Beanstalk creates.

f. To save the changes choose Apply at the bottom of the page.

g. Read the warning, and then choose Confirm.

• To add a security group using a configuration file, use the securitygroup-
addexisting.config example file.

Next, use environment properties to pass the connection information to your environment.

The WordPress application uses a default set of properties that match the ones that Elastic
Beanstalk configures when you provision a database within your environment.

To configure environment properties for an Amazon RDS DB instance

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Environment properties section, define the variables that your application reads to
construct a connection string. For compatibility with environments that have an integrated
RDS DB instance, use the following names and values. You can find all values, except for your
password, in the RDS console.

Tutorial - HA WordPress 1121

https://console.amazonaws.cn/elasticbeanstalk
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab
on the Amazon RDS console:
DB Name.

RDS_USERNAME The username that you
configured for your
database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your
database.

Not available for reference
in the Amazon RDS console.

Tutorial - HA WordPress 1122

Amazon Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

Configure and deploy your application

Verify that the structure of your wordpress-beanstalk folder is correct, as shown.

wordpress-beanstalk$ tree -aL 1
.
.ebextensions
index.php
LICENSE
license.txt
readme.html
README.md
wp-activate.php
wp-admin
wp-blog-header.php
wp-comments-post.php
wp-config.php
wp-config-sample.php

Tutorial - HA WordPress 1123

Amazon Elastic Beanstalk Developer Guide

wp-content
wp-cron.php
wp-includes
wp-links-opml.php
wp-load.php
wp-login.php
wp-mail.php
wp-settings.php
wp-signup.php
wp-trackback.php
xmlrpc.php

The customized wp-config.php file from the project repo uses the environment variables that
you defined in the previous step to configure the database connection. The .ebextensions
folder contains configuration files that create additional resources within your Elastic Beanstalk
environment.

The configuration files require modification to work with your account. Replace the placeholder
values in the files with the appropriate IDs and create a source bundle.

To update configuration files and create a source bundle

1. Modify the configuration files as follows.

• .ebextensions/dev.config – Restricts access to your environment to protect it during
the WordPress installation process. Replace the placeholder IP address near the top of
the file with the public IP address of the computer you'll use to access your environment's
website to complete your WordPress installation.

Note

Depending on your network, you might need to use an IP address block.

• .ebextensions/efs-create.config – Creates an EFS file system and mount points in
each Availability Zone/subnet in your VPC. Identify your default VPC and subnet IDs in the
Amazon VPC console.

2. Create a source bundle containing the files in your project folder. The following command
creates a source bundle named wordpress-beanstalk.zip.

~/eb-wordpress$ zip ../wordpress-beanstalk.zip -r * .[^.]*

Tutorial - HA WordPress 1124

https://console.amazonaws.cn/vpc/home#subnets:filter=default

Amazon Elastic Beanstalk Developer Guide

Upload the source bundle to Elastic Beanstalk to deploy WordPress to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Install WordPress

To complete your WordPress installation

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose the environment URL to open your site in a browser. You are redirected to a WordPress
installation wizard because you haven't configured the site yet.

4. Perform a standard installation. The wp-config.php file is already present in the source
code and configured to read the database connection information from the environment. You
shouldn't be prompted to configure the connection.

Installation takes about a minute to complete.

Update keys and salts

The WordPress configuration file wp-config.php also reads values for keys and salts from
environment properties. Currently, these properties are all set to test by the wordpress.config
file in the .ebextensions folder.

Tutorial - HA WordPress 1125

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

The hash salt can be any value that meets the environment property requirements, but you should
not store it in source control. Use the Elastic Beanstalk console to set these properties directly on
the environment.

To update environment properties

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the navigation pane, choose Configuration.

4. Under Software, choose Edit.

5. For Environment properties, modify the following properties:

• AUTH_KEY – The value chosen for AUTH_KEY.

• SECURE_AUTH_KEY – The value chosen for SECURE_AUTH_KEY.

• LOGGED_IN_KEY – The value chosen for LOGGED_IN_KEY.

• NONCE_KEY – The value chosen for NONCE_KEY.

• AUTH_SALT – The value chosen for AUTH_SALT.

• SECURE_AUTH_SALT – The value chosen for SECURE_AUTH_SALT.

• LOGGED_IN_SALT – The value chosen for LOGGED_IN_SALT.

• NONCE_SALT — The value chosen for NONCE_SALT.

6. To save the changes choose Apply at the bottom of the page.

Note

Setting the properties on the environment directly overrides the values in
wordpress.config.

Remove access restrictions

The sample project includes the configuration file loadbalancer-sg.config. It creates a
security group and assigns it to the environment's load balancer, using the IP address that you
configured in dev.config. It restricts HTTP access on port 80 to connections from your network.

Tutorial - HA WordPress 1126

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Otherwise, an outside party could potentially connect to your site before you have installed
WordPress and configured your admin account.

Now that you've installed WordPress, remove the configuration file to open the site to the world.

To remove the restriction and update your environment

1. Delete the .ebextensions/loadbalancer-sg.config file from your project directory.

~/wordpress-beanstalk$ rm .ebextensions/loadbalancer-sg.config

2. Create a source bundle.

~/eb-wordpress$ zip ../wordpress-beanstalk-v2.zip -r * .[^.]*

Upload the source bundle to Elastic Beanstalk to deploy WordPress to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Configure your Auto Scaling group

Finally, configure your environment's Auto Scaling group with a higher minimum instance count.
Run at least two instances at all times to prevent the web servers in your environment from being
a single point of failure. This also allows you to deploy changes without taking your site out of
service.

Tutorial - HA WordPress 1127

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

To configure your environment's Auto Scaling group for high availability

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Auto Scaling group section, set Min instances to 2.

6. To save the changes choose Apply at the bottom of the page.

To support content uploads across multiple instances, the sample project uses Amazon EFS to
create a shared file system. Create a post on the site and upload content to store it on the shared
file system. View the post and refresh the page multiple times to hit both instances and verify that
the shared file system is working.

Upgrade WordPress

To upgrade to a new version of WordPress, back up your site and deploy it to a new environment.

Important

Do not use the update functionality within WordPress or update your source files to use a
new version. Both of these actions can result in your post URLs returning 404 errors even
though they are still in the database and file system.

To upgrade WordPress

1. In the WordPress admin console, use the export tool to export your posts to an XML file.

2. Deploy and install the new version of WordPress to Elastic Beanstalk with the same steps that
you used to install the previous version. To avoid downtime, you can create an environment
with the new version.

3. On the new version, install the WordPress Importer tool in the admin console and use it to
import the XML file containing your posts. If the posts were created by the admin user on the
old version, assign them to the admin user on the new site instead of trying to import the
admin user.

Tutorial - HA WordPress 1128

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

4. If you deployed the new version to a separate environment, do a CNAME swap to redirect users
from the old site to the new site.

Clean up

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Tutorial - HA WordPress 1129

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/rds

Amazon Elastic Beanstalk Developer Guide

Next steps

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

The sample application uses configuration files to configure PHP settings and create a table in
the database, if it doesn't already exist. You can also use a configuration file to configure the
security group settings of your instances during environment creation to avoid time-consuming
configuration updates. See Advanced environment customization with configuration files
(.ebextensions) for more information.

For development and testing, you might want to use the Elastic Beanstalk functionality for adding
a managed DB instance directly to your environment. For instructions on setting up a database
inside your environment, see Adding a database to your Elastic Beanstalk environment.

If you need a high-performance database, consider using Amazon Aurora. Amazon Aurora is a
MySQL-compatible database engine that offers commercial database features at low cost. To
connect your application to a different database, repeat the security group configuration steps and
update the RDS-related environment properties.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Deploying a high-availability Drupal website with an external Amazon
RDS database to Elastic Beanstalk

This tutorial walks you through the process of launching an RDS DB instance external to Amazon
Elastic Beanstalk. Then it describes configuring a high-availability environment running a Drupal
website to connect to it. The website uses Amazon Elastic File System (Amazon EFS) as shared
storage for uploaded files. Running a DB instance external to Elastic Beanstalk decouples the
database from the lifecycle of your environment, and lets you connect to the same database from
multiple environments, swap out one database for another, or perform a blue/green deployment
without affecting your database.

Sections

• Prerequisites

Tutorial - HA Drupal 1130

http://www.amazonaws.cn/rds/aurora/

Amazon Elastic Beanstalk Developer Guide

• Launch a DB instance in Amazon RDS

• Launch an Elastic Beanstalk environment

• Configure security settings and environment properties

• Configure and deploy your application

• Install Drupal

• Update Drupal configuration and remove access restrictions

• Configure your Auto Scaling group

• Cleanup

• Next steps

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Learn how to get started with
Elastic Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

The procedures in this tutorial for Amazon Relational Database Service (Amazon RDS) tasks assume
that you are launching resources in a default Amazon Virtual Private Cloud (Amazon VPC). All new
accounts include a default VPC in each region. If you don't have a default VPC, the procedures will
vary. See Using Elastic Beanstalk with Amazon RDS for instructions for EC2-Classic and custom VPC
platforms.

The sample application uses Amazon EFS. It only works in Amazon Regions that support Amazon
EFS. To learn about supporting Amazon Regions, see Amazon Elastic File System Endpoints and
Quotas in the Amazon Web Services General Reference.

Tutorial - HA Drupal 1131

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/vpc/latest/userguide/
https://docs.amazonaws.cn/general/latest/gr/elasticfilesystem.html
https://docs.amazonaws.cn/general/latest/gr/elasticfilesystem.html

Amazon Elastic Beanstalk Developer Guide

If the platform of your Elastic Beanstalk environment uses PHP 7.4 or earlier, we recommend that
you use Drupal version 8.9.13 for this tutorial. For platforms installed with PHP 8.0 or later, we
recommend that you use Drupal 9.1.5.

For more information about Drupal releases and the PHP versions that they support, see PHP
requirements on the Drupal website. The core versions that Drupal recommends are listed on the
website https://www.drupal.org/project/drupal.

Launch a DB instance in Amazon RDS

To use an external database with an application running in Elastic Beanstalk, first launch a DB
instance with Amazon RDS. When you launch an instance with Amazon RDS, it is completely
independent of Elastic Beanstalk and your Elastic Beanstalk environments, and will not be
terminated or monitored by Elastic Beanstalk.

Use the Amazon RDS console to launch a Multi-AZ MySQL DB instance. Choosing a Multi-AZ
deployment ensures that your database will failover and continue to be available if the source DB
instance goes out of service.

To launch an RDS DB instance in a default VPC

1. Open the RDS console.

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. Choose Standard Create.

Important

Do not choose Easy Create. If you choose it, you can't configure the necessary settings
to launch this RDS DB.

5. Under Additional configuration, for Initial database name, type ebdb.

6. Review the default settings and adjust these settings according to your specific requirements.
Pay attention to the following options:

• DB instance class – Choose an instance size that has an appropriate amount of memory and
CPU power for your workload.

• Multi-AZ deployment – For high availability, set this to Create an Aurora Replica/Reader
node in a different AZ.

Tutorial - HA Drupal 1132

https://www.drupal.org/docs/system-requirements/php-requirements#php_required
https://www.drupal.org/docs/system-requirements/php-requirements#php_required
https://www.drupal.org/project/drupal
https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

• Master username and Master password – The database username and password. Make a
note of these settings because you will use them later.

7. Verify the default settings for the remaining options, and then choose Create database.

Next, modify the security group attached to your DB instance to allow inbound traffic on the
appropriate port. This is the same security group that you will attach to your Elastic Beanstalk
environment later, so the rule that you add will grant ingress permission to other resources in the
same security group.

To modify the inbound rules on the security group that's attached to your RDS instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose the name of your DB instance to view its details.

4. In the Connectivity section, make a note of the Subnets, Security groups, and Endpoint that
are displayed on this page. This is so you can use this information later.

5. Under Security, you can see the security group that's associated with the DB instance. Open
the link to view the security group in the Amazon EC2 console.

6. In the security group details, choose Inbound.

7. Choose Edit.

8. Choose Add Rule.

9. For Type, choose the DB engine that your application uses.

10. For Source, type sg- to view a list of available security groups. Choose the security group
that's associated with the Auto Scaling group that's used with your Elastic Beanstalk
environment. This is so that Amazon EC2 instances in the environment can have access to the
database.

Tutorial - HA Drupal 1133

https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

11. Choose Save.

Creating a DB instance takes about 10 minutes. In the meantime, launch your Elastic Beanstalk
environment.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code. After you launch the environment, you
can configure the environment to connect to the database, then deploy the Drupal code to the
environment.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

Tutorial - HA Drupal 1134

https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for

Tutorial - HA Drupal 1135

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/

Amazon Elastic Beanstalk Developer Guide

increased security. This practice defends your domain against cross-site request forgery
attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains. The RDS DB instance that you
launched is outside of your environment, so you are responsible for managing its lifecycle.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Configure security settings and environment properties

Add the security group of your DB instance to your running environment. This procedure causes
Elastic Beanstalk to reprovision all instances in your environment with the additional security group
attached.

To add a security group to your environment

• Do one of the following:

• To add a security group using the Elastic Beanstalk console

a. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web
Services Region.

b. In the navigation pane, choose Environments, and then choose the name of your
environment from the list.

c. In the navigation pane, choose Configuration.

d. In the Instances configuration category, choose Edit.

e. Under EC2 security groups, choose the security group to attach to the instances, in
addition to the instance security group that Elastic Beanstalk creates.

f. To save the changes choose Apply at the bottom of the page.

g. Read the warning, and then choose Confirm.

Tutorial - HA Drupal 1136

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• To add a security group using a configuration file, use the securitygroup-
addexisting.config example file.

Next, use environment properties to pass the connection information to your environment. The
sample application uses a default set of properties that match the ones that Elastic Beanstalk
configures when you provision a database within your environment.

To configure environment properties for an Amazon RDS DB instance

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Environment properties section, define the variables that your application reads to
construct a connection string. For compatibility with environments that have an integrated
RDS DB instance, use the following names and values. You can find all values, except for your
password, in the RDS console.

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab
on the Amazon RDS console:
DB Name.

Tutorial - HA Drupal 1137

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_USERNAME The username that you
configured for your
database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your
database.

Not available for reference
in the Amazon RDS console.

6. To save the changes choose Apply at the bottom of the page.

After installing Drupal, you need to connect to the instance with SSH to retrieve some
configuration details. Assign an SSH key to your environment's instances.

To configure SSH

1. If you haven't previously created a key pair, open the key pairs page of the Amazon EC2
console and follow the instructions to create one.

Tutorial - HA Drupal 1138

https://console.amazonaws.cn/ec2/v2/home#KeyPairs

Amazon Elastic Beanstalk Developer Guide

2. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

3. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

4. In the navigation pane, choose Configuration.

5. Under Security, choose Edit.

6. For EC2 key pair, choose your key pair.

7. To save the changes choose Apply at the bottom of the page.

Configure and deploy your application

To create a Drupal project for Elastic Beanstalk, download the Drupal source code and combine it
with the files in the aws-samples/eb-php-drupal repository on GitHub.

To create a Drupal project

1. Run the follwing command to download Drupal from www.drupal.org/download. To learn more
about downloads, see the the Drupal website.

If the platform of your Elastic Beanstalk environment uses PHP 7.4 or earlier, we recommend
that you download Drupal version 8.9.13 for this tutorial. You can run the following command
to download it.

~$ curl https://ftp.drupal.org/files/projects/drupal-8.9.13.tar.gz -o drupal.tar.gz

If your platform uses PHP 8.0 or later, we recommend that you download Drupal 9.1.5. You can
use this command to download it.

~$ curl https://ftp.drupal.org/files/projects/drupal-9.1.5.tar.gz -o drupal.tar.gz

For more information about Drupal releases and the PHP versions that they support, see PHP
requirements in the official Drupal documentation. The core versions that Drupal recommends
are listed on the Drupal website.

2. Use the following command to download the configuration files from the sample repository:

Tutorial - HA Drupal 1139

https://console.amazonaws.cn/elasticbeanstalk
https://github.com/aws-samples/eb-php-drupal
https://www.drupal.org/download
https://www.drupal.org/docs/system-requirements/php-requirements#php_required
https://www.drupal.org/docs/system-requirements/php-requirements#php_required
https://www.drupal.org/project/drupal

Amazon Elastic Beanstalk Developer Guide

~$ wget https://github.com/aws-samples/eb-php-drupal/releases/download/v1.1/eb-php-
drupal-v1.zip

3. Extract Drupal and change the name of the folder.

If you downloaded Drupal 8.9.13:

 ~$ tar -xvf drupal.tar.gz
 ~$ mv drupal-8.9.13 drupal-beanstalk
 ~$ cd drupal-beanstalk

If you downloaded Drupal 9.1.5:

 ~$ tar -xvf drupal.tar.gz
 ~$ mv drupal-9.1.5 drupal-beanstalk
 ~$ cd drupal-beanstalk

4. Extract the configuration files over the Drupal installation.

 ~/drupal-beanstalk$ unzip ../eb-php-drupal-v1.zip
 creating: .ebextensions/
 inflating: .ebextensions/dev.config
 inflating: .ebextensions/drupal.config
 inflating: .ebextensions/efs-create.config
 inflating: .ebextensions/efs-filesystem.template
 inflating: .ebextensions/efs-mount.config
 inflating: .ebextensions/loadbalancer-sg.config
 inflating: LICENSE
 inflating: README.md
 inflating: beanstalk-settings.php

Verify that the structure of your drupal-beanstalk folder is correct, as shown.

drupal-beanstalk$ tree -aL 1
.
autoload.php
beanstalk-settings.php
composer.json
composer.lock
core

Tutorial - HA Drupal 1140

Amazon Elastic Beanstalk Developer Guide

.csslintrc
.ebextensions
.ebextensions
.editorconfig
.eslintignore
.eslintrc.json
example.gitignore
.gitattributes
.htaccess
.ht.router.php
index.php
LICENSE
LICENSE.txt
modules
profiles
README.md
README.txt
robots.txt
sites
themes
update.php
vendor
web.config

The beanstalk-settings.php file from the project repo uses the environment variables that
you defined in the previous step to configure the database connection. The .ebextensions
folder contains configuration files that create additional resources within your Elastic Beanstalk
environment.

The configuration files require modification to work with your account. Replace the placeholder
values in the files with the appropriate IDs and create a source bundle.

To update configuration files and create a source bundle.

1. Modify the configuration files as follows.

• .ebextensions/dev.config – restricts access to your environment to your IP address to
protect it during the Drupal installation process. Replace the placeholder IP address near the
top of the file with your public IP address.

• .ebextensions/efs-create.config – creates an EFS file system and mount points in
each Availability Zone / subnet in your VPC. Identify your default VPC and subnet IDs in the
Amazon VPC console.

Tutorial - HA Drupal 1141

https://console.amazonaws.cn/vpc/home#subnets:filter=default

Amazon Elastic Beanstalk Developer Guide

2. Create a source bundle containing the files in your project folder. The following command
creates a source bundle named drupal-beanstalk.zip. It excludes files in the vendor
folder, which take up a lot of space and are not necessary for deploying your application to
Elastic Beanstalk.

~/eb-drupal$ zip ../drupal-beanstalk.zip -r * .[^.]* -x "vendor/*"

Upload the source bundle to Elastic Beanstalk to deploy Drupal to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Install Drupal

To complete your Drupal installation

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose the environment URL to open your site in a browser. You are redirected to a Drupal
installation wizard because the site has not been configured yet.

4. Perform a standard installation with the following settings for the database:

• Database name – The DB Name shown in the Amazon RDS console.

Tutorial - HA Drupal 1142

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Database username and password – The Master Username and Master Password values
you entered when creating your database.

• Advanced Options > Host – The Endpoint of the DB instance shown in the Amazon RDS
console.

Installation takes about a minute to complete.

Update Drupal configuration and remove access restrictions

The Drupal installation process created a file named settings.php in the sites/default folder
on the instance. You need this file in your source code to avoid resetting your site on subsequent
deployments, but the file currently contains secrets that you don't want to commit to source.
Connect to the application instance to retrieve information from the settings file.

To connect to your application instance with SSH

1. Open the instances page of the Amazon EC2 console.

2. Choose the application instance. It is the one named after your Elastic Beanstalk environment.

3. Choose Connect.

4. Follow the instructions to connect the instance with SSH. The command looks similar to the
following.

$ ssh -i ~/.ssh/mykey ec2-user@ec2-00-55-33-222.us-west-2.compute.amazonaws.com

Get the sync directory id from the last line of the settings file.

[ec2-user ~]$ tail -n 1 /var/app/current/sites/default/settings.php
$config_directories['sync'] = 'sites/default/files/
config_4ccfX2sPQm79p1mk5IbUq9S_FokcENO4mxyC-L18-4g_xKj_7j9ydn31kDOYOgnzMu071Tvc4Q/
sync';

The file also contains the sites current hash key, but you can ignore the current value and use your
own.

Assign the sync directory path and hash key to environment properties. The customized settings
file from the project repo reads these properties to configure the site during deployment, in
addition to the database connection properties that you set earlier.

Tutorial - HA Drupal 1143

https://console.amazonaws.cn/ec2/v2/home#Instances:sort=tag:Name

Amazon Elastic Beanstalk Developer Guide

Drupal configuration properties

• SYNC_DIR – The path to the sync directory.

• HASH_SALT – Any string value that meets environment property requirements.

To configure environment variables in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll down to Runtime environment variables.

6. Select Add environment variable.

7. For Source select Plain text.

Note

The Secrets Manager and SSM Parameter Store values in the drop-down are for
configuring environment variables as secrets to store sensitive data, such as credentials
and API keys. For more information, see Using Elastic Beanstalk with Amazon Secrets
Manager and Amazon Systems Manager Parameter Store.

8. Enter the Environment variable name and Environment variable value pairs.

9. If you need to add more variables repeat Step 6 through Step 8.

10. To save the changes choose Apply at the bottom of the page.

Finally, the sample project includes a configuration file (loadbalancer-sg.config) that creates
a security group and assigns it to the environment's load balancer, using the IP address that you
configured in dev.config to restrict HTTP access on port 80 to connections from your network.
Otherwise, an outside party could potentially connect to your site before you have installed Drupal
and configured your admin account.

Tutorial - HA Drupal 1144

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

To update Drupal's configuration and remove access restrictions

1. Delete the .ebextensions/loadbalancer-sg.config file from your project directory.

~/drupal-beanstalk$ rm .ebextensions/loadbalancer-sg.config

2. Copy the customized settings.php file into the sites folder.

~/drupal-beanstalk$ cp beanstalk-settings.php sites/default/settings.php

3. Create a source bundle.

~/eb-drupal$ zip ../drupal-beanstalk-v2.zip -r * .[^.]* -x "vendor/*"

Upload the source bundle to Elastic Beanstalk to deploy Drupal to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Configure your Auto Scaling group

Finally, configure your environment's Auto Scaling group with a higher minimum instance count.
Run at least two instances at all times to prevent the web servers in your environment from being a
single point of failure, and to allow you to deploy changes without taking your site out of service.

Tutorial - HA Drupal 1145

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

To configure your environment's Auto Scaling group for high availability

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Auto Scaling group section, set Min instances to 2.

6. To save the changes choose Apply at the bottom of the page.

To support content uploads across multiple instances, the sample project uses Amazon Elastic File
System to create a shared file system. Create a post on the site and upload content to store it on
the shared file system. View the post and refresh the page multiple times to hit both instances and
verify that the shared file system is working.

Cleanup

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

Tutorial - HA Drupal 1146

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Next steps

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

The sample application uses configuration files to configure PHP settings and create a table in the
database if it doesn't already exist. You can also use a configuration file to configure your instances'
security group settings during environment creation to avoid time-consuming configuration
updates. See Advanced environment customization with configuration files (.ebextensions) for
more information.

For development and testing, you might want to use the Elastic Beanstalk functionality for adding
a managed DB instance directly to your environment. For instructions on setting up a database
inside your environment, see Adding a database to your Elastic Beanstalk environment.

If you need a high-performance database, consider using Amazon Aurora. Amazon Aurora is a
MySQL-compatible database engine that offers commercial database features at low cost. To
connect your application to a different database, repeat the security group configuration steps and
update the RDS-related environment properties.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Tutorial - HA Drupal 1147

https://console.amazonaws.cn/rds
http://www.amazonaws.cn/rds/aurora/

Amazon Elastic Beanstalk Developer Guide

Deploying Python applications with Elastic Beanstalk

This chapter provides instructions for configuring and deploying your Python web application
to Amazon Elastic Beanstalk. Elastic Beanstalk makes it easy to deploy, manage, and scale your
Python web applications using Amazon Web Services.

You can deploy your application in just a few minutes using the Elastic Beanstalk Command Line
Interface (EB CLI) or by using the Elastic Beanstalk console. After you deploy your Elastic Beanstalk
application, you can continue to use the EB CLI to manage your application and environment, or
you can use the Elastic Beanstalk console, Amazon CLI, or the APIs.

Follow the steps in the QuickStart for Python for step-by-step instructions to create and deploy a
Python Hello World web application with the EB CLI.

Topics

• QuickStart: Deploy a Python application to Elastic Beanstalk

• Setting up your Python development environment for Elastic Beanstalk

• Using the Elastic Beanstalk Python platform

• Deploying a Flask application to Elastic Beanstalk

• Deploying a Django application to Elastic Beanstalk

• Adding an Amazon RDS DB instance to your Python Elastic Beanstalk environment

• Python tools and resources

QuickStart: Deploy a Python application to Elastic Beanstalk

This QuickStart tutorial walks you through the process of creating a Python application and
deploying it to an Amazon Elastic Beanstalk environment.

Note

Tutorial examples are intended for demonstration. Do not use the application for
production traffic.

Sections

• Your Amazon account

QuickStart for Python 1148

Amazon Elastic Beanstalk Developer Guide

• Prerequisites

• Step 1: Create a Python application

• Step 2: Run your application locally

• Step 3: Deploy your Python application with the EB CLI

• Step 4: Run your application on Elastic Beanstalk

• Step 5: Clean up

• Amazon resources for your application

• Next steps

• Deploy with the Elastic Beanstalk console

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account. Signing up
enables you to access Elastic Beanstalk and other Amazon services that you need.

If you already have an Amazon account, you can move on to Prerequisites.

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

Your Amazon account 1149

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon Elastic Beanstalk Developer Guide

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

EB CLI

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install EB CLI with setup script (recommended) and Configure the
EB CLI.

Python and Flask framework

Confirm that you have a working Python version with pip installed by running the following
commands.

~$ python3 --version
Python 3.N.N
>~$ python3 -m pip --version
pip X.Y.Z from ... (python 3.N.N)

Prerequisites 1150

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Elastic Beanstalk Developer Guide

If any of the previous commands return “Python was not found", run the following commands that
use python instead of python3. The setup of aliases and symbolic links can vary by operating
system and individual customizations, so the python3 command may not function on your
machine.

~$ python --version
Python 3.N.N
>~$ python -m pip --version
pip X.Y.Z from ... (python 3.N.N)

If you don't have Python installed on your local machine, you can download it from the Python
downloads page on the Python website. For a list of Python language versions supported by Elastic
Beanstalk, see Supported Python platforms in the Amazon Elastic Beanstalk Platforms guide.
The Python downloads website provides a link to the Python Developer's Guide, where you'll find
installation and setup instructions.

Note

The Python pip package is included by default with Python 3.4 or later.

If your output indicates that you have a supported version of Python, but not pip, see the
Installation page on the pip.pypa.io website. It provides guidance to install pip within a Python
environment that doesn’t have it.

Confirm if Flask is installed by running the following command:

~$ pip list | grep Flask

If Flask is not installed, you can install it with the following command:

~$ pip install Flask

Step 1: Create a Python application

Create a project directory.

~$ mkdir eb-python

Step 1: Create a Python application 1151

https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.python
https://pip.pypa.io/en/stable/installation/

Amazon Elastic Beanstalk Developer Guide

~$ cd eb-python

Create a sample "Hello Elastic Beanstalk!" Python application that you'll deploy using Elastic
Beanstalk.

Create a text file named application.py in the directory you just created with the following
contents.

Example ~/eb-python/application.py

from flask import Flask
application = Flask(__name__)

@application.route('/')
def hello_elastic_beanstalk():
 return 'Hello Elastic Beanstalk!'

Create a text file named requirements.txt with the following line. This file contains the
required pip packages for the application to run.

Example ~/eb-python/requirements.txt

Flask

Step 2: Run your application locally

Run the following command to run your application locally.

~/eb-python$ export FLASK_APP=application.py && flask run --port 5000

You should see output similar to the following

Serving Flask app 'application.py'
Debug mode: off
WARNING: This is a development server. Do not use it in a production deployment. Use a
 production WSGI server instead.
Running on http://127.0.0.1:5000
Press CTRL+C to quit
127.0.0.1 - - [01/Jan/1970 00:00:00] "GET / HTTP/1.1" 200 -

Step 2: Run your application locally 1152

Amazon Elastic Beanstalk Developer Guide

Navigate to http://localhost:5000 in your web browser. The web browser should display
“Hello Elastic Beanstalk!”.

Step 3: Deploy your Python application with the EB CLI

Run the following commands to create an Elastic Beanstalk environment for this application.

To create an environment and deploy your Python application

1. Initialize your EB CLI repository with the eb init command.

~/eb-python$ eb init -p python-3.9 python-tutorial --region us-west-2

This command creates an application named python-tutorial and configures your local
repository to create environments with the provided Python platform version.

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/eb-python$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a zip file for your application and starts it on port 5000.

~/eb-python$ eb create python-env

It takes about five minutes for Elastic Beanstalk to create your environment.

Step 4: Run your application on Elastic Beanstalk

When the process to create your environment completes, open your website with eb open.

Step 3: Deploy your Python application with the EB CLI 1153

Amazon Elastic Beanstalk Developer Guide

~/eb-python$ eb open

Congratulations! You've deployed a Python application with Elastic Beanstalk! This opens a browser
window using the domain name created for your application.

Step 5: Clean up

You can terminate your environment when you finish working with your application. Elastic
Beanstalk terminates all Amazon resources associated with your environment.

To terminate your Elastic Beanstalk environment with the EB CLI run the following command.

~/eb-python$ eb terminate

Amazon resources for your application

You just created a single instance application. It serves as a straightforward sample application
with a single EC2 instance, so it doesn't require load balancing or auto scaling. For single instance
applications Elastic Beanstalk creates the following Amazon resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

Step 5: Clean up 1154

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

• Domain name – A domain name that routes to your web app in the form
subdomain.region.eb.amazonaws.com.cn.

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances. You can also explore your new
environment using the Elastic Beanstalk console. For detailed steps, see Explore your environment
in the Getting started chapter of this guide.

Try more tutorials

If you'd like to try other tutorials with different example applications, see the following
tutorials:

• Deploying a Flask application to Elastic Beanstalk

• Deploying a Django application to Elastic Beanstalk

After you deploy a sample application or two and are ready to start developing and running
Python applications locally, see Setting up your Python development environment for Elastic
Beanstalk.

Deploy with the Elastic Beanstalk console

You can also use the Elastic Beanstalk console to launch the sample application. For detailed steps,
see Create an example application in the Getting started chapter of this guide.

Setting up your Python development environment for Elastic
Beanstalk

This topic provides instructions to set up a Python development environment to test your
application locally prior to deploying it to Amazon Elastic Beanstalk. It also references websites
that provide installation instructions for useful tools.

Next steps 1155

Amazon Elastic Beanstalk Developer Guide

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

Sections

• Prerequisites

• Using a virtual environment

• Configuring a Python project for Elastic Beanstalk

Prerequisites

The following list provides the common prerequisites for working with Elastic Beanstalk and your
Python applications:

• Python language – Install the version of the Python language that's included on your chosen
Elastic Beanstalk Python platform version. For a list of our supported Python language versions,
see Supported Python platforms in the Amazon Elastic Beanstalk Platforms guide. If you don't
already have Python set up on your development machine, see the Python downloads page on
the Python website.

• pip utility – The pip utility is Python's package installer. It installs and lists dependencies for
your project, so that Elastic Beanstalk knows how to set up your application's environment. For
more information about pip, see the pip page on the pip.pypa.io website.

• (Optional) The Elastic Beanstalk Command Line Interface (EB CLI) – The EB CLI can package
your application with the necessary deployment files. It can also create an Elastic Beanstalk
environment and deploy your application to it. You can also make deployments via the Elastic
Beanstalk console, so the EB CLI is not strictly necessary.

• A working SSH installation – You can connect to your running instances with the SSH protocol
to examine or debug a deployment.

• virtualenv package – This virtualenv tool creates a development and test environment
for your application. Elastic Beanstalk can replicate this environment without installing extra

Prerequisites 1156

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.python
https://www.python.org/downloads/
https://pip.pypa.io/en/stable/

Amazon Elastic Beanstalk Developer Guide

packages that aren't required by your application. For more information, see the virtualenv
website. After installing Python, you can install virtualenv package with the following
command:

$ pip install virtualenv

Using a virtual environment

Once you have the prerequisites installed, set up a virtual environment with virtualenv to install
your application's dependencies. By using a virtual environment, you can discern exactly which
packages are needed by your application so that the required packages are installed on the EC2
instances that are running your application.

To set up a virtual environment

1. Open a command-line window and type:

$ virtualenv /tmp/eb_python_app

Replace eb_python_app with a name that makes sense for your application (using your
application's name is a good idea). The virtualenv command creates a virtual environment
for you in the specified directory and prints the results of its actions:

Running virtualenv with interpreter /usr/bin/python
New python executable in /tmp/eb_python_app/bin/python3.12
Also creating executable in /tmp/eb_python_app/bin/python
Installing setuptools, pip...done.

2. Once your virtual environment is ready, start it by running the activate script located in the
environment's bin directory. For example, to start the eb_python_app environment created in
the previous step, you would type:

$ source /tmp/eb_python_app/bin/activate

The virtual environment prints its name (for example: (eb_python_app)) at the beginning of
each command prompt, reminding you that you're in a virtual Python environment.

Using a virtual environment 1157

https://virtualenv.pypa.io/en/latest/

Amazon Elastic Beanstalk Developer Guide

3. To stop using your virtual environment and go back to the system’s default Python interpreter
with all its installed libraries, run the deactivate command.

(eb_python_app) $ deactivate

Note

Once created, you can restart the virtual environment at any time by running its activate
script again.

Configuring a Python project for Elastic Beanstalk

You can use the Elastic Beanstalk CLI to prepare your Python applications for deployment with
Elastic Beanstalk.

To configure a Python application for deployment with Elastic Beanstalk

1. From within your virtual environment, return to the top of your project's directory tree
(python_eb_app), and type:

pip freeze >requirements.txt

This command copies the names and versions of the packages that are installed in your virtual
environment to requirements.txt, For example, if the PyYAML package, version 3.11 is
installed in your virtual environment, the file will contain the line:

PyYAML==3.11

This allows Elastic Beanstalk to replicate your application's Python environment using the
same packages and same versions that you used to develop and test your application.

2. Configure the EB CLI repository with the eb init command. Follow the prompts to choose a
region, platform and other options.

By default, Elastic Beanstalk looks for a file called application.py to start your application. If
this doesn't exist in the Python project that you've created, some adjustment of your application's

Configuring a Python project for Elastic Beanstalk 1158

Amazon Elastic Beanstalk Developer Guide

environment is necessary. You will also need to set environment variables so that your application's
modules can be loaded. See Using the Elastic Beanstalk Python platform for more information.

Using the Elastic Beanstalk Python platform

This topic describes how to configure, build, and run your Python applications on Elastic Beanstalk.

Amazon Elastic Beanstalk supports a number of platform branches for different versions of the
Python programming language. See Python in the Amazon Elastic Beanstalk Platforms document
for a full list.

The Python web applications can run behind a proxy server with WSGI. Elastic Beanstalk provides
Gunicorn as the default WSGI server.

You can add a Procfile to your source bundle to specify and configure the WSGI server for your
application. For details, see the section called “Procfile”.

You can use the Pipfile and Pipfile.lock files created by Pipenv to specify Python package
dependencies and other requirements. For details about specifying dependencies, see the section
called “Specifying dependencies”.

Elastic Beanstalk provides configuration options that you can use to customize the software that
runs on the EC2 instances in your Elastic Beanstalk environment. You can configure environment
variables needed by your application, enable log rotation to Amazon S3, and map folders in your
application source that contain static files to paths served by the proxy server.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

The Python platform 1159

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.python
https://gunicorn.org/

Amazon Elastic Beanstalk Developer Guide

For Python packages available from pip, you can include a requirements file in the root of
your application source code. Elastic Beanstalk installs any dependency packages specified in a
requirements file during deployment. For details, see the section called “Specifying dependencies”.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Configuring your Python environment

The Python platform settings let you fine-tune the behavior of your Amazon EC2 instances. You
can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration using the Elastic
Beanstalk console.

Use the Elastic Beanstalk console to configure Python process settings, enable Amazon X-Ray,
enable log rotation to Amazon S3, and configure variables that your application can read from the
environment.

To configure your Python environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Python settings

• Proxy server – The proxy server to use on your environment instances. By default, nginx is used.

• WSGI Path – The name of or path to your main application file. For example, application.py,
or django/wsgi.py.

• NumProcesses – The number of processes to run on each application instance.

• NumThreads – The number of threads to run in each process.

Configuring your Python environment 1160

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Amazon X-Ray settings

• X-Ray daemon – Run the Amazon X-Ray daemon to process trace data from the Amazon X-Ray
SDK for Python.

Log options

The Log Options section has two settings:

• Instance profile– Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

By default, the proxy server in a Python environment serves any files in a folder named
static at the /static path. For example, if your application source contains a file
named logo.png in a folder named static, the proxy server serves it to users at
subdomain.elasticbeanstalk.com/static/logo.png. You can configure additional
mappings as explained in this section.

Environment properties

You can use environment properties to provide information to your application and configure
environment variables. For example, you can create an environment property named
CONNECTION_STRING that specifies a connection string that your application can use to connect
to a database.

Configuring your Python environment 1161

https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-python.html
https://docs.amazonaws.cn/xray/latest/devguide/xray-sdk-python.html

Amazon Elastic Beanstalk Developer Guide

Inside the Python environment running in Elastic Beanstalk, these values are accessible using
Python's os.environ dictionary. For more information, see http://docs.python.org/library/
os.html.

You can use code that looks similar to the following to access the keys and parameters:

import os
endpoint = os.environ['API_ENDPOINT']

Environment properties can also provide information to a framework. For example, you can
create a property named DJANGO_SETTINGS_MODULE to configure Django to use a specific
settings module. Depending on the environment, the value could be development.settings,
production.settings, etc.

See Environment variables and other software settings for more information.

Python configuration namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

The Python platform defines options in the aws:elasticbeanstalk:environment:proxy,
aws:elasticbeanstalk:environment:proxy:staticfiles, and
aws:elasticbeanstalk:container:python namespaces.

The following example configuration file specifies configuration option settings to create an
environment property named DJANGO_SETTINGS_MODULE, choose the Apache proxy server,
specify two static files options that map a directory named statichtml to the path /html and
a directory named staticimages to the path /images, and specify additional settings in the
aws:elasticbeanstalk:container:python namespace. This namespace contains options
that let you specify the location of the WSGI script in your source code, and the number of threads
and processes to run in WSGI.

option_settings:
 aws:elasticbeanstalk:application:environment:
 DJANGO_SETTINGS_MODULE: production.settings
 aws:elasticbeanstalk:environment:proxy:

Python configuration namespaces 1162

http://docs.python.org/library/os.html
http://docs.python.org/library/os.html

Amazon Elastic Beanstalk Developer Guide

 ProxyServer: apache
 aws:elasticbeanstalk:environment:proxy:staticfiles:
 /html: statichtml
 /images: staticimages
 aws:elasticbeanstalk:container:python:
 WSGIPath: ebdjango.wsgi:application
 NumProcesses: 3
 NumThreads: 20

Notes

• If you're using an Amazon Linux AMI Python platform version (preceding Amazon Linux
2), replace the value for WSGIPath with ebdjango/wsgi.py. The value in the example
works with the Gunicorn WSGI server, which isn't supported on Amazon Linux AMI
platform versions.

• In addition, these older platform versions use a different namespace for configuring
static files—aws:elasticbeanstalk:container:python:staticfiles. It has the
same option names and semantics as the standard static file namespace.

Configuration files also support several keys to further modify the software on your environment's
instances. This example uses the packages key to install Memcached with yum and container
commands to run commands that configure the server during deployment:

packages:
 yum:
 libmemcached-devel: '0.31'

container_commands:
 collectstatic:
 command: "django-admin.py collectstatic --noinput"
 01syncdb:
 command: "django-admin.py syncdb --noinput"
 leader_only: true
 02migrate:
 command: "django-admin.py migrate"
 leader_only: true
 03wsgipass:
 command: 'echo "WSGIPassAuthorization On" >> ../wsgi.conf'
 99customize:

Python configuration namespaces 1163

Amazon Elastic Beanstalk Developer Guide

 command: "scripts/customize.sh"

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

The python3 executable

The version of the python3 executable available on EC2 instances in Elastic Beanstalk Python
environments will not always correspond to the same Python version used by the platform. For
example, on the Python 3.12 AL2023 platform, /usr/bin/python3 points to Python 3.9. This is
because Python 3.9 is the system Python on AL2023. For more information, see Python in AL2023
in the Amazon Linux 2023 User Guide. You can access an executable corresponding to the Python
version used by the platform at a versioned location (e.g. /usr/bin/python3.12) or in the
application virtual environment bin directory (e.g. /var/app/venv/staging-LQM1lest/bin/
python3). The platform uses the correct Python executable that corresponds to the platform
branch.

Configuring the WSGI server with a Procfile on Elastic Beanstalk

You can add a Procfile to your source bundle to specify and configure the WSGI server for your
application. You can specify custom start and run commands in the Procfile.

When you use a Procfile, it overrides aws:elasticbeanstalk:container:python
namespace options that you set using configuration files.

The following example uses a Procfile to specify uWSGI as the server and configure it.

Example Procfile

web: uwsgi --http :8000 --wsgi-file application.py --master --processes 4 --threads 2

The following example uses a Procfile to configure Gunicorn, the default WSGI server.

Example Procfile

web: gunicorn --bind :8000 --workers 3 --threads 2 project.wsgi:application

The python3 executable 1164

https://docs.amazonaws.cn/linux/al2023/ug/python.html

Amazon Elastic Beanstalk Developer Guide

Notes

• If you configure any WSGI server other than Gunicorn, be sure to also specify it as a
dependency of your application, so that it is installed on your environment instances. For
details about dependency specification, see the section called “Specifying dependencies”.

• The default port for the WSGI server is 8000. If you specify a different port number in
your Procfile command, set the PORT environment property to this port number too.

Specifying dependencies using a requirements file on Elastic Beanstalk

This topic describes how to configure you application to install other Python packages that it
requires. A typical Python application has dependencies on other third-party Python packages.
With the Elastic Beanstalk Python platform, you have multiple ways to specify Python packages
that your application depends on.

Use pip and requirements.txt

The standard tool for installing Python packages is pip. It has a feature that allows you to
specify all the packages you need (as well as their versions) in a single requirements file. For more
information about the requirements file, see Requirements File Format on the pip documentation
website.

Create a file named requirements.txt and place it in the top-level directory of your source
bundle. The following is an example requirements.txt file for Django.

Django==2.2
mysqlclient==2.0.3

In your development environment, you can use the pip freeze command to generate your
requirements file.

~/my-app$ pip freeze > requirements.txt

To ensure that your requirements file only contains packages that are actually used by your
application, use a virtual environment that only has those packages installed. Outside of a
virtual environment, the output of pip freeze will include all pip packages installed on your
development machine, including those that came with your operating system.

Specifying dependencies 1165

https://pip.pypa.io/en/latest/reference/requirements-file-format/#requirements-file-format

Amazon Elastic Beanstalk Developer Guide

Note

On Amazon Linux AMI Python platform versions, Elastic Beanstalk doesn't natively support
Pipenv or Pipfiles. If you use Pipenv to manage your application's dependencies, run the
following command to generate a requirements.txt file.

~/my-app$ pipenv lock -r > requirements.txt

To learn more, see Generating a requirements.txt in the Pipenv documentation.

Use Pipenv and Pipfile

Pipenv is a modern Python packaging tool. It combines package installation with the creation and
management of a dependency file and a virtualenv for your application. For more information, see
Pipenv: Python Dev Workflow for Humans.

Pipenv maintains two files:

• Pipfile — This file contains various types of dependencies and requirements.

• Pipfile.lock — This file contains a version snapshot that enables deterministic builds.

You can create these files on your development environment and include them in the top-level
directory of the source bundle that you deploy to Elastic Beanstalk. For more information about
these two files, see Example Pipfile and Pipfile.lock.

The following example uses Pipenv to install Django and the Django REST framework. These
commands create the files Pipfile and Pipfile.lock.

~/my-app$ pipenv install django
~/my-app$ pipenv install djangorestframework

Precedence

If you include more than one of the requirements files described in this topic, Elastic Beanstalk uses
just one of them. The following list shows the precedence, in descending order.

Specifying dependencies 1166

https://pipenv.readthedocs.io/en/latest/advanced/#generating-a-requirements-txt
https://pipenv.readthedocs.io/en/latest/
https://pipenv.pypa.io/en/latest/basics/#

Amazon Elastic Beanstalk Developer Guide

1. requirements.txt

2. Pipfile.lock

3. Pipfile

Note

Starting with the March 7, 2023 Amazon Linux 2 platform release, if you provide more than
one of these files, Elastic Beanstalk will issue a console message stating which one of the
dependency files was used during a deployment.

The following steps describe the logic that Elastic Beanstalk follows to install the dependencies
when it's deploying an instance.

• If there is a requirements.txt file, we use the command pip install -r
requirements.txt.

• Starting with the March 7, 2023 Amazon Linux 2 platform release, if there is no
requirements.txt file, but there is a Pipfile.lock, we use the command pipenv sync.
Prior to that release, we used pipenv install --ignore-pipfile.

• If there is neither a requirements.txt file nor a Pipfile.lock, but there is a Pipfile, we
use the command pipenv install --skip-lock.

• If none of the three requirements files are found, we don't install any application dependencies.

Deploying a Flask application to Elastic Beanstalk

This tutorial walks you through the process of generating a Flask application and deploying it to
an Amazon Elastic Beanstalk environment. Flask is an open source web application framework for
Python.

In this tutorial, you’ll do the following:

• Set up a Python virtual environment with Flask

• Create a Flask application

• Deploy your site with the EB CLI

• Cleanup

Tutorial - flask 1167

Amazon Elastic Beanstalk Developer Guide

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Learn how to get started with
Elastic Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

Flask requires Python 3.7 or later. In this tutorial we use Python 3.7 and the corresponding Elastic
Beanstalk platform version. Install Python by following the instructions at Setting up your Python
development environment for Elastic Beanstalk.

The Flask framework will be installed as part of the tutorial.

This tutorial also uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on
installing and configuring the EB CLI, see Install EB CLI with setup script (recommended) and
Configure the EB CLI.

Set up a Python virtual environment with Flask

Create a project directory and virtual environment for your application, and install Flask.

To set up your project environment

1. Create a project directory.

~$ mkdir eb-flask
~$ cd eb-flask

2. Create and activate a virtual environment named virt:

~/eb-flask$ virtualenv virt

Prerequisites 1168

https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://flask.pocoo.org/

Amazon Elastic Beanstalk Developer Guide

~$ source virt/bin/activate
(virt) ~/eb-flask$

You will see (virt) prepended to your command prompt, indicating that you're in a virtual
environment. Use the virtual environment for the rest of this tutorial.

3. Install Flask with pip install:

(virt)~/eb-flask$ pip install flask==2.0.3

4. View the installed libraries with pip freeze:

(virt)~/eb-flask$ pip freeze
click==8.1.1
Flask==2.0.3
itsdangerous==2.1.2
Jinja2==3.1.1
MarkupSafe==2.1.1
Werkzeug==2.1.0

This command lists all of the packages installed in your virtual environment. Because you are
in a virtual environment, globally installed packages like the EB CLI are not shown.

5. Save the output from pip freeze to a file named requirements.txt.

(virt)~/eb-flask$ pip freeze > requirements.txt

This file tells Elastic Beanstalk to install the libraries during deployment. For more information,
see Specifying dependencies using a requirements file on Elastic Beanstalk.

Create a Flask application

Next, create an application that you'll deploy using Elastic Beanstalk. We'll create a "Hello World"
RESTful web service.

Create a new text file in this directory named application.py with the following contents:

Example ~/eb-flask/application.py

from flask import Flask

Create a Flask application 1169

Amazon Elastic Beanstalk Developer Guide

print a nice greeting.
def say_hello(username = "World"):
 return '<p>Hello %s!</p>\n' % username

some bits of text for the page.
header_text = '''
 <html>\n<head> <title>EB Flask Test</title> </head>\n<body>'''
instructions = '''
 <p>Hint: This is a RESTful web service! Append a username
 to the URL (for example: <code>/Thelonious</code>) to say hello to
 someone specific.</p>\n'''
home_link = '<p>Back</p>\n'
footer_text = '</body>\n</html>'

EB looks for an 'application' callable by default.
application = Flask(__name__)

add a rule for the index page.
application.add_url_rule('/', 'index', (lambda: header_text +
 say_hello() + instructions + footer_text))

add a rule when the page is accessed with a name appended to the site
URL.
application.add_url_rule('/<username>', 'hello', (lambda username:
 header_text + say_hello(username) + home_link + footer_text))

run the app.
if __name__ == "__main__":
 # Setting debug to True enables debug output. This line should be
 # removed before deploying a production app.
 application.debug = True
 application.run()

This example prints a customized greeting that varies based on the path used to access the service.

Note

By adding application.debug = True before running the application, debug output
is enabled in case something goes wrong. It's a good practice for development, but you
should remove debug statements in production code, since debug output can reveal
internal aspects of your application.

Create a Flask application 1170

Amazon Elastic Beanstalk Developer Guide

Using application.py as the filename and providing a callable application object (the Flask
object, in this case) allows Elastic Beanstalk to easily find your application's code.

Run application.py with Python:

(virt) ~/eb-flask$ python application.py
 * Serving Flask app "application" (lazy loading)
 * Environment: production
 WARNING: Do not use the development server in a production environment.
 Use a production WSGI server instead.
 * Debug mode: on
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 313-155-123

Open http://127.0.0.1:5000/ in your web browser. You should see the application running,
showing the index page:

Check the server log to see the output from your request. You can stop the web server and return
to your virtual environment by typing Ctrl+C.

If you got debug output instead, fix the errors and make sure the application is running locally
before configuring it for Elastic Beanstalk.

Deploy your site with the EB CLI

You've added everything you need to deploy your application on Elastic Beanstalk. Your project
directory should now look like this:

Deploy your site with the EB CLI 1171

Amazon Elastic Beanstalk Developer Guide

~/eb-flask/
|-- virt
|-- application.py
`-- requirements.txt

The virt folder, however, is not required for the application to run on Elastic Beanstalk. When you
deploy, Elastic Beanstalk creates a new virtual environment on the server instances and installs the
libraries listed in requirements.txt. To minimize the size of the source bundle that you upload
during deployment, add an .ebignore file that tells the EB CLI to leave out the virt folder.

Example ~/eb-flask/.ebignore

virt

Next, you'll create your application environment and deploy your configured application with
Elastic Beanstalk.

To create an environment and deploy your Flask application

1. Initialize your EB CLI repository with the eb init command:

~/eb-flask$ eb init -p python-3.7 flask-tutorial --region us-west-2
Application flask-tutorial has been created.

This command creates a new application named flask-tutorial and configures your local
repository to create environments with the latest Python 3.7 platform version.

2. (optional) Run eb init again to configure a default keypair so that you can connect to the EC2
instance running your application with SSH:

~/eb-flask$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create a new one. If you
don't see the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create:

Deploy your site with the EB CLI 1172

Amazon Elastic Beanstalk Developer Guide

~/eb-flask$ eb create flask-env

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Deploy your site with the EB CLI 1173

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for
increased security. This practice defends your domain against cross-site request forgery
attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

When the environment creation process completes, open your web site with eb open:

~/eb-flask$ eb open

This will open a browser window using the domain name created for your application. You should
see the same Flask website that you created and tested locally.

Deploy your site with the EB CLI 1174

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

If you don't see your application running, or get an error message, see Troubleshooting
Deployments for help with how to determine the cause of the error.

If you do see your application running, then congratulations, you've deployed your first Flask
application with Elastic Beanstalk!

Cleanup

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

Or, with the EB CLI:

~/eb-flask$ eb terminate flask-env

Next steps

For more information about Flask, visit flask.pocoo.org.

If you'd like to try out another Python web framework, check out Deploying a Django application to
Elastic Beanstalk.

Cleanup 1175

https://console.amazonaws.cn/elasticbeanstalk
http://flask.pocoo.org/

Amazon Elastic Beanstalk Developer Guide

Deploying a Django application to Elastic Beanstalk

This tutorial walks through the deployment of a default, autogenerated Django website to an
Amazon Elastic Beanstalk environment running Python. This tutorial shows you how to host a
Python web app in the cloud by using an Elastic Beanstalk environment.

In this tutorial, you’ll do the following:

• Set up a Python virtual environment and install Django

• Create a Django project

• Configure your Django application for Elastic Beanstalk

• Deploy your site with the EB CLI

• Update your application

• Clean up

Prerequisites

To follow this tutorial, you should have all of the Common Prerequisites for Python installed,
including the following packages:

• Python 3.7 or later

• pip

• virtualenv

• awsebcli

The Django framework is installed as part of the tutorial.

Note

Creating environments with the EB CLI requires a service role. You can create a service role
by creating an environment in the Elastic Beanstalk console. If you don't have a service role,
the EB CLI attempts to create one when you run eb create.

Tutorial - Django 1176

https://www.djangoproject.com/
https://www.djangoproject.com/

Amazon Elastic Beanstalk Developer Guide

Set up a Python virtual environment and install Django

Create a virtual environment with virtualenv and use it to install Django and its dependencies.
By using a virtual environment, you can know exactly which packages your application needs,
so that the required packages are installed on the Amazon EC2 instances that are running your
application.

The following steps demonstrate the commands you must enter for Unix-based systems and
Windows, shown on separate tabs.

To set up your virtual environment

1. Create a virtual environment named eb-virt.

Unix-based systems

~$ virtualenv ~/eb-virt

Windows

C:\> virtualenv %HOMEPATH%\eb-virt

2. Activate the virtual environment.

Unix-based systems

~$ source ~/eb-virt/bin/activate
(eb-virt) ~$

Windows

C:\>%HOMEPATH%\eb-virt\Scripts\activate
(eb-virt) C:\>

You'll see (eb-virt) prepended to your command prompt, indicating that you're in a virtual
environment.

Set up a Python virtual environment and install Django 1177

Amazon Elastic Beanstalk Developer Guide

Note

The rest of these instructions show the Linux command prompt in your home directory
~$. On Windows this is C:\Users\USERNAME>, where USERNAME is your Windows
login name.

3. Use pip to install Django.

(eb-virt)~$ pip install django==2.2

Note

The Django version you install must be compatible with the Python version on the
Elastic Beanstalk Python configuration that you choose for deploying your application.
For information about deployment, see ??? in this topic.
For more information about current Python platform versions, see Python in the
Amazon Elastic Beanstalk Platforms document.
For Django version compatibility with Python, see What Python version can I use with
Django?

4. To verify that Django is installed, enter the following.

(eb-virt)~$ pip freeze
Django==2.2
...

This command lists all of the packages installed in your virtual environment. Later, you use the
output of this command to configure your project for use with Elastic Beanstalk.

Create a Django project

Now you are ready to create a Django project and run it on your machine, using the virtual
environment.

Create a Django project 1178

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.python
https://docs.djangoproject.com/en/3.1/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/3.1/faq/install/#what-python-version-can-i-use-with-django

Amazon Elastic Beanstalk Developer Guide

Note

This tutorial uses SQLite, which is a database engine included in Python. The database is
deployed with your project files. For production environments, we recommend that you
use Amazon Relational Database Service (Amazon RDS), and that you separate it from
your environment. For more information, see Adding an Amazon RDS DB instance to your
Python Elastic Beanstalk environment.

To generate a Django application

1. Activate your virtual environment.

Unix-based systems

~$ source ~/eb-virt/bin/activate
(eb-virt) ~$

Windows

C:\>%HOMEPATH%\eb-virt\Scripts\activate
(eb-virt) C:\>

You'll see the (eb-virt) prefix prepended to your command prompt, indicating that you're in
a virtual environment.

Note

The rest of these instructions show the Linux command prompt ~$ in your home
directory and the Linux home directory ~/. On Windows these are C:\Users
\USERNAME>, where USERNAME is your Windows login name.

2. Use the django-admin startproject command to create a Django project named
ebdjango.

(eb-virt)~$ django-admin startproject ebdjango

Create a Django project 1179

Amazon Elastic Beanstalk Developer Guide

This command creates a standard Django site named ebdjango with the following directory
structure.

~/ebdjango
 |-- ebdjango
 | |-- __init__.py
 | |-- settings.py
 | |-- urls.py
 | `-- wsgi.py
 `-- manage.py

3. Run your Django site locally with manage.py runserver.

(eb-virt) ~$ cd ebdjango

(eb-virt) ~/ebdjango$ python manage.py runserver

4. In a web browser, open http://127.0.0.1:8000/ to view the site.

5. Check the server log to see the output from your request. To stop the web server and return to
your virtual environment, press Ctrl+C.

Django version 2.2, using settings 'ebdjango.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
[07/Sep/2018 20:14:09] "GET / HTTP/1.1" 200 16348
Ctrl+C

Configure your Django application for Elastic Beanstalk

Now that you have a Django-powered site on your local machine, you can configure it for
deployment with Elastic Beanstalk.

By default, Elastic Beanstalk looks for a file named application.py to start your application.
Because this doesn't exist in the Django project that you've created, you need to make some
adjustments to your application's environment. You also must set environment variables so that
your application's modules can be loaded.

Configure your Django application for Elastic Beanstalk 1180

Amazon Elastic Beanstalk Developer Guide

To configure your site for Elastic Beanstalk

1. Activate your virtual environment.

Unix-based systems

~/ebdjango$ source ~/eb-virt/bin/activate

Windows

C:\Users\USERNAME\ebdjango>%HOMEPATH%\eb-virt\Scripts\activate

2. Run pip freeze, and then save the output to a file named requirements.txt.

(eb-virt) ~/ebdjango$ pip freeze > requirements.txt

Elastic Beanstalk uses requirements.txt to determine which package to install on the EC2
instances that run your application.

3. Create a directory named .ebextensions.

(eb-virt) ~/ebdjango$ mkdir .ebextensions

4. In the .ebextensions directory, add a configuration file named django.config with the
following text.

Example ~/ebdjango/.ebextensions/django.config

option_settings:
 aws:elasticbeanstalk:container:python:
 WSGIPath: ebdjango.wsgi:application

This setting, WSGIPath, specifies the location of the WSGI script that Elastic Beanstalk uses to
start your application.

Note

If you're using an Amazon Linux AMI Python platform version (preceding Amazon
Linux 2), replace the value for WSGIPath with ebdjango/wsgi.py. The value in the

Configure your Django application for Elastic Beanstalk 1181

Amazon Elastic Beanstalk Developer Guide

example works with the Gunicorn WSGI server, which isn't supported on Amazon Linux
AMI platform versions.

5. Deactivate your virtual environment with the deactivate command.

(eb-virt) ~/ebdjango$ deactivate

Reactivate your virtual environment whenever you need to add packages to your application
or run your application locally.

Deploy your site with the EB CLI

You've added everything you need to deploy your application on Elastic Beanstalk. Your project
directory should now look like this.

~/ebdjango/
|-- .ebextensions
| `-- django.config
|-- ebdjango
| |-- __init__.py
| |-- settings.py
| |-- urls.py
| `-- wsgi.py
|-- db.sqlite3
|-- manage.py
`-- requirements.txt

Next, you'll create your application environment and deploy your configured application with
Elastic Beanstalk.

Immediately after deployment, you'll edit Django's configuration to add the domain name that
Elastic Beanstalk assigned to your application to Django's ALLOWED_HOSTS. Then you'll redeploy
your application. This is a Django security requirement, designed to prevent HTTP Host header
attacks. For more information, see Host header validation.

Deploy your site with the EB CLI 1182

https://docs.djangoproject.com/en/2.2/topics/security/#host-headers-virtual-hosting

Amazon Elastic Beanstalk Developer Guide

To create an environment and deploy your Django application

Note

This tutorial uses the EB CLI as a deployment mechanism, but you can also use the Elastic
Beanstalk console to deploy a .zip file containing your project's contents.

1. Initialize your EB CLI repository with the eb init command.

~/ebdjango$ eb init -p python-3.7 django-tutorial
Application django-tutorial has been created.

This command creates an application named django-tutorial. It also configures your local
repository to create environments with the latest Python 3.7 platform version.

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/ebdjango$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create.

~/ebdjango$ eb create django-env

Note

If you see a "service role required" error message, run eb create interactively
(without specifying an environment name) and the EB CLI creates the role for you.

Deploy your site with the EB CLI 1183

Amazon Elastic Beanstalk Developer Guide

This command creates a load-balanced Elastic Beanstalk environment named django-env.
Creating an environment takes about 5 minutes. As Elastic Beanstalk creates the resources
needed to run your application, it outputs informational messages that the EB CLI relays to
your terminal.

4. When the environment creation process completes, find the domain name of your new
environment by running eb status.

~/ebdjango$ eb status
Environment details for: django-env
 Application name: django-tutorial
 ...
 CNAME: eb-django-app-dev.elasticbeanstalk.com
 ...

Your environment's domain name is the value of the CNAME property.

5. Open the settings.py file in the ebdjango directory. Locate the ALLOWED_HOSTS setting,
and then add your application's domain name that you found in the previous step to the
setting's value. If you can't find this setting in the file, add it to a new line.

...
ALLOWED_HOSTS = ['eb-django-app-dev.elasticbeanstalk.com']

6. Save the file, and then deploy your application by running eb deploy. When you run eb
deploy, the EB CLI bundles up the contents of your project directory and deploys it to your
environment.

~/ebdjango$ eb deploy

Note

If you are using Git with your project, see Using the EB CLI with Git.

7. When the environment update process completes, open your website with eb open.

~/ebdjango$ eb open

Deploy your site with the EB CLI 1184

Amazon Elastic Beanstalk Developer Guide

This opens a browser window using the domain name created for your application. You should
see the same Django website that you created and tested locally.

If you don't see your application running, or get an error message, see Troubleshooting
deployments for help with how to determine the cause of the error.

If you do see your application running, then congratulations, you've deployed your first Django
application with Elastic Beanstalk!

Update your application

Now that you have a running application on Elastic Beanstalk, you can update and redeploy your
application or its configuration, and Elastic Beanstalk does the work of updating your instances and
starting your new application version.

For this example, we'll enable Django's admin console and configure a few other settings.

Modify your site settings

By default, your Django website uses the UTC time zone to display time. You can change this by
specifying a time zone in settings.py.

To change your site's time zone

1. Modify the TIME_ZONE setting in settings.py.

Example ~/ebdjango/ebdjango/settings.py

...
Internationalization
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'US/Pacific'
USE_I18N = True
USE_L10N = True
USE_TZ = True

For a list of time zones, visit this page.

2. Deploy the application to your Elastic Beanstalk environment.

Update your application 1185

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Amazon Elastic Beanstalk Developer Guide

~/ebdjango/$ eb deploy

Create a site administrator

You can create a site administrator for your Django application to access the admin console directly
from the website. Administrator login details are stored securely in the local database image
included in the default project that Django generates.

To create a site administrator

1. Initialize your Django application's local database.

(eb-virt) ~/ebdjango$ python manage.py migrate
Operations to perform:
 Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying admin.0003_logentry_add_action_flag_choices... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying auth.0008_alter_user_username_max_length... OK
 Applying auth.0009_alter_user_last_name_max_length... OK
 Applying sessions.0001_initial... OK

2. Run manage.py createsuperuser to create an administrator.

(eb-virt) ~/ebdjango$ python manage.py createsuperuser
Username: admin
Email address: me@mydomain.com
Password: ********
Password (again): ********
Superuser created successfully.

Update your application 1186

Amazon Elastic Beanstalk Developer Guide

3. To tell Django where to store static files, define STATIC_ROOT in settings.py.

Example ~/ebdjango/ebdjango/settings.py

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/2.2/howto/static-files/
STATIC_URL = '/static/'
STATIC_ROOT = 'static'

4. Run manage.py collectstatic to populate the static directory with static assets
(JavaScript, CSS, and images) for the admin site.

(eb-virt) ~/ebdjango$ python manage.py collectstatic
119 static files copied to ~/ebdjango/static

5. Deploy your application.

~/ebdjango$ eb deploy

6. View the admin console by opening the site in your browser, appending /admin/ to the site
URL, such as the following.

http://djang-env.p33kq46sfh.us-west-2.elasticbeanstalk.com/admin/

7. Log in with the username and password that you configured in step 2.

Update your application 1187

Amazon Elastic Beanstalk Developer Guide

You can use a similar procedure of local updating/testing followed by eb deploy. Elastic Beanstalk
does the work of updating your live servers, so you can focus on application development instead
of server administration!

Add a database migration configuration file

You can add commands to your .ebextensions script that are run when your site is updated. This
enables you to automatically generate database migrations.

To add a migrate step when your application is deployed

1. Create a configuration file named db-migrate.config with the following content.

Example ~/ebdjango/.ebextensions/db-migrate.config

container_commands:
 01_migrate:
 command: "source /var/app/venv/*/bin/activate && python3 manage.py migrate"
 leader_only: true
option_settings:
 aws:elasticbeanstalk:application:environment:
 DJANGO_SETTINGS_MODULE: ebdjango.settings

This configuration file activates the server's virtual environment and runs the manage.py
migrate command during the deployment process, before starting your application. Because
it runs before the application starts, you must also configure the DJANGO_SETTINGS_MODULE

Update your application 1188

Amazon Elastic Beanstalk Developer Guide

environment variable explicitly (usually wsgi.py takes care of this for you during startup).
Specifying leader_only: true in the command ensures that it is run only once when you're
deploying to multiple instances.

2. Deploy your application.

~/ebdjango$ eb deploy

Clean up

To save instance hours and other Amazon resources between development sessions, terminate your
Elastic Beanstalk environment with eb terminate.

~/ebdjango$ eb terminate django-env

This command terminates the environment and all of the Amazon resources that run within it.
It doesn't delete the application, however, so you can always create more environments with the
same configuration by running eb create again.

If you're done with the sample application, you can also remove the project folder and virtual
environment.

~$ rm -rf ~/eb-virt
~$ rm -rf ~/ebdjango

Next steps

For more information about Django, including an in-depth tutorial, see the official documentation.

If you want to try out another Python web framework, check out Deploying a Flask application to
Elastic Beanstalk.

Adding an Amazon RDS DB instance to your Python Elastic
Beanstalk environment

This topic provides instructions to create an Amazon RDS using the Elastic Beanstalk console.
You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data

Clean up 1189

https://docs.djangoproject.com/en/2.2/

Amazon Elastic Beanstalk Developer Guide

gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally by
another service. In these instructions the database is coupled to your environment and managed by
Elastic Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk,
see Adding a database to your Elastic Beanstalk environment.

Sections

• Adding a DB instance to your environment

• Downloading a driver

• Connecting to a database

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

Adding a DB instance to your environment 1190

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading a driver

Add the database driver to your project's requirements file.

Example requirements.txt – Django with MySQL

Django==2.2
mysqlclient==2.0.3

Common driver packages for Python

• MySQL – mysqlclient

• PostgreSQL – psycopg2

• Oracle – cx_Oracle

• SQL Server – adodbapi

For more information see Python DatabaseInterfaces and Django 2.2 - supported databases.

Downloading a driver 1191

https://wiki.python.org/moin/DatabaseInterfaces
https://docs.djangoproject.com/en/2.2/ref/databases

Amazon Elastic Beanstalk Developer Guide

Connecting to a database

Elastic Beanstalk provides connection information for attached DB instances in environment
properties. Use os.environ['VARIABLE'] to read the properties and configure a database
connection.

Example Django settings file – DATABASES dictionary

import os

if 'RDS_HOSTNAME' in os.environ:
 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': os.environ['RDS_DB_NAME'],
 'USER': os.environ['RDS_USERNAME'],
 'PASSWORD': os.environ['RDS_PASSWORD'],
 'HOST': os.environ['RDS_HOSTNAME'],
 'PORT': os.environ['RDS_PORT'],
 }
 }

Python tools and resources

There are several places you can go to get additional help when developing your Python
applications:

Resource Description

Amazon SDK for Python (Boto3) on
GitHub

Install Boto3 sourced from GitHub.

Amazon SDK for Python (Boto3)
homepage

The Amazon SDK for Python (Boto3) homepage.

Python Developer Center One-stop shop for sample code, documentation, tools,
and additional resources.

Connecting to a database 1192

https://github.com/boto/boto3
https://github.com/boto/boto3
https://www.amazonaws.cn/sdk-for-python/
https://www.amazonaws.cn/sdk-for-python/
http://www.amazonaws.cn/python/

Amazon Elastic Beanstalk Developer Guide

Deploying Ruby applications with Elastic Beanstalk

This chapter provides instructions for configuring and deploying your Ruby web application to
Amazon Elastic Beanstalk. Elastic Beanstalk makes it easy to deploy, manage, and scale your Ruby
web applications using Amazon Web Services.

You can deploy your application in just a few minutes using the Elastic Beanstalk Command Line
Interface (EB CLI) or by using the Elastic Beanstalk console. After you deploy your Elastic Beanstalk
application, you can continue to use the EB CLI to manage your application and environment, or
you can use the Elastic Beanstalk console, Amazon CLI, or the APIs.

This chapter also provides step-by-step instructions for deploying a sample application to Elastic
Beanstalk using the EB CLI, and then updating the application to use the Rails and Sinatra web
application frameworks.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Topics

• Setting up your Ruby development environment for Elastic Beanstalk

• Using the Elastic Beanstalk Ruby platform

• Deploying a rails application to Elastic Beanstalk

• Deploying a sinatra application to Elastic Beanstalk

• Adding an Amazon RDS DB instance to your Ruby Elastic Beanstalk environment

Setting up your Ruby development environment for Elastic
Beanstalk

This chapter provides instructions to set up a Ruby development environment to test your
application locally prior to deploying it to Amazon Elastic Beanstalk. It also references websites
that provide installation instructions for useful tools.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

Development environment 1193

http://rubyonrails.org/
http://www.sinatrarb.com/

Amazon Elastic Beanstalk Developer Guide

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

Sections

• Installing Ruby

• Installing the Amazon SDK for Ruby

• Installing an IDE or text editor

Installing Ruby

Install GCC if you don't have a C compiler. On Ubuntu, use apt.

~$ sudo apt install gcc

On Amazon Linux, use yum.

~$ sudo yum install gcc

Install RVM to manage Ruby language installations on your machine. Use the commands at rvm.io
to get the project keys and run the installation script.

~$ gpg2 --recv-keys key1 key2
~$ curl -sSL https://get.rvm.io | bash -s stable

This script installs RVM in a folder named .rvm in your user directory, and modifies your shell
profile to load a setup script whenever you open a new terminal. Load the script manually to get
started.

~$ source ~/.rvm/scripts/rvm

Use rvm get head to get the latest version.

~$ rvm get head

Installing Ruby 1194

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://rvm.io/

Amazon Elastic Beanstalk Developer Guide

View the available versions of Ruby.

~$ rvm list known

Check Ruby in the Amazon Elastic Beanstalk Platforms document to find the latest version of Ruby
available on an Elastic Beanstalk platform. Install that version.

~$ rvm install 3.2

Test your Ruby installation.

~$ ruby --version

Installing the Amazon SDK for Ruby

If you need to manage Amazon resources from within your application, install the Amazon SDK for
Ruby. For example, with the SDK for Ruby, you can use Amazon DynamoDB (DynamoDB) to store
user and session information without creating a relational database.

Install the SDK for Ruby and its dependencies with the gem command.

$ gem install aws-sdk

Visit the Amazon SDK for Ruby homepage for more information and installation instructions.

Installing an IDE or text editor

Integrated development environments (IDEs) provide a wide range of features that facilitate
application development. If you haven't used an IDE for Ruby development, try Aptana and
RubyMine and see which works best for you.

• Install Aptana

• RubyMine

Installing the Amazon SDK for Ruby 1195

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.ruby
http://www.amazonaws.cn/sdk-for-ruby/
https://github.com/aptana/studio3
https://www.jetbrains.com/ruby/

Amazon Elastic Beanstalk Developer Guide

Note

An IDE might add files to your project folder that you might not want to commit to source
control. To prevent committing these files to source control, use .gitignore or your
source control tool's equivalent.

If you just want to begin coding and don't need all of the features of an IDE, consider installing
Sublime Text.

Using the Elastic Beanstalk Ruby platform

This topic describes how to configure, build, and run your Ruby applications on Elastic Beanstalk.

Amazon Elastic Beanstalk supports a number of platform branches for different versions of the
Ruby programming language. See Ruby in the Amazon Elastic Beanstalk Platforms document for a
full list.

The Ruby web application can run behind an NGINX proxy server under a Puma application server.
If you use RubyGems, you can include a Gemfile in your source bundle to install packages during
deployment.

Application server configuration

Elastic Beanstalk installs the Puma application server based on the Ruby platform branch that you
choose when you create your environment. For more information about the components provided
with the Ruby platform versions, see Supported Platforms in the Amazon Elastic Beanstalk
Platforms guide.

You can configure your application with your own provided Puma server. This provides the option
to use a version of Puma other than the one pre-installed with the Ruby platform branch. You can
also configure your application to use a different application server, such as Passenger. To do so,
you must include and customize a Gemfile in your deployment. You're also required to configure
a Procfile to start the application server. For more information see Configuring the application
process with a Procfile.

Other configuration options

Elastic Beanstalk provides configuration options that you can use to customize the software that
runs on the Amazon Elastic Compute Cloud (Amazon EC2) instances in your Elastic Beanstalk

The Ruby platform 1196

http://www.sublimetext.com/
http://www.sublimetext.com/
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.ruby
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.ruby
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ruby-platform-procfile.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ruby-platform-procfile.html

Amazon Elastic Beanstalk Developer Guide

environment. You can configure environment variables needed by your application, enable log
rotation to Amazon S3, and map folders in your application source that contain static files to paths
served by the proxy server. The platform also predefines some common environment variables
related to Rails and Rack for ease of discovery and use.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Configuring your Ruby environment

You can use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure
variables that your application can read from the environment.

To access the software configuration settings for your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Configuring your Ruby environment 1197

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Log options

The Log options section has two settings:

• Instance profile– Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

By default, the proxy server in a Ruby environment is configured to serve static files as follows:

• Files in the public folder are served from the /public path and the domain root (/ path).

• Files in the public/assets subfolder are served from the /assets path.

The following examples illustrate how the default configuration works:

• If your application source contains a file named logo.png in a folder named public, the proxy
server serves it to users from subdomain.elasticbeanstalk.com/public/logo.png and
subdomain.elasticbeanstalk.com/logo.png.

• If your application source contains a file named logo.png in a folder named assets inside the
public folder, the proxy server serves it from subdomain.elasticbeanstalk.com/assets/
logo.png.

You can configure additional mappings for static files. For more information, see Ruby
configuration namespaces later in this topic.

Configuring your Ruby environment 1198

Amazon Elastic Beanstalk Developer Guide

Note

For platform versions prior to Ruby 2.7 AL2 version 3.3.7, the default Elastic Beanstalk
nginx proxy server configuration doesn't support serving static files from the domain root
(subdomain.elasticbeanstalk.com/). This platform version was released on October
21, 2021. For more information see New platform versions - Ruby in the Amazon Elastic
Beanstalk Release Notes.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

The Ruby platform defines the following properties for environment configuration:

• BUNDLE_WITHOUT – A colon-separated list of groups to ignore when installing dependencies
from a Gemfile.

• BUNDLER_DEPLOYMENT_MODE – Set to true (the default) to install dependencies in
deployment mode using Bundler. Set to false to run bundle install in development mode.

Note

This environment property isn't defined on Amazon Linux AMI Ruby platform branches
(preceding Amazon Linux 2).

• RAILS_SKIP_ASSET_COMPILATION – Set to true to skip running rake assets:precompile
during deployment.

• RAILS_SKIP_MIGRATIONS – Set to true to skip running rake db:migrate during
deployment.

• RACK_ENV – Specify the environment stage for Rack. For example, development, production,
or test.

Inside the Ruby environment running in Elastic Beanstalk, environment variables are accessible
using the ENV object. For example, you could read a property named API_ENDPOINT to a variable
with the following code:

Configuring your Ruby environment 1199

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2021-10-21-linux.html#release-2021-10-21-linux.platforms.ruby
http://bundler.io/bundle_install.html
http://bundler.io/v1.15/man/gemfile.5.html
https://bundler.io/man/bundle-install.1.html#DEPLOYMENT-MODE
http://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets
http://guides.rubyonrails.org/active_record_migrations.html#running-migrations

Amazon Elastic Beanstalk Developer Guide

endpoint = ENV['API_ENDPOINT']

See Environment variables and other software settings for more information.

Ruby configuration namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

You can use the aws:elasticbeanstalk:environment:proxy:staticfiles namespace
to configure the environment proxy to serve static files. You define mappings of virtual paths to
application directories.

The Ruby platform doesn't define any platform-specific namespaces. Instead, it defines
environment properties for common Rails and Rack options.

The following configuration file specifies a static files option that maps a directory named
staticimages to the path /images, sets each of the platform defined environment properties,
and sets an additional environment property named LOGGING.

Example .ebextensions/ruby-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:staticfiles:
 /images: staticimages
 aws:elasticbeanstalk:application:environment:
 BUNDLE_WITHOUT: test
 BUNDLER_DEPLOYMENT_MODE: true
 RACK_ENV: development
 RAILS_SKIP_ASSET_COMPILATION: true
 RAILS_SKIP_MIGRATIONS: true
 LOGGING: debug

Note

The BUNDLER_DEPLOYMENT_MODE environment property and the
aws:elasticbeanstalk:environment:proxy:staticfiles namespace aren't
defined on Amazon Linux AMI Ruby platform branches (preceding Amazon Linux 2).

Ruby configuration namespaces 1200

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the Amazon CLI. See Configuration options for more information.

Installing packages with a Gemfile on Elastic Beanstalk

To use RubyGems to install packages that your application requires, include a Gemfile file in the
root of your project source.

Example Gemfile

source "https://rubygems.org"
gem 'sinatra'
gem 'json'
gem 'rack-parser'

When a Gemfile file is present, Elastic Beanstalk runs bundle install to install dependencies.
For more information, see the Gemfiles and Bundle pages on the Bundler.io website.

Note

You can use a different version of Puma besides the default that's pre-installed with the
Ruby platform. To do so, include an entry in a Gemfile that specifies the version. You
can also specify a different application server, such as Passenger, by using a customized
Gemfile.
For both of these cases you're required to configure a Procfile to start the application
server.
For more information see Configuring the application process with a Procfile.

Configuring the application process with a Procfile on Elastic Beanstalk.

To specify the command that starts your Ruby application, include a file called Procfile at the
root of your source bundle.

Note

Elastic Beanstalk doesn't support this feature on Amazon Linux AMI Ruby platform
branches (preceding Amazon Linux 2). Platform branches with names containing with Puma

Gemfile 1201

https://bundler.io/man/gemfile.5.html
https://bundler.io/man/bundle.1.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ruby-platform-procfile.html

Amazon Elastic Beanstalk Developer Guide

or with Passenger, regardless of their Ruby versions, precede Amazon Linux 2 and don't
support the Procfile feature.

For details about writing and using a Procfile, see Buildfile and Procfile.

When you don't provide a Procfile, Elastic Beanstalk generates a default Procfile. If your
Gemfile includes Puma, Elastic Beanstalk assumes you want to use your provided version of Puma
and generates the following default Procfile.

web: bundle exec puma -C /opt/elasticbeanstalk/config/private/pumaconf.rb

If your Gemfile does not include Puma, Elastic Beanstalk assumes you're using the pre-installed
Puma application server and generates the following default Procfile. On Amazon Linux 2 Ruby
platform branches, Elastic Beanstalk always generates the following default Procfile if you don't
provide a Procfile.

web: puma -C /opt/elasticbeanstalk/config/private/pumaconf.rb

Note

On October 10, 2024, the last Ruby Amazon Linux 2 platform branches were retired.
All currently supported Ruby platform branches are based on Amazon Linux 2023. For
information about migration, see Migration from Amazon Linux 2 to Amazon Linux 2023.

If you want to use the Passenger application server, use the following example files to configure
your Ruby environment to install and use Passenger.

1. Use this example file to install Passenger.

Example Gemfile

source 'https://rubygems.org'
gem 'passenger'

2. Use this example file to instruct Elastic Beanstalk to start Passenger.

Procfile 1202

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2024-10-10-al2-10-2024-retire.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.ruby

Amazon Elastic Beanstalk Developer Guide

Example Procfile

web: bundle exec passenger start /var/app/current --socket /var/run/puma/my_app.sock

Note

You don't have to change anything in the configuration of the nginx proxy server to
use Passenger. To use other application servers, you might need to customize the nginx
configuration to properly forward requests to your application.

Deploying a rails application to Elastic Beanstalk

Rails is an open source, model-view-controller (MVC) framework for Ruby. This tutorial walks
you through the process of generating a Rails application and deploying it to an Amazon Elastic
Beanstalk environment.

Sections

• Prerequisites

• Basic Elastic Beanstalk knowledge

• Launch an Elastic Beanstalk environment

• Install rails and generate a website

• Configure rails settings

• Deploy your application

• Cleanup

• Next steps

Prerequisites

Basic Elastic Beanstalk knowledge

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Learn how to get started with
Elastic Beanstalk to launch your first Elastic Beanstalk environment.

Tutorial - rails 1203

Amazon Elastic Beanstalk Developer Guide

Command line

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

Rails dependencies

The Rails framework 6.1.4.1 has the following dependencies. Be sure you have all of them installed.

• Ruby 2.5.0 or newer – For installation instructions, see Setting up your Ruby development
environment for Elastic Beanstalk.

In this tutorial we use Ruby 3.0.2 and the corresponding Elastic Beanstalk platform version.

• Node.js – For installation instructions, see Installing Node.js via package manager.

• Yarn – For installation instructions, see Installation on the Yarn website.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the Ruby
platform and accept the default settings and sample code.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

Launch an Elastic Beanstalk environment 1204

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://nodejs.org/en/download/package-manager/
https://yarnpkg.com/lang/en/docs/install/
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Launch an Elastic Beanstalk environment 1205

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for
increased security. This practice defends your domain against cross-site request forgery
attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Install rails and generate a website

Install Rails and its dependencies with the gem command.

~$ gem install rails
Fetching: concurrent-ruby-1.1.9.gem
Successfully installed concurrent-ruby-1.1.9
Fetching: rack-2.2.3.gem
Successfully installed rack-2.2.3
...

Test your Rails installation.

~$ rails --version
Rails 6.1.4.1

Use rails new with the name of the application to create a new Rails project.

Install rails and generate a website 1206

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

~$ rails new ~/eb-rails

Rails creates a directory with the name specified, generates all of the files needed to run a sample
project locally, and then runs bundler to install all of the dependencies (Gems) defined in the
project's Gemfile.

Note

This process installs the latest Puma version for the project. This version might be different
from the version that Elastic Beanstalk provides on the Ruby platform version of your
environment. To see the Puma versions provided by Elastic Beanstalk, see Ruby Platform
History in the Amazon Elastic Beanstalk Platforms guide. For more information about the
latest Puma version, see the Puma.io website. If there’s a mismatch between the two Puma
versions, use one of the following options:

• Use the Puma version installed by the prior rails new command. In this case you must
add a Procfile for the platform to use your own provided Puma server version. For
more information, see Configuring the application process with a Procfile on Elastic
Beanstalk..

• Update the Puma version to be consistent with the version pre-installed on your
environment’s Ruby platform version. To do so, modify the Puma version in the Gemfile
located in the root of your project source directory. Then run bundle update. For more
information see the bundle update page on the Bundler.io website.

Test your Rails installation by running the default project locally.

~$ cd eb-rails
~/eb-rails$ rails server
=> Booting Puma
=> Rails 6.1.4.1 application starting in development
=> Run `bin/rails server --help` for more startup options
Puma starting in single mode...
* Puma version: 5.5.2 (ruby 3.0.2-p107) ("Zawgyi")
* Min threads: 5
* Max threads: 5
* Environment: development
* PID: 77857
* Listening on http://127.0.0.1:3000

Install rails and generate a website 1207

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-ruby.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platform-history-ruby.html
http://puma.io
https://bundler.io/man/bundle-update.1.html

Amazon Elastic Beanstalk Developer Guide

* Listening on http://[::1]:3000
Use Ctrl-C to stop
...

Open http://localhost:3000 in a web browser to see the default project in action.

This page is only visible in development mode. Add some content to the front page of the
application to support production deployment to Elastic Beanstalk. Use rails generate to
create a controller, route, and view for your welcome page.

~/eb-rails$ rails generate controller WelcomePage welcome
 create app/controllers/welcome_page_controller.rb
 route get 'welcome_page/welcome'
 invoke erb
 create app/views/welcome_page
 create app/views/welcome_page/welcome.html.erb
 invoke test_unit
 create test/controllers/welcome_page_controller_test.rb
 invoke helper

Install rails and generate a website 1208

Amazon Elastic Beanstalk Developer Guide

 create app/helpers/welcome_page_helper.rb
 invoke test_unit
 invoke assets
 invoke coffee
 create app/assets/javascripts/welcome_page.coffee
 invoke scss
 create app/assets/stylesheets/welcome_page.scss.

This gives you all you need to access the page at /welcome_page/welcome. Before you publish
the changes, however, change the content in the view and add a route to make this page appear at
the top level of the site.

Use a text editor to edit the content in app/views/welcome_page/welcome.html.erb. For this
example, you'll use cat to simply overwrite the content of the existing file.

Example app/views/welcome_page/welcome.html.erb

<h1>Welcome!</h1>
<p>This is the front page of my first Rails application on Elastic Beanstalk.</p>

Finally, add the following route to config/routes.rb:

Example config/routes.rb

Rails.application.routes.draw do
 get 'welcome_page/welcome'
 root 'welcome_page#welcome'

This tells Rails to route requests to the root of the website to the welcome page controller's
welcome method, which renders the content in the welcome view (welcome.html.erb).

In order for Elastic Beanstalk to successfully deploy the application on the Ruby platform, we need
to update Gemfile.lock. Some dependencies of Gemfile.lock might be platform specific.
Therefore, we need to add platform ruby to Gemfile.lock so that all required dependencies
are installed with the deployment.

Example

~/eb-rails$ bundle lock --add-platform ruby
Fetching gem metadata from https://rubygems.org/............

Install rails and generate a website 1209

Amazon Elastic Beanstalk Developer Guide

Resolving dependencies...
Writing lockfile to /Users/janedoe/EBDPT/RubyApps/eb-rails-doc-app/Gemfile.lock

Configure rails settings

Use the Elastic Beanstalk console to configure Rails with environment properties. Set the
SECRET_KEY_BASE environment property to a string of up to 256 alphanumeric characters.

Rails uses this property to create keys. Therefore you should keep it a secret and not store it in
source control in plain text. Instead, you provide it to Rails code on your environment through an
environment property.

To configure environment variables in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll down to Runtime environment variables.

6. Select Add environment variable.

7. For Source select Plain text.

Note

The Secrets Manager and SSM Parameter Store values in the drop-down are for
configuring environment variables as secrets to store sensitive data, such as credentials
and API keys. For more information, see Using Elastic Beanstalk with Amazon Secrets
Manager and Amazon Systems Manager Parameter Store.

8. Enter the Environment variable name and Environment variable value pairs.

9. If you need to add more variables repeat Step 6 through Step 8.

10. To save the changes choose Apply at the bottom of the page.

Now you're ready to deploy the site to your environment.

Configure rails settings 1210

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Deploy your application

Create a source bundle containing the files created by Rails. The following command creates a
source bundle named rails-default.zip.

~/eb-rails$ zip ../rails-default.zip -r * .[^.]*

Upload the source bundle to Elastic Beanstalk to deploy Rails to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Cleanup

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

Deploy your application 1211

https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

4. Use the on-screen dialog box to confirm environment termination.

Next steps

For more information about Rails, visit rubyonrails.org.

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Deploying a sinatra application to Elastic Beanstalk

This walkthrough shows how to deploy a simple Sinatra web application to Amazon Elastic
Beanstalk.

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Learn how to get started with
Elastic Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

Sinatra 2.1.0 requires Ruby 2.3.0 or newer. In this tutorial we use Ruby 3.0.2 and the corresponding
Elastic Beanstalk platform version. Install Ruby by following the instructions at Setting up your
Ruby development environment for Elastic Beanstalk.

Next steps 1212

https://rubyonrails.org/
http://www.sinatrarb.com/
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon Elastic Beanstalk Developer Guide

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the Ruby
platform and accept the default settings and sample code.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

Launch an Elastic Beanstalk environment 1213

https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Domain security

To augment the security of your Elastic Beanstalk applications, the eb.amazonaws.com.cn
domain is registered in the Public Suffix List (PSL).
If you ever need to set sensitive cookies in the default domain name for your Elastic
Beanstalk applications, we recommend that you use cookies with a __Host- prefix for
increased security. This practice defends your domain against cross-site request forgery
attempts (CSRF). For more information see the Set-Cookie page in the Mozilla Developer
Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Launch an Elastic Beanstalk environment 1214

https://console.amazonaws.cn/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Amazon Elastic Beanstalk Developer Guide

Write a basic sinatra website

To create and deploy a sinatra application

1. Create a configuration file named config.ru with the following contents.

Example config.ru

require './helloworld'
run Sinatra::Application

2. Create a Ruby code file named helloworld.rb with the following contents.

Example helloworld.rb

require 'sinatra'
get '/' do
 "Hello World!"
end

3. Create a Gemfile with the following contents.

Example Gemfile

source 'https://rubygems.org'
gem 'sinatra'
gem 'puma'

4. Run bundle install to generate the Gemfile.lock

Example

~/eb-sinatra$ bundle install
Fetching gem metadata from https://rubygems.org/....
Resolving dependencies...
Using bundler 2.2.22
Using rack 2.2.3
...

5. In order for Elastic Beanstalk to successfully deploy the application on the Ruby platform, we
need to update Gemfile.lock. Some dependencies of Gemfile.lock might be platform

Write a basic sinatra website 1215

Amazon Elastic Beanstalk Developer Guide

specific. Therefore, we need to add platform ruby to Gemfile.lock so that all required
dependencies are installed with the deployment.

Example

~/eb-sinatra$ bundle lock --add-platform ruby
Fetching gem metadata from https://rubygems.org/....
Resolving dependencies...
Writing lockfile to /Users/janedoe/EBDPT/RubyApps/eb-sinatra/Gemfile.lock

6. Create a Procfile with the following contents.

Example Procfile

web: bundle exec puma -C /opt/elasticbeanstalk/config/private/pumaconf.rb

Deploy your application

Create a source bundle containing the your source files. The following command creates a source
bundle named sinatra-default.zip.

~/eb-sinatra$ zip ../sinatra-default.zip -r * .[^.]*

Upload the source bundle to Elastic Beanstalk to deploy Sinatra to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Deploy your application 1216

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Cleanup

After you finish working with the demo code, you can terminate your environment. Elastic
Beanstalk deletes all related Amazon resources, such as Amazon EC2 instances, database instances,
load balancers, security groups, and alarms.

Removing resources does not delete the Elastic Beanstalk application, so you can create new
environments for your application at any time.

To terminate your Elastic Beanstalk environment from the console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

Next steps

For more information about Sinatra, visit sinatrarb.com.

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Adding an Amazon RDS DB instance to your Ruby Elastic
Beanstalk environment

This topic provides instructions to create an Amazon RDS using the Elastic Beanstalk console.
You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data
gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally by

Cleanup 1217

https://console.amazonaws.cn/elasticbeanstalk
http://sinatrarb.com/

Amazon Elastic Beanstalk Developer Guide

another service. In these instructions the database is coupled to your environment and managed by
Elastic Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk,
see Adding a database to your Elastic Beanstalk environment.

Sections

• Adding a DB instance to your environment

• Downloading an adapter

• Connecting to a database

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio

On the Connectivity &
security tab on the Amazon
RDS console: Port.

Adding a DB instance to your environment 1218

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Property name Description Property value

ns. The default value varies
among DB engines.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading an adapter

Add the database adapter to your project's gem file.

Example Gemfile – Rails with MySQL

source 'https://rubygems.org'
gem 'puma'
gem 'rails', '~> 6.1.4', '>= 6.1.4.1'
gem 'mysql2'

Common adapter gems for Ruby

• MySQL – mysql2

• PostgreSQL – pg

• Oracle – activerecord-oracle_enhanced-adapter

• SQL Server – activerecord-sqlserver-adapter

Downloading an adapter 1219

https://rubygems.org/gems/mysql2
https://rubygems.org/gems/pg
https://rubygems.org/gems/activerecord-oracle_enhanced-adapter
https://rubygems.org/gems/activerecord-sqlserver-adapter

Amazon Elastic Beanstalk Developer Guide

Connecting to a database

Elastic Beanstalk provides connection information for attached DB instances in environment
properties. Use ENV['VARIABLE'] to read the properties and configure a database connection.

Example config/database.yml – Ruby on rails database configuration (MySQL)

production:
 adapter: mysql2
 encoding: utf8
 database: <%= ENV['RDS_DB_NAME'] %>
 username: <%= ENV['RDS_USERNAME'] %>
 password: <%= ENV['RDS_PASSWORD'] %>
 host: <%= ENV['RDS_HOSTNAME'] %>
 port: <%= ENV['RDS_PORT'] %>

Connecting to a database 1220

Amazon Elastic Beanstalk Developer Guide

Deploying with Docker containers to Elastic Beanstalk

This chapter explains how you can use Elastic Beanstalk to deploy web applications from Docker
containers. Docker containers are self contained and include all the configuration information and
software that your web application requires to run. With Docker containers you can define your
own runtime environment. You can also choose your own programming language and application
dependencies, such as package managers or tools, which typically aren't supported by other Elastic
Beanstalk platforms.

Follow the steps in QuickStart for Docker to create a Docker "Hello World" application and deploy it
to an Elastic Beanstalk environment using the EB CLI.

Topics

• Elastic Beanstalk Docker platform branches

• Using the Elastic Beanstalk Docker platform branch

• Using the ECS managed Docker platform branch in Elastic Beanstalk

• Using images from a private repository in Elastic Beanstalk

• Configuring Elastic Beanstalk Docker environments

• Legacy platforms

Elastic Beanstalk Docker platform branches

The Elastic Beanstalk Docker platform supports the following platform branches:

Docker running Amazon Linux 2 and Docker running AL2023

Elastic Beanstalk deploys Docker container(s) and source code to EC2 instances and manages them.
These platform branches offer multi-container support. You can use the Docker Compose tool to
simplify your application configuration, testing, and deployment. For more information about this
platform branch, see the section called “Docker platform branch”.

ECS running on Amazon Linux 2 and ECS running on AL2023

We provide this branch for customers who need a migration path to AL2023/AL2 from the retired
platform branch Multi-container Docker running on (Amazon Linux AMI). The latest platform

Docker platform branches 1221

Amazon Elastic Beanstalk Developer Guide

branches support all of the features from the retired platform branch. No changes to the source
code are required. For more information, see Migrating your Elastic Beanstalk application from
ECS managed Multi-container Docker on AL1 to ECS on Amazon Linux 2023. If you don't have an
Elastic Beanstalk environment running on an ECS based platform branch, we recommend you use
the platform branch, Docker Running on 64bit AL2023. This offers a simpler approach and requires
less resources.

For a list of the software component versions associated with each of these platform branches, see
Docker in the Amazon Elastic Beanstalk Platforms document.

Retired platform branches running on Amazon Linux AMI (AL1)

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon Linux
AMI (AL1) to retired. Expand each section that follows to read more about each retired platform
branch and its migration path to the latest platform branch running on Amazon Linux 2 or Amazon
Linux 2023 (recommended).

Docker (Amazon Linux AMI)

This platform branch can deploy a Docker image, described in a Dockerfile or a
Dockerrun.aws.json v1 definition. This platform branch runs only one container for each
instance. Its succeeding platform branches,Docker running on 64bit AL2023 and Docker running on
64bit Amazon Linux 2 support multiple Docker containers per instance.

We recommend that you create your environments with the newer and supported platform branch
Docker running on 64bit AL2023. You can then migrate your application to the newly created
environment. For more information about creating these environments, see the section called
“Docker platform branch”. For more information about migration, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Multi-container Docker (Amazon Linux AMI)

This platform branch uses Amazon ECS to coordinate a deployment of multiple Docker containers
to an Amazon ECS cluster in an Elastic Beanstalk environment. If you're currently using this retired
platform branch, we recommend that you migrate to the latest ECS Running on Amazon Linux 2023
platform branch. The latest platform branch supports all of the features from this discontinued
platform branch. No changes to the source code are required. For more information, see Migrating
your Elastic Beanstalk application from ECS managed Multi-container Docker on AL1 to ECS on
Amazon Linux 2023.

Retired platform branches running on Amazon Linux AMI (AL1) 1222

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.docker
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

Preconfigured Docker containers

In addition to the prior mentioned Docker platforms, there is also the Preconfigured Docker
GlassFish platform branch that runs on the Amazon Linux AMI operating system (AL1).

This platform branch has been superseded by the platform branches Docker running on 64bit
AL2023 and Docker running on 64bit Amazon Linux 2. For more information, see Deploying a
GlassFish application to the Docker platform.

Using the Elastic Beanstalk Docker platform branch

This section describes how to prepare your Docker image for launch with the either of the Elastic
Beanstalk platform branches Docker running AL2 or AL2023.

Follow the steps in QuickStart for Docker to create a Docker "Hello World" application and deploy it
to an Elastic Beanstalk environment using the EB CLI.

Topics

• QuickStart: Deploy a Docker application to Elastic Beanstalk

• Preparing your Docker image for deployment to Elastic Beanstalk

QuickStart: Deploy a Docker application to Elastic Beanstalk

This QuickStart tutorial walks you through the process of creating a Docker application and
deploying it to an Amazon Elastic Beanstalk environment.

Note

Tutorial examples are intended for demonstration. Do not use the application for
production traffic.

Sections

• Your Amazon account

• Prerequisites

• Step 1: Create a Docker application and container

• Step 2: Run your application locally

Docker platform branch 1223

Amazon Elastic Beanstalk Developer Guide

• Step 3: Deploy your Docker application with the EB CLI

• Step 4: Run your application on Elastic Beanstalk

• Step 5: Clean up

• Amazon resources for your application

• Next steps

• Deploy with the Elastic Beanstalk console

Your Amazon account

If you're not already an Amazon customer, you need to create an Amazon account. Signing up
enables you to access Elastic Beanstalk and other Amazon services that you need.

If you already have an Amazon account, you can move on to Prerequisites.

Create an Amazon account

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

QuickStart for Docker 1224

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon Elastic Beanstalk Developer Guide

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Prerequisites

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and Bash.

EB CLI

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install EB CLI with setup script (recommended) and Configure the
EB CLI.

Docker

To follow this tutorial, you'll need a working local installation of Docker. For more information, see
Get Docker on the Docker documentation website.

Verify the Docker daemon is up an running by running the following command.

~$ docker info

Step 1: Create a Docker application and container

For this example, we create a Docker image of the sample Flask application that's also referenced in
Deploying a Flask application to Elastic Beanstalk.

The application consists of two files:

QuickStart for Docker 1225

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.docker.com/get-docker/

Amazon Elastic Beanstalk Developer Guide

• app.py— the Python file that contains the code that will execute in the container.

• Dockerfile— the Dockerfile to build your image.

Place both files at the root of a directory.

~/eb-docker-flask/
|-- Dockerfile
|-- app.py

Add the following contents to your Dockerfile.

Example ~/eb-docker-flask/Dockerfile

FROM python:3.12
COPY . /app
WORKDIR /app
RUN pip install Flask==3.0.2
EXPOSE 5000
CMD ["python3", "-m" , "flask", "run", "--host=0.0.0.0"]

Add the following contents to your app.py file.

Example ~/eb-docker-flask/app.py

from flask import Flask
app = Flask(__name__)
@app.route('/')
def hello_world():
 return 'Hello Elastic Beanstalk! This is a Docker application'

Build your Docker container, tagging the image with eb-docker-flask.

~/eb-docker-flask$ docker build -t eb-docker-flask

Step 2: Run your application locally

Use the docker build command to build your container image locally, tagging the image with eb-
docker-flask. The period (.) at the end of the command specificies that path is a local directory.

~/eb-docker-flask$ docker run -dp 127.0.0.1:5000:5000 eb-docker-flask .

QuickStart for Docker 1226

https://docs.docker.com/reference/cli/docker/image/build/

Amazon Elastic Beanstalk Developer Guide

Run your container with the docker run command. The command will print the ID of the running
container. The -d option runs docker in background mode. The -p option exposes your application
at port 5000. Elastic Beanstalk serves traffic to port 5000 on the Docker platform by default.

~/eb-docker-flask$ docker run -dp 127.0.0.1:5000:5000 eb-docker-flask container-id

Navigate to http://127.0.0.1:5000/ in your browser. You should see the text "Hello Elastic
Beanstalk! This is a Docker application".

Run the docker kill command to terminate the container.

~/eb-docker-flask$ docker kill container-id

Step 3: Deploy your Docker application with the EB CLI

Run the following commands to create an Elastic Beanstalk environment for this application.

To create an environment and deploy your Docker application

1. Initialize your EB CLI repository with the eb init command.

~/eb-docker-flask$ eb init -p docker docker-tutorial us-west-2
Application docker-tutorial has been created.

This command creates an application named docker-tutorial and configures your local
repository to create environments with the latest Docker platform version.

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/eb-docker-flask$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

QuickStart for Docker 1227

https://docs.docker.com/reference/cli/docker/container/run/
https://docs.docker.com/reference/cli/docker/container/kill/

Amazon Elastic Beanstalk Developer Guide

3. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a zip file for your application and starts it on port 5000.

~/eb-docker-flask$ eb create docker-tutorial

It takes about five minutes for Elastic Beanstalk to create your environment.

Step 4: Run your application on Elastic Beanstalk

When the process to create your environment completes, open your website with eb open.

~/eb-docker-flask$ eb open

Congratulations! You've deployed a Docker application with Elastic Beanstalk! This opens a browser
window using the domain name created for your application.

Step 5: Clean up

You can terminate your environment when you finish working with your application. Elastic
Beanstalk terminates all Amazon resources associated with your environment.

To terminate your Elastic Beanstalk environment with the EB CLI run the following command.

~/eb-docker-flask$ eb terminate

Amazon resources for your application

You just created a single instance application. It serves as a straightforward sample application
with a single EC2 instance, so it doesn't require load balancing or auto scaling. For single instance
applications Elastic Beanstalk creates the following Amazon resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

QuickStart for Docker 1228

Amazon Elastic Beanstalk Developer Guide

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• Amazon CloudFormation stack – Elastic Beanstalk uses Amazon CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the Amazon CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.eb.amazonaws.com.cn.

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances. You can also explore your new
environment using the Elastic Beanstalk console. For detailed steps, see Explore your environment
in the Getting started chapter of this guide.

After you deploy a sample application or two and are ready to start developing and running Docker
applications locally, see Preparing your Docker image for deployment to Elastic Beanstalk.

Deploy with the Elastic Beanstalk console

You can also use the Elastic Beanstalk console to launch the sample application. For detailed steps,
see Create an example application in the Getting started chapter of this guide.

Preparing your Docker image for deployment to Elastic Beanstalk

This section describes how to prepare your Docker image for deployment to Elastic Beanstalk with
either of the Docker running AL2 or AL2023 platform branches. The configuration files that you'll
require depend on whether your images are local, remote, and if you're using Docker Compose.

Docker image configuration 1229

https://console.amazonaws.cn/cloudformation

Amazon Elastic Beanstalk Developer Guide

Note

For an example of a procedure that launches a Docker environment see the QuickStart for
Docker topic.

Topics

• Managing your images with Docker Compose in Elastic Beanstalk

• Managing images without Docker Compose in Elastic Beanstalk

• Building custom images with a Dockerfile

Managing your images with Docker Compose in Elastic Beanstalk

You may choose to use Docker Compose to manage various services in one YAML file. To learn
more about Docker Compose see Why use Compose? on the Docker website.

• Create a docker-compose.yml. This file is required if you're using Docker Compose to manage
your application with Elastic Beanstalk. If all your deployments are sourced from images in
public repositories, then no other configuration files are required. If your deployment's source
images are in a private repository, you'll need to do some additional configuration. For more
information, see Using images from a private repository. For more information about the
docker-compose.yml file, see Compose file reference on the Docker website.

• The Dockerfile is optional. Create one if you need Elastic Beanstalk to build and run a local
custom image. For more information about the Dockerfile see Dockerfile reference on the
Docker website.

• You may need to create a .zip file. If you use only a Dockerfile file to deploy your
application, you don't need to create one. If you use additional configuration files the .zip file
must include the Dockerfile, the docker-compose.yml file, your application files, and any
application file dependencies. The Dockerfile and the docker-compose.yml must be at the
root, or top level, of the .zip archive. If you use the EB CLI to deploy your application, it creates
a .zip file for you.

To learn more about Docker Compose and how to install it, see the Docker sites Overview of Docker
Compose and Install Docker Compose.

Docker image configuration 1230

https://docs.docker.com/compose/intro/features-uses/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/

Amazon Elastic Beanstalk Developer Guide

Managing images without Docker Compose in Elastic Beanstalk

If you're not using Docker Compose to manage your Docker images, you'll need to configure a
Dockerfile, a Dockerrun.aws.json file, or both.

• Create a Dockerfile to have Elastic Beanstalk build and run a custom image locally.

• Create a Dockerrun.aws.json v1 file to deploy a Docker image from a hosted repository to
Elastic Beanstalk.

• You may need to create a .zip file. If you use only one of either file, the Dockerfile
or the Dockerrun.aws.json, then you don't need to create a .zip file. If you use both
files, then you do need a .zip file. The .zip file must include both the Dockerfile and the
Dockerrun.aws.json, along with the file containing your application files plus any application
file dependencies. If you use the EB CLI to deploy your application, it creates a .zip file for you.

Dockerrun.aws.json v1 configuration file

A Dockerrun.aws.json file describes how to deploy a remote Docker image as an Elastic
Beanstalk application. This JSON file is specific to Elastic Beanstalk. If your application
runs on an image that is available in a hosted repository, you can specify the image in a
Dockerrun.aws.json v1 file and omit the Dockerfile.

Dockerrun.aws.json versions

The AWSEBDockerrunVersion parameter indicates the version of the
Dockerrun.aws.json file.

• The Docker AL2 and AL2023 platforms use the following versions of the file.

• Dockerrun.aws.json v3 — environments that use Docker Compose.

• Dockerrun.aws.json v1 — environments that do not use Docker Compose.

• ECS running on Amazon Linux 2 and ECS running on AL2023 uses the
Dockerrun.aws.json v2 file. The retired platform ECS-The Multicontainer Docker
Amazon Linux AMI (AL1) also used this same version.

Dockerrun.aws.json v1

Valid keys and values for the Dockerrun.aws.json v1 file include the following operations:

Docker image configuration 1231

Amazon Elastic Beanstalk Developer Guide

AWSEBDockerrunVersion

(Required) Specify the version number 1 if you're not using Docker Compose to manage your
image.

Authentication

(Required only for private repositories) Specifies the Amazon S3 object storing the .dockercfg
file.

See Using images from a private repository in Elastic Beanstalk in Using images from a private
repository later in this chapter.

Image

Specifies the Docker base image on an existing Docker repository from which you're building a
Docker container. Specify the value of the Name key in the format <organization>/<image
name> for images on Docker Hub, or <site>/<organization name>/<image name> for
other sites.

When you specify an image in the Dockerrun.aws.json file, each instance in your Elastic
Beanstalk environment runs docker pull to run the image. Optionally, include the Update
key. The default value is true and instructs Elastic Beanstalk to check the repository, pull any
updates to the image, and overwrite any cached images.

When using a Dockerfile, do not specify the Image key in the Dockerrun.aws.json file.
Elastic Beanstalk always builds and uses the image described in the Dockerfile when one is
present.

Ports

(Required when you specify the Image key) Lists the ports to expose on the Docker container.
Elastic Beanstalk uses the ContainerPort value to connect the Docker container to the reverse
proxy running on the host.

You can specify multiple container ports, but Elastic Beanstalk uses only the first port. It uses
this port to connect your container to the host's reverse proxy and route requests from the
public internet. If you're using a Dockerfile, the first ContainerPort value should match the
first entry in the Dockerfile's EXPOSE list.

Optionally, you can specify a list of ports in HostPort. HostPort entries specify the host ports
that ContainerPort values are mapped to. If you don't specify a HostPort value, it defaults to
the ContainerPort value.

Docker image configuration 1232

Amazon Elastic Beanstalk Developer Guide

{
 "Image": {
 "Name": "image-name"
 },
 "Ports": [
 {
 "ContainerPort": 8080,
 "HostPort": 8000
 }
]
}

Volumes

Map volumes from an EC2 instance to your Docker container. Specify one or more arrays of
volumes to map.

{
 "Volumes": [
 {
 "HostDirectory": "/path/inside/host",
 "ContainerDirectory": "/path/inside/container"
 }
]
...

Logging

Specify the directory inside the container to which your application writes logs. Elastic
Beanstalk uploads any logs in this directory to Amazon S3 when you request tail or bundle
logs. If you rotate logs to a folder named rotated within this directory, you can also
configure Elastic Beanstalk to upload rotated logs to Amazon S3 for permanent storage. For
more information, see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk
environment.

Command

Specify a command to run in the container. If you specify an Entrypoint, then Command
is added as an argument to Entrypoint. For more information, see CMD in the Docker
documentation.

Docker image configuration 1233

https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options

Amazon Elastic Beanstalk Developer Guide

Entrypoint

Specify a default command to run when the container starts. For more information, see
ENTRYPOINT in the Docker documentation.

The following snippet is an example that illustrates the syntax of the Dockerrun.aws.json file
for a single container.

{
 "AWSEBDockerrunVersion": "1",
 "Image": {
 "Name": "janedoe/image",
 "Update": "true"
 },
 "Ports": [
 {
 "ContainerPort": "1234"
 }
],
 "Volumes": [
 {
 "HostDirectory": "/var/app/mydb",
 "ContainerDirectory": "/etc/mysql"
 }
],
 "Logging": "/var/log/nginx",
 "Entrypoint": "/app/bin/myapp",
 "Command": "--argument"
}>

You can provide Elastic Beanstalk with only the Dockerrun.aws.json file, or with a .zip archive
containing both the Dockerrun.aws.json and Dockerfile files. When you provide both
files, the Dockerfile describes the Docker image and the Dockerrun.aws.json file provides
additional information for deployment, as described later in this section.

Note

The two files must be at the root, or top level, of the .zip archive. Don't build the archive
from a directory containing the files. Instead, navigate into that directory and build the
archive there.

Docker image configuration 1234

https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options

Amazon Elastic Beanstalk Developer Guide

When you provide both files, don't specify an image in the Dockerrun.aws.json file.
Elastic Beanstalk builds and uses the image described in the Dockerfile and ignores the
image specified in the Dockerrun.aws.json file.

Building custom images with a Dockerfile

You need to create a Dockerfile if you don't already have an existing image hosted in a
repository.

The following snippet is an example of the Dockerfile. If you follow the instructions in
QuickStart for Docker, you can upload this Dockerfile as written. Elastic Beanstalk runs the
game 2048 when you use this Dockerfile.

For more information about instructions you can include in the Dockerfile, see Dockerfile
reference on the Docker website.

FROM ubuntu:12.04

RUN apt-get update
RUN apt-get install -y nginx zip curl

RUN echo "daemon off;" >> /etc/nginx/nginx.conf
RUN curl -o /usr/share/nginx/www/master.zip -L https://codeload.github.com/
gabrielecirulli/2048/zip/master
RUN cd /usr/share/nginx/www/ && unzip master.zip && mv 2048-master/* . && rm -rf 2048-
master master.zip

EXPOSE 80

CMD ["/usr/sbin/nginx", "-c", "/etc/nginx/nginx.conf"]

Note

You can run multi-stage builds from a single Dockerfile to produce smaller-sized images
with a significant reduction in complexity. For more information, see Use multi-stage builds
on the Docker documentation website.

Docker image configuration 1235

https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder
https://docs.docker.com/develop/develop-images/multistage-build/

Amazon Elastic Beanstalk Developer Guide

Using the ECS managed Docker platform branch in Elastic
Beanstalk

This topic provides an overview of the Elastic Beanstalk ECS managed Docker platform branches
for Amazon Linux 2 and Amazon Linux 2023. It also provides configuration information that's
specific to the Docker ECS managed platform.

Migration from Multi-container Docker on AL1

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon Linux
AMI (AL1) to retired. Although this chapter provides configuration information for this retired
platform, we strongly recommend that you migrate to the latest supported platform branch. If
you're presently using the retired Multi-container Docker running on AL1 platform branch, you
can migrate to the latest ECS Running on AL2023 platform branch. The latest platform branch
supports all of the features from the discontinued platform branch. No changes to the source code
are required. For more information, see Migrating your Elastic Beanstalk application from ECS
managed Multi-container Docker on AL1 to ECS on Amazon Linux 2023.

ECS managed Docker platform overview

Elastic Beanstalk uses Amazon Elastic Container Service (Amazon ECS) to coordinate container
deployments to ECS managed Docker environments. Amazon ECS provides tools to manage a
cluster of instances running Docker containers. Elastic Beanstalk takes care of Amazon ECS tasks
including cluster creation, task definition and execution. Each of the instances in the environment
run the same set of containers, which are defined in a Dockerrun.aws.json v2 file. In order to
get the most out of Docker, Elastic Beanstalk lets you create an environment where your Amazon
EC2 instances run multiple Docker containers side by side.

The following diagram shows an example Elastic Beanstalk environment configured with three
Docker containers running on each Amazon EC2 instance in an Auto Scaling group:

ECS managed platform branch 1236

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

Amazon ECS resources created by Elastic Beanstalk

When you create an environment using the ECS managed Docker platform, Elastic Beanstalk
automatically creates and configures several Amazon Elastic Container Service resources while
building the environment. In doing so, it creates the necessary containers on each Amazon EC2
instance.

• Amazon ECS Cluster – Container instances in Amazon ECS are organized into clusters. When
used with Elastic Beanstalk, one cluster is always created for each ECS managed Docker
environment. An ECS cluster also contains Auto Scaling group capacity providers and other
resources.

• Amazon ECS Task Definition – Elastic Beanstalk uses the Dockerrun.aws.json v2 in your
project to generate the Amazon ECS task definition that is used to configure container instances
in the environment.

• Amazon ECS Task – Elastic Beanstalk communicates with Amazon ECS to run a task on every
instance in the environment to coordinate container deployment. In a scalable environment,
Elastic Beanstalk initiates a new task whenever an instance is added to the cluster.

• Amazon ECS Container Agent – The agent runs in a Docker container on the instances in your
environment. The agent polls the Amazon ECS service and waits for a task to run.

• Amazon ECS Data Volumes – In addition to the volumes that you define in the
Dockerrun.aws.json v2, Elastic Beanstalk inserts volume definitions into the task definition
to facilitate log collection.

Amazon ECS resources created by Elastic Beanstalk 1237

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk creates log volumes on the container instance, one for each container, at /var/
log/containers/containername. These volumes are named awseb-logs-containername
and are provided for containers to mount. See Container definition format for details on how to
mount them.

For more information about Amazon ECS resources, see the Amazon Elastic Container Service
Developer Guide.

Dockerrun.aws.json v2 file

The container instances require a configuration file named Dockerrun.aws.json. Container
instances refers to Amazon EC2 instances running ECS managed Docker in an Elastic Beanstalk
environment. This file is specific to Elastic Beanstalk and can be used alone or combined with
source code and content in a source bundle to create an environment on a Docker platform.

Note

The Version 2 format of the Dockerrun.aws.json adds support for multiple containers
per Amazon EC2 instance and can only be used with an ECS managed Docker platform.
The format differs significantly from the other configuration file versions that support the
Docker platform branches that aren't managed by ECS.

See the Dockerrun.aws.json v2 for details on the updated format and an example file.

Docker images

The ECS managed Docker platform for Elastic Beanstalk requires images to be prebuilt and stored
in a public or private online image repository before creating an Elastic Beanstalk environment.

Note

Building custom images during deployment with a Dockerfile is not supported by the
ECS managed Docker platform on Elastic Beanstalk. Build your images and deploy them to
an online repository before creating an Elastic Beanstalk environment.

Specify images by name in Dockerrun.aws.json v2.

Dockerrun.aws.json v2 file 1238

https://docs.amazonaws.cn/AmazonECS/latest/developerguide/Welcome.html
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/Welcome.html

Amazon Elastic Beanstalk Developer Guide

To configure Elastic Beanstalk to authenticate to a private repository, include the
authentication parameter in your Dockerrun.aws.json v2 file.

Failed container deployments

If an Amazon ECS task fails, one or more containers in your Elastic Beanstalk environment will not
start. Elastic Beanstalk does not roll back multi-container environments due to a failed Amazon
ECS task. If a container fails to start in your environment, redeploy the current version or a previous
working version from the Elastic Beanstalk console.

To deploy an existing version

1. Open the Elastic Beanstalk console in your environment's region.

2. Click Actions to the right of your application name and then click View application versions.

3. Select a version of your application and click Deploy.

Extending ECS based Docker platforms for Elastic Beanstalk

Elastic Beanstalk offers extensibility features that enable you to apply your own commands, scripts,
software, and configurations to your application deployments. The deployment workflow for the
ECS AL2 and AL2023 platform branches varies slightly from the other Linux based platforms. For
more information, see Instance deployment workflow for ECS running on Amazon Linux 2 and
later.

ECS managed Docker configuration for Elastic Beanstalk

This chapter explains how to configure your ECS managed Docker environment. The following list
summarizes the configuration items that this chapter explains.

• Dockerrun.aws.json v2 – This configuration file specifies your image repository and the name
of your Docker images, among other components.

• EC2 Instance profile role – If you have a custom instance profile, we explain how to configure it
so that the permissions required for ECS to manage your containers stay current.

• Elastic Load Balancing listeners – You'll need to configure multiple Elastic Load Balancing
listeners if you need your environment to support inbound traffic for proxies or other services
that don't run on the default HTTP port.

Failed container deployments 1239

Amazon Elastic Beanstalk Developer Guide

Topics

• Configuring the Dockerrun.aws.json v2 file

• Container managed policy and EC2 instance role

• Using multiple Elastic Load Balancing listeners

Configuring the Dockerrun.aws.json v2 file

Dockerrun.aws.json v2 is an Elastic Beanstalk configuration file that describes how to deploy
a set of Docker containers hosted in an ECS cluster in an Elastic Beanstalk environment. The Elastic
Beanstalk platform creates an ECS task definition, which includes an ECS container definition. These
definitions are described in the Dockerrun.aws.json configuration file.

The container definition in the Dockerrun.aws.json file describes the containers to deploy to
each Amazon EC2 instance in the ECS cluster. In this case an Amazon EC2 instance is also referred
to as a host container instance, because it hosts the Docker containers. The configuration file also
describes the data volumes to create on the host container instance for the Docker containers
to mount. For more information and a diagram of the components in an ECS managed Docker
environment on Elastic Beanstalk, see the ECS managed Docker platform overview earlier in this
chapter.

A Dockerrun.aws.json file can be used on its own or zipped up with additional source code in a
single archive. Source code that is archived with a Dockerrun.aws.json is deployed to Amazon
EC2 container instances and accessible in the /var/app/current/ directory.

Topics

• Dockerrun.aws.json v2

• Volume format

• Execution Role ARN format

• Container definition format

• Authentication format – using images from a private repository

• Example Dockerrun.aws.json v2

Dockerrun.aws.json v2

The Dockerrun.aws.json file includes the following sections:

ECS managed Docker configuration for Elastic Beanstalk 1240

Amazon Elastic Beanstalk Developer Guide

AWSEBDockerrunVersion

Specifies the version number as the value 2 for ECS managed Docker environments.

executionRoleArn

Specifies the task execution IAM roles for different purposes and services associated with your
account. For your application to use Elastic Beanstalk environment variables stored as secrets,
you’ll need to specify the ARN of a task execution role that grants the required permissions.
Other common use cases may also require this parameter. For more information, see Execution
Role ARN format.

volumes

Creates volumes from folders in the Amazon EC2 container instance, or from your source
bundle (deployed to /var/app/current). Mount these volumes to paths within your Docker
containers using mountPoints in the containerDefinitions section.

containerDefinitions

An array of container definitions.

authentication (optional)

The location in Amazon S3 of a .dockercfg file that contains authentication data for a private
repository.

The containerDefinitions and volumes sections of Dockerrun.aws.json use the same formatting
as the corresponding sections of an Amazon ECS task definition file. For more information about
the task definition format and a full list of task definition parameters, see Amazon ECS task
definitions in the Amazon Elastic Container Service Developer Guide.

Volume format

The volume parameter creates volumes from either folders in the Amazon EC2 container instance,
or from your source bundle (deployed to /var/app/current).

Volumes are specified in the following format:

"volumes": [
 {
 "name": "volumename",

ECS managed Docker configuration for Elastic Beanstalk 1241

http://docs.amazonaws.cn/AmazonECS/latest/developerguide/task_defintions.html
http://docs.amazonaws.cn/AmazonECS/latest/developerguide/task_defintions.html

Amazon Elastic Beanstalk Developer Guide

 "host": {
 "sourcePath": "/path/on/host/instance"
 }
 }
],

Mount these volumes to paths within your Docker containers using mountPoints in the container
definition.

Elastic Beanstalk configures additional volumes for logs, one for each container. These should be
mounted by your Docker containers in order to write logs to the host instance.

For more details, see the mountPoints field in the Container definition format section that
follows.

Execution Role ARN format

In order for your application to use Elastic Beanstalk environment variables stored as secrets,
you'll need to specify a task execution IAM role. The role must grant the Amazon ECS container
permission to make Amazon API calls on your behalf using Amazon Secrets Manager secrets or
Amazon Systems Manager Parameter Store parameters to reference sensitive data. For instructions
to create a task execution IAM role with the required permissions for your account, see Amazon ECS
task execution IAM role in the Amazon Elastic Container Service Developer Guide.

{
"AWSEBDockerrunVersion": 2,
 "executionRoleArn": "arn:aws:iam::111122223333:role/ecsTaskExecutionRole",

Additional permissions required for the Amazon ECS managed Docker platform

EC2 instance profile grants iam:PassRole to ECS

In order for your EC2 instance profile to be able to grant this role to the ECS container, you
must include the iam:PassRole permission demonstrated in the following example. The
iam:PassRole allows the EC2 instances permission to pass the task execution role to the ECS
container.

In this example, we limit the EC2 instance to only pass the role to the ECS service. Although this
condition is not required, we add it to follow best practices to reduce the scope of the permission
shared. We accomplish this with the Condition element.

ECS managed Docker configuration for Elastic Beanstalk 1242

https://docs.amazonaws.cn/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/task_execution_IAM_role.html

Amazon Elastic Beanstalk Developer Guide

Note

Any usage of the ECS IAM task execution role requires the iam:PassRole permission.
There are other common use cases that require the ECS task execution managed service
role. For more information, see Amazon ECS task execution IAM role in the Amazon Elastic
Container Service Developer Guide.

Example policy with iam:PassRole permission

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "arn:aws:iam::123456789012:role/ecs-task-execution-role"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "ecs-tasks.amazonaws.com"
 }
 }
 }
]
}

Granting secrets and parameters access to the Amazon ECS container agent

The Amazon ECS task execution IAM role also needs permissions to access the secrets and
parameter stores. Similar to the requirements of the EC2 instance profile role, the ECS container
agent requires permission to pull the necessary Secrets Manager or Systems Manager resources.
For more information, see Secrets Manager or Systems Manager permissions in the Amazon Elastic
Container Service Developer Guide

Granting secrets and parameters access to the Elastic Beanstalk EC2 instances

ECS managed Docker configuration for Elastic Beanstalk 1243

https://docs.amazonaws.cn/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/task_execution_IAM_role.html#task-execution-secrets

Amazon Elastic Beanstalk Developer Guide

To support secrets configured as environment variables, you'll also need to add permissions to
your EC2 instance profile. For more information, see Fetching secrets and parameters to Elastic
Beanstalk environment variables and Required IAM permissions for Secrets Manager.

The following examples combine the previous iam:PassRole example with the examples
provided in the referenced Required IAM permissions for Secrets Manager. They add the
permissions that the EC2 instances require to access the Amazon Secrets Manager and Amazon
Systems Manager stores to retrieve the secrets and parameter data to initialize the Elastic
Beanstalk environment variables that have been configured for secrets.

Example Secrets Manager policy combined with iam:PassRole permission

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "arn:aws:iam::123456789012:role/ecs-task-execution-role"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "ecs-tasks.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:111122223333:secret:my-secret",
 "arn:aws:kms:us-east-1:111122223333:key/my-key"
]
 }
]
}

ECS managed Docker configuration for Elastic Beanstalk 1244

Amazon Elastic Beanstalk Developer Guide

Example Systems Manager policy combined with iam:PassRole permission

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "arn:aws:iam::123456789012:role/ecs-task-execution-role"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "ecs-tasks.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameter",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:ssm:us-east-1:111122223333:parameter/my-parameter",
 "arn:aws:kms:us-east-1:111122223333:key/my-key"
]
 }
]
}

Container definition format

The following examples show a subset of parameters that are commonly used in the
containerDefinitions section. More optional parameters are available.

The Beanstalk platform creates an ECS task definition, which includes an ECS container definition.
Beanstalk supports a sub-set of parameters for the ECS container definition. For more information,
see Container definitions in the Amazon Elastic Container Service Developer Guide.

A Dockerrun.aws.json file contains an array of one or more container definition objects with
the following fields:

ECS managed Docker configuration for Elastic Beanstalk 1245

http://docs.amazonaws.cn/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions

Amazon Elastic Beanstalk Developer Guide

name

The name of the container. See Standard Container Definition Parameters for information
about the maximum length and allowed characters.

image

The name of a Docker image in an online Docker repository from which you're building a Docker
container. Note these conventions:

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent.

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

environment

An array of environment variables to pass to the container.

For example, the following entry defines an environment variable with the name Container
and the value PHP:

"environment": [
 {
 "name": "Container",
 "value": "PHP"
 }
],

essential

True if the task should stop if the container fails. Nonessential containers can finish or crash
without affecting the rest of the containers on the instance.

memory

Amount of memory on the container instance to reserve for the container. Specify a non-
zero integer for one or both of the memory or memoryReservation parameters in container
definitions.

ECS managed Docker configuration for Elastic Beanstalk 1246

http://docs.amazonaws.cn/AmazonECS/latest/developerguide/task_definition_parameters.html#standard_container_definition_params

Amazon Elastic Beanstalk Developer Guide

memoryReservation

The soft limit (in MiB) of memory to reserve for the container. Specify a non-zero integer for
one or both of the memory or memoryReservation parameters in container definitions.

mountPoints

Volumes from the Amazon EC2 container instance to mount, and the location on the Docker
container file system at which to mount them. When you mount volumes that contain
application content, your container can read the data you upload in your source bundle. When
you mount log volumes for writing log data, Elastic Beanstalk can gather log data from these
volumes.

Elastic Beanstalk creates log volumes on the container instance, one for each Docker
container, at /var/log/containers/containername. These volumes are named awseb-
logs-containername and should be mounted to the location within the container file
structure where logs are written.

For example, the following mount point maps the nginx log location in the container to the
Elastic Beanstalk–generated volume for the nginx-proxy container.

{
 "sourceVolume": "awseb-logs-nginx-proxy",
 "containerPath": "/var/log/nginx"
}

portMappings

Maps network ports on the container to ports on the host.

links

List of containers to link to. Linked containers can discover each other and communicate
securely.

volumesFrom

Mount all of the volumes from a different container. For example, to mount volumes from a
container named web:

"volumesFrom": [
 {
 "sourceContainer": "web"
 }

ECS managed Docker configuration for Elastic Beanstalk 1247

Amazon Elastic Beanstalk Developer Guide

],

Authentication format – using images from a private repository

The authentication section contains authentication data for a private repository. This entry is
optional.

Add the information about the Amazon S3 bucket that contains the authentication file in
the authentication parameter of the Dockerrun.aws.json file. Make sure that the
authentication parameter contains a valid Amazon S3 bucket and key. The Amazon S3 bucket
must be hosted in the same region as the environment that is using it. Elastic Beanstalk will not
download files from Amazon S3 buckets hosted in other regions.

Uses the following format:

"authentication": {
 "bucket": "amzn-s3-demo-bucket",
 "key": "mydockercfg"
 },

For information about generating and uploading the authentication file, see Using images from a
private repository in Elastic Beanstalk.

Example Dockerrun.aws.json v2

The following snippet is an example that illustrates the syntax of the Dockerrun.aws.json file
for an instance with two containers.

{
 "AWSEBDockerrunVersion": 2,
 "volumes": [
 {
 "name": "php-app",
 "host": {
 "sourcePath": "/var/app/current/php-app"
 }
 },
 {
 "name": "nginx-proxy-conf",
 "host": {
 "sourcePath": "/var/app/current/proxy/conf.d"

ECS managed Docker configuration for Elastic Beanstalk 1248

Amazon Elastic Beanstalk Developer Guide

 }
 }
],
 "containerDefinitions": [
 {
 "name": "php-app",
 "image": "php:fpm",
 "environment": [
 {
 "name": "Container",
 "value": "PHP"
 }
],
 "essential": true,
 "memory": 128,
 "mountPoints": [
 {
 "sourceVolume": "php-app",
 "containerPath": "/var/www/html",
 "readOnly": true
 }
]
 },
 {
 "name": "nginx-proxy",
 "image": "nginx",
 "essential": true,
 "memory": 128,
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80
 }
],
 "links": [
 "php-app"
],
 "mountPoints": [
 {
 "sourceVolume": "php-app",
 "containerPath": "/var/www/html",
 "readOnly": true
 },
 {

ECS managed Docker configuration for Elastic Beanstalk 1249

Amazon Elastic Beanstalk Developer Guide

 "sourceVolume": "nginx-proxy-conf",
 "containerPath": "/etc/nginx/conf.d",
 "readOnly": true
 },
 {
 "sourceVolume": "awseb-logs-nginx-proxy",
 "containerPath": "/var/log/nginx"
 }
]
 }
]
}

Container managed policy and EC2 instance role

When you create an environment in the Elastic Beanstalk console, it prompts you to create a
default instance profile that includes the AWSElasticBeanstalkMulticontainerDocker
managed policy. So initially, your default EC2 instance profile, should include this managed policy.
If your environment uses a custom EC2 instance profile role instead of the default, make sure that
the managed policy AWSElasticBeanstalkMulticontainerDocker is attached so the required
permissions for container management stay up-to-date.

Elastic Beanstalk uses an Amazon ECS-optimized AMI with an Amazon ECS container agent that
runs in a Docker container. The agent communicates with Amazon ECS to coordinate container
deployments. In order to communicate with Amazon ECS, each Amazon EC2 instance must
have the corresponding IAM permissions, which are specified in this managed policy. See the
AWSElasticBeanstalkMulticontainerDocker in the Amazon Managed Policy Reference Guide to view
these permissions.

If you use Elastic Beanstalk environment variables that are configured to access secrets or
parameters that are stored in Amazon Secrets Manager or Amazon Systems Manager Parameter
Store, you must customize your EC2 instance profile with additional permissions. For more
information, see Execution Role ARN format.

Using multiple Elastic Load Balancing listeners

You can configure multiple Elastic Load Balancing listeners on a ECS managed Docker environment
in order to support inbound traffic for proxies or other services that don't run on the default HTTP
port.

ECS managed Docker configuration for Elastic Beanstalk 1250

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkMulticontainerDocker.html

Amazon Elastic Beanstalk Developer Guide

Create a .ebextensions folder in your source bundle and add a file with a .config file
extension. The following example shows a configuration file that creates an Elastic Load Balancing
listener on port 8080.

.ebextensions/elb-listener.config

option_settings:
 aws:elb:listener:8080:
 ListenerProtocol: HTTP
 InstanceProtocol: HTTP
 InstancePort: 8080

If your environment is running in a custom Amazon Virtual Private Cloud (Amazon VPC) that
you created, Elastic Beanstalk takes care of the rest. In a default VPC, you need to configure your
instance's security group to allow ingress from the load balancer. Add a second configuration file
that adds an ingress rule to the security group:

.ebextensions/elb-ingress.config

Resources:
 port8080SecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 8080
 FromPort: 8080
 SourceSecurityGroupName: { "Fn::GetAtt": ["AWSEBLoadBalancer",
 "SourceSecurityGroup.GroupName"] }

For more information on the configuration file format, see Adding and customizing Elastic
Beanstalk environment resources and Option settings.

In addition to adding a listener to the Elastic Load Balancing configuration and opening a port
in the security group, you need to map the port on the host instance to a port on the Docker
container in the containerDefinitions section of the Dockerrun.aws.json v2 file. The
following excerpt shows an example:

"portMappings": [
 {

ECS managed Docker configuration for Elastic Beanstalk 1251

https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

 "hostPort": 8080,
 "containerPort": 8080
 }
]

See Dockerrun.aws.json v2 for details about the Dockerrun.aws.json v2 file format.

Creating an ECS managed Docker environment with the Elastic
Beanstalk console

This tutorial details container configuration and source code preparation for an ECS managed
Docker environment that uses two containers.

The containers, a PHP application and an nginx proxy, run side by side on each of the Amazon
Elastic Compute Cloud (Amazon EC2) instances in an Elastic Beanstalk environment. After creating
the environment and verifying that the applications are running, you'll connect to a container
instance to see how it all fits together.

Sections

• Define ECS managed Docker containers

• Add content

• Deploy to Elastic Beanstalk

• Connect to a container instance

• Inspect the Amazon ECS container agent

Define ECS managed Docker containers

The first step in creating a new Docker environment is to create a directory for your application
data. This folder can be located anywhere on your local machine and have any name you choose. In
addition to a container configuration file, this folder will contain the content that you will upload
to Elastic Beanstalk and deploy to your environment.

Note

All of the code for this tutorial is available in the awslabs repository on GitHub at https://
github.com/awslabs/eb-docker-nginx-proxy.

Tutorial - ECS managed Docker 1252

https://github.com/awslabs/eb-docker-nginx-proxy
https://github.com/awslabs/eb-docker-nginx-proxy

Amazon Elastic Beanstalk Developer Guide

The file that Elastic Beanstalk uses to configure the containers on an Amazon EC2 instance is a
JSON-formatted text file named Dockerrun.aws.json v2. The ECS managed Docker platform
versions use a Version 2 format of this file. This format can only be used with the ECS managed
Docker platform, as it differs significantly from the other configuration file versions that support
the Docker platform branches that aren't managed by ECS.

Create a Dockerrun.aws.json v2 text file with this name at the root of your application and add
the following text:

{
 "AWSEBDockerrunVersion": 2,
 "volumes": [
 {
 "name": "php-app",
 "host": {
 "sourcePath": "/var/app/current/php-app"
 }
 },
 {
 "name": "nginx-proxy-conf",
 "host": {
 "sourcePath": "/var/app/current/proxy/conf.d"
 }
 }
],
 "containerDefinitions": [
 {
 "name": "php-app",
 "image": "php:fpm",
 "essential": true,
 "memory": 128,
 "mountPoints": [
 {
 "sourceVolume": "php-app",
 "containerPath": "/var/www/html",
 "readOnly": true
 }
]
 },
 {
 "name": "nginx-proxy",
 "image": "nginx",
 "essential": true,

Tutorial - ECS managed Docker 1253

Amazon Elastic Beanstalk Developer Guide

 "memory": 128,
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80
 }
],
 "links": [
 "php-app"
],
 "mountPoints": [
 {
 "sourceVolume": "php-app",
 "containerPath": "/var/www/html",
 "readOnly": true
 },
 {
 "sourceVolume": "nginx-proxy-conf",
 "containerPath": "/etc/nginx/conf.d",
 "readOnly": true
 },
 {
 "sourceVolume": "awseb-logs-nginx-proxy",
 "containerPath": "/var/log/nginx"
 }
]
 }
]
}

This example configuration defines two containers, a PHP web site with an nginx proxy in front of
it. These two containers will run side by side in Docker containers on each instance in your Elastic
Beanstalk environment, accessing shared content (the content of the website) from volumes on
the host instance, which are also defined in this file. The containers themselves are created from
images hosted in official repositories on Docker Hub. The resulting environment looks like the
following:

Tutorial - ECS managed Docker 1254

Amazon Elastic Beanstalk Developer Guide

The volumes defined in the configuration correspond to the content that you will create next and
upload as part of your application source bundle. The containers access content on the host by
mounting volumes in the mountPoints section of the container definitions.

For more information on the format of Dockerrun.aws.json v2 and its parameters, see
Container definition format.

Add content

Next you will add some content for your PHP site to display to visitors, and a configuration file for
the nginx proxy.

php-app/index.php

<h1>Hello World!!!</h1>
<h3>PHP Version <pre><?= phpversion()?></pre></h3>

php-app/static.html

<h1>Hello World!</h1>
<h3>This is a static HTML page.</h3>

proxy/conf.d/default.conf

Tutorial - ECS managed Docker 1255

Amazon Elastic Beanstalk Developer Guide

server {
 listen 80;
 server_name localhost;
 root /var/www/html;

 index index.php;

 location ~ [^/]\.php(/|$) {
 fastcgi_split_path_info ^(.+?\.php)(/.*)$;
 if (!-f $document_root$fastcgi_script_name) {
 return 404;
 }

 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;

 fastcgi_pass php-app:9000;
 fastcgi_index index.php;
 }
}

Deploy to Elastic Beanstalk

Your application folder now contains the following files:

Dockerrun.aws.json
php-app
index.php
static.html
proxy
 ### conf.d
 ### default.conf

This is all you need to create the Elastic Beanstalk environment. Create a .zip archive of the above
files and folders (not including the top-level project folder). To create the archive in Windows
explorer, select the contents of the project folder, right-click, select Send To, and then click
Compressed (zipped) Folder

Tutorial - ECS managed Docker 1256

Amazon Elastic Beanstalk Developer Guide

Note

For information on the required file structure and instructions for creating archives in other
environments, see Create an Elastic Beanstalk application source bundle

Next, upload the source bundle to Elastic Beanstalk and create your environment. For Platform,
select Docker. For Platform branch, select ECS running on 64bit Amazon Linux 2023.

To launch an environment (console)

1. Open the Elastic Beanstalk console with this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application, or the Docker platform for container-based applications.

3. For Application code, choose Upload your code.

4. Choose Local file, choose Choose file, and then open the source bundle.

5. Choose Review and launch.

6. Review the available settings, and then choose Create app.

The Elastic Beanstalk console redirects you to the management dashboard for your new
environment. This screen shows the health status of the environment and events output by the
Elastic Beanstalk service. When the status is Green, click the URL next to the environment name to
see your new website.

Connect to a container instance

Next you will connect to an Amazon EC2 instance in your Elastic Beanstalk environment to see
some of the moving parts in action.

The easiest way to connect to an instance in your environment is by using the EB CLI. To use it,
install the EB CLI, if you haven't done so already. You'll also need to configure your environment
with an Amazon EC2 SSH key pair. Use either the console's security configuration page or the EB
CLI eb init command to do that. To connect to an environment instance, use the EB CLI eb ssh
command.

Tutorial - ECS managed Docker 1257

https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

Now that your connected to an Amazon EC2 instance hosting your docker containers, you can see
how things are set up. Run ls on /var/app/current:

[ec2-user@ip-10-0-0-117 ~]$ ls /var/app/current
Dockerrun.aws.json php-app proxy

This directory contains the files from the source bundle that you uploaded to Elastic Beanstalk
during environment creation.

[ec2-user@ip-10-0-0-117 ~]$ ls /var/log/containers
nginx-proxy nginx-proxy-4ba868dbb7f3-stdouterr.log
php-app php-app-dcc3b3c8522c-stdouterr.log rotated

This is where logs are created on the container instance and collected by Elastic Beanstalk. Elastic
Beanstalk creates a volume in this directory for each container, which you mount to the container
location where logs are written.

You can also take a look at Docker to see the running containers with docker ps.

[ec2-user@ip-10-0-0-117 ~]$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES

4ba868dbb7f3 nginx "/docker-entrypoint.…" 4 minutes ago
 Up 4 minutes 0.0.0.0:80->80/tcp, :::80->80/tcp ecs-awseb-Tutorials-env-
dc2aywfjwg-1-nginx-proxy-acca84ef87c4aca15400
dcc3b3c8522c php:fpm "docker-php-entrypoi…" 4 minutes ago
 Up 4 minutes 9000/tcp ecs-awseb-Tutorials-env-
dc2aywfjwg-1-php-app-b8d38ae288b7b09e8101
d9367c0baad6 amazon/amazon-ecs-agent:latest "/agent" 5 minutes ago
 Up 5 minutes (healthy) ecs-agent

This shows the two running containers that you deployed, as well as the Amazon ECS container
agent that coordinated the deployment.

Inspect the Amazon ECS container agent

Amazon EC2 instances in a ECS managed Docker environment on Elastic Beanstalk run an
agent process in a Docker container. This agent connects to the Amazon ECS service in order to
coordinate container deployments. These deployments run as tasks in Amazon ECS, which are

Tutorial - ECS managed Docker 1258

Amazon Elastic Beanstalk Developer Guide

configured in task definition files. Elastic Beanstalk creates these task definition files based on the
Dockerrun.aws.json that you upload in a source bundle.

Check the status of the container agent with an HTTP get request to http://localhost:51678/
v1/metadata:

[ec2-user@ip-10-0-0-117 ~]$ curl http://localhost:51678/v1/metadata
{
 "Cluster":"awseb-Tutorials-env-dc2aywfjwg",
 "ContainerInstanceArn":"arn:aws:ecs:us-west-2:123456789012:container-instance/awseb-
Tutorials-env-dc2aywfjwg/db7be5215cd74658aacfcb292a6b944f",
 "Version":"Amazon ECS Agent - v1.57.1 (089b7b64)"
}

This structure shows the name of the Amazon ECS cluster, and the ARN (Amazon Resource Name)
of the cluster instance (the Amazon EC2 instance that you are connected to).

For more information, make an HTTP get request to http://localhost:51678/v1/tasks:

[ec2-user@ip-10-0-0-117 ~]$ curl http://localhost:51678/v1/tasks
{
 "Tasks":[
 {
 "Arn":"arn:aws:ecs:us-west-2:123456789012:task/awseb-Tutorials-env-dc2aywfjwg/
bbde7ebe1d4e4537ab1336340150a6d6",
 "DesiredStatus":"RUNNING",
 "KnownStatus":"RUNNING",
 "Family":"awseb-Tutorials-env-dc2aywfjwg",
 "Version":"1",
 "Containers":[
 {

 "DockerId":"dcc3b3c8522cb9510b7359689163814c0f1453b36b237204a3fd7a0b445d2ea6",
 "DockerName":"ecs-awseb-Tutorials-env-dc2aywfjwg-1-php-app-
b8d38ae288b7b09e8101",
 "Name":"php-app",
 "Volumes":[
 {
 "Source":"/var/app/current/php-app",
 "Destination":"/var/www/html"
 }
]

Tutorial - ECS managed Docker 1259

https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html

Amazon Elastic Beanstalk Developer Guide

 },
 {

 "DockerId":"4ba868dbb7f3fb3328b8afeb2cb6cf03e3cb1cdd5b109e470f767d50b2c3e303",
 "DockerName":"ecs-awseb-Tutorials-env-dc2aywfjwg-1-nginx-proxy-
acca84ef87c4aca15400",
 "Name":"nginx-proxy",
 "Ports":[
 {
 "ContainerPort":80,
 "Protocol":"tcp",
 "HostPort":80
 },
 {
 "ContainerPort":80,
 "Protocol":"tcp",
 "HostPort":80
 }
],
 "Volumes":[
 {
 "Source":"/var/app/current/php-app",
 "Destination":"/var/www/html"
 },
 {
 "Source":"/var/log/containers/nginx-proxy",
 "Destination":"/var/log/nginx"
 },
 {
 "Source":"/var/app/current/proxy/conf.d",
 "Destination":"/etc/nginx/conf.d"
 }
]
 }
]
 }
]
}

This structure describes the task that is run to deploy the two docker containers from this tutorial's
example project. The following information is displayed:

• KnownStatus – The RUNNING status indicates that the containers are still active.

Tutorial - ECS managed Docker 1260

Amazon Elastic Beanstalk Developer Guide

• Family – The name of the task definition that Elastic Beanstalk created from
Dockerrun.aws.json.

• Version – The version of the task definition. This is incremented each time the task definition file
is updated.

• Containers – Information about the containers running on the instance.

Even more information is available from the Amazon ECS service itself, which you can call using the
Amazon Command Line Interface. For instructions on using the Amazon CLI with Amazon ECS, and
information about Amazon ECS in general, see the Amazon ECS User Guide.

Migrating your Elastic Beanstalk application from ECS managed Multi-
container Docker on AL1 to ECS on Amazon Linux 2023

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired..

This topic guides you in the migration of your applications from the retired platform branch Multi-
container Docker running on 64bit Amazon Linux to ECS Running on 64bit AL2023. This target
platform branch is current and supported. Like the previous Multi-container Docker AL1 branch,
the newer ECS AL2023 platform branch uses Amazon ECS to coordinate deployment of multiple
Docker containers to an Amazon ECS cluster in an Elastic Beanstalk environment. The new ECS
AL2023 platform branch supports all of the features in the previous Multi-container Docker AL1
platform branch. Also, the same Dockerrun.aws.json v2 file is supported.

Sections

• Migrate with the Elastic Beanstalk console

• Migrate with the Amazon CLI

Migrate with the Elastic Beanstalk console

To migrate using the Elastic Beanstalk console deploy the same source code to a new environment
that’s based on the ECS Running on AL2023 platform branch. No changes to the source code are
required.

Migration to ECS running on AL2023 1261

http://docs.amazonaws.cn/AmazonECS/latest/developerguide/ECS_GetStarted.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

To migrate to the ECS Running on Amazon Linux 2023 platform branch

1. Using the application source that's already deployed to the old environment, create an
application source bundle. You can use the same application source bundle and the same
Dockerrun.aws.json v2 file.

2. Create a new environment using the ECS Running on Amazon Linux 2023 platform branch.
Use the source bundle from the prior step for Application code. For more detailed steps, see
Deploy to Elastic Beanstalk in the ECS managed Docker tutorial earlier in this chapter.

Migrate with the Amazon CLI

You also have the option to use the Amazon Command Line Interface (Amazon CLI) to migrate
your existing Multi-container Docker Amazon Linux Docker environment to the newer ECS AL2023
platform branch. In this case you don't need to create a new environment or redeploy your source
code. You only need to run the Amazon CLI update-environment command. It will perform a
platform update to migrate your existing environment to the ECS Amazon Linux 2023 platform
branch.

Use the following syntax to migrate your environment to the new platform branch.

aws elasticbeanstalk update-environment \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 version running ECS" \
--region my-region

The following is an example of the command to migrate environment beta-101 to version 3.0.0 of
the ECS Amazon Linux 2023 platform branch in the us-east-1 region.

aws elasticbeanstalk update-environment \
--environment-name beta-101 \
--solution-stack-name "64bit Amazon Linux 2023 v4.0.0 running ECS" \
--region us-east-1

The solution-stack-name parameter provides the platform branch and its version. Use the
most recent platform branch version by specifying the proper solution stack name. The version of
every platform branch is included in the solution stack name, as shown in the above example. For
a list of the most current solution stacks for the Docker platform, see Supported platforms in the
Amazon Elastic Beanstalk Platforms guide.

Migration to ECS running on AL2023 1262

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.docker

Amazon Elastic Beanstalk Developer Guide

Note

The list-available-solution-stacks command provides a list of the platform versions
available for your account in an Amazon Region.

aws elasticbeanstalk list-available-solution-stacks --region us-east-1 --query
 SolutionStacks

To learn more about the Amazon CLI, see the Amazon Command Line Interface User Guide.
For more information about Amazon CLI commands for Elastic Beanstalk, see the Amazon CLI
Command Reference for Elastic Beanstalk.

Using images from a private repository in Elastic Beanstalk

This topic describes how to authenticate to a private online image repository with Elastic
Beanstalk. Elastic Beanstalk must authenticate with the online registry before it can pull and
deploy your images. There are multiple configuration options.

Using images from an Amazon ECR repository

You can store your custom Docker images in Amazon with Amazon Elastic Container Registry
(Amazon ECR).

When you store your Docker images in Amazon ECR, Elastic Beanstalk automatically authenticates
to the Amazon ECR registry with your environment's instance profile. Therefore you'll
need to provide your instances with permission to access the images in your Amazon ECR
repository. To do so add permissions to your environment's instance profile by attaching the
AmazonEC2ContainerRegistryReadOnly managed policy to the instance profile. This provides read-
only access to all the Amazon ECR repositories in your account. You also have the option to only
access to single repository by using the following template to create a custom policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowEbAuth",
 "Effect": "Allow",
 "Action": [

Using images from a private repository 1263

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-welcome.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/index.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/index.html
http://www.amazonaws.cn/ecr
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonEC2ContainerRegistryReadOnly.html

Amazon Elastic Beanstalk Developer Guide

 "ecr:GetAuthorizationToken"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "AllowPull",
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:ecr:us-west-2:account-id:repository/repository-name"
],
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetRepositoryPolicy",
 "ecr:DescribeRepositories",
 "ecr:ListImages",
 "ecr:BatchGetImage"
]
 }
]
 }

Replace the Amazon Resource Name (ARN) in the above policy with the ARN of your repository.

You'll need to specify the image information in your Dockerrun.aws.json file. The configuration
will be different depending on which platform you use.

For the ECS managed Docker platform, use the image key in a container definition object :

"containerDefinitions": [
 {
 "name": "my-image",
 "image": "account-id.dkr.ecr.us-west-2.amazonaws.com.cn/repository-
name:latest",

For the Docker platform refer to the image by URL. The URL goes in the Image definition of your
Dockerrun.aws.json file:

 "Image": {
 "Name": "account-id.dkr.ecr.us-west-2.amazonaws.com.cn/repository-name:latest",

Amazon ECR repository 1264

Amazon Elastic Beanstalk Developer Guide

 "Update": "true"
 },

Using the Amazon Systems Manager (SSM) Parameter Store

You can configure Elastic Beanstalk to log in to your private repository before it starts the
deployment process. This enables Elastic Beanstalk to access the images from the repository and
deploy these images to your Elastic Beanstalk environment.

This configuration initiates events in the prebuild phase of the Elastic Beanstalk deployment
process. You set this up in the .ebextentions configuration directory. The configuration uses
platform hook scripts that call docker login to authenticate to the online registry that hosts
the private repository. The platform hook scripts securely read the credential data from Elastic
Beanstalk environment variables that are initialized by a configuration that sources the values
from Amazon Systems Manager Parameter Store. Your Elastic Beanstalk Docker and ECS
managed Docker platforms must be a version released on or after March 26, 2025 to support this
environment variable configuration. A detailed breakdown of these configuration steps follows.

To configure Elastic Beanstalk to authenticate to your private repository with Amazon Systems
Manager Parameter Store

Note

You need to set up your credentials in the Amazon Systems Manager Parameter Store and
also set up required IAM permissions to complete these steps. For more information, see
Prerequisites to configure secrets as environment variables.

1. Create your .ebextensions directory structure as follows.

.ebextensions
env.config
.platform
confighooks
prebuild
01login.sh
hooks
prebuild
01login.sh

SSM Parameter Store 1265

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-03-26-windows.html

Amazon Elastic Beanstalk Developer Guide

docker-compose.yml

2. Use the Amazon Systems Manager Parameter Store to save the credentials of your private
repository. Run the following Amazon CLI Systems Manager put-parameter command to
create these in the Parameter Store.

aws ssm put-parameter --name USER --type String --value "username"
aws ssm put-parameter --name PASSWD --type String --value "passwd"

3. Create the following env.config file and place it in the .ebextensions
directory as shown in the preceding directory structure. This configuration uses the
aws:elasticbeanstalk:application:environmentsecrets namespace to initialize the USER and
PASSWD Elastic Beanstalk environment variables to the values that are stored in the Systems
Manager Parameter Store.

Note

USER and PASSWD in the script must match the same strings that are used in the
preceding ssm put-parameter commands.

option_settings:
 aws:elasticbeanstalk:application:environmentsecrets:
 USER: arn:aws:ssm:us-east-1:111122223333:parameter/user
 PASSWD: arn:aws:secretsmanager:us-east-1:111122223333:passwd

4. Create the following 01login.sh script file and place it in the following directories (also
shown in the preceding directory structure):

• .platform/confighooks/prebuild

• .platform/hooks/prebuild

example 01login.sh
#!/bin/bash
echo $PASSWD | docker login -u $USER --password-stdin

The 01login.sh references the Elastic Beanstalk environment variables that you configured
in Step 3 to store the repository credentials, and it pipes the password directly to the docker

SSM Parameter Store 1266

https://docs.amazonaws.cn/systems-manager/latest/userguide/getting-started.html

Amazon Elastic Beanstalk Developer Guide

login command in the stdin input stream. The --password-stdin option uses the input
stream, preventing the password from persisting in the shell history or audit logs. For more
information about authentication with the Docker command line interface, see docker login on
the Docker documentation website.

Notes

• All script files must have execute permission. Use chmod +x to set execute
permission on your hook files. For all Amazon Linux 2 based platforms versions
that were released on or after April 29, 2022, Elastic Beanstalk automatically grants
execute permissions to all of the platform hook scripts. In this case you don't have
to manually grant execute permissions. For a list of these platform versions, refer to
the April 29, 2022 - Linux platform release notes in the Amazon Elastic Beanstalk
Release Notes Guide.

• Hook files can be either binary files or script files starting with a #! line containing
their interpreter path, such as #!/bin/bash.

• For more information, see the section called “Platform hooks” in Extending Elastic
Beanstalk Linux platforms.

After Elastic Beanstalk can authenticate with the online registry that hosts the private repository,
your images can be deployed and pulled.

Using the Dockerrun.aws.json file

This section describes another approach to authenticate Elastic Beanstalk to a private repository.
With this approach, you generate an authentication file with the Docker command, and then
upload the authentication file to an Amazon S3 bucket. You must also include the bucket
information in your Dockerrun.aws.json file.

To generate and provide an authentication file to Elastic Beanstalk

1. Generate an authentication file with the docker login command. For repositories on Docker
Hub, run docker login:

$ docker login

Dockerrun.aws.json file 1267

https://docs.docker.com/engine/reference/commandline/login/
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-04-29-linux.html#release-2022-04-29-linux.platforms

Amazon Elastic Beanstalk Developer Guide

For other registries, include the URL of the registry server:

$ docker login registry-server-url

Note

If your Elastic Beanstalk environment uses the Amazon Linux AMI Docker platform
version (precedes Amazon Linux 2), read the relevant information in the section called
“Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)”.

For more information about the authentication file, see Store images on Docker Hub and
docker login on the Docker website.

2. Upload a copy of the authentication file that is named .dockercfg to a secure Amazon S3
bucket.

• The Amazon S3 bucket must be hosted in the same Amazon Web Services Region as the
environment that is using it. Elastic Beanstalk cannot download files from an Amazon S3
bucket hosted in other Regions.

• Grant permissions for the s3:GetObject operation to the IAM role in the instance profile.
For more information, see Managing Elastic Beanstalk instance profiles.

3. Include the Amazon S3 bucket information in the Authentication parameter in your
Dockerrun.aws.json file.

The following example shows the use of an authentication file named mydockercfg in a
bucket named amzn-s3-demo-bucket to use a private image in a third-party registry. For the
correct version number for AWSEBDockerrunVersion, see the note that follows the example.

{
 "AWSEBDockerrunVersion": "version-no",
 "Authentication": {
 "Bucket": "amzn-s3-demo-bucket",
 "Key": "mydockercfg"
 },
 "Image": {
 "Name": "quay.io/johndoe/private-image",
 "Update": "true"

Dockerrun.aws.json file 1268

https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/

Amazon Elastic Beanstalk Developer Guide

 },
 "Ports": [
 {
 "ContainerPort": "1234"
 }
],
 "Volumes": [
 {
 "HostDirectory": "/var/app/mydb",
 "ContainerDirectory": "/etc/mysql"
 }
],
 "Logging": "/var/log/nginx"
}

Dockerrun.aws.json versions

The AWSEBDockerrunVersion parameter indicates the version of the
Dockerrun.aws.json file.

• The Docker AL2 and AL2023 platforms use the following versions of the file.

• Dockerrun.aws.json v3 — environments that use Docker Compose.

• Dockerrun.aws.json v1 — environments that do not use Docker Compose.

• ECS running on Amazon Linux 2 and ECS running on AL2023 uses the
Dockerrun.aws.json v2 file. The retired platform ECS-The Multicontainer Docker
Amazon Linux AMI (AL1) also used this same version.

After Elastic Beanstalk can authenticate with the online registry that hosts the private repository,
your images can be deployed and pulled.

Configuring Elastic Beanstalk Docker environments

This chapter explains additional configuration information for all of the supported Docker platform
branches, including the ECS managed Docker platform branch. Unless a specific platform branch
or platform branch component is identified in a section, it applies to all environments that are
running supported Docker and ECS manged Docker platforms.

Environment configuration 1269

Amazon Elastic Beanstalk Developer Guide

Note

If your Elastic Beanstalk environment uses an Amazon Linux AMI Docker platform version
(preceding Amazon Linux 2), be sure to read the additional information in the section called
“Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)”.

Sections

• Configuring software in Docker environments

• Referencing environment variables in containers

• Using interpolate feature for environment variables with Docker Compose

• Generating logs for enhanced health reporting with Docker Compose

• Docker container customized logging with Docker Compose

• Docker images

• Configuring managed updates for Docker environments

• Docker configuration namespaces

• Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)

Configuring software in Docker environments

You can use the Elastic Beanstalk console to configure the software running on your environment's
instances.

To configure your Docker environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Make necessary configuration changes.

6. To save the changes choose Apply at the bottom of the page.

Configuring software in Docker environments 1270

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

For information about configuring software settings in any environment, see the section called
“Environment variables and software settings”. The following sections cover Docker specific
information.

Container options

The Container options section has platform-specific options. For Docker environments, it lets you
choose whether or not your environment includes the NGINX proxy server.

Environments with Docker Compose

If you manage your Docker environment with Docker Compose, Elastic Beanstalk assumes that you
run a proxy server as a container. Therefore it defaults to None for the Proxy server setting, and
Elastic Beanstalk does not provide an NGINX configuration.

Note

Even if you select NGINX as a proxy server, this setting is ignored in an environment with
Docker Compose. The Proxy server setting still defaults to None.

Since the NGINX web server proxy is disabled for the Docker on Amazon Linux 2 platform with
Docker Compose, you must follow the instructions for generating logs for enhanced health
reporting. For more information, see Generating logs for enhanced health reporting with Docker
Compose.

Environment properties (environment variables)

You can use environment properties, (also known as environment variables), to pass values, such
endpoints, debug settings, and other information to your application. The Environment variables
section of the console lets you specify environment variables on the EC2 instances that are running
your application. Environment variables are passed in as key-value pairs to the application.

Your application code running in a container can refer to an environment variable by name and
read its value. The source code that reads these environment variables will vary by programming
language. You can find instructions for reading environment variable values in the programming
languages that Elastic Beanstalk managed platforms support in the respective platform topic. For a
list of links to these topics, see the section called “Environment variables and software settings”.

Secrets and parameters in Elastic Beanstalk environment variables

Configuring software in Docker environments 1271

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk offers the ability to reference Amazon Secrets Manager and Amazon Systems
Manager Parameter Store data in environment variables. This is a secure option for your
application to natively access secrets and parameters stored by these services without having to
manage API calls to them. Your Elastic Beanstalk Docker and ECS managed Docker platforms must
be a version released on or after March 26, 2025 to support this feature. For more information
about using environment variables to reference secrets, see Fetching secrets and parameters to
Elastic Beanstalk environment variables.

Environments with Docker Compose

If you manage your Docker environment with Docker Compose, you must make some additional
configuration to retrieve the environment variables in the containers. In order for the executables
running in your container to access these environment variables, you must reference them in
the docker-compose.yml. For more information see Referencing environment variables in
containers.

Referencing environment variables in containers

If you are using the Docker Compose tool on the Amazon Linux 2 Docker platform, Elastic
Beanstalk generates a Docker Compose environment file called .env in the root directory of your
application project. This file stores the environment variables you configured for Elastic Beanstalk.

Note

If you include a .env file in your application bundle, Elastic Beanstalk will not generate an
.env file.

In order for a container to reference the environment variables you define in Elastic Beanstalk, you
must follow one or both of these configuration approaches.

• Add the .env file generated by Elastic Beanstalk to the env_file configuration option in the
docker-compose.yml file.

• Directly define the environment variables in the docker-compose.yml file.

The following files provide an example. The sample docker-compose.yml file demonstrates both
approaches.

Referencing environment variables in containers 1272

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-03-26-windows.html

Amazon Elastic Beanstalk Developer Guide

• If you define environment properties DEBUG_LEVEL=1 and LOG_LEVEL=error, Elastic
Beanstalk generates the following .env file for you:

DEBUG_LEVEL=1
LOG_LEVEL=error

• In this docker-compose.yml file, the env_file configuration option points to the .env file,
and it also defines the environment variable DEBUG=1 directly in the docker-compose.yml file.

services:
 web:
 build: .
 environment:
 - DEBUG=1
 env_file:
 - .env

Notes

• If you set the same environment variable in both files, the variable defined in the
docker-compose.yml file has higher precedence than the variable defined in the .env
file.

• Be careful to not leave spaces between the equal sign (=) and the value assigned to your
variable in order to prevent spaces from being added to the string.

To learn more about environment variables in Docker Compose, see Environment variables in
Compose

Using interpolate feature for environment variables with Docker
Compose

Starting with the July 28, 2023 platform release, the Docker Amazon Linux 2 platform branch
offers the Docker Compose interpolation feature. With this feature, values in a Compose file can
be set by variables and interpolated at runtime. For more information about this feature, see
Interpolation on the Docker documentation website.

Using interpolate feature for environment variables with Docker Compose 1273

https://docs.docker.com/compose/environment-variables/
https://docs.docker.com/compose/environment-variables/
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2023-07-28-al2.html
https://docs.docker.com/compose/compose-file/12-interpolation/

Amazon Elastic Beanstalk Developer Guide

Important

If you'd like to use this feature with your applications, be aware that you'll need to
implement an approach that uses platform hooks.
This is necessary due a mitigation that we implemented in the platform engine. This
mitigation ensures backward compatibility for customers that aren't aware of the new
interpolation feature and have existing applications that use environment variables with
the $ character. The updated platform engine escapes the interpolation by default by
replacing the $ character with $$ characters.

The following is an example of a platform hook script that you can set up to allow use of the
interpolation feature.

#!/bin/bash

: '
example data format in .env file
key1=value1
key2=value2
'
envfile="/var/app/staging/.env"
tempfile=$(mktemp)

while IFS= read -r line; do
 # split each env var string at '='
 split_str=(${line//=/ })
 if [${#split_str[@]} -eq 2]; then
 # replace '$$' with '$'
 replaced_str=${split_str[1]//\$\$/\$}
 # update the value of env var using ${replaced_str}
 line="${split_str[0]}=${replaced_str}"
 fi
 # append the updated env var to the tempfile
 echo "${line}" #"${tempfile}"
done < "${envfile}"
replace the original .env file with the tempfile
mv "${tempfile}" "${envfile}"

Place the platform hooks under both of these directories:

Using interpolate feature for environment variables with Docker Compose 1274

Amazon Elastic Beanstalk Developer Guide

• .platform/confighooks/predeploy/

• .platform/hooks/predeploy/

For more information, see Platform hooks in the Extending Linux platforms topic of this guide.

Generating logs for enhanced health reporting with Docker Compose

The Elastic Beanstalk health agent provides operating system and application health metrics for
Elastic Beanstalk environments. It relies on web server log formats that relay information in a
specific format.

Elastic Beanstalk assumes that you run a web server proxy as a container. As a result the NGINX
web server proxy is disabled for Docker environments running Docker Compose. You must
configure your server to write logs in the location and format that the Elastic Beanstalk health
agent uses. Doing so allows you to make full use of enhanced health reporting, even if the web
server proxy is disabled.

For instructions on how to do this, see Web server log configuration

Docker container customized logging with Docker Compose

In order to efficiently troubleshoot issues and monitor your containerized services, you can request
instance logs from Elastic Beanstalk through the environment management console or the EB CLI.
Instance logs are comprised of bundle logs and tail logs, combined and packaged to allow you to
view logs and recent events in an efficient and straightforward manner.

Elastic Beanstalk creates log directories on the container instance, one for each service defined in
the docker-compose.yml file, at /var/log/eb-docker/containers/<service name>. If
you are using the Docker Compose feature on the Amazon Linux 2 Docker platform, you can mount
these directories to the location within the container file structure where logs are written. When
you mount log directories for writing log data, Elastic Beanstalk can gather log data from these
directories.

If your applications are on a Docker platform that is not using Docker Compose, you can follow the
standard procedure desribed in Docker container customized logging with Docker Compose.

To configure your service's logs files to be retreivable tail files and bundle logs

1. Edit the docker-compose.yml file.

Generating logs for enhanced health reporting with Docker Compose 1275

Amazon Elastic Beanstalk Developer Guide

2. Under the volumes key for your service add a bind mount to be the following:

"${EB_LOG_BASE_DIR}/<service name>:<log directory inside container>

In the sample docker-compose.yml file below:

• nginx-proxy is <service name>

• /var/log/nginx is <log directory inside container>

services:
 nginx-proxy:
 image: "nginx"
 volumes:
 - "${EB_LOG_BASE_DIR}/nginx-proxy:/var/log/nginx"

• The var/log/nginx directory contains the logs for the nginx-proxy service in the container, and
it will be mapped to the /var/log/eb-docker/containers/nginx-proxy directory on the
host.

• All of the logs in this directory are now retrievable as bundle and tail logs through Elastic
Beanstalk's request instance logs functionality.

Notes

• ${EB_LOG_BASE_DIR} is an environment variable set by Elastic Beanstalk with the value /
var/log/eb-docker/containers.

• Elastic Beanstalk automatically creates the /var/log/eb-docker/
containers/<service name> directory for each service in the docker-
compose.ymlfile.

Docker images

The Docker and ECS managed Docker platform branches for Elastic Beanstalk support the use of
Docker images stored in a public or private online image repository.

Docker images 1276

Amazon Elastic Beanstalk Developer Guide

Specify images by name in Dockerrun.aws.json. Note these conventions:

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for
example, quay.io/assemblyline/ubuntu or account-id.dkr.ecr.us-
west-2.amazonaws.com.cn/ubuntu:trusty).

For environments using the Docker platform only, you can also build your own image during
environment creation with a Dockerfile. See Building custom images with a Dockerfile for details.
The ECS managed Docker platform doesn't support this functionality.

Configuring managed updates for Docker environments

With managed platform updates, you can configure your environment to automatically update to
the latest version of a platform on a schedule.

In the case of Docker environments, you might want to decide if an automatic platform update
should happen across Docker versions—when the new platform version includes a new Docker
version. Elastic Beanstalk supports managed platform updates across Docker versions when
updating from an environment running a Docker platform version newer than 2.9.0. When a
new platform version includes a new version of Docker, Elastic Beanstalk increments the minor
update version number. Therefore, to allow managed platform updates across Docker versions,
enable managed platform updates for both minor and patch version updates. To prevent managed
platform updates across Docker versions, enable managed platform updates to apply patch version
updates only.

For example, the following configuration file enables managed platform updates at 9:00 AM UTC
each Tuesday for both minor and patch version updates, thereby allowing for managed updates
across Docker versions:

Example .ebextensions/managed-platform-update.config

option_settings:
 aws:elasticbeanstalk:managedactions:
 ManagedActionsEnabled: true
 PreferredStartTime: "Tue:09:00"
 aws:elasticbeanstalk:managedactions:platformupdate:

Configuring managed updates for Docker environments 1277

Amazon Elastic Beanstalk Developer Guide

 UpdateLevel: minor

For environments running Docker platform versions 2.9.0 or earlier, Elastic Beanstalk never
performs managed platform updates if the new platform version includes a new Docker version.

Docker configuration namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be platform specific or apply to
all platforms in the Elastic Beanstalk service as a whole. Configuration options are organized into
namespaces.

Note

This information only applies to Docker environment that are not running Docker Compose.
This option has a different behavior with Docker environments that run Docker Compose.
For further information on proxy services with Docker Compose see Container options.

The Docker platform supports options in the following namespaces, in addition to the options
supported for all Elastic Beanstalk environments:

• aws:elasticbeanstalk:environment:proxy – Choose the proxy server for your
environment. Docker supports either running Nginx or no proxy server.

The following example configuration file configures a Docker environment to run no proxy server.

Example .ebextensions/docker-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: none

Docker configuration on Amazon Linux AMI (preceding Amazon Linux
2)

If your Elastic Beanstalk Docker environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Docker configuration namespaces 1278

Amazon Elastic Beanstalk Developer Guide

Using an authentication file for a private repository

This information is relevant to you if you are using images from a private repository. Beginning
with Docker version 1.7, the docker login command changed the name of the authentication file,
and the format of the file. Amazon Linux AMI Docker platform versions (preceding Amazon Linux 2)
require the older ~/.dockercfg format configuration file.

With Docker version 1.7 and later, the docker login command creates the authentication file in
~/.docker/config.json in the following format.

{
 "auths":{
 "server":{
 "auth":"key"
 }
 }
 }

With Docker version 1.6.2 and earlier, the docker login command creates the authentication file in
~/.dockercfg in the following format.

{
 "server" :
 {
 "auth" : "auth_token",
 "email" : "email"
 }
 }

To convert a config.json file, remove the outer auths key, add an email key, and flatten the
JSON document to match the old format.

On Amazon Linux 2 Docker platform versions, Elastic Beanstalk uses the newer authentication
file name and format. If you're using an Amazon Linux 2 Docker platform version, you can use the
authentication file that the docker login command creates without any conversion.

Configuring additional storage volumes

For improved performance on Amazon Linux AMI, Elastic Beanstalk configures two Amazon EBS
storage volumes for your Docker environment's Amazon EC2 instances. In addition to the root

Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2) 1279

Amazon Elastic Beanstalk Developer Guide

volume provisioned for all Elastic Beanstalk environments, a second 12GB volume named xvdcz is
provisioned for image storage on Docker environments.

If you need more storage space or increased IOPS for Docker images, you can customize
the image storage volume by using the BlockDeviceMapping configuration option in the
aws:autoscaling:launchconfiguration namespace.

For example, the following configuration file increases the storage volume's size to 100 GB with
500 provisioned IOPS:

Example .ebextensions/blockdevice-xvdcz.config

option_settings:
 aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: /dev/xvdcz=:100::io1:500

If you use the BlockDeviceMappings option to configure additional volumes for your
application, you should include a mapping for xvdcz to ensure that it is created. The following
example configures two volumes, the image storage volume xvdcz with default settings and an
additional 24 GB application volume named sdh:

Example .ebextensions/blockdevice-sdh.config

option_settings:
 aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: /dev/xvdcz=:12:true:gp2,/dev/sdh=:24

Note

When you change settings in this namespace, Elastic Beanstalk replaces all instances in
your environment with instances running the new configuration. See Configuration changes
for details.

Legacy platforms

This chapter lists content related to previous Docker platforms that are no longer supported by
Amazon Elastic Beanstalk. The topics listed here remain in this document as a reference for any
customers that used these features or components prior to their retirement.

Legacy platforms 1280

Amazon Elastic Beanstalk Developer Guide

Topics

• Migrating to Elastic Beanstalk Docker running on Amazon Linux 2 from Multi-container Docker
running on Amazon Linux

• Preconfigured Docker GlassFish containers on Elastic Beanstalk

Migrating to Elastic Beanstalk Docker running on Amazon Linux 2 from
Multi-container Docker running on Amazon Linux

Prior to the release of the ECS Running on 64bit Amazon Linux 2 platform branch, Elastic Beanstalk
offered an alternate migration path to Amazon Linux 2 for customers with environments based
on the Multi-container Docker running on 64bit Amazon Linux platform branch. This topic
describes that migration path, and remains in this document as a reference for any customers that
completed that migration path.

We now recommend that customers with environments based on the Multi-container Docker
running on 64bit Amazon Linux platform branch migrate to the ECS Running on 64bit Amazon Linux
2 platform branch. Unlike the alternate migration path, this approach continues to use Amazon
ECS to coordinate container deployments to ECS managed Docker environments. This aspect
allows a more straightforward approach. No changes to the source code are required, and the
same Dockerrun.aws.json v2 is supported. For more information, see Migrating your Elastic
Beanstalk application from ECS managed Multi-container Docker on AL1 to ECS on Amazon Linux
2023.

Legacy Migration from Multi-container Docker on Amazon Linux to the Docker Amazon Linux 2
platform branch

You can migrate your applications running on the Multi-container Docker platform on Amazon
Linux AMI to the Amazon Linux 2 Docker platform. The Multi-container Docker platform on
Amazon Linux AMI requires that you specify prebuilt application images to run as containers. After
migrating, you will no longer have this limitation, because the Amazon Linux 2 Docker platform
also allows Elastic Beanstalk to build your container images during deployment. Your applications
will continue to run in multi-container environments with the added benefits from the Docker
Compose tool.

(Legacy) Migrating to Docker running on Amazon Linux 2 1281

Amazon Elastic Beanstalk Developer Guide

Docker Compose is tool for defining and running multi-container Docker applications. To learn
more about Docker Compose and how to install it, see the Docker sites Overview of Docker
Compose and Install Docker Compose.

The docker-compose.yml file

The Docker Compose tool uses the docker-compose.yml file for configuration of your
application services. This file replaces your Dockerrun.aws.json v2 file in your application
project directory and application source bundle. You create the docker-compose.yml file
manually, and will find it helpful to reference your Dockerrun.aws.json v2 file for most of the
parameter values.

Below is an example of a docker-compose.yml file and the corresponding
Dockerrun.aws.json v2 file for the same application. For more information on the
docker-compose.yml file, see Compose file reference. For more information on the
Dockerrun.aws.json v2 file, see Dockerrun.aws.json v2.

docker-compose.yml Dockerrun.aws.json v2

version: '2.4'
services:
 php-app:
 image: "php:fpm"
 volumes:
 - "./php-app:/var/www/html:ro
"
 - "${EB_LOG_BASE_DIR}/php-app
:/var/log/sample-app"
 mem_limit: 128m
 environment:
 Container: PHP
 nginx-proxy:
 image: "nginx"
 ports:
 - "80:80"
 volumes:
 - "./php-app:/var/www/html:ro
"
 - "./proxy/conf.d:/etc/nginx/
conf.d:ro"

{
 "AWSEBDockerrunVersion": 2,
 "volumes": [
 {
 "name": "php-app",
 "host": {
 "sourcePath": "/var/app/
current/php-app"
 }
 },
 {
 "name": "nginx-proxy-conf",
 "host": {
 "sourcePath": "/var/app/
current/proxy/conf.d"
 }
 }
],
 "containerDefinitions": [
 {
 "name": "php-app",

(Legacy) Migrating to Docker running on Amazon Linux 2 1282

https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/compose-file/

Amazon Elastic Beanstalk Developer Guide

docker-compose.yml Dockerrun.aws.json v2

 - "${EB_LOG_BASE_DIR}/nginx-p
roxy:/var/log/nginx"
 mem_limit: 128m
 links:
 - php-app

 "image": "php:fpm",
 "environment": [
 {
 "name": "Container",
 "value": "PHP"
 }
],
 "essential": true,
 "memory": 128,
 "mountPoints": [
 {
 "sourceVolume": "php-app"
,
 "containerPath": "/var/www
/html",
 "readOnly": true
 }
]
 },
 {
 "name": "nginx-proxy",
 "image": "nginx",
 "essential": true,
 "memory": 128,
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80
 }
],
 "links": [
 "php-app"
],
 "mountPoints": [
 {
 "sourceVolume": "php-app"
,
 "containerPath": "/var/www
/html",
 "readOnly": true
 },
 {

(Legacy) Migrating to Docker running on Amazon Linux 2 1283

Amazon Elastic Beanstalk Developer Guide

docker-compose.yml Dockerrun.aws.json v2

 "sourceVolume": "nginx-pr
oxy-conf",
 "containerPath": "/etc/ngi
nx/conf.d",
 "readOnly": true
 },
 {
 "sourceVolume": "awseb-lo
gs-nginx-proxy",
 "containerPath": "/var/log
/nginx"
 }
]
 }
]
}

Additional Migration Considerations

The Docker Amazon Linux 2 platform and Multi-container Docker Amazon Linux AMI platform
implement environment properties differently. These two platforms also have different log
directories that Elastic Beanstalk creates for each of their containers. After you migrate from the
Amazon Linux AMI Multi-container Docker platform, you will need to be aware of these different
implementations for your new Amazon Linux 2 Docker platform environment.

Area Docker platform on Amazon Linux 2
with Docker Compose

Multi-container Docker platform on
Amazon Linux AMI

Environme
nt
properties

In order for your containers to access
environment properties you must
add a reference to the .env file in
the docker-compose.yml file.
Elastic Beanstalk generates the .env
file, listing each of the properties
as environment variables. For more

Elastic Beanstalk can directly pass
environment properties to the
container. Your code running in the
container can access these properties
as environment variables without any
additional configuration.

(Legacy) Migrating to Docker running on Amazon Linux 2 1284

Amazon Elastic Beanstalk Developer Guide

Area Docker platform on Amazon Linux 2
with Docker Compose

Multi-container Docker platform on
Amazon Linux AMI

information see Referencing environme
nt variables in containers.

Log
directories

For each container Elastic Beanstalk
creates a log directory called /var/
log/eb-docker/containe
rs/ <service name> (or ${EB_LOG_
BASE_DIR}/<service name>).
For more information see Docker
container customized logging with
Docker Compose.

For each container, Elastic Beanstalk
creates a log directory called /var/
log/containers/ <containe
rname> . For more information see
mountPoints field in Container
definition format.

Migration Steps

To migrate to the Amazon Linux 2 Docker platform

1. Create the docker-compose.yml file for your application, based on its existing
Dockerrun.aws.json v2 file. For more information see the above section The docker-
compose.yml file.

2. In your application project folder's root directory, replace the Dockerrun.aws.json v2 file
with the docker-compose.yml you just created.

Your directory structure should be as follows.

~/myApplication
|-- docker-compose.yml
|-- .ebextensions
|-- php-app
|-- proxy

3. Use the eb init command to configure your local directory for deployment to Elastic Beanstalk.

~/myApplication$ eb init -p docker application-name

4. Use the eb create command to create an environment and deploy your Docker image.

(Legacy) Migrating to Docker running on Amazon Linux 2 1285

Amazon Elastic Beanstalk Developer Guide

~/myApplication$ eb create environment-name

5. If your app is a web application, after your environment launches, use the eb open command
to view it in a web browser.

~/myApplication$ eb open environment-name

6. You can display the status of your newly created environment using the eb status command.

~/myApplication$ eb status environment-name

Preconfigured Docker GlassFish containers on Elastic Beanstalk

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully
supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

The Preconfigured Docker GlassFish platform branch that runs on the Amazon Linux AMI (AL1) is
no longer supported. To migrate your GlassFish application to a supported Amazon Linux 2023
platform, deploy GlassFish and your application code to an Amazon Linux 2023 Docker image. For
more information, see the following topic, the section called “Tutorial - GlassFish on Docker: path
to Amazon Linux 2023”.

Getting started with preconfigured Docker containers - on Amazon Linux AMI (preceding
Amazon Linux 2)

This section shows you how to develop an example application locally and then deploy your
application to Elastic Beanstalk with a preconfigured Docker container.

Set up your local development environment

For this walk-through we use a GlassFish example application.

(Legacy) Docker GlassFish containers 1286

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

To set up your environment

1. Create a new folder for the example application.

~$ mkdir eb-preconf-example
~$ cd eb-preconf-example

2. Download the example application code into the new folder.

~$ wget https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/samples/docker-
glassfish-v1_cn.zip
~$ unzip docker-glassfish-v1_cn.zip
~$ rm docker-glassfish-v1_cn.zip

Develop and test locally

To develop an example GlassFish application

1. Add a Dockerfile to your application’s root folder. In the file, specify the Amazon Elastic
Beanstalk Docker base image to be used to run your local preconfigured Docker container.
You'll later deploy your application to an Elastic Beanstalk Preconfigured Docker GlassFish
platform version. Choose the Docker base image that this platform version uses. To find out
the current Docker image of the platform version, see the Preconfigured Docker section of the
Amazon Elastic Beanstalk Supported Platforms page in the Amazon Elastic Beanstalk Platforms
guide.

Example ~/Eb-preconf-example/Dockerfile

For Glassfish 5.0 Java 8
FROM amazon/aws-eb-glassfish:5.0-al-onbuild-2.11.1

For more information about using a Dockerfile, see Preparing your Docker image for
deployment to Elastic Beanstalk.

2. Build the Docker image.

~/eb-preconf-example$ docker build -t my-app-image .

3. Run the Docker container from the image.

(Legacy) Docker GlassFish containers 1287

https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.dockerpreconfig

Amazon Elastic Beanstalk Developer Guide

Note

You must include the -p flag to map port 8080 on the container to the localhost port
3000. Elastic Beanstalk Docker containers always expose the application on port 8080
on the container. The -it flags run the image as an interactive process. The --rm flag
cleans up the container file system when the container exits. You can optionally include
the -d flag to run the image as a daemon.

$ docker run -it --rm -p 3000:8080 my-app-image

4. To view the example application, type the following URL into your web browser.

http://localhost:3000

Deploy to Elastic Beanstalk

After testing your application, you are ready to deploy it to Elastic Beanstalk.

To deploy your application to Elastic Beanstalk

1. In your application's root folder, rename the Dockerfile to Dockerfile.local. This step
is required for Elastic Beanstalk to use the Dockerfile that contains the correct instructions

(Legacy) Docker GlassFish containers 1288

Amazon Elastic Beanstalk Developer Guide

for Elastic Beanstalk to build a customized Docker image on each Amazon EC2 instance in your
Elastic Beanstalk environment.

Note

You do not need to perform this step if your Dockerfile includes instructions
that modify the platform version's base Docker image. You do not need to use a
Dockerfile at all if your Dockerfile includes only a FROM line to specify the
base image from which to build the container. In that situation, the Dockerfile is
redundant.

2. Create an application source bundle.

~/eb-preconf-example$ zip myapp.zip -r *

3. Open the Elastic Beanstalk console with this preconfigured link:
console.amazonaws.cn/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

4. For Platform, under Preconfigured – Docker, choose Glassfish.

5. For Application code, choose Upload your code, and then choose Upload.

6. Choose Local file, choose Browse, and then open the application source bundle you just
created.

7. Choose Upload.

8. Choose Review and launch.

9. Review the available settings, and then choose Create app.

10. When the environment is created, you can view the deployed application. Choose the
environment URL that is displayed at the top of the console dashboard.

Deploying a GlassFish application to the Docker platform: a migration path to
Amazon Linux 2023

The goal of this tutorial is to provide customers using the Preconfigured Docker GlassFish platform
(based on Amazon Linux AMI) with a migration path to Amazon Linux 2023. You can migrate your
GlassFish application to Amazon Linux 2023 by deploying GlassFish and your application code to
an Amazon Linux 2023 Docker image.

(Legacy) Docker GlassFish containers 1289

https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.amazonaws.cn/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

Amazon Elastic Beanstalk Developer Guide

The tutorial walks you through using the Amazon Elastic Beanstalk Docker platform to deploy an
application based on the Java EE GlassFish application server to an Elastic Beanstalk environment.

We demonstrate two approaches to building a Docker image:

• Simple – Provide your GlassFish application source code and let Elastic Beanstalk build and
run a Docker image as part of provisioning your environment. This is easy to set up, at a cost of
increased instance provisioning time.

• Advanced – Build a custom Docker image containing your application code and dependencies,
and provide it to Elastic Beanstalk to use in your environment. This approach is slightly more
involved, and decreases the provisioning time of instances in your environment.

Prerequisites

This tutorial assumes that you have some knowledge of basic Elastic Beanstalk operations, the
Elastic Beanstalk command line interface (EB CLI), and Docker. If you haven't already, follow the
instructions in Learn how to get started with Elastic Beanstalk to launch your first Elastic Beanstalk
environment. This tutorial uses the EB CLI, but you can also create environments and upload
applications by using the Elastic Beanstalk console.

To follow this tutorial, you will also need the following Docker components:

• A working local installation of Docker. For more information, see Get Docker on the Docker
documentation website.

• Access to Docker Hub. You will need to create a Docker ID to access the Docker Hub. For more
information, see Share the application on the Docker documentation website.

To learn more about configuring Docker environments on Elastic Beanstalk platforms, see
Preparing your Docker image for deployment to Elastic Beanstalk in this same chapter.

Simple example: provide your application code

This is an easy way to deploy your GlassFish application. You provide your application source code
together with the Dockerfile included in this tutorial. Elastic Beanstalk builds a Docker image
that includes your application and the GlassFish software stack. Then Elastic Beanstalk runs the
image on your environment instances.

(Legacy) Docker GlassFish containers 1290

https://www.oracle.com/middleware/technologies/glassfish-server.html
https://docs.docker.com/install/
https://docs.docker.com/get-started/04_sharing_app/

Amazon Elastic Beanstalk Developer Guide

An issue with this approach is that Elastic Beanstalk builds the Docker image locally whenever it
creates an instance for your environment. The image build increases instance provisioning time.
This impact isn't limited to initial environment creation—it happens during scale-out actions too.

To launch an environment with an example GlassFish application

1. Download the example docker-glassfish-al2-v1.zip, and then expand the .zip file
into a directory in your development environment.

~$ curl https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/samples/docker-
glassfish-al2-v1.zip --output docker-glassfish-al2-v1.zip
~$ mkdir glassfish-example
~$ cd glassfish-example
~/glassfish-example$ unzip ../docker-glassfish-al2-v1.zip

Your directory structure should be as follows.

~/glassfish-example
|-- Dockerfile
|-- Dockerrun.aws.json
|-- glassfish-start.sh
|-- index.jsp
|-- META-INF
| |-- LICENSE.txt
| |-- MANIFEST.MF
| `-- NOTICE.txt
|-- robots.txt
`-- WEB-INF
 `-- web.xml

The following files are key to building and running a Docker container in your environment:

• Dockerfile – Provides instructions that Docker uses to build an image with your
application and required dependencies.

• glassfish-start.sh – A shell script that the Docker image runs to start your application.

• Dockerrun.aws.json – Provides a logging key, to include the GlassFish application server
log in log file requests. If you aren't interested in GlassFish logs, you can omit this file.

2. Configure your local directory for deployment to Elastic Beanstalk.

(Legacy) Docker GlassFish containers 1291

Amazon Elastic Beanstalk Developer Guide

~/glassfish-example$ eb init -p docker glassfish-example

3. (Optional) Use the eb local run command to build and run your container locally.

~/glassfish-example$ eb local run --port 8080

Note

To learn more about the eb local command, see the section called “eb local”. The
command isn't supported on Windows. Alternatively, you can build and run your
container with the docker build and docker run commands. For more information, see
the Docker documentation.

4. (Optional) While your container is running, use the eb local open command to view your
application in a web browser. Alternatively, open http://localhost:8080/ in a web browser.

~/glassfish-example$ eb local open

5. Use the eb create command to create an environment and deploy your application.

~/glassfish-example$ eb create glassfish-example-env

6. After your environment launches, use the eb open command to view it in a web browser.

~/glassfish-example$ eb open

When you're done working with the example, terminate the environment and delete related
resources.

~/glassfish-example$ eb terminate --all

Advanced example: provide a prebuilt Docker image

This is a more advanced way to deploy your GlassFish application. Building on the first example,
you create a Docker image containing your application code and the GlassFish software stack,
and push it to Docker Hub. After you've done this one-time step, you can launch Elastic Beanstalk
environments based on your custom image.

(Legacy) Docker GlassFish containers 1292

https://docs.docker.com/
http://localhost:8080/

Amazon Elastic Beanstalk Developer Guide

When you launch an environment and provide your Docker image, instances in your environment
download and use this image directly and don't need to build a Docker image. Therefore, instance
provisioning time is decreased.

Notes

• The following steps create a publicly available Docker image.

• You will use Docker commands from your local Docker installation, along with your
Docker Hub credentials. For more information, see the preceding Prerequisites section in
this topic.

To launch an environment with a prebuilt GlassFish application Docker image

1. Download and expand the example docker-glassfish-al2-v1.zip as in the previous
simple example. If you've completed that example, you can use the directory you already have.

2. Build a Docker image and push it to Docker Hub. Enter your Docker ID for docker-id to sign
in to Docker Hub.

~/glassfish-example$ docker build -t docker-id/beanstalk-glassfish-example:latest .
~/glassfish-example$ docker push docker-id/beanstalk-glassfish-example:latest

Note

Before pushing your image, you might need to run docker login. You will be prompted
for your Docker Hub credentials if you run the command without parameters.

3. Create an additional directory.

~$ mkdir glassfish-prebuilt
~$ cd glassfish-prebuilt

4. Copy the following example into a file named Dockerrun.aws.json.

Example ~/glassfish-prebuilt/Dockerrun.aws.json

{
 "AWSEBDockerrunVersion": "1",

(Legacy) Docker GlassFish containers 1293

Amazon Elastic Beanstalk Developer Guide

 "Image": {
 "Name": "docker-username/beanstalk-glassfish-example"
 },
 "Ports": [
 {
 "ContainerPort": 8080,
 "HostPort": 8080
 }
],
 "Logging": "/usr/local/glassfish5/glassfish/domains/domain1/logs"
}

5. Configure your local directory for deployment to Elastic Beanstalk.

~/glassfish-prebuilt$ eb init -p docker glassfish-prebuilt$

6. (Optional) Use the eb local run command to run your container locally.

~/glassfish-prebuilt$ eb local run --port 8080

7. (Optional) While your container is running, use the eb local open command to view your
application in a web browser. Alternatively, open http://localhost:8080/ in a web browser.

~/glassfish-prebuilt$ eb local open

8. Use the eb create command to create an environment and deploy your Docker image.

~/glassfish-prebuilt$ eb create glassfish-prebuilt-env

9. After your environment launches, use the eb open command to view it in a web browser.

~/glassfish-prebuilt$ eb open

When you're done working with the example, terminate the environment and delete related
resources.

~/glassfish-prebuilt$ eb terminate --all

(Legacy) Docker GlassFish containers 1294

http://localhost:8080/

Amazon Elastic Beanstalk Developer Guide

Monitoring environments in Elastic Beanstalk

With Elastic Beanstalk health monitoring, you can verify application availability and create alerts
that activate when metrics exceed your thresholds. You can use Elastic Beanstalk health monitoring
in both the console and command line to track your environment's status.

Topics

• Monitoring environment health in the Amazon management console

• Using the EB CLI to monitor environment health

• Basic health reporting

• Enhanced health reporting and monitoring in Elastic Beanstalk

• Manage alarms

• Viewing an Elastic Beanstalk environment's change history

• Viewing an Elastic Beanstalk environment's event stream

• Listing and connecting to server instances

• Viewing logs from Amazon EC2 instances in your Elastic Beanstalk environment

Monitoring environment health in the Amazon management
console

You can access operational information about your application from the Elastic Beanstalk console.
The console displays your environment's status and application health at a glance. In the console's
Environments page and in each application's page, the environments on the list are color-coded to
indicate status.

To monitor an environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Monitoring.

Monitoring console 1295

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

The Monitoring page shows you overall statistics about your environment, such as CPU utilization
and average latency. In addition to the overall statistics, you can view monitoring graphs that show
resource usage over time. You can click any of the graphs to view more detailed information.

Note

By default, only basic CloudWatch metrics are enabled, which return data in five-minute
periods. You can enable more granular one-minute CloudWatch metrics by editing your
environment's configuration settings.

Monitoring graphs

The Monitoring page shows an overview of health-related metrics for your environment. This
includes the default set of metrics provided by Elastic Load Balancing and Amazon EC2, and graphs
that show how the environment's health has changed over time.

The bar above the graphs provides a variety of time intervals for you to select. For example, select
1w to display information that spans over the last week. Or select 3h to display information that
spans over the last three hours.

For a greater variety of time interval selections, choose Custom. From here you have two range
options: Absolute or Relative. The Absolute option allows you to specify a specific date range, such
as January 1, 2023 to June 30, 2023. The Relative option allows to select an integer with a specific
time unit: Minutes, Hours, Days, Weeks, or Months. Examples include 10 Hours, 10 Days, and 10
Months.

Monitoring graphs 1296

Amazon Elastic Beanstalk Developer Guide

Customizing the monitoring console

To create and view custom metrics you must use Amazon CloudWatch. With CloudWatch you can
create custom dashboards to monitor your resources in a single view. Select Add to dashboard
to navigate to the Amazon CloudWatch console from the Monitoring page. Amazon CloudWatch
provides you the option to create a new dashboard or select an existing one. For more information,
see Using Amazon CloudWatch dashboards in the Amazon CloudWatch User Guide.

Customizing the monitoring console 1297

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html

Amazon Elastic Beanstalk Developer Guide

Elastic Load Balancing and Amazon EC2 metrics are enabled for all environments.

With enhanced health, the EnvironmentHealth metric is enabled, and a graph is added to the
monitoring console automatically. Enhanced health also adds the Health page to the management
console. For a list of available enhanced health metrics, see Publishing Amazon CloudWatch
custom metrics for an environment.

Using the EB CLI to monitor environment health

The Elastic Beanstalk Command Line Interface (EB CLI) is a command line tool for managing
Amazon Elastic Beanstalk environments. You also can use the EB CLI to monitor your environment's
health in real time and with more granularity than is currently available in the Elastic Beanstalk
console

After installing and configuring the EB CLI, you can launch a new environment and deploy your
code to it with the eb create command. If you already have an environment that you created in the
Elastic Beanstalk console, you can attach the EB CLI to it by running eb init in a project folder and
following the prompts (the project folder can be empty).

Monitoring health with CLI 1298

https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/elb-metricscollected.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html

Amazon Elastic Beanstalk Developer Guide

Important

Ensure that you are using the latest version of the EB CLI by running pip install with
the --upgrade option:

$ sudo pip install --upgrade awsebcli

For complete EB CLI installation instructions, see Install EB CLI with setup script
(recommended).

To use the EB CLI to monitor your environment's health, you must first configure a local project
folder by running eb init and following the prompts. For complete instructions, see Configure the
EB CLI.

If you already have an environment running in Elastic Beanstalk and want to use the EB CLI to
monitor its health, follow these steps to attach it to the existing environment.

To attach the EB CLI to an existing environment

1. Open a command line terminal and navigate to your user folder.

2. Create and open a new folder for your environment.

3. Run the eb init command, and then choose the application and environment whose health you
want to monitor. If you have only one environment running the application you choose, the EB
CLI will select it automatically and you won't need to choose the environment, as shown in the
following example.

~/project$ eb init
Select an application to use
1) elastic-beanstalk-example
2) [Create new Application]
(default is 2): 1
Select the default environment.
You can change this later by typing "eb use [environment_name]".
1) elasticBeanstalkEx2-env
2) elasticBeanstalkExa-env
(default is 1): 1

Monitoring health with CLI 1299

Amazon Elastic Beanstalk Developer Guide

To monitor health by using the EB CLI

1. Open a command line and navigate to your project folder.

2. Run the eb health command to display the health status of the instances in your environment.
In this example, there are five instances running in a Linux environment.

~/project $ eb health
 elasticBeanstalkExa-env Ok
 2015-07-08 23:13:20
WebServer
 Ruby 2.1 (Puma)
 total ok warning degraded severe info pending unknown
 5 5 0 0 0 0 0 0

 instance-id status cause
 health
 Overall Ok
 i-d581497d Ok
 i-d481497c Ok
 i-136e00c0 Ok
 i-126e00c1 Ok
 i-8b2cf575 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75
 p50 p10 requests
 Overall 671.8 100.0 0.0 0.0 0.0 0.003 0.002 0.001
 0.001 0.000
 i-d581497d 143.0 1430 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-d481497c 128.8 1288 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-136e00c0 125.4 1254 0 0 0 0.004 0.002 0.001
 0.001 0.000
 i-126e00c1 133.4 1334 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-8b2cf575 141.2 1412 0 0 0 0.003 0.002 0.001
 0.001 0.000

 instance-id type az running load 1 load 5 user% nice%
 system% idle% iowait% cpu
 i-d581497d t2.micro 1a 12 mins 0.0 0.04 6.2 0.0
 1.0 92.5 0.1

Monitoring health with CLI 1300

Amazon Elastic Beanstalk Developer Guide

 i-d481497c t2.micro 1a 12 mins 0.01 0.09 5.9 0.0
 1.6 92.4 0.1
 i-136e00c0 t2.micro 1b 12 mins 0.15 0.07 5.5 0.0
 0.9 93.2 0.0
 i-126e00c1 t2.micro 1b 12 mins 0.17 0.14 5.7 0.0
 1.4 92.7 0.1
 i-8b2cf575 t2.micro 1c 1 hour 0.19 0.08 6.5 0.0
 1.2 92.1 0.1

 instance-id status id version ago
 deployments
 i-d581497d Deployed 1 Sample Application 12 mins
 i-d481497c Deployed 1 Sample Application 12 mins
 i-136e00c0 Deployed 1 Sample Application 12 mins
 i-126e00c1 Deployed 1 Sample Application 12 mins
 i-8b2cf575 Deployed 1 Sample Application 1 hour

In this example, there is a single instance running in a Windows environment.

~/project $ eb health
 WindowsSampleApp-env Ok
 2018-05-22 17:33:19
WebServer IIS 10.0 running on 64bit
 Windows Server 2016/2.2.0
 total ok warning degraded severe info pending unknown
 1 1 0 0 0 0 0 0

 instance-id status cause
 health
 Overall Ok
 i-065716fba0e08a351 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90
 p75 p50 p10 requests
 Overall 13.7 100.0 0.0 0.0 0.0 1.403 0.970
 0.710 0.413 0.079
 i-065716fba0e08a351 2.4 100.0 0.0 0.0 0.0 1.102* 0.865
 0.601 0.413 0.091

 instance-id type az running % user time % privileged
 time % idle time cpu
 i-065716fba0e08a351 t2.large 1b 4 hours 0.2
 0.1 99.7

Monitoring health with CLI 1301

Amazon Elastic Beanstalk Developer Guide

 instance-id status id version ago
 deployments
 i-065716fba0e08a351 Deployed 2 Sample Application 4 hours

Reading the output

The output displays the name of the environment, the environment's overall health, and the
current date at the top of the screen.

elasticBeanstalkExa-env Ok
 2015-07-08 23:13:20

The next three lines display the type of environment ("WebServer" in this case), the configuration
(Ruby 2.1 with Puma), and a breakdown of how many instances are in each of the seven states.

WebServer
 Ruby 2.1 (Puma)
 total ok warning degraded severe info pending unknown
 5 5 0 0 0 0 0 0

The rest of the output is split into four sections. The first displays the status and the cause of the
status for the environment overall, and then for each instance. The following example shows two
instances in the environment with a status of Info and a cause indicating that a deployment has
started.

 instance-id status cause
 health
 Overall Ok
 i-d581497d Info Performing application deployment (running for 3 seconds)
 i-d481497c Info Performing application deployment (running for 3 seconds)
 i-136e00c0 Ok
 i-126e00c1 Ok
 i-8b2cf575 Ok

For information about health statuses and colors, see Health colors and statuses.

The requests section displays information from the web server logs on each instance. In this
example, each instance is taking requests normally and there are no errors.

Reading the output 1302

Amazon Elastic Beanstalk Developer Guide

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75 p50
 p10 requests
 Overall 13.7 100.0 0.0 0.0 0.0 1.403 0.970 0.710 0.413
 0.079
 i-d581497d 2.4 100.0 0.0 0.0 0.0 1.102* 0.865 0.601 0.413
 0.091
 i-d481497c 2.7 100.0 0.0 0.0 0.0 0.842* 0.788 0.480 0.305
 0.062
 i-136e00c0 4.1 100.0 0.0 0.0 0.0 1.520* 1.088 0.883 0.524
 0.104
 i-126e00c1 2.2 100.0 0.0 0.0 0.0 1.334* 0.791 0.760 0.344
 0.197
 i-8b2cf575 2.3 100.0 0.0 0.0 0.0 1.162* 0.867 0.698 0.477
 0.076

The cpu section shows operating system metrics for each instance. The output differs by operating
system. Here is the output for Linux environments.

 instance-id type az running load 1 load 5 user% nice% system%
 idle% iowait% cpu
 i-d581497d t2.micro 1a 12 mins 0.0 0.03 0.2 0.0 0.0
 99.7 0.1
 i-d481497c t2.micro 1a 12 mins 0.0 0.03 0.3 0.0 0.0
 99.7 0.0
 i-136e00c0 t2.micro 1b 12 mins 0.0 0.04 0.1 0.0 0.0
 99.9 0.0
 i-126e00c1 t2.micro 1b 12 mins 0.01 0.04 0.2 0.0 0.0
 99.7 0.1
 i-8b2cf575 t2.micro 1c 1 hour 0.0 0.01 0.2 0.0 0.1
 99.6 0.1

Here is the output for Windows environments.

 instance-id type az running % user time % privileged time %
 idle time
 i-065716fba0e08a351 t2.large 1b 4 hours 0.2 0.0
 99.8

For information about the server and operating system metrics shown, see Instance metrics.

Reading the output 1303

Amazon Elastic Beanstalk Developer Guide

The final section, deployments, shows the deployment status of each instance. If a rolling
deployment fails, you can use the deployment ID, status, and version label shown to identify
instances in your environment that are running the wrong version.

 instance-id status id version ago
 deployments
 i-d581497d Deployed 1 Sample Application 12 mins
 i-d481497c Deployed 1 Sample Application 12 mins
 i-136e00c0 Deployed 1 Sample Application 12 mins
 i-126e00c1 Deployed 1 Sample Application 12 mins
 i-8b2cf575 Deployed 1 Sample Application 1 hour

Interactive health view

The eb health command displays a snapshot of your environment's health. To refresh the displayed
information every 10 seconds, use the --refresh option.

$ eb health --refresh
 elasticBeanstalkExa-env Ok
 2015-07-09 22:10:04 (1 secs)
WebServer
 Ruby 2.1 (Puma)
 total ok warning degraded severe info pending unknown
 5 5 0 0 0 0 0 0

 instance-id status cause
 health
 Overall Ok
 i-bb65c145 Ok Application deployment completed 35 seconds ago and took 26
 seconds
 i-ba65c144 Ok Application deployment completed 17 seconds ago and took 25
 seconds
 i-f6a2d525 Ok Application deployment completed 53 seconds ago and took 26
 seconds
 i-e8a2d53b Ok Application deployment completed 32 seconds ago and took 31
 seconds
 i-e81cca40 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75 p50
 p10 requests
 Overall 671.8 100.0 0.0 0.0 0.0 0.003 0.002 0.001 0.001
 0.000

Interactive health view 1304

Amazon Elastic Beanstalk Developer Guide

 i-bb65c145 143.0 1430 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-ba65c144 128.8 1288 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-f6a2d525 125.4 1254 0 0 0 0.004 0.002 0.001 0.001
 0.000
 i-e8a2d53b 133.4 1334 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-e81cca40 141.2 1412 0 0 0 0.003 0.002 0.001 0.001
 0.000

 instance-id type az running load 1 load 5 user% nice% system%
 idle% iowait% cpu
 i-bb65c145 t2.micro 1a 12 mins 0.0 0.03 0.2 0.0 0.0
 99.7 0.1
 i-ba65c144 t2.micro 1a 12 mins 0.0 0.03 0.3 0.0 0.0
 99.7 0.0
 i-f6a2d525 t2.micro 1b 12 mins 0.0 0.04 0.1 0.0 0.0
 99.9 0.0
 i-e8a2d53b t2.micro 1b 12 mins 0.01 0.04 0.2 0.0 0.0
 99.7 0.1
 i-e81cca40 t2.micro 1c 1 hour 0.0 0.01 0.2 0.0 0.1
 99.6 0.1

 instance-id status id version ago
 deployments
 i-bb65c145 Deployed 1 Sample Application 12 mins
 i-ba65c144 Deployed 1 Sample Application 12 mins
 i-f6a2d525 Deployed 1 Sample Application 12 mins
 i-e8a2d53b Deployed 1 Sample Application 12 mins
 i-e81cca40 Deployed 1 Sample Application 1 hour

 (Commands: Help,Quit, # # # #)

This example shows an environment that has recently been scaled up from one to five instances.
The scaling operation succeeded, and all instances are now passing health checks and are ready to
take requests. In interactive mode, the health status updates every 10 seconds. In the upper-right
corner, a timer ticks down to the next update.

In the lower-left corner, the report displays a list of options. To exit interactive mode, press Q. To
scroll, press the arrow keys. To see a list of additional commands, press H.

Interactive health view 1305

Amazon Elastic Beanstalk Developer Guide

Interactive health view options

When viewing environment health interactively, you can use keyboard keys to adjust the view and
tell Elastic Beanstalk to replace or reboot individual instances. To see a list of available commands
while viewing the health report in interactive mode, press H .

 up,down,home,end Scroll vertically
 left,right Scroll horizontally
 F Freeze/unfreeze data
 X Replace instance
 B Reboot instance
 <,> Move sort column left/right
 -,+ Sort order descending/ascending
 P Save health snapshot data file
 Z Toggle color/mono mode
 Q Quit this program

 Views
 1 All tables/split view
 2 Status Table
 3 Request Summary Table
 4 CPU%/Load Table
 H This help menu

(press Q or ESC to return)

Basic health reporting

This topic explains the functionality offered by Elastic Beanstalk basic health.

Amazon Elastic Beanstalk uses information from multiple sources to determine if your environment
is available and processing requests from the Internet. An environment's health is represented by
one of four colors, and is displayed on the environment overview page of the Elastic Beanstalk
console. It's also available from the DescribeEnvironments API and by calling eb status with the EB
CLI.

The basic health reporting system provides information about the health of instances in an Elastic
Beanstalk environment based on health checks performed by Elastic Load Balancing for load-
balanced environments, or Amazon Elastic Compute Cloud for single-instance environments.

Interactive health view options 1306

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeEnvironments.html

Amazon Elastic Beanstalk Developer Guide

In addition to checking the health of your EC2 instances, Elastic Beanstalk also monitors the other
resources in your environment and reports missing or incorrectly configured resources that can
cause your environment to become unavailable to users.

Metrics gathered by the resources in your environment is published to Amazon CloudWatch in
five minute intervals. This includes operating system metrics from EC2, request metrics from
Elastic Load Balancing. You can view graphs based on these CloudWatch metrics on the Monitoring
page of the environment console. For basic health, these metrics are not used to determine an
environment's health.

Topics

• Health colors

• Elastic Load Balancing health checks

• Single instance and worker tier environment health checks

• Additional checks

• Amazon CloudWatch metrics

Health colors

Elastic Beanstalk reports the health of a web server environment depending on how the
application running in it responds to the health check. Elastic Beanstalk uses one of four colors to
describe status, as shown in the following table:

Color Description

Grey Your environment is being updated.

Green Your environment has passed the most recent health check. At least
one instance in your environment is available and taking requests.

Yellow Your environment has failed one or more health checks. Some requests
to your environment are failing.

Red Your environment has failed three or more health checks, or an
environment resource has become unavailable. Requests are consisten
tly failing.

Health colors 1307

Amazon Elastic Beanstalk Developer Guide

These descriptions only apply to environments using basic health reporting. See Health colors and
statuses for details related to enhanced health.

Elastic Load Balancing health checks

In a load-balanced environment, Elastic Load Balancing sends a request to each instance in an
environment every 10 seconds to confirm that instances are healthy. By default, the load balancer
is configured to open a TCP connection on port 80. If the instance acknowledges the connection, it
is considered healthy.

You can choose to override this setting by specifying an existing resource in your application. If
you specify a path, such as /health, the health check URL is set to HTTP:80/health. The health
check URL should be set to a path that is always served by your application. If it is set to a static
page that is served or cached by the web server in front of your application, health checks will
not reveal issues with the application server or web container. For instructions on modifying your
health check URL, see Health check.

If a health check URL is configured, Elastic Load Balancing expects a GET request that it sends to
return a response of 200 OK. The application fails the health check if it fails to respond within
5 seconds or if it responds with any other HTTP status code. After 5 consecutive health check
failures, Elastic Load Balancing takes the instance out of service.

For more information about Elastic Load Balancing health checks, see Health Check in the Elastic
Load Balancing User Guide.

Note

Configuring a health check URL does not change the health check behavior of an
environment's Auto Scaling group. An unhealthy instance is removed from the load
balancer, but is not automatically replaced by Amazon EC2 Auto Scaling unless you
configure Amazon EC2 Auto Scaling to use the Elastic Load Balancing health check as a
basis for replacing instances. To configure Amazon EC2 Auto Scaling to replace instances
that fail an Elastic Load Balancing health check, see Auto Scaling health check setting for
your Elastic Beanstalk environment.

Elastic Load Balancing health checks 1308

https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/TerminologyandKeyConcepts.html#healthcheck

Amazon Elastic Beanstalk Developer Guide

Single instance and worker tier environment health checks

In a single instance or worker tier environment, Elastic Beanstalk determines the instance's health
by monitoring its Amazon EC2 instance status. Elastic Load Balancing health settings, including
HTTP health check URLs, cannot be used in these environment types.

For more information on Amazon EC2 instance status checks, see Monitoring Instances with Status
Checks in the Amazon EC2 User Guide.

Additional checks

In addition to Elastic Load Balancing health checks, Elastic Beanstalk monitors resources in your
environment and changes health status to red if they fail to deploy, are not configured correctly, or
become unavailable. These checks confirm that:

• The environment's Auto Scaling group is available and has a minimum of at least one instance.

• The environment's security group is available and is configured to allow incoming traffic on port
80.

• The environment CNAME exists and is pointing to the right load balancer.

• In a worker environment, the Amazon Simple Queue Service (Amazon SQS) queue is being polled
at least once every three minutes.

Amazon CloudWatch metrics

With basic health reporting, the Elastic Beanstalk service does not publish any metrics to Amazon
CloudWatch. The CloudWatch metrics used to produce graphs on the Monitoring page of the
environment console are published by the resources in your environment.

For example, EC2 publishes the following metrics for the instances in your environment's Auto
Scaling group:

CPUUtilization

Percentage of compute units currently in use.

DiskReadBytes, DiskReadOps, DiskWriteBytes, DiskWriteOps

Number of bytes read and written, and number of read and write operations.

Single instance and worker tier environment health checks 1309

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html

Amazon Elastic Beanstalk Developer Guide

NetworkIn, NetworkOut

Number of bytes sent and received.

Elastic Load Balancing publishes the following metrics for your environment's load balancer:

BackendConnectionErrors

Number of connection failures between the load balancer and environment instances.

HTTPCode_Backend_2XX, HTTPCode_Backend_4XX

Number of successful (2XX) and client error (4XX) response codes generated by instances in your
environment.

Latency

Number of seconds between when the load balancer relays a request to an instance and when
the response is received.

RequestCount

Number of completed requests.

These lists are not comprehensive. For a full list of metrics that can be reported for these resources,
see the following topics in the Amazon CloudWatch Developer Guide:

Metrics

Namespace Topic

AWS::ElasticLoadBalancing::LoadBalancer Elastic Load Balancing Metrics and Resources

AWS::AutoScaling::AutoScalingGroup Amazon Elastic Compute Cloud Metrics and
Resources

AWS::SQS::Queue Amazon SQS Metrics and Resources

AWS::RDS::DBInstance Amazon RDS Dimensions and Metrics

Amazon CloudWatch metrics 1310

https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/elb-metricscollected.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/sqs-metricscollected.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/rds-metricscollected.html

Amazon Elastic Beanstalk Developer Guide

Worker environment health metric

For worker environments only, the SQS daemon publishes a custom metric for environment
health to CloudWatch, where a value of 1 is Green. You can review the CloudWatch health metric
data in your account using the ElasticBeanstalk/SQSD namespace. The metric dimension is
EnvironmentName, and the metric name is Health. All instances publish their metrics to the
same namespace.

To enable the daemon to publish metrics, the environment's instance profile must have permission
to call cloudwatch:PutMetricData. This permission is included in the default instance profile.
For more information, see Managing Elastic Beanstalk instance profiles.

Enhanced health reporting and monitoring in Elastic Beanstalk

This section explains the functionality of the Elastic Beanstalk Enhanced Health feature.

Enhanced health reporting is a feature that you can enable on your environment to allow Amazon
Elastic Beanstalk to gather additional information about resources in your environment. Elastic
Beanstalk analyzes the information gathered to provide a better picture of overall environment
health and aid in the identification of issues that can cause your application to become unavailable.

In addition to changes in how health color works, enhanced health adds a status descriptor that
provides an indicator of the severity of issues observed when an environment is yellow or red.
When more information is available about the current status, you can choose the Causes button to
view detailed health information on the health page.

To provide detailed health information about the Amazon EC2 instances running in your
environment, Elastic Beanstalk includes a health agent in the Amazon Machine Image (AMI) for
each platform version that supports enhanced health. The health agent monitors web server logs
and system metrics and relays them to the Elastic Beanstalk service. Elastic Beanstalk analyzes
these metrics and data from Elastic Load Balancing and Amazon EC2 Auto Scaling to provide an
overall picture of an environment's health.

In addition to collecting and presenting information about your environment's resources, Elastic
Beanstalk monitors the resources in your environment for several error conditions and provides
notifications to help you avoid failures and resolve configuration issues. Factors that influence your
environment's health include the results of each request served by your application, metrics from
your instances' operating system, and the status of the most recent deployment.

Enhanced health reporting and monitoring 1311

Amazon Elastic Beanstalk Developer Guide

You can view health status in real time by using the environment overview page of the Elastic
Beanstalk console or the eb health command in the Elastic Beanstalk command line interface
(EB CLI). To record and track environment and instance health over time, you can configure
your environment to publish the information gathered by Elastic Beanstalk for enhanced health
reporting to Amazon CloudWatch as custom metrics. CloudWatch charges for custom metrics apply
to all metrics other than EnvironmentHealth, which is free of charge.

Windows platform notes

When you enable enhanced health reporting on a Windows Server environment, don't
change IIS logging configuration. For enhanced health monitoring to work correctly, IIS
logging must be configured with the W3C format and the ETW event only or Both log file
and ETW event log event destinations.
In addition, don't disable or stop the Elastic Beanstalk health agent Windows service on any
of your environment's instances. To collect and report enhanced health information on an
instance, this service should be enabled and running.

The first time you create an environment Elastic Beanstalk prompts you to create the required roles
and enables enhanced health reporting by default. Continue reading for details on how enhanced
health reporting works, or see Enabling Elastic Beanstalk enhanced health reporting to get started
using it right away.

Topics

• The Elastic Beanstalk health agent

• Factors in determining instance and environment health

• Health check rule customization

• Enhanced health roles

• Enhanced health authorization

• Enhanced health events

• Enhanced health reporting behavior during updates, deployments, and scaling

• Enabling Elastic Beanstalk enhanced health reporting

• Enhanced health monitoring with the environment management console

• Health colors and statuses

• Instance metrics

Enhanced health reporting and monitoring 1312

http://www.amazonaws.cn/cloudwatch/pricing/
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/configure-logging-in-iis

Amazon Elastic Beanstalk Developer Guide

• Configuring enhanced health rules for an environment

• Publishing Amazon CloudWatch custom metrics for an environment

• Using enhanced health reporting with the Elastic Beanstalk API

• Enhanced health log format

• Notifications and troubleshooting

The Elastic Beanstalk health agent

The Elastic Beanstalk health agent is a daemon process (or service, on Windows environments)
that runs on each Amazon EC2 instance in your environment, monitoring operating system and
application-level health metrics and reporting issues to Elastic Beanstalk. The health agent is
included in all platform versions starting with version 2.0 of each platform.

The health agent reports similar metrics to those published to CloudWatch by Amazon EC2 Auto
Scaling and Elastic Load Balancing as part of basic health reporting, including CPU load, HTTP
codes, and latency. The health agent, however, reports directly to Elastic Beanstalk, with greater
granularity and frequency than basic health reporting.

For basic health, these metrics are published every five minutes and can be monitored with graphs
in the environment management console. With enhanced health, the Elastic Beanstalk health
agent reports metrics to Elastic Beanstalk every 10 seconds. Elastic Beanstalk uses the metrics
provided by the health agent to determine the health status of each instance in the environment
and, combined with other factors, to determine the overall health of the environment.

The overall health of the environment can be viewed in real time in the environment overview
page of the Elastic Beanstalk console, and is published to CloudWatch by Elastic Beanstalk every
60 seconds. You can view detailed metrics reported by the health agent in real time with the eb
health command in the EB CLI.

For an additional charge, you can choose to publish individual instance and environment-level
metrics to CloudWatch every 60 seconds. Metrics published to CloudWatch can then be used to
create monitoring graphs in the environment management console.

Enhanced health reporting only incurs a charge if you choose to publish enhanced health metrics
to CloudWatch. When you use enhanced health, you still get the basic health metrics published for
free, even if you don't choose to publish enhanced health metrics.

The Elastic Beanstalk health agent 1313

Amazon Elastic Beanstalk Developer Guide

See Instance metrics for details on the metrics reported by the health agent. For details on
publishing enhanced health metrics to CloudWatch, see Publishing Amazon CloudWatch custom
metrics for an environment.

Factors in determining instance and environment health

In addition to the basic health reporting system checks, including Elastic Load Balancing health
checks and resource monitoring, Elastic Beanstalk enhanced health reporting gathers additional
data about the state of the instances in your environment. This includes operating system metrics,
server logs, and the state of ongoing environment operations such as deployments and updates.
The Elastic Beanstalk health reporting service combines information from all available sources and
analyzes it to determine the overall health of the environment.

Operations and commands

When you perform an operation on your environment, such as deploying a new version of an
application, Elastic Beanstalk makes several changes that affect the environment's health status.

For example, when you deploy a new version of an application to an environment that is
running multiple instances, you might see messages similar to the following as you monitor the
environment's health with the EB CLI.

 id status cause
 Overall Info Command is executing on 3 out of 5 instances
 i-bb65c145 Pending 91 % of CPU is in use. 24 % in I/O wait
 Performing application deployment (running for 31 seconds)
 i-ba65c144 Pending Performing initialization (running for 12 seconds)
 i-f6a2d525 Ok Application deployment completed 23 seconds ago and took 26
 seconds
 i-e8a2d53b Pending 94 % of CPU is in use. 52 % in I/O wait
 Performing application deployment (running for 33 seconds)
 i-e81cca40 Ok

In this example, the overall status of the environment is Ok and the cause of this status is that the
Command is executing on 3 out of 5 instances. Three of the instances in the environment have the
status Pending, indicating that an operation is in progress.

When an operation completes, Elastic Beanstalk reports additional information about the
operation. For the example, Elastic Beanstalk displays the following information about an instance
that has already been updated with the new version of the application:

Factors in determining instance and environment health 1314

Amazon Elastic Beanstalk Developer Guide

i-f6a2d525 Ok Application deployment completed 23 seconds ago and took 26
 seconds

Instance health information also includes details about the most recent deployment to each
instance in your environment. Each instance reports a deployment ID and status. The deployment
ID is an integer that increases by one each time you deploy a new version of your application or
change settings for on-instance configuration options, such as environment variables. You can
use the deployment information to identify instances that are running the wrong version of your
application after a failed rolling deployment.

In the cause column, Elastic Beanstalk includes informational messages about successful operations
and other healthy states across multiple health checks, but they don't persist indefinitely. Causes
for unhealthy environment statuses persist until the environment returns to a healthy status.

Command timeout

Elastic Beanstalk applies a command timeout from the time an operation begins to allow an
instance to transition into a healthy state. This command timeout is set in your environment's
update and deployment configuration (in the aws:elasticbeanstalk:command namespace) and
defaults to 10 minutes.

During rolling updates, Elastic Beanstalk applies a separate timeout to each batch in the
operation. This timeout is set as part of the environment's rolling update configuration (in the
aws:autoscaling:updatepolicy:rollingupdate namespace). If all instances in the batch are healthy
within the rolling update timeout, the operation continues to the next batch. If not, the operation
fails.

Note

If your application does not pass health checks with an OK status but is stable at
a different level, you can set the HealthCheckSuccessThreshold option in the
aws:elasticbeanstalk:command namespace to change the level at which Elastic
Beanstalk considers an instance to be healthy.

For a web server environment to be considered healthy, each instance in the environment or
batch must pass 12 consecutive health checks over the course of two minutes. For a worker tier
environment, each instance must pass 18 health checks. Before the command times out, Elastic

Factors in determining instance and environment health 1315

Amazon Elastic Beanstalk Developer Guide

Beanstalk doesn't lower an environment's health status when health checks fail. If the instances in
the environment become healthy within the command timeout, the operation succeeds.

HTTP requests

When no operation is in progress on an environment, the primary source of information about
instance and environment health is the web server logs for each instance. To determine the health
of an instance and the overall health of the environment, Elastic Beanstalk considers the number of
requests, the result of each request, and the speed at which each request was resolved.

On Linux-based platforms, Elastic Beanstalk reads and parses web server logs to get information
about HTTP requests. On the Windows Server platform, Elastic Beanstalk receives this information
directly from the IIS web server.

Your environment might not have an active web server. For example, the Multicontainer Docker
platform doesn't include a web server. Other platforms include a web server, and your application
might disable it. In these cases, your environment requires additional configuration to provide the
Elastic Beanstalk health agent with logs in the format that it needs to relay health information to
the Elastic Beanstalk service. See Enhanced health log format for details.

Operating system metrics

Elastic Beanstalk monitors operating system metrics reported by the health agent to identify
instances that are consistently low on system resources.

See Instance metrics for details on the metrics reported by the health agent.

Health check rule customization

Elastic Beanstalk enhanced health reporting relies on a set of rules to determine the health of
your environment. Some of these rules might not be appropriate for your particular application. A
common case is an application that returns frequent HTTP 4xx errors by design. Elastic Beanstalk,
using one of its default rules, concludes that something is going wrong, and changes your
environment health status from OK to Warning, Degraded, or Severe, depending on the error
rate. To handle this case correctly, Elastic Beanstalk allows you to configure this rule and ignore
application HTTP 4xx errors. For details, see Configuring enhanced health rules for an environment.

Enhanced health roles

Enhanced health reporting requires two roles—a service role for Elastic Beanstalk and an instance
profile for the environment. The service role allows Elastic Beanstalk to interact with other Amazon

Health check rule customization 1316

Amazon Elastic Beanstalk Developer Guide

services on your behalf to gather information about the resources in your environment. The
instance profile allows the instances in your environment to write logs to Amazon S3 and to
communicate enhanced health information to the Elastic Beanstalk service.

When you create an Elastic Beanstalk environment using the Elastic Beanstalk console or the EB
CLI, Elastic Beanstalk creates a default service role and attaches required managed policies to a
default instance profile for your environment.

If you use the API, an SDK, or the Amazon CLI to create environments, you must create these roles
in advance, and specify them during environment creation to use enhanced health. For instructions
on creating appropriate roles for your environments, see Elastic Beanstalk Service roles, instance
profiles, and user policies.

We recommend that you use managed policies for your instance profile and service role. Managed
policies are Amazon Identity and Access Management (IAM) policies that Elastic Beanstalk
maintains. Using managed policies guarantees that your environment has all permissions it needs
to function properly.

For the instance profile, you can use the AWSElasticBeanstalkWebTier or
AWSElasticBeanstalkWorkerTier managed policy, for a web server tier or worker tier
environment, respectively. For details about these two managed instance profile policies, see the
section called “Instance profiles”.

Enhanced health authorization

The Elastic Beanstalk instance profile managed policies contain permissions for the
elasticbeanstalk:PutInstanceStatistics action. This action isn't part of the Elastic
Beanstalk API. It's part of a different API that environment instances use internally to communicate
enhanced health information to the Elastic Beanstalk service. You don't call this API directly.

When you create a new environment, authorization for the
elasticbeanstalk:PutInstanceStatistics action is enabled by default. To increase security
of your environment and help prevent health data spoofing on your behalf, we recommend that
you keep authorization for this action enabled. If you use managed policies for your instance
profile, this feature is available for your new environment without any further configuration.
However, If you use a custom instance profile instead of a managed policy, your environment might
display a No Data health status. This happens because the instances aren't authorized for the
action that communicates enhanced health data to the service.

Enhanced health authorization 1317

Amazon Elastic Beanstalk Developer Guide

To authorize the action, include the following statement in your instance profile.

 {
 "Sid": "ElasticBeanstalkHealthAccess",
 "Action": [
 "elasticbeanstalk:PutInstanceStatistics"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:*:*:application/*",
 "arn:aws-cn:elasticbeanstalk:*:*:environment/*"
]
 }

If you don’t want to use enhanced health authorization at this time, disable it by
setting set the EnhancedHealthAuthEnabled option in the the section called
“aws:elasticbeanstalk:healthreporting:system” namespace to false. If this option is disabled, the
permissions described previously aren’t required. You can remove them from the instance profile
for least privilege access to your applications and environments.

Note

Previously the default setting for EnhancedHealthAuthEnabled was false, which
resulted in authorization for the elasticbeanstalk:PutInstanceStatistics
action also being disabled by default. To enable this action for an existing
environment, set the EnhancedHealthAuthEnabled option in the the section called
“aws:elasticbeanstalk:healthreporting:system” namespace to true. You can configure this
option by using an option setting in a configuration file.

Enhanced health events

The enhanced health system generates events when an environment transitions between states.
The following example shows events output by an environment transitioning between Info, OK,
and Severe states.

Enhanced health events 1318

Amazon Elastic Beanstalk Developer Guide

When transitioning to a worse state, the enhanced health event includes a message indicating the
transition cause.

Not all changes in status at an instance level cause Elastic Beanstalk to emit an event. To prevent
false alarms, Elastic Beanstalk generates a health-related event only if an issue persists across
multiple checks.

Real-time environment-level health information, including status, color, and cause, is available
in the environment overview page of the Elastic Beanstalk console and the EB CLI. By attaching
the EB CLI to your environment and running the eb health command, you can also view real-time
statuses from each of the instances in your environment.

Enhanced health reporting behavior during updates, deployments, and
scaling

Enabling enhanced health reporting can affect how your environment behaves during
configuration updates and deployments. Elastic Beanstalk won't complete a batch of updates
until all of the instances pass health checks consistently. Also, because enhanced health reporting
applies a higher standard for health and monitors more factors, instances that pass basic health
reporting's ELB health check won't necessarily pass with enhanced health reporting. See the topics
on rolling configuration updates and rolling deployments for details on how health checks affect
the update process.

Enhanced health reporting can also highlight the need to set a proper health check URL for Elastic
Load Balancing. When your environment scales up to meet demand, new instances will start taking

Enhanced health reporting behavior during updates, deployments, and scaling 1319

Amazon Elastic Beanstalk Developer Guide

requests as soon as they pass enough ELB health checks. If a health check URL is not configured,
this can be as little as 20 seconds after a new instance is able to accept a TCP connection.

If your application hasn't finished starting up by the time the load balancer declares it healthy
enough to receive traffic, you will see a flood of failed requests, and your environment will start
to fail health checks. A health check URL that hits a path served by your application can prevent
this issue. ELB health checks won't pass until a GET request to the health check URL returns a 200
status code.

Enabling Elastic Beanstalk enhanced health reporting

This topic explains how enhanced health reporting is enabled. It provides procedures for you to
enable the enhanced health feature for your environment with the Elastic Beanstalk console, the
EB CLI, and with an .ebextensions configuration.

New environments created with the latest platform versions include the Amazon Elastic Beanstalk
health agent, which supports enhanced health reporting. If you create your environment in the
Elastic Beanstalk console or with the EB CLI, enhanced health is enabled by default. You can also
set your health reporting preference in your application's source code using configuration files.

Enhanced health reporting requires an instance profile and service role with the standard set of
permissions. When you create an environment in the Elastic Beanstalk console, Elastic Beanstalk
creates the required roles automatically. See Learn how to get started with Elastic Beanstalk for
instructions on creating your first environment.

Topics

• Enabling enhanced health reporting using the Elastic Beanstalk console

• Enabling enhanced health reporting using the EB CLI

• Enabling enhanced health reporting using a configuration file

Enabling enhanced health reporting using the Elastic Beanstalk console

To enable enhanced health reporting in a running environment using the Elastic Beanstalk
console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

Enable enhanced health 1320

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Monitoring configuration category, choose Edit.

5. Under Health reporting, for System, choose Enhanced.

Note

The options for enhanced health reporting don't appear if you are using an
unsupported platform or version.

6. To save the changes choose Apply at the bottom of the page.

The Elastic Beanstalk console defaults to enhanced health reporting when you create a new
environment with a version 2 (v2) platform version. You can disable enhanced health reporting by
changing the health reporting option during environment creation.

To disable enhanced health reporting when creating an environment using the Elastic
Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. Create an application or select an existing one.

3. Create an environment. On the Create a new environment page, before choosing Create
environment, choose Configure more options.

4. In the Monitoring configuration category, choose Edit.

5. Under Health reporting, for System, choose Basic.

6. Choose Save.

Enabling enhanced health reporting using the EB CLI

When you create a new environment with the eb create command, the EB CLI enables enhanced
health reporting by default and applies the default instance profile and service role.

You can specify a different service role by name by using the --service-role option.

Enable enhanced health 1321

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

If you have an environment running with basic health reporting on a v2 platform version and you
want to switch to enhanced health, follow these steps.

To enable enhanced health on a running environment using the EB CLI

1. Use the eb config command to open the configuration file in the default text editor.

~/project$ eb config

2. Locate the aws:elasticbeanstalk:environment namespace in the settings section.
Ensure that the value of ServiceRole is not null and that it matches the name of your service
role.

 aws:elasticbeanstalk:environment:
 EnvironmentType: LoadBalanced
 ServiceRole: aws-elasticbeanstalk-service-role

3. Under the aws:elasticbeanstalk:healthreporting:system: namespace, change the
value of SystemType to enhanced.

 aws:elasticbeanstalk:healthreporting:system:
 SystemType: enhanced

4. Save the configuration file and close the text editor.

5. The EB CLI starts an environment update to apply your configuration changes. Wait for the
operation to complete or press Ctrl+C to exit safely.

~/project$ eb config
Printing Status:
INFO: Environment update is starting.
INFO: Health reporting type changed to ENHANCED.
INFO: Updating environment no-role-test's configuration settings.

Enabling enhanced health reporting using a configuration file

You can enable enhanced health reporting by including a configuration file in your source bundle.
The following example shows a configuration file that enables enhanced health reporting and
assigns the default service and instance profile to the environment:

Enable enhanced health 1322

Amazon Elastic Beanstalk Developer Guide

Example .ebextensions/enhanced-health.config

option_settings:
 aws:elasticbeanstalk:healthreporting:system:
 SystemType: enhanced
 aws:autoscaling:launchconfiguration:
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 aws:elasticbeanstalk:environment:
 ServiceRole: aws-elasticbeanstalk-service-role

If you created your own instance profile or service role, replace the highlighted text with the names
of those roles.

Enhanced health monitoring with the environment management
console

When you enable enhanced health reporting in Amazon Elastic Beanstalk, you can monitor
environment health in the environment management console.

Topics

• Environment overview

• Environment health page

• Monitoring page

Environment overview

The environment overview displays the health status of the environment and lists events that
provide information about recent changes in health status.

To view the environment overview

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

For detailed information about the current environment's health, open the Health page by
choosing Causes. Alternatively, in the navigation pane, choose Health.

Health console 1323

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Environment health page

The Health page displays health status, metrics, and causes for the environment and for each
Amazon EC2 instance in the environment.

Note

Elastic Beanstalk displays the Health page only if you have enabled enhanced health
monitoring for the environment.

The following image shows the Health page for a Linux environment.

The following image shows the Health page for a Windows environment. Notice that CPU metrics
are different from those on a Linux environment.

At the top of the page you can see the total number of environment instances, as well as the
number of instances per status. To display only instances that have a particular status, chooseFilter
By, and then select a status.

Health console 1324

Amazon Elastic Beanstalk Developer Guide

To reboot or terminate an unhealthy instance, choose Instance Actions, and then choose Reboot
or Terminate.

Elastic Beanstalk updates the Health page every 10 seconds. It reports information about
environment and instance health.

For each Amazon EC2 instance in the environment, the page displays the instance's ID and status,
the amount of time since the instance was launched, the ID of the most recent deployment
executed on the instance, the responses and latency of requests that the instance served, and
load and CPU utilization information. The Overall row displays average response and latency
information for the entire environment.

The page displays many details in a very wide table. To hide some of the columns, choose

(Preferences). Select or clear column names, and then choose Confirm.

Health console 1325

Amazon Elastic Beanstalk Developer Guide

Choose the Instance ID of any instance to view more information about the instance, including its
Availability Zone and instance type.

Health console 1326

Amazon Elastic Beanstalk Developer Guide

Choose the Deployment ID of any instance to view information about the last deployment to the
instance.

Deployment information includes the following:

• Deployment ID—The unique identifier for the deployment. Deployment IDs starts at 1 and
increase by one each time you deploy a new application version or change configuration settings
that affect the software or operating system running on the instances in your environment.

• Version—The version label of the application source code used in the deployment.

• Status—The status of the deployment, which can be In Progress, Deployed, or Failed.

• Time— For in-progress deployments, the time that the deployment started. For completed
deployments, the time that the deployment ended.

If you enable X-Ray integration on your environment and instrument your application with the
Amazon X-Ray SDK, the Health page adds links to the Amazon X-Ray console in the overview row.

Health console 1327

Amazon Elastic Beanstalk Developer Guide

Choose a link to view traces related to the highlighted statistic in the Amazon X-Ray console.

Monitoring page

The Monitoring page displays summary statistics and graphs for the custom Amazon CloudWatch
metrics generated by the enhanced health reporting system. See Monitoring environment health in
the Amazon management console for instructions on adding graphs and statistics to this page.

Health colors and statuses

Enhanced health reporting represents instance and overall environment health by using four
colors, similar to basic health reporting. Enhanced health reporting also provides seven health
statuses, which are single-word descriptors that provide a better indication of the state of your
environment.

Instance status and environment status

Every time Elastic Beanstalk runs a health check on your environment, enhanced health reporting
checks the health of each instance in your environment by analyzing all of the data available. If any
lower-level check fails, Elastic Beanstalk downgrades the health of the instance.

Elastic Beanstalk displays the health information for the overall environment (color, status, and
cause) in the environment management console. This information is also available in the EB CLI.
Health status and cause messages for individual instances are updated every 10 seconds and are
available from the EB CLI when you view health status with eb health.

Elastic Beanstalk uses changes in instance health to evaluate environment health, but does
not immediately change environment health status. When an instance fails health checks at
least three times in any one-minute period, Elastic Beanstalk may downgrade the health of the
environment. Depending on the number of instances in the environment and the issue identified,
one unhealthy instance can cause Elastic Beanstalk to display an informational message or to
change the environment's health status from green (OK) to yellow (Warning) or red (Degraded or
Severe).

Health colors and statuses 1328

Amazon Elastic Beanstalk Developer Guide

OK (green)

This status is displayed when:

• An instance is passing health checks and the health agent is not reporting any problems.

• Most instances in the environment are passing health checks and the health agent is not
reporting major issues.

• An instance is passing health checks and is completing requests normally.

Example: Your environment was recently deployed and is taking requests normally. Five percent of
requests are returning 400 series errors. Deployment completed normally on each instance.

Message (instance): Application deployment completed 23 seconds ago and took 26 seconds.

Warning (yellow)

This status is displayed when:

• The health agent is reporting a moderate number of request failures or other issues for an
instance or environment.

• An operation is in progress on an instance and is taking a very long time.

Example: One instance in the environment has a status of Severe.

Message (environment): Impaired services on 1 out of 5 instances.

Degraded (red)

This status is displayed when the health agent is reporting a high number of request failures or
other issues for an instance or environment.

Example: environment is in the process of scaling up to 5 instances.

Message (environment): 4 active instances is below Auto Scaling group minimum size 5.

Severe (red)

This status is displayed when the health agent is reporting a very high number of request failures
or other issues for an instance or environment.

Example: Elastic Beanstalk is unable to contact the load balancer to get instance health.

Health colors and statuses 1329

Amazon Elastic Beanstalk Developer Guide

Message (environment): ELB health is failing or not available for all instances. None of the
instances are sending data. Unable to assume role "arn:aws-cn:iam::123456789012:role/aws-
elasticbeanstalk-service-role". Verify that the role exists and is configured correctly.

Message (Instances): Instance ELB health has not been available for 37 minutes. No data. Last seen
37 minutes ago.

Info (green)

This status is displayed when:

• An operation is in progress on an instance.

• An operation is in progress on several instances in an environment.

Example: A new application version is being deployed to running instances.

Message (environment): Command is executing on 3 out of 5 instances.

Message (instance): Performing application deployment (running for 3 seconds).

Pending (grey)

This status is displayed when an operation is in progress on an instance within the command
timeout.

Example: You have recently created the environment and instances are being bootstrapped.

Message: Performing initialization (running for 12 seconds).

Unknown (grey)

This status is displayed when Elastic Beanstalk and the health agent are reporting an insufficient
amount of data on an instance.

Example: No data is being received.

Suspended (grey)

This status is displayed when Elastic Beanstalk stopped monitoring the environment's health. The
environment might not work correctly. Some severe health conditions, if they last a long time,
cause Elastic Beanstalk to transition the environment to the Suspended status.

Health colors and statuses 1330

Amazon Elastic Beanstalk Developer Guide

Example: Elastic Beanstalk can't access the environment's service role.

Example: The Auto Scaling group that Elastic Beanstalk created for the environment has been
deleted.

Message: Environment health has transitioned from OK to Severe. There are no instances. Auto
Scaling group desired capacity is set to 1.

Instance metrics

Instance metrics provide information about the health of instances in your environment. The
Elastic Beanstalk health agent runs on each instance. It gathers and relays metrics about instances
to Elastic Beanstalk, which analyzes the metrics to determine the health of the instances in your
environments.

The on-instance Elastic Beanstalk health agent gathers metrics about instances from web servers
and the operating system. To get web server information on Linux-based platforms, Elastic
Beanstalk reads and parses web server logs. On the Windows Server platform, Elastic Beanstalk
receives this information directly from the IIS web server. Web servers provide information about
incoming HTTP requests: how many requests came in, how many resulted in errors, and how long
they took to resolve. The operating system provides snapshot information about the state of the
instances' resources: the CPU load and distribution of time spent on each process type.

The health agent gathers web server and operating system metrics and relays them to Elastic
Beanstalk every 10 seconds. Elastic Beanstalk analyzes the data and uses the results to update the
health status for each instance and the environment.

Topics

• Web server metrics

• Operating system metrics

• Web server metrics capture in IIS on Windows server

Web server metrics

On Linux-based platforms, the Elastic Beanstalk health agent reads web server metrics from
logs generated by the web container or server that processes requests on each instance in your
environment. Elastic Beanstalk platforms are configured to generate two logs: one in human-
readable format and one in machine-readable format. The health agent relays machine-readable
logs to Elastic Beanstalk every 10 seconds.

Instance metrics 1331

Amazon Elastic Beanstalk Developer Guide

For more information on the log format used by Elastic Beanstalk, see Enhanced health log format.

On the Windows Server platform, Elastic Beanstalk adds a module to the IIS web server's request
pipeline and captures metrics about HTTP request times and response codes. The module
sends these metrics to the on-instance health agent using a high-performance interprocess
communication (IPC) channel. For implementation details, see Web server metrics capture in IIS on
Windows server.

Reported Web Server Metrics

RequestCount

Number of requests handled by the web server per second over the last 10 seconds. Shown as
an average r/sec (requests per second) in the EB CLI and Environment health page.

Status2xx, Status3xx, Status4xx, Status5xx

Number of requests that resulted in each type of status code over the last 10 seconds. For
example, successful requests return a 200 OK, redirects are a 301, and a 404 is returned if the
URL entered doesn't match any resources in the application.

The EB CLI and Environment health page show these metrics both as a raw number of requests
for instances, and as a percentage of overall requests for environments.

p99.9, p99, p95, p90, p85, p75, p50, p10

Average latency for the slowest x percent of requests over the last 10 seconds, where x is the
difference between the number and 100. For example, p99 1.403 indicates the slowest 1% of
requests over the last 10 seconds had an average latency of 1.403 seconds.

Operating system metrics

The Elastic Beanstalk health agent reports the following operating system metrics. Elastic
Beanstalk uses these metrics to identify instances that are under sustained heavy load. The metrics
differ by operating system.

Reported operating system metrics—Linux

Running

The amount of time that has passed since the instance was launched.

Instance metrics 1332

Amazon Elastic Beanstalk Developer Guide

Load 1, Load 5

Load average in the last one-minute and five-minute periods. Shown as a decimal value
indicating the average number of processes running during that time. If the number shown is
higher than the number of vCPUs (threads) available, then the remainder is the average number
of processes that were waiting.

For example, if your instance type has four vCPUs, and the load is 4.5, there was an average
of .5 processes in wait during that time period, equivalent to one process waiting 50 percent of
the time.

User %, Nice %, System %, Idle %, I/O Wait %

Percentage of time that the CPU has spent in each state over the last 10 seconds.

Reported operating system metrics—Windows

Running

The amount of time that has passed since the instance was launched.

% User Time, % Privileged Time, % Idle Time

Percentage of time that the CPU has spent in each state over the last 10 seconds.

Web server metrics capture in IIS on Windows server

On the Windows Server platform, Elastic Beanstalk adds a module to the IIS web server's request
pipeline and captures metrics about HTTP request times and response codes. The module
sends these metrics to the on-instance health agent using a high-performance interprocess
communication (IPC) channel. The health agent aggregates these metrics, combines them with
operating system metrics, and sends them to the Elastic Beanstalk service.

Implementation details

To capture metrics from IIS, Elastic Beanstalk implements a managed IHttpModule, and
subscribes to the BeginRequest and EndRequest events. This enables the module to report
HTTP request latency and response codes for all web requests handled by IIS. To add the module to
the IIS request pipeline, Elastic Beanstalk registers the module in the <modules> section of the IIS
configuration file, %windir%\System32\inetsrv\config\applicationHost.config.

Instance metrics 1333

https://msdn.microsoft.com/en-us/library/system.web.ihttpmodule%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.web.httpapplication.beginrequest(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.httpapplication.endrequest(v=vs.110).aspx
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/modules/

Amazon Elastic Beanstalk Developer Guide

The Elastic Beanstalk module in IIS sends the captured web request metrics to the on-instance
health agent, which is a Windows service named HealthD. To send this data, the module uses
NetNamedPipeBinding, which provides a secure and reliable binding that is optimized for on-
machine communication.

Configuring enhanced health rules for an environment

Amazon Elastic Beanstalk enhanced health reporting relies on a set of rules to determine the
health of your environment. Some of these rules might not be appropriate for your particular
application. The following are some common examples:

• You use client-side test tools. In this case, frequent HTTP client (4xx) errors are expected.

• You use Amazon WAF in conjunction with your environment's Application Load Balancer to block
unwanted incoming traffic. In this case, Application Load Balancer returns HTTP 403 for each
rejected incoming message.

By default, Elastic Beanstalk includes all application HTTP 4xx errors when determining the
environment's health. It changes your environment health status from OK to Warning, Degraded,
or Severe, depending on the error rate. To correctly handle cases such as the examples we
mentioned, Elastic Beanstalk enables you to configure some enhanced health rules. You can choose
to ignore application HTTP 4xx errors on the environment's instances, or to ignore HTTP 4xx errors
returned by the environment's load balancer. This topic describes how to make these configuration
changes.

Note

Currently, these are the only available enhanced heath rule customizations. You can't
configure enhanced health to ignore other HTTP errors in addition to 4xx.

Configuring enhanced health rules using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure enhanced health rules in your environment.

To configure HTTP 4xx status code checking using the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

Enhanced health rules 1334

https://msdn.microsoft.com/en-us/library/system.servicemodel.netnamedpipebinding(v=vs.110).aspx
https://docs.amazonaws.cn/waf/latest/developerguide/
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Monitoring configuration category, choose Edit.

5. Under Health monitoring rule customization, enable or disable the desired Ignore options.

6. To save the changes choose Apply at the bottom of the page.

Configuring enhanced health rules using the EB CLI

You can use the EB CLI to configure enhanced health rules by saving your environment's
configuration locally, adding an entry that configures enhanced health rules, and then uploading
the configuration to Elastic Beanstalk. You can apply the saved configuration to an environment
during or after creation.

To configure HTTP 4xx status code checking using the EB CLI and saved configurations

1. Initialize your project folder with eb init.

2. Create an environment by running the eb create command.

3. Save a configuration template locally by running the eb config save command. The following
example uses the --cfg option to specify the name of the configuration.

$ eb config save --cfg 01-base-state
Configuration saved at: ~/project/.elasticbeanstalk/saved_configs/01-base-
state.cfg.yml

4. Open the saved configuration file in a text editor.

Enhanced health rules 1335

Amazon Elastic Beanstalk Developer Guide

5. Under OptionSettings > aws:elasticbeanstalk:healthreporting:system:,
add a ConfigDocument key to list each enhanced health rule to configure. The following
ConfigDocument disables the checking of application HTTP 4xx status codes, while keeping
the checking of load balancer HTTP 4xx code enabled.

OptionSettings:
 ...
 aws:elasticbeanstalk:healthreporting:system:
 ConfigDocument:
 Rules:
 Environment:
 Application:
 ApplicationRequests4xx:
 Enabled: false
 ELB:
 ELBRequests4xx:
 Enabled: true
 Version: 1
 SystemType: enhanced
...

Note

You can combine Rules and CloudWatchMetrics in the same ConfigDocument
option setting. CloudWatchMetrics are described in Publishing Amazon CloudWatch
custom metrics for an environment.
If you previously enabled CloudWatchMetrics, the configuration file that you
retrieve using the eb config save command already has a ConfigDocument key with
a CloudWatchMetrics section. Do not delete it—add a Rules section into the same
ConfigDocument option value.

6. Save the configuration file and close the text editor. In this example, the updated configuration
file is saved with a name (02-cloudwatch-enabled.cfg.yml) that's different from the
downloaded configuration file. This creates a separate saved configuration when the file
is uploaded. You can use the same name as the downloaded file to overwrite the existing
configuration without creating a new one.

7. Use the eb config put command to upload the updated configuration file to Elastic Beanstalk.

Enhanced health rules 1336

Amazon Elastic Beanstalk Developer Guide

$ eb config put 02-cloudwatch-enabled

When using the eb config get and put commands with saved configurations, don't include
the file name extension.

8. Apply the saved configuration to your running environment.

$ eb config --cfg 02-cloudwatch-enabled

The --cfg option specifies a named configuration file that is applied to the environment. You
can save the configuration file locally or in Elastic Beanstalk. If a configuration file with the
specified name exists in both locations, the EB CLI uses the local file.

Configuring enhanced health rules using a config document

The configuration (config) document for enhanced health rules is a JSON document that lists the
rules to configure.

The following example shows a config document that disables the checking of application HTTP
4xx status codes and enables the checking of load balancer HTTP 4xx status codes.

{
 "Rules": {
 "Environment": {
 "Application": {
 "ApplicationRequests4xx": {
 "Enabled": false
 }
 },
 "ELB": {
 "ELBRequests4xx": {
 "Enabled": true
 }
 }
 }
 },
 "Version": 1
}

Enhanced health rules 1337

Amazon Elastic Beanstalk Developer Guide

For the Amazon CLI, you pass the document as a value for the Value key in an option settings
argument, which itself is a JSON object. In this case, you must escape quotation marks in the
embedded document. The following command checks if the configuration settings are valid.

$ aws elasticbeanstalk validate-configuration-settings --application-name my-app --
environment-name my-env --option-settings '[
 {
 "Namespace": "aws:elasticbeanstalk:healthreporting:system",
 "OptionName": "ConfigDocument",
 "Value": "{\"Rules\": { \"Environment\": { \"Application\":
 { \"ApplicationRequests4xx\": { \"Enabled\": false } }, \"ELB\": { \"ELBRequests4xx\":
 {\"Enabled\": true } } } }, \"Version\": 1 }"
 }
]'

For an .ebextensions configuration file in YAML, you can provide the JSON document as is.

 option_settings:
 - namespace: aws:elasticbeanstalk:healthreporting:system
 option_name: ConfigDocument
 value: {
 "Rules": {
 "Environment": {
 "Application": {
 "ApplicationRequests4xx": {
 "Enabled": false
 }
 },
 "ELB": {
 "ELBRequests4xx": {
 "Enabled": true
 }
 }
 }
 },
 "Version": 1
}

Publishing Amazon CloudWatch custom metrics for an environment

You can publish the data gathered by Amazon Elastic Beanstalk enhanced health reporting to
Amazon CloudWatch as custom metrics. Publishing metrics to CloudWatch lets you monitor

CloudWatch 1338

Amazon Elastic Beanstalk Developer Guide

changes in application performance over time and identify potential issues by tracking how
resource usage and request latency scale with load.

By publishing metrics to CloudWatch, you also make them available for use with monitoring graphs
and alarms. One free metric, EnvironmentHealth, is enabled automatically when you use enhanced
health reporting. Custom metrics other than EnvironmentHealth incur standard CloudWatch
charges.

To publish CloudWatch custom metrics for an environment, you must first enable enhanced health
reporting on the environment. See Enabling Elastic Beanstalk enhanced health reporting for
instructions.

Topics

• Enhanced health reporting metrics

• Configuring CloudWatch metrics using the Elastic Beanstalk console

• Configuring CloudWatch custom metrics using the EB CLI

• Providing custom metric config documents

Enhanced health reporting metrics

When you enable enhanced health reporting in your environment, the enhanced health reporting
system automatically publishes one CloudWatch custom metric, EnvironmentHealth. To publish
additional metrics to CloudWatch, configure your environment with those metrics by using the
Elastic Beanstalk console, EB CLI, or .ebextensions.

You can publish the following enhanced health metrics from your environment to CloudWatch.

Available metrics—all platforms

EnvironmentHealth

Environment only. This is the only CloudWatch metric that the enhanced health reporting
system publishes, unless you configure additional metrics. Environment health is represented by
one of seven statuses. In the CloudWatch console, these statuses map to the following values:

• 0 – OK

• 1 – Info

• 5 – Unknown

CloudWatch 1339

http://www.amazonaws.cn/cloudwatch/pricing/
http://www.amazonaws.cn/cloudwatch/pricing/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/publishingMetrics.html

Amazon Elastic Beanstalk Developer Guide

• 10 – No data

• 15 – Warning

• 20 – Degraded

• 25 – Severe

InstancesSevere, InstancesDegraded, InstancesWarning, InstancesInfo,
InstancesOk, InstancesPending, InstancesUnknown, InstancesNoData

Environment only. These metrics indicate the number of instances in the environment with each
health status. InstancesNoData indicates the number of instances for which no data is being
received.

ApplicationRequestsTotal, ApplicationRequests5xx, ApplicationRequests4xx,
ApplicationRequests3xx, ApplicationRequests2xx

Instance and environment. Indicates the total number of requests completed by the instance or
environment, and the number of requests that completed with each status code category.

ApplicationLatencyP10, ApplicationLatencyP50, ApplicationLatencyP75,
ApplicationLatencyP85, ApplicationLatencyP90, ApplicationLatencyP95,
ApplicationLatencyP99, ApplicationLatencyP99.9

Instance and environment. Indicates the average amount of time, in seconds, it takes to
complete the fastest x percent of requests.

InstanceHealth

Instance only. Indicates the current health status of the instance. Instance health is represented
by one of seven statuses. In the CloudWatch console, these statuses map to the following
values:

• 0 – OK

• 1 – Info

• 5 – Unknown

• 10 – No data

• 15 – Warning

• 20 – Degraded

• 25 – Severe

CloudWatch 1340

Amazon Elastic Beanstalk Developer Guide

Available metrics—Linux

CPUIrq, CPUIdle, CPUUser, CPUSystem, CPUSoftirq, CPUIowait, CPUNice

Instance only. Indicates the percentage of time that the CPU has spent in each state over the
last minute.

LoadAverage1min

Instance only. The average CPU load of the instance over the last minute.

RootFilesystemUtil

Instance only. Indicates the percentage of disk space that's in use.

Available metrics—Windows

CPUIdle, CPUUser, CPUPrivileged

Instance only. Indicates the percentage of time that the CPU has spent in each state over the
last minute.

Configuring CloudWatch metrics using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure your environment to publish enhanced
health reporting metrics to CloudWatch and make them available for use with monitoring graphs
and alarms.

To configure CloudWatch custom metrics in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Monitoring configuration category, choose Edit.

5. Under Health reporting, select the instance and environment metrics to publish to
CloudWatch. To select multiple metrics, press the Ctrl key while choosing.

6. To save the changes choose Apply at the bottom of the page.

CloudWatch 1341

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Enabling CloudWatch custom metrics adds them to the list of metrics available on the Monitoring
page.

Configuring CloudWatch custom metrics using the EB CLI

You can use the EB CLI to configure custom metrics by saving your environment's configuration
locally, adding an entry that defines the metrics to publish, and then uploading the configuration
to Elastic Beanstalk. You can apply the saved configuration to an environment during or after
creation.

To configure CloudWatch custom metrics with the EB CLI and saved configurations

1. Initialize your project folder with eb init.

2. Create an environment by running the eb create command.

3. Save a configuration template locally by running the eb config save command. The following
example uses the --cfg option to specify the name of the configuration.

$ eb config save --cfg 01-base-state
Configuration saved at: ~/project/.elasticbeanstalk/saved_configs/01-base-
state.cfg.yml

4. Open the saved configuration file in a text editor.

5. Under OptionSettings > aws:elasticbeanstalk:healthreporting:system:,
add a ConfigDocument key to enable each of the CloudWatch metrics you want. For
example, the following ConfigDocument publishes ApplicationRequests5xx
and ApplicationRequests4xx metrics at the environment level, and
ApplicationRequestsTotal metrics at the instance level.

OptionSettings:
 ...
 aws:elasticbeanstalk:healthreporting:system:
 ConfigDocument:
 CloudWatchMetrics:
 Environment:
 ApplicationRequests5xx: 60
 ApplicationRequests4xx: 60
 Instance:
 ApplicationRequestsTotal: 60
 Version: 1
 SystemType: enhanced

CloudWatch 1342

Amazon Elastic Beanstalk Developer Guide

...

In the example, 60 indicates the number of seconds between measurements. Currently, this is
the only supported value.

Note

You can combine CloudWatchMetrics and Rules in the same ConfigDocument
option setting. Rules are described in Configuring enhanced health rules for an
environment.
If you previously used Rules to configure enhanced health rules, then the
configuration file that you retrieve using the eb config save command already
has a ConfigDocument key with a Rules section. Do not delete it—add a
CloudWatchMetrics section into the same ConfigDocument option value.

6. Save the configuration file and close the text editor. In this example, the updated configuration
file is saved with a name (02-cloudwatch-enabled.cfg.yml) that is different from the
downloaded configuration file. This creates a separate saved configuration when the file
is uploaded. You can use the same name as the downloaded file to overwrite the existing
configuration without creating a new one.

7. Use the eb config put command to upload the updated configuration file to Elastic Beanstalk.

$ eb config put 02-cloudwatch-enabled

When using the eb config get and put commands with saved configurations, don't include
the file extension.

8. Apply the saved configuration to your running environment.

$ eb config --cfg 02-cloudwatch-enabled

The --cfg option specifies a named configuration file that is applied to the environment. You
can save the configuration file locally or in Elastic Beanstalk. If a configuration file with the
specified name exists in both locations, the EB CLI uses the local file.

CloudWatch 1343

Amazon Elastic Beanstalk Developer Guide

Providing custom metric config documents

The configuration (config) document for Amazon CloudWatch custom metrics is a JSON document
that lists the metrics to publish at the environment and instance levels. The following example
shows a config document that enables all custom metrics available on Linux.

{
 "CloudWatchMetrics": {
 "Environment": {
 "ApplicationLatencyP99.9": 60,
 "InstancesSevere": 60,
 "ApplicationLatencyP90": 60,
 "ApplicationLatencyP99": 60,
 "ApplicationLatencyP95": 60,
 "InstancesUnknown": 60,
 "ApplicationLatencyP85": 60,
 "InstancesInfo": 60,
 "ApplicationRequests2xx": 60,
 "InstancesDegraded": 60,
 "InstancesWarning": 60,
 "ApplicationLatencyP50": 60,
 "ApplicationRequestsTotal": 60,
 "InstancesNoData": 60,
 "InstancesPending": 60,
 "ApplicationLatencyP10": 60,
 "ApplicationRequests5xx": 60,
 "ApplicationLatencyP75": 60,
 "InstancesOk": 60,
 "ApplicationRequests3xx": 60,
 "ApplicationRequests4xx": 60
 },
 "Instance": {
 "ApplicationLatencyP99.9": 60,
 "ApplicationLatencyP90": 60,
 "ApplicationLatencyP99": 60,
 "ApplicationLatencyP95": 60,
 "ApplicationLatencyP85": 60,
 "CPUUser": 60,
 "ApplicationRequests2xx": 60,
 "CPUIdle": 60,
 "ApplicationLatencyP50": 60,
 "ApplicationRequestsTotal": 60,

CloudWatch 1344

Amazon Elastic Beanstalk Developer Guide

 "RootFilesystemUtil": 60,
 "LoadAverage1min": 60,
 "CPUIrq": 60,
 "CPUNice": 60,
 "CPUIowait": 60,
 "ApplicationLatencyP10": 60,
 "LoadAverage5min": 60,
 "ApplicationRequests5xx": 60,
 "ApplicationLatencyP75": 60,
 "CPUSystem": 60,
 "ApplicationRequests3xx": 60,
 "ApplicationRequests4xx": 60,
 "InstanceHealth": 60,
 "CPUSoftirq": 60
 }
 },
 "Version": 1
}

For the Amazon CLI, you pass the document as a value for the Value key in an option settings
argument, which itself is a JSON object. In this case, you must escape quotation marks in the
embedded document.

$ aws elasticbeanstalk validate-configuration-settings --application-name my-app --
environment-name my-env --option-settings '[
 {
 "Namespace": "aws:elasticbeanstalk:healthreporting:system",
 "OptionName": "ConfigDocument",
 "Value": "{\"CloudWatchMetrics\": {\"Environment\":
 {\"ApplicationLatencyP99.9\": 60,\"InstancesSevere\": 60,\"ApplicationLatencyP90\":
 60,\"ApplicationLatencyP99\": 60,\"ApplicationLatencyP95\": 60,\"InstancesUnknown
\": 60,\"ApplicationLatencyP85\": 60,\"InstancesInfo\": 60,\"ApplicationRequests2xx
\": 60,\"InstancesDegraded\": 60,\"InstancesWarning\": 60,\"ApplicationLatencyP50\":
 60,\"ApplicationRequestsTotal\": 60,\"InstancesNoData\": 60,\"InstancesPending
\": 60,\"ApplicationLatencyP10\": 60,\"ApplicationRequests5xx\": 60,
\"ApplicationLatencyP75\": 60,\"InstancesOk\": 60,\"ApplicationRequests3xx\": 60,
\"ApplicationRequests4xx\": 60},\"Instance\": {\"ApplicationLatencyP99.9\": 60,
\"ApplicationLatencyP90\": 60,\"ApplicationLatencyP99\": 60,\"ApplicationLatencyP95\":
 60,\"ApplicationLatencyP85\": 60,\"CPUUser\": 60,\"ApplicationRequests2xx\":
 60,\"CPUIdle\": 60,\"ApplicationLatencyP50\": 60,\"ApplicationRequestsTotal\":
 60,\"RootFilesystemUtil\": 60,\"LoadAverage1min\": 60,\"CPUIrq\": 60,\"CPUNice
\": 60,\"CPUIowait\": 60,\"ApplicationLatencyP10\": 60,\"LoadAverage5min\": 60,
\"ApplicationRequests5xx\": 60,\"ApplicationLatencyP75\": 60,\"CPUSystem\": 60,

CloudWatch 1345

Amazon Elastic Beanstalk Developer Guide

\"ApplicationRequests3xx\": 60,\"ApplicationRequests4xx\": 60,\"InstanceHealth\": 60,
\"CPUSoftirq\": 60}},\"Version\": 1}"
 }
]'

For an .ebextensions configuration file in YAML, you can provide the JSON document as is.

 option_settings:
 - namespace: aws:elasticbeanstalk:healthreporting:system
 option_name: ConfigDocument
 value: {
 "CloudWatchMetrics": {
 "Environment": {
 "ApplicationLatencyP99.9": 60,
 "InstancesSevere": 60,
 "ApplicationLatencyP90": 60,
 "ApplicationLatencyP99": 60,
 "ApplicationLatencyP95": 60,
 "InstancesUnknown": 60,
 "ApplicationLatencyP85": 60,
 "InstancesInfo": 60,
 "ApplicationRequests2xx": 60,
 "InstancesDegraded": 60,
 "InstancesWarning": 60,
 "ApplicationLatencyP50": 60,
 "ApplicationRequestsTotal": 60,
 "InstancesNoData": 60,
 "InstancesPending": 60,
 "ApplicationLatencyP10": 60,
 "ApplicationRequests5xx": 60,
 "ApplicationLatencyP75": 60,
 "InstancesOk": 60,
 "ApplicationRequests3xx": 60,
 "ApplicationRequests4xx": 60
 },
 "Instance": {
 "ApplicationLatencyP99.9": 60,
 "ApplicationLatencyP90": 60,
 "ApplicationLatencyP99": 60,
 "ApplicationLatencyP95": 60,
 "ApplicationLatencyP85": 60,
 "CPUUser": 60,
 "ApplicationRequests2xx": 60,

CloudWatch 1346

Amazon Elastic Beanstalk Developer Guide

 "CPUIdle": 60,
 "ApplicationLatencyP50": 60,
 "ApplicationRequestsTotal": 60,
 "RootFilesystemUtil": 60,
 "LoadAverage1min": 60,
 "CPUIrq": 60,
 "CPUNice": 60,
 "CPUIowait": 60,
 "ApplicationLatencyP10": 60,
 "LoadAverage5min": 60,
 "ApplicationRequests5xx": 60,
 "ApplicationLatencyP75": 60,
 "CPUSystem": 60,
 "ApplicationRequests3xx": 60,
 "ApplicationRequests4xx": 60,
 "InstanceHealth": 60,
 "CPUSoftirq": 60
 }
 },
 "Version": 1
}

Using enhanced health reporting with the Elastic Beanstalk API

Because Amazon Elastic Beanstalk enhanced health reporting has role and solution stack
requirements, you must update scripts and code that you used prior to the release of enhanced
health reporting before you can use it. To maintain backward compatibility, enhanced health
reporting is not enabled by default when you create an environment using the Elastic Beanstalk
API.

You configure enhanced health reporting by setting the service role, the instance profile, and
Amazon CloudWatch configuration options for your environment. You can do this in three ways: by
setting the configuration options in the .ebextensions folder, with saved configurations, or by
configuring them directly in the create-environment call's option-settings parameter.

To use the API, SDKs, or Amazon command line interface (CLI) to create an environment that
supports enhanced health, you must:

• Create a service role and instance profile with the appropriate permissions

• Create a new environment with a new platform version

• Set the health system type, instance profile, and service role configuration options

API users 1347

Amazon Elastic Beanstalk Developer Guide

Use the following configuration options in the
aws:elasticbeanstalk:healthreporting:system,
aws:autoscaling:launchconfiguration, and aws:elasticbeanstalk:environment
namespaces to configure your environment for enhanced health reporting.

Enhanced health configuration options

SystemType

Namespace: aws:elasticbeanstalk:healthreporting:system

To enable enhanced health reporting, set to enhanced.

IamInstanceProfile

Namespace: aws:autoscaling:launchconfiguration

Set to the name of an instance profile configured for use with Elastic Beanstalk.

ServiceRole

Namespace: aws:elasticbeanstalk:environment

Set to the name of a service role configured for use with Elastic Beanstalk.

ConfigDocument (optional)

Namespace: aws:elasticbeanstalk:healthreporting:system

A JSON document that defines the and instance and environment metrics to publish to
CloudWatch. For example:

{
 "CloudWatchMetrics":
 {
 "Environment":
 {
 "ApplicationLatencyP99.9":60,
 "InstancesSevere":60
 }
 "Instance":

API users 1348

Amazon Elastic Beanstalk Developer Guide

 {
 "ApplicationLatencyP85":60,
 "CPUUser": 60
 }
 }
 "Version":1
}

Note

Config documents may require special formatting, such as escaping quotes, depending on
how you provide them to Elastic Beanstalk. See Providing custom metric config documents
for examples.

Enhanced health log format

Amazon Elastic Beanstalk platforms use a custom web server log format to efficiently relay
information about HTTP requests to the enhanced health reporting system. The system analyzes
the logs, identifies issues, and sets the instance and environment health accordingly. If you disable
the web server proxy on your environment and serve requests directly from the web container, you
can still make full use of enhanced health reporting by configuring your server to output logs in
the location and format that the Elastic Beanstalk health agent uses.

Note

The information on this page is relevant only to Linux-based platforms. On the Windows
Server platform, Elastic Beanstalk receives information about HTTP requests directly from
the IIS web server. For details, see Web server metrics capture in IIS on Windows server.

Web server log configuration

Elastic Beanstalk platforms are configured to output two logs with information about HTTP
requests. The first is in verbose format and provides detailed information about the request,
including the requester's user agent information and a human-readable timestamp.

/var/log/nginx/access.log

Enhanced health log format 1349

Amazon Elastic Beanstalk Developer Guide

The following example is from an nginx proxy running on a Ruby web server environment, but the
format is similar for Apache.

172.31.24.3 - - [23/Jul/2015:00:21:20 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"
172.31.24.3 - - [23/Jul/2015:00:21:21 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"
172.31.24.3 - - [23/Jul/2015:00:21:22 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"
172.31.24.3 - - [23/Jul/2015:00:21:22 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"
172.31.24.3 - - [23/Jul/2015:00:21:22 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"

The second log is in terse format. It includes information relevant only to enhanced health
reporting. This log is output to a subfolder named healthd and rotates hourly. Old logs are
deleted immediately after rotating out.

/var/log/nginx/healthd/application.log.2015-07-23-00

The following example shows a log in the machine-readable format.

1437609879.311"/"200"0.083"0.083"177.72.242.17
1437609879.874"/"200"0.347"0.347"177.72.242.17
1437609880.006"/bad/path"404"0.001"0.001"177.72.242.17
1437609880.058"/"200"0.530"0.530"177.72.242.17
1437609880.928"/bad/path"404"0.001"0.001"177.72.242.17

The enhanced health log format includes the following information:

• The time of the request, in Unix time

• The path of the request

• The HTTP status code for the result

• The request time

Enhanced health log format 1350

Amazon Elastic Beanstalk Developer Guide

• The upstream time

• The X-Forwarded-For HTTP header

For nginx proxies, times are printed in floating-point seconds, with three decimal places. For
Apache, whole microseconds are used.

Note

If you see a warning similar to the following in a log file, where DATE-TIME is a date and
time, and you are using a custom proxy, such as in a multi-container Docker environment,
you must use an .ebextension to configure your environment so that healthd can read
your log files:

W, [DATE-TIME #1922] WARN -- : log file "/var/log/nginx/healthd/
application.log.DATE-TIME" does not exist

You can start with the .ebextension in the Multicontainer Docker sample.

/etc/nginx/conf.d/webapp_healthd.conf

The following example shows the log configuration for nginx with the healthd log format
highlighted.

upstream my_app {
 server unix:///var/run/puma/my_app.sock;
}

log_format healthd '$msec"$uri"'
 '$status"$request_time"$upstream_response_time"'
 '$http_x_forwarded_for';

server {
 listen 80;
 server_name _ localhost; # need to listen to localhost for worker tier

 if ($time_iso8601 ~ "^(\d{4})-(\d{2})-(\d{2})T(\d{2})") {
 set $year $1;
 set $month $2;
 set $day $3;

Enhanced health log format 1351

https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/samples/docker-multicontainer-v2.zip

Amazon Elastic Beanstalk Developer Guide

 set $hour $4;
 }

 access_log /var/log/nginx/access.log main;
 access_log /var/log/nginx/healthd/application.log.$year-$month-$day-$hour healthd;

 location / {
 proxy_pass http://my_app; # match the name of upstream directive which is defined
 above
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 location /assets {
 alias /var/app/current/public/assets;
 gzip_static on;
 gzip on;
 expires max;
 add_header Cache-Control public;
 }

 location /public {
 alias /var/app/current/public;
 gzip_static on;
 gzip on;
 expires max;
 add_header Cache-Control public;
 }
}

/etc/httpd/conf.d/healthd.conf

The following example shows the log configuration for Apache.

LogFormat "%{%s}t\"%U\"%s\"%D\"%D\"%{X-Forwarded-For}i" healthd
CustomLog "|/usr/sbin/rotatelogs /var/log/httpd/healthd/application.log.%Y-%m-%d-%H
 3600" healthd

Generating logs for enhanced health reporting

To provide logs to the health agent, you must do the following:

• Output logs in the correct format, as shown in the previous section

Enhanced health log format 1352

Amazon Elastic Beanstalk Developer Guide

• Output logs to /var/log/nginx/healthd/

• Name logs using the following format: application.log.$year-$month-$day-$hour

• Rotate logs once per hour

• Do not truncate logs

Notifications and troubleshooting

This page lists example cause messages for common issues and links to more information. Cause
messages appear in the environment overview page of the Elastic Beanstalk console and are
recorded in events when health issues persist across several checks.

Deployments

Elastic Beanstalk monitors your environment for consistency following deployments. If a rolling
deployment fails, the version of your application running on the instances in your environment
may vary. This can occur if a deployment succeeds on one or more batches but fails prior to all
batches completing.

Incorrect application version found on 2 out of 5 instances. Expected version "v1" (deployment 1).

Incorrect application version on environment instances. Expected version "v1" (deployment 1).

The expected application version is not running on some or all instances in an environment.

Incorrect application version "v2" (deployment 2). Expected version "v1" (deployment 1).

The application deployed to an instance differs from the expected version. If a deployment fails,
the expected version is reset to the version from the most recent successful deployment. In the
above example, the first deployment (version "v1") succeeded, but the second deployment (version
"v2") failed. Any instances running "v2" are considered unhealthy.

To solve this issue, start another deployment. You can redeploy a previous version that you know
works, or configure your environment to ignore health checks during deployment and redeploy the
new version to force the deployment to complete.

You can also identify and terminate the instances that are running the wrong application version.
Elastic Beanstalk will launch instances with the correct version to replace any instances that you
terminate. Use the EB CLI health command to identify instances that are running the wrong
application version.

Notifications and troubleshooting 1353

Amazon Elastic Beanstalk Developer Guide

Application server

15% of requests are erroring with HTTP 4xx

20% of the requests to the ELB are erroring with HTTP 4xx.

A high percentage of HTTP requests to an instance or environment are failing with 4xx errors.

A 400 series status code indicates that the user made a bad request, such as requesting a page that
doesn't exist (404 File Not Found) or that the user doesn't have access to (403 Forbidden). A low
number of 404s is not unusual but a large number could mean that there are internal or external
links to unavailable pages. These issues can be resolved by fixing bad internal links and adding
redirects for bad external links.

5% of the requests are failing with HTTP 5xx

3% of the requests to the ELB are failing with HTTP 5xx.

A high percentage of HTTP requests to an instance or environment are failing with 500 series
status codes.

A 500 series status code indicates that the application server encountered an internal error. These
issues indicate that there is an error in your application code and should be identified and fixed
quickly.

95% of CPU is in use

On an instance, the health agent is reporting an extremely high percentage of CPU usage and sets
the instance health to Warning or Degraded.

Scale your environment to take load off of instances.

Worker instance

20 messages waiting in the queue (25 seconds ago)

Requests are being added to your worker environment's queue faster than they can be processed.
Scale your environment to increase capacity.

5 messages in Dead Letter Queue (15 seconds ago)

Worker requests are failing repeatedly and being added to the the section called “Dead-letter
queues”. Check the requests in the dead-letter queue to see why they are failing.

Notifications and troubleshooting 1354

Amazon Elastic Beanstalk Developer Guide

Other resources

4 active instances is below Auto Scaling group minimum size 5

The number of instances running in your environment is fewer than the minimum configured for
the Auto Scaling group.

Auto Scaling group (groupname) notifications have been deleted or modified

The notifications configured for your Auto Scaling group have been modified outside of Elastic
Beanstalk.

Manage alarms

This topic walks you through the steps to create alarms for metrics that you're monitoring. It also
provides instructions to view your existing alarms and to check their state.

You can create alarms for metrics that you are monitoring by using the Elastic Beanstalk console.
Alarms help you monitor changes to your Amazon Elastic Beanstalk environment so that you can
easily identify and mitigate problems before they occur. For example, you can set an alarm that
notifies you when CPU utilization in an environment exceeds a certain threshold, ensuring that you
are notified before a potential problem occurs. For more information, see Using Elastic Beanstalk
with Amazon CloudWatch.

Note

Elastic Beanstalk uses CloudWatch for monitoring and alarms, meaning CloudWatch costs
are applied to your Amazon account for any alarms that you use.

For more information about monitoring specific metrics, see Basic health reporting.

To check the state of your alarms

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Manage alarms 1355

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

3. In the navigation pane, choose Alarms.

The page displays a list of existing alarms. If any alarms are in the alarm state, they are flagged
with the warning icon

().

4. To filter alarms, choose the drop-down menu, and then select a filter.

5. To edit or delete an alarm, choose the edit icon

()
or the delete icon
(),
respectively.

To create an alarm

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Monitoring.

4. Locate the metric for which you want to create an alarm, and then choose the alarm icon

().
The Add alarm page is displayed.

5. Enter details about the alarm:

• Name: A name for this alarm.

• Description (optional): A short description of what this alarm is.

• Period: The time interval between readings.

• Threshold: Describes the behavior and value that the metric must exceed in order to trigger
an alarm.

• Change state after: The amount a time after a threshold has been exceed that triggers a
change in state of the alarm.

• Notify: The Amazon SNS topic that is notified when an alarm changes state.

• Notify when state changes to:

• OK: The metric is within the defined threshold.

Manage alarms 1356

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• Alarm: The metric exceeded the defined threshold.

• Insufficient data: The alarm has just started, the metric is not available, or not enough
data is available for the metric to determine the alarm state.

6. Choose Add. The environment status changes to gray while the environment updates. You can
view the alarm that you created by choosing Alarms in the navigation pane.

Viewing an Elastic Beanstalk environment's change history

This topic explains how you can use the Elastic Beanstalk Console to view a history of configuration
changes that have been made to your Elastic Beanstalk environments.

Elastic Beanstalk fetches your change history from events recorded in Amazon CloudTrail and
displays them in a list that you can easily navigate and filter.

The Change History panel displays the following information for changes made to your
environments:

• The date and time when a change was made

• The IAM user that was responsible for a change made

• The source tool (either Elastic Beanstalk command line interface (EB CLI) or console) that was
used to make the change

• The configuration parameter and new values that were set

Any sensitive data that is part of the change, such as the names of database users affected by the
change, aren't displayed in the panel.

To view change history

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Change history.

The Change History page shows a list of configuration changes that were made to your Elastic
Beanstalk environments.

Note the following points about navigating the information on this page:

View change history 1357

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• You can page through the list by choosing < (previous) or > (next), or by choosing a specific page
number.

• Under the Configuration changes column, select the arrow icon to toggle between expanding
and collapsing the list of changes under the Changes made heading.

• Use the search bar to filter your results from the change history list. You can enter any string to
narrow down the list of changes that are displayed.

Note the following about filtering the displayed results:

• The search filter is not case sensitive.

• You can filter displayed changes based on information under the Configuration changes column,
even when it is not visible due to being collapsed inside Changes made.

• You can only filter the results displayed. However, the filter remains in place even if you select to
go to another page to display more results. Your filtered results also append to the result set of
the next page.

The following examples demonstrate how the data shown on the earlier screen can be filtered:

• Enter GettingStartedApp-env in the search box to narrow down the results to only include
the changes that were made to the environment named GettingStartedApp-env.

• Enter example3 in the search box to narrow down the results to only include changes that were
made by IAM users whose username contains the string example3.

• Enter 2020-10 in the search box to narrow down the results to only include changes that were
made during the month of October 2020. Change the search value to 2020-10-16 to filter
further the displayed results to only include changes that were made on the day of October 16,
2020.

• Enter proxy:staticfiles in the search box to narrow down the results
to only include the changes that were made to the namespace named
aws:elasticbeanstalk:environment:proxy:staticfiles. The rows that are displayed are the result of
the filter. This is true even for results that are collapsed under Changes made.

Viewing an Elastic Beanstalk environment's event stream

This topic explains how to access events and notifications associated with your application.

View events 1358

Amazon Elastic Beanstalk Developer Guide

Viewing events with the Elastic Beanstalk console

To view events with the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Events.

The Events page shows a list of all events that have been recorded for the environment. You
can page through the list choosing < (previous), > (next), or page numbers. You can filter the
type of events shown by using the Severity drop-down list.

Viewing events with command line tools

The EB CLI and Amazon CLI both provide commands for retrieving events. If you are managing your
environment using the EB CLI, use eb events to print a list of events. This command also has a --
follow option that continues to show new events until you press Ctrl+C to stop output.

To pull events using the Amazon CLI, use the describe-events command and specify the
environment by name or ID:

$ aws elasticbeanstalk describe-events --environment-id e-gbjzqccra3
{
 "Events": [
 {
 "ApplicationName": "elastic-beanstalk-example",
 "EnvironmentName": "elasticBeanstalkExa-env",
 "Severity": "INFO",
 "RequestId": "a4c7bfd6-2043-11e5-91e2-9114455c358a",
 "Message": "Environment update completed successfully.",
 "EventDate": "2015-07-01T22:52:12.639Z"
 },
...

For more information about the command line tools, see ???.

Console 1359

https://console.amazonaws.cn/elasticbeanstalk
http://www.amazonaws.cn/cli/

Amazon Elastic Beanstalk Developer Guide

Listing and connecting to server instances

This topic explains how to view a list of the Amazon EC2 instances running your Elastic Beanstalk
application environment and how to connect to them.

You can view a list of Amazon EC2 instances running your Amazon Elastic Beanstalk application
environment through the Elastic Beanstalk console. You can connect to the instances using any
SSH client. You can connect to the instances running Windows using Remote Desktop.

Important

Before you can access your Elastic Beanstalk–provisioned Amazon EC2 instances, you must
create an Amazon EC2 key pair and configure your Elastic Beanstalk–provisioned Amazon
EC2instances to use the Amazon EC2 key pair. You can set up your Amazon EC2 key pairs
using the Amazon Management Console. For instructions on creating a key pair for Amazon
EC2, see the Amazon EC2 Getting Started Guide. For more information on how to configure
your Amazon EC2 instances to use an Amazon EC2 key pair, see EC2 key pair.
By default, Elastic Beanstalk does not enable remote connections to EC2 instances in a
Windows container except for those in legacy Windows containers. (Elastic Beanstalk
configures EC2 instances in legacy Windows containers to use port 3389 for RDP
connections.) You can enable remote connections to your EC2 instances running Windows
by adding a rule to a security group that authorizes inbound traffic to the instances. We
strongly recommend that you remove the rule when you end your remote connection. You
can add the rule again the next time you need to log in remotely. For more information,
see Adding a Rule for Inbound RDP Traffic to a Windows Instance and Connect to Your
Windows Instance in the Amazon Elastic Compute Cloud User Guide for Microsoft Windows.

To view and connect to Amazon EC2 instances for an environment

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

2. In the navigation pane of the console, choose Load Balancers.

3. Load balancers created by Elastic Beanstalk have awseb in the name. Find the load balancer
for your environment and click it.

4. Choose the Instances tab in the bottom pane of the console.

A list of the instances that the load balancer for your Elastic Beanstalk environment uses is
displayed. Make a note of an instance ID that you want to connect to.

Monitor instances 1360

https://console.amazonaws.cn/
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/authorizing-access-to-an-instance.html#authorizing-access-to-an-instance-rdp
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html#connecting_to_windows_instance
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html#connecting_to_windows_instance
https://console.amazonaws.cn/ec2/

Amazon Elastic Beanstalk Developer Guide

5. In the navigation pane of the Amazon EC2 console, choose Instances, and find your instance ID
in the list.

6. Right-click the instance ID for the Amazon EC2 instance running in your environment's load
balancer, and then select Connect from the context menu.

7. Make a note of the instance's public DNS address on the Description tab.

8. Connect to an instance running Linux by using the SSH client of your choice, and then type ssh
-i .ec2/mykeypair.pem ec2-user@<public-DNS-of-the-instance> .

For more information on connecting to an Amazon EC2 Linux instance, see Getting Started with
Amazon EC2 Linux Instances in the Amazon EC2 User Guide.

If your Elastic Beanstalk environment uses the .NET on Windows Server platform, see Getting
Started with Amazon EC2 Windows Instances in the Amazon EC2 User Guide.

Viewing logs from Amazon EC2 instances in your Elastic
Beanstalk environment

This topic explains the types of instance logs that Elastic Beanstalk provides. It also provides
detailed instructions for retreiveing and managing them.

The Amazon EC2 instances in your Elastic Beanstalk environment generate logs that you can
view to troubleshoot issues with your application or configuration files. Logs created by the web
server, application server, Elastic Beanstalk platform scripts, and Amazon CloudFormation are
stored locally on individual instances. You can easily retrieve them by using the environment
management console or the EB CLI. You can also configure your environment to stream logs to
Amazon CloudWatch Logs in real time.

Tail logs are the last 100 lines of the most commonly used log files—Elastic Beanstalk operational
logs and logs from the web server or application server. When you request tail logs in the
environment management console or with eb logs, an instance in your environment concatenates
the most recent log entries into a single text file and uploads it to Amazon S3.

Bundle logs are full logs for a wider range of log files, including logs from yum and cron and
several logs from Amazon CloudFormation. When you request bundle logs, an instance in your
environment packages the full log files into a ZIP archive and uploads it to Amazon S3.

To upload rotated logs to Amazon S3, the instances in your environment must have an instance
profile with permission to write to your Elastic Beanstalk Amazon S3 bucket. These permissions

View instance logs 1361

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html

Amazon Elastic Beanstalk Developer Guide

are included in the default instance profile that Elastic Beanstalk prompts you to create when you
launch an environment in the Elastic Beanstalk console for the first time.

To retrieve instance logs

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Logs.

4. Choose Request Logs, and then choose the type of logs to retrieve. To get tail logs, choose
Last 100 Lines. To get bundle logs, choose Full Logs.

5. When Elastic Beanstalk finishes retrieving your logs, choose Download.

Elastic Beanstalk stores tail and bundle logs in an Amazon S3 bucket, and generates a presigned
Amazon S3 URL that you can use to access your logs. Elastic Beanstalk deletes the files from
Amazon S3 after a duration of 15 minutes.

Warning

Anyone in possession of the presigned Amazon S3 URL can access the files before they are
deleted. Make the URL available only to trusted parties.

Note

Your user policy must have the s3:DeleteObject permission. Elastic Beanstalk uses your
user permissions to delete the logs from Amazon S3.

To persist logs, you can configure your environment to publish logs to Amazon S3 automatically
after they are rotated. To enable log rotation to Amazon S3, follow the procedure in Configuring
instance log viewing. Instances in your environment will attempt to upload logs that have been
rotated once per hour.

View instance logs 1362

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

If your application generates logs in a location that isn't part of the default configuration for your
environment's platform, you can extend the default configuration by using configuration files
(.ebextensions). You can add your application's log files to tail logs, bundle logs, or log rotation.

For real-time log streaming and long-term storage, configure your environment to stream logs to
Amazon CloudWatch Logs.

Sections

• Log location on Amazon EC2 instances

• Log location in Amazon S3

• Log rotation settings on Linux

• Extending the default log task configuration

• Streaming log files to Amazon CloudWatch Logs

Log location on Amazon EC2 instances

Logs are stored in standard locations on the Amazon EC2 instances in your environment. Elastic
Beanstalk generates the following logs.

Amazon Linux 2

• /var/log/eb-engine.log

Amazon Linux AMI (AL1)

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully
supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

• /var/log/eb-activity.log

• /var/log/eb-commandprocessor.log

Windows Server

Log location on Amazon EC2 instances 1363

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

• C:\Program Files\Amazon\ElasticBeanstalk\logs\

• C:\cfn\log\cfn-init.log

These logs contain messages about deployment activities, including messages related to
configuration files (.ebextensions).

Each application and web server stores logs in its own folder:

• Apache – /var/log/httpd/

• IIS – C:\inetpub\wwwroot\

• Node.js – /var/log/nodejs/

• nginx – /var/log/nginx/

• Passenger – /var/app/support/logs/

• Puma – /var/log/puma/

• Python – /opt/python/log/

• Tomcat – /var/log/tomcat/

Log location in Amazon S3

When you request tail or bundle logs from your environment, or when instances upload rotated
logs, they're stored in your Elastic Beanstalk bucket in Amazon S3. Elastic Beanstalk creates a
bucket named elasticbeanstalk-region-account-id for each Amazon Region in which
you create environments. Within this bucket, logs are stored under the path resources/
environments/logs/logtype/environment-id/instance-id.

For example, logs from instance i-0a1fd158, in Elastic Beanstalk environment e-mpcwnwheky in
Amazon Region us-west-2 in account 123456789012, are stored in the following locations:

• Tail Logs –

s3://elasticbeanstalk-us-west-2-123456789012/resources/environments/logs/
tail/e-mpcwnwheky/i-0a1fd158

• Bundle Logs –

s3://elasticbeanstalk-us-west-2-123456789012/resources/environments/logs/
bundle/e-mpcwnwheky/i-0a1fd158

Log location in Amazon S3 1364

Amazon Elastic Beanstalk Developer Guide

• Rotated Logs –

s3://elasticbeanstalk-us-west-2-123456789012/resources/environments/logs/
publish/e-mpcwnwheky/i-0a1fd158

Note

You can find your environment ID in the environment management console.

Elastic Beanstalk deletes tail and bundle logs from Amazon S3 automatically 15 minutes after they
are created. Rotated logs persist until you delete them or move them to S3 Glacier.

Log rotation settings on Linux

On Linux platforms, Elastic Beanstalk uses logrotate to rotate logs periodically. If configured,
after a log is rotated locally, the log rotation task picks it up and uploads it to Amazon S3. Logs
that are rotated locally don't appear in tail or bundle logs by default.

You can find Elastic Beanstalk configuration files for logrotate in /etc/
logrotate.elasticbeanstalk.hourly/. These rotation settings are specific to the platform,
and might change in future versions of the platform. For more information about the available
settings and example configurations, run man logrotate.

The configuration files are invoked by cron jobs in /etc/cron.hourly/. For more information
about cron, run man cron.

Extending the default log task configuration

Elastic Beanstalk uses files in subfolders of /opt/elasticbeanstalk/tasks (Linux) or C:
\Program Files\Amazon\ElasticBeanstalk\config (Windows Server) on the Amazon EC2
instance to configure tasks for tail logs, bundle logs, and log rotation.

On Amazon Linux:

• Tail Logs –

/opt/elasticbeanstalk/tasks/taillogs.d/

• Bundle Logs –

Log rotation settings on Linux 1365

Amazon Elastic Beanstalk Developer Guide

/opt/elasticbeanstalk/tasks/bundlelogs.d/

• Rotated Logs –

/opt/elasticbeanstalk/tasks/publishlogs.d/

On Windows Server:

• Tail Logs –

c:\Program Files\Amazon\ElasticBeanstalk\config\taillogs.d\

• Bundle Logs –

c:\Program Files\Amazon\ElasticBeanstalk\config\bundlelogs.d\

• Rotated Logs –

c:\Program Files\Amazon\ElasticBeanstalk\config\publogs.d\

For example, the eb-activity.conf file on Linux adds two log files to the tail logs task.

/opt/elasticbeanstalk/tasks/taillogs.d/eb-activity.conf

/var/log/eb-commandprocessor.log
/var/log/eb-activity.log

You can use environment configuration files (.ebextensions) to add your own .conf files to
these folders. A .conf file lists log files specific to your application, which Elastic Beanstalk adds to
the log file tasks.

Use the files section to add configuration files to the tasks that you want to modify. For example,
the following configuration text adds a log configuration file to each instance in your environment.
This log configuration file, cloud-init.conf, adds /var/log/cloud-init.log to tail logs.

files:
 "/opt/elasticbeanstalk/tasks/taillogs.d/cloud-init.conf" :
 mode: "000755"
 owner: root
 group: root
 content: |

Extending the default log task configuration 1366

Amazon Elastic Beanstalk Developer Guide

 /var/log/cloud-init.log

Add this text to a file with the .config file name extension to your source bundle under a folder
named .ebextensions.

~/workspace/my-app
|-- .ebextensions
| `-- tail-logs.config
|-- index.php
`-- styles.css

On Linux platforms, you can also use wildcard characters in log task configurations. This
configuration file adds all files with the .log file name extension from the log folder in the
application root to bundle logs.

files:
 "/opt/elasticbeanstalk/tasks/bundlelogs.d/applogs.conf" :
 mode: "000755"
 owner: root
 group: root
 content: |
 /var/app/current/log/*.log

Log task configurations don't support wildcard characters on Windows platforms.

Note

To help familiarize yourself with log customization procedures, you can deploy a sample
application using the EB CLI. For this, the EB CLI creates a local application directory that
contains an .ebextentions subdirectory with a sample configuration. You can also use
the sample application's log files to explore the log retrieval feature described in this topic.

For more information about using configuration files, see Advanced environment customization
with configuration files (.ebextensions).

Much like extending tail logs and bundle logs, you can extend log rotation using a configuration
file. Whenever Elastic Beanstalk rotates its own logs and uploads them to Amazon S3, it also
rotates and uploads your additional logs. Log rotation extension behaves differently depending on
the platform's operating system. The following sections describe the two cases.

Extending the default log task configuration 1367

Amazon Elastic Beanstalk Developer Guide

Extending log rotation on Linux

As explained in Log rotation settings on Linux, Elastic Beanstalk uses logrotate to rotate logs on
Linux platforms. When you configure your application's log files for log rotation, the application
doesn't need to create copies of log files. Elastic Beanstalk configures logrotate to create a
copy of your application's log files for each rotation. Therefore, the application must keep log files
unlocked when it isn't actively writing to them.

Extending log rotation on Windows server

On Windows Server, when you configure your application's log files for log rotation, the application
must rotate the log files periodically. Elastic Beanstalk looks for files with names starting with the
pattern you configured, and picks them up for uploading to Amazon S3. In addition, periods in the
file name are ignored, and Elastic Beanstalk considers the name up to the period to be the base log
file name.

Elastic Beanstalk uploads all versions of a base log file except for the newest one, because it
considers that one to be the active application log file, which can potentially be locked. Your
application can, therefore, keep the active log file locked between rotations.

For example, your application writes to a log file named my_log.log, and you specify this name
in your .conf file. The application periodically rotates the file. During the Elastic Beanstalk
rotation cycle, it finds the following files in the log file's folder: my_log.log, my_log.0800.log,
my_log.0830.log. Elastic Beanstalk considers all of them to be versions of the base name
my_log. The file my_log.log has the latest modification time, so Elastic Beanstalk uploads only
the other two files, my_log.0800.log and my_log.0830.log.

Streaming log files to Amazon CloudWatch Logs

You can configure your environment to stream logs to Amazon CloudWatch Logs in the Elastic
Beanstalk console or by using configuration options. With CloudWatch Logs, each instance in your
environment streams logs to log groups that you can configure to be retained for weeks or years,
even after your environment is terminated.

The set of logs streamed varies per environment, but always includes eb-engine.log and access
logs from the nginx or Apache proxy server that runs in front of your application.

You can configure log streaming in the Elastic Beanstalk console either during environment
creation or for an existing environment. You can set the following options from the console:

Streaming log files to Amazon CloudWatch Logs 1368

Amazon Elastic Beanstalk Developer Guide

enable /disable log streaming to CloudWatch Logs, set the number of retention days, and select
from Lifecyle options. In the following example, logs are saved for up to seven days, even when the
environment is terminated.

The following configuration file enables log streaming with 180 days retention, even if the
environment is terminated.

Example .ebextensions/log-streaming.config

option_settings:
 aws:elasticbeanstalk:cloudwatch:logs:
 StreamLogs: true
 DeleteOnTerminate: false
 RetentionInDays: 180

Streaming log files to Amazon CloudWatch Logs 1369

Amazon Elastic Beanstalk Developer Guide

Using Elastic Beanstalk with other Amazon services

The topics in this section describe the many ways you can use additional Amazon services with
your Elastic Beanstalk application. To implement your application's environments, Elastic Beanstalk
manages resources of other Amazon services or uses their functionality. In addition, Elastic
Beanstalk integrates with Amazon services that it doesn't use directly as part of your environments.

Topics

• Architectural overview

• Using Elastic Beanstalk with Amazon CloudFront

• Logging Elastic Beanstalk API calls with Amazon CloudTrail

• Using Elastic Beanstalk with Amazon CloudWatch

• Using Elastic Beanstalk with Amazon CloudWatch Logs

• Using Elastic Beanstalk with Amazon EventBridge

• Finding and tracking Elastic Beanstalk resources with Amazon Config

• Using Elastic Beanstalk with Amazon DynamoDB

• Using Elastic Beanstalk with Amazon ElastiCache

• Using Elastic Beanstalk with Amazon Elastic File System

• Using Elastic Beanstalk with Amazon Identity and Access Management

• Using Elastic Beanstalk with Amazon RDS

• Using Elastic Beanstalk with Amazon S3

• Using Elastic Beanstalk with Amazon Secrets Manager and Amazon Systems Manager Parameter
Store

• Using Elastic Beanstalk with Amazon VPC

Architectural overview

The following diagram illustrates an example architecture of Elastic Beanstalk across multiple
Availability Zones working with other Amazon products such as Amazon CloudFront, Amazon
Simple Storage Service (Amazon S3), and Amazon Relational Database Service (Amazon RDS).

Architectural overview 1370

Amazon Elastic Beanstalk Developer Guide

To plan for fault-tolerance, it is advisable to have N+1 Amazon EC2 instances and spread your
instances across multiple Availability Zones. In the unlikely case that one Availability Zone goes
down, you will still have your other Amazon EC2 instances running in another Availability Zone.
You can adjust Amazon EC2 Auto Scaling to allow for a minimum number of instances as well
as multiple Availability Zones. For instructions on how to do this, see Auto Scaling your Elastic
Beanstalk environment instances. For more information about building fault-tolerant applications,
go to Building Fault-Tolerant Applications on Amazon.

The following sections discuss in more detail integration with Amazon CloudFront, Amazon
CloudWatch, Amazon DynamoDB Amazon ElastiCache, Amazon RDS, Amazon Route 53, Amazon
Simple Storage Service, Amazon VPC , and IAM.

Using Elastic Beanstalk with Amazon CloudFront

Amazon CloudFront is a web service that speeds up distribution of your static and dynamic web
content, for example, .html, .css, .php, image, and media files, to end users. CloudFront delivers
your content through a worldwide network of edge locations. When an end user requests content
that you're serving with CloudFront, the user is routed to the edge location that provides the
lowest latency, so content is delivered with the best possible performance. If the content is already
in that edge location, CloudFront delivers it immediately. If the content is not currently in that edge
location, CloudFront retrieves it from an Amazon S3 bucket or an HTTP server (for example, a web
server) that you have identified as the source for the definitive version of your content.

CloudFront 1371

http://media.amazonwebservices.com/AWS_Building_Fault_Tolerant_Applications.pdf

Amazon Elastic Beanstalk Developer Guide

After you have created and deployed your Elastic Beanstalk application you can sign up for
CloudFront and start using CloudFront to distribute your content. Learn more about CloudFront
from the Amazon CloudFront Developer Guide.

Logging Elastic Beanstalk API calls with Amazon CloudTrail

Elastic Beanstalk is integrated with Amazon CloudTrail, a service that provides a record of actions
taken by a user, role, or an Amazon service in Elastic Beanstalk. CloudTrail captures all API calls
for Elastic Beanstalk as events, including calls from the Elastic Beanstalk console, from the EB CLI,
and from your code to the Elastic Beanstalk APIs. If you create a trail, you can enable continuous
delivery of CloudTrail events to an Amazon S3 bucket, including events for Elastic Beanstalk. If
you don't configure a trail, you can still view the most recent events in the CloudTrail console in
Event history. Using the information collected by CloudTrail, you can determine the request that
was made to Elastic Beanstalk, the IP address from which the request was made, who made the
request, when it was made, and additional details.

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

Elastic Beanstalk information in CloudTrail

CloudTrail is enabled on your Amazon account when you create the account. When activity occurs
in Elastic Beanstalk, that activity is recorded in a CloudTrail event along with other Amazon
service events in Event history. You can view, search, and download recent events in your Amazon
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your Amazon account, including events for Elastic Beanstalk,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all regions. The trail logs events from
all regions in the Amazon partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other Amazon services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

CloudTrail 1372

http://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon Elastic Beanstalk Developer Guide

All Elastic Beanstalk actions are logged by CloudTrail and are documented in the Amazon
Elastic Beanstalk API Reference. For example, calls to the DescribeApplications,
UpdateEnvironment, and ListTagsForResource actions generate entries in the CloudTrail log
files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon service.

For more information, see the CloudTrail userIdentity Element.

Understanding Elastic Beanstalk log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the UpdateEnvironment
action called by an IAM user named intern, for the sample-env environment in the sample-app
application.

{
 "Records": [{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIXDAYQEXAMPLEUMLYNGL",
 "arn": "arn:aws-cn:iam::123456789012:user/intern",
 "accountId": "123456789012",
 "accessKeyId": "ASXIAGXEXAMPLEQULKNXV",
 "userName": "intern",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",

Understanding Elastic Beanstalk log file entries 1373

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Elastic Beanstalk Developer Guide

 "creationDate": "2016-04-22T00:23:24Z"
 }
 },
 "invokedBy": "signin.amazonaws.com.cn"
 },
 "eventTime": "2016-04-22T00:24:14Z",
 "eventSource": "elasticbeanstalk.amazonaws.com.cn",
 "eventName": "UpdateEnvironment",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "255.255.255.54",
 "userAgent": "signin.amazonaws.com.cn",
 "requestParameters": {
 "applicationName": "sample-app",
 "environmentName": "sample-env",
 "optionSettings": []
 },
 "responseElements": null,
 "requestID": "84ae9ecf-0280-17ce-8612-705c7b132321",
 "eventID": "e48b6a08-c6be-4a22-99e1-c53139cbfb18",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }]
}

Using Elastic Beanstalk with Amazon CloudWatch

Amazon CloudWatch enables you to monitor, manage, and publish various metrics, as well as
configure alarm actions based on data from metrics. Amazon CloudWatch monitoring enables you
to collect, analyze, and view system and application metrics so that you can make operational and
business decisions more quickly and with greater confidence.

You can use Amazon CloudWatch to collect metrics about your Amazon Web Services (Amazon)
resources—such as the performance of your Amazon EC2 instances. You can also publish your own
metrics directly to Amazon CloudWatch. Amazon CloudWatch alarms help you implement decisions
more easily by enabling you to send notifications or automatically make changes to the resources
you are monitoring, based on rules that you define. For example, you can create alarms that initiate
Amazon EC2 Auto Scaling and Amazon Simple Notification Service (Amazon SNS) actions on your
behalf.

Elastic Beanstalk automatically uses Amazon CloudWatch to help you monitor your application and
environment status. You can navigate to the Amazon CloudWatch console to see your dashboard

CloudWatch 1374

Amazon Elastic Beanstalk Developer Guide

and get an overview of all of your resources as well as your alarms. You can also choose to view
more metrics or add custom metrics.

For more information about Amazon CloudWatch, go to the Amazon CloudWatch Developer Guide.
For an example of how to use Amazon CloudWatch with Elastic Beanstalk, see the section called
“Example: Using custom Amazon CloudWatch metrics”.

Using Elastic Beanstalk with Amazon CloudWatch Logs

This topic explains the monitoring features that the Amazon CloudWatch Logs service can provide
to Elastic Beanstalk. It also walks you through the configuration setup and lists the locations of the
logs for each Elastic Beanstalk platform.

Implementing CloudWatch Logs can enable you to do the following monitoring activities:

• Monitor and archive your Elastic Beanstalk application, system, and custom log files from the
Amazon EC2 instances of your environments.

• Configure alarms that make it easier for you to react to specific log stream events that your
metric filters extract.

The CloudWatch Logs agent installed on each Amazon EC2 instance in your environment publishes
metric data points to the CloudWatch service for each log group you configure. Each log group
applies its own filter patterns to determine what log stream events to send to CloudWatch as
data points. Log streams that belong to the same log group share the same retention, monitoring,
and access control settings. You can configure Elastic Beanstalk to automatically stream logs
to the CloudWatch service, as described in Streaming instance logs to CloudWatch Logs. For
more information about CloudWatch Logs, including terminology and concepts, see the Amazon
CloudWatch Logs User Guide.

In addition to instance logs, if you enable enhanced health for your environment, you can configure
the environment to stream health information to CloudWatch Logs. See Streaming Elastic
Beanstalk environment health information to Amazon CloudWatch Logs.

Topics

• Prerequisites to instance log streaming to CloudWatch Logs

• How Elastic Beanstalk sets up CloudWatch Logs

• Streaming instance logs to CloudWatch Logs

CloudWatch Logs 1375

http://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

Amazon Elastic Beanstalk Developer Guide

• Troubleshooting CloudWatch Logs integration

• Streaming Elastic Beanstalk environment health information to Amazon CloudWatch Logs

Prerequisites to instance log streaming to CloudWatch Logs

To enable streaming of logs from your environment's Amazon EC2 instances to CloudWatch Logs,
you must meet the following conditions.

• Platform – Because this feature is only available in platform versions released on or after this
release, if you are using an earlier platform version, update your environment to a current one.

• If you don't have the AWSElasticBeanstalkWebTier or AWSElasticBeanstalkWorkerTier Elastic
Beanstalk managed policy in your Elastic Beanstalk instance profile, you must add the following
to your profile to enable this feature.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogStream"
],
 "Resource": [
 "*"
]
 }
]
}

How Elastic Beanstalk sets up CloudWatch Logs

Elastic Beanstalk installs a CloudWatch log agent with the default configuration settings on each
instance it creates. Learn more in the CloudWatch Logs Agent Reference.

When you enable instance log streaming to CloudWatch Logs, Elastic Beanstalk sends log files from
your environment's instances to CloudWatch Logs. Different platforms stream different logs. The
following table lists the logs, by platform.

Prerequisites to instance log streaming to CloudWatch Logs 1376

http://www.amazonaws.cn/releasenotes/6677534638371416
http://www.amazonaws.cn/releasenotes/6677534638371416
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/AgentReference.html

Amazon Elastic Beanstalk Developer Guide

Platform / Platform Branch Logs

Docker /

Platform Branch: Docker
Running on 64bit Amazon
Linux 2

• /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/docker

• /var/log/docker-events.log

• /var/log/eb-docker/containers/eb-current-app/stdouterr.log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

Docker /

Platform Branch: ECS
Running on 64bit Amazon
Linux 2

• /var/log/docker-events.log

• /var/log/eb-ecs-mgr.log

• /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/ecs/ecs-agent.log

• /var/log/ecs/ecs-init.log

Go

.NET Core on Linux

Java / Platform Branch:
Corretto running on 64bit
Amazon Linux 2

• /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/web.stdout.log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

Node.js

Python

• /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/web.stdout.log

• /var/log/httpd/access_log

• /var/log/httpd/error_log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

Tomcat • /var/log/eb-engine.log

How Elastic Beanstalk sets up CloudWatch Logs 1377

Amazon Elastic Beanstalk Developer Guide

Platform / Platform Branch Logs

PHP • /var/log/eb-hooks.log

• /var/log/httpd/access_log

• /var/log/httpd/error_log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

.NET on Windows Server • C:\inetpub\logs\LogFiles\W3SVC1\u_ex*.log

• C:\Program Files\Amazon\ElasticBeanstalk\logs\A
WSDeployment.log

• C:\Program Files\Amazon\ElasticBeanstalk\logs\Hooks.log

Ruby • /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/puma/puma.log

• /var/log/web.stdout.log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

Log files on Amazon Linux AMI platforms

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully
supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

The following table lists the log files streamed from instances on platform branches based on
Amazon Linux AMI (preceding Amazon Linux 2), by platform.

How Elastic Beanstalk sets up CloudWatch Logs 1378

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

Amazon Elastic Beanstalk Developer Guide

Platform / Platform Branch Logs

Docker /

Platform Branch: Docker
Running on 64bit Amazon
Linux

• /var/log/eb-activity.log

• /var/log/nginx/error.log

• /var/log/docker-events.log

• /var/log/docker

• /var/log/nginx/access.log

• /var/log/eb-docker/containers/eb-current-app/stdouterr.log

Docker /

Platform Branch: Multicont
ainer Docker Running on
64bit Amazon Linux

• /var/log/eb-activity.log

• /var/log/ecs/ecs-init.log

• /var/log/eb-ecs-mgr.log

• /var/log/ecs/ecs-agent.log

• /var/log/docker-events.log

Glassfish (Preconfigured
Docker)

• /var/log/eb-activity.log

• /var/log/nginx/error.log

• /var/log/docker-events.log

• /var/log/docker

• /var/log/nginx/access.log

Go • /var/log/eb-activity.log

• /var/log/nginx/error.log

• /var/log/nginx/access.log

Java /

Platform Branch: Java 8
running on 64bit Amazon
Linux

Platform Branch: Java 7
running on 64bit Amazon
Linux

• /var/log/eb-activity.log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

• /var/log/web-1.error.log

• /var/log/web-1.log

How Elastic Beanstalk sets up CloudWatch Logs 1379

Amazon Elastic Beanstalk Developer Guide

Platform / Platform Branch Logs

Tomcat • /var/log/eb-activity.log

• /var/log/httpd/error_log

• /var/log/httpd/access_log

• /var/log/nginx/error_log

• /var/log/nginx/access_log

Node.js • /var/log/eb-activity.log

• /var/log/nodejs/nodejs.log

• /var/log/nginx/error.log

• /var/log/nginx/access.log

• /var/log/httpd/error.log

• /var/log/httpd/access.log

PHP • /var/log/eb-activity.log

• /var/log/httpd/error_log

• /var/log/httpd/access_log

Python • /var/log/eb-activity.log

• /var/log/httpd/error_log

• /var/log/httpd/access_log

• /opt/python/log/supervisord.log

Ruby /

Platform Branch: Puma
with Ruby running on 64bit
Amazon Linux

• /var/log/eb-activity.log

• /var/log/nginx/error.log

• /var/log/puma/puma.log

• /var/log/nginx/access.log

Ruby /

Platform Branch: Passenger
with Ruby running on 64bit
Amazon Linux

• /var/log/eb-activity.log

• /var/app/support/logs/passenger.log

• /var/app/support/logs/access.log

• /var/app/support/logs/error.log

How Elastic Beanstalk sets up CloudWatch Logs 1380

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk configures log groups in CloudWatch Logs for the various log files that it
streams. To retrieve specific log files from CloudWatch Logs, you have to know the name of the
corresponding log group. The log group naming scheme depends on the platform's operating
system.

For Linux platforms, prefix the on-instance log file location with /aws/
elasticbeanstalk/environment_name to get the log group name. For example,
to retrieve the file /var/log/nginx/error.log, specify the log group /aws/
elasticbeanstalk/environment_name/var/log/nginx/error.log.

For Windows platforms, see the following table for the log group corresponding to each log file.

On-instance log file Log group

C:\Program Files\Amazon\Elast
icBeanstalk\logs\AWSDeploym
ent.log

/aws/elasticbeanstalk/<envi
ronment-name>/EBDeploy-Log

C:\Program Files\Amazon\Elast
icBeanstalk\logs\Hooks.log

/aws/elasticbeanstalk/<envi
ronment-name>/EBHooks-Log

C:\inetpub\logs\LogFiles (the entire
directory)

/aws/elasticbeanstalk/<envi
ronment-name>/IIS-Log

Streaming instance logs to CloudWatch Logs

You can enable instance log streaming to CloudWatch Logs using the Elastic Beanstalk console, the
EB CLI, or configuration options.

Before you enable it, set up IAM permissions to use with the CloudWatch Logs agent. You can
attach the following custom policy to the instance profile that you assign to your environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",

Streaming instance logs to CloudWatch Logs 1381

Amazon Elastic Beanstalk Developer Guide

 "logs:PutLogEvents",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "*"
]
 }
]
}

Instance log streaming using the Elastic Beanstalk console

To stream instance logs to CloudWatch Logs

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Under Instance log streaming to CloudWatch Logs:

• Enable Log streaming.

• Set Retention to the number of days to save the logs.

• Select the Lifecycle setting that determines whether the logs are saved after the
environment is terminated.

6. To save the changes choose Apply at the bottom of the page.

After you enable log streaming, you can return to the Software configuration category or page and
find the Log Groups link. Click this link to see your logs in the CloudWatch console.

Instance log streaming using the EB CLI

To enable instance log streaming to CloudWatch Logs using the EB CLI, use the eb logs command.

$ eb logs --cloudwatch-logs enable

Streaming instance logs to CloudWatch Logs 1382

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

You can also use eb logs to retrieve logs from CloudWatch Logs. You can retrieve all the
environment's instance logs, or use the command's many options to specify subsets of logs to
retrieve. For example, the following command retrieves the complete set of instance logs for your
environment, and saves them to a directory under .elasticbeanstalk/logs.

$ eb logs --all

In particular, the --log-group option enables you to retrieve instance logs of a specific log group,
corresponding to a specific on-instance log file. To do that, you need to know the name of the log
group that corresponds to the log file you want to retrieve. You can find this information in How
Elastic Beanstalk sets up CloudWatch Logs.

Instance log streaming using configuration files

When you create or update an environment, you can use a configuration file to set up and
configure instance log streaming to CloudWatch Logs. The following example configuration file
enables default instance log streaming. Elastic Beanstalk streams the default set of log files for
your environment's platform. To use the example, copy the text into a file with the .config
extension in the .ebextensions directory at the top level of your application source bundle.

option_settings:
 - namespace: aws:elasticbeanstalk:cloudwatch:logs
 option_name: StreamLogs
 value: true

Custom log file streaming

The Elastic Beanstalk integration with CloudWatch Logs doesn't directly support the streaming of
custom log files that your application generates. To stream custom logs, use a configuration file
to directly install the CloudWatch agent and to configure the files to be pushed. For an example
configuration file, see logs-streamtocloudwatch-linux.config.

Note

The example doesn't work on the Windows platform.

For more information about configuring CloudWatch Logs, see the CloudWatch agent
configuration file reference in the Amazon CloudWatch User Guide.

Streaming instance logs to CloudWatch Logs 1383

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/instance-configuration/logs-streamtocloudwatch-linux.config
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-Configuration-File-Details.html

Amazon Elastic Beanstalk Developer Guide

Troubleshooting CloudWatch Logs integration

Unable to locate environment instance logs

If you can't find some of the environment's instance logs that you expect in CloudWatch Logs,
investigate the following common issues:

• Your IAM role lacks the required IAM permissions.

• You launched your environment in an Amazon Web Services Region that doesn't support
CloudWatch Logs.

• One of your custom log files doesn't exist in the path you specified.

Application logs missing or intermittent

If your Elastic Beanstalk application logs, (/var/log/web.stdout.log), appear to be missing
or intermittent, this may be due to default rate-limiting settings in rsyslog and journald. While
disabling rate-limiting entirely can resolve this issue, it's not recommended as it could lead to
excessive disk usage, potential denial of service, or system performance degradation during
unexpected log bursts. Instead, you can adjust the rate limits using the following .ebextensions
configuration. This configuration increases the rate limit interval to 600 seconds with higher
burst limits, providing a balance between proper logging and system protection.

Throttling issues

If an Elastic Beanstalk operation that concurrently launches a large number of instances returns
a message like Error: fail to create log stream: ThrottlingException: Rate
exceeded, it's throttling from too many calls to the CloudWatch API.

To resolve the throttling issue take one of the following actions:

• Use a smaller batch size with rolling deployments to reduce concurrent updates.

• Request an increase for your Amazon account's Transaction Per Second (TPS) limit service quota
for CreateLogStream. For more information, see CloudWatch Logs quotas and Managing your
CloudWatch Logs service quotas in the Amazon CloudWatch Logs User Guide.

Troubleshooting CloudWatch Logs integration 1384

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/instance-configuration/logs-ratelimitcloudwatchlogs-linux.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/instance-configuration/logs-ratelimitcloudwatchlogs-linux.config
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html#service-quotas-manage
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/cloudwatch_limits_cwl.html#service-quotas-manage

Amazon Elastic Beanstalk Developer Guide

Streaming Elastic Beanstalk environment health information to
Amazon CloudWatch Logs

If you enable enhanced health reporting for your environment, you can configure the environment
to stream health information to CloudWatch Logs. This streaming is independent from Amazon
EC2 instance log streaming. This topic describes environment health information streaming. For
information about instance log streaming, see Using Elastic Beanstalk with Amazon CloudWatch
Logs.

When you configure environment health streaming, Elastic Beanstalk creates a
CloudWatch Logs log group for environment health. The log group's name is /aws/
elasticbeanstalk/environment-name/environment-health.log. Within this log group,
Elastic Beanstalk creates log streams named YYYY-MM-DD#<hash-suffix> (there might be more
than one log stream per date).

When the environment's health status changes, Elastic Beanstalk adds a record to the health log
stream. The record represents the health status transition—the new status and a description of the
cause of change. For example, an environment's status might change to Severe because the load
balancer is failing. For a description of enhanced health statuses, see Health colors and statuses.

Prerequisites to environment health streaming to CloudWatch Logs

To enable environment health streaming to CloudWatch Logs, you must meet the following
conditions:

• Platform – You must be using a platform version that supports enhanced health reporting.

• Permissions – You must grant certain logging-related permissions to Elastic Beanstalk
so that it can act on your behalf to stream health information for your environment.
If your environment isn't using a service role that Elastic Beanstalk created for it,
aws-elasticbeanstalk-service-role, or your account's service-linked role,
AWSServiceRoleForElasticBeanstalk, be sure to add the following permissions to your
custom service role.

{
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams",
 "logs:CreateLogStream",
 "logs:PutLogEvents"

Streaming environment health 1385

Amazon Elastic Beanstalk Developer Guide

],
 "Resource": "arn:aws-cn:logs:*:*:log-group:/aws/elasticbeanstalk/*:log-
stream:*"
}

Streaming environment health logs to CloudWatch Logs

You can enable environment health streaming to CloudWatch Logs using the Elastic Beanstalk
console, the EB CLI, or configuration options.

Environment health log streaming using the Elastic Beanstalk console

To stream environment health logs to CloudWatch Logs

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Monitoring configuration category, choose Edit.

5. Under Health reporting, make sure that the reporting System is set to Enhanced.

6. Under Health event streaming to CloudWatch Logs

• Enable Log streaming.

• Set Retention to the number of days to save the logs.

• Select the Lifecycle setting that determines whether the logs are saved after the
environment is terminated.

7. To save the changes choose Apply at the bottom of the page.

After you enable log streaming, you can return to the Monitoring configuration category or page
and find the Log Group link. Click this link to see your environment health logs in the CloudWatch
console.

Environment health log streaming using the EB CLI

To enable environment health log streaming to CloudWatch Logs using the EB CLI, use the eb logs
command.

Streaming environment health 1386

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

$ eb logs --cloudwatch-logs enable --cloudwatch-log-source environment-health

You can also use eb logs to retrieve logs from CloudWatch Logs. For example, the following
command retrieves all the health logs for your environment, and saves them to a directory under
.elasticbeanstalk/logs.

$ eb logs --all --cloudwatch-log-source environment-health

Environment health log streaming using configuration files

When you create or update an environment, you can use a configuration file to set up and
configure environment health log streaming to CloudWatch Logs. To use the example below, copy
the text into a file with the .config extension in the .ebextensions directory at the top level of
your application source bundle. The example configures Elastic Beanstalk to enable environment
health log streaming, keep the logs after terminating the environment, and save them for 30 days.

Example Health streaming configuration file

##
Sets up Elastic Beanstalk to stream environment health information
to Amazon CloudWatch Logs.
Works only for environments that have enhanced health reporting enabled.
##

option_settings:
 aws:elasticbeanstalk:cloudwatch:logs:health:
 HealthStreamingEnabled: true
 ### Settings below this line are optional.
 # DeleteOnTerminate: Delete the log group when the environment is
 # terminated. Default is false. If false, the health data is kept
 # RetentionInDays days.
 DeleteOnTerminate: false
 # RetentionInDays: The number of days to keep the archived health data
 # before it expires, if DeleteOnTerminate isn't set. Default is 7 days.
 RetentionInDays: 30

For option defaults and valid values, see aws:elasticbeanstalk:cloudwatch:logs:health.

Streaming environment health 1387

samples/aws_eb_cloudwatchlogs-envhealth.zip

Amazon Elastic Beanstalk Developer Guide

Using Elastic Beanstalk with Amazon EventBridge

Using Amazon EventBridge, you can set up event-driven rules that monitor your Elastic Beanstalk
resources and initiate target actions that use other Amazon services. For example, you can set a
rule for sending out email notifications by signaling an Amazon SNS topic whenever the health of
a production environment changes to a Warning status. Or, you can set a Lambda function to pass
a notification to Slack whenever the health of your environment changes to a Degraded or Severe
status.

You can create rules in Amazon EventBridge to act on any of the following Elastic Beanstalk events:

• State changes for environment operations (including create, update, and terminate operations). The
event specifies if the state change has started, succeeded, or failed.

• State changes for other resources. Besides environments, other resources that are monitored
include load balancers, auto scaling groups, and instances.

• Health transition for environments. The event states where the environment health has
transitioned from one health status to another one.

• State change for managed updates. The event specifies if the state change has started,
succeeded, or failed.

To capture specific Elastic Beanstalk events that you're interested in, define event-specific patterns
that EventBridge can use to detect the events. Event patterns have the same structure as the
events they match. The pattern quotes the fields that you want to match and provides the values
that you're looking for. Events are emitted on a best effort basis. They're delivered from Elastic
Beanstalk to EventBridge in near real-time under normal operational circumstances. However,
situations can arise that may delay or prevent delivery of an event.

For a list of fields that are contained in Elastic Beanstalk events and their possible string values,
see Elastic Beanstalk event field mapping. For information about how EventBridge rules work with
event patterns, see Events and Event Patterns in EventBridge.

Monitor an Elastic Beanstalk resource with EventBridge

With EventBridge, you can create rules that define actions to take when Elastic Beanstalk emits
events for its resources. For example, you can create a rule that sends you an email message
whenever the status of an environment changes.

EventBridge 1388

https://docs.amazonaws.cn/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

Amazon Elastic Beanstalk Developer Guide

The EventBridge console has a Pre-defined pattern option for building Elastic Beanstalk event
patterns. If you select this option in the EventBridge console when you create a rule, you can build
an Elastic Beanstalk event pattern quickly. You only need to select the event fields and values.
As you make selections, the console builds and displays the event pattern. Alternatively, you can
manually edit the event pattern that you build and can save it as a custom pattern. The console
also provides you the option to display a detailed Sample Event that you can copy and paste to the
event pattern that you're building.

If you prefer to type or copy and paste an event pattern into the EventBridge console, you can
select to use the Custom pattern option in the console. By doing this, you don't need to go
through the steps of selecting fields and values described earlier. This topic offers examples of both
event-matching patterns and Elastic Beanstalk events that you can use.

To create a rule for a resource event

1. Log in to Amazon using an account that has permissions to use EventBridge and Elastic
Beanstalk.

2. Open the Amazon EventBridge console at https://console.amazonaws.cn/events/.

3. In the navigation pane, choose Rules.

4. Choose Create rule.

5. Enter a Name for the rule, and, optionally, a description.

6. For Event bus, choose default. When an Amazon service in your account emits an event, it
always goes to your account’s default event bus.

7. For Rule type, choose Rule with an event pattern.

8. Choose Next.

9. For Event source, choose Amazon events or EventBridge partner events.

10. (Optional) For Sample event, select Amazon events. Enter Elastic Beanstalk in the search
field. This will provide a list of sample Elastic Beanstalk events from which you can choose to
display. This step simply displays a sample event that you can reference. It doesn't affect the
outcome of the rule creation. The Example Elastic Beanstalk events section later in this topic
provides examples of the same type of events.

11. In the Event pattern section, choose Event pattern form.

Monitor an Elastic Beanstalk resource with EventBridge 1389

https://console.amazonaws.cn/events/

Amazon Elastic Beanstalk Developer Guide

Note

If you already have text for an event pattern and don't need the EventBridge console
to build it for you, select Custom pattern (JSON editor). You can then either manually
enter or copy and paste text into the Event pattern box. Choose Next, and go to the
step about entering a target.

12. For Event source, choose Amazon services.

13. For Amazon service, select Elastic Beanstalk.

14. For Event type, select Status Change.

15. This step covers how you can work with the detail type, status, and severity event fields for
Elastic Beanstalk. As you choose these fields and the values you want to match, the console
builds and displays the event pattern.

• If you select only one value for Specific detail type(s), you can choose one or more values
for the next field in the hierarchy.

• If you choose more than one value for Specific detail type(s), do not choose specific values
for the next fields in the hierarchy. This prevents ambiguous matching logic across fields in
your event pattern.

The environment event field isn't affected by this hierarchy, so it displays as described in the
next step.

16. For environment, select Any environment or Specific environment(s).

• If you select Specific environment(s), you can choose one or more environments from
the dropdown list. EventBridge adds all of the environments that you select inside the
EnvironmentName[] list in the detail section of the event pattern. Then, your rule filters all
events to include only the specific environments that you choose.

• If you select Any environment, then no environments are added to your event pattern.
Because of this, your rule doesn't filter any of the Elastic Beanstalk events based on
environment.

17. Choose Next.

18. For Target types, choose Amazon service.

Monitor an Elastic Beanstalk resource with EventBridge 1390

Amazon Elastic Beanstalk Developer Guide

19. For Select a target, choose the target action to take when a resource state change event is
received from Elastic Beanstalk.

For example, you can use an Amazon Simple Notification Service (SNS) topic to send an email
or text message when an event occurs. To do this, you need to create an Amazon SNS topic
using the Amazon SNS console. To learn more, see Using Amazon SNS for user notifications.

Important

Some target actions might require the use of other services and incur additional
charges, such as the Amazon SNS or Lambda service. For more information about
Amazon pricing, see http://www.amazonaws.cn/pricing/. Some services are part of the
Amazon Free Usage Tier. If you are a new customer, you can test drive these services
for free. See http://www.amazonaws.cn/free/ for more information.

20. (Optional) Choose Add another target to specify an additional target action for the event rule.

21. Choose Next.

22. (Optional) Enter one or more tags for the rule. For more information, see Amazon EventBridge
tags in the Amazon EventBridge User Guide.

23. Choose Next.

24. Review the details of the rule and choose Create rule.

Example Elastic Beanstalk event patterns

Event patterns have the same structure as the events they match. The pattern quotes the fields
that you want to match and provides the values that you're looking for.

• Health status change for all environments

{
 "source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Health status change"
]
}

Example Elastic Beanstalk event patterns 1391

https://docs.amazonaws.cn/sns/latest/dg/sns-user-notifications.html
http://www.amazonaws.cn/pricing/
http://www.amazonaws.cn/free/
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-tagging.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-tagging.html

Amazon Elastic Beanstalk Developer Guide

• Health status change for the following environments: myEnvironment1 and myEnvironment2.
This event pattern filters for these two specific environments, whereas the previous Health status
change example that doesn't filter sends events for all environments.

{"source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Health status change"
],
 "detail": {
 "EnvironmentName": [
 "myEnvironment1",
 "myEnvironment2"
]
 }
}

• Elastic Beanstalk resource status change for all environments

{
 "source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Elastic Beanstalk resource status change"
]
}

• Elastic Beanstalk resource status change with Status Environment update failed and Severity
ERROR for the following environments: myEnvironment1 and myEnvironment2

{"source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Elastic Beanstalk resource status change"
],
 "detail": {
 "Status": [
 "Environment update failed"
],

Example Elastic Beanstalk event patterns 1392

Amazon Elastic Beanstalk Developer Guide

 "Severity": [
 "ERROR"
],
 "EnvironmentName": [
 "myEnvironment1",
 "myEnvironment2"
]
 }
}

• Other resource status change for load balancers, auto scaling groups, and instances

{
 "source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Other resource status change"
]
}

• Managed update status change for all environments

{
 "source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Managed update status change"
]
}

• To capture all events from Elastic Beanstalk (exclude the detail-type section)

{
 "source": [
 "aws.elasticbeanstalk"
]
}

Example Elastic Beanstalk event patterns 1393

Amazon Elastic Beanstalk Developer Guide

Example Elastic Beanstalk events

The following is an example Elastic Beanstalk event for a resource status change:

{
 "version":"0",
 "id":"1234a678-1b23-c123-12fd3f456e78",
 "detail-type":"Elastic Beanstalk resource status change",
 "source":"aws.elasticbeanstalk",
 "account":"111122223333",
 "time":"2020-11-03T00:31:54Z",
 "region":"us-east-1",
 "resources":[
 "arn:was:elasticbeanstalk:us-east-1:111122223333:environment/myApplication/
myEnvironment"
],
 "detail":{
 "Status":"Environment creation started",
 "EventDate":1604363513951,
 "ApplicationName":"myApplication",
 "Message":"createEnvironment is starting.",
 "EnvironmentName":"myEnvironment",
 "Severity":"INFO"
 }
}

The following is an example Elastic Beanstalk event for a health status change:

{
 "version":"0",
 "id":"1234a678-1b23-c123-12fd3f456e78",
 "detail-type":"Health status change",
 "source":"aws.elasticbeanstalk",
 "account":"111122223333",
 "time":"2020-11-03T00:34:48Z",
 "region":"us-east-1",
 "resources":[
 "arn:was:elasticbeanstalk:us-east-1:111122223333:environment/myApplication/
myEnvironment"
],
 "detail":{
 "Status":"Environment health changed",
 "EventDate":1604363687870,

Example Elastic Beanstalk events 1394

Amazon Elastic Beanstalk Developer Guide

 "ApplicationName":"myApplication",
 "Message":"Environment health has transitioned from Pending to Ok. Initialization
 completed 1 second ago and took 2 minutes.",
 "EnvironmentName":"myEnvironment",
 "Severity":"INFO"
 }
}

Elastic Beanstalk event field mapping

The following table maps Elastic Beanstalk event fields and their possible string values to the
EventBridge detail-type field. For more information about how EventBridge works with event
patterns for a service, see Events and Event Patterns in EventBridge.

EventBrid
ge field
detail-type

Elastic
Beanstalk
field
Status

Elastic
Beanstalk
field
Severity

Elastic Beanstalk field Message

Environme
nt creation
started

INFO createEnvironment is starting.

Environme
nt creation
successful

INFO createEnvironment completed successfully.

Environme
nt creation
successful

INFO Launched environment: <Environment Name>.
However, there were issues during launch. See event
log for details.

Environme
nt creation
failed

ERROR Failed to launch environment.

Elastic
Beanstalk
resource
status
change

Environme
nt update
started

INFO Environment update is starting.

Elastic Beanstalk event field mapping 1395

https://docs.amazonaws.cn/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

Amazon Elastic Beanstalk Developer Guide

EventBrid
ge field
detail-type

Elastic
Beanstalk
field
Status

Elastic
Beanstalk
field
Severity

Elastic Beanstalk field Message

Environme
nt update
successful

INFO Environment update completed successfully.

Environme
nt update
failed

ERROR Failed to deploy configuration.

Environme
nt
terminati
on started

INFO terminateEnvironment is starting.

Environme
nt
terminati
on
successful

INFO terminateEnvironment completed successfully.

Environme
nt
terminati
on failed

INFO The environment termination step failed because at
least one of the environment termination workflows
failed.

Auto
Scaling
group
created

INFO createEnvironment is starting.Other
resource
status
change

Auto
Scaling
group
deleted

INFO createEnvironment is starting.

Elastic Beanstalk event field mapping 1396

Amazon Elastic Beanstalk Developer Guide

EventBrid
ge field
detail-type

Elastic
Beanstalk
field
Status

Elastic
Beanstalk
field
Severity

Elastic Beanstalk field Message

Instance
added

INFO Added instance [i-123456789a12b1234] to your
environment.

Instance
removed

INFO Removed instance [i-123456789a12b1234] from
your environment.

Load
balancer
created

INFO Created load balancer named: <LB Name>

Load
balancer
deleted

INFO Deleted load balancer named: <LB Name>

Environme
nt health
changed

INFO/
WARN

Environment health has transitioned to <healthSt
atus>.

Health
status
change

Environme
nt health
changed

INFO/
WARN

Environment health has transitioned from <healthSt
atus> to <healthStatus>.

Managed
updated
started

INFO Managed platform update is in-progress.Managed
update
status
change

Managed
update
failed

INFO Managed update failed, retrying in %s minutes.

Elastic Beanstalk event field mapping 1397

Amazon Elastic Beanstalk Developer Guide

Finding and tracking Elastic Beanstalk resources with Amazon
Config

Amazon Config provides a detailed view of the configuration of Amazon resources in your Amazon
account. You can see how resources are related, get a history of configuration changes, and see
how relationships and configurations change over time. You can use Amazon Config to define rules
that evaluate resource configurations for data compliance.

Several Elastic Beanstalk resource types are integrated with Amazon Config:

• Applications

• Application Versions

• Environments

The following section shows how to configure Amazon Config to record resources of these types.

For more information about Amazon Config, see the Amazon Config Developer Guide. For pricing
information, see the Amazon Config pricing information page.

Setting up Amazon Config

To initially set up Amazon Config, see the following topics in the Amazon Config Developer Guide.

• Setting up Amazon Config with the Console

• Setting up Amazon Config with the Amazon CLI

Configuring Amazon Config to record Elastic Beanstalk resources

By default, Amazon Config records configuration changes for all supported types of regional
resources that it discovers in the region in which your environment is running. You can customize
Amazon Config to record changes only for specific resource types, or changes to global resources.

For example, you can configure Amazon Config to record changes for Elastic Beanstalk resources
and a subset of other Amazon resources that Elastic Beanstalk starts for you. Using the Amazon
Config Console, you can select Elastic Beanstalk as a resource in the Amazon Config Settings page
from the Specific Types field. From there you can choose to record any of the Elastic Beanstalk
resource types: Application, ApplicationVersion, and Environment.

Amazon Config 1398

http://www.amazonaws.cn/config/
https://docs.amazonaws.cn/config/latest/developerguide/
http://www.amazonaws.cn/config/pricing/
https://docs.amazonaws.cn/config/latest/developerguide/
https://docs.amazonaws.cn/config/latest/developerguide/gs-console.html
https://docs.amazonaws.cn/config/latest/developerguide/gs-cli.html
https://docs.amazonaws.cn/config/latest/developerguide/gs-console.html
https://docs.amazonaws.cn/config/latest/developerguide/gs-console.html

Amazon Elastic Beanstalk Developer Guide

The following figure shows the Amazon Config Settings page, with Elastic Beanstalk resource types
that you can choose to record: Application, ApplicationVersion, and Environment.

After you select a few resource types, this is how the Specific types list appears.

To learn about regional vs. global resources, and for the full customization procedure, see Selecting
which Resources Amazon Config Records.

Viewing Elastic Beanstalk configuration details in the Amazon Config
console

You can use the Amazon Config console to look for Elastic Beanstalk resources, and get current and
historical details about their configurations. The following example shows how to find information
about an Elastic Beanstalk environment.

Viewing Elastic Beanstalk configuration details in the Amazon Config console 1399

https://docs.amazonaws.cn/config/latest/developerguide/select-resources.html
https://docs.amazonaws.cn/config/latest/developerguide/select-resources.html

Amazon Elastic Beanstalk Developer Guide

To find an Elastic Beanstalk environment in the Amazon Config console

1. Open the Amazon Config console.

2. Choose Resources.

3. On the Resource inventory page, choose Resources.

4. Open the Resource type menu, scroll to ElasticBeanstalk, and then choose one or more of the
Elastic Beanstalk resource types.

Note

To view configuration details for other resources that Elastic Beanstalk created for your
application, choose additional resource types. For example, you can choose Instance
under EC2.

5. Choose Look up. See 2 in the following figure.

6. Choose a resource ID in the list of resources that Amazon Config displays.

Viewing Elastic Beanstalk configuration details in the Amazon Config console 1400

https://console.amazonaws.cn/config

Amazon Elastic Beanstalk Developer Guide

Amazon Config displays configuration details and other information about the resource you
selected.

Viewing Elastic Beanstalk configuration details in the Amazon Config console 1401

Amazon Elastic Beanstalk Developer Guide

To see the full details of the recorded configuration, choose View Details.

Viewing Elastic Beanstalk configuration details in the Amazon Config console 1402

Amazon Elastic Beanstalk Developer Guide

To learn more ways to find a resource and view information on this page, see Viewing Amazon
Resource Configurations and History in the Amazon Config Developer Guide.

Evaluating Elastic Beanstalk resources using Amazon Config rules

You can create Amazon Config rules, which represent the ideal configuration settings for your
Elastic Beanstalk resources. You can use predefined Amazon Managed Config Rules, or define
custom rules. Amazon Config continuously tracks changes to the configuration of your resources to
determine whether those changes violate any of the conditions in your rules. The Amazon Config
console shows the compliance status of your rules and resources.

If a resource violates a rule and is flagged as noncompliant, Amazon Config can alert you using an
Amazon Simple Notification Service (Amazon SNS) topic. To programmatically consume the data
in these Amazon Config alerts, use an Amazon Simple Queue Service (Amazon SQS) queue as the
notification endpoint for the Amazon SNS topic. For example, you might want to write code that
starts a workflow when someone modifies your environment's Auto Scaling group configuration.

To learn more about setting up and using rules, see Evaluating Resources with Amazon Config
Rules in the Amazon Config Developer Guide.

Evaluating Elastic Beanstalk resources using Amazon Config rules 1403

https://docs.amazonaws.cn/config/latest/developerguide/view-manage-resource.html
https://docs.amazonaws.cn/config/latest/developerguide/view-manage-resource.html
http://www.amazonaws.cn/sns/
http://www.amazonaws.cn/sqs/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html

Amazon Elastic Beanstalk Developer Guide

Using Elastic Beanstalk with Amazon DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable
performance with seamless scalability. If you are a developer, you can use DynamoDB to create
a database table that can store and retrieve any amount of data, and serve any level of request
traffic. DynamoDB automatically spreads the data and traffic for the table over a sufficient number
of servers to handle the request capacity specified by the customer and the amount of data stored,
while maintaining consistent and fast performance. All data items are stored on solid state drives
(SSDs) and are automatically replicated across multiple Availability Zones in an Amazon Region to
provide built-in high availability and data durability.

If you use periodic tasks in a worker environment, Elastic Beanstalk creates a DynamoDB table
and uses it to perform leader election and store information about the task. Each instance in the
environment attempts to write to the table every few seconds to become leader and perform the
task when scheduled.

You can use configuration files to create a DynamoDB table for your application. See eb-
node-express-sample on GitHub for a sample Node.js application that creates a table with a
configuration file and connects to it with the Amazon SDK for JavaScript in Node.js. For an example
walkthrough using DynamoDB with PHP, see Example: DynamoDB, CloudWatch, and SNS. For an
example that uses the Amazon SDK for Java, see Manage Tomcat Session State with DynamoDB in
the Amazon SDK for Java documentation.

When you create a DynamoDB table using configuration files, the table isn't tied to your
environment's lifecycle, and isn't deleted when you terminate your environment. To ensure that
personal information isn't unnecessarily retained, delete any records that you don't need anymore,
or delete the table.

For more information about DynamoDB, see the DynamoDB Developer Guide.

Using Elastic Beanstalk with Amazon ElastiCache

Amazon ElastiCache is a web service that enables setting up, managing, and scaling distributed
in-memory cache environments in the cloud. It provides a high-performance, scalable, and
cost-effective in-memory cache, while removing the complexity associated with deploying and
managing a distributed cache environment. ElastiCache is protocol-compliant with Redis and
Memcached, so the code, applications, and most popular tools that you use today with your

DynamoDB 1404

https://github.com/awslabs/eb-node-express-sample
https://github.com/awslabs/eb-node-express-sample
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/java-dg-tomcat-session-manager.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/

Amazon Elastic Beanstalk Developer Guide

existing Redis and Memcached environments will work seamlessly with the service. For more
information about ElastiCache, go to the Amazon ElastiCache product page.

To use Elastic Beanstalk with Amazon ElastiCache

1. Create an ElastiCache cluster.

• For instructions on how to create an ElastiCache cluster with Redis, go to Getting Started
with Amazon ElastiCache for Redis in the ElastiCache for Redis User Guide.

• For instructions on how to create an ElastiCache cluster with Memcached, go to Getting
Started with Amazon ElastiCache for Memcached in the ElastiCache for Memcached User
Guide.

2. Configure your ElastiCache Security Group to allow access from the Amazon EC2 security
group used by your Elastic Beanstalk application. For instructions on how to find the name of
your EC2 security group using the Amazon Management Console, see EC2 security groups on
the EC2 Instances document page.

• For more information on Redis, go to Authorize Access in the ElastiCache for Redis User
Guide.

• For more information on Memcached, go to Authorize Access in the ElastiCache for
Memcached User Guide.

You can use configuration files to customize your Elastic Beanstalk environment to use ElastiCache.
For configuration file examples that integrate ElastiCache with Elastic Beanstalk, see Example:
ElastiCache.

Using Elastic Beanstalk with Amazon Elastic File System

With Amazon Elastic File System (Amazon EFS), you can create network file systems that can be
mounted by instances across multiple Availability Zones. An Amazon EFS file system is an Amazon
resource that uses security groups to control access over the network that's in your default or
custom VPC.

In an Elastic Beanstalk environment, you can use Amazon EFS to create a shared directory that
stores files for your application that users upload and modify. Your application can treat a mounted
Amazon EFS volume such as local storage. That way, you don't have to change your application
code to scale up to multiple instances.

Amazon EFS 1405

http://www.amazonaws.cn/elasticache/
https://docs.amazonaws.cn/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/mem-ug/GettingStarted.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/mem-ug/GettingStarted.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/red-ug/GettingStarted.AuthorizeAccess.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/mem-ug/GettingStarted.AuthorizeAccess.html

Amazon Elastic Beanstalk Developer Guide

For more information about Amazon EFS, see the Amazon Elastic File System User Guide.

Note

Elastic Beanstalk creates a webapp user that you can set up as the owner for application
directories on Amazon EC2 instances. For more information, see Persistent Storage in the
Design considerations topic of this guide.

Sections

• Configuration files

• Encrypted file systems

• Sample applications

• Cleaning up file systems

Configuration files

Elastic Beanstalk provides configuration files that you can use to create and mount Amazon EFS file
systems. You can create an Amazon EFS volume as part of your environment, or mount an Amazon
EFS volume that you created independently of Elastic Beanstalk.

• storage-efs-createfilesystem.config – Uses the Resources key to create a new file system and
mount points in Amazon EFS. All instances in your environment can connect to the same file
system for shared, scalable storage. Use storage-efs-mountfilesystem.config to mount
the file system on each instance.

Internal resources

Any resources that you create with configuration files are tied to the lifecycle of your
environment. If you terminate your environment or remove the configuration file, these
resources are lost.

• storage-efs-mountfilesystem.config – Mount an Amazon EFS file system to a local path on
the instances in your environment. You can create the volume as part of the environment with
storage-efs-createfilesystem.config. Or, you can mount it to your environment using
the Amazon EFS console, Amazon CLI, or Amazon SDK.

Configuration files 1406

https://docs.amazonaws.cn/efs/latest/ug/
https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/instance-configuration/storage-efs-createfilesystem.config
https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/instance-configuration/storage-efs-mountfilesystem.config

Amazon Elastic Beanstalk Developer Guide

To use the configuration files, start by creating your Amazon EFS file system with storage-efs-
createfilesystem.config. Follow the instructions in the configuration file and add it to the
.ebextensions directory in your source code to create the file system in your VPC.

Deploy your updated source code to your Elastic Beanstalk environment. This is to confirm that the
file system was created successfully. Then, add the storage-efs-mountfilesystem.config
to mount the file system to the instances in your environment. Doing this in two separate
deployments ensures that, if the mount operation fails, the file system is kept intact. If you do both
in the same deployment, an issue with either step will cause the file system to terminate when the
deployment fails.

Encrypted file systems

Amazon EFS supports encrypted file systems. The storage-efs-createfilesystem.config
configuration file that's discussed in this topic defines two custom options. You can use these
options to create an Amazon EFS encrypted file system. For more information, refer to the
instructions in the configuration file.

Sample applications

Elastic Beanstalk also provides sample applications that use Amazon EFS for shared storage. The
two projects have configuration files that you can use with a standard WordPress or Drupal installer
to run a blog or other content management system in a load-balanced environment. When a user
uploads a photo or other media, the file is stored on an Amazon EFS file system. This avoids having
to use the alternative, which is using a plugin to store uploaded files in Amazon S3.

• Load-balanced WordPress – This includes the configuration files to install WordPress securely
and run it in a load-balanced Elastic Beanstalk environment.

• Load-balanced Drupal – This includes the configuration files and instructions for installing
Drupal securely and running it in a load-balanced Elastic Beanstalk environment.

Cleaning up file systems

If you created an Amazon EFS file system that uses a configuration file as part of your Elastic
Beanstalk environment, Elastic Beanstalk removes the file system when you terminate the
environment. To minimize storage costs of a running application, routinely delete files that your
application doesn't need. Or, ensure that the application code maintains file lifecycle correctly.

Encrypted file systems 1407

https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/instance-configuration/storage-efs-createfilesystem.config
https://github.com/awslabs/eb-php-wordpress
https://github.com/awslabs/eb-php-drupal

Amazon Elastic Beanstalk Developer Guide

Important

If you created an Amazon EFS file system that's outside of an Elastic Beanstalk environment
and mounted it to the environment's instances, Elastic Beanstalk doesn't remove the file
system when you terminate the environment. To ensure that your personal information
isn't retained and avoid storage costs, delete the files that your application stored if you
don't need them anymore. Alternatively, you can remove the entire file system.

Using Elastic Beanstalk with Amazon Identity and Access
Management

Amazon Identity and Access Management (IAM) helps you securely control access to your Amazon
resources. This section includes reference materials for working with IAM policies, instance profiles,
and service roles.

For an overview of permissions, see Elastic Beanstalk Service roles, instance profiles, and user
policies. For most environments, the service role and instance profile that the Elastic Beanstalk
console prompts you to create when you launch your first environment have all of the permissions
that you need. Likewise, the managed policies provided by Elastic Beanstalk for full access and
read-only access contain all of the user permissions required for daily use.

The IAM User Guide provides in-depth coverage of Amazon permissions.

Topics

• Managing Elastic Beanstalk instance profiles

• Managing Elastic Beanstalk service roles

• Using service-linked roles for Elastic Beanstalk

• Managing Elastic Beanstalk user policies

• Amazon resource name format for Elastic Beanstalk

• Resources and conditions for Elastic Beanstalk actions

• Using tags to control access to Elastic Beanstalk resources

• Example policies based on managed policies

• Example policies based on resource permissions

• Preventing cross-environment Amazon S3 bucket access

IAM 1408

https://docs.amazonaws.cn/IAM/latest/UserGuide/IAMGettingStarted.html

Amazon Elastic Beanstalk Developer Guide

Managing Elastic Beanstalk instance profiles

An instance profile is a container for an Amazon Identity and Access Management (IAM) role that
you can use to pass role information to an Amazon EC2 instance when the instance starts.

If your Amazon account doesn’t have an EC2 instance profile, you must create one using the IAM
service. You can then assign the EC2 instance profile to new environments that you create. The
Create environment steps in the Elastic Beanstalk console provides you access to the IAM console,
so that you can create an EC2 instance profile with the required permissions.

Note

Previously Elastic Beanstalk created a default EC2 instance profile named aws-
elasticbeanstalk-ec2-role the first time an Amazon account created an
environment. This instance profile included default managed policies. If your account
already has this instance profile, it will remain available for you to assign to your
environments.
However, recent Amazon security guidelines don’t allow an Amazon service to
automatically create roles with trust policies to other Amazon services, EC2 in this case.
Because of these security guidelines, Elastic Beanstalk no longer creates a default aws-
elasticbeanstalk-ec2-role instance profile.

Managed policies

Elastic Beanstalk provides several managed policies to allow your environment to meet different
use cases. To meet the default use cases for an environment, these policies must be attached to the
role for the EC2 instance profile.

• AWSElasticBeanstalkWebTier – Grants permissions for the application to upload logs to
Amazon S3 and debugging information to Amazon X-Ray. To view the managed policy content,
see AWSElasticBeanstalkWebTier in the Amazon Managed Policy Reference Guide.

• AWSElasticBeanstalkWorkerTier – Grants permissions for log uploads, debugging, metric
publication, and worker instance tasks, including queue management, leader election, and
periodic tasks. To view the managed policy content, see AWSElasticBeanstalkWorkerTier in the
Amazon Managed Policy Reference Guide.

Instance profiles 1409

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkWebTier.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkWorkerTier.html

Amazon Elastic Beanstalk Developer Guide

• AWSElasticBeanstalkMulticontainerDocker – Grants permissions for the Amazon Elastic
Container Service to coordinate cluster tasks for Docker environments. To view the managed
policy content, see AWSElasticBeanstalkMulticontainerDocker in the Amazon Managed Policy
Reference Guide.

Important

Elastic Beanstalk managed policies don't provide granular permissions—they grant all
permissions that are potentially needed for working with Elastic Beanstalk applications. In
some cases you may wish to restrict the permissions of our managed policies further. For an
example of one use case, see Preventing cross-environment Amazon S3 bucket access.
Our managed policies also don't cover permissions to custom resources that you might
add to your solution, and that aren't managed by Elastic Beanstalk. To implement more
granular permissions, minimum required permissions, or custom resource permissions, use
custom policies.

Trust relationship policy for EC2

To allow the EC2 instances in your environment to assume the required role, the instance profile
must specify Amazon EC2 as a trusted entity in the trust relationship policy, as follows.

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com.cn"
 },
 "Action": "sts:AssumeRole"
 }
]
}

To customize permissions, you can add policies to the role attached to the default instance profile
or create your own instance profile with a restricted set of permissions.

Sections

Instance profiles 1410

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkMulticontainerDocker.html

Amazon Elastic Beanstalk Developer Guide

• Creating an instance profile

• Adding permissions to the default instance profile

• Verifying the permissions assigned your instance profile

• Updating an out-of-date default instance profile

Creating an instance profile

An instance profile is a wrapper around a standard IAM role that allows an EC2 instance to assume
the role. You can create an instance profile with the default Elastic Beanstalk managed policies.
You can also create additional instance profiles to customize permissions for different applications.
Or you can create an instance profile that doesn't include the two managed policies that grant
permissions for worker tier or ECS managed Docker environments, if you don't use those features.

To create an instance profile with the default managed policies

1. Open the Roles page in the IAM console.

2. Choose Create role.

3. For Trusted entity type, choose Amazon service.

4. For Service or use case, choose Elastic Beanstalk.

5. For Use case, choose Elastic Beanstalk – Compute.

6. Choose Next.

7. Enter a Role name.

You can enter the name of the default role that the Elastic Beanstalk console suggests: aws-
elasticbeanstalk-ec2-role.

8. Verify that Permissions policies include the following, then choose Next:

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

9. Choose Create role.

To create an instance profile with your specific choice of managed policies

1. Open the Roles page in the IAM console.

Instance profiles 1411

https://console.amazonaws.cn/iam/home#roles
https://console.amazonaws.cn/iam/home#roles

Amazon Elastic Beanstalk Developer Guide

2. Choose Create role.

3. Under Trusted entity type, choose Amazon service.

4. Under Use case, choose EC2.

5. Choose Next.

6. Attach the appropriate managed policies provided by Elastic Beanstalk and any additional
policies that provide permissions that your application needs.

7. Choose Next.

8. Enter a name for the role.

9. (Optional) Add tags to the role.

10. Choose Create role.

Adding permissions to the default instance profile

If your application accesses Amazon APIs or resources to which permissions aren't granted in the
default instance profile, add policies that grant permissions in the IAM console.

To add policies to the role attached to the default instance profile

1. Open the Roles page in the IAM console.

2. Choose the role assigned as your EC2 instance profile.

3. On the Permissions tab, choose Attach policies.

4. Select the managed policy for the additional services that your application uses. For example,
AmazonS3FullAccess or AmazonDynamoDBFullAccess.

5. Choose Attach policy.

Verifying the permissions assigned your instance profile

The permissions assigned to your default instance profile can vary depending on when it was
created, the last time you launched an environment, and which client you used. You can verify the
permissions on the default instance profile in the IAM console.

To verify the default instance profile's permissions

1. Open the Roles page in the IAM console.

2. Choose the role assigned as your EC2 instance profile.

Instance profiles 1412

https://console.amazonaws.cn/iam/home#roles
https://console.amazonaws.cn/iam/home#roles

Amazon Elastic Beanstalk Developer Guide

3. On the Permissions tab, review the list of policies attached to the role.

4. To see the permissions that a policy grants, choose the policy.

Updating an out-of-date default instance profile

If the default instance profile lacks the required permissions, you can add the managed policies to
the role assigned as your EC2 instance profile manually.

To add managed policies to the role attached to the default instance profile

1. Open the Roles page in the IAM console.

2. Choose the role assigned as your EC2 instance profile.

3. On the Permissions tab, choose Attach policies.

4. Type AWSElasticBeanstalk to filter the policies.

5. Select the following policies, and then choose Attach policy:

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

Managing Elastic Beanstalk service roles

To manage and monitor your environment, Amazon Elastic Beanstalk performs actions on
environment resources on your behalf. Elastic Beanstalk needs certain permissions to perform
these actions, and it assumes Amazon Identity and Access Management (IAM) service roles to get
these permissions.

Elastic Beanstalk needs to use temporary security credentials whenever it assumes a service role.
To get these credentials, Elastic Beanstalk sends a request to Amazon Security Token Service
(Amazon STS) on a Region specific endpoint. For more information, see Temporary Security
Credentials in the IAM User Guide.

Note

If the Amazon STS endpoint for the Region where your environment is located is
deactivated, Elastic Beanstalk sends the request on an alternative endpoint that can't be
deactivated. This endpoint is associated with a different Region. Therefore, the request is a

Service roles 1413

https://console.amazonaws.cn/iam/home#roles
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html

Amazon Elastic Beanstalk Developer Guide

cross-Region request. For more information, see Activating and Deactivating Amazon STS
in an Amazon Region in the IAM User Guide.

Managing service roles using the Elastic Beanstalk console and EB CLI

You can use the Elastic Beanstalk console and EB CLI to set up service roles for your environment
with a sufficient set of permissions. They create a default service role and use managed policies in
it.

Managed service role policies

Elastic Beanstalk provides one managed policy for enhanced health monitoring, and another one
with additional permissions required for managed platform updates. The console and EB CLI assign
both of these policies to the default service role that they create for you. These policies should
only be used for this default service role. They should not be used with other users or roles in your
accounts.

AWSElasticBeanstalkEnhancedHealth

This policy grants permissions for Elastic Beanstalk to monitor instance and environment
health. It also includes Amazon SQS actions to allow Elastic Beanstalk to monitor queue
activity for worker environments. To view the content of this managed policy, see the
AWSElasticBeanstalkEnhancedHealth page in the Amazon Managed Policy Reference Guide.

AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

This policy grants permissions for Elastic Beanstalk to update environments on your behalf
to perform managed platform updates. To view the content of this managed policy, see the
AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy page in the Amazon Managed Policy
Reference Guide.

Service-level permission groupings

This policy is grouped into statements based on the set of permissions provided.

• ElasticBeanstalkPermissions – This group of permissions is for calling the Elastic
Beanstalk service actions (Elastic Beanstalk APIs).

• AllowPassRoleToElasticBeanstalkAndDownstreamServices – This group of permissions
allows any role to be passed to Elastic Beanstalk and to other downstream services like Amazon
CloudFormation.

Service roles 1414

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkEnhancedHealth.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkEnhancedHealth.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy.html

Amazon Elastic Beanstalk Developer Guide

• ReadOnlyPermissions – This group of permissions is for collecting information about the
running environment.

• *OperationPermissions – Groups with this naming pattern are for calling the necessary
operations to perform platform updates.

• *BroadOperationPermissions – Groups with this naming pattern are for calling the
necessary operations to perform platform updates. They also include broad permissions for
supporting legacy environments.

• *TagResource – Groups with this naming pattern are for calls that use the tag-on-create APIs
to attach tags on resources that are being created in an Elastic Beanstalk environment.

To view the content of a managed policy, you can also use the Policies page in the IAM console.

Important

Elastic Beanstalk managed policies don't provide granular permissions—they grant all
permissions that are potentially needed for working with Elastic Beanstalk applications. In
some cases you may wish to restrict the permissions of our managed policies further. For an
example of one use case, see Preventing cross-environment Amazon S3 bucket access.
Our managed policies also don't cover permissions to custom resources that you might
add to your solution, and that aren't managed by Elastic Beanstalk. To implement more
granular permissions, minimum required permissions, or custom resource permissions, use
custom policies.

Deprecated managed policies

In the past, Elastic Beanstalk supported the AWSElasticBeanstalkService managed service role
policy. This policy has been replaced by
AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy. You might still be able to see and use
the earlier policy in the IAM console.

To view the managed policy content, see AWSElasticBeanstalkService in the Amazon Managed
Policy Reference Guide.

However, we recommend that you transition to using the new managed policy
(AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy). Add custom policies to grant
permissions to custom resources, if you have any.

Service roles 1415

https://console.amazonaws.cn/iam/home#policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkService.html

Amazon Elastic Beanstalk Developer Guide

Using the Elastic Beanstalk console

When you launch an environment in the Elastic Beanstalk console, the console creates a default
service role that's named aws-elasticbeanstalk-service-role, and attaches managed
policies with default permissions to this service role.

To allow Elastic Beanstalk to assume the aws-elasticbeanstalk-service-role role, the
service role specifies Elastic Beanstalk as a trusted entity in the trust relationship policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "elasticbeanstalk.amazonaws.com.cn"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "sts:ExternalId": "elasticbeanstalk"
 }
 }
 }
]
}

When you enable managed platform updates for your environment, Elastic Beanstalk assumes
a separate managed-updates service role to perform managed updates. By default, the Elastic
Beanstalk console uses the same generated service role, aws-elasticbeanstalk-service-
role, for the managed-updates service role. If you change your default service role, the
console sets the managed-updates service role to use the managed-updates service-linked role,
AWSServiceRoleForElasticBeanstalkManagedUpdates. For more information about
service-linked roles, see the section called “Using service-linked roles”.

Note

Because of permission issues, the Elastic Beanstalk service doesn't always successfully
create this service-linked role for you. Therefore, the console tries to explicitly create it.
To ensure your account has this service-linked role, create an environment at least once

Service roles 1416

Amazon Elastic Beanstalk Developer Guide

using the console, and configure managed updates to be enabled before you create the
environment.

Using the EB CLI

If you launch an environment using the the section called “eb create” command of the
Elastic Beanstalk Command Line Interface (EB CLI) and don't specify a service role through
the --service-role option, Elastic Beanstalk creates the default service role aws-
elasticbeanstalk-service-role. If the default service role already exists, Elastic Beanstalk
uses it for the new environment. The Elastic Beanstalk console also performs similar actions in
these situations.

Unlike in the console, you can't specify a managed-updates service role when using an EB CLI
command option. If you enable managed updates for your environment, you must set the
managed-updates service role though configuration options. The following example enables
managed updates and uses the default service role as a managed-updates service role.

Example .ebextensions/managed-platform-update.config

option_settings:
 aws:elasticbeanstalk:managedactions:
 ManagedActionsEnabled: true
 PreferredStartTime: "Tue:09:00"
 ServiceRoleForManagedUpdates: "aws-elasticbeanstalk-service-role"
 aws:elasticbeanstalk:managedactions:platformupdate:
 UpdateLevel: patch
 InstanceRefreshEnabled: true

Managing service roles using the Elastic Beanstalk API

When you use the CreateEnvironment action of the Elastic Beanstalk API to create an
environment, specify a service role using the ServiceRole configuration option in the
aws:elasticbeanstalk:environment namespace. For more information about using
enhanced health monitoring with the Elastic Beanstalk API, see Using enhanced health reporting
with the Elastic Beanstalk API.

In addition, if you enable managed platform updates for your environment, you can specify a
managed-updates service role using the ServiceRoleForManagedUpdates option of the
aws:elasticbeanstalk:managedactions namespace.

Service roles 1417

Amazon Elastic Beanstalk Developer Guide

Using service-linked roles

A service-linked role is a unique type of service role that's predefined by Elastic Beanstalk to
include all the permissions that the service requires to call other Amazon services on your behalf.
The service-linked role is associated with your account. Elastic Beanstalk creates it once, then
reuses it when creating additional environments. For more information about using service-linked
roles with Elastic Beanstalk environments, see Using service-linked roles for Elastic Beanstalk.

If you create an environment by using the Elastic Beanstalk API and don't specify a service role,
Elastic Beanstalk creates a monitoring service-linked role for your account, if one doesn't already
exist. Elastic Beanstalk uses this role for the new environment. You can also use IAM to create a
monitoring service-linked role for your account in advance. After your account has this role, you
can use it to create an environment using the Elastic Beanstalk API, the Elastic Beanstalk console,
or the EB CLI.

If you enable managed platform updates for the environment and specify
AWSServiceRoleForElasticBeanstalkManagedUpdates as the value for the
ServiceRoleForManagedUpdates option of the aws:elasticbeanstalk:managedactions
namespace, Elastic Beanstalk creates a managed-updates service-linked role for your account, if
one doesn't already exist. Elastic Beanstalk uses the role to perform managed updates for the new
environment.

Note

When Elastic Beanstalk tries to create the monitoring and managed-updates service-
linked roles for your account when you create an environment, you must have the
iam:CreateServiceLinkedRole permission. If you don't have this permission,
environment creation fails, and a message explaining the issue is displayed.
As an alternative, another user with permission to create service-linked roles can use
IAM to create the service linked-role in advance. Using this method, you don't need the
iam:CreateServiceLinkedRole permission to create your environment.

Verifying the default service role permissions

The permissions granted by your default service role can vary based on when they were created,
the last time you launched an environment, and which client you used. In the IAM console, you can
verify the permissions granted by the default service role.

Service roles 1418

Amazon Elastic Beanstalk Developer Guide

To verify the default service role's permissions

1. In the IAM console, open the Roles page.

2. Choose aws-elasticbeanstalk-service-role.

3. On the Permissions tab, review the list of policies attached to the role.

4. To view the permissions that a policy grants, choose the policy.

Updating an out-of-date default service role

If the default service role lacks the required permissions, you can update it by creating a new
environment in the Elastic Beanstalk environment management console.

Alternatively, you can manually add the managed policies to the default service role.

To add managed policies to the default service role

1. In the IAM console, open the Roles page .

2. Choose aws-elasticbeanstalk-service-role.

3. On the Permissions tab, choose Attach policies.

4. Enter AWSElasticBeanstalk to filter the policies.

5. Select the following policies, and then choose Attach policy:

• AWSElasticBeanstalkEnhancedHealth

• AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

Adding permissions to the default service role

If your application includes configuration files that refer to Amazon resources that permissions
aren't included in the default service role for, Elastic Beanstalk might need additional permissions.
These additional permissions are needed to resolve these references when it processes the
configuration files during a managed update. If the permissions are missing, the update fails, and
Elastic Beanstalk returns a message indicating which permissions it needs. Follow these steps to
add permissions for additional services to the default service role in the IAM console.

To add additional policies to the default service role

1. In the IAM console, open the Roles page.

Service roles 1419

https://console.amazonaws.cn/iam/home#roles
https://console.amazonaws.cn/iam/home#roles
https://console.amazonaws.cn/iam/home#roles

Amazon Elastic Beanstalk Developer Guide

2. Choose aws-elasticbeanstalk-service-role.

3. On the Permissions tab, choose Attach policies.

4. Select the managed policy for the additional services that your application uses. For example,
AmazonAPIGatewayAdministrator or AmazonElasticFileSystemFullAccess.

5. Choose Attach policy.

Creating a service role

If you can't use the default service role, create a service role.

To create a service role

1. In the IAM console, open the Roles page.

2. Choose Create role.

3. Under Amazon service, choose Amazon Elastic Beanstalk, and then select your use case.

4. Choose Next: Permissions.

5. Attach the AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy and
AWSElasticBeanstalkEnhancedHealth managed policies and any additional policies that
provide permissions that your application needs.

6. Choose Next: Tags.

7. (Optional) Add tags to the role.

8. Choose Next: Review.

9. Enter a name for the role.

10. Choose Create role.

Apply your custom service role when you create an environment either using the environment
creation wizard or with the --service-role option for the eb create command.

Using service-linked roles for Elastic Beanstalk

Amazon Elastic Beanstalk uses Amazon Identity and Access Management (IAM) service-linked roles.
A service-linked role is a unique type of IAM role that is linked directly to Elastic Beanstalk. Service-
linked roles are predefined by Elastic Beanstalk and include all the permissions that the service
requires to call other Amazon services on your behalf.

Using service-linked roles 1420

https://console.amazonaws.cn/iam/home#roles
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk defines a few types of service-linked roles:

• Monitoring service-linked role – Allows Elastic Beanstalk to monitor the health of running
environments and publish health event notifications.

• Maintenance service-linked role – Allows Elastic Beanstalk to perform regular maintenance
activities for your running environments.

• Managed-updates service-linked role – Allows Elastic Beanstalk to perform scheduled platform
updates of your running environments.

Topics

• The monitoring service-linked role

• The maintenance service-linked role

• The managed-updates service-linked role

The monitoring service-linked role

Amazon Elastic Beanstalk uses Amazon Identity and Access Management (IAM) service-linked roles.
A service-linked role is a unique type of IAM role that is linked directly to Elastic Beanstalk. Service-
linked roles are predefined by Elastic Beanstalk and include all the permissions that the service
requires to call other Amazon services on your behalf.

A service-linked role makes setting up Elastic Beanstalk easier because you don’t have to manually
add the necessary permissions. Elastic Beanstalk defines the permissions of its service-linked roles,
and unless defined otherwise, only Elastic Beanstalk can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your Elastic Beanstalk resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see Amazon Services That
Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose
a Yes with a link to view the service-linked role documentation for that service.

Using service-linked roles 1421

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Elastic Beanstalk Developer Guide

Service-linked role permissions for Elastic Beanstalk

Elastic Beanstalk uses the service-linked role named AWSServiceRoleForElasticBeanstalk –
Allows Elastic Beanstalk to monitor the health of running environments and publish health event
notifications.

The AWSServiceRoleForElasticBeanstalk service-linked role trusts the following services to assume
the role:

• elasticbeanstalk.amazonaws.com.cn

The permissions policy of the AWSServiceRoleForElasticBeanstalk service-linked role contains all of
the permissions that Elastic Beanstalk needs to complete actions on your behalf:

AllowCloudformationReadOperationsOnElasticBeanstalkStacks

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCloudformationReadOperationsOnElasticBeanstalkStacks",
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribeStackResource",
 "cloudformation:DescribeStackResources",
 "cloudformation:DescribeStacks"
],
 "Resource": [
 "arn:aws-cn:cloudformation:*:*:stack/awseb-*",
 "arn:aws-cn:cloudformation:*:*:stack/eb-*"
]
 },
 {
 "Sid": "AllowOperations",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeNotificationConfigurations",
 "autoscaling:DescribeScalingActivities",
 "autoscaling:PutNotificationConfiguration",
 "ec2:DescribeInstanceStatus",

Using service-linked roles 1422

Amazon Elastic Beanstalk Developer Guide

 "ec2:AssociateAddress",
 "ec2:DescribeAddresses",
 "ec2:DescribeInstances",
 "ec2:DescribeSecurityGroups",
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeTargetHealth",
 "elasticloadbalancing:DescribeTargetGroups",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl",
 "sns:Publish"
],
 "Resource": [
 "*"
]
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Alternatively, you can use an Amazon managed policy to provide full access to Elastic Beanstalk.

Creating a service-linked role for Elastic Beanstalk

You don't need to manually create a service-linked role. When you create an Elastic Beanstalk
environment using the Elastic Beanstalk API and don't specify a service role, Elastic Beanstalk
creates the service-linked role for you.

Important

If you were using the Elastic Beanstalk service before September 27, 2017, when it began
supporting the AWSServiceRoleForElasticBeanstalk service-linked role, and your account
needed it, then Elastic Beanstalk created the AWSServiceRoleForElasticBeanstalk role in
your account. To learn more, see A New Role Appeared in My IAM Account.

When Elastic Beanstalk tries to create the AWSServiceRoleForElasticBeanstalk service-
linked role for your account when you create an environment, you must have the

Using service-linked roles 1423

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared

Amazon Elastic Beanstalk Developer Guide

iam:CreateServiceLinkedRole permission. If you don't have this permission, environment
creation fails, and you see a message explaining the issue.

As an alternative, another user with permission to create service-linked roles can use IAM to pre-
create the service linked-role in advance. You can then create your environment even without
having the iam:CreateServiceLinkedRole permission.

You (or another user) can use the IAM console to create a service-linked role with the Elastic
Beanstalk use case. In the IAM CLI or the IAM API, create a service-linked role with the
elasticbeanstalk.amazonaws.com.cn service name. For more information, see Creating a
Service-Linked Role in the IAM User Guide. If you delete this service-linked role, you can use this
same process to create the role again.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create an Elastic Beanstalk environment using the
Elastic Beanstalk API and don't specify a service role, Elastic Beanstalk creates the service-linked
role for you again.

Editing a service-linked role for Elastic Beanstalk

Elastic Beanstalk does not allow you to edit the AWSServiceRoleForElasticBeanstalk service-linked
role. After you create a service-linked role, you cannot change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Elastic Beanstalk

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first be sure that all Elastic
Beanstalk environments are either using a different service role or are terminated.

Using service-linked roles 1424

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon Elastic Beanstalk Developer Guide

Note

If the Elastic Beanstalk service is using the service-linked role when you try to terminate the
environments, then the termination might fail. If that happens, wait for a few minutes and
try the operation again.

To terminate an Elastic Beanstalk environment that uses the
AWSServiceRoleForElasticBeanstalk (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

See eb terminate for details about terminating an Elastic Beanstalk environment using the EB CLI.

See TerminateEnvironment for details about terminating an Elastic Beanstalk environment using
the API.

Manually delete the service-linked role

Use the IAM console, the IAM CLI, or the IAM API to delete the AWSServiceRoleForElasticBeanstalk
service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported regions for Elastic Beanstalk service-linked roles

Elastic Beanstalk supports using service-linked roles in all of the regions where the service is
available. For more information, see Amazon Elastic Beanstalk Endpoints and Quotas.

The maintenance service-linked role

Amazon Elastic Beanstalk uses Amazon Identity and Access Management (IAM) service-linked roles.
A service-linked role is a unique type of IAM role that is linked directly to Elastic Beanstalk. Service-
linked roles are predefined by Elastic Beanstalk and include all the permissions that the service
requires to call other Amazon services on your behalf.

Using service-linked roles 1425

https://console.amazonaws.cn/elasticbeanstalk
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_TerminateEnvironment.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon Elastic Beanstalk Developer Guide

A service-linked role makes setting up Elastic Beanstalk easier because you don’t have to manually
add the necessary permissions. Elastic Beanstalk defines the permissions of its service-linked roles,
and unless defined otherwise, only Elastic Beanstalk can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your Elastic Beanstalk resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see Amazon Services That
Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose
a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Elastic Beanstalk

Elastic Beanstalk uses the service-linked role named
AWSServiceRoleForElasticBeanstalkMaintenance – Allows Elastic Beanstalk to perform regular
maintenance activities for your running environments.

The AWSServiceRoleForElasticBeanstalkMaintenance service-linked role trusts the following
services to assume the role:

• maintenance.elasticbeanstalk.amazonaws.com.cn

The permissions policy of the AWSServiceRoleForElasticBeanstalkMaintenance service-linked role
contains all of the permissions that Elastic Beanstalk needs to complete actions on your behalf:

{
 "Version": "2012-10-17",
 "Statement":
 {
 "Sid": "AllowCloudformationChangeSetOperationsOnElasticBeanstalkStacks",
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateChangeSet",
 "cloudformation:DescribeChangeSet",
 "cloudformation:ExecuteChangeSet",
 "cloudformation:DeleteChangeSet",
 "cloudformation:ListChangeSets",
 "cloudformation:DescribeStacks"

Using service-linked roles 1426

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Elastic Beanstalk Developer Guide

],
 "Resource": [
 "arn:aws:cloudformation:*:*:stack/awseb-*",
 "arn:aws:cloudformation:*:*:stack/eb-*"
]
 }
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Alternatively, you can use an Amazon managed policy to provide full access to Elastic Beanstalk.

Creating a service-linked role for Elastic Beanstalk

You don't need to manually create a service-linked role. When you create an Elastic Beanstalk
environment using the Elastic Beanstalk API and don't specify an instance profile, Elastic Beanstalk
creates the service-linked role for you.

Important

This service-linked role can appear in your account if you completed an action
in another service that uses the features supported by this role. If you were
using the Elastic Beanstalk service before April 18, 2019, when it began
supporting the AWSServiceRoleForElasticBeanstalkMaintenance service-
linked role, and your account needed it, then Elastic Beanstalk created the
AWSServiceRoleForElasticBeanstalkMaintenance role in your account. To learn more, see A
New Role Appeared in My IAM Account.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create an Elastic Beanstalk environment using the
Elastic Beanstalk API and don't specify an instance profile, Elastic Beanstalk creates the service-
linked role for you again.

Editing a service-linked role for Elastic Beanstalk

Elastic Beanstalk does not allow you to edit the AWSServiceRoleForElasticBeanstalkMaintenance
service-linked role. After you create a service-linked role, you cannot change the name of the role

Using service-linked roles 1427

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.amazonaws.cn/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared

Amazon Elastic Beanstalk Developer Guide

because various entities might reference the role. However, you can edit the description of the role
using IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Elastic Beanstalk

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first terminate any Elastic
Beanstalk environments that uses the role.

Note

If the Elastic Beanstalk service is using the service-linked role when you try to terminate the
environments, then the termination might fail. If that happens, wait for a few minutes and
try the operation again.

To terminate an Elastic Beanstalk environment that uses the
AWSServiceRoleForElasticBeanstalkMaintenance (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

See eb terminate for details about terminating an Elastic Beanstalk environment using the EB CLI.

See TerminateEnvironment for details about terminating an Elastic Beanstalk environment using
the API.

Using service-linked roles 1428

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.amazonaws.cn/elasticbeanstalk
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_TerminateEnvironment.html

Amazon Elastic Beanstalk Developer Guide

Manually delete the service-linked role

Use the IAM console, the IAM CLI, or the IAM API to delete the
AWSServiceRoleForElasticBeanstalkMaintenance service-linked role. For more information, see
Deleting a Service-Linked Role in the IAM User Guide.

Supported regions for Elastic Beanstalk service-linked roles

Elastic Beanstalk supports using service-linked roles in all of the regions where the service is
available. For more information, see Amazon Elastic Beanstalk Endpoints and Quotas.

The managed-updates service-linked role

Amazon Elastic Beanstalk uses Amazon Identity and Access Management (IAM) service-linked roles.
A service-linked role is a unique type of IAM role that is linked directly to Elastic Beanstalk. Service-
linked roles are predefined by Elastic Beanstalk and include all the permissions that the service
requires to call other Amazon services on your behalf.

A service-linked role makes setting up Elastic Beanstalk easier because you don’t have to manually
add the necessary permissions. Elastic Beanstalk defines the permissions of its service-linked roles,
and unless defined otherwise, only Elastic Beanstalk can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your Elastic Beanstalk resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see Amazon Services That
Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose
a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Elastic Beanstalk

Elastic Beanstalk uses the service-linked role named
AWSServiceRoleForElasticBeanstalkManagedUpdates – Allows Elastic Beanstalk to perform
scheduled platform updates of your running environments.

The AWSServiceRoleForElasticBeanstalkManagedUpdates service-linked role trusts the following
services to assume the role:

Using service-linked roles 1429

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Elastic Beanstalk Developer Guide

• managedupdates.elasticbeanstalk.amazonaws.com.cn

The managed policy AWSElasticBeanstalkManagedUpdatesServiceRolePolicy allows the
AWSServiceRoleForElasticBeanstalkManagedUpdates service-linked role all of the permissions that
Elastic Beanstalk needs to complete managed update actions on your behalf. To view the managed
policy content, see the AWSElasticBeanstalkManagedUpdatesServiceRolePolicy page in the Amazon
Managed Policy Reference Guide.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Alternatively, you can use an Amazon managed policy to provide full access to Elastic Beanstalk.

Creating a service-linked role for Elastic Beanstalk

You don't need to manually create a service-linked role. When you create an Elastic
Beanstalk environment using the Elastic Beanstalk API, enable managed updates, and
specify AWSServiceRoleForElasticBeanstalkManagedUpdates as the value for the
ServiceRoleForManagedUpdates option of the aws:elasticbeanstalk:managedactions
namespace, Elastic Beanstalk creates the service-linked role for you.

When Elastic Beanstalk tries to create the AWSServiceRoleForElasticBeanstalkManagedUpdates
service-linked role for your account when you create an environment, you must have the
iam:CreateServiceLinkedRole permission. If you don't have this permission, environment
creation fails, and you see a message explaining the issue.

As an alternative, another user with permission to create service-linked roles can use IAM to pre-
create the service linked-role in advance. You can then create your environment even without
having the iam:CreateServiceLinkedRole permission.

You (or another user) can use the IAM console to create a service-linked role with the Elastic
Beanstalk Managed Updates use case. In the IAM CLI or the IAM API, create a service-linked role
with the managedupdates.elasticbeanstalk.amazonaws.com.cn service name. For more
information, see Creating a Service-Linked Role in the IAM User Guide. If you delete this service-
linked role, you can use this same process to create the role again.

If you delete this service-linked role, and then need to create it again, you can use the
same process to recreate the role in your account. When you create an Elastic Beanstalk

Using service-linked roles 1430

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkManagedUpdatesServiceRolePolicy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role

Amazon Elastic Beanstalk Developer Guide

environment using the Elastic Beanstalk API, enable managed updates, and specify
AWSServiceRoleForElasticBeanstalkManagedUpdates as the value for the
ServiceRoleForManagedUpdates option of the aws:elasticbeanstalk:managedactions
namespace, Elastic Beanstalk creates the service-linked role for you again.

Editing a service-linked role for Elastic Beanstalk

Elastic Beanstalk does not allow you to edit the
AWSServiceRoleForElasticBeanstalkManagedUpdates service-linked role. After you create a service-
linked role, you cannot change the name of the role because various entities might reference the
role. However, you can edit the description of the role using IAM. For more information, see Editing
a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Elastic Beanstalk

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first be sure that Elastic Beanstalk
environments with managed updates enabled are either using a different service role or are
terminated.

Note

If the Elastic Beanstalk service is using the service-linked role when you try to terminate the
environments, then the termination might fail. If that happens, wait for a few minutes and
try the operation again.

To terminate an Elastic Beanstalk environment that uses the
AWSServiceRoleForElasticBeanstalkManagedUpdates (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Using service-linked roles 1431

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

3. Choose Actions, and then choose Terminate Environment.

4. Use the on-screen dialog box to confirm environment termination.

See eb terminate for details about terminating an Elastic Beanstalk environment using the EB CLI.

See TerminateEnvironment for details about terminating an Elastic Beanstalk environment using
the API.

Manually delete the service-linked role

Use the IAM console, the IAM CLI, or the IAM API to delete the
AWSServiceRoleForElasticBeanstalkManagedUpdates service-linked role. For more information, see
Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for Elastic Beanstalk service-linked roles

Elastic Beanstalk supports using service-linked roles in all of the regions where the service is
available. For more information, see Amazon Elastic Beanstalk Endpoints and Quotas.

Managing Elastic Beanstalk user policies

Amazon Elastic Beanstalk provides two managed policies that enable you to assign full access or
read-only access to all resources that Elastic Beanstalk manages. You can attach the policies to
Amazon Identity and Access Management (IAM) users or groups, or to roles assumed by your users.

Managed user policies

• AdministratorAccess-AWSElasticBeanstalk – Gives the user full administrative permissions to
create, modify, and delete Elastic Beanstalk applications, application versions, configuration
settings, environments, and their underlying resources. To view the managed policy content, see
the AdministratorAccess-AWSElasticBeanstalk page in the Amazon Managed Policy Reference
Guide.

• AWSElasticBeanstalkReadOnly – Allows the user to view applications and environments, but
not to perform operations that modify them. It provides read-only access to all Elastic Beanstalk
resources, and to other Amazon resources that the Elastic Beanstalk console retrieves. Note
that read-only access does not enable actions such as downloading Elastic Beanstalk logs so
that you can read them. This is because the logs are staged in the Amazon S3 bucket, where
Elastic Beanstalk would require write permission. See the example at the end of this topic for
information on how to enable access to Elastic Beanstalk logs. To view the managed policy

User policies 1432

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_TerminateEnvironment.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AdministratorAccess-AWSElasticBeanstalk.html

Amazon Elastic Beanstalk Developer Guide

content, see the AWSElasticBeanstalkReadOnly page in the Amazon Managed Policy Reference
Guide.

Important

Elastic Beanstalk managed policies don't provide granular permissions—they grant all
permissions that are potentially needed for working with Elastic Beanstalk applications. In
some cases you may wish to restrict the permissions of our managed policies further. For an
example of one use case, see Preventing cross-environment Amazon S3 bucket access.
Our managed policies also don't cover permissions to custom resources that you might
add to your solution, and that aren't managed by Elastic Beanstalk. To implement more
granular permissions, minimum required permissions, or custom resource permissions, use
custom policies.

Deprecated managed policies

Previously, Elastic Beanstalk supported two other managed user policies,
AWSElasticBeanstalkFullAccess and AWSElasticBeanstalkReadOnlyAccess. We plan on
retiring these previous policies. You might still be able to see and use them in the IAM console.
Nevertheless, we recommend that you transition to using the new managed user policies, and add
custom policies to grant permissions to custom resources, if you have any.

Policies for integration with other services

We also provide more granular policies that allow you to integrate your environment with other
services, if you prefer to use those.

• AWSElasticBeanstalkRoleCWL – Allows an environment to manage Amazon CloudWatch Logs
log groups.

• AWSElasticBeanstalkRoleRDS – Allows an environment to integrate an Amazon RDS instance.

• AWSElasticBeanstalkRoleWorkerTier – Allows a worker environment tier to create an Amazon
DynamoDB table and an Amazon SQS queue.

• AWSElasticBeanstalkRoleECS – Allows a multicontainer Docker environment to manage Amazon
ECS clusters.

• AWSElasticBeanstalkRoleCore – Allows core operations of a web service environment.

• AWSElasticBeanstalkRoleSNS – Allows an environment to enable Amazon SNS topic integration.

User policies 1433

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkReadOnly.html

Amazon Elastic Beanstalk Developer Guide

To see the JSON source for a specific managed policy, see the Amazon Managed Policy Reference
Guide.

Controlling access with managed policies

You can use managed policies to grant full access or read-only access to Elastic Beanstalk. Elastic
Beanstalk updates these policies automatically when additional permissions are required to access
new features.

To apply a managed policy to IAM users or groups

1. Open the Policies page in the IAM console.

2. In the search box, type AWSElasticBeanstalk to filter the policies.

3. In the list of policies, select the check box next to AWSElasticBeanstalkReadOnly or
AdministratorAccess-AWSElasticBeanstalk.

4. Choose Policy actions, and then choose Attach.

5. Select one or more users and groups to attach the policy to. You can use the Filter menu and
the search box to filter the list of principal entities.

6. Choose Attach policy.

Creating a custom user policy

You can create your own IAM policy to allow or deny specific Elastic Beanstalk API actions on
specific Elastic Beanstalk resources, and to control access to custom resources that aren't managed
by Elastic Beanstalk. For more information about attaching a policy to a user or group, see Working
with Policies in the IAM User Guide. For details about creating a custom policy, see Creating IAM
Policies in the IAM User Guide.

Note

While you can restrict how a user interacts with Elastic Beanstalk APIs, there is not currently
an effective way to prevent users who have permission to create the necessary underlying
resources from creating other resources in Amazon EC2 and other services.
Think of these policies as an effective way to distribute Elastic Beanstalk responsibilities,
not as a way to secure all underlying resources.

User policies 1434

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/about-managed-policy-reference.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/about-managed-policy-reference.html
https://console.amazonaws.cn/iam/home#policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingPolicies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingPolicies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html

Amazon Elastic Beanstalk Developer Guide

Important

If you have custom policies assigned to an Elastic Beanstalk service role, it's important that
you assign it the proper permissions for launch templates. Otherwise you may not have the
required permissions to update an environment or launch a new one. For more information,
see Required permissions for launch templates.

An IAM policy contains policy statements that describe the permissions that you want to grant.
When you create a policy statement for Elastic Beanstalk, you need to understand how to use the
following four parts of a policy statement:

• Effect specifies whether to allow or deny the actions in the statement.

• Action specifies the API operations that you want to control. For example, use
elasticbeanstalk:CreateEnvironment to specify the CreateEnvironment operation.
Certain operations, such as creating an environment, require additional permissions to perform
those actions. For more information, see Resources and conditions for Elastic Beanstalk actions.

Note

To use the UpdateTagsForResource API operation, specify one of the following two
virtual actions (or both) instead of the API operation name:

elasticbeanstalk:AddTags

Controls permission to call UpdateTagsForResource and pass a list of tags to add
in the TagsToAdd parameter.

elasticbeanstalk:RemoveTags

Controls permission to call UpdateTagsForResource and pass a list of tag keys to
remove in the TagsToRemove parameter.

• Resource specifies the resources that you want to control access to. To specify Elastic Beanstalk
resources, list the Amazon Resource Name (ARN) of each resource.

• (optional) Condition specifies restrictions on the permission granted in the statement. For more
information, see Resources and conditions for Elastic Beanstalk actions.

The following sections demonstrate a few cases in which you might consider a custom user policy.

User policies 1435

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_Operations.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html

Amazon Elastic Beanstalk Developer Guide

Enabling limited Elastic Beanstalk environment creation

The policy in the following example enables a user to call the CreateEnvironment action
to create an environment whose name begins with Test with the specified application and
application version.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid":"CreateEnvironmentPerm",
 "Action": [
 "elasticbeanstalk:CreateEnvironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:environment/My First
 Elastic Beanstalk Application/Test*"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My First Elastic Beanstalk Application"],
 "elasticbeanstalk:FromApplicationVersion": ["arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:applicationversion/My First Elastic Beanstalk Application/First
 Release"]
 }
 }
 },
 {
 "Sid":"AllNonResourceCalls",
 "Action":[
 "elasticbeanstalk:CheckDNSAvailability",
 "elasticbeanstalk:CreateStorageLocation"
],
 "Effect":"Allow",
 "Resource":[
 "*"
]
 }
]
}

User policies 1436

Amazon Elastic Beanstalk Developer Guide

The above policy shows how to grant limited access to Elastic Beanstalk operations. In order to
actually launch an environment, the user must have permission to create the Amazon resources
that power the environment as well. For example, the following policy grants access to the default
set of resources for a web server environment:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:*",
 "ecs:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "cloudformation:*",
 "sqs:*"
],
 "Resource": "*"
 }
]
}

Enabling access to Elastic Beanstalk logs stored in Amazon S3

The policy in the following example enables a user to pull Elastic Beanstalk logs, stage them in
Amazon S3, and retrieve them.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:DeleteObject",
 "s3:GetObjectAcl",
 "s3:PutObjectAcl"
],
 "Effect": "Allow",
 "Resource": "arn:aws-cn:s3:::elasticbeanstalk-*"

User policies 1437

Amazon Elastic Beanstalk Developer Guide

 }
]
}

Note

To restrict these permissions to only the logs path, use the following resource format.

"arn:aws-cn:s3:::elasticbeanstalk-us-west-2-123456789012/resources/environments/
logs/*"

Enabling management of a specific Elastic Beanstalk application

The policy in the following example enables a user to manage environments and other resources
within one specific Elastic Beanstalk application. The policy denies Elastic Beanstalk actions
on resources of other applications, and also denies creation and deletion of Elastic Beanstalk
applications.

Note

The policy doesn't deny access to any resources through other services. It demonstrates
an effective way to distribute responsibilities for managing Elastic Beanstalk applications
among different users, not as a way to secure the underlying resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:CreateApplication",
 "elasticbeanstalk:DeleteApplication"
],
 "Resource": [
 "*"
]
 },
 {

User policies 1438

Amazon Elastic Beanstalk Developer Guide

 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:CreateApplicationVersion",
 "elasticbeanstalk:CreateConfigurationTemplate",
 "elasticbeanstalk:CreateEnvironment",
 "elasticbeanstalk:DeleteApplicationVersion",
 "elasticbeanstalk:DeleteConfigurationTemplate",
 "elasticbeanstalk:DeleteEnvironmentConfiguration",
 "elasticbeanstalk:DescribeApplicationVersions",
 "elasticbeanstalk:DescribeConfigurationOptions",
 "elasticbeanstalk:DescribeConfigurationSettings",
 "elasticbeanstalk:DescribeEnvironmentResources",
 "elasticbeanstalk:DescribeEnvironments",
 "elasticbeanstalk:DescribeEvents",
 "elasticbeanstalk:DeleteEnvironmentConfiguration",
 "elasticbeanstalk:RebuildEnvironment",
 "elasticbeanstalk:RequestEnvironmentInfo",
 "elasticbeanstalk:RestartAppServer",
 "elasticbeanstalk:RetrieveEnvironmentInfo",
 "elasticbeanstalk:SwapEnvironmentCNAMEs",
 "elasticbeanstalk:TerminateEnvironment",
 "elasticbeanstalk:UpdateApplicationVersion",
 "elasticbeanstalk:UpdateConfigurationTemplate",
 "elasticbeanstalk:UpdateEnvironment",
 "elasticbeanstalk:RetrieveEnvironmentInfo",
 "elasticbeanstalk:ValidateConfigurationSettings"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringNotEquals": {
 "elasticbeanstalk:InApplication": [
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/
myapplication"
]
 }
 }
 }
]
}

User policies 1439

Amazon Elastic Beanstalk Developer Guide

Amazon resource name format for Elastic Beanstalk

You specify a resource for an IAM policy using that resource's Amazon Resource Name (ARN). For
Elastic Beanstalk, the ARN has the following format.

arn:aws-cn:elasticbeanstalk:region:account-id:resource-type/resource-path

Where:

• region is the region the resource resides in (for example, us-west-2).

• account-id is the Amazon account ID, with no hyphens (for example, 123456789012)

• resource-type identifies the type of the Elastic Beanstalk resource—for example,
environment. See the table below for a list of all Elastic Beanstalk resource types.

• resource-path is the portion that identifies the specific resource. An Elastic Beanstalk resource
has a path that uniquely identifies that resource. See the table below for the format of the
resource path for each resource type. For example, an environment is always associated with an
application. The resource path for the environment myEnvironment in the application myApp
would look like this:

myApp/myEnvironment

Elastic Beanstalk has several types of resources you can specify in a policy. The following table
shows the ARN format for each resource type and an example.

Resource
type

Format for ARN

applicati
on

arn:aws-cn:elasticbeanstalk: region:account-id :applicat
ion/ application-name

Example: arn:aws-cn:elasticbeanstalk:us-west-2:1234567
89012:application/My App

applicati
onversion

arn:aws-cn:elasticbeanstalk: region:account-id :applicat
ionversion/ application-name /version-label

ARN format 1440

Amazon Elastic Beanstalk Developer Guide

Resource
type

Format for ARN

Example: arn:aws-cn:elasticbeanstalk:us-west-2:1234567
89012:applicationversion/My App/My Version

configura
tiontempl
ate

arn:aws-cn:elasticbeanstalk: region:account-id :configur
ationtemplate/ application-name /template-name

Example: arn:aws-cn:elasticbeanstalk:us-west-2:1234567
89012:configurationtemplate/My App/My Template

environme
nt

arn:aws-cn:elasticbeanstalk: region:account-id :environm
ent/ application-name /environment-name

Example: arn:aws-cn:elasticbeanstalk:us-west-2:1234567
89012:environment/My App/MyEnvironment

platform arn:aws-cn:elasticbeanstalk: region:account-id :platform
/ platform-name /platform-version

Example: arn:aws-cn:elasticbeanstalk:us-west-2:1234567
89012:platform/MyPlatform/1.0

solutions
tack

arn:aws-cn:elasticbeanstalk: region::solutio
nstack/ solutionstack-name

Example: arn:aws-cn:elasticbeanstalk:us-west-2::soluti
onstack/32bit Amazon Linux running Tomcat 7

An environment, application version, and configuration template are always contained within a
specific application. You'll notice that these resources all have an application name in their resource
path so that they are uniquely identified by their resource name and the containing application.
Although solution stacks are used by configuration templates and environments, solution stacks
are not specific to an application or Amazon account and do not have the application or Amazon
account in their ARNs.

ARN format 1441

Amazon Elastic Beanstalk Developer Guide

Resources and conditions for Elastic Beanstalk actions

This section describes the resources and conditions that you can use in policy statements to
grant permissions that allow specific Elastic Beanstalk actions to be performed on specific Elastic
Beanstalk resources.

Conditions enable you to specify permissions to resources that the action needs to complete.
For example, when you can call the CreateEnvironment action, you must also specify the
application version to deploy as well as the application that contains that application name.
When you set permissions for the CreateEnvironment action, you specify the application
and application version that you want the action to act upon by using the InApplication and
FromApplicationVersion conditions.

In addition, you can specify the environment configuration with a solution stack
(FromSolutionStack) or a configuration template (FromConfigurationTemplate).
The following policy statement allows the CreateEnvironment action to create an
environment with the name myenv (specified by Resource) in the application My App
(specified by the InApplication condition) using the application version My Version
(FromApplicationVersion) with a 32bit Amazon Linux running Tomcat 7 configuration
(FromSolutionStack):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateEnvironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:environment/My App/myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"],
 "elasticbeanstalk:FromApplicationVersion": ["arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:applicationversion/My App/My Version"],
 "elasticbeanstalk:FromSolutionStack": ["arn:aws-cn:elasticbeanstalk:us-
west-2::solutionstack/32bit Amazon Linux running Tomcat 7"]
 }

Resources and conditions 1442

Amazon Elastic Beanstalk Developer Guide

 }
 }
]
}

Note

Most condition keys mentioned in this topic are specific to Elastic Beanstalk, and their
names contain the elasticbeanstalk: prefix. For brevity, we omit this prefix from the
condition key names when we mention them in the following sections. For example, we
mention InApplication instead of its full name elasticbeanstalk:InApplication.
In contrast, we mention a few condition keys used across Amazon services, and we include
their aws: prefix to highlight the exception.
Policy examples always show full condition key names, including the prefix.

Sections

• Policy information for Elastic Beanstalk actions

• Condition keys for Elastic Beanstalk actions

Policy information for Elastic Beanstalk actions

The following table lists all Elastic Beanstalk actions, the resource that each action acts upon, and
the additional contextual information that can be provided using conditions.

Policy information for Elastic Beanstalk actions, including resources, conditions, examples, and
dependencies

Resource Conditions Example statement

Action: AbortEnvironmentUpdate

application

environment

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows a user to abort environme
nt update operations on environments in an applicati
on named My App.

{
 "Version": "2012-10-17",

Resources and conditions 1443

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_AbortEnvironmentUpdate.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:AbortEnvi
ronmentUpdate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"
]
 }
]
}

Action: CheckDNSAvailability

"*" N/A {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CheckDNSA
vailability"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Action: ComposeEnvironments

Resources and conditions 1444

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_CheckDNSAvailability.html
http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_ComposeEnvironments.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows a user to compose
environments that belong to an application named
My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ComposeEn
vironments"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App"
]
 }
]
}

Action: CreateApplication

Resources and conditions 1445

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_CreateApplication.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

This example allows the CreateApplication
action to create applications whose names begin with
DivA:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateApp
lication"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/DivA*"
]
 }
]
}

Action: CreateApplicationVersion

Resources and conditions 1446

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_CreateApplicationVersion.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

applicati
onversion

InApplica
tion

aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

This example allows the CreateApplicationV
ersion action to create application versions with
any name (*) in the application My App:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateApp
licationVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:applicationversion/My
 App/*"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: CreateConfigurationTemplate

Resources and conditions 1447

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_CreateConfigurationTemplate.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

configura
tiontempl
ate

InApplica
tion

FromAppli
cation

FromAppli
cationVer
sion

FromConfi
gurationT
emplate

FromEnvir
onment

FromSolut
ionStack

aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the CreateCon
figurationTemplate action to create
configuration templates whose name begins with My
Template (My Template*) in the application My
App:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateCon
figurationTemplate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:configurationtemplat
e/My App/My Template*"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"],
 "elasticbeanstalk:FromSolut
ionStack": ["arn:aws-cn:elasticbeansta
lk:us-west-2::solutionstack/32bit Amazon
 Linux running Tomcat 7"]
 }
 }
 }
]
}

Action: CreateEnvironment

Resources and conditions 1448

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_CreateEnvironment.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

FromAppli
cationVer
sion

FromConfi
gurationT
emplate

FromSolut
ionStack

aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the CreateEnv
ironment action to create an environment whose
name is myenv in the application My App and using
the solution stack 32bit Amazon Linux running
Tomcat 7:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateEnv
ironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"],
 "elasticbeanstalk:FromAppli
cationVersion": ["arn:aws-cn:elast
icbeanstalk:us-west-2:123456789012:a
pplicationversion/My App/My Version"],
 "elasticbeanstalk:FromSolut
ionStack": ["arn:aws-cn:elasticbeansta
lk:us-west-2::solutionstack/32bit Amazon
 Linux running Tomcat 7"]
 }
 }
 }
]
}

Resources and conditions 1449

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

Action: CreatePlatformVersion

platform aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

This example allows the CreatePlatformVers
ion action to create platform versions targeting the
us-west-2 region, whose names begin with us-
west-2_ :

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreatePla
tformVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:platform/us-west-2_*"
]
 }
]
}

Action: CreateStorageLocation

Resources and conditions 1450

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_CreatePlatformVersion.html
http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_CreateStorageLocation.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

"*" N/A {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateSto
rageLocation"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Action: DeleteApplication

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DeleteApp
lication action to delete the application My App:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeleteApp
lication"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"
]
 }
]
}

Action: DeleteApplicationVersion

Resources and conditions 1451

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DeleteApplication.html
http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DeleteApplicationVersion.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

applicati
onversion

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DeleteApp
licationVersion action to delete an application
version whose name is My Version in the applicati
on My App:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeleteApp
licationVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:applicationversion/My
 App/My Version"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: DeleteConfigurationTemplate

Resources and conditions 1452

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DeleteConfigurationTemplate.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

configura
tiontempl
ate

InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DeleteCon
figurationTemplate action to delete a
configuration template whose name is My Template
in the application My App. Specifying the application
name as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeleteCon
figurationTemplate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:configurationtemplat
e/My App/My Template"
]
 }
]
}

Action: DeleteEnvironmentConfiguration

Resources and conditions 1453

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DeleteEnvironmentConfiguration.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion (Optional)

The following policy allows the DeleteEnv
ironmentConfiguration action to delete a
draft configuration for the environment myenv in the
application My App. Specifying the application name
as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeleteEnv
ironmentConfiguration"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DeletePlatformVersion

Resources and conditions 1454

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DeletePlatformVersion.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

platform aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DeletePla
tformVersion action to delete platform versions
targeting the us-west-2 region, whose names
begin with us-west-2_ :

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeletePla
tformVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:platform/us-west-2_*"
]
 }
]
}

Action: DescribeApplications

Resources and conditions 1455

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeApplications.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeA
pplications action to describe the application
My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DescribeA
pplications"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"
]
 }
]
}

Action: DescribeApplicationVersions

Resources and conditions 1456

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeApplicationVersions.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

applicati
onversion

InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeA
pplicationVersions action to describe the
application version My Version in the applicati
on My App. Specifying the application name as a
condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DescribeA
pplicationVersions"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:applicationversion/My
 App/My Version"
]
 }
]
}

Action: DescribeConfigurationOptions

Resources and conditions 1457

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeConfigurationOptions.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment

configura
tiontempl
ate

solutions
tack

InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeC
onfigurationOptions action to describe the
configuration options for the environment myenv in
the application My App. Specifying the application
name as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeC
onfigurationOptions",
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribeConfigurationSettings

Resources and conditions 1458

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeConfigurationSettings.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment

configura
tiontempl
ate

InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeC
onfigurationSettings action to describe the
configuration settings for the environment myenv in
the application My App. Specifying the application
name as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeC
onfigurationSettings",
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribeEnvironmentHealth

Resources and conditions 1459

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeEnvironmentHealth.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows use of DescribeE
nvironmentHealth to retrieve health informati
on for an environment named myenv.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeE
nvironmentHealth",
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribeEnvironmentResources

Resources and conditions 1460

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeEnvironmentResources.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeE
nvironmentResources action to return list of
Amazon resources for the environment myenv in the
application My App. Specifying the application name
as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeE
nvironmentResources",
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribeEnvironments

Resources and conditions 1461

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeEnvironments.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeE
nvironments action to describe the environme
nts myenv and myotherenv in the application My
App. Specifying the application name as a condition is
optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeE
nvironments",
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv",
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App2/
myotherenv"
]
 }
]
}

Action: DescribeEvents

Resources and conditions 1462

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeEvents.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application

applicati
onversion

configura
tiontempl
ate

environment

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeEvents
action to list event descriptions for the environment
myenv and the application version My Version in
the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeE
vents",
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv",
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:applicationversion/My
 App/My Version"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: DescribeInstancesHealth

Resources and conditions 1463

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribeInstancesHealth.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment N/A The following policy allows use of DescribeI
nstancesHealth to retrieve health information
for instances in an environment named myenv.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeI
nstancesHealth",
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribePlatformVersion

Resources and conditions 1464

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_DescribePlatformVersion.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

platform aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeP
latformVersion action to describe platform
versions targeting the us-west-2 region, whose
names begin with us-west-2_ :

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DescribeP
latformVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:platform/us-west-2_*"
]
 }
]
}

Action: ListAvailableSolutionStacks

Resources and conditions 1465

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_ListAvailableSolutionStacks.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

solutions
tack

N/A The following policy allows the ListAvail
ableSolutionStacks action to return only
the solution stack 32bit Amazon Linux running
Tomcat 7.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ListAvail
ableSolutionStacks"
],
 "Effect": "Allow",
 "Resource": "arn:aws-cn:elasti
cbeanstalk:us-west-2::solutionstack/32bit
 Amazon Linux running Tomcat 7"
 }
]
}

Action: ListPlatformVersions

Resources and conditions 1466

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_ListPlatformVersions.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

platform aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

This example allows the CreatePlatformVers
ion action to create platform versions targeting the
us-west-2 region, whose names begin with us-
west-2_ :

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ListPlatf
ormVersions"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:platform/us-west-2_*"
]
 }
]
}

Action: ListTagsForResource

Resources and conditions 1467

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_ListTagsForResource.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application

applicati
onversion

configura
tiontempl
ate

environment

platform

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the ListTagsF
orResource action to list tags of existing
resources only if they have a tag named stage with
the value test:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ListTagsF
orResource"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": ["test"]
 }
 }
 }
]
}

Action: RebuildEnvironment

Resources and conditions 1468

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_RebuildEnvironment.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the RebuildEn
vironment action to rebuild the environment
myenv in the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RebuildEn
vironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: RequestEnvironmentInfo

Resources and conditions 1469

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_RequestEnvironmentInfo.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the RequestEn
vironmentInfo action to compile information
about the environment myenv in the application My
App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RequestEn
vironmentInfo"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: RestartAppServer

Resources and conditions 1470

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_RestartAppServer.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

The following policy allows the RestartAp
pServer action to restart the application container
server for the environment myenv in the application
My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RestartAppServer"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: RetrieveEnvironmentInfo

Resources and conditions 1471

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_RetrieveEnvironmentInfo.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the RetrieveE
nvironmentInfo action to retrieve the compiled
information for the environment myenv in the
application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RetrieveE
nvironmentInfo"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: SwapEnvironmentCNAMEs

Resources and conditions 1472

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_SwapEnvironmentCNAMEs.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion (Optional)

FromEnvir
onment
(Optional)

The following policy allows the SwapEnvir
onmentCNAMEs action to swap the CNAMEs for
the environments mysrcenv and mydestenv .

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:SwapEnvir
onmentCNAMEs"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
mysrcenv",
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
mydestenv"
]
 }
]
}

Action: TerminateEnvironment

Resources and conditions 1473

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_TerminateEnvironment.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the Terminate
Environment action to terminate the environme
nt myenv in the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:Terminate
Environment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: UpdateApplication

Resources and conditions 1474

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateApplication.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateApp
lication action to update properties of the
application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateApp
lication"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"
]
 }
]
}

Action: UpdateApplicationResourceLifecycle

Resources and conditions 1475

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateApplicationResourceLifecycle.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateApp
licationResourceLifecycle action to
update lifecycle settings of the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateApp
licationResourceLifecycle"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"
]
 }
]
}

Action: UpdateApplicationVersion

Resources and conditions 1476

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateApplicationVersion.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

applicati
onversion

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateApp
licationVersion action to update the propertie
s of the application version My Version in the
application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateApp
licationVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:applicationversion/My
 App/My Version"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: UpdateConfigurationTemplate

Resources and conditions 1477

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateConfigurationTemplate.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

configura
tiontempl
ate

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateCon
figurationTemplate action to update the
properties or options of the configuration template
My Template in the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateCon
figurationTemplate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:configurationtemplat
e/My App/My Template"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Action: UpdateEnvironment

Resources and conditions 1478

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateEnvironment.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

FromAppli
cationVer
sion

FromConfi
gurationT
emplate

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateEnv
ironment action to update the environment myenv
in the application My App by deploying the applicati
on version My Version.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateEnv
ironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"],
 "elasticbeanstalk:FromAppli
cationVersion": ["arn:aws-cn:elast
icbeanstalk:us-west-2:123456789012:a
pplicationversion/My App/My Version"]
 }
 }
 }
]
}

Action: UpdateTagsForResource – AddTags

Resources and conditions 1479

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application

applicati
onversion

configura
tiontempl
ate

environment

platform

aws:Resou
rceTag/ key-
name (Optional)

aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The AddTags action is one of two virtual actions
associated with the UpdateTagsForResource
API.

The following policy allows the AddTags action to
modify tags of existing resources only if they have a
tag named stage with the value test:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:AddTags"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": ["test"]
 }
 }
 }
]
}

Action: UpdateTagsForResource – RemoveTags

Resources and conditions 1480

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html
http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application

applicati
onversion

configura
tiontempl
ate

environment

platform

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The RemoveTags action is one of two virtual
actions associated with the UpdateTagsForResou
rce API.

The following policy denies the RemoveTags action
to request the removal of a tag named stage from
existing resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RemoveTags"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": ["stage"]
 }
 }
 }
]
}

Action: ValidateConfigurationSettings

Resources and conditions 1481

http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html
http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html
http://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_ValidateConfigurationSettings.html

Amazon Elastic Beanstalk Developer Guide

Resource Conditions Example statement

template

environment

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the ValidateC
onfigurationSettings action to validates
configuration settings against the environment
myenv in the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ValidateC
onfigurationSettings"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws-cn:elasticbeanstalk:us-wes
t-2:123456789012:application/My App"]
 }
 }
 }
]
}

Condition keys for Elastic Beanstalk actions

Keys enable you to specify conditions that express dependencies, restrict permissions, or specify
constraints on the input parameters for an action. Elastic Beanstalk supports the following keys.

InApplication

Specifies the application that contains the resource that the action operates on.

Resources and conditions 1482

Amazon Elastic Beanstalk Developer Guide

The following example allows the UpdateApplicationVersion action to update the
properties of the application version My Version. The InApplication condition specifies My
App as the container for My Version.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateApplicationVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:applicationversion/My
 App/My Version"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"]
 }
 }
 }
]
}

FromApplicationVersion

Specifies an application version as a dependency or a constraint on an input parameter.

The following example allows the UpdateEnvironment action to update the environment
myenv in the application My App. The FromApplicationVersion condition constrains the
VersionLabel parameter to allow only the application version My Version to update the
environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateEnvironment"
],

Resources and conditions 1483

Amazon Elastic Beanstalk Developer Guide

 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"],
 "elasticbeanstalk:FromApplicationVersion": ["arn:aws-
cn:elasticbeanstalk:us-west-2:123456789012:applicationversion/My App/My Version"]
 }
 }
 }
]
}

FromConfigurationTemplate

Specifies a configuration template as a dependency or a constraint on an input parameter.

The following example allows the UpdateEnvironment action to update the environment
myenv in the application My App. The FromConfigurationTemplate condition constrains
the TemplateName parameter to allow only the configuration template My Template to
update the environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateEnvironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"],

Resources and conditions 1484

Amazon Elastic Beanstalk Developer Guide

 "elasticbeanstalk:FromConfigurationTemplate": ["arn:aws-
cn:elasticbeanstalk:us-west-2:123456789012:configurationtemplate/My App/My
 Template"]
 }
 }
 }
]
}

FromEnvironment

Specifies an environment as a dependency or a constraint on an input parameter.

The following example allows the SwapEnvironmentCNAMEs action to swap the CNAMEs in My
App for all environments whose names begin with mysrcenv and mydestenv but not those
environments whose names begin with mysrcenvPROD* and mydestenvPROD*.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:SwapEnvironmentCNAMEs"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:environment/My App/
mysrcenv*",
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:environment/My App/
mydestenv*"
],
 "Condition": {
 "StringNotLike": {
 "elasticbeanstalk:FromEnvironment": [
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:environment/My App/
mysrcenvPROD*",
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:environment/My App/
mydestenvPROD*"
]
 }
 }
 }
]

Resources and conditions 1485

Amazon Elastic Beanstalk Developer Guide

}

FromSolutionStack

Specifies a solution stack as a dependency or a constraint on an input parameter.

The following policy allows the CreateConfigurationTemplate action to create
configuration templates whose name begins with My Template (My Template*) in the
application My App. The FromSolutionStack condition constrains the solutionstack
parameter to allow only the solution stack 32bit Amazon Linux running Tomcat 7 as the
input value for that parameter.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateConfigurationTemplate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:configurationtemplate/My
 App/My Template*"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:application/My App"],
 "elasticbeanstalk:FromSolutionStack": ["arn:aws-cn:elasticbeanstalk:us-
west-2::solutionstack/32bit Amazon Linux running Tomcat 7"]
 }
 }
 }
]
}

aws:ResourceTag/key-name, aws:RequestTag/key-name, aws:TagKeys

Specify tag-based conditions. For details, see Using tags to control access to Elastic Beanstalk
resources.

Resources and conditions 1486

Amazon Elastic Beanstalk Developer Guide

Using tags to control access to Elastic Beanstalk resources

This topic explains how tag-based access control can help you create and manage IAM policies.

We can use conditions in IAM user policy statements to configure permissions for Elastic
Beanstalk's access to resources. To learn more about policy statement conditions, see Resources
and conditions for Elastic Beanstalk actions. Using tags in conditions is one way to control access
to resources and requests. For information about tagging Elastic Beanstalk resources, see Tagging
Elastic Beanstalk application resources.

When you design IAM policies, you might be setting granular permissions by granting access to
specific resources. As the number of resources that you manage grows, this task becomes more
difficult. Tagging resources and using tags in policy statement conditions can make this task easier.
You grant access in bulk to any resource with a certain tag. Then you repeatedly apply this tag to
relevant resources, during creation or later.

Tags can be attached to the resource or passed in the request to services that support tagging. In
Elastic Beanstalk, resources can have tags, and some actions can include tags. When you create an
IAM policy, you can use tag condition keys to control the following conditions:

• Which users can perform actions on an environment, based on tags that it already has.

• What tags can be passed in an action's request.

• Whether specific tag keys can be used in a request.

For the complete syntax and semantics of tag condition keys, see Controlling Access Using Tags in
the IAM User Guide.

Examples of tag conditions in policies

The following examples demonstrate how to specify tag conditions in policies for Elastic Beanstalk
users.

Example 1: Limit actions based on tags in the request

The Elastic Beanstalk AdministratorAccess-AWSElasticBeanstalk managed user policy gives users
unlimited permission to perform any Elastic Beanstalk action on any Elastic Beanstalk-managed
resource.

The following policy limits this power and denies unauthorized users permission to create Elastic
Beanstalk production environments. To do that, it denies the CreateEnvironment action if the

Tag-based access control 1487

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html

Amazon Elastic Beanstalk Developer Guide

request specifies a tag named stage with one of the values gamma or prod. In addition, the policy
prevents these unauthorized users from tampering with the stage of production environments by
not allowing tag modification actions to include these same tag values or to completely remove
the stage tag. A customer's administrator must attach this IAM policy to unauthorized IAM users,
in addition to the managed user policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:CreateEnvironment",
 "elasticbeanstalk:AddTags"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/stage": ["gamma", "prod"]
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:RemoveTags"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": ["stage"]
 }
 }
 }
]
}

Example 2: Limit actions based on resource tags

The Elastic Beanstalk AdministratorAccess-AWSElasticBeanstalk managed user policy gives users
unlimited permission to perform any Elastic Beanstalk action on any Elastic Beanstalk-managed
resource.

Tag-based access control 1488

Amazon Elastic Beanstalk Developer Guide

The following policy limits this power and denies unauthorized users permission to perform
actions on Elastic Beanstalk production environments. To do that, it denies specific actions if
the environment has a tag named stage with one of the values gamma or prod. A customer's
administrator must attach this IAM policy to unauthorized IAM users, in addition to the managed
user policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:AddTags",
 "elasticbeanstalk:RemoveTags",
 "elasticbeanstalk:DescribeEnvironments",
 "elasticbeanstalk:TerminateEnvironment",
 "elasticbeanstalk:UpdateEnvironment",
 "elasticbeanstalk:ListTagsForResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": ["gamma", "prod"]
 }
 }
 }
]
}

Example 3: Allow actions based on tags in the request

The following policy grants users permission to create Elastic Beanstalk development applications.

To do that, it allows the CreateApplicationand AddTags actions if the request specifies a
tag named stage with the value development. The aws:TagKeys condition ensures that the
user can't add other tag keys. In particular, it ensures case sensitivity of the stage tag key. Notice
that this policy is useful for IAM users that don't have the Elastic Beanstalk AdministratorAccess-
AWSElasticBeanstalk managed user policy attached. The managed policy gives users unlimited
permission to perform any Elastic Beanstalk action on any Elastic Beanstalk-managed resource.

{
 "Version": "2012-10-17",

Tag-based access control 1489

Amazon Elastic Beanstalk Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:CreateApplication",
 "elasticbeanstalk:AddTags"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/stage": "development"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": ["stage"]
 }
 }
 }
]
}

Example 4: Allow actions based on resource tags

The following policy grants users permission to perform actions on, and get information about,
Elastic Beanstalk development applications.

To do that, it allows specific actions if the application has a tag named stage with the value
development. The aws:TagKeys condition ensures that the user can't add other tag keys. In
particular, it ensures case sensitivity of the stage tag key. Notice that this policy is useful for IAM
users that don't have the Elastic Beanstalk AdministratorAccess-AWSElasticBeanstalk managed
user policy attached. The managed policy gives users unlimited permission to perform any Elastic
Beanstalk action on any Elastic Beanstalk-managed resource.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:UpdateApplication",
 "elasticbeanstalk:DeleteApplication",
 "elasticbeanstalk:DescribeApplications"
],

Tag-based access control 1490

Amazon Elastic Beanstalk Developer Guide

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": "development"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": ["stage"]
 }
 }
 }
]
}

Example policies based on managed policies

This section demonstrates how to control user access to Amazon Elastic Beanstalk and includes
example policies that provide the required access for common scenarios. These policies are derived
from the Elastic Beanstalk managed policies. For information about attaching managed policies to
users and groups, see Managing Elastic Beanstalk user policies.

In this scenario, Example Corp. is a software company with three teams responsible for the
company website: administrators who manage the infrastructure, developers who build the
software for the website, and a QA team that tests the website. To help manage permissions to
their Elastic Beanstalk resources, Example Corp. creates three groups to which members of each
respective team belong: Admins, Developers, and Testers. Example Corp. wants the Admins group
to have full access to all applications, environments, and their underlying resources so that they
can create, troubleshoot, and delete all Elastic Beanstalk assets. Developers require permissions to
view all Elastic Beanstalk assets and to create and deploy application versions. Developers should
not be able to create new applications or environments or terminate running environments. Testers
need to view all Elastic Beanstalk resources to monitor and test applications. The Testers should
not be able to make changes to any Elastic Beanstalk resources.

The following example policies provide the required permissions for each group.

Example 1: Admins group – All Elastic Beanstalk and related service APIs

The following policy gives users permissions for all actions required to use Elastic Beanstalk.
This policy also allows Elastic Beanstalk to provision and manage resources on your behalf in the
following services. Elastic Beanstalk relies on these additional services to provision underlying
resources when creating an environment.

Example managed policies 1491

Amazon Elastic Beanstalk Developer Guide

• Amazon Elastic Compute Cloud

• Elastic Load Balancing

• Auto Scaling

• Amazon CloudWatch

• Amazon Simple Storage Service

• Amazon Simple Notification Service

• Amazon Relational Database Service

• Amazon CloudFormation

Note that this policy is an example. It gives a broad set of permissions to the Amazon services that
Elastic Beanstalk uses to manage applications and environments. For example, ec2:* allows an
Amazon Identity and Access Management (IAM) user to perform any action on any Amazon EC2
resource in the Amazon account. These permissions are not limited to the resources that you use
with Elastic Beanstalk. As a best practice, you should grant individuals only the permissions they
need to perform their duties.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "elasticbeanstalk:*",
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "rds:*",
 "cloudformation:*"
],
 "Resource" : "*"
 }
]
}

Example managed policies 1492

Amazon Elastic Beanstalk Developer Guide

Example 2: Developers group – All but highly privileged operations

The following policy denies permission to create applications and environments, and allows all
other Elastic Beanstalk actions.

Note that this policy is an example. It gives a broad set of permissions to the Amazon products
that Elastic Beanstalk uses to manage applications and environments. For example, ec2:* allows
an IAM user to perform any action on any Amazon EC2 resource in the Amazon account. These
permissions are not limited to the resources that you use with Elastic Beanstalk. As a best practice,
you should grant individuals only the permissions they need to perform their duties.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Action" : [
 "elasticbeanstalk:CreateApplication",
 "elasticbeanstalk:CreateEnvironment",
 "elasticbeanstalk:DeleteApplication",
 "elasticbeanstalk:RebuildEnvironment",
 "elasticbeanstalk:SwapEnvironmentCNAMEs",
 "elasticbeanstalk:TerminateEnvironment"],
 "Effect" : "Deny",
 "Resource" : "*"
 },
 {
 "Action" : [
 "elasticbeanstalk:*",
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "rds:*",
 "cloudformation:*"],
 "Effect" : "Allow",
 "Resource" : "*"
 }
]
}

Example managed policies 1493

Amazon Elastic Beanstalk Developer Guide

Example 3: Testers – View only

The following policy allows read-only access to all applications, application versions, events, and
environments. It doesn't allow performing any actions.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "elasticbeanstalk:Check*",
 "elasticbeanstalk:Describe*",
 "elasticbeanstalk:List*",
 "elasticbeanstalk:RequestEnvironmentInfo",
 "elasticbeanstalk:RetrieveEnvironmentInfo",
 "ec2:Describe*",
 "elasticloadbalancing:Describe*",
 "autoscaling:Describe*",
 "cloudwatch:Describe*",
 "cloudwatch:List*",
 "cloudwatch:Get*",
 "s3:Get*",
 "s3:List*",
 "sns:Get*",
 "sns:List*",
 "rds:Describe*",
 "cloudformation:Describe*",
 "cloudformation:Get*",
 "cloudformation:List*",
 "cloudformation:Validate*",
 "cloudformation:Estimate*"
],
 "Resource" : "*"
 }
]
}

Example policies based on resource permissions

This section walks through a use case for controlling user permissions for Elastic Beanstalk actions
that access specific Elastic Beanstalk resources. We'll walk through the sample policies that support

Example resource-specific policies 1494

Amazon Elastic Beanstalk Developer Guide

the use case. For more information policies on Elastic Beanstalk resources, see Creating a custom
user policy. For information about attaching policies to users and groups, go to Managing IAM
Policies in Using Amazon Identity and Access Management.

In our use case, Example Corp. is a small consulting firm developing applications for two different
customers. John is the development manager overseeing the development of the two Elastic
Beanstalk applications, app1 and app2. John does development and some testing on the two
applications, and only he can update the production environment for the two applications. These
are the permissions that he needs for app1 and app2:

• View application, application versions, environments, and configuration templates

• Create application versions and deploy them to the staging environment

• Update the production environment

• Create and terminate environments

Jill is a tester who needs access to view the following resources in order to monitor and test the
two applications: applications, application versions, environments, and configuration templates.
However, she should not be able to make changes to any Elastic Beanstalk resources.

Jack is the developer for app1 who needs access to view all resources for app1 and also needs to
create application versions for app1 and deploy them to the staging environment.

Judy is the administrator of the Amazon account for Example Corp. She has created IAM users
for John, Jill, and Jack and attaches the following policies to those users to grant the appropriate
permissions to the app1 and app2 applications.

Example 1: John – Development manager for app1, app2

We have broken down John's policy into three separate policies so that they are easier to read and
manage. Together, they give John the permissions he needs to perform development, testing, and
deployment actions on the two applications.

The first policy specifies actions for Auto Scaling, Amazon S3, Amazon EC2, CloudWatch, Amazon
SNS, Elastic Load Balancing, Amazon RDS, and Amazon CloudFormation. Elastic Beanstalk relies on
these additional services to provision underlying resources when creating an environment.

Note that this policy is an example. It gives a broad set of permissions to the Amazon products
that Elastic Beanstalk uses to manage applications and environments. For example, ec2:* allows

Example resource-specific policies 1495

http://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.amazonaws.cn/IAM/latest/UserGuide/ManagingPolicies.html

Amazon Elastic Beanstalk Developer Guide

an IAM user to perform any action on any Amazon EC2 resource in the Amazon account. These
permissions are not limited to the resources that you use with Elastic Beanstalk. As a best practice,
you should grant individuals only the permissions they need to perform their duties.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ec2:*",
 "ecs:*",
 "ecr:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "cloudformation:*",
 "dynamodb:*",
 "rds:*",
 "sqs:*",
 "logs:*",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:PassRole",
 "iam:ListRolePolicies",
 "iam:ListAttachedRolePolicies",
 "iam:ListInstanceProfiles",
 "iam:ListRoles",
 "iam:ListServerCertificates",
 "acm:DescribeCertificate",
 "acm:ListCertificates",
 "codebuild:CreateProject",
 "codebuild:DeleteProject",
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild"
],
 "Resource":"*"
 }
]
}

Example resource-specific policies 1496

Amazon Elastic Beanstalk Developer Guide

The second policy specifies the Elastic Beanstalk actions that John is allowed to perform on
the app1 and app2 resources. The AllCallsInApplications statement allows all Elastic
Beanstalk actions ("elasticbeanstalk:*") performed on all resources within app1 and app2
(for example, elasticbeanstalk:CreateEnvironment). The AllCallsOnApplications
statement allows all Elastic Beanstalk actions ("elasticbeanstalk:*") on the app1 and
app2 application resources (for example, elasticbeanstalk:DescribeApplications,
elasticbeanstalk:UpdateApplication, etc.). The AllCallsOnSolutionStacks statement
allows all Elastic Beanstalk actions ("elasticbeanstalk:*") for solution stack resources (for
example, elasticbeanstalk:ListAvailableSolutionStacks).

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllCallsInApplications",
 "Action":[
 "elasticbeanstalk:*"
],
 "Effect":"Allow",
 "Resource":[
 "*"
],
 "Condition":{
 "StringEquals":{
 "elasticbeanstalk:InApplication":[
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/
app1",
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/app2"
]
 }
 }
 },
 {
 "Sid":"AllCallsOnApplications",
 "Action":[
 "elasticbeanstalk:*"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/app1",
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/app2"
]

Example resource-specific policies 1497

Amazon Elastic Beanstalk Developer Guide

 },
 {
 "Sid":"AllCallsOnSolutionStacks",
 "Action":[
 "elasticbeanstalk:*"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws-cn:elasticbeanstalk:us-west-2::solutionstack/*"
]
 }
]
}

The third policy specifies the Elastic Beanstalk actions that the second policy needs permissions
to in order to complete those Elastic Beanstalk actions. The AllNonResourceCalls
statement allows the elasticbeanstalk:CheckDNSAvailability action, which is
required to call elasticbeanstalk:CreateEnvironment and other actions. It also
allows the elasticbeanstalk:CreateStorageLocation action, which is required for
elasticbeanstalk:CreateApplication, elasticbeanstalk:CreateEnvironment, and
other actions.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllNonResourceCalls",
 "Action":[
 "elasticbeanstalk:CheckDNSAvailability",
 "elasticbeanstalk:CreateStorageLocation"
],
 "Effect":"Allow",
 "Resource":[
 "*"
]
 }
]
}

Example resource-specific policies 1498

Amazon Elastic Beanstalk Developer Guide

Example 2: Jill – Tester for app1, app2

We have broken down Jill's policy into three separate policies so that they are easier to read and
manage. Together, they give Jill the permissions she needs to perform testing and monitoring
actions on the two applications.

The first policy specifies Describe*, List*, and Get* actions on Auto Scaling, Amazon S3,
Amazon EC2, CloudWatch, Amazon SNS, Elastic Load Balancing, Amazon RDS, and Amazon
CloudFormation (for non-legacy container types) so that the Elastic Beanstalk actions are able
to retrieve the relevant information about the underlying resources of the app1 and app2
applications.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ec2:Describe*",
 "elasticloadbalancing:Describe*",
 "autoscaling:Describe*",
 "cloudwatch:Describe*",
 "cloudwatch:List*",
 "cloudwatch:Get*",
 "s3:Get*",
 "s3:List*",
 "sns:Get*",
 "sns:List*",
 "rds:Describe*",
 "cloudformation:Describe*",
 "cloudformation:Get*",
 "cloudformation:List*",
 "cloudformation:Validate*",
 "cloudformation:Estimate*"
],
 "Resource":"*"
 }
]
}

The second policy specifies the Elastic Beanstalk actions that Jill is allowed to perform on the
app1 and app2 resources. The AllReadCallsInApplications statement allows her to call the

Example resource-specific policies 1499

Amazon Elastic Beanstalk Developer Guide

Describe* actions and the environment info actions. The AllReadCallsOnApplications
statement allows her to call the DescribeApplications and DescribeEvents actions on
the app1 and app2 application resources. The AllReadCallsOnSolutionStacks statement
allows viewing actions that involve solution stack resources (ListAvailableSolutionStacks,
DescribeConfigurationOptions, and ValidateConfigurationSettings).

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllReadCallsInApplications",
 "Action":[
 "elasticbeanstalk:Describe*",
 "elasticbeanstalk:RequestEnvironmentInfo",
 "elasticbeanstalk:RetrieveEnvironmentInfo"
],
 "Effect":"Allow",
 "Resource":[
 "*"
],
 "Condition":{
 "StringEquals":{
 "elasticbeanstalk:InApplication":[
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/
app1",
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/app2"
]
 }
 }
 },
 {
 "Sid":"AllReadCallsOnApplications",
 "Action":[
 "elasticbeanstalk:DescribeApplications",
 "elasticbeanstalk:DescribeEvents"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/app1",
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/app2"
]
 },
 {

Example resource-specific policies 1500

Amazon Elastic Beanstalk Developer Guide

 "Sid":"AllReadCallsOnSolutionStacks",
 "Action":[
 "elasticbeanstalk:ListAvailableSolutionStacks",
 "elasticbeanstalk:DescribeConfigurationOptions",
 "elasticbeanstalk:ValidateConfigurationSettings"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws-cn:elasticbeanstalk:us-west-2::solutionstack/*"
]
 }
]
}

The third policy specifies the Elastic Beanstalk actions that the second policy needs permissions
to in order to complete those Elastic Beanstalk actions. The AllNonResourceCalls statement
allows the elasticbeanstalk:CheckDNSAvailability action, which is required for some
viewing actions.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllNonResourceCalls",
 "Action":[
 "elasticbeanstalk:CheckDNSAvailability"
],
 "Effect":"Allow",
 "Resource":[
 "*"
]
 }
]
}

Example 3: Jack – Developer for app1

We have broken down Jack's policy into three separate policies so that they are easier to read and
manage. Together, they give Jack the permissions he needs to perform testing, monitoring, and
deployment actions on the app1 resource.

Example resource-specific policies 1501

Amazon Elastic Beanstalk Developer Guide

The first policy specifies the actions on Auto Scaling, Amazon S3, Amazon EC2, CloudWatch,
Amazon SNS, Elastic Load Balancing, Amazon RDS, and Amazon CloudFormation (for non-legacy
container types) so that the Elastic Beanstalk actions are able to view and work with the underlying
resources of app1. For a list of supported non-legacy container types, see the section called “Why
are some platform versions marked legacy?”

Note that this policy is an example. It gives a broad set of permissions to the Amazon products
that Elastic Beanstalk uses to manage applications and environments. For example, ec2:* allows
an IAM user to perform any action on any Amazon EC2 resource in the Amazon account. These
permissions are not limited to the resources that you use with Elastic Beanstalk. As a best practice,
you should grant individuals only the permissions they need to perform their duties.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "rds:*",
 "cloudformation:*"
],
 "Resource":"*"
 }
]
}

The second policy specifies the Elastic Beanstalk actions that Jack is allowed to perform on the
app1 resource.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllReadCallsAndAllVersionCallsInApplications",
 "Action":[

Example resource-specific policies 1502

Amazon Elastic Beanstalk Developer Guide

 "elasticbeanstalk:Describe*",
 "elasticbeanstalk:RequestEnvironmentInfo",
 "elasticbeanstalk:RetrieveEnvironmentInfo",
 "elasticbeanstalk:CreateApplicationVersion",
 "elasticbeanstalk:DeleteApplicationVersion",
 "elasticbeanstalk:UpdateApplicationVersion"
],
 "Effect":"Allow",
 "Resource":[
 "*"
],
 "Condition":{
 "StringEquals":{
 "elasticbeanstalk:InApplication":[
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/app1"
]
 }
 }
 },
 {
 "Sid":"AllReadCallsOnApplications",
 "Action":[
 "elasticbeanstalk:DescribeApplications",
 "elasticbeanstalk:DescribeEvents"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/app1"
]
 },
 {
 "Sid":"UpdateEnvironmentInApplications",
 "Action":[
 "elasticbeanstalk:UpdateEnvironment"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:environment/app1/app1-
staging*"
],
 "Condition":{
 "StringEquals":{
 "elasticbeanstalk:InApplication":[
 "arn:aws-cn:elasticbeanstalk:us-west-2:123456789012:application/app1"

Example resource-specific policies 1503

Amazon Elastic Beanstalk Developer Guide

]
 },
 "StringLike":{
 "elasticbeanstalk:FromApplicationVersion":[
 "arn:aws-cn:elasticbeanstalk:us-
west-2:123456789012:applicationversion/app1/*"
]
 }
 }
 },
 {
 "Sid":"AllReadCallsOnSolutionStacks",
 "Action":[
 "elasticbeanstalk:ListAvailableSolutionStacks",
 "elasticbeanstalk:DescribeConfigurationOptions",
 "elasticbeanstalk:ValidateConfigurationSettings"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws-cn:elasticbeanstalk:us-west-2::solutionstack/*"
]
 }
]
}

The third policy specifies the Elastic Beanstalk actions that the second policy needs permissions
to in order to complete those Elastic Beanstalk actions. The AllNonResourceCalls
statement allows the elasticbeanstalk:CheckDNSAvailability action, which is
required to call elasticbeanstalk:CreateEnvironment and other actions. It also
allows the elasticbeanstalk:CreateStorageLocation action, which is required for
elasticbeanstalk:CreateEnvironment, and other actions.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllNonResourceCalls",
 "Action":[
 "elasticbeanstalk:CheckDNSAvailability",
 "elasticbeanstalk:CreateStorageLocation"
],
 "Effect":"Allow",

Example resource-specific policies 1504

Amazon Elastic Beanstalk Developer Guide

 "Resource":[
 "*"
]
 }
]
}

Preventing cross-environment Amazon S3 bucket access

This topic explains how managed policies may allow cross-environment S3 bucket access and how
you can create custom policies to manage this type of access.

Elastic Beanstalk provides managed polices to handle the Amazon resources required by the Elastic
Beanstalk environments in your Amazon account. The permissions provided by default to one
application in your Amazon account have access to S3 resources that belong to other applications
in the same Amazon account.

If your Amazon account runs multiple Beanstalk applications, you can scope down the security of
your policies by creating your own custom policy to attach to your own service role or instance
profile for each environment. You can then limit the S3 permissions in your custom policy to a
specific environment.

Note

Be aware that you’re responsible for maintaining your custom policy. If an Elastic Beanstalk
managed policy on which your custom policy is based changes, you’ll need to modify your
custom policy with the respective changes to the base policy. For a change history of Elastic
Beanstalk managed policies, see Elastic Beanstalk updates to Amazon managed policies.

Example of scoped down permissions

The following example is based on the AWSElasticBeanstalkWebTier managed policy.

The default policy includes the following lines for permissions to S3 buckets. This default policy
doesn’t limit the S3 bucket actions to specific environments or applications.

{
 "Sid" : "BucketAccess",
 "Action" : [
 "s3:Get*",

Cross-environment S3 bucket access 1505

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkWebTier.html

Amazon Elastic Beanstalk Developer Guide

 "s3:List*",
 "s3:PutObject"
],
 "Effect" : "Allow",
 "Resource" : [
 "arn:aws:s3:::elasticbeanstalk-*",
 "arn:aws:s3:::elasticbeanstalk-*/*"
]
}

You can scope down the access by qualifying specific resources to a service role specified as a
Principal. The following example provides the custom service role aws-elasticbeanstalk-
ec2-role-my-example-env permissions to S3 buckets in the environment with id my-example-
env-ID.

Example Grant permissions to only a specific environment's S3 buckets

{
 "Sid": "BucketAccess",
 "Action": [
 "s3:Get*",
 "s3:List*",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::...:role/aws-elasticbeanstalk-ec2-role-my-example-env"
 },
 "Resource": [
 "arn:aws:s3:::elasticbeanstalk-my-region-account-id-12345",
 "arn:aws:s3:::elasticbeanstalk-my-region-account-id-12345/resources/environments/
my-example-env-ID/*"
]
}

Note

The Resource ARN must include the Elastic Beanstalk environment ID, (not the environment
name). You can obtain the environment id from the Elastic Beanstalk console on the
Environment overview page. You can also use the Amazon CLI describe-environments
command to obtain this information.

Cross-environment S3 bucket access 1506

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/describe-environments.html

Amazon Elastic Beanstalk Developer Guide

For more information to help you update S3 bucket permissions for your Elastic Beanstalk
environments, see the following resources:

• Using Elastic Beanstalk with Amazon S3 in this guide

• Resource types defined by Amazon S3 in the Service Authorization Reference guide

• ARN format in the IAM User Guide

Using Elastic Beanstalk with Amazon RDS

This section explains how you can use Elastic Beanstalk with Amazon Relational Database Service
(Amazon RDS) to set up, operate, and scale a relational database. We explain some concepts about
configuration and provide recommendations. Then we'll walk you through the process to create
and connect to an Amazon RDS.

There are two options to get started:

• Create a new database in Amazon RDS.

• Start with a database that was previously created by Elastic Beanstalk and subsequently
decoupled from a Beanstalk environment. For more information, see the section called
“Database”.

Select approach

You can use either approach to run a database instance in Amazon RDS and configure your
application to connect to it on launch. You can connect multiple environments to a database.

Note

If you haven't used a database instance with your application before, we recommend that
you add a database to a test environment with the Elastic Beanstalk console first. By doing
this, you can verify that your application can read the environment properties, construct a
connection string, and connect to a database instance, without the additional configuration
work required for a standalone database. For more information, see Adding a database to
your Elastic Beanstalk environment.

Configure a security group

Amazon RDS 1507

https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazons3.html#amazons3-resources-for-iam-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html

Amazon Elastic Beanstalk Developer Guide

To allow the Amazon EC2 instances in your environment to connect to an outside database,
configure an additional security group for the Auto Scaling group that's associated with your
environment. You can attach the same security group that's attached to your database instance. Or,
you can use a separate security group. If you attach a different security group, you must configure
the security group that's attached to your database to allow inbound access from this security
group.

Note

You can connect your environment to a database by adding a rule to the security
group that's attached to your database. This rule must allow inbound access from the
autogenerated security group that Elastic Beanstalk attaches to the Auto Scaling group for
your environment. However, know that, by creating this rule, you also create a dependency
between the two security groups. Subsequently, when you attempt to terminate the
environment, Elastic Beanstalk will be unable to delete the environment's security group,
because the database's security group is dependent on it.

Configure the database connection

After you launch your database instance and configure security groups, you can pass the
connection information, such as the endpoint and password, to your application by using
environment properties. This is the same mechanism that Elastic Beanstalk uses in the background
when you run a database instance in your environment.

For an additional layer of security, you can store your connection information in Amazon S3,
and configure Elastic Beanstalk to retrieve it during deployment. With configuration files
(.ebextensions), you can configure the instances in your environment to securely retrieve files
from Amazon S3 when you deploy your application.

Topics

• Launching and connecting to an external Amazon RDS instance in a default VPC

• Storing the Amazon RDS credentials in Amazon Secrets Manager

• Cleaning up an external Amazon RDS instance

Amazon RDS 1508

Amazon Elastic Beanstalk Developer Guide

Launching and connecting to an external Amazon RDS instance in a
default VPC

The following procedures describe the process for connecting to an external Amazon RDS instance
to a default VPC. The process is the same if you're using a custom VPC. The only additional
requirements are that your environment and DB instance are in the same subnet, or in subnets that
are allowed to communicate with each other. For more information about configuring a custom
VPC to use with Elastic Beanstalk, see Using Elastic Beanstalk with Amazon VPC.

Note

• An alternative to launching a new DB instance, is to start with a database that was
previously created by Elastic Beanstalk and subsequently decoupled from a Beanstalk
environment. For more information, see the section called “Database”. With this option,
you don't need to complete the procedure for launching a new database. However, you
do need to complete the subsequent procedures that are described in this topic.

• If you’re starting with a database that was created by Elastic Beanstalk and subsequently
decoupled from a Beanstalk environment, you can skip the first group of steps and
continue with the steps grouped under To modify the inbound rules on your RDS
instance's security group.

• If you plan to use the database that you decouple for a production environment,
verify the storage type that the database uses is suitable for your workload. For more
information, see DB Instance Storage and Modifying a DB instance in the Amazon RDS
User Guide.

To launch an RDS DB instance in a default VPC

1. Open the RDS console.

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. Choose Standard Create.

Amazon RDS in default VPC 1509

https://docs.amazonaws.cn/vpc/latest/userguide/default-vpc.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html
https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

Important

Do not choose Easy Create. If you choose it, you can't configure the necessary settings
to launch this RDS DB.

5. Under Additional configuration, for Initial database name, type ebdb.

6. Review the default settings and adjust these settings according to your specific requirements.
Pay attention to the following options:

• DB instance class – Choose an instance size that has an appropriate amount of memory and
CPU power for your workload.

• Multi-AZ deployment – For high availability, set this to Create an Aurora Replica/Reader
node in a different AZ.

• Master username and Master password – The database username and password. Make a
note of these settings because you will use them later.

7. Verify the default settings for the remaining options, and then choose Create database.

Next, modify the security group that's attached to your DB instance to allow inbound traffic on
the appropriate port. This is the same security group that you will attach to your Elastic Beanstalk
environment later. As a result, the rule that you add will grant inbound access permission to other
resources in the same security group.

To modify the inbound rules on the security group that's attached to your RDS instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose the name of your DB instance to view its details.

4. In the Connectivity section, make a note of the Subnets, Security groups, and Endpoint that
are displayed on this page. This is so you can use this information later.

5. Under Security, you can see the security group that's associated with the DB instance. Open
the link to view the security group in the Amazon EC2 console.

6. In the security group details, choose Inbound.

7. Choose Edit.

8. Choose Add Rule.

Amazon RDS in default VPC 1510

https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

9. For Type, choose the DB engine that your application uses.

10. For Source, type sg- to view a list of available security groups. Choose the security group
that's associated with the Auto Scaling group that's used with your Elastic Beanstalk
environment. This is so that Amazon EC2 instances in the environment can have access to the
database.

11. Choose Save.

Next, add the security group for the DB instance to your running environment. In this procedure
Elastic Beanstalk re-provisions all instances in your environment with the additional security group
attached.

To add a security group to your environment

• Do one of the following:

• To add a security group using the Elastic Beanstalk console

a. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web
Services Region.

b. In the navigation pane, choose Environments, and then choose the name of your
environment from the list.

c. In the navigation pane, choose Configuration.

d. In the Instances configuration category, choose Edit.

e. Under EC2 security groups, choose the security group to attach to the instances, in
addition to the instance security group that Elastic Beanstalk creates.

f. To save the changes choose Apply at the bottom of the page.

g. Read the warning, and then choose Confirm.
Amazon RDS in default VPC 1511

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

• To add a security group using a configuration file, use the securitygroup-
addexisting.config example file.

Next, pass the connection information to your environment by using environment properties.
When you add a DB instance to your environment with the Elastic Beanstalk console, Elastic
Beanstalk uses environment properties, such as RDS_HOSTNAME, to pass connection information
to your application. You can use the same properties. By doing this, you use the same application
code with both integrated DB instances and external DB instances. Or, alternatively, you can choose
your own property names.

To configure environment properties for an Amazon RDS DB instance

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Environment properties section, define the variables that your application reads to
construct a connection string. For compatibility with environments that have an integrated
RDS DB instance, use the following names and values. You can find all values, except for your
password, in the RDS console.

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

Amazon RDS in default VPC 1512

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://console.amazonaws.cn/elasticbeanstalk
https://console.amazonaws.cn/rds/home

Amazon Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_DB_NAME The database name, ebdb. On the Configuration tab
on the Amazon RDS console:
DB Name.

RDS_USERNAME The username that you
configured for your
database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your
database.

Not available for reference
in the Amazon RDS console.

6. To save the changes choose Apply at the bottom of the page.

If you didn't program your application to read environment properties and construct a connection
string yet, see the following language-specific topics for instructions:

Amazon RDS in default VPC 1513

Amazon Elastic Beanstalk Developer Guide

• Java SE – Connecting to a database (Java SE platforms)

• Java with Tomcat – Connecting to a database (Tomcat platforms)

• Node.js – Connecting to a database

• .NET – Connecting to a database

• PHP – Connecting to a database with a PDO or MySQLi

• Python – Connecting to a database

• Ruby – Connecting to a database

Finally, depending on when your application reads environment variables, you might need to
restart the application server on the instances in your environment.

To restart your environment's app servers

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. Choose Actions, and then choose Restart app server(s).

Storing the Amazon RDS credentials in Amazon Secrets Manager

This topic explains how Amazon Secrets Manager can improve your security posture for credential
retrieval with Elastic Beanstalk. It also provides references to specific resources that can help you
configure credentials for your Elastic Beanstalk application.

Amazon Secrets Manager helps you improve your security posture, by providing the ability to
store and retrieve encrypted credentials. Storing the credentials in Secrets Manager helps avoid
possible compromise by anyone who can inspect your application or the components related
to it. Your code can make a runtime call to the Secrets Manager service to retrieve credentials
dynamically. Secrets Manager also offers features like client-side secret caching components for
runtime languages, which include Python, Go, and Java.

For more information, see the following topics in the Amazon Secrets Manager User Guide.

• How Amazon RDS uses Amazon Secrets Manager

• Create an Amazon Secrets Manager database secret

Amazon RDS credentials and Secrets Manager 1514

https://console.amazonaws.cn/elasticbeanstalk
https://docs.amazonaws.cn/secretsmanager/latest/userguide/integrating_how-services-use-secrets_RDS.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/create_database_secret.html

Amazon Elastic Beanstalk Developer Guide

• Retrieve secrets from Amazon Secrets Manager

Cleaning up an external Amazon RDS instance

When you connect an external Amazon RDS instance to your Elastic Beanstalk environment, the
database instance isn't dependent upon your environment's lifecycle, and, therefore, it isn't deleted
when you terminate your environment. To ensure that personal information that you might have
stored in the database instance isn't unnecessarily retained, delete any records that you don't need
anymore. Alternatively, delete the database instance.

Using Elastic Beanstalk with Amazon S3

This topic explains how Elastic Beanstalk utilizes Amazon Simple Storage Service (Amazon S3)
and the types of objects that it stores in S3 buckets. It also notes which objects you must delete
manually after you terminate your Elastic Beanstalk environment and provides instructions to do
so.

The Elastic Beanstalk Amazon S3 customer account bucket

Elastic Beanstalk creates an encrypted Amazon S3 bucket named
elasticbeanstalk-region-account-id for each region in which you create environments.
Your Amazon account owns this bucket. Elastic Beanstalk stores temporary configuration files and
other objects for the proper operation of your application in this bucket. Elastic Beanstalk requires
enabled ACLs for service-managed buckets and therefore enables this bucket's Access Control List
(ACL).

Be aware that Amazon S3 disables bucket Access Control Lists (ACLs) by default. Furthermore,
the ACL overview topic in the Amazon S3 User Guide recommends that you keep ACLs disabled,
except for specific use cases. The Elastic Beanstalk service-managed buckets fall into a use case
that requires enabled ACLs. To maintain security Elastic Beanstalk deployments enforce that this
bucket is owned by the account running the application.

Elastic Beanstalk retains the default encryption provided by Amazon S3 buckets. For more
information about bucket encryption, see Amazon S3 default encryption in the Amazon Simple
Storage Service User Guide.

Cleaning up an external Amazon RDS instance 1515

https://docs.amazonaws.cn/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/acl-overview.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/bucket-encryption.html

Amazon Elastic Beanstalk Developer Guide

Contents of the Elastic Beanstalk Amazon S3 customer account bucket

The following table lists some objects that Elastic Beanstalk stores in your customer account
bucket. The table also shows which objects have to be deleted manually. To avoid unnecessary
storage costs, and to ensure that personal information isn't retained, be sure to manually delete
these objects when you no longer need them.

Object When stored? When deleted?

Application
versions

When you create an environment or
deploy your application code to an existing
environment, Elastic Beanstalk stores an
application version in Amazon S3 and
associates it with the environment.

During application deletion, and
according to Version lifecycle.

Source
bundles

When you upload a new application
version using the Elastic Beanstalk console
or the EB CLI, Elastic Beanstalk stores a
copy of it in Amazon S3, and sets it as your
environment's source bundle.

Manually. When you delete an
application version, you can choose
Delete versions from Amazon S3
to also delete the related source
bundle. For details, see Managing
application versions.

Custom
platforms

When you create a custom platform,
Elastic Beanstalk temporarily stores
related data in Amazon S3.

Upon successful completion of the
custom platform's creation.

Log files You can request Elastic Beanstalk to
retrieve instance log files (tail or bundle
logs) and store them in Amazon S3.
You can also enable log rotation and
configure your environment to publish
logs automatically to Amazon S3 after
they are rotated.

Tail and bundle logs: 15 minutes
after they are created.

Rotated logs: Manually.

Saved
configura
tions

Manually. Manually.

Contents of the Elastic Beanstalk Amazon S3 customer account bucket 1516

Amazon Elastic Beanstalk Developer Guide

Deleting objects in the Elastic Beanstalk Amazon S3 bucket

When you terminate an environment or delete an application, Elastic Beanstalk deletes most
related objects from Amazon S3. To minimize storage costs of a running application, routinely
delete objects that your application doesn't need. In addition, pay attention to objects that you
have to delete manually, as listed in Contents of the Elastic Beanstalk Amazon S3 customer
account bucket. To ensure that private information isn't unnecessarily retained, delete these
objects when you don't need them anymore.

• Delete application versions that you don't expect to use in your application anymore. When you
delete an application version, you can select Delete versions from Amazon S3 to also delete
the related source bundle—a copy of your application's source code and configurations files,
which Elastic Beanstalk uploaded to Amazon S3 when you deployed an application or uploaded
an application version. To learn how to delete an application version, see Managing application
versions.

• Delete rotated logs that you don't need. Alternatively, download them or move them to Amazon
S3 Glacier for further analysis.

• Delete saved configurations that you aren't going to use in any environment anymore.

Deleting the Elastic Beanstalk Amazon S3 bucket

When Elastic Beanstalk creates a bucket it also creates a bucket policy that it applies to the new
bucket. This policy servers two purposes:

• To allow environments to write to the bucket.

• To prevent accidental deletion of the bucket.

Due to the policy that Elastic Beanstalk applies to the buckets that it creates for your
environments, you're not be allowed to delete these buckets, unless you deliberately delete the
bucket policy first. You can delete the bucket policy from the Permissions section of the bucket
properties in the Amazon S3 console.

Warning

We recommend that you delete specific unnecessary objects from your Elastic Beanstalk
Amazon S3 bucket, instead of deleting the entire bucket.

Deleting objects in the Elastic Beanstalk Amazon S3 bucket 1517

Amazon Elastic Beanstalk Developer Guide

If you delete a bucket that Elastic Beanstalk created in your account, and you still have
existing applications and running environments in the corresponding region, your
applications might stop working correctly. For example:

• When an environment scales out, Elastic Beanstalk should be able to find the
environment's application version in the Amazon S3 bucket and use it to start new
Amazon EC2 instances.

• When you create a custom platform, Elastic Beanstalk uses temporary Amazon S3
storage during the creation process.

For more information about the implications of deleting an S3 bucket, see the
considerations listed in Deleting a bucket in the Amazon S3 User Guide.

To delete an Elastic Beanstalk storage bucket (console)

The general procedure to delete an S3 bucket is also described in Deleting a bucket in the
Amazon S3 User Guide. Since we're deleting a bucket created by Elastic Beanstalk in the following
procedure, we include additional steps to delete the bucket policy first.

1. Open the Amazon S3 console.

2. Open the Elastic Beanstalk storage bucket's page by choosing the bucket name.

3. Choose the Permissions tab.

4. Choose Bucket Policy.

5. Choose Delete.

6. Go back to the Amazon S3 console's main page, and then select the Elastic Beanstalk storage
bucket.

7. Choose Delete Bucket.

8. Confirm that you want to delete the bucket by entering the bucket name into the text field,
and then choose Delete bucket.

Deleting the Elastic Beanstalk Amazon S3 bucket 1518

https://docs.amazonaws.cn/AmazonS3/latest/userguide/delete-bucket.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/delete-bucket.html
https://console.amazonaws.cn/s3

Amazon Elastic Beanstalk Developer Guide

Using Elastic Beanstalk with Amazon Secrets Manager and
Amazon Systems Manager Parameter Store

This topic explains how you can use Amazon Secrets Manager and Amazon Systems Manager
Parameter Store with your Elastic Beanstalk environment to securely store and retrieve sensitive
information, such as credentials and API keys. Your application can retrieve stored secrets and
parameters directly from these stores, using the APIs or command line tools of these services.

Elastic Beanstalk also offers the ability to reference Secrets Manager and Systems Manager
Parameter Store data in environment variables. This is a secure option for your application to
natively access secrets and parameters stored by these services without having to manage API calls
to them.

Topics

• Fetching secrets and parameters to Elastic Beanstalk environment variables

• Required IAM permissions for Elastic Beanstalk to access secrets and parameters

• Using Amazon Secrets Manager and Amazon Systems Manager Parameter Store

• Troubleshooting secrets integration with Elastic Beanstalk environment variables

Fetching secrets and parameters to Elastic Beanstalk environment
variables

Elastic Beanstalk can fetch values from Amazon Secrets Manager and Amazon Systems Manager
Parameter Store during instance bootstrapping and assign them to environment variables for your
application to use.

The following points summarize configuration, synchronization and access for using environment
variables as secrets:

• Configure your environment variables to store secrets by specifying the Amazon Resource Names
(ARNs) for the secrets and parameters they will store.

• When secret values are updated or rotated in Secrets Manager or Systems Manager Parameter
Store, you must manually refresh your environment variables.

• The secrets environment variables are available to ebextension container commands and
platform hooks.

Secrets Manager & Systems Manager Parameter Store 1519

Amazon Elastic Beanstalk Developer Guide

Supported platform versions

Platform versions that were released on or after March 26, 2025 support Amazon Secrets Manager
secrets and Amazon Systems Manager Parameter Store parameters configured as environment
variables.

Note

With the exception of the Docker and ECS based docker platforms, the Amazon Linux 2
platform versions don't support multiline variable values. For more information about
multiline variable support, see Multiline values.

Topics

• Pricing

• Configure secrets as Elastic Beanstalk environment variables

• Best practices for secrets synchronization with Elastic Beanstalk environment variables

• Multiline values in Amazon Linux 2 environment variables

Pricing

Standard charges apply for using Secrets Manager and Systems Manager Parameter Store. For
more information about pricing, see the following websites:

• Amazon Secrets Manager pricing

• Amazon Systems Manager pricing (select Parameter Store from the content list)

Elastic Beanstalk doesn't charge for your application to reference environment secrets via
environment variables. However, standard charges do apply to requests that Elastic Beanstalk
makes to these services on your behalf.

Configure secrets as Elastic Beanstalk environment variables

You can use the Elastic Beanstalk console, configuration files in .ebextensions, the Amazon CLI,
and the Amazon SDK to configure secrets and parameters as environment variables.

Topics

Fetch secrets to environment variables 1520

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2025-03-26-windows.html
https://www.amazonaws.cn/secrets-manager/pricing
https://www.amazonaws.cn/systems-manager/pricing/

Amazon Elastic Beanstalk Developer Guide

• Prerequisites

• Using the console

• Configuration using files in .ebextensions

• Configuration using the Amazon CLI

• Configuration using the Amazon SDK

Prerequisites

Before you can set up your environment variables to reference secrets you'll first need to complete
the following steps.

General procedure prior to environment variable configuration

1. Create the Secrets Manager secrets or the Parameter Store parameters to store your sensitive
data. For more information, see one or both of the following topics:

• Creating secrets in the section called “Using Secrets Manager”

• Creating parameters in the section called “Using Systems Manager Parameter Store”

2. Set up the required IAM permissions for your environment’s EC2 instances to fetch the secrets
and parameters. For more information, see Required IAM permissions.

Using the console

You can use the Elastic Beanstalk console to configure secrets as environment variables.

To configure secrets as environment variables in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your Amazon Web Services
Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll down to Runtime environment variables.

6. Select Add environment variable.

7. For Source select either Secrets Manager or SSM Parameter Store.

Fetch secrets to environment variables 1521

https://console.amazonaws.cn/elasticbeanstalk

Amazon Elastic Beanstalk Developer Guide

Note

For more information about the Plain text option in the drop-down, see Configuring
environment properties (environment variables).

8. For Environment variable name enter the name of the environment variable to hold the
secret or parameter value.

9. For Environment variable value enter the ARN of the Systems Manager Parameter Store
parameter or the Secrets Manager secret. During instance bootstrapping Elastic Beanstalk will
initiate the value of the variable you entered in Step 8 to the value stored in this ARN resource.

The console validates if the value you enter is a valid ARN format for the store that you select
in Step 7. However, it does not validate the existence of the resource specified by the ARN or if
you have the required IAM permissions to access to it.

10. If you need to add more variables repeat Step 6 through Step 9.

11. To save the changes choose Apply at the bottom of the page.

Configuration using files in .ebextensions

You can use Elastic Beanstalk configuration files to configure secrets as environment variables.
Use the aws:elasticbeanstalk:application:environmentsecrets namespace to define environment
properties.

Example .ebextensions/options.config for environment secrets (shorthand syntax)

option_settings:
 aws:elasticbeanstalk:application:environmentsecrets:
 MY_SECRET: arn:aws:secretsmanager:us-east-1:111122223333:secret:mysecret
 MY_PARAMETER: arn:aws:ssm:us-east-1:111122223333:parameter/myparam

Example .ebextensions/options.config for environment secrets (standard syntax)

option_settings:
 - namespace: aws:elasticbeanstalk:application:environmentsecrets
 option_name: MY_SECRET
 value: arn:aws:secretsmanager:us-east-1:111122223333:secret:mysecret
 - namespace: aws:elasticbeanstalk:application:environmentsecrets

Fetch secrets to environment variables 1522

Amazon Elastic Beanstalk Developer Guide

 option_name: MY_PARAMETER
 value: arn:aws:ssm:us-east-1:111122223333:parameter/myparam

Configuration using the Amazon CLI

You can use the Amazon Command Line Interface (Amazon CLI) to configure secrets as Elastic
Beanstalk environment variables. This section provides examples of the create-environment and
update-environment commands with the aws:elasticbeanstalk:application:environmentsecrets
namespace. When Elastic Beanstalk bootstraps the EC2 instances for the environments that
these command reference, it initializes the environment variables with the fetched secret and
the parameter values. It fetches these values from the respective ARNs of Secrets Manager and
Systems Manager Parameter Store.

The two following examples use the create-environment command to add a secret and a
parameter, configured as environment variables named MY_SECRETand MY_PARAMETER.

Example of create-environment with secrets configured as environment variables (namespace
options inline)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 v6.5.0 running Node.js 20" \
--option-settings \
Namespace=aws:elasticbeanstalk:application:environmentsecrets,OptionName=MY_SECRET,Value=arn:aws:secretsmanager:us-
east-1:111122223333:secret:mysecret \
Namespace=aws:elasticbeanstalk:application:environmentsecrets,OptionName=MY_PARAMETER,Value=arn:aws:ssm:us-
east-1:111122223333:parameter/myparam

As an alternative, use an options.json file to specify the namespace options instead of including
them inline.

Example of create-environment with secrets configured as environment variables (namespace
options in options.json file)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \

Fetch secrets to environment variables 1523

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-environment.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/create-environment.html

Amazon Elastic Beanstalk Developer Guide

--solution-stack-name "64bit Amazon Linux 2023 v6.5.0 running Node.js 20" \
--option-settings file://options.json

Example

example options.json
[
 {
 "Namespace": "aws:elasticbeanstalk:application:environmentsecrets",
 "OptionName": "MY_SECRET",
 "Value": "arn:aws:secretsmanager:us-east-1:111122223333:secret:mysecret"
 },
 {
 "Namespace": "aws:elasticbeanstalk:application:environmentsecrets",
 "OptionName": "MY_PARAMETER",
 "Value": "arn:aws:ssm:us-east-1:111122223333:parameter/myparam"
 }
]

The next example configures environment variables, named MY_SECRETand MY_PARAMETER, to
store a secret and a parameter for an existing environment. The update-environment command
passes options with the same syntax as the create-environment command, either inline or
with an options.json file. The following example demonstrates the command using the same
options.json file that's also used in the previous example.

Example of update-environment with secrets configured as environment variables (namespace
options in options.json file)

aws elasticbeanstalk update-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 v6.5.0 running Node.js 20" \
--option-settings file://options.json

Configuration using the Amazon SDK

You can configure secrets and parameters as environment variables using the Amazon SDKs.
Similar to the update-environment and create-environment Amazon CLI commands

Fetch secrets to environment variables 1524

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.amazonaws.cn/code-library/

Amazon Elastic Beanstalk Developer Guide

mentioned in the previous section, you can use the CreateEnvironment and UpdateEnvironment
API actions. Use the OptionSettings request parameter to specify the options of the
aws:elasticbeanstalk:application:environmentsecrets namespace.

Best practices for secrets synchronization with Elastic Beanstalk environment
variables

This topic recommends best practices for your application to use environment secrets with
Secrets Manager or the Systems Manager Parameter Store. Your Elastic Beanstalk application
won't automatically receive updated values if the secret store data is updated or rotated. Elastic
Beanstalk only pulls secrets into environment variables at the time of instance bootstrapping.

Refreshing your environment variables

To trigger your Elastic Beanstalk environment to refetch the latest values of the secrets
from their secret stores, we recommend that you run either the UpdateEnvironment or
RestartAppServer operation. You can run these operations using the Elastic Beanstalk console,
the Amazon CLI, or the Elastic Beanstalk API. For more information, see Amazon CLI examples for
Elastic Beanstalk, or the Amazon Elastic Beanstalk API Reference.

Managing auto scaling effects on secret synchronization

If a scale out event or instance replacement occurs after the secret store updates, the new instance
that comes up will have the latest secret values from Secrets Manager or Systems Manager
Parameter Store. Such an event can occur even if not all the other instances in the environment
have been refreshed to retrieve the new secrets.

Important

You must ensure that your application is able to use two different secret values for the
same environment variable. This accommodates events where a secret update occurs in
Secrets Manager or Systems Manager Parameter Store, followed by a scale out or instance
replacement in your environment, while the other instances are pending environment
variable refresh. During the wait period for refresh, not all of the environment instances
will have the same values for the secret store environment variables.

An example of such a use case is a database credential rotation. When a scale out event follows
the credential rotation, the environment secrets referenced by the newly bootstrapped instances

Fetch secrets to environment variables 1525

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_CreateEnvironment.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/API_UpdateEnvironment.html
https://docs.amazonaws.cn/cli/latest/userguide/cli_elastic-beanstalk_code_examples.html
https://docs.amazonaws.cn/cli/latest/userguide/cli_elastic-beanstalk_code_examples.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/

Amazon Elastic Beanstalk Developer Guide

contain the updated database credentials. However, the environment secrets referenced by the
existing instances retain the old value until they are refreshed by the UpdateEnvironment or
RestartAppServer operations.

Multiline values in Amazon Linux 2 environment variables

Multiline values are composed of more than one line and include a newline character. With the
exception of Docker and ECS-based Docker platforms, platforms that run on Amazon Linux 2 don't
support multiline values for environment variables

Note

Elastic Beanstalk will fail the deployment of affected environments if it detects a multiline
value.

The following options can serve as workarounds or solutions to the multiline issue:

• Upgrade your Amazon Linux 2 environment to Amazon Linux 2023. For more information, see
Migration from Amazon Linux 2 to Amazon Linux 2023.

• Remove newline characters from your secret values. One example approach is to Base64 encode
your values before storing them in the secret store. Your application would then need to decode
the value back into the original format when it references it from the environment secret
variable.

• Design your application code to retrieve the data directly from Secrets Manager or Systems
Manager Parameter Store. For more information, see Retrieving secrets in Using Secrets Manager
or Retrieving parameters Using Systems Manager Parameter Store.

Required IAM permissions for Elastic Beanstalk to access secrets and
parameters

You must grant the necessary permissions to your environment’s EC2 instances to fetch the secrets
and parameters for Amazon Secrets Manager and Amazon Systems Manager Parameter Store.
Permissions are provided to the EC2 instances via an EC2 instance profile role.

Required IAM permissions 1526

Amazon Elastic Beanstalk Developer Guide

The following sections list the specific permissions that you need to add to an EC2 instance profile,
depending on which service you use. Follow the steps provided in Update the permissions policy
for a role in the IAM User Guide to add these permissions.

IAM permissions for the ECS managed Docker platform

The ECS managed Docker platform requires additional IAM permissions to the ones
provided in this topic. For more information about all of the required permissions for your
ECS managed Docker platform environment to support Elastic Beanstalk environment
variables integration with secrets, see Execution Role ARN format.

Topics

• Required IAM permissions for Secrets Manager

• Required IAM permissions Systems Manager Parameter Store

Required IAM permissions for Secrets Manager

The following permissions grant access to fetch encrypted secrets from the Amazon Secrets
Manager store:

• secretsmanager:GetSecretValue

• kms:Decrypt

The permission to decrypt an Amazon KMS key is only required if your secret uses a customer
managed key instead of the default key. The addition of your custom key ARN adds the permission
to decrypt the customer managed key.

Example policy with Secrets Manager and KMS key permissions

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "kms:Decrypt"

Required IAM permissions 1527

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_update-role-permissions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_update-role-permissions.html

Amazon Elastic Beanstalk Developer Guide

],
 "Resource": [
 "arn:aws:secretsmanager:us-east-1:111122223333:secret:my-secret",
 "arn:aws:kms:us-east-1:111122223333:key/my-key"
]
 }
]
}

Required IAM permissions Systems Manager Parameter Store

The following permissions grant access to fetch encrypted parameters from the Amazon Systems
Manager Parameter Store:

• ssm:GetParameter

• kms:Decrypt

The permission to decrypt an Amazon KMS key is only required for SecureString parameter
types that uses a customer managed key instead of a default key. The addition of your custom key
ARN adds the permission to decrypt the customer managed key. The regular parameter types that
aren't encrypted, String and StringList, don’t need an Amazon KMS key.

Example policy with Systems Manager and Amazon KMS key permissions

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameter",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:ssm:us-east-1:111122223333:parameter/my-parameter",
 "arn:aws:kms:us-east-1:111122223333:key/my-key"
]
 }
]
}

Required IAM permissions 1528

Amazon Elastic Beanstalk Developer Guide

Using Amazon Secrets Manager and Amazon Systems Manager
Parameter Store

This topic provides a brief introduction of Amazon Secrets Manager and Amazon Systems Manager
Parameter Store, pricing information, and references to learn more about creating and retrieving
secrets, using both the console and programmatic options.

About Secrets Manager

Amazon Secrets Manager helps you manage, retrieve, and rotate secrets throughout their
lifecycles. Examples of secret data you can manage include database credentials, application
credentials, OAuth tokens, and API keys. Secrets Manager enables you to configure an automatic
rotation schedule for your secrets.

About Systems Manager Parameter Store

Parameter Store is a tool in Amazon Systems Manager. It provides secure, hierarchical storage
for configuration data management and secrets management. You can manage important
configuration data as parameter values. Examples of data that you can manage with Parameter
Store includes Amazon Machine Image (AMI) IDs, license codes, passwords, and database strings.

Pricing

Standard charges apply for using Secrets Manager and Systems Manager Parameter Store.
For more information about pricing, see the following websites:

• Amazon Secrets Manager pricing

• Amazon Systems Manager pricing (select Parameter Store from the content list)

Topics

• Using Secrets Manager to create and retrieve secrets

• Using Systems Manager Parameter Store to create and retrieve parameters

Using Secrets Manager and Systems Manager Parameter Store 1529

https://www.amazonaws.cn/secrets-manager/pricing
https://www.amazonaws.cn/systems-manager/pricing/

Amazon Elastic Beanstalk Developer Guide

Using Secrets Manager to create and retrieve secrets

You can create and retrieve Secrets Manager secrets using the Amazon Secrets Manager console,
the Amazon CLI, or the Amazon SDK. Refer to the following resources to learn more about different
methods to create and retrieve Secrets Manager secrets.

Creating secrets

• Console – Create an Amazon Secrets Manager secret (console) in the Amazon Secrets Manager
User Guide

• Amazon CLI – AmazonCLI in the Amazon Secrets Manager User Guide

• Amazon SDK – Amazon SDK in the Amazon Secrets Manager User Guide

Retrieving secrets

• Console – Get a secret value (console) in the Amazon Secrets Manager User Guide

• Amazon CLI – Get a secret value (Amazon CLI) in the Amazon Secrets Manager User Guide

• Amazon SDK – Code examples for Secrets Manager using Amazon SDKs in the Amazon SDK Code
Examples Code Library

• Other methods – Get secrets from Amazon Secrets Manager in the Amazon Secrets Manager User
Guide

For more information about Amazon Secrets Manager, see What is Amazon Secrets Manager? in the
Amazon Secrets Manager User Guide.

Using Systems Manager Parameter Store to create and retrieve parameters

You can create and retrieve Parameter Store parameters using the Amazon Systems Manager
console, the Amazon CLI, or the Amazon SDK. Refer to the following resources to learn more about
different methods to create and retrieve Parameter Store parameters.

Creating parameters

• Console – Create a Systems Manager parameter (console) in the Amazon Systems Manager User
Guide

• Amazon CLI – Create a Systems Manager parameter (Amazon CLI) in the Amazon Systems
Manager User Guide

Using Secrets Manager and Systems Manager Parameter Store 1530

https://docs.amazonaws.cn/secretsmanager/latest/userguide/create_secret.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/create_secret.html#create_secret_cli
https://docs.amazonaws.cn/secretsmanager/latest/userguide/create_secret.html#create_secret_sdk
https://docs.amazonaws.cn/secretsmanager/latest/userguide/retrieving-secrets-console.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/retrieving-secrets_cli.html
https://docs.amazonaws.cn/code-library/latest/ug/secrets-manager_code_examples.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/intro.html
https://docs.amazonaws.cn/systems-manager/latest/userguide/parameter-create-console.html
https://docs.amazonaws.cn/systems-manager/latest/userguide/param-create-cli.html

Amazon Elastic Beanstalk Developer Guide

• Amazon SDK – Use PutParameter with an Amazon SDK or Amazon CLI in the Amazon SDK Code
Examples Code Library

Retrieving parameters

• Console – Searching for a parameter (console) in the Amazon Systems Manager User Guide

• Amazon CLI – Use GetParameter with an Amazon SDK or Amazon CLI in the Amazon SDK Code
Examples Code Library

• Amazon SDK – Use GetParameter with an Amazon SDK or Amazon CLI in the Amazon SDK Code
Examples Code Library

For more information, see Amazon Systems Manager Parameter Store in the Amazon Systems
Manager User Guide.

Troubleshooting secrets integration with Elastic Beanstalk environment
variables

Event: Instance deployment failed to get one or more secrets

This message indicates that Elastic Beanstalk was not able to fetch one or more of the secrets
specified during your application deployment.

• Check that the resources specified by the ARN values in your environment variable configuration
exist.

• Confirm that your Elastic Beanstalk EC2 instance profile role has the required IAM permissions to
access the resources.

• If this event was triggered through the RestartAppServer operation, once the issue is fixed,
retry the RestartAppServer call to resolve the issue.

• If the event was triggered through an UpdateEnvironment call, retry the
UpdateEnvironment operation.

For examples of these commands, see Amazon CLI examples for Elastic Beanstalk. For more
information about the API actions for these operations, see the Amazon Elastic Beanstalk API
Reference.

Troubleshooting secrets and environment variables 1531

https://docs.amazonaws.cn/code-library/latest/ug/ssm_example_ssm_PutParameter_section.html
https://docs.amazonaws.cn/systems-manager/latest/userguide/parameter-search.html#parameter-search-console
https://docs.amazonaws.cn/code-library/latest/ug/ssm_example_ssm_GetParameter_section.html
https://docs.amazonaws.cn/code-library/latest/ug/ssm_example_ssm_GetParameter_section.html
https://docs.amazonaws.cn/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.amazonaws.cn/cli/latest/userguide/cli_elastic-beanstalk_code_examples.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/

Amazon Elastic Beanstalk Developer Guide

Event: Instance deployment detected one or more multiline environment values, which are not
supported for this platform

Multiline variables are not supported for Amazon Linux 2 platforms, excluding Docker and ECS
managed Docker platforms. For available options to proceed, see Multiline values.

Event: CreateEnvironment fails when a secret is specified

When CreateEnvironment fails and you have secrets as environment variables, you need to
address the underlying issue and then use UpdateEnvironment to complete the environment
setup. Do not use RestartAppServer, as it will not be sufficient to bring the environment up in
this situation. For examples of these commands, see Amazon CLI examples for Elastic Beanstalk. For
more information about the API actions for these operations, see the Amazon Elastic Beanstalk API
Reference.

Using Elastic Beanstalk with Amazon VPC

This topic explains the benefits of using VPC endpoints with Elastic Beanstalk and the different
types of configurations you can implement.

You can use an Amazon Virtual Private Cloud (Amazon VPC) to create a secure network for your
Elastic Beanstalk application and related Amazon resources. When you create your environment,
you choose which VPC, subnets, and security groups are used for your application instances and
load balancer. You can use any VPC configuration that you like as long as it meets the following
requirements.

VPC requirements

• Internet Access – Instances can have access to the internet through one of the following
methods:

• Public Subnet – Instances have a public IP address and use an internet gateway to access the
internet.

• Private Subnet – Instances use a NAT device to access the internet.

Note

If you configure VPC endpoints in your VPC to connect to both the elasticbeanstalk
and elasticbeanstalk-health services, internet access is optional, and is only

Amazon VPC 1532

https://docs.amazonaws.cn/cli/latest/userguide/cli_elastic-beanstalk_code_examples.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon Elastic Beanstalk Developer Guide

required if your application specifically needs it. Without VPC endpoints, your VPC must
have access to the internet.
The default VPC that Elastic Beanstalk sets up for you provides internet access.

Elastic Beanstalk doesn't support proxy settings like HTTPS_PROXY for configuring a web proxy.

• NTP – Instances in your Elastic Beanstalk environment use Network Time Protocol (NTP) to
synchronize the system clock. If instances are unable to communicate on UDP port 123, the clock
may go out of sync, causing issues with Elastic Beanstalk health reporting. Ensure that your VPC
security groups and network ACLs allow inbound and outbound UDP traffic on port 123 to avoid
these issues.

The elastic-beanstalk-samples repository provides Amazon CloudFormation templates that you can
use to create a VPC for use with your Elastic Beanstalk environments.

To create resources with a Amazon CloudFormation template

1. Clone the samples repository or download a template using the links in the README.

2. Open the Amazon CloudFormation console.

3. Choose Create stack.

4. Choose Upload a template to Amazon S3.

5. Choose Upload file and upload the template file from your local machine.

6. Choose Next and follow the instructions to create a stack with the resources in the template.

When stack creation completes, check the Outputs tab to find the VPC ID and subnet IDs. Use
these to configure the VPC in the new environment wizard network configuration category.

Topics

• Public VPC

• Public/private VPC

• Private VPC

• Example: Launching an Elastic Beanstalk application in a VPC with bastion hosts

• Example: Launching an Elastic Beanstalk in a VPC with Amazon RDS

• Using Elastic Beanstalk with VPC endpoints

Amazon VPC 1533

https://github.com/awsdocs/elastic-beanstalk-samples/
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/cfn-templates/README.md
https://console.amazonaws.cn/cloudformation/home

Amazon Elastic Beanstalk Developer Guide

• Using endpoint policies to control access with VPC endpoints

Public VPC

Amazon CloudFormation template – vpc-public.yaml

Settings (load balanced)

• Load balancer visibility – Public

• Load balancer subnets – Both public subnets

• Instance public IP – Enabled

• Instance subnets – Both public subnets

• Instance security groups – Add the default security group

Settings (single instance)

• Instance subnets – One of the public subnets

• Instance security groups – Add the default security group

A basic public-only VPC layout includes one or more public subnets, an internet gateway, and
a default security group that allows traffic between resources in the VPC. When you create an
environment in the VPC, Elastic Beanstalk creates additional resources that vary depending on the
environment type.

VPC resources

• Single instance – Elastic Beanstalk creates a security group for the application instance that
allows traffic on port 80 from the internet, and assigns the instance an Elastic IP to give it a
public IP address. The environment's domain name resolves to the instance's public IP address.

• Load balanced – Elastic Beanstalk creates a security group for the load balancer that allows
traffic on port 80 from the internet, and a security group for the application instances that
allows traffic from the load balancer's security group. The environment's domain name resolves
to the load balancer's public domain name.

Public VPC 1534

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/cfn-templates/vpc-public.yaml

Amazon Elastic Beanstalk Developer Guide

This is similar to the way that Elastic Beanstalk manages networking when you use the default VPC.
Security in a public subnet depends on the load balancer and instance security groups created by
Elastic Beanstalk. It is the least expensive configuration as it does not require a NAT Gateway.

Public/private VPC

Amazon CloudFormation template – vpc-privatepublic.yaml

Settings (load balanced)

• Load balancer visibility – Public

• Load balancer subnets – Both public subnets

• Instance public IP – Disabled

• Instance subnets – Both private subnets

• Instance security groups – Add the default security group

For additional security, add private subnets to your VPC to create a public-private layout. This
layout requires a load balancer and NAT gateway in the public subnets, and lets you run your
application instances, database, and any other resources in private subnets. Instances in private
subnets can only communicate with the internet through the load balancer and NAT gateway.

Private VPC

Amazon CloudFormation template – vpc-private.yaml

Settings (load balanced)

• Load balancer visibility – Private

• Load balancer subnets – Both private subnets

• Instance public IP – Disabled

• Instance subnets – Both private subnets

• Instance security groups – Add the default security group

For internal applications that shouldn't have access from the internet, you can run everything in
private subnets and configure the load balancer to be internally facing (change Load balancer
visibility to Internal). This template creates a VPC with no public subnets and no internet gateway.

Public/private VPC 1535

https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/cfn-templates/vpc-privatepublic.yaml
https://github.com/awsdocs/elastic-beanstalk-samples/tree/main/cfn-templates/vpc-private.yaml

Amazon Elastic Beanstalk Developer Guide

Use this layout for applications that should only be accessible from the same VPC or an attached
VPN.

Running an Elastic Beanstalk environment in a private VPC

When you create your Elastic Beanstalk environment in a private VPC, the environment doesn't
have access to the internet. Your application might need access to the Elastic Beanstalk service
or other services. Your environment might use enhanced health reporting, and in this case the
environment instances send health information to the enhanced health service. And Elastic
Beanstalk code on environment instances sends traffic to other Amazon services, and other traffic
to non-Amazon endpoints (for example, to download dependency packages for your application).
Here are some steps you might need to take in this case to ensure that your environment works
properly.

• Configure VPC endpoints for Elastic Beanstalk – Elastic Beanstalk and its enhanced health service
support VPC endpoints, which ensure that traffic to these services stays inside the Amazon
network and doesn't require internet access. For more information, see the section called “VPC
endpoints”.

• Configure VPC endpoints for additional services – Elastic Beanstalk instances send traffic to several
other Amazon services on your behalf: Amazon Simple Storage Service (Amazon S3), Amazon
Simple Queue Service (Amazon SQS), Amazon CloudFormation, and Amazon CloudWatch Logs.
You must configure VPC endpoints for these services too. For detailed information about VPC
endpoints, including per-service links, see VPC Endpoints in the Amazon VPC User Guide.

Note

Some Amazon services, including Elastic Beanstalk, support VPC endpoints in a limited
number of Amazon Regions. When you design your private VPC solution, verify that
Elastic Beanstalk and the other dependent services mentioned here support VPC
endpoints in the Amazon Region that you choose.

• Provide a private Docker image – In a Docker environment, code on the environment's instances
might try to pull your configured Docker image from the internet during environment creation
and fail. To avoid this failure, build a custom Docker image on your environment, or use a Docker
image stored in Amazon Elastic Container Registry (Amazon ECR) and configure a VPC endpoint
for the Amazon ECR service.

• Enable DNS names – Elastic Beanstalk code on environment instances sends traffic to all Amazon
services using their public endpoints. To ensure that this traffic goes through, choose the Enable

Private VPC 1536

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/AmazonECR/latest/userguide/
https://docs.amazonaws.cn/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/AmazonECR/latest/userguide/vpc-endpoints.html

Amazon Elastic Beanstalk Developer Guide

DNS name option when you configure all interface VPC endpoints. This adds a DNS entry in your
VPC that maps the public service endpoint to the interface VPC endpoint.

Important

If your VPC isn't private and has public internet access, and if Enable DNS name is
disabled for any VPC endpoint, traffic to the respective service travels through the public
internet. This is probably not what you intend. It's easy to detect this issue with a private
VPC, because it prevents this traffic from going through and you receive errors. However,
with a public facing VPC, you get no indication.

• Include application dependencies – If your application has dependencies such as language runtime
packages, it might try to download and install them from the internet during environment
creation and fail. To avoid this failure, include all dependency packages in your application's
source bundle.

• Use a current platform version – Be sure that your environment uses a platform version that was
released on February 24, 2020 or later. Specifically, use a platform version that was released in or
after one of these two updates: Linux Update 2020-02-28, Windows Update 2020-02-24.

Note

The reason for needing an updated platform version is that older versions had an issue
that would prevent DNS entries created by the Enable DNS name option from working
properly for Amazon SQS.

Example: Launching an Elastic Beanstalk application in a VPC with
bastion hosts

This section explains how to deploy an Elastic Beanstalk application inside a VPC using a bastion
host and why you would implement this topology.

If your Amazon EC2 instances are located inside a private subnet, you will not be able to connect
to them remotely. To connect to your instances, you can set up bastion servers in the public subnet
to act as proxies. For example, you can set up SSH port forwarders or RDP gateways in the public
subnet to proxy the traffic going to your database servers from your own network. This section
provides an example of how to create a VPC with a private and public subnet. The instances are

Bastion hosts 1537

https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2020-02-28-linux.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/release-2020-02-24-windows.html

Amazon Elastic Beanstalk Developer Guide

located inside the private subnet, and the bastion host, NAT gateway, and load balancer are located
inside the public subnet. Your infrastructure will look similar to the following diagram.

To deploy an Elastic Beanstalk application inside a VPC using a bastion host, complete the steps
described in the following subsections.

Steps

• Create a VPC with a public and private subnet

• Create and configure the bastion host security group

• Update the instance security group

• Create a bastion host

Bastion hosts 1538

Amazon Elastic Beanstalk Developer Guide

Create a VPC with a public and private subnet

Complete all of the procedures in Public/private VPC. When deploying the application, you must
specify an Amazon EC2 key pair for the instances so you can connect to them remotely. For more
information about how to specify the instance key pair, see The Amazon EC2 instances for your
Elastic Beanstalk environment.

Create and configure the bastion host security group

Create a security group for the bastion host, and add rules that allow inbound SSH traffic from the
Internet, and outbound SSH traffic to the private subnet that contains the Amazon EC2 instances.

To create the bastion host security group

1. Open the Amazon VPC console at https://console.amazonaws.cn/vpc/.

2. In the navigation pane, choose Security Groups.

3. Choose Create Security Group.

4. In the Create Security Group dialog box, enter the following and choose Yes, Create.

Name tag (Optional)

Enter a name tag for the security group.

Group name

Enter the name of the security group.

Description

Enter a description for the security group.

VPC

Select your VPC.

The security group is created and appears on the Security Groups page. Notice that it has an
ID (e.g., sg-xxxxxxxx). You might have to turn on the Group ID column by clicking Show/
Hide in the top right corner of the page.

Bastion hosts 1539

https://console.amazonaws.cn/vpc/

Amazon Elastic Beanstalk Developer Guide

To configure the bastion host security group

1. In the list of security groups, select the check box for the security group you just created for
your bastion host.

2. On the Inbound Rules tab, choose Edit.

3. If needed, choose Add another rule.

4. If your bastion host is a Linux instance, under Type, select SSH.

If your bastion host is a Windows instance, under Type, select RDP.

5. Enter the desired source CIDR range in the Source field and choose Save.

6. On the Outbound Rules tab, choose Edit.

7. If needed, choose Add another rule.

8. Under Type, select the type that you specified for the inbound rule.

9. In the Source field, enter the CIDR range of the subnet of the hosts in the VPC's private subnet.

To find it:

a. Open the Amazon VPC console at https://console.amazonaws.cn/vpc/.

b. In the navigation pane, choose Subnets.

c. Note the value under IPv4 CIDR for each Availability Zone in which you have hosts that
you want the bastion host to bridge to.

Bastion hosts 1540

https://console.amazonaws.cn/vpc/

Amazon Elastic Beanstalk Developer Guide

Note

If you have hosts in multiple availability zones, create an outbound rule for each
one of these availability zones.

10. Choose Save.

Update the instance security group

By default, the security group you created for your instances does not allow incoming traffic. While
Elastic Beanstalk will modify the default group for the instances to allow SSH traffic, you must
modify your custom instance security group to allow RDP traffic if your instances are Windows
instances.

To update the instance security group for RDP

1. In the list of security groups, select the check box for the instance security group.

2. On the Inbound tab, choose Edit.

3. If needed, choose Add another rule.

4. Enter the following values, and choose Save.

Type

RDP

Protocol

TCP

Bastion hosts 1541

Amazon Elastic Beanstalk Developer Guide

Port Range

3389

Source

Enter the ID of the bastion host security group (e.g., sg-8a6f71e8) and choose Save.

Create a bastion host

To create a bastion host, you launch an Amazon EC2 instance in your public subnet that will act as
the bastion host.

For more information about setting up a bastion host for Windows instances in the private subnet,
see Controlling Network Access to EC2 Instances Using a Bastion Server .

For more information about setting up a bastion host for Linux instances in the private subnet, see
Securely Connect to Linux Instances Running in a Private Amazon VPC .

Example: Launching an Elastic Beanstalk in a VPC with Amazon RDS

This section walks you through the tasks to deploy an Elastic Beanstalk application with Amazon
RDS in a VPC using a NAT gateway.

Your infrastructure will look similar to the following diagram.

Amazon RDS 1542

https://amazonaws-china.com/blogs/security/controlling-network-access-to-ec2-instances-using-a-bastion-server/
https://amazonaws-china.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/
https://amazonaws-china.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/

Amazon Elastic Beanstalk Developer Guide

Note

If you haven't used a DB instance with your application before, try adding one to a test
environment, and connecting to an external DB instance before adding a VPC configuration
to the mix.

Create a VPC with a public and private subnet

You can use the Amazon VPC console to create a VPC.

To create a VPC

1. Sign in to the Amazon VPC console.

2. In the navigation pane, choose VPC Dashboard. Then choose Create VPC.

Amazon RDS 1543

https://console.amazonaws.cn/vpc/
https://console.amazonaws.cn/vpc/

Amazon Elastic Beanstalk Developer Guide

3. Choose VPC with Public and Private Subnets, and then choose Select.

4. Your Elastic Load Balancing load balancer and your Amazon EC2 instances must be in the same
Availability Zone so they can communicate with each other. Choose the same Availability Zone
from each Availability Zone list.

5. Choose an Elastic IP address for your NAT gateway.

6. Choose Create VPC.

The wizard begins to create your VPC, subnets, and internet gateway. It also updates the main
route table and creates a custom route table. Finally, the wizard creates a NAT gateway in the
public subnet.

Amazon RDS 1544

Amazon Elastic Beanstalk Developer Guide

Note

You can choose to launch a NAT instance in the public subnet instead of a NAT
gateway. For more information, see Scenario 2: VPC with Public and Private Subnets
(NAT) in the Amazon VPC User Guide.

7. After the VPC is successfully created, you get a VPC ID. You need this value for the next step.
To view your VPC ID, choose Your VPCs in the left pane of the Amazon VPC console.

Create a DB subnet group

A DB subnet group for a VPC is a collection of subnets (typically private) that you can designate for
your backend RDS DB instances. Each DB subnet group should have at least one subnet for every
Availability Zone in a given Amazon Region. To learn more, see Creating a Subnet in Your VPC.

Create a DB subnet group

1. Open the Amazon RDS console.

2. In the navigation pane, choose Subnet groups.

3. Choose Create DB Subnet Group.

4. Choose Name, and then type the name of your DB subnet group.

5. Choose Description, and then describe your DB subnet group.

6. For VPC, choose the ID of the VPC that you created.

7. In Add subnets, choose Add all the subnets related to this VPC.

Amazon RDS 1545

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Scenario2.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Scenario2.html
https://console.amazonaws.cn/vpc/
https://docs.amazonaws.cn/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet
https://console.amazonaws.cn/rds/

Amazon Elastic Beanstalk Developer Guide

8. When you are finished, choose Create.

Your new DB subnet group appears in the Subnet groups list of the Amazon RDS console. You
can choose it to see details, such as all of the subnets associated with this group, in the details
pane at the bottom of the page.

Deploy to Elastic Beanstalk

After you set up your VPC, you can create your environment inside it and deploy your application
to Elastic Beanstalk. You can do this using the Elastic Beanstalk console, or you can use the Amazon
toolkits, Amazon CLI, EB CLI, or Elastic Beanstalk API. If you use the Elastic Beanstalk console,
you just need to upload your .war or .zip file and select the VPC settings inside the wizard.
Elastic Beanstalk then creates your environment inside your VPC and deploys your application.
Alternatively, you can use the Amazon toolkits, Amazon CLI, EB CLI, or Elastic Beanstalk API to
deploy your application. To do this, you need to define your VPC option settings in a configuration
file and deploy this file with your source bundle. This topic provides instructions for both methods.

Deploying with the Elastic Beanstalk console

The Elastic Beanstalk console walks you through creating your new environment inside your VPC.
You need to provide a .war file (for Java applications) or a .zip file (for all other applications).

Amazon RDS 1546

Amazon Elastic Beanstalk Developer Guide

On the VPC Configuration page of the Elastic Beanstalk environment wizard, you must make the
following selections:

VPC

Select your VPC.

VPC security group

Select the instance security group you created above.

ELB visibility

Select External if your load balancer should be publicly available, or select Internal if the
load balancer should be available only within your VPC.

Select the subnets for your load balancer and EC2 instances. Be sure you select the public
subnet for the load balancer, and the private subnet for your Amazon EC2 instances. By default,
the VPC creation wizard creates the public subnet in 10.0.0.0/24 and the private subnet in
10.0.1.0/24.

You can view your subnet IDs by choosing Subnets in the Amazon VPC console.

Deploying with the Amazon toolkits, EB CLI, Amazon CLI, or API

When deploying your application to Elastic Beanstalk using the Amazon toolkits, EB CLI, Amazon
CLI, or API, you can specify your VPC option settings in a file and deploy it with your source bundle.

Amazon RDS 1547

https://console.amazonaws.cn/vpc/

Amazon Elastic Beanstalk Developer Guide

See Advanced environment customization with configuration files (.ebextensions) for more
information.

When you update the option settings, you need to specify at least the following:

• VPCId–Contains the ID of the VPC.

• Subnets–Contains the ID of the Auto Scaling group subnet. In this example, this is the ID of the
private subnet.

• ELBSubnets–Contains the ID of the subnet for the load balancer. In this example, this is the ID of
the public subnet.

• SecurityGroups–Contains the ID of the security groups.

• DBSubnets–Contains the ID of the DB subnets.

Note

When using DB subnets, you need to create additional subnets in your VPC to cover all
the Availability Zones in the Amazon Region.

Optionally, you can also specify the following information:

• ELBScheme – Specify internal to create an internal load balancer inside your VPC so that your
Elastic Beanstalk application can't be accessed from outside your VPC.

The following is an example of the option settings you could use when deploying your Elastic
Beanstalk application inside a VPC. For more information about VPC option settings (including
examples for how to specify them, default values, and valid values), see the aws:ec2:vpc
namespace table in Configuration options.

option_settings:
 - namespace: aws:autoscaling:launchconfiguration
 option_name: EC2KeyName
 value: ec2keypair

 - namespace: aws:ec2:vpc
 option_name: VPCId
 value: vpc-170647c

 - namespace: aws:ec2:vpc

Amazon RDS 1548

Amazon Elastic Beanstalk Developer Guide

 option_name: Subnets
 value: subnet-4f195024

 - namespace: aws:ec2:vpc
 option_name: ELBSubnets
 value: subnet-fe064f95

 - namespace: aws:ec2:vpc
 option_name: DBSubnets
 value: subnet-fg148g78

 - namespace: aws:autoscaling:launchconfiguration
 option_name: InstanceType
 value: m1.small

 - namespace: aws:autoscaling:launchconfiguration
 option_name: SecurityGroups
 value: sg-7f1ef110

Note

When using DB subnets, be sure you have subnets in your VPC to cover all the Availability
Zones in the Amazon Region.

Using Elastic Beanstalk with VPC endpoints

This topic explains the benefits that a VPC endpoint can offer your Elastic Beanstalk application. It
also provides instructions to create an interface VPC endpoint to an Elastic Beanstalk service.

A VPC endpoint enables you to privately connect your VPC to supported Amazon services and VPC
endpoint services powered by Amazon PrivateLink, without requiring an internet gateway, NAT
device, VPN connection, or Amazon Direct Connect connection.

Instances in your VPC don't require public IP addresses to communicate with resources in the
service. Traffic between your VPC and the other service doesn't leave the Amazon network. For
complete information about VPC endpoints, see VPC Endpoints in the Amazon VPC User Guide.

Amazon Elastic Beanstalk supports Amazon PrivateLink, which provides private connectivity to the
Elastic Beanstalk service and eliminates exposure of traffic to the public internet. To enable your
application to send requests to Elastic Beanstalk using Amazon PrivateLink, you configure a type of

VPC endpoints 1549

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html

Amazon Elastic Beanstalk Developer Guide

VPC endpoint known as an interface VPC endpoint (interface endpoint). For more information, see
Interface VPC Endpoints (Amazon PrivateLink) in the Amazon VPC User Guide.

Note

Elastic Beanstalk supports Amazon PrivateLink and interface VPC endpoints in a limited
number of Amazon Web Services Regions. We're working to extend support to more
Amazon Web Services Regions in the near future.

IPv6 support

Elastic Beanstalk supports incoming traffic over IPv4 and IPv6. This section describes the public
endpoints that support IPV6 and also explains how to configure your Elastic Beanstalk VPC
endpoints to support dual-stack traffic.

For more general information about IPv6, see Amazon services that support IPv6 in the Amazon
VPC User Guide and the Amazon whitepaper IPv6 on Amazon.

Public endpoints

The Elastic Beanstalk service has two sets of endpoints that consists of the older IPv4 endpoints
and the more recent endpoints with dual-stack capability. Both sets of endpoints follow Amazon
naming standards:

• IPv4 endpoints use the domain amazonaws.com – format for general service endpoint:
elasticbeanstalk.region.amazonaws.com

• Dual-stack endpoints use the domain api.aws – format for general service endpoint::
elasticbeanstalk.region.api.aws

The endpoints for service health and FIPS have different host names, but they follow the same
domain name pattern. For a list of endpoints see Elastic Beanstalk service endpoints in the Amazon
Web Services General Reference.

Requests to Elastic Beanstalk

When you send requests to the Elastic Beanstalk service with the Amazon CLI or the Amazon SDK
you can specify an IPv4 endpoint or a dual-stack endpoint. The Amazon CLI and Amazon SDK use
the IPv4-only endpoints by default if an endpoint URL isn't specified.

VPC endpoints 1550

https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html
https://docs.amazonaws.cn/vpc/latest/userguide/aws-ipv6-support.html
https://docs.amazonaws.cn/whitepapers/latest/ipv6-on-aws/IPv6-on-AWS.html
https://docs.amazonaws.cn/general/latest/gr/elasticbeanstalk.html#elasticbeanstalk_region
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk
https://www.amazonaws.cn/developer/tools/

Amazon Elastic Beanstalk Developer Guide

The following example demonstrates the Amazon CLI sending a request to a dual-stack endpoint:

Example

aws elasticbeanstalk list-available-solution-stacks \
 --endpoint-url "https://elasticbeanstalk.us-east-1.api.aws"

The following example demonstrates the Amazon Python SDK sending a request to a dual-stack
endpoint:

Example

import boto3

dual_stack_eb_client = boto3.client(
 service_name='elasticbeanstalk',
 region_name='us-east-1',
 endpoint_url='https://elasticbeanstalk.us-east-1.api.aws';
)

print(dual_stack_eb_client.list_available_solution_stacks())

VPC endpoints for dual-stack IPs

To configure your Elastic Beanstalk VPC endpoints to support dual-stack traffic, specify dualstack
for the IP address type parameter of the VPC endpoint. You can specify this field via the Amazon
CLI, the Amazon SDK, or the Amazon PrivateLink console. For instructions to do so in the Amazon
PrivateLink console, see Create a VPC endpoint in the Amazon PrivateLink Guide.

Note

You must specify the IP address type of the VPC endpoint as either IPv4 or dualstack. At
this time Elastic Beanstalk VPC endpoints don't support an IP address type of IPv6, which
would indicate IPv6-only support. The dualstack option allows for both the IPv4 and IPv6
internet protocols.

The following example demonstrates how to create a dual-stack VPC endpoint with the Amazon
CLI:

VPC endpoints 1551

https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk
https://docs.amazonaws.cn/cli/latest/reference/elasticbeanstalk
https://www.amazonaws.cn/developer/tools/
https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html

Amazon Elastic Beanstalk Developer Guide

Example

aws ec2 create-vpc-endpoint \
 --vpc-id "vpc-example"
 --service-name "com.amazonaws.us-east-1.elasticbeanstalk"
 --ip-address-type "dualstack"

Setting up a VPC endpoint for Elastic Beanstalk

To create the interface VPC endpoint for the Elastic Beanstalk service in your VPC, follow the
Creating an Interface Endpoint procedure.

• For Service Name, choose com.amazonaws.region.elasticbeanstalk.

• For IP address type, choose either IPv4 or Dualstack. At this time Elastic Beanstalk VPC
endpoints don't support an IP address type of IPv6, which would indicate IPv6-only support.
The Dualstack option allows for both the IPv4 and IPv6 internet protocols.

If your VPC is configured with public internet access, your application can still access Elastic
Beanstalk over the internet using either the elasticbeanstalk.region.amazonaws.com or
the elasticbeanstalk.region.api.aws public endpoint. You can prevent this by ensuring
that Enable DNS name is enabled during endpoint creation (true by default). This adds a DNS entry
in your VPC that maps the public service endpoint to the interface VPC endpoint.

Setting up a VPC endpoint for enhanced health

If you enabled enhanced health reporting for your environment, you can configure enhanced
health information to be sent over Amazon PrivateLink too. Enhanced health information is sent
by the healthd daemon, an Elastic Beanstalk component on your environment instances, to a
separate Elastic Beanstalk enhanced health service. To create an interface VPC endpoint for this
service in your VPC, follow the Creating an Interface Endpoint procedure.

• For Service Name, choose com.amazonaws.region.elasticbeanstalk-health.

• For IP address type, choose either IPv4 or Dualstack. At this time Elastic Beanstalk VPC
endpoints don't support an IP address type of IPv6, which would indicate IPv6-only support.
The Dualstack option allows for both the IPv4 and IPv6 internet protocols.

VPC endpoints 1552

https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.amazonaws.cn/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

Amazon Elastic Beanstalk Developer Guide

Important

The healthd daemon sends enhanced health information to the public endpoint
elasticbeanstalk-health.region.amazonaws.com or elasticbeanstalk-
health.region.api.aws. If your VPC is configured with public internet access, and
Enable DNS name is disabled for the VPC endpoint, enhanced health information travels
through the public internet. This is probably not your intention when you set up an
enhanced health VPC endpoint. Ensure that Enable DNS name is enabled (true by default).

Using VPC endpoints in a private VPC

A private VPC, or a private subnet in a VPC, has no public internet access. You might want to
run your Elastic Beanstalk environment in a private VPC and configure interface VPC endpoints
for enhanced security. In this case, be aware that your environment might try to connect to
the internet for other reasons in addition to contacting the Elastic Beanstalk service. To learn
more about running an environment in a private VPC, see the section called “Running an Elastic
Beanstalk environment in a private VPC”.

Using endpoint policies to control access with VPC endpoints

This topic explains how you can attach a policy to VPC endpoints to controls access to your
application (your service) and your Elastic Beanstalk environment.

An endpoint policy is an Amazon Identity and Access Management (IAM) resource policy that
controls access from the endpoint to the specified service. The endpoint policy is specific to the
endpoint. It's separate from any user or instance IAM policies that your environment might have
and doesn't override or replace them.

By default, a VPC endpoint allows full access to the service with which it's associated. When you
create or modify an endpoint, you can attach an endpoint policy to it to control access to specific
resources associated with the service. For details about authoring and using VPC endpoint policies,
see Control access to VPC endpoints using endpoint policies in the Amazon PrivateLink Guide.

VPC endpoint policies 1553

https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Elastic Beanstalk Developer Guide

Note

When you create restrictive endpoint policies you may need to add specific permissions to
required resources, so that access to these resources isn't blocked by the endpoint policy.
Doing so ensures that your environment continues to deploy and function properly.

The following example denies all users the permission to terminate an environment through the
VPC endpoint, and allows full access to all other actions.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "elasticbeanstalk:TerminateEnvironment",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": "*"
 }
]
}

Required Amazon S3 bucket permissions for restrictive VPC endpoint policies

If you add restrictions to your VPC endpoint policies, you must include specific Amazon S3 bucket
permissions to ensure that your environment continues to deploy and function properly. This
section explains the required S3 buckets and includes example policies.

Topics

• S3 Buckets that store assets to manage environment platforms

• S3 Buckets owned by Amazon CloudFormation

• S3 Buckets owned by customer accounts to store source code and other items

• S3 Buckets owned by customer accounts to support Docker registry authentication

• Updating your VPC endpoint policy

VPC endpoint policies 1554

Amazon Elastic Beanstalk Developer Guide

S3 Buckets that store assets to manage environment platforms

The Elastic Beanstalk service owns S3 buckets that store the assets associated with a solution
stack (platform version). These assets include configuration files, the sample application, and
available instance types. When Elastic Beanstalk creates and manages your environment it
retrieves the required information for the specific platform version from the asset bucket for each
corresponding Amazon Web Services Region.

S3 Bucket ARN

arn:aws:s3:::elasticbeanstalk-samples-region

Amazon Linux 2 and later

• arn:aws:s3:::elasticbeanstalk-platform-assets-region

Note

The bucket name follows a different convention for the BJS region. The
string public-beta-cn-north-1 is used in place of region. For example,
arn:aws:s3:::elasticbeanstalk-platform-assets-public-beta-cn-
north-1.

Windows Server, Amazon Linux (AMI), Amazon Linux 2 and later

• arn:aws:s3:::elasticbeanstalk-env-resources-region

• arn:aws:s3:::elasticbeanstalk-region

Note

The bucket names for platform-assets and env-resources buckets follow different
conventions in some regions. See the region-specific bucket naming patterns section below
for details.

VPC endpoint policies 1555

Amazon Elastic Beanstalk Developer Guide

Region-specific bucket ARN patterns

Region Bucket Type Bucket ARN Pattern

platform-assets arn:aws:s3:::elasticbeanstalk-platfo
rm-assets-me-central-1-f08b818c

me-central-1

env-resources arn:aws:s3:::elasticbeanstalk-env-re
sources-me-central-1-f08b818c

Operations

GetObject

VPC endpoint policy example

The following example illustrates how to provide access to the S3 buckets required for Elastic
Beanstalk operations in the US East (Ohio) Region (us-east-2). The example lists all of the buckets
for both Amazon Linux and Windows Server platforms. Update your policy to only include the
buckets that apply to the operating system of your environment.

Example policy

Important

We recommend that you avoid using wildcard characters (*) in place of specific Regions
in this policy. For example, use arn:aws:s3:::cloudformation-waitcondition-
us-east-2/* and don't use arn:aws:s3:::cloudformation-waitcondition-*/*.
Using wildcards could provide access to S3 buckets that you don’t intend to grant access to.
If you want to use the policy for more than one Region, we recommend repeating the first
Statement block for each Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRequestsToAWSResources",

VPC endpoint policies 1556

Amazon Elastic Beanstalk Developer Guide

 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": ["s3:GetObject"],
 "Resource": [
 "arn:aws:s3:::elasticbeanstalk-platform-assets-us-east-2/*",
 "arn:aws:s3:::elasticbeanstalk-env-resources-us-east-2/*",
 "arn:aws:s3:::elasticbeanstalk-env-resources-us-east-2/*",
 "arn:aws:s3:::elasticbeanstalk-samples-us-east-2/*"
]
 }
]
}

S3 Buckets owned by Amazon CloudFormation

Elastic Beanstalk uses Amazon CloudFormation to create resources for your environment.
CloudFormation owns S3 buckets in each Amazon Web Services Region to monitor responses to
wait conditions.

Services like Elastic Beanstalk communicate with CloudFormation by sending requests to a
presigned Amazon S3 URL for the S3 bucket that CloudFormation owns. CloudFormation creates
the presigned Amazon S3 URL using the cloudformation.amazonaws.com service principal.

For more detailed information, see Considerations for CloudFormation VPC endpoints in the
Amazon CloudFormation User Guide. To learn more about presigned URLs, see Working with
presigned URLs in the Amazon S3 User Guide.

S3 Bucket ARN

• arn:aws:s3:::cloudformation-waitcondition-region

When using wait conditions, region names do contain dashes. For example, us-west-2.

• arn:aws:s3:::cloudformation-custom-resource-response-region

When using custom resources, region names don't contain dashes. For example, uswest2.

Operations

GetObject

VPC endpoint policies 1557

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/cfn-vpce-bucketnames.html#cfn-setting-up-vpc-considerations
https://docs.amazonaws.cn/AmazonS3/latest/userguide/using-presigned-url.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/using-presigned-url.html

Amazon Elastic Beanstalk Developer Guide

VPC endpoint policy example

The following example illustrates how to provide access to the S3 buckets required for Elastic
Beanstalk operations in the US East (Ohio) Region (us-east-2).

Example policy

Important

We recommend that you avoid using wildcard characters (*) in place of specific Regions
in this policy. For example, use arn:aws:s3:::cloudformation-waitcondition-
us-east-2/* and don't use arn:aws:s3:::cloudformation-waitcondition-*/*.
Using wildcards could provide access to S3 buckets that you don’t intend to grant access to.
If you want to use the policy for more than one Region, we recommend repeating the first
Statement block for each Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRequestsToCloudFormation",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": ["s3:GetObject"],
 "Resource": [
 "arn:aws:s3:::cloudformation-waitcondition-us-east-2/*",
 "arn:aws:s3:::cloudformation-custom-resource-response-us-east-2/*"
]
 }
]
}

S3 Buckets owned by customer accounts to store source code and other items

This bucket is owned by the Amazon customer account that owns the environment. It stores
resources that are specific to your environment, such as source code and requested logs.

S3 Bucket ARN

arn:aws:s3:::elasticbeanstalk-region-account-id

VPC endpoint policies 1558

Amazon Elastic Beanstalk Developer Guide

Operations

• GetObject

• GetObjectAcl

• PutObject

• PutObjectAcl

• ListBucket

VPC endpoint policy example

The following example illustrates how to provide access to the S3 buckets required for Elastic
Beanstalk operations in the US East (Ohio) Region (us-east-2) and for the example Amazon account
id 123456789012.

Example policy

Important

We recommend that you avoid using wildcard characters (*) in place of specific Regions
in this policy. For example, use arn:aws:s3:::cloudformation-waitcondition-
us-east-2/* and don't use arn:aws:s3:::cloudformation-waitcondition-*/*.
Using wildcards could provide access to S3 buckets that you don’t intend to grant access to.
If you want to use the policy for more than one Region, we recommend repeating the first
Statement block for each Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRequestsToCustomerItems",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": ["GetObject",
 "GetObjectAcl",
 "PutObject",
 "PutObjectAcl",
 "ListBucket"
],

VPC endpoint policies 1559

Amazon Elastic Beanstalk Developer Guide

 "Resource": [
 "arn:aws:s3:::elasticbeanstalk-us-east-2-123456789012/*"
]
 }
]
}

S3 Buckets owned by customer accounts to support Docker registry authentication

This bucket only applies to environments based on the Docker platform. The bucket stores a file
used to authenticate to a private Docker registry that resides on an S3 bucket provisioned by
the customer. For more information, see Using the Dockerrun.aws.json v3 file in the Docker
platform chapter of this guide.

S3 Bucket ARN

The ARN varies by customer account.

The S3 bucket ARN has the following format: arn:aws:s3:::bucket-name

Operations

GetObject

VPC endpoint policy example

The following example illustrates how to provide access to an S3 bucket with the name amzn-s3-
demo-bucket1.

Example policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRequestsToDockerRegistryAuth",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": ["GetObject"],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket1"
]
 }

VPC endpoint policies 1560

Amazon Elastic Beanstalk Developer Guide

]
}

Updating your VPC endpoint policy

Because a VPC endpoint has only one policy attached, you must combine all of the permissions
into the one policy. The following example provides all of the previous examples combined into
one.

For details about authoring and using VPC endpoint policies, see Control access to VPC endpoints
using endpoint policies in the Amazon PrivateLink Guide.

Like the previous examples, the following one illustrates how to provide access to the S3 buckets
required for Elastic Beanstalk operations in the US East (Ohio) Region (us-east-2). It also includes
buckets with example Amazon account id 123456789012 and example bucket name amzn-s3-
demo-bucket1.

Important

We recommend that you avoid using wildcard characters (*) in place of specific Regions
in this policy. For example, use arn:aws:s3:::cloudformation-waitcondition-
us-east-2/* and don't use arn:aws:s3:::cloudformation-waitcondition-*/*.
Using wildcards could provide access to S3 buckets that you don’t intend to grant access to.
If you want to use the policy for more than one Region, we recommend repeating the first
Statement block for each Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRequestsToAWSResources",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": ["s3:GetObject"],
 "Resource": [
 "arn:aws:s3:::elasticbeanstalk-platform-assets-us-east-2/*",
 "arn:aws:s3:::elasticbeanstalk-env-resources-us-east-2/*",
 "arn:aws:s3:::elasticbeanstalk-env-resources-us-east-2/*",
 "arn:aws:s3:::elasticbeanstalk-samples-us-east-2/*"

VPC endpoint policies 1561

https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Elastic Beanstalk Developer Guide

]
 },
 {
 "Sid": "AllowRequestsToCloudFormation",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": ["s3:GetObject"],
 "Resource": [
 "arn:aws:s3:::cloudformation-waitcondition-us-east-2/*",
 "arn:aws:s3:::cloudformation-custom-resource-response-us-east-2/*"
]
 },
 {
 "Sid": "AllowRequestsToCustomerItems",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": ["GetObject",
 "GetObjectAcl",
 "PutObject",
 "PutObjectAcl",
 "ListBucket"
],
 "Resource": [
 "arn:aws:s3:::elasticbeanstalk-us-east-2-123456789012/*"
]
 },
 {
 "Sid": "AllowRequestsToDockerRegistryAuth",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Action": ["GetObject"],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket1""
]
 }
]
}

VPC endpoint policies 1562

Amazon Elastic Beanstalk Developer Guide

Amazon Elastic Beanstalk security

Use this chapter to learn more about the security tasks Elastic Beanstalk is responsible for, along
with the security configurations you should consider when using Elastic Beanstalk to meet your
security and compliance objectives.

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The Shared Responsibility Model
describes this as Security of the Cloud and Security in the Cloud.

Security of the Cloud – Amazon is responsible for protecting the infrastructure that runs all of the
services offered in the Amazon Cloud and providing you with services that you can use securely.
Our security responsibility is the highest priority at Amazon, and the effectiveness of our security is
regularly tested and verified by third-party auditors as part of the Amazon Compliance Programs.
Review the Amazon Services in Scope of Amazon assurance programs for information as it relates
to Elastic Beanstalk.

Security in the Cloud – Your responsibility is determined by the Amazon service you are using,
and other factors including the sensitivity of your data, your organization’s requirements, and
applicable laws and regulations. This documentation is intended to help you understand how to
apply the Shared Responsibility Model when using Elastic Beanstalk.

Topics

• Data protection in Elastic Beanstalk

• Identity and access management for Elastic Beanstalk

• Logging and monitoring in Elastic Beanstalk

• Compliance validation for Elastic Beanstalk

• Resilience in Elastic Beanstalk

• Infrastructure security in Elastic Beanstalk

• Configuration and vulnerability analysis in Elastic Beanstalk

• Security best practices for Elastic Beanstalk

1563

http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Elastic Beanstalk Developer Guide

Data protection in Elastic Beanstalk

The Amazon shared responsibility model applies to data protection in Amazon Elastic Beanstalk. As
described in this model, Amazon is responsible for protecting the global infrastructure that runs all
of the Amazon Web Services Cloud. You are responsible for maintaining control over your content
that is hosted on this infrastructure. You are also responsible for the security configuration and
management tasks for the Amazon Web Services services that you use. For more information about
data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and
Access Management (IAM). That way, each user is given only the permissions necessary to fulfill
their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS
1.3.

• Set up API and user activity logging with Amazon CloudTrail. For information about using
CloudTrail trails to capture Amazon activities, see Working with CloudTrail trails in the Amazon
CloudTrail User Guide.

• Use Amazon encryption solutions, along with all default security controls within Amazon Web
Services services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Elastic Beanstalk or other Amazon Web Services services using the console,
API, Amazon CLI, or Amazon SDKs. Any data that you enter into tags or free-form text fields used
for names may be used for billing or diagnostic logs. If you provide a URL to an external server, we
strongly recommend that you do not include credentials information in the URL to validate your
request to that server.

Data protection 1564

https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://www.amazonaws.cn/compliance/fips/

Amazon Elastic Beanstalk Developer Guide

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Topics

• Protecting data using encryption

• Internetwork traffic privacy

Protecting data using encryption

You can use different forms of data encryption to protect your Elastic Beanstalk data. Data
protection refers to protecting data while in transit (as it travels to and from Elastic Beanstalk) and
at rest (while it is stored in Amazon data centers).

Encryption in transit

You can achieve data protection in transit in two ways: encrypt the connection using Secure
Sockets Layer (SSL), or use client-side encryption (where the object is encrypted before it is sent).
Both methods are valid for protecting your application data. To secure the connection, encrypt it
using SSL whenever your application, its developers and administrators, and its end users send or
receive any objects. For details about encrypting web traffic to and from your application, see the
section called “HTTPS”.

Client-side encryption isn't a valid method for protecting your source code in application versions
and source bundles that you upload. Elastic Beanstalk needs access to these objects, so they
can't be encrypted. Therefore, be sure to secure the connection between your development or
deployment environment and Elastic Beanstalk.

Encryption at rest

To protect your application's data at rest, learn about data protection in the storage service
that your application uses. For example, see Data Protection in Amazon RDS in the Amazon RDS
User Guide, Data Protection in Amazon S3 in the Amazon Simple Storage Service User Guide, or
Encrypting Data and Metadata in EFS in the Amazon Elastic File System User Guide.

Elastic Beanstalk stores various objects in an encrypted Amazon Simple Storage Service (Amazon
S3) bucket that it creates for each Amazon Region in which you create environments. Because
Elastic Beanstalk retains the default encryption provided by Amazon S3, it creates encrypted
Amazon S3 buckets. For details, see the section called “Amazon S3”. You provide some of the
stored objects and send them to Elastic Beanstalk, for example, application versions and source
bundles. Elastic Beanstalk generates other objects, for example, log files. In addition to the

Data encryption 1565

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/DataDurability.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/DataDurability.html
https://docs.amazonaws.cn/efs/latest/ug/encryption.html

Amazon Elastic Beanstalk Developer Guide

data that Elastic Beanstalk stores, your application can transfer and/or store data as part of its
operation.

To protect data stored on Amazon Elastic Block Store(Amazon EBS) volumes attached to your
environment's instances, enable Amazon EBS encryption by default in your Amazon account
and Region. When enabled, all new Amazon EBS volumes and their snapshots are automatically
encrypted using Amazon Key Management Service keys. For more information, see Encryption by
default in the Amazon EBS User Guide.

For more information about data protection, see the Amazon Shared Responsibility Model and
GDPR blog post on the Amazon Security Blog.

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Internetwork traffic privacy

You can use Amazon Virtual Private Cloud (Amazon VPC) to create boundaries between resources
in your Elastic Beanstalk application and control traffic between them, your on-premises network,
and the internet. For details, see the section called “Amazon VPC”.

For more information about Amazon VPC security, see Security in the Amazon VPC User Guide.

For more information about data protection, see the Amazon Shared Responsibility Model and
GDPR blog post on the Amazon Security Blog.

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Identity and access management for Elastic Beanstalk

Amazon Identity and Access Management (IAM) is an Amazon service that helps an administrator
securely control access to Amazon resources. IAM administrators control who can be authenticated
(signed in) and authorized (have permissions) to use Amazon Elastic Beanstalk resources. IAM is an
Amazon service that you can use with no additional charge.

For details on working with IAM, see Using Elastic Beanstalk with Amazon Identity and Access
Management.

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Amazon managed policies for Amazon Elastic Beanstalk

Internetwork privacy 1566

https://docs.amazonaws.cn/ebs/latest/userguide/encryption-by-default.html
https://docs.amazonaws.cn/ebs/latest/userguide/encryption-by-default.html
https://amazonaws-china.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://amazonaws-china.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Security.html
https://amazonaws-china.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://amazonaws-china.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon Elastic Beanstalk Developer Guide

An Amazon managed policy is a standalone policy that is created and administered by Amazon.
Amazon managed policies are designed to provide permissions for many common use cases so that
you can start assigning permissions to users, groups, and roles.

Keep in mind that Amazon managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all Amazon customers to use. We recommend that
you reduce permissions further by defining customer managed policies that are specific to your
use cases.

You cannot change the permissions defined in Amazon managed policies. If Amazon updates
the permissions defined in an Amazon managed policy, the update affects all principal identities
(users, groups, and roles) that the policy is attached to. Amazon is most likely to update an Amazon
managed policy when a new Amazon Web Services service is launched or new API operations
become available for existing services.

For more information, see Amazon managed policies in the IAM User Guide.

Elastic Beanstalk updates to Amazon managed policies

View details about updates to Amazon managed policies for Elastic Beanstalk since March 1, 2021.

To see the JSON source for a specific managed policy, see the Amazon Managed Policy Reference
Guide.

Change Description Date

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to
perform managed updates
when Tag propagation to
launch templates is enabled.

For more information, see
Managed service role policies.

February 27, 2025

AdministratorAccess-
AWSElasticBeanstalk –
Updated existing policy

This policy was updated
to replace the StringLike
operator with the ArnLike

December 11, 2024

Amazon managed policies 1567

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/about-managed-policy-reference.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/about-managed-policy-reference.html

Amazon Elastic Beanstalk Developer Guide

Change Description Date

operator to evaluate the ARN-
type keys in the condition
block iam:PolicyArn .
This provides more secure
enforcement.

For more information, see
Managing Elastic Beanstalk
user policies.

The following polices were
updated:

• AWSElasticBeanstal
kInternalMaintenan
ceRolePolicy

• AWSElasticBeanstal
kMaintenance

• AWSElasticBeanstal
kManagedUpdatesInt
ernalServiceRolePolicy

• AWSElasticBeanstal
kManagedUpdatesSer
viceRolePolicy

• AWSElasticBeanstal
kRoleCore

These policies were updated
to allow Elastic Beanstalk to
add or remove tags when it
creates or updates an Amazon
CloudFormation stack or
change set.

For more information about
AWSElasticBeanstal
kManagedUpdatesSer
viceRolePolicy , see
Service-linked role permissio
ns for Elastic Beanstalk.

For more information about
AWSElasticBeanstal
kRoleCore , see Policies
for integration with other
services.

April 30, 2024

Amazon managed policies 1568

Amazon Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstalkService
–Updated existing policy

This policy was updated to
allow Elastic Beanstalk to tag
resources upon creation for
Elastic Load Balancing, Auto
Scaling groups (ASG), and
Amazon ECS.

Note

This policy has been
previously supersede
d by AWSElasti
cBeanstal
kManagedU
pdatesCus
tomerRole
Policy . Although
this policy is no
longer available for
attachment to new
IAM users, groups,
or roles, it may still
be attached to prior
existing ones.

For more information, see
Managed service role policies.

May 10, 2023

Amazon managed policies 1569

Amazon Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstal
kMulticontainerDocker –
Updated existing policy

This policy was updated to
allow Elastic Beanstalk to tag
resources upon creation for
Amazon ECS.

For more information, see
Managing Elastic Beanstalk
instance profiles.

March 23, 2023

AWSElasticBeanstalkRoleECS
–Updated existing policy

This policy was updated to
allow Elastic Beanstalk to tag
resources upon creation for
Amazon ECS.

For more information, see
Policies for integration with
other services.

March 23, 2023

AdministratorAccess-
AWSElasticBeanstalk –
Updated existing policy

This policy was updated to
allow Elastic Beanstalk to tag
resources upon creation for
Amazon ECS.

For more information, see
Managing Elastic Beanstalk
user policies.

March 23, 2023

AWSElasticBeanstal
kManagedUpdatesSer
viceRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to add
tags to Amazon ECS resources
when it creates them.

For more information, see
Service-linked role permissio
ns for Elastic Beanstalk.

March 23, 2023

Amazon managed policies 1570

Amazon Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to add
tags to Amazon ECS resources
when it creates them.

For more information, see
Managed service role policies.

March 23, 2023

AWSElasticBeanstal
kManagedUpdatesSer
viceRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to add
tags to Auto Scaling groups
when it creates them.

For more information, see The
managed-updates service-l
inked role.

January 27, 2023

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to
add tags on create of an Auto
Scaling group (ASG).

For more information, see
Managed service role policies.

January 23, 2023

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to add
tags on create of an elastic
load balancer (ELB).

For more information, see
Managed service role policies.

December 21, 2022

Amazon managed policies 1571

Amazon Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstal
kManagedUpdatesSer
viceRolePolicy –Updated
existing policy

Permissions were added to
this policy to allow Elastic
Beanstalk to do the following
during managed updates:

• Create and delete launch
templates and template
versions.

• Launch Amazon EC2
instances with launch
templates.

• If an Amazon RDS is
present, retrieve a list of
the available DB engines
and information about
provisioned RDS instances.

For more information, see The
managed-updates service-l
inked role.

August 23, 2022

Amazon managed policies 1572

Amazon Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstal
kReadOnlyAccess –
Deprecated

GovCloud (US) Amazon Web
Services Region

This policy has been replaced
by AWSElasticBeanstal
kReadOnly .

This policy will be phased out
in the GovCloud (US) Amazon
Web Services Region.

When this policy is phased
out, it will no longer be
available for attachment to
new IAM users, groups, or
roles after June 17, 2021.

For more information, see
User policies.

June 17, 2021

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy –Updated
existing policy

This policy was updated
to allow Elastic Beanstalk
to read attributes for EC2
Availability Zones. It enables
Elastic Beanstalk to provide
more effective validation of
your instance type selection
across Availability Zones.

For more information, see
Managed service role policies.

June 16, 2021

Amazon managed policies 1573

Amazon Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstal
kFullAccess – Deprecated

GovCloud (US) Amazon Web
Services Region

This policy has been replaced
by AdministratorAcces
s-AWSElasticBeanst
alk .

This policy will be phased out
in the GovCloud (US) Amazon
Web Services Region.

When this policy is phased
out, it will no longer be
available for attachment to
new IAM users, groups, or
roles after June 10, 2021.

For more information, see
User policies.

June 10, 2021

Amazon managed policies 1574

Amazon Elastic Beanstalk Developer Guide

Change Description Date

The following managed
policies were deprecated in
all of the China Amazon Web
Services Regions:

• AWSElasticBeanstal
kFullAccess

• AWSElasticBeanstal
kReadOnlyAccess

The AWSElasticBeanstal
kFullAccess policy has
been replaced by Administr
atorAccess-AWSElas
ticBeanstalk .

The AWSElasticBeanstal
kReadOnlyAccess
policy has been replaced by
AWSElasticBeanstal
kReadOnly .

These policies were phased
out in all of the China
Amazon Web Services
Regions.

These policies will no longer
be available for attachment
to new IAM users, groups, or
roles after June 3, 2021.

For more information, see
User policies.

June 3, 2021

Amazon managed policies 1575

Amazon Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstalkService
– Deprecated

This policy has been
superseded by AWSElasti
cBeanstalkManagedU
pdatesCustomerRole
Policy .

This policy is phased out and
is no longer available for
attachment to new IAM users,
groups, or roles.

For more information, see
Managed service role policies.

June 2021 - January 2022

Amazon managed policies 1576

Amazon Elastic Beanstalk Developer Guide

Change Description Date

The following managed
policies were deprecated in
all Amazon Web Services
Regions, except for China and
GovCloud (US):

• AWSElasticBeanstal
kFullAccess

• AWSElasticBeanstal
kReadOnlyAccess

The AWSElasticBeanstal
kFullAccess policy has
been replaced by Administr
atorAccess-AWSElas
ticBeanstalk .

The AWSElasticBeanstal
kReadOnlyAccess
policy has been replaced by
AWSElasticBeanstal
kReadOnly .

These policies were phased
out in all the Amazon Web
Services Regions, except for
China and GovCloud (US).

These policies will no longer
be available for attachment
to new IAM users, groups, or
roles after April 16, 2021.

For more information, see
User policies.

April 16, 2021

Amazon managed policies 1577

Amazon Elastic Beanstalk Developer Guide

Change Description Date

The following managed
policies were updated:

• AdministratorAccess-
AWSElasticBeanstalk

• AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy

Both of these policies now
support PassRole permissio
ns in China Amazon Web
Services Regions.

For more information about
AdministratorAccess-
AWSElasticBeanstalk ,
see User policies.

For more information about
AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy , see
Managed service role policies.

March 9, 2021

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy – New
policy

Elastic Beanstalk added a
new policy to replace the
AWSElasticBeanstal
kService managed policy.

This new managed policy
improves security for your
resources by applying a more
restrictive set of permissions.

For more information, see
Managed service role policies.

March 3, 2021

Elastic Beanstalk started
tracking changes

Elastic Beanstalk started
tracking changes for Amazon
managed policies.

March 1, 2021

Amazon managed policies 1578

Amazon Elastic Beanstalk Developer Guide

Logging and monitoring in Elastic Beanstalk

Amazon provides several tools for monitoring your Elastic Beanstalk resources and responding
to potential incidents. Monitoring is important for maintaining the reliability, availability, and
performance of Amazon Elastic Beanstalk and your Amazon solutions. You should collect
monitoring data from all of the parts of your Amazon solution so that you can more easily debug a
multipoint failure if one occurs.

For more information about monitoring, see Monitoring environments in Elastic Beanstalk.

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Enhanced health reporting

Enhanced health reporting is a feature that you can enable on your environment to allow Elastic
Beanstalk to gather additional information about resources in your environment. Elastic Beanstalk
analyzes the information to provide a better picture of overall environment health and help
identify issues that can cause your application to become unavailable. For more information, see
Enhanced health reporting and monitoring in Elastic Beanstalk.

Amazon EC2 instance logs

The Amazon EC2 instances in your Elastic Beanstalk environment generate logs that you can
view to troubleshoot issues with your application or configuration files. Logs created by the web
server, application server, Elastic Beanstalk platform scripts, and Amazon CloudFormation are
stored locally on individual instances. You can easily retrieve them by using the environment
management console or the EB CLI. You can also configure your environment to stream logs to
Amazon CloudWatch Logs in real time. For more information, see Viewing logs from Amazon EC2
instances in your Elastic Beanstalk environment.

Environment notifications

You can configure your Elastic Beanstalk environment to use Amazon Simple Notification Service
(Amazon SNS) to notify you of important events that affect your application. Specify an email
address during or after environment creation to receive emails from Amazon when an error
occurs, or when your environment's health changes. For more information, see Elastic Beanstalk
environment notifications with Amazon SNS.

Logging and monitoring 1579

Amazon Elastic Beanstalk Developer Guide

Amazon CloudWatch alarms

Using CloudWatch alarms, you watch a single metric over a time period that you specify. If the
metric exceeds a given threshold, a notification is sent to an Amazon SNS topic or Amazon Auto
Scaling policy. CloudWatch alarms don't invoke actions because they are in a particular state.
Instead, alarms invoke actions when the state changed and was maintained for a specified number
of periods. For more information, see Using Elastic Beanstalk with Amazon CloudWatch.

Amazon CloudTrail logs

CloudTrail provides a record of actions taken by a user, role, or an Amazon service in Elastic
Beanstalk. Using the information collected by CloudTrail, you can determine the request that
was made to Elastic Beanstalk, the IP address from which the request was made, who made the
request, when it was made, and additional details. For more information, see Logging Elastic
Beanstalk API calls with Amazon CloudTrail.

Amazon X-Ray debugging

X-Ray is an Amazon service that gathers data about the requests that your application serves,
and uses it to construct a service map that you can use to identify issues with your application
and opportunities for optimization. You can use the Amazon Elastic Beanstalk console or a
configuration file to run the X-Ray daemon on the instances in your environment. For more
information, see Configuring Amazon X-Ray debugging.

Compliance validation for Elastic Beanstalk

The security and compliance of Amazon Elastic Beanstalk is assessed by third-party auditors as part
of multiple Amazon compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.
Amazon provides a frequently updated list of Amazon services in scope of specific compliance
programs at Amazon Services in Scope by Compliance Program.

Third-party audit reports are available for you to download using Amazon Artifact. For more
information, see Downloading Reports in Amazon Artifact.

For more information about Amazon compliance programs, see Amazon Compliance Programs.

Your compliance responsibility when using Elastic Beanstalk is determined by the sensitivity of your
data, your organization’s compliance objectives, and applicable laws and regulations. If your use of

Amazon CloudWatch alarms 1580

http://www.amazonaws.cn/compliance/services-in-scope/
https://docs.amazonaws.cn/artifact/latest/ug/downloading-documents.html
http://www.amazonaws.cn/compliance/programs/

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk is subject to compliance with standards such as HIPAA, PCI, or FedRAMP, Amazon
provides resources to help:

• Security and Compliance Quick Start Guides – Deployment guides that discuss architectural
considerations and provide steps for deploying security-focused and compliance-focused
baseline environments on Amazon.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – A whitepaper that
describes how companies can use Amazon to create HIPAA-compliant applications.

• Amazon Compliance Resources – A collection of compliance workbooks and guides that might
apply to your industry and location.

• Amazon Config – A service that assesses how well your resource configurations comply with
internal practices, industry guidelines, and regulations.

• Amazon Security Hub – A comprehensive view of your security state within Amazon that helps
you check your compliance with security industry standards and best practices.

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Resilience in Elastic Beanstalk

Amazon Elastic Beanstalk manages and automates the use of the Amazon global infrastructure
on your behalf. When using Elastic Beanstalk, you benefit from the availability and fault tolerance
mechanisms that Amazon offers.

The Amazon global infrastructure is built around Amazon Regions and Availability Zones.

Amazon Regions provide multiple physically separated and isolated Availability Zones, which are
connected with low-latency, high-throughput, and highly redundant networking.

With Availability Zones, you can design and operate applications and databases that automatically
fail over between Availability Zones without interruption. Availability Zones are more highly
available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about Amazon Regions and Availability Zones, see Amazon Global
Infrastructure.

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Resilience 1581

http://www.amazonaws.cn/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.amazonaws.cn/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
http://www.amazonaws.cn/compliance/resources/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html
https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html
http://www.amazonaws.cn/about-aws/global-infrastructure/
http://www.amazonaws.cn/about-aws/global-infrastructure/

Amazon Elastic Beanstalk Developer Guide

Infrastructure security in Elastic Beanstalk

As a managed service, Amazon Elastic Beanstalk is protected by the Amazon global network
security procedures that are described in our Best Practices for Security, Identity, and Compliance
website.

You use Amazon published API calls to access Elastic Beanstalk through the network. Clients must
support Transport Layer Security (TLS) 1.2 or later. Clients must also support cipher suites with
perfect forward secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral
Diffie-Hellman (ECDHE). Most modern platforms support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Configuration and vulnerability analysis in Elastic Beanstalk

Amazon and our customers share responsibility for achieving a high level of software component
security and compliance. Amazon Elastic Beanstalk helps you perform your side of the shared
responsibility model by providing a managed updates feature. This feature automatically applies
patch and minor updates for an Elastic Beanstalk supported platform version.

For more information, see Shared responsibility model for Elastic Beanstalk platform maintenance.

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Security best practices for Elastic Beanstalk

Amazon Elastic Beanstalk provides several security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don’t
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations, not prescriptions.

For other Elastic Beanstalk security topics, see Amazon Elastic Beanstalk security.

Preventive security best practices

Preventive security controls attempt to prevent incidents before they occur.

Infrastructure security 1582

https://aws.amazon.com/architecture/security-identity-compliance
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html

Amazon Elastic Beanstalk Developer Guide

Implement least privilege access

Elastic Beanstalk provides Amazon Identity and Access Management (IAM) managed policies for
instance profiles, service roles, and IAM users. These managed policies specify all permissions that
might be necessary for the correct operation of your environment and application.

Your application might not require all the permissions in our managed policies. You can customize
them and grant only the permissions that are required for your environment's instances, the
Elastic Beanstalk service, and your users to perform their tasks. This is particularly relevant to user
policies, where different user roles might have different permission needs. Implementing least
privilege access is fundamental in reducing security risk and the impact that could result from
errors or malicious intent.

Protect sensitive application data

When your application needs to access sensitive information like credentials, API keys, or
configuration data, follow these practices to maintain security:

• Retrieve sensitive data directly from Amazon Secrets Manager or Amazon Systems Manager
Parameter Store using their respective SDKs or APIs in your application code. This provides the
most secure and flexible way to access sensitive information.

• If you pass sensitive data from Amazon Secrets Manager or Amazon Systems Manager Parameter
Store as environment variables (see Fetch secrets to environment variables), carefully restrict
access to EC2 key pairs and configure appropriate IAM roles with least-privilege permissions for
your instances.

• Never print, log, or expose sensitive data in your application code, as these values could end up
in log files or error messages that might be visible to unauthorized users.

Update your platforms regularly

Elastic Beanstalk regularly releases new platform versions to update all of its platforms. New
platform versions provide operating system, runtime, application server, and web server updates,
and updates to Elastic Beanstalk components. Many of these platform updates include important
security fixes. Ensure that your Elastic Beanstalk environments are running on a supported
platform version (typically the latest version for your platform). For details, see Updating your
Elastic Beanstalk environment's platform version.

Preventive security best practices 1583

Amazon Elastic Beanstalk Developer Guide

The easiest way to keep your environment's platform up to date is to configure the environment to
use managed platform updates.

Enforce IMDSv2 on environment instances

Amazon Elastic Compute Cloud (Amazon EC2) instances in your Elastic Beanstalk environments
use the instance metadata service (IMDS), an on-instance component, to securely access instance
metadata. IMDS supports two methods for accessing data: IMDSv1 and IMDSv2. IMDSv2 uses
session-oriented requests and mitigates several types of vulnerabilities that could be used to try to
access the IMDS. For details about the advantages of IMDSv2, see enhancements to add defense in
depth to the EC2 Instance Metadata Service.

IMDSv2 is more secure, so it's a good idea to enforce the use of IMDSv2 on your instances. To
enforce IMDSv2, ensure that all components of your application support IMDSv2, and then disable
IMDSv1. For more information, see the section called “IMDS”.

Detective security best practices

Detective security controls identify security violations after they have occurred. They can help you
detect a potential security threat or incident.

Implement monitoring

Monitoring is an important part of maintaining the reliability, security, availability, and
performance of your Elastic Beanstalk solutions. Amazon provides several tools and services to
help you monitor your Amazon services.

The following are some examples of items to monitor:

• Amazon CloudWatch metrics for Elastic Beanstalk – Set alarms for key Elastic Beanstalk metrics
and for your application's custom metrics. For details, see Using Elastic Beanstalk with Amazon
CloudWatch.

• Amazon CloudTrail entries – Track actions that might impact availability, like
UpdateEnvironment or TerminateEnvironment. For details, see Logging Elastic Beanstalk
API calls with Amazon CloudTrail.

Detective security best practices 1584

https://amazonaws-china.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://amazonaws-china.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/

Amazon Elastic Beanstalk Developer Guide

Enable Amazon Config

Amazon Config provides a detailed view of the configuration of Amazon resources in your account.
You can see how resources are related, get a history of configuration changes, and see how
relationships and configurations change over time.

You can use Amazon Config to define rules that evaluate resource configurations for data
compliance. Amazon Config rules represent the ideal configuration settings for your Elastic
Beanstalk resources. If a resource violates a rule and is flagged as noncompliant, Amazon Config
can alert you using an Amazon Simple Notification Service (Amazon SNS) topic. For details, see
Finding and tracking Elastic Beanstalk resources with Amazon Config.

Detective security best practices 1585

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk Service roles, instance profiles, and
user policies

Roles are an entities that you create with Amazon Identity and Access Management (IAM) to apply
permissions. There are required roles for your Elastic Beanstalk environment to function properly.
You also have the option to create your own custom policies and roles that you can assign to users
or groups.

Required roles for your Elastic Beanstalk environment

When you create an environment, Amazon Elastic Beanstalk prompts you to provide the following
Amazon Identity and Access Management (IAM) roles:

• Service role: Elastic Beanstalk assumes a service role to use other Amazon Web Services services
on your behalf.

• Instance profile Elastic Beanstalk applies an instance profile to the Amazon EC2 instances in your
environment. This action allows them to perform required tasks, such as retrieving information
from Amazon Simple Storage Service (Amazon S3) and uploading logs to S3.

Create the service role and EC2 instance profile role

If your Amazon account doesn’t have an EC2 instance profile or a service role, you must create one
of each using the IAM service. You can then assign the EC2 instance profile and service role to new
environments that you create. The Create environment wizard guides you to the IAM service, so
that you can create these roles with the required permissions.

Optional polices and roles to manage your Elastic Beanstalk
environment

You can optionally create user policies and apply them to IAM users and groups in your account.
Doing so allows the users to create and manage Elastic Beanstalk applications and environments.
You can also assign Elastic Beanstalk managed policies for full access and read-only access to users
or groups. For more information about these policies, see the section called “User policies”.

You can create your own instance profiles and user policies for advanced scenarios. If your
instances need to access services that aren't included in the default policies, you can create a new

Required roles 1586

Amazon Elastic Beanstalk Developer Guide

policy or add additional policies to the default one. If the managed policy is too permissive for
your needs, you can also create more restrictive user policies. For more information about Amazon
permissions, see the IAM User Guide.

Elastic Beanstalk service role

A service role is the IAM role that Elastic Beanstalk assumes when calling other services on your
behalf. For example, Elastic Beanstalk uses a service role when it calls Amazon Elastic Compute
Cloud (Amazon EC2), Elastic Load Balancing, and Amazon EC2 Auto Scaling APIs to gather
information. The service role that Elastic Beanstalk uses is the one that you specified when you
create the Elastic Beanstalk environment.

There are two managed policies that are attached to the service role. These policies provide the
permissions that allow Elastic Beanstalk to access the required Amazon resources to create and
manage your environments. One managed policy provides permissions for enhanced health
monitoring and worker tier Amazon SQS support, and another one provides additional permissions
required for managed platform updates.

AWSElasticBeanstalkEnhancedHealth

This policy grants permissions for Elastic Beanstalk to monitor instance and environment
health. It also includes Amazon SQS actions to allow Elastic Beanstalk to monitor queue
activity for worker environments. To view the content of this managed policy, see the
AWSElasticBeanstalkEnhancedHealth page in the Amazon Managed Policy Reference Guide.

AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

This policy grants permissions for Elastic Beanstalk to update environments on your behalf
to perform managed platform updates. To view the content of this managed policy, see the
AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy page in the Amazon Managed Policy
Reference Guide.

Service-level permission groupings

This policy is grouped into statements based on the set of permissions provided.

• ElasticBeanstalkPermissions – This group of permissions is for calling the Elastic
Beanstalk service actions (Elastic Beanstalk APIs).

Service role 1587

https://docs.amazonaws.cn/IAM/latest/UserGuide/
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkEnhancedHealth.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkEnhancedHealth.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy.html

Amazon Elastic Beanstalk Developer Guide

• AllowPassRoleToElasticBeanstalkAndDownstreamServices – This group of permissions
allows any role to be passed to Elastic Beanstalk and to other downstream services like Amazon
CloudFormation.

• ReadOnlyPermissions – This group of permissions is for collecting information about the
running environment.

• *OperationPermissions – Groups with this naming pattern are for calling the necessary
operations to perform platform updates.

• *BroadOperationPermissions – Groups with this naming pattern are for calling the
necessary operations to perform platform updates. They also include broad permissions for
supporting legacy environments.

• *TagResource – Groups with this naming pattern are for calls that use the tag-on-create APIs
to attach tags on resources that are being created in an Elastic Beanstalk environment.

You may create an Elastic Beanstalk environment with any of the following approaches. Each
section describes how the approach handles the service role.

Elastic Beanstalk console

If you create an environment using the Elastic Beanstalk console, Elastic Beanstalk prompts you
to create a service role that's named aws-elasticbeanstalk-service-role. When created
via Elastic Beanstalk, this role includes a trust policy that allows Elastic Beanstalk to assume the
service role. The two managed policies described earlier in this topic are also attached to the role.

Elastic Beanstalk Command Line Interface (EB CLI)

You may create an environment using the the section called “eb create” command of the
Elastic Beanstalk Command Line Interface (EB CLI). If you don't specify a service role through
the --service-role option. Elastic Beanstalk creates the same default service role aws-
elasticbeanstalk-service-role. If the default service role already exists, Elastic Beanstalk
uses it for the new environment. When created via Elastic Beanstalk, this role includes a trust policy
that allows Elastic Beanstalk to assume the service role. The two managed policies described earlier
in this topic are also attached to the role.

Elastic Beanstalk API

You may create an environment using the CreateEnvironment action of the Elastic Beanstalk
API. If you don't specify a service role, Elastic Beanstalk creates a monitoring service-linked role.

AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy 1588

Amazon Elastic Beanstalk Developer Guide

This is a unique type of service role that is predefined by Elastic Beanstalk to include all the
permissions that the service requires to call other Amazon Web Services services on your behalf.
The service-linked role is associated with your account. Elastic Beanstalk creates it once, and then
reuses it when creating additional environments. You can also use IAM to create the monitoring
service-linked role for your account in advance. When your account has a monitoring service-
linked role, you can use it to create an environment using either the Elastic Beanstalk console, the
Elastic Beanstalk API, or the EB CLI. For instructions on how to use service-linked roles with Elastic
Beanstalk environments, see Using service-linked roles for Elastic Beanstalk.

For more information about service roles, see Managing Elastic Beanstalk service roles.

Elastic Beanstalk instance profile

An instance profile is an IAM role that's applied to Amazon EC2 instances that are launched in your
Elastic Beanstalk environment. When creating an Elastic Beanstalk environment, you specify the
instance profile that's used when your EC2 instances take the following actions:

• Retrieve application versions from Amazon Simple Storage Service (Amazon S3)

• Write logs to Amazon S3

• In Amazon X-Ray integrated environments, upload debugging data to X-Ray

• In Amazon ECS managed Docker environments, coordinate container deployments with Amazon
Elastic Container Service (Amazon ECS)

• In worker environments, read from an Amazon Simple Queue Service (Amazon SQS) queue

• In worker environments, perform leader election with Amazon DynamoDB

• In worker environments, publish instance health metrics to Amazon CloudWatch

Managed policies

Elastic Beanstalk provides a set of managed policies that allow the EC2 instances in your
environment to perform required operations. The managed policies required for basic use cases are
the following.

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

Instance profile 1589

Amazon Elastic Beanstalk Developer Guide

If your web application requires access to other additional Amazon Web Services services, add
statements or managed policies to the instance profile that allow access to those services. For more
information, see Adding permissions to the default instance profile.

Creating an EC2 instance profile

If your Amazon account doesn’t have an EC2 instance profile, you must create one using the IAM
service. You can then assign the EC2 instance profile to new environments that you create. The
Create environment steps in the Elastic Beanstalk console provides you access to the IAM console,
so that you can create an EC2 instance profile with the required permissions.

You can also create an EC2 instance profile by directly accessing the IAM console, without going
through the Elastic Beanstalk console. For detailed steps to create an Elastic Beanstalk EC2
instance profile in the IAM console, see Creating an instance profile.

Elastic Beanstalk user policy

Create IAM users for each user who uses Elastic Beanstalk to avoid using your root account or
sharing credentials. As a security best practice, only grant these users permissions to access services
and features that they need.

Elastic Beanstalk requires permissions not only for its own API actions, but also for several other
Amazon services. Elastic Beanstalk uses user permissions to launch resources in an environment.
These resources include EC2 instances, an Elastic Load Balancing load balancer, and an Auto Scaling
group. Elastic Beanstalk also uses user permissions to save logs and templates to Amazon Simple
Storage Service (Amazon S3), send notifications to Amazon SNS, assign instance profiles, and
publish metrics to CloudWatch. Elastic Beanstalk requires Amazon CloudFormation permissions to
orchestrate resource deployments and updates. It also requires Amazon RDS permissions to create
databases when needed, and Amazon SQS permissions to create queues for worker environments.

For more information about user policies, see Managing Elastic Beanstalk user policies.

Creating an EC2 instance profile 1590

Amazon Elastic Beanstalk Developer Guide

Tutorials and samples

Language and framework specific tutorials are spread throughout the Amazon Elastic Beanstalk
Developer Guide. New and updated tutorials are added to this list as they are published. The most
recent updates are shown first.

These tutorials are targeted at intermediate users and may not contain instructions for basic
steps such as signing up for Amazon. If this is your first time using Amazon or Elastic Beanstalk,
check out the Getting Started walkthrough to get your first Elastic Beanstalk environment up and
running.

• Ruby on Rails - Deploying a rails application to Elastic Beanstalk

• Ruby and Sinatra - Deploying a sinatra application to Elastic Beanstalk

• PHP and MySQL HA Configuration - Deploying a high-availability PHP application with an
external Amazon RDS database to Elastic Beanstalk

• PHP and Laravel - Deploying a Laravel application to Elastic Beanstalk

• PHP and CakePHP - Deploying a CakePHP application to Elastic Beanstalk

• PHP and Drupal HA Configuration - Deploying a high-availability Drupal website with an
external Amazon RDS database to Elastic Beanstalk

• PHP and WordPress HA Configuration - Deploying a high-availability WordPress website with
an external Amazon RDS database to Elastic Beanstalk

• Node.js with DynamoDB HA Configuration - Deploying a Node.js application with DynamoDB to
Elastic Beanstalk

• ASP.NET Core - QuickStart: Deploy an ASP.NET application to Elastic Beanstalk

• Python and Flask - Deploying a Flask application to Elastic Beanstalk

• Python and Django - Deploying a Django application to Elastic Beanstalk

• Node.js and Express - Deploying a Node.js Express application to Elastic Beanstalk

• Docker, PHP and nginx - Creating an ECS managed Docker environment with the Elastic
Beanstalk console

You can download the sample applications used by Elastic Beanstalk when you create an
environment without providing a source bundle with the following links:

• Docker – docker_cn.zip

1591

samples/docker_cn.zip

Amazon Elastic Beanstalk Developer Guide

• Multicontainer Docker – docker-multicontainer-v2.zip

• Preconfigured Docker (Glassfish) – docker-glassfish-v1.zip

• Go – go.zip

• Corretto – corretto.zip

• Tomcat – tomcat.zip

• .NET Core on Linux – dotnet-core-linux.zip

• .NET Core – dotnet-asp-windows.zip

• Node.js – nodejs.zip

• PHP – php.zip

• Python – python.zip

• Ruby – ruby.zip

More involved sample applications that show the use of additional web frameworks, libraries and
tools are available as open source projects on GitHub:

• Load-balanced WordPress (tutorial) – Configuration files for installing WordPress securely and
running it in a load-balanced Elastic Beanstalk environment.

• Load-balanced Drupal (tutorial) – Configuration files and instructions for installing Drupal
securely and running it in a load-balanced Elastic Beanstalk environment.

• Scorekeep - RESTful web API that uses the Spring framework and the Amazon SDK for Java to
provide an interface for creating and managing users, sessions, and games. The API is bundled
with an Angular 1.5 web app that consumes the API over HTTP. Includes branches that show
integration with Amazon Cognito, Amazon X-Ray, and Amazon Relational Database Service.

The application uses features of the Java SE platform to download dependencies and build
on-instance, minimizing the size of the souce bundle. The application also includes nginx
configuration files that override the default configuration to serve the frontend web app
statically on port 80 through the proxy, and route requests to paths under /api to the API
running on localhost:5000.

• Does it Have Snakes? - Tomcat application that shows the use of RDS in a Java EE web
application in Elastic Beanstalk. The project shows the use of Servlets, JSPs, Simple Tag Support,
Tag Files, JDBC, SQL, Log4J, Bootstrap, Jackson, and Elastic Beanstalk configuration files.

• Locust Load Generator - This project shows the use of Java SE platform features to install and
run Locust, a load generating tool written in Python. The project includes configuration files that

1592

samples/docker-multicontainer-v2.zip
samples/docker-glassfish-v1.zip
samples/go.zip
samples/corretto.zip
samples/tomcat.zip
samples/dotnet-core-linux.zip
samples/dotnet-asp-windows.zip
samples/nodejs.zip
samples/php.zip
samples/python.zip
samples/ruby.zip
https://github.com/awslabs/eb-php-wordpress
https://github.com/awslabs/eb-php-drupal
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-locustio-sample
http://locust.io/

Amazon Elastic Beanstalk Developer Guide

install and configure Locust, a build script that configures a DynamoDB table, and a Procfile that
runs Locust.

• Share Your Thoughts (tutorial) - PHP application that shows the use of MySQL on Amazon RDS,
Composer, and configuration files.

• A New Startup (tutorial) - Node.js sample application that shows the use of DynamoDB, the
Amazon SDK for JavaScript in Node.js, npm package management, and configuration files.

1593

https://github.com/awslabs/eb-demo-php-simple-app
https://github.com/awslabs/eb-node-express-sample

Amazon Elastic Beanstalk Developer Guide

Migrating IIS applications to Elastic Beanstalk

Amazon Elastic Beanstalk provides a streamlined migration path for your Windows applications
running on Internet Information Services (IIS). The migration capability described in this chapter
significantly reduces the time and complexity that’s typically associated with cloud migrations,
helping you to maintain application functionality and configuration integrity during the transition
to Amazon.

The eb migrate operation

Use the eb migrate command in the Elastic Beanstalk Command Line Interface (EB CLI), to
automatically discover, package, and deploy your IIS applications to the Amazon Web Services
Cloud. The process maintains application functionality and preserves your configurations, including
bindings, application pools, and authentication settings.

The following steps summarize the process that the eb migrate operation performs to transition
your application to the Amazon Web Services Cloud:

1. Discover IIS sites and their configurations.

2. Package application content and configuration.

3. Create Elastic Beanstalk environment and application.

4. Deploy the application with preserved settings.

Workflow and location execution options

The eb migrate command provides options for flexible migration workflows and execution
locations. By default, run the command on the target server that contains the application you want
to migrate to Elastic Beanstalk. If you can't run commands directly on the application server, use
the remote option to run the command from a bastion host that connects to the target server
containing your application and configurations. To complete the migration in two steps, you can
also generate the migration package without deploying it using the archive-only option and
then deploy it later at your convenience using the archive option.

For reference information about the eb migrate command, see the section called “eb migrate”.

Topics

1594

Amazon Elastic Beanstalk Developer Guide

The following topics provide detailed information about migrating IIS applications to Elastic
Beanstalk:

• the section called “Prerequisites” - Understand the required software, access, and permissions to
migrate your Windows applications to Amazon Elastic Beanstalk environments.

• the section called “Migration glossary” - Understand how IIS components map to Elastic
Beanstalk resources

• the section called “IIS to Elastic Beanstalk migration mapping” - Understand how IIS components
map to Elastic Beanstalk resources

• the section called “Basic IIS migrations” - Learn how to perform basic migrations

• the section called “Advanced migration scenarios” - Handle complex migration scenarios

• the section called “Security configuration” - Configure security settings during migration

• the section called “Network configuration” - Manage network and port configurations

• the section called “Troubleshooting and diagnostics” - Troubleshoot common migration issues

• the section called “Migration options: EB CLI vs. MGN” - Compare two primary migration options.

Prerequisites

Before using the eb migrate command, ensure your environment meets these requirements:

IIS installation and version

The server that you're migrating from must run Internet Information Services (IIS) version 7.0 or
later. IIS 10.0 on Windows Server 2016 or later provides the most compatible environment for
migration.

To verify your IIS version run the following command:

PS C:\migrations_workspace> Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\InetStp\"
...
SetupString : IIS 10.0
VersionString : Version 10.0
...

Windows Server requirements

Your source environment should run Windows Server 2016 or later for optimal compatibility.
Elastic Beanstalk supports these Windows Server versions as target platforms:

Prerequisites 1595

Amazon Elastic Beanstalk Developer Guide

• Windows Server 2025

• Windows Server 2022

• Windows Server 2019

• Windows Server 2016

EB CLI installation

• Default workflow (without the --remote option):

• Python and the Elastic Beanstalk Command Line Interface (EB CLI) must be installed on the
server that contains the application that you want to migrate to Elastic Beanstalk. While
it is not required, we recommend installing the EB CLI inside a virtualenv sandbox as
described in the section called “Install in virtualenv”.

• Using the --remote option:

• Python and the Elastic Beanstalk Command Line Interface (EB CLI) must be installed on
your bastion host. While it is not required, we recommend installing the EB CLI inside a
virtualenv sandbox as described in the section called “Install in virtualenv”.

Required permissions

You need the following credentials and permissions:

• Administrator privileges on the source IIS server or on the bastion host (if using the --
remote option).

• Amazon credentials with permissions to create and manage Elastic Beanstalk resources

Web Deploy 3.6

Microsoft Web Deploy tool (version 3.6 or later) must be installed on your source server or on
the bastion host (if using the --remote option). This tool is used by eb migrate to package
your applications.

To verify the installation run the following command:

:

PS C:\migrations_workspace> Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\IIS
 Extensions\MSDeploy\3" -Name InstallPath

InstallPath : C:\Program Files\IIS\Microsoft Web Deploy V3\
...

Prerequisites 1596

Amazon Elastic Beanstalk Developer Guide

For installation instructions, see Installing and Configuring Web Deploy on IIS 8.0 or Later on
the Microsoft Windows product documentation website.

Network requirements

• Default workflow (without the --remote option):

• Your source server must have outbound internet access to Amazon services.

• Using the --remote option:

• Your source server must have outbound internet access to Amazon services.

• Configure the proper security group ingress rules that allow for an outgoing network
connection from your bastion host and an incoming connection into the remote machine.
Ensure the IP of the bastion host is allow-listed via TCP on port 22 to access the remote
machine.

• Ensure your SSH client is installed and running on your remote machine as well as your
bastion host.

• Ensure that your firewall configuration contains the appropriate rules that open up port 22
or allow connection to the client.

• Test your connection by manually SSH-ing into the remote host from the bastion host
before attempting migration.

Migration glossary

This glossary provides definitions for key terms and concepts related to IIS, Elastic Beanstalk, and
the migration of IIS applications to Elastic Beanstalk.

Windows, IIS, and .NET terms

IIS

Internet Information Services, a web server software developed by Microsoft for use with
Windows Server. IIS hosts websites, web applications, and web services, providing a platform
for running ASP.NET and other web technologies. During migration to Elastic Beanstalk, IIS
sites and their configurations are packaged and deployed to Windows Server instances in the
Amazon Cloud.

IIS versions 7.0 and later are supported for migration, with IIS 10.0 on Windows Server 2016 or
later providing the most compatible environment.

Migration glossary 1597

https://learn.microsoft.com/en-us/iis/install/installing-publishing-technologies/installing-and-configuring-web-deploy-on-iis-80-or-later

Amazon Elastic Beanstalk Developer Guide

.NET Framework

A software development platform developed by Microsoft for building and running Windows
applications. It provides a large class library called Framework Class Library (FCL) and supports
language interoperability across several programming languages.

When migrating to Elastic Beanstalk, applications built on the .NET Framework continue to run
on the same version of the framework in the cloud environment. Elastic Beanstalk supports
multiple .NET Framework versions (4.x) on its Windows Server platforms.

.NET Core

A cross-platform, open-source successor to the .NET Framework, designed to be more modular
and lightweight. .NET Core (now simply called .NET 5 and later) enables developers to build
applications that run on Windows, Linux, and macOS.

When migrating applications built on .NET Core to Elastic Beanstalk, you can choose between
Windows Server platforms or Linux-based platforms, depending on your application's
requirements and dependencies.

Common Language Runtime (CLR)

The virtual machine component of the .NET Framework that manages the execution of .NET
programs. The CLR provides services such as memory management, type safety, exception
handling, garbage collection, and thread management.

When migrating to Elastic Beanstalk, the appropriate CLR version is automatically available
on the Windows Server platform you select, ensuring compatibility with your application's
requirements.

Site

A logical container in IIS that represents a web application or service, identified by a unique
binding of IP address, port, and host header. Each IIS site has its own application pool, bindings,
and configuration settings, and can contain one or more applications.

Application

A grouping of content and code files within an IIS site that handles requests for a specific URL
space. Applications in IIS can have their own configuration settings, which are typically stored in
web.config files.

Windows, IIS, and .NET terms 1598

Amazon Elastic Beanstalk Developer Guide

When migrating to Elastic Beanstalk, applications are preserved with their path structure and
configuration settings. The migration process ensures that nested applications maintain their
hierarchy and URL paths in the cloud environment.

ApplicationPool

An IIS feature that isolates web applications for better security, reliability, and performance
management. Application pools define the runtime environment for applications, including
the .NET Framework version, pipeline mode, and identity settings.

VirtualDirectory

A directory mapping in IIS that allows content to be served from a location outside the site's
root directory. Virtual directories enable you to organize content across different physical
locations while presenting a unified URL structure to users.

When migrating to Elastic Beanstalk, virtual directories are preserved with their path mappings.
The eb migrate command creates the necessary directory structure and configurations in the
cloud environment to maintain the same URL paths.

ARR

Application Request Routing, an IIS extension that provides load balancing and proxying
capabilities for web servers. ARR enables URL-based routing, HTTP request forwarding, and
load distribution across multiple servers.

During migration to Elastic Beanstalk, ARR configurations are preserved through the installation
of ARR features on EC2 instances and the configuration of appropriate routing rules. For
complex routing scenarios, the migration process may also leverage Application Load Balancer
rules to implement similar functionality.

URL Rewrite

An IIS module that modifies requested URLs based on defined rules before they reach the web
application. URL Rewrite enables URL manipulation, redirection, and content delivery based on
patterns and conditions.

When migrating to Elastic Beanstalk, URL rewrite rules from your web.config files are
translated into ALB routing rules where possible, or preserved in the IIS configuration on the
EC2 instances. This ensures that URL patterns and redirects continue to function as expected in
the cloud environment.

Windows, IIS, and .NET terms 1599

Amazon Elastic Beanstalk Developer Guide

msdeploy.exe

A command-line tool used for deploying web applications and websites to IIS servers. Also
known as Web Deploy, it provides a way to package, synchronize, and deploy web applications,
websites, and server configurations.

The eb migrate command uses Web Deploy (version 3.6 or later) to package your applications
during migration to Elastic Beanstalk. This tool must be installed on your source server for the
migration process to work correctly.

Physical Path

The actual file system location where an IIS site or application's content files are stored. Physical
paths can point to local directories, network shares, or other storage locations accessible to the
IIS server.

During migration to Elastic Beanstalk, physical paths are mapped to appropriate locations on
the EC2 instances in your environment. The migration process preserves the content structure
while ensuring that all files are properly deployed to the cloud environment.

applicationHost.config

The root configuration file for IIS that defines server-wide settings and contains configuration
for all sites, applications, and virtual directories. This file is located in the %windir%
\System32\inetsrv\config directory and controls the overall behavior of the IIS server.

When migrating to Elastic Beanstalk, relevant settings from applicationHost.config are
extracted and applied to the IIS configuration on the EC2 instances in your environment. This
ensures that server-wide settings are preserved during migration.

web.config

An XML-based configuration file used in ASP.NET applications to control application settings,
security, and behavior at the application or directory level. web.config files can contain
settings for authentication, authorization, session state, compilation, and custom application
parameters.

During migration to Elastic Beanstalk, web.config files are preserved and deployed with your
application. The migration process ensures that application-specific configurations continue to
function as expected in the cloud environment.

Windows, IIS, and .NET terms 1600

Amazon Elastic Beanstalk Developer Guide

DefaultDocument

An IIS feature that specifies the default file to serve when a user requests a directory without
specifying a file name. Default documents are enabled by default, and IIS 7 defines the
following default document files in the applicationHost.config file as server-wide
defaults: Default.htm, Default.asp, Index.htm, Index.html, Iisstart.htm.

When migrating to Elastic Beanstalk, default document settings are preserved in the IIS
configuration on the EC2 instances, ensuring that directory requests are handled consistently in
the cloud environment.

system.webServer

A configuration section in web.config or applicationHost.config that contains IIS-
specific settings for modules, handlers, and other server behaviors. This section controls how IIS
processes requests, manages modules, and configures server features.

During migration to Elastic Beanstalk, system.webServer configurations are preserved in your
application's web.config files and applied to the IIS installation on the EC2 instances in your
environment. This ensures that IIS-specific behaviors are maintained in the cloud environment.

Elastic Beanstalk terms

Platform

A combination of operating system, programming language runtime, web server, application
server, and Elastic Beanstalk components that define the software stack for running
applications.

For Windows migrations, Elastic Beanstalk provides platforms based on Windows Server 2016,
2019, and 2022 with IIS and various .NET Framework versions to ensure compatibility with your
source environment.

SolutionStack

A predefined platform configuration in Elastic Beanstalk that specifies the operating system,
runtime, and other components needed to run an application. Conceptually identical to a
platform and used interchangeably to operate environments.

During migration, the eb migrate command selects an appropriate solution stack based on your
source environment's configuration, ensuring compatibility with your IIS applications.

Elastic Beanstalk terms 1601

Amazon Elastic Beanstalk Developer Guide

CreateEnvironment

An Elastic Beanstalk API action that creates a new environment to host an application version.
This API is used by the eb migrate command to provision the necessary Amazon resources for
your migrated application.

The migration process configures appropriate environment parameters based on your source IIS
environment, including instance type, environment variables, and option settings.

CreateApplicationVersion

An Elastic Beanstalk API action that creates a new application version from a source bundle
stored in Amazon S3. The eb migrate command uses this API to register your packaged IIS
application as a version in Elastic Beanstalk.

During migration, your application files and configuration are packaged, uploaded to Amazon
S3, and registered as an application version before deployment.

DescribeEvents

An Elastic Beanstalk API action that retrieves a list of events for an environment, including
deployments, configuration changes, and operational issues. The eb migrate command uses
this API to monitor the progress of your migration.

You can also use the eb events command after migration to view the history of events for your
environment.

DescribeEnvironmentHealth

An Elastic Beanstalk API action that provides detailed health information about the instances
and other components of an environment. This API is used to verify the health of your migrated
application after deployment.

After migration, you can use the eb health command to check the status of your environment
and identify any issues that need attention.

HealthD

A monitoring agent in Elastic Beanstalk that collects metrics, monitors logs, and reports health
status for EC2 instances in an environment. HealthD provides enhanced health reporting for
your migrated applications.

After migration, HealthD monitors your application's performance, resource utilization, and
request success rates, providing a comprehensive view of your environment's health.

Elastic Beanstalk terms 1602

Amazon Elastic Beanstalk Developer Guide

Bundle Logs

A feature in Elastic Beanstalk that compresses and uploads logs from EC2 instances to Amazon
S3 for centralized storage and analysis. This feature helps you troubleshoot issues with your
migrated applications.

After migration, you can use the eb logs command to retrieve and view logs from your
environment.

aws-windows-deployment-manifest.json

A file that describes the contents, dependencies, and configuration of a software package or
application. This manifest is generated during the migration process to define how your IIS
applications should be deployed on Elastic Beanstalk.

custom manifest section

A section within aws-windows-deployment-manifest.json that provides custom control
over application deployment. This section contains PowerShell scripts and commands that are
executed during the deployment process.

During migration, custom manifest sections are generated to handle specific aspects of your IIS
configuration, such as virtual directory setup, permission management, and application pool
configuration.

EB CLI

A command-line tool that provides commands for creating, configuring, and managing Elastic
Beanstalk applications and environments. The EB CLI includes the eb migrate command
specifically for migrating IIS applications to Elastic Beanstalk.

After migration, you can continue to use the EB CLI to manage your environment, deploy
updates, monitor health, and perform other administrative tasks.

Option settings

Configuration values that define how Elastic Beanstalk provisions and configures Amazon
resources in your environment. Option settings are organized into namespaces that represent
different components of your environment, such as load balancers, instances, and environment
processes.

During migration, the eb migrate command generates appropriate option settings based
on your IIS configuration to ensure that your cloud environment matches your source

Elastic Beanstalk terms 1603

Amazon Elastic Beanstalk Developer Guide

environment's capabilities. For more information, see Configuration options in the Elastic
Beanstalk Developer Guide.

aws:elbv2:listener:default

An Elastic Beanstalk configuration namespace for the default listener on an Application Load
Balancer. During migration, this namespace is configured based on your IIS site bindings to
ensure proper traffic routing.

The default listener typically handles HTTP traffic on port 80, which is then forwarded to your
application instances according to the routing rules.

aws:elbv2:listener:listener_port

An Elastic Beanstalk configuration namespace for a specific listener port on an Application
Load Balancer. This namespace is used to configure additional listeners for your migrated
applications, such as HTTPS on port 443.

During migration, listeners are created based on the port bindings of your IIS sites, ensuring
that your applications remain accessible on the same ports as in your source environment.

aws:elbv2:listenerrule:rule_name

An Elastic Beanstalk configuration namespace for defining routing rules for an Application Load
Balancer listener. These rules determine how incoming requests are routed to different target
groups based on path patterns or host headers.

During migration, listener rules are created to match the URL structure of your IIS applications,
ensuring that requests are routed to the correct application paths.

aws:elasticbeanstalk:environment:process:default

An Elastic Beanstalk configuration namespace for the default process in an environment. This
namespace defines how the default web application process is configured, including health
check settings, port mappings, and proxy settings.

During migration, the default process is configured based on your primary IIS site's settings,
ensuring proper health monitoring and request handling.

aws:elasticbeanstalk:environment:process:process_name

An Elastic Beanstalk configuration namespace for a specific named process in an environment.
This namespace allows you to define multiple processes with different configurations, similar to
having multiple application pools in IIS.

Elastic Beanstalk terms 1604

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-options-general.html

Amazon Elastic Beanstalk Developer Guide

During migration, additional processes may be created to represent different site bindings from
your source environment.

Note

For more information about some of the terms described in this topic see the following
resources:

• Elastic Beanstalk API actions - Amazon Elastic Beanstalk API Reference

• Elastic Beanstalk platforms, including supported platform versions - Supported
Platforms in the Amazon Elastic Beanstalk Platforms guide

• Elastic Beanstalk configuration namespaces - General options for all environments in this
guide

• The EB CLI or specific EB CLI commands - Setting up the EB command line interface (EB
CLI) to manage Elastic Beanstalk in this guide

Python terms

pip

The package installer for Python, used to install and manage software packages written in
Python. The EB CLI is installed and updated using pip.

During the migration process, pip is used to install the EB CLI package and its dependencies on
your source server, providing the tools needed for migration.

PyPI

Python Package Index, the official repository for third-party Python software packages, from
which pip retrieves and installs packages. The EB CLI and its dependencies are hosted on PyPI.

When installing the EB CLI for migration, pip connects to PyPI to download and install the
necessary packages.

virtualenv

A tool to create isolated Python environments, allowing different projects to have their own
dependencies and packages without conflicts. Using virtualenv is recommended when installing
the EB CLI to avoid conflicts with other Python applications.

Python terms 1605

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/platforms/platforms-supported.html

Amazon Elastic Beanstalk Developer Guide

Creating a virtual environment before installing the EB CLI ensures that the migration tools
have a clean, isolated environment with the correct dependencies.

pywin32

A set of Python extensions that provide access to many of the Windows APIs, enabling
interaction with the Windows operating system and its components. The EB CLI uses pywin32
to interact with Windows-specific features during migration.

During the migration process, pywin32 is used to access IIS configuration, Windows registry
settings, and other system information needed to properly package and migrate your
applications.

pythonnet

A package that enables Python code to interact with .NET Framework and .NET Core
applications. This integration allows the EB CLI to work with .NET components during the
migration process.

The migration process may use pythonnet to interact with .NET assemblies and components
when analyzing and packaging your applications for deployment to Elastic Beanstalk.

Performing basic IIS migrations

This section guides you through the process of migrating your IIS applications to Elastic Beanstalk
using the eb migrate command.

Exploring your IIS environment

Before making any changes, you'll want to understand what resources exist on your server. Start by
exploring your IIS sites by running eb migrate explore, as shown in the following example:

PS C:\migrations_workspace> eb migrate explore

This command reveals your IIS sites. Refer to the following listing:

Default Web Site
Intranet
API.Internal
Reports

Basic IIS migrations 1606

Amazon Elastic Beanstalk Developer Guide

For a detailed view of each site's configuration, including bindings, applications, and virtual
directories, add the --verbose option, as shown in this example:

PS C:\migrations_workspace> eb migrate explore --verbose

The following listing shows the comprehensive information about your environment the command
provides:

1: Default Web Site:
 - Bindings:
 - *:80:www.example.com
 - *:443:www.example.com
 - Application '/':
 - Application Pool: DefaultAppPool
 - Enabled Protocols: http
 - Virtual Directories:
 - /:
 - Physical Path: C:\inetpub\wwwroot
 - Logon Method: ClearText
 - Application '/api':
 - Application Pool: ApiPool
 - Enabled Protocols: http
 - Virtual Directories:
 - /:
 - Physical Path: C:\websites\api
 - Logon Method: ClearText
2: Intranet:
...
3. API.Internal:
...
4. Reports:
...

Understanding the discovery output

The verbose output provides the following critical information for migration planning:

Sites

The discovery output lists all IIS sites on your server. Each site is identified by its name (e.g.,
"Default Web Site", "Intranet", "API.Internal") and numbered sequentially. When multiple sites

Exploring your IIS environment 1607

Amazon Elastic Beanstalk Developer Guide

exist on a server, the eb migrate command can package and deploy each one separately or
together, depending on your migration strategy.

Bindings

Protocol bindings reveal which protocols (HTTP/HTTPS) your sites use and on which ports they
operate. The binding information includes host header requirements that define domain-based
routing configurations.

Applications

Application paths show both root and nested application structures within your IIS
configuration. Application pool assignments indicate how your applications are isolated from
each other for security and resource management.

Virtual directories

Physical path mappings indicate where your content resides on the file system. Authentication
settings show special access requirements that need to be maintained after migration.

Preparing for migration

With an understanding of your environment, ensure that your server meets the prerequisites. First,
verify your IIS version with the following PowerShell command:

PS C:\migrations_workspace> Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\InetStp\" -Name
 MajorVersion

You need IIS 7.0 or later. The migration tool uses Web Deploy 3.6 for packaging your applications.
Verify its installation with the following command:

PS C:\migrations_workspace> Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\IIS Extensions
\MSDeploy\3" -Name InstallPath

If Web Deploy isn't installed on your server, you can download it from the Microsoft Web Platform
Installer download page.

Your first migration

Let's start with a basic migration of the Default Web Site. The following example shows the
simplest command, eb migrate.

Preparing for migration 1608

https://www.iis.net/downloads/microsoft/web-deploy
https://www.iis.net/downloads/microsoft/web-deploy

Amazon Elastic Beanstalk Developer Guide

PS C:\migrations_workspace> eb migrate

This command initiates a series of automated steps, shown in the following example output:

Identifying VPC configuration of this EC2 instance (i-0123456789abcdef0)
 id: vpc-1234567890abcdef0
 publicip: true
 elbscheme: public
 ec2subnets: subnet-123,subnet-456,subnet-789
 securitygroups: sg-123,sg-456
 elbsubnets: subnet-123,subnet-456,subnet-789

Using .\migrations\latest to contain artifacts for this migration run.
Generating source bundle for sites, applications, and virtual directories...
 Default Web Site/ -> .\migrations\latest\upload_target\DefaultWebSite.zip

The migration tool creates a structured directory containing your deployment artifacts. The
following listing shows the directory structure:

C:\migration_workspace\
.\migrations\latest\
 ### upload_target\
 ### DefaultWebSite.zip
 ### aws-windows-deployment-manifest.json
 ### ebmigrateScripts\
 ### site_installer.ps1
 ### permission_handler.ps1
 ### >other helper scripts<

Controlling the migration

For more control over the migration process, you can specify exactly which sites to migrate with
the following command:

PS C:\migrations_workspace> eb migrate --sites "Default Web Site,Intranet"

You can also customize the environment name and application name, as shown in the following
example command:

PS C:\migrations_workspace> eb migrate `

Controlling the migration 1609

Amazon Elastic Beanstalk Developer Guide

 --sites "Default Web Site" `
 --application-name "CorporateApp" `
 --environment-name "Production"

For a complete list of options, see the section called “eb migrate”.

Monitoring progress

During migration, eb migrate provides real-time status updates. Refer to the following output
example:

...
Creating application version
Creating environment... This may take a few minutes

2024-03-18 18:12:15 INFO Environment details for: Production
 Application name: CorporateApp
 Region: us-west-2
 Deployed Version: app-230320_153045
 Environment ID: e-abcdef1234
 Platform: 64bit Windows Server 2019 v2.7.0 running IIS 10.0
 Tier: WebServer-Standard-1.0
 CNAME: production.us-west-2.elasticbeanstalk.com
 Updated: 2024-03-20 15:30:45
2025-03-18 18:12:17 INFO createEnvironment is starting.
2025-03-18 18:12:19 INFO Using elasticbeanstalk-us-east-1-180301529717 as Amazon
 S3 storage bucket for environment data.
2025-03-18 18:12:40 INFO Created security group named: sg-0fdd4d696a26b086a
2025-03-18 18:12:48 INFO Environment health has transitioned to Pending.
 Initialization in progress (running for 7 seconds). There are no instances.
...
2025-03-18 18:23:59 INFO Application available at EBMigratedEnv-arrreal3.us-
east-1.elasticbeanstalk.com.
2025-03-18 18:24:00 INFO Successfully launched environment: EBMigratedEnv-
arrreal3

Verifying the migration

Once the environment is ready, Elastic Beanstalk provides several ways to verify your deployment.

Access your application

Open your application URL (CNAME) in a web browser to verify it's working correctly.

Monitoring progress 1610

Amazon Elastic Beanstalk Developer Guide

Check environment health

Use the eb health command to view the health of your environment.

PS C:\migrations_workspace> eb health

The following screen image shows instance health, application response metrics, and system
resource utilization.

Use the eb logs command to access logs to troubleshoot any issues:

PS C:\migrations_workspace> eb logs --zip

The eb logs command downloads logs to the .elasticbeanstalk/logs directory. For more
information, see the section called “CloudWatch Logs”.

Connect to instances

If you specified a key pair during migration, you can connect to your instances using RDP for
direct troubleshooting.

Access the Elastic Beanstalk console

You can view the environment's health, logs, and configuration properties through the
environment management console for that environment.

Managing migration artifacts

The eb migrate command creates local artifacts during the migration process. These artifacts
contain sensitive information and can consume significant disk space over time. Use the cleanup
subcommand to manage these artifacts, as shown in the following example:

PS C:\migrations_workspace> eb migrate cleanup
Are you sure you would like to cleanup older artifacts within ./migrations/? (Y/N):

To force cleanup without confirmation use the --force option:

Managing migration artifacts 1611

Amazon Elastic Beanstalk Developer Guide

PS C:\migrations_workspace> eb migrate cleanup --force

The cleanup process preserves the most recent successful migration in the ./migrations/
latest directory and removes older migration directories

Network configuration and port settings

This section covers network configuration options for IIS migrations, including VPC settings, port
configurations, and multi-site deployments.

VPC configuration

The eb migrate command provides flexible VPC configuration options for your Elastic Beanstalk
environment. The tool can either detect VPC settings from a source EC2 instance or accept custom
VPC configurations through command-line parameters. Review Using Elastic Beanstalk with
Amazon VPC to understand how to configure Elastic Beanstalk with VPC.

Automatic VPC detection

When eb migrate runs on an EC2 instance, it automatically discovers and uses the VPC
configuration from the source environment's EC2 instances. The following example output
illustrates the configuration information that it detects:

PS C:\migrations_workspace > eb migrate
Identifying VPC configuration of this EC2 instance (i-0123456789abcdef0):
 id: vpc-1234567890abcdef0
 publicip: true
 elbscheme: public
 ec2subnets: subnet-123,subnet-456,subnet-789
 securitygroups: sg-123,sg-456
 elbsubnets: subnet-123,subnet-456,subnet-789
...

The detected configuration includes:

• VPC identifier

• Public IP assignment settings

• Load balancer scheme (public/private)

• EC2 instance subnet assignments

Network configuration 1612

Amazon Elastic Beanstalk Developer Guide

• Security group associations

• Load balancer subnet assignments

On-premises or non-Amazon cloud hosts

When eb migrate runs from an on-premises server or a non-Amazon cloud host, the Elastic
Beanstalk service will use the default VPC in your Amazon account. The following listing shows an
example command and output:

PS C:\migrations_worspace> eb migrate `
 -k windows-test-pem `
 --region us-east-1 `
 -a EBMigratedEnv `
 -e EBMigratedEnv-test2 `
 --copy-firewall-config
Determining EB platform based on host machine properties
Using .\migrations\latest to contain artifacts for this migration run.
...

Review Using Elastic Beanstalk with Amazon VPC to understand how Elastic Beanstalk configures
the default VPC for your environment.

Custom VPC configuration

For any source environment (EC2, on-premises, or non-Amazon cloud) where you need specific VPC
settings, provide a VPC configuration file like the one in the following example:

{
 "id": "vpc-12345678",
 "publicip": "true",
 "elbscheme": "public",
 "ec2subnets": ["subnet-a1b2c3d4", "subnet-e5f6g7h8"],
 "securitygroups": "sg-123456,sg-789012",
 "elbsubnets": ["subnet-a1b2c3d4", "subnet-e5f6g7h8"]
}

Apply this configuration using the following command:

PS C:\migrations_workspace> eb migrate --vpc-config vpc-config.json

VPC configuration 1613

Amazon Elastic Beanstalk Developer Guide

Note

The VPC configuration file requires the id field that specifies the VPC ID. All other fields are
optional, and Elastic Beanstalk will use default values for any fields that you don't specify.

Important

The migration will ignore any existing VPC settings from the source environment when you
specify the --vpc-config parameter. When you use this parameter, the migration will
only use the VPC settings specified in the configuration file that you're passing in. Using
this parameter overrides the default behavior of discovering the source instance's VPC
configuration or using the default VPC.

Use the --vpc-config parameter in these scenarios:

• When you migrate non-EC2 environments that don't have discoverable VPC settings

• When you migrate to a different VPC from the one used by the source environment

• When you need to customize subnet selections or security group configurations

• When the automatic discovery doesn't correctly identify the desired VPC settings

• When you migrate from on-premises, and you don't want to use the default VPC

Network security configuration

By default, eb migrate opens port 80 on target instances but does not copy other Windows
Firewall rules from the source machine. To include all firewall configurations use the following
command:

PS C:\migrations_workspace> eb migrate --copy-firewall-config

This command does the following actions:

• Identifies ports used by IIS site bindings

• Retrieves corresponding firewall rules

• Generates PowerShell scripts to recreate rules on target instances

VPC configuration 1614

Amazon Elastic Beanstalk Developer Guide

• Preserves any DENY rules for port 80 from the source machine (otherwise port 80 is allowed by
default)

Consider a use case, where your source machine has the firewall rules specified in the following
example:

Source machine firewall configuration
Get-NetFirewallRule | Where-Object {$_.Enabled -eq 'True'} | Get-NetFirewallPortFilter
 | Where-Object {$_.LocalPort -eq 80 -or $_.LocalPort -eq 443 -or $_.LocalPort -eq
 8081}
Output shows rules for ports 80, 443, and 8081

The migration creates a script (modify_firewall_config.ps1) that contains the following
configuration:

New-NetFirewallRule -DisplayName "Allow Web Traffic" -Direction Inbound -Action Allow -
Protocol TCP -LocalPort 80,443
New-NetFirewallRule -DisplayName "Allow API Traffic" -Direction Inbound -Action Allow -
Protocol TCP -LocalPort 8081

The migration tool automatically does the following actions:

• Extracts HTTP/HTTPS ports from all IIS site bindings

• Uses the Windows Firewall INetFwPolicy2 interface to enumerate firewall rules

• Filters rules to only include those that explicitly reference the specified ports

• Only processes HTTP and HTTPS site bindings and their associated firewall rules

• Preserves rule properties including display name, action, protocol, and enabled state

• Handles both individual ports and port ranges in firewall rules

• Adds the firewall configuration script to the deployment manifest

Load balancer configuration

You can specify Load Balancer configuration through the --vpc-config argument. The examples
that follow demonstrate the parameters.

Scheme selection

Choose between public and private load balancer schemes:

VPC configuration 1615

https://learn.microsoft.com/en-us/windows/win32/api/netfw/nn-netfw-inetfwpolicy2

Amazon Elastic Beanstalk Developer Guide

{
 "id": "vpc-12345678",
 "elbscheme": "private",
 "elbsubnets": ["subnet-private1", "subnet-private2"]
}

Subnet distribution

For high availability, distribute load balancer subnets across Availability Zones:

{
 "elbsubnets": [
 "subnet-az1", // Availability Zone 1
 "subnet-az2", // Availability Zone 2
 "subnet-az3" // Availability Zone 3
]
}

Note

While Elastic Beanstalk supports environment creation with Application Load Balancers,
Network Load Balancers, and Classic Load Balancers, the eb migrate command only
supports Application Load Balancers. For more information about load balancer types, see
Load balancer for your Elastic Beanstalk environment.

Multi-site deployments with port configurations

The eb migrate command handles complex multi-site IIS deployments where applications might
share dependencies or use non-standard ports. Consider the following example of a typical
enterprise setup with multiple sites:

<!-- IIS Configuration -->
<sites>
 <site name="Default Web Site" id="1">
 <bindings>
 <binding protocol="http" bindingInformation="*:80:www.example.com" />
 </bindings>
 </site>
 <site name="InternalAPI" id="2">

Multi-site deployments with port configurations 1616

Amazon Elastic Beanstalk Developer Guide

 <bindings>
 <binding protocol="http" bindingInformation="*:8081:api.internal" />
 </bindings>
 </site>
 <site name="ReportingPortal" id="3">
 <bindings>
 <binding protocol="http" bindingInformation="*:8082:reports.internal" />
 </bindings>
 </site>
</sites>

To migrate this configuration, use the following example command and parameters:

PS C:\migrations_workspace> eb migrate `
 --sites "Default Web Site,InternalAPI,ReportingPortal" `
 --copy-firewall-config `
 --instance-type "c5.large"

The eb migrate command creates a deployment package that preserves each site's identity and
configuration. The command generates an aws-windows-deployment-manifest.json that
defines how these sites should be deployed. The following example demonstrates a generated json
file:

{
 "manifestVersion": 1,
 "deployments": {
 "msDeploy": [
 {
 "name": "DefaultWebSite",
 "parameters": {
 "appBundle": "DefaultWebSite.zip",
 "iisPath": "/",
 "iisWebSite": "Default Web Site"
 }
 }
],
 "custom": [
 {
 "name": "InternalAPI",
 "scripts": {
 "install": {
 "file": "ebmigrateScripts\\install_site_InternalAPI.ps1"

Multi-site deployments with port configurations 1617

Amazon Elastic Beanstalk Developer Guide

 },
 "restart": {
 "file": "ebmigrateScripts\\restart_site_InternalAPI.ps1"
 },
 "uninstall": {
 "file": "ebmigrateScripts\\uninstall_site_InternalAPI.ps1"
 }
 }
 },
 {
 "name": "ReportingPortal",
 "scripts": {
 "install": {
 "file": "ebmigrateScripts\\install_site_ReportingPortal.ps1"
 },
 "restart": {
 "file": "ebmigrateScripts\\restart_site_ReportingPortal.ps1"
 },
 "uninstall": {
 "file": "ebmigrateScripts\\uninstall_site_ReportingPortal.ps1"
 }
 }
 }
]
 }
}

The migration process creates the following Application Load Balancer listener rules that maintain
your original routing logic:

• Port 80 traffic routes to Default Web Site

• Port 8081 traffic routes to InternalAPI

• Port 8082 traffic routes to ReportingPortal

Shared configuration and dependencies

When sites share configurations or dependencies, eb migrate handles these relationships
appropriately. Reference the following example where multiple sites share a common
configuration:

<!-- Shared configuration in applicationHost.config -->

Shared configuration and dependencies 1618

Amazon Elastic Beanstalk Developer Guide

<location path="Default Web Site">
 <system.webServer>
 <asp enableSessionState="true" />
 <caching enabled="true" enableKernelCache="true" />
 </system.webServer>
</location>

The migration process completes the following tasks:

1. Identifies shared configurations across sites

2. Generates appropriate PowerShell scripts to apply these settings

3. Maintains configuration hierarchy and inheritance

Best practices

We recommend that you follow best practices for the network configuration of your migrated
application. The following groupings provide summary guidelines.

VPC design

• Follow Amazon VPC Design Best Practices

• Use separate subnets for load balancers and EC2 instances

• Implement proper route tables and NACLs

• Consider VPC endpoints for Amazon services

High availability

• Deploy across multiple Availability Zones

• Use at least two subnets for load balancers

• Configure auto-scaling across AZs

• Implement proper health checks

Security

• Follow Security Best Practices

• Use security groups as primary access control

• Implement network Access Control Lists (ACLs) for additional security

• Monitor VPC Flow Logs

Best practices 1619

Amazon Elastic Beanstalk Developer Guide

Troubleshooting

Common network configuration issues include the following areas. Following each subject are
example commands to obtain more information about the network configuration and health of
your environment.

Subnet configuration

Verify subnet availability
PS C:\migrations_workspace> aws ec2 describe-subnets --subnet-ids subnet-id

Check available IP addresses
PS C:\migrations_workspace>aws ec2 describe-subnets --subnet-ids subnet-id --query
 'Subnets[].AvailableIpAddressCount'

Security group access

Verify security group rules
PS C:\migrations_workspace> aws ec2 describe-security-groups --group-ids sg-id

Test network connectivity
PS C:\migrations_workspace> aws ec2 describe-network-interfaces --filters
 Name=group-id,Values=sg-id

Load balancer health

Check load balancer health
PS C:\migrations_workspace> aws elbv2 describe-target-health --target-group-arn
 arn:aws:elasticloadbalancing:region:account-id:targetgroup/group-name/group-id

Security configurations and IAM roles

The eb migrate command manages Amazon security configurations through IAM roles, instance
profiles, and service roles. Understanding these components ensures proper access control and
security compliance during migration.

Troubleshooting 1620

Amazon Elastic Beanstalk Developer Guide

Instance profile configuration

An instance profile serves as a container for an IAM role that Elastic Beanstalk attaches to EC2
instances in your environment. When executing eb migrate, you can specify a custom instance
profile:

PS C:\migrations_workspace> eb migrate --instance-profile "CustomInstanceProfile"

If you don't specify an instance profile, eb migrate creates a default profile with these permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::elasticbeanstalk-*",
 "arn:aws:s3:::elasticbeanstalk-*/*"
]
 }
]
}

Service role management

A service role allows Elastic Beanstalk to manage Amazon resources on your behalf. Specify a
custom service role during migration with the following command:

PS C:\migrations_workspace> eb migrate --service-role "CustomServiceRole"

If not specified, eb migrate creates a default service role named aws-elasticbeanstalk-
service-role with a trust policy that allows Elastic Beanstalk to assume the role. This service
role is essential for Elastic Beanstalk to monitor your environment's health and perform managed
platform updates. The service role requires two managed policies:

Instance profile configuration 1621

Amazon Elastic Beanstalk Developer Guide

• AWSElasticBeanstalkEnhancedHealth - Allows Elastic Beanstalk to monitor instance and
environment health using the enhanced health reporting system

• AWSElasticBeanstalkManagedUpdates - Allows Elastic Beanstalk to perform managed
platform updates, including updating environment resources when a new platform version is
available

With these policies, the service role has permissions to:

• Create and manage Auto Scaling groups

• Create and manage Application Load Balancers

• Upload logs to Amazon CloudWatch

• Manage EC2 instances

For more information about service roles, see Elastic Beanstalk service role in the Elastic Beanstalk
Developer Guide.

Security group configuration

The eb migrate command automatically configures security groups based on your IIS site bindings.
For example, if your source environment has sites using ports 80, 443, and 8081 the following
configuration results:

<site name="Default Web Site">
 <bindings>
 <binding protocol="http" bindingInformation="*:80:" />
 <binding protocol="https" bindingInformation="*:443:" />
 </bindings>
</site>
<site name="InternalAPI">
 <bindings>
 <binding protocol="http" bindingInformation="*:8081:" />
 </bindings>
</site>

The migration process completes the following actions:

• Creates a load balancer security group allowing inbound traffic on ports 80 and 443 from the
internet (0.0.0.0/0)

Security group configuration 1622

Amazon Elastic Beanstalk Developer Guide

• Creates an EC2 security group allowing traffic from the load balancer

• Configures additional ports (like 8081) if --copy-firewall-config is specified

By default, the Application Load Balancer is configured with public access from the internet. If you
need to customize this behavior, such as restricting access to specific IP ranges or using a private
load balancer, you can override the default VPC and security group configuration using the --vpc-
config parameter:

PS C:\migrations_workspace> eb migrate --vpc-config vpc-config.json

For example, the following vpc-config.json configuration creates a private load balancer in a
private subnet:

{
 "id": "vpc-12345678",
 "publicip": "false",
 "elbscheme": "internal",
 "ec2subnets": ["subnet-private1", "subnet-private2"],
 "elbsubnets": ["subnet-private1", "subnet-private2"]
}

For more information about VPC configuration options, see VPC configuration.

SSL certificate integration

When migrating sites with HTTPS bindings, integrate SSL certificates through Amazon Certificate
Manager (ACM):

PS C:\migrations_workspace> eb migrate --ssl-certificates
 "arn:aws:acm:region:account:certificate/certificate-id"

This configuration completes the following actions:

• Associates the certificate with the Application Load Balancer

• Maintains HTTPS termination at the load balancer

• Preserves internal HTTP communication between the load balancer and EC2 instances

SSL certificate integration 1623

Amazon Elastic Beanstalk Developer Guide

Windows authentication

For applications using Windows Authentication, eb migrate preserves the authentication settings
in the application's web.config as follows:

<configuration>
 <system.webServer>
 <security>
 <authentication>
 <windowsAuthentication enabled="true">
 <providers>
 <add value="Negotiate" />
 <add value="NTLM" />
 </providers>
 </windowsAuthentication>
 </authentication>
 </security>
 </system.webServer>
</configuration>

Important

The eb migrate command does not copy over user profiles or accounts from your source
environment to the target Elastic Beanstalk instances. Any custom user accounts or
groups that you've created on your source server will need to be recreated on the target
environment after migration.

Built-in Windows accounts like IUSR and groups like IIS_IUSRS, as well as all other built-in
accounts and groups, are included by default on the target Windows Server instances. For more
information about built-in IIS accounts and groups, see Understanding Built-In User and Group
Accounts in IIS in the Microsoft documentation.

If your application relies on custom Windows user accounts or Active Directory integration, you will
need to configure these aspects separately after the migration is complete.

Windows authentication 1624

https://learn.microsoft.com/en-us/iis/get-started/planning-for-security/understanding-built-in-user-and-group-accounts-in-iis
https://learn.microsoft.com/en-us/iis/get-started/planning-for-security/understanding-built-in-user-and-group-accounts-in-iis

Amazon Elastic Beanstalk Developer Guide

Best practices and troubleshooting

Role management

Implement Amazon IAM best practices when managing roles for your Elastic Beanstalk
environments:

Role creation and management

• Create roles using Amazon managed policies where possible

• Follow the IAM Security Best Practices

• Use the Amazon Policy Generator for custom policies

• Implement permission boundaries for additional security

Monitoring and auditing

Enable Amazon CloudTrail to monitor role usage:

• Follow the Amazon CloudTrail User Guide

• Configure CloudWatch Logs integration for real-time monitoring

• Set up alerts for unauthorized API calls

Regular review process

Establish a quarterly review cycle to do the following tasks:

• Audit unused permissions using IAM Access Analyzer

• Remove outdated permissions

• Update roles based on least-privilege principles

Certificate management

Implement these practices for SSL/TLS certificates in your Elastic Beanstalk environments:

Certificate lifecycle

• Use Amazon Certificate Manager for certificate management

• Enable automatic renewal for ACM-issued certificates

• Set up expiration notifications

Best practices and troubleshooting 1625

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
https://docs.aws.amazon.com/acm/latest/userguide/check-certificate-renewal-status.html
https://docs.aws.amazon.com/acm/latest/userguide/notifications-for-ACM.html

Amazon Elastic Beanstalk Developer Guide

Security standards

• Use TLS 1.2 or later

• Follow Amazon security policies for HTTPS listeners

• Implement HTTP Strict Transport Security (HSTS) if required

Security group management

Implement these security group best practices:

Rule management

• Document all custom port requirements

• Use VPC Flow Logs to monitor traffic

• Use Security Group reference rules instead of IP ranges where possible

Regular auditing

Establish monthly reviews to do the following tasks:

• Identify and remove unused rules

• Validate source/destination requirements

• Check for overlapping rules

Logging and monitoring

For effective security monitoring, configure the following logs:

Windows event logs on EC2 instances

Review Security event log
PS C:\migrations_workspace> Get-EventLog -LogName Security -Newest 50

Check Application event log
PS C:\migrations_workspace> Get-EventLog -LogName Application -Source "IIS*"

CloudWatch Logs integration

Configure CloudWatch Logs agent to stream Windows event logs to CloudWatch for centralized
monitoring and alerting.

Best practices and troubleshooting 1626

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html#describe-ssl-policies
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/vpc/latest/userguide/security-group-rules.html

Amazon Elastic Beanstalk Developer Guide

For persistent issues, gather these logs and contact Amazon Web Services Support with the
following information:

• Environment ID

• Deployment ID (if applicable)

• Relevant error messages

• Timeline of security changes

Understanding IIS to Elastic Beanstalk migration mapping

The migration from IIS to Elastic Beanstalk involves mapping your on-premises Windows server
configuration to Amazon cloud resources. Understanding this mapping is crucial for successful
migrations and post-migration management.

IIS sites and applications in Elastic Beanstalk

In IIS, a website represents a collection of web applications and virtual directories, each with
its own configuration and content. When migrating to Elastic Beanstalk, these components are
transformed as follows:

IIS websites

Your IIS websites become applications within Elastic Beanstalk. Each website's configuration,
including its bindings, application pools, and authentication settings, is preserved through
Elastic Beanstalk's deployment manifest (aws-windows-deployment-manifest.json).

For example, if you have multiple sites like Default Web Site and IntranetSite, eb migrate
packages each site's content and configuration while maintaining their isolation.

The command creates appropriate Application Load Balancer (ALB) listener rules to handle
routing requests to your applications. It also configures security groups to ensure proper port
access based on your original IIS bindings.

Application pools

IIS application pools provide worker process isolation, runtime management, and recycling
capabilities for your applications. In Elastic Beanstalk, these are mapped to environment
processes defined through the aws:elasticbeanstalk:environment:process namespace
and configured via IIS on the EC2 instances.

IIS to Elastic Beanstalk migration mapping 1627

Amazon Elastic Beanstalk Developer Guide

The migration preserves critical application pool settings including the following:

• Process model configurations - Identity (ApplicationPoolIdentity, NetworkService, or custom
accounts), idle timeout settings, and process recycling intervals

• .NET CLR version settings - Maintains your specified .NET Framework version (v2.0, v4.0, or
No Managed Code) to ensure application compatibility

• Managed pipeline mode - Preserves Integrated or Classic pipeline mode settings to maintain
your HTTP request processing architecture

• Advanced settings - Queue length, CPU limits, rapid-fail protection thresholds, and startup
time limits

The eb migrate command preserves mappings between sites and application pools during the
migration to your Elastic Beanstalk environment.

If your application pools use custom recycling schedules (specific times or memory thresholds),
these are implemented through PowerShell scripts in the deployment package that configure
the appropriate IIS settings on the EC2 instances.

Website bindings

IIS website bindings, which define how clients access your applications, are transformed into the
following Application Load Balancer (ALB) configurations:

• Port bindings are mapped to corresponding ALB listener rules

• Host header configurations are translated into ALB routing rules

• SSL-enabled sites use Amazon Certificate Manager (ACM) for certificate management

Virtual directory and application path management

IIS virtual directories and applications provide URL path mapping to physical directories. Elastic
Beanstalk maintains these relationships through the following constructs:

Virtual directories

The migration process preserves the physical paths of your virtual directories in the deployment
package.

Path mappings are configured in the IIS configuration on the EC2 instances, ensuring that your
URL structure remains intact after migration.

Virtual directory and application path management 1628

Amazon Elastic Beanstalk Developer Guide

Non-system drive physical paths

Important

By default, Elastic Beanstalk Windows environments only provision the C:\ drive (root
volume). In the current version, applications with content on non-system drives (D:\, E:\,
etc.) are not supported for migration.

The eb migrate command automatically detects physical paths located on non-system drives
and warns you about potential issue like the following example:

ERROR: Detected physical paths on drive D:\ which are not supported in the current
 version:
 - D:\websites\intranet
 - D:\shared\images

Migration of content from non-system drives is not supported. Please relocate this
 content to the C:\ drive before migration. Otherwise, select only those sites that
 are on C:\.

If your application has dependencies on non-system drives, you will need to modify your
application to store all content on the C:\ drive before migration.

Nested applications

Applications nested under websites are deployed with their correct path configurations and
appropriate application pool assignments. The migration process preserves all web.config
settings, ensuring that application-specific configurations continue to function as expected in
the cloud environment.

URL rewrite and application request routing (ARR)

If your IIS deployment uses URL Rewrite or Application Request Routing (ARR), eb migrate handles
these configurations through the following rules and configuration:

URL rewrite and application request routing (ARR) 1629

Amazon Elastic Beanstalk Developer Guide

URL rewrite rules

URL rewrite rules from your web.config files are translated into ALB routing rules where
possible. For example, the following entry becomes an ALB listener rule directing traffic based
on host headers and path patterns.:

<!-- Original IIS URL Rewrite Rule -->
<rule name="Redirect to WWW" stopProcessing="true">
 <match url="(.*)" />
 <conditions>
 <add input="{HTTP_HOST}" pattern="^example.com$" />
 </conditions>
 <action type="Redirect" url="http://www.example.com/{R:1}" />
</rule>

Application request routing

ARR configurations are preserved through the installation of ARR features on EC2 instances. The
migration process completes the following tasks:

• Configures proxy settings to match your source environment

• Maintains URL rewrite rules associated with ARR

Migration artifact structure

When you run eb migrate, it creates a structured directory containing all necessary deployment
components. The following listing describes the directory structure:

C:\migration_workspace\
.\migrations\latest\
 ### upload_target\
 ### [SiteName].zip # One ZIP per IIS site
 ### aws-windows-deployment-manifest.json
 ### ebmigrateScripts\
 ### site_installer.ps1 # Site installation scripts
 ### arr_configuration.ps1 # ARR configuration scripts
 ### permission_handler.ps1 # Permission management
 ### firewall_config.ps1 # Windows Firewall rules

The aws-windows-deployment-manifest.json file is the core configuration file that instructs
Elastic Beanstalk how to deploy your applications. Refer to the following example structure:

Migration artifact structure 1630

Amazon Elastic Beanstalk Developer Guide

{
 "manifestVersion": 1,
 "deployments": {
 "msDeploy": [
 {
 "name": "Primary Site",
 "parameters": {
 "appBundle": "DefaultWebSite.zip",
 "iisPath": "/",
 "iisWebSite": "Default Web Site"
 }
 }
],
 "custom": [
 {
 "name": "ConfigureARR",
 "scripts": {
 "install": {
 "file": "ebmigrateScripts\\arr_configuration.ps1"
 },
 "uninstall": {
 "file": "ebmigrateScripts\\noop.ps1"
 },
 "restart": {
 "file": "ebmigrateScripts\\noop.ps1"
 }
 }
 }
]
 }
}

This manifest ensures these results for your migration:

• Applications are deployed to correct IIS paths

• Custom configurations are applied

• Site-specific settings are preserved

• Deployment order is maintained

Migration artifact structure 1631

Amazon Elastic Beanstalk Developer Guide

Advanced migration scenarios

This section covers advanced migration scenarios for complex IIS deployments.

Multi-site migrations with Application Request Routing (ARR)

The eb migrate command automatically detects and preserves ARR configurations during
migration. When it identifies ARR settings in your IIS applicationHost.config, it generates the
necessary PowerShell scripts to reinstall and configure ARR on the target EC2 instances.

ARR configuration detection

The migration process examines three key configuration sections in IIS:

• system.webServer/proxy: Core ARR proxy settings

• system.webServer/rewrite: URL rewrite rules

• system.webServer/caching: Caching configuration

For example, consider a common ARR configuration where a RouterSite running on port 80
proxies requests to APIService and AdminPortal running on ports 8081 and 8082 respectively:

<!-- Original IIS ARR Configuration -->
<rewrite>
 <rules>
 <rule name="Route to API" stopProcessing="true">
 <match url="^api/(.*)$" />
 <action type="Rewrite" url="http://backend:8081/api/{R:1}" />
 </rule>
 <rule name="Route to Admin" stopProcessing="true">
 <match url="^admin/(.*)$" />
 <action type="Rewrite" url="http://backend:8082/admin/{R:1}" />
 </rule>
 </rules>
</rewrite>

The following diagram depicts how these rules are hidden behind port 80 in the IIS server and not
exposed via the EC2 Security Groups. Only port 80 is accessible to the Application Load Balancer
and all traffic from it is routed to the target group at port 80.

Advanced migration scenarios 1632

Amazon Elastic Beanstalk Developer Guide

The following command can migrate this configuration:

PS C:\migrations_workspace> eb migrate --sites "RouterSite,APIService,AdminPortal" `
 --copy-firewall-config

ARR migration process

The migration process preserves your ARR configuration through several steps.

Multi-site migrations with Application Request Routing (ARR) 1633

Amazon Elastic Beanstalk Developer Guide

Configuration export

The tool exports your existing ARR settings from the three key configuration sections into
separate XML files stored in the ebmigrateScripts directory:

ebmigrateScripts\
arr_config_proxy.xml
arr_config_rewrite.xml
arr_config_caching.xml

Installation scripts

Two PowerShell scripts are generated to handle ARR setup:

1. arr_msi_installer.ps1: Downloads and installs the ARR module

2. arr_configuration_importer_script.ps1: Imports your exported ARR configuration

Deployment manifest integration

The scripts are integrated into the deployment process through entries in aws-windows-
deployment-manifest.json:

{
 "manifestVersion": 1,
 "deployments": {
 "custom": [
 {
 "name": "WindowsProxyFeatureEnabler",
 "scripts": {
 "install": {
 "file": "ebmigrateScripts\
\windows_proxy_feature_enabler.ps1"
 }
 }
 },
 {
 "name": "ArrConfigurationImporterScript",
 "scripts": {
 "install": {
 "file": "ebmigrateScripts\
\arr_configuration_importer_script.ps1"
 }
 }
 }

Multi-site migrations with Application Request Routing (ARR) 1634

Amazon Elastic Beanstalk Developer Guide

]
 }
}

Load balancer integration

The migration process translates your ARR rules into Application Load Balancer (ALB) listener rules
where possible. For example, the above ARR configuration results in ALB rules that route traffic
based on URL path patterns while maintaining internal routing on the EC2 instances.

The resulting environment maintains your ARR routing logic while taking advantage of Amazon's
elastic infrastructure. Your applications continue to work as before, with ARR handling internal
routing while the Application Load Balancer manages external traffic distribution.

Multi-site migrations without ARR using host-based routing

While Application Request Routing (ARR) is a common approach for managing multiple sites in
IIS, you can also migrate multi-site deployments directly to Elastic Beanstalk without ARR by
leveraging the Application Load Balancer's host-based routing capabilities. This approach can
reduce complexity and improve performance by eliminating an additional routing layer.

Host-based routing overview

In this approach, each IIS site is exposed outside the EC2 instance, and the Application Load
Balancer routes traffic directly to the appropriate port based on the host header. This eliminates
the need for ARR while maintaining separation between your applications.

Consider a multi-site IIS configuration with three sites, each with its own hostname binding:

<sites>
 <site name="Default Web Site" id="1">
 <bindings>
 <binding protocol="http" bindingInformation="*:8081:www.example.com" />
 </bindings>
 </site>
 <site name="InternalAPI" id="2">
 <bindings>
 <binding protocol="http" bindingInformation="*:8082:api.internal" />
 </bindings>
 </site>

Multi-site migrations without ARR using host-based routing 1635

Amazon Elastic Beanstalk Developer Guide

 <site name="ReportingPortal" id="3">
 <bindings>
 <binding protocol="http" bindingInformation="*:8083:reports.internal" />
 </bindings>
 </site>
</sites>

These sites are exposed at ports 8081, 8082, and 8083 via the EC2 Security Groups. The
Application Load Balancer routes to them based on the Load Balancer listener rule configuration.

Multi-site migrations without ARR using host-based routing 1636

Amazon Elastic Beanstalk Developer Guide

Migration process

To migrate this configuration to Elastic Beanstalk without using ARR use the eb migrate command
in the following example:

PS C:\migrations_workspace> eb migrate --sites "Default Web
 Site,InternalAPI,ReportingPortal"

The migration process automatically configures the Application Load Balancer with host-based
routing rules that direct traffic to the appropriate target group based on the host header. Each
target group forwards traffic to the corresponding port on your EC2 instances:

1. Host header www.example.com → Target Group on port 8081

2. Host header api.internal → Target Group on port 8082

3. Host header reports.internal → Target Group on port 8083

SSL/TLS configuration

To secure your applications with SSL/TLS do the following steps:

1. Request certificates for your domains through Amazon Certificate Manager(ACM).

2. Configure HTTPS listeners on your Application Load Balancer using these certificates.

3. Update your environment configuration to include HTTPS listeners with the following
configuration option settings.

option_settings:
 aws:elb:listener:443:
 ListenerProtocol: HTTPS
 SSLCertificateId: arn:aws:acm:region:account-id:certificate/certificate-id
 InstancePort: 80
 InstanceProtocol: HTTP

With this configuration, SSL termination occurs at the load balancer, and traffic is forwarded
to your instances over HTTP. This simplifies certificate management while maintaining secure
connections with clients.

Multi-site migrations without ARR using host-based routing 1637

Amazon Elastic Beanstalk Developer Guide

Best practices

Security groups

Configure security groups to allow inbound traffic only on the ports used by your IIS sites (8081,
8082, 8083 in this example) from the Application Load Balancer security group.

Health checks

Configure health checks for each target group to ensure traffic is only routed to healthy
instances. Create health check endpoints for each application if they don't already exist.

Monitoring

Set up CloudWatch alarms to monitor the health and performance of each target group
separately. This allows you to identify issues specific to individual applications.

Scaling

Consider the resource requirements of all applications when configuring auto scaling policies.
If one application has significantly different resource needs, consider migrating it to a separate
environment.

Virtual directory management

The eb migrate command preserves virtual directory structures while migrating your IIS
applications to Elastic Beanstalk.

Default permission configuration

When migrating virtual directories, eb migrate establishes a baseline set of permissions by
granting ReadAndExecute access to:

• IIS_IUSRS

• IUSR

• Authenticated Users

For example, consider a typical virtual directory structure:

<site name="CorporatePortal">
 <application path="/" applicationPool="CorporatePortalPool">

Virtual directory management 1638

Amazon Elastic Beanstalk Developer Guide

 <virtualDirectory path="/" physicalPath="C:\sites\portal" />
 <virtualDirectory path="/shared" physicalPath="C:\shared\content" />
 <virtualDirectory path="/reports" physicalPath="D:\reports" />
 </application>
</site>

Password-protected virtual directories

When eb migrate encounters password-protected virtual directories, it issues warnings and
requires manual intervention.

The following configuration example will cause the warning response that follows the example.

<virtualDirectory path="/secure"
 physicalPath="C:\secure\content"
 userName="DOMAIN\User"
 password="[encrypted]" />

[WARNING] CorporatePortal/secure is hosted at C:\secure\content which is password-
protected and won't be copied.

To maintain password protection, create a custom deployment script like the following:

PS C:\migrations_workspace> cat secure_vdir_config.ps1

$vdirPath = "C:\secure\content"
$siteName = "CorporatePortal"
$vdirName = "secure"
$username = "DOMAIN\User"
$password = "SecurePassword"

Ensure directory exists
if (-not (Test-Path $vdirPath)) {
 Write-Host "Creating directory: $vdirPath"
 New-Item -Path $vdirPath -ItemType Directory -Force
}

Configure virtual directory with credentials
Write-Host "Configuring protected virtual directory: $vdirName"
New-WebVirtualDirectory -Site $siteName -Name $vdirName `
 -PhysicalPath $vdirPath -UserName $username -Password $password

Virtual directory management 1639

Amazon Elastic Beanstalk Developer Guide

Set additional permissions as needed
$acl = Get-Acl $vdirPath
$rule = New-Object System.Security.AccessControl.FileSystemAccessRule(
 $username, "ReadAndExecute", "ContainerInherit,ObjectInherit", "None", "Allow"
)
$acl.AddAccessRule($rule)
Set-Acl $vdirPath $acl

Add this script to your deployment by including it in the manifest:

{
 "manifestVersion": 1,
 "deployments": {
 "custom": [
 {
 "name": "SecureVirtualDirectory",
 "scripts": {
 "install": {
 "file": "secure_vdir_config.ps1"
 }
 }
 }
]
 }
}

Custom permission management

The eb migrate command provides a framework for custom permission scripts to accommodate
applications that require permissions other than the defaults.

$paths = @(
 "C:\sites\portal\uploads",
 "C:\shared\content"
)

foreach ($path in $paths) {
 if (-not (Test-Path $path)) {
 Write-Host "Creating directory: $path"
 New-Item -Path $path -ItemType Directory -Force
 }

Virtual directory management 1640

Amazon Elastic Beanstalk Developer Guide

 $acl = Get-Acl $path

 # Add custom permissions
 $customRules = @(
 # Application Pool Identity - Full Control
 [System.Security.AccessControl.FileSystemAccessRule]::new(
 "IIS AppPool\CorporatePortalPool",
 "FullControl",
 "ContainerInherit,ObjectInherit",
 "None",
 "Allow"
),
 # Custom Service Account
 [System.Security.AccessControl.FileSystemAccessRule]::new(
 "NT SERVICE\CustomService",
 "Modify",
 "ContainerInherit,ObjectInherit",
 "None",
 "Allow"
)
)

 foreach ($rule in $customRules) {
 $acl.AddAccessRule($rule)
 }

 Set-Acl $path $acl
 Write-Host "Custom permissions applied to: $path"
}

Best practices

Follow these best practices to plan, execute, monitor, and verify your migration.

Pre-migration planning

Document existing permissions and authentication requirements before migration. Test custom
permission scripts in a development environment before deploying to production.

Shared content management

For shared content directories, ensure all necessary file system permissions are properly
configured through custom scripts. Consider using Amazon FSx for Windows File Server for
shared storage requirements.

Virtual directory management 1641

https://aws.amazon.com/fsx/windows/

Amazon Elastic Beanstalk Developer Guide

Monitoring and verification

Monitor application logs after migration to verify proper access to virtual directories. Pay
special attention to the following areas:

• Application pool identity access

• Custom service account permissions

• Network share connectivity

• Authentication failures

Custom application pool settings

The eb migrate command does not copy over custom application pool settings by default. To
preserve custom application pool configurations, follow this procedure to create and apply a
custom manifest section.

1. Create an archive of your migration artifacts.

PS C:\migrations_workspace> eb migrate --archive

2. Create a custom PowerShell script to configure application pools.

PS C:\migrations_workspace> cat .\migrations\latest\upload_target
\customize_application_pool_config.ps1

$configPath = "$env:windir\System32\inetsrv\config\applicationHost.config"

[xml]$config = Get-Content -Path $configPath

$newPoolXml = @"
<!-- Original IIS Configuration -->
<applicationPools>
 <add name="CustomPool"
 managedRuntimeVersion="v4.0"
 managedPipelineMode="Integrated">
 <processModel identityType="SpecificUser"
 userName="AppPoolUser"
 password="[encrypted]" />
 <recycling>
 <periodicRestart time="00:00:00">
 <schedule>

Custom application pool settings 1642

Amazon Elastic Beanstalk Developer Guide

 <add value="02:00:00" />
 <add value="14:00:00" />
 </schedule>
 </periodicRestart>
 </recycling>
 </add>
</applicationPools>
"@
$newPoolXmlNode = [xml]$newPoolXml

Find the applicationPools section
$applicationPools = $config.SelectSingleNode("//configuration/
system.applicationHost/applicationPools")

Import the new node into the document
$importedNode = $config.ImportNode($newPoolXmlNode.DocumentElement, $true)
$applicationPools.AppendChild($importedNode)

Save the changes
$config.Save($configPath)

Write-Host "ApplicationHost.config has been updated successfully."

3. Update the aws-windows-deployment-manifest.json file to include your custom script.

{
 "manifestVersion": 1,
 "deployments": {
 ...
 "custom": [
 ...,
 {
 "name": "ModifyApplicationPoolConfig",
 "description": "Modify application pool configuration from source
 machine to remove",
 "scripts": {
 "install": {
 "file": "customize_application_pool_config.ps1"
 },
 "restart": {
 "file": "ebmigrateScripts\\noop.ps1"
 },
 "uninstall": {
 "file": "ebmigrateScripts\\noop.ps1"

Custom application pool settings 1643

Amazon Elastic Beanstalk Developer Guide

 }
 }
 }
]
 }
}

4. Create an environment with the updated archive directory.

PS C:\migrations_workspace> eb migrate `
 --archive-dir '.\migrations\latest\upload_target\'

The --archive-dir argument tells eb migrate to use the source code that it previously created,
avoiding the creation of new archives.

Deploying previous versions

The eb migrate maintains a history of your migrations through timestamped directories and
application versions in Elastic Beanstalk. Each migration creates a unique zip file that can be
deployed if needed.

PS C:\migrations_workspace> ls .\migrations\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----l 3/18/2025 10:34 PM latest
d----- 3/16/2025 5:47 AM migration_1742104049.479849
d----- 3/17/2025 9:18 PM migration_1742246303.18056
d----- 3/17/2025 9:22 PM migration_1742246546.565739
...
d----- 3/18/2025 10:34 PM migration_1742337258.30742

The latest symbolic link always points to the most recently created migration artifact directory.
In addition to relevant application and error logs, each migration artifact directory also contains a
upload_target.zip file which you can deploy to Elastic Beanstalk.

PS C:\migrations_workspace> ls .\migrations\latest\

Mode LastWriteTime Length Name
---- ------------- ------ ----

Deploying previous versions 1644

Amazon Elastic Beanstalk Developer Guide

d----- 3/18/2025 10:34 PM upload_target
-a---- 3/18/2025 10:34 PM 13137 application.log
-a---- 3/18/2025 10:34 PM 0 error.log
-a---- 3/18/2025 10:34 PM 1650642 upload_target.zip

You can deploy the upload_target.zip file using eb migrate:

PS C:\migrations_workspace> eb migrate --zip .\migrations\latest\upload_target.zip

Troubleshooting and diagnostics

This section provides guidance for troubleshooting common issues that may arise during the
migration of IIS applications to Elastic Beanstalk.

Associating an EC2 keypair with your environment

You can securely log in to the Amazon Elastic Compute Cloud(Amazon EC2) instances provisioned
for your Elastic Beanstalk application with an Amazon EC2 key pair. For instructions on creating a
key pair, see Creating a Key Pair Using Amazon EC2 in the Amazon EC2 User Guide.

Specifying a keyname to eb migrate has the effect of associating your Elastic Beanstalk
environment with the keypair. For security purposes, this will not open up port 3389 on your EC2
instances security group. You can associate additional EC2 security groups allowing traffic at port
3389 through eb config after the initial migration.

PS C:\migrations_workspace> eb migrate `
 --keyname "my-keypair" `
 --verbose

When you create a key pair, Amazon EC2 stores a copy of your public key. If you no longer need to
use it to connect to any environment instances, you can delete it from Amazon EC2. For details, see
Deleting Your Key Pair in the Amazon EC2 User Guide.

For more information about connecting to Windows Amazon EC2 instances, see Connecting to
Windows Instance.

Accessing logs

The EB CLI provides an eb logs facility which you can use to retrieve logs from an Elastic
Beanstalk environment without logging into its EC2 instances. After an execution of eb

Troubleshooting and diagnostics 1645

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#delete-key-pair
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connecting_to_windows_instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connecting_to_windows_instance.html

Amazon Elastic Beanstalk Developer Guide

migrate, you can issue the eb logs --zip command which will download and save logs into the
.elasticbeanstalk\logs directory.

Alternatively, you can view logs through the Amazon Elastic Beanstalk console. For more
information, see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk environment.

Accessing client-side artifacts

The eb migrate command stores application and error logs generated by msdeploy inside
migrations artifacts directories.

./migrations/
latest -> migration_20240308_123456/
migration_20240308_123456/
 ### application.log
 ### error.log
 ### upload_target\

Monitoring environment health

Elastic Beanstalk helps you monitor health using the enhanced health monitoring capabilities.
It is an automated health monitoring system that continuously tracks the operational status of
application instances, leveraging built-in metrics such as CPU utilization, latency, request counts,
and response codes.

The health monitoring system utilizes an agent-based approach to collect instance-level data
and integrates with real-time logging and alerting. Elastic Load Balancing (ELB) and Auto Scaling
dynamically respond to health status changes, ensuring high availability and fault tolerance.
Advanced monitoring modes, including enhanced health reporting, provide granular visibility into
application behavior, enabling proactive troubleshooting and automatic recovery mechanisms.

Run the EB CLI eb health command to display the environment's health. The following information
displays:

• Instance health status

• Application response metrics

• System resource utilization

• Recent deployment events

Accessing client-side artifacts 1646

Amazon Elastic Beanstalk Developer Guide

EC2 performance optimization

By default, eb migrate selects the c5.2xlarge instance type to provide an optimal first-time
experience with Elastic Beanstalk. You can override this behavior with the --instance-type
argument:

PS C:\migrations_workspace> eb migrate `
 --instance-type "t3.large"

For production environments, consider these factors when selecting an instance type:

• Memory requirements of your applications

• CPU requirements for processing workloads

• Network performance needs

• Cost optimization goals

EBS volume configuration

By default, Elastic Beanstalk will create only a root block-device volume (C:\) for your
environment. You can pass additional Amazon Elastic Block Store snapshot volumes with the --ebs-
snapshots option:

PS C:\migrations_workspace> eb migrate `
 --ebs-snapshots "snap-123456789abc"

For examples of how you can configure block-device mappings with Elastic Beanstalk, see the blog
article Customize Ephemeral and EBS Volumes in Elastic Beanstalk Environments.

For applications with high storage requirements, consider the following options:

• Using EBS volumes for persistent data

• Implementing Amazon S3 for static content

• Using Amazon FSx for Windows File Server for shared file systems

Common issues and solutions

Event: Missing Web Deploy installation

EC2 performance optimization 1647

https://aws.amazon.com/ec2/instance-types/c5/
https://amazonaws-china.com/blogs/devops/customize-ephemeral-and-ebs-volumes-in-elastic-beanstalk-environments/

Amazon Elastic Beanstalk Developer Guide

If you encounter errors related to Web Deploy not being found, then install Web Deploy 3.6 or
later from the Microsoft Web Platform Installer. The following example displays a possible error
message.

Couldn't find msdeploy.exe. Follow instructions here: https://learn.microsoft.com/en-
us/iis/install/installing-publishing-technologies/installing-and-configuring-web-deploy

Event: Permission issues during migration

If you encounter permission-related errors, then ensure that you're running the EB CLI with
administrative privileges. The following example displays a possible error message.

[ERROR] Access to the path 'C:\inetpub\wwwroot\web.config' is denied.

Event: Application pool identity issues

If your application fails to start due to application pool identity issues, create a custom script
to configure application pool identities as shown in the section called “Custom application pool
settings”.

Event: SSL certificate configuration errors

If HTTPS bindings fail to work, ensure that you've specified a valid ACM certificate ARN using the
eb mibrate option --ssl-certificates parameter.

Event: Environment creation timeout

If environment creation times out, check Amazon CloudFormation events in the Amazon
Management Console for specific resource creation failures. Common causes include VPC
configuration issues or service limits.

Getting support

If you encounter issues that you cannot resolve, before contacting Amazon Web Services Support
gather the following information:

• Environment ID (eb status)

• Application logs (eb logs --zip)

• Migration artifacts from .\migrations\latest\

Getting support 1648

https://www.iis.net/downloads/microsoft/web-deploy

Amazon Elastic Beanstalk Developer Guide

• Source IIS configuration (output of eb migrate explore --verbose)

• Detailed error messages

For more information about Elastic Beanstalk troubleshooting, see Troubleshooting your Elastic
Beanstalk environment.

Comparing migration options: EB CLI vs. Amazon Application
Migration Service

Amazon offers multiple paths for migrating Windows applications to the cloud. This section
compares two primary options: the eb migrate command in the EB CLI and Amazon Application
Migration Service (MGN). Understanding the differences between these approaches will help you
choose the most appropriate migration strategy for your specific needs.

Comparison of migration options

Feature EB CLI (eb migrate) Amazon Application Migration
Service (MGN)

Primary focus Application-level migration of IIS
websites and applications

Server-level rehosting of entire
machines (physical, virtual, or cloud
servers)

Best suited for IIS applications that you want to
migrate directly to Elastic Beanstalk
with minimal reconfiguration

Large-scale migrations involving
many servers or complex infrastru
cture

Discovery
approach

Application-level discovery of IIS
sites, applications, and configura
tions

Server-level replication of entire
machines, including operating
system and applications

Target
environment

Directly creates and configures
Elastic Beanstalk environments
optimized for Windows applications

Creates EC2 instances that require
additional configuration to work
with Elastic Beanstalk

Configuration
preservation

Automatically preserves IIS-speci
fic configurations (sites, application
pools, bindings)

Preserves entire server configura
tion, which may include unnecessary
components

Migration options: EB CLI vs. MGN 1649

Amazon Elastic Beanstalk Developer Guide

Feature EB CLI (eb migrate) Amazon Application Migration
Service (MGN)

Deployment
model

Creates a clean Elastic Beanstalk
environment with your applications
deployed using Elastic Beanstalk
best practices

Creates a replica of your source
server that may require optimization
for cloud operations

Scale of
migration

Ideal for targeted migrations of
specific applications

Designed for large-scale migrations
of many servers

Post-migration
steps

Minimal; environment is ready
for use with Elastic Beanstalk
management tools

Requires additional steps to
integrate with Elastic Beanstalk,
such as executing SSM post-launch
actions

When to use each migration option

Choose eb migrate when you have the following requirements:

• You want to migrate specific IIS applications rather than entire servers

• Your goal is to adopt Elastic Beanstalk as your application management platform

• You want to leverage Elastic Beanstalk's managed platform features like easy scaling,
deployment, and monitoring

• You prefer a clean deployment that follows Amazon best practices for cloud-native
operations

• You want to minimize post-migration configuration work

Choose Amazon Application Migration Service when you have the following requirements:

• You need to migrate a large number of servers

• You have complex server configurations that must be preserved exactly

• Your applications have compatibility issues that require maintaining the exact server
environment

• You want to "lift and shift" with minimal changes to your applications

• You plan to refactor or optimize your applications after migration

When to use each migration option 1650

Amazon Elastic Beanstalk Developer Guide

Migration workflow comparison

EB CLI (eb migrate) workflow:

1. Install the EB CLI on either your source IIS server or a bastion host.

2. Run eb migrate to discover IIS applications.

3. The command packages your applications and configurations.

4. An Elastic Beanstalk environment is created with appropriate resources.

5. Your applications are deployed to the new environment.

6. You can immediately manage your applications using Elastic Beanstalk tools.

Amazon Application Migration Service workflow:

1. Install the Amazon Replication Agent on source servers.

2. Configure and test data replication.

3. Launch test instances to verify functionality.

4. Schedule cutover to Amazon.

5. Launch production instances.

6. Execute post-launch actions to optimize for cloud.

7. If Elastic Beanstalk is the target platform, additional configuration is required to integrate with
Elastic Beanstalk.

Conclusion

Elastic Beanstalk is the preferred destination for Windows platform applications on Amazon,
offering a managed environment that simplifies deployment, scaling, and management. The eb
migrate command provides a direct path to Elastic Beanstalk for IIS applications, with automatic
discovery and configuration that preserves your application settings.

While Amazon Application Migration Service offers powerful capabilities for large-scale server
migrations, it requires additional steps to integrate with Elastic Beanstalk. For most IIS application
migrations where Elastic Beanstalk is the target platform, eb migrate offers a more streamlined
approach that aligns with Elastic Beanstalk's managed service model.

Migration workflow comparison 1651

Amazon Elastic Beanstalk Developer Guide

Choose the migration approach that best fits your specific requirements, considering factors such
as scale, complexity, and your desired end-state architecture on Amazon.

For more information about Amazon Application Migration Service, see What is Amazon
Application Migration Service? in the Amazon Application Migration Service User Guide.

Conclusion 1652

https://docs.aws.amazon.com/mgn/latest/ug/what-is-application-migration-service.html
https://docs.aws.amazon.com/mgn/latest/ug/what-is-application-migration-service.html

Amazon Elastic Beanstalk Developer Guide

Troubleshooting your Elastic Beanstalk environment

This chapter provides guidance for troubleshooting issues with your Elastic Beanstalk environment.
It provides the following information.

• An introduction to the Amazon Systems Manager tool, plus a procedure to run a predefined
Elastic Beanstalk runbook that outputs troubleshooting steps and recommendations.

• General guidance for actions you can take and resources you can view if your environment status
degrades.

• More specific troubleshooting tips by subject category.

Note

If the health of your environment changes to red, we recommend that you first use the
Amazon Systems Manager tool that includes predefined runbooks to troubleshoot Elastic
Beanstalk. For more information see the Using the Systems Manager tool.

Topics

• Using Amazon Systems Manager Elastic Beanstalk runbooks

• General guidance for troubleshooting your Elastic Beanstalk environment

• Environments that access secrets and parameters with environment variables

• Environment creation and instance launches

• Deployments

• Health

• Configuration

• Troubleshooting Docker containers

• FAQ

• Common Errors

• Deployment errors

1653

Amazon Elastic Beanstalk Developer Guide

Using Amazon Systems Manager Elastic Beanstalk runbooks

You can use Systems Manager to troubleshoot your Elastic Beanstalk environments. To help
you get started quickly, Systems Manager provides predefined Automation runbooks for Elastic
Beanstalk. An Automation runbook is a type of Systems Manager document that defines actions to
perform on your environment's instances and other Amazon resources.

The document AWSSupport-TroubleshootElasticBeanstalk is an Automation runbook
designed to help identify a number of common issues that can degrade your Elastic Beanstalk
environment. To do so, it checks components of your environment, including the following: EC2
instances, the VPC, Amazon CloudFormation stack, load balancers, Auto Scaling groups, and
network configuration associated with security group rules, route tables, and ACLs.

It also provides an option to upload bundled log files from your environment to Amazon Support.

For more information, see AWSSupport-TroubleshootElasticBeanstalk in the Amazon
Systems Manager Automation runbook reference.

Use Systems Manager to run AWSSupport-TroubleshootElasticBeanstalk runbook

Note

Run this procedure in the same Amazon Web Services Region where your Elastic Beanstalk
environment is located.

1. Open the Amazon Systems Manager console.

2. From the navigation pane, in the Change Management section, choose Automation.

3. Choose Execute automation.

4. On the Owned by Amazon tab, in the Automation document search box, enter AWSSupport-
TroubleshootElasticBeanstalk.

5. Select the AWSSupport-TroubleshootElasticBeanstalk card, then choose Next.

6. Select Execute.

7. In the Input parameters section:

a. From the AutomationAssumeRole dropdown, select the ARN of the role that allows
Systems Manager to perform actions on your behalf.

b. For ApplicationName, enter the name of the Elastic Beanstalk application.

Using the Systems Manager tool 1654

https://docs.amazonaws.cn/systems-manager-automation-runbooks/latest/userguide/automation-awssupport-troubleshoot-elastic-beanstalk.html
https://console.amazonaws.cn/systems-manager/home

Amazon Elastic Beanstalk Developer Guide

c. For Environment Name, enter the Elastic Beanstalk environment.

d. (Optional) For S3UploaderLink, enter a link if an Amazon Support Engineer has provided
you an S3 link for log collection.

8. Choose Execute.

If any of the steps fail, select the link under the Step ID column for the step that failed.
This displays an Execution detail page for the step. The VerificationErrorMessage
section will display a summary of the steps that require attention. For example, the
IAMPermissionCheck could display a Warning message. In this case, you could check that
the role selected in the AutomationAssumeRole dropdown has the necessary permissions.

After all of the steps successfully complete, the output gives troubleshooting steps and
recommendations to restore your environment to a healthy state.

General guidance for troubleshooting your Elastic Beanstalk
environment

Error messages can appear on the Events page in the console, in logs, or on the Health page. You
can also take actions to recover from a degraded environment that was caused by a recent change.
If the health of your environment changes to Red, try the following:

• If an operation on your environment returns an error that contains the text The stack
stack_id associated with environment environment-ID is in stack-
status state, see Recovering your Elastic Beanstalk environment from an invalid state for
troubleshooting help.

• If an operation on your environment returns an error that contains the text Environment
environment-name associated CloudFormation stack stack_arn does not
exist, terminate your environment and create another one.

• Review recent environment events. Messages from Elastic Beanstalk about deployment, load,
and configuration issues often appear here.

• Review recent environment change history. Change history lists all of the configuration changes
made to your environments and includes other information, such as which IAM user made
changes and which configuration parameters were set.

• Pull logs to view recent log file entries. Web server logs contain information about incoming
requests and errors.

General guidance 1655

Amazon Elastic Beanstalk Developer Guide

• Connect to an instance and check system resources.

• Roll back to a previous working version of the application.

• Undo recent configuration changes or restore a saved configuration.

• Deploy a new environment. If the environment appears healthy, perform a CNAME swap to route
traffic to the new environment and continue to debug the previous one.

Environments that access secrets and parameters with
environment variables

Event: Instance deployment failed to get one or more secrets

This message indicates that Elastic Beanstalk was not able to fetch one or more of the secrets
specified during your application deployment.

• Check that the resources specified by the ARN values in your environment variable configuration
exist.

• Confirm that your Elastic Beanstalk EC2 instance profile role has the required IAM permissions to
access the resources.

• If this event was triggered through the RestartAppServer operation, once the issue is fixed,
retry the RestartAppServer call to resolve the issue.

• If the event was triggered through an UpdateEnvironment call, retry the
UpdateEnvironment operation.

For examples of these commands, see Amazon CLI examples for Elastic Beanstalk. For more
information about the API actions for these operations, see the Amazon Elastic Beanstalk API
Reference.

Event: Instance deployment detected one or more multiline environment values, which are not
supported for this platform

Multiline variables are not supported for Amazon Linux 2 platforms, excluding Docker and ECS
managed Docker platforms. For available options to proceed, see Multiline values.

Event: CreateEnvironment fails when a secret is specified

When CreateEnvironment fails and you have secrets as environment variables, you need to
address the underlying issue and then use UpdateEnvironment to complete the environment

Environment variables for secrets 1656

https://docs.amazonaws.cn/cli/latest/userguide/cli_elastic-beanstalk_code_examples.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/

Amazon Elastic Beanstalk Developer Guide

setup. Do not use RestartAppServer, as it will not be sufficient to bring the environment up in
this situation. For examples of these commands, see Amazon CLI examples for Elastic Beanstalk. For
more information about the API actions for these operations, see the Amazon Elastic Beanstalk API
Reference.

Environment creation and instance launches

Event: Failed to Launch Environment

This event occurs when Elastic Beanstalk attempts to launch an environment and encounters
failures along the way. Previous events on the Events page will alert you to the root cause of this
issue.

Event: Create environment operation is complete, but with command timeouts. Try increasing the
timeout period.

Your application may take a long time to deploy if you use configuration files that run commands
on the instance, download large files, or install packages. Increase the command timeout to give
your application more time to start running during deployments.

Event: The following resource(s) failed to create: [AWSEBInstanceLaunchWaitCondition]

This message indicates that your environment's Amazon EC2 instances did not communicate to
Elastic Beanstalk that they were launched successfully. This can occur if the instances do not have
Internet connectivity. If you configured your environment to launch instances in a private VPC
subnet, ensure that the subnet has a NAT to allow the instances to connect to Elastic Beanstalk.

Event: A Service Role is required in this region. Please add a Service Role option to the environment.

Elastic Beanstalk uses a service role to monitor the resources in your environment and support
managed platform updates. See Managing Elastic Beanstalk service roles for more information.

Deployments

Issue: Application becomes unavailable during deployments

Because Elastic Beanstalk uses a drop-in upgrade process, there might be a few seconds of
downtime. Use rolling deployments to minimize the effect of deployments on your production
environments.

Event: Failed to create the Amazon Elastic Beanstalk application version

Environment creation 1657

https://docs.amazonaws.cn/cli/latest/userguide/cli_elastic-beanstalk_code_examples.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
https://docs.amazonaws.cn/elasticbeanstalk/latest/api/

Amazon Elastic Beanstalk Developer Guide

Your application source bundle may be too large, or you may have reached the application version
quota.

Event: Update environment operation is complete, but with command timeouts. Try increasing the
timeout period.

Your application may take a long time to deploy if you use configuration files that run commands
on the instance, download large files, or install packages. Increase the command timeout to give
your application more time to start running during deployments.

Health

Event: CPU Utilization Exceeds 95.00%

Try running more instances, or choose a different instance type.

Event: Elastic Load Balancer awseb-myapp Has Zero Healthy Instances

If your application appears to be working, make sure that your application’s health check URL is
configured correctly. If not, check the Health screen and environment logs for more information.

Event: Elastic Load Balancer awseb-myapp Cannot Be Found

Your environment's load balancer may have been removed out-of-band. Only make changes to
your environment's resources with the configuration options and extensibility provided by Elastic
Beanstalk. Rebuild your environment or launch a new one.

Event: EC2 Instance Launch Failure. Waiting for a New EC2 Instance to Launch...

Availability for your environment's instance type may be low, or you may have reached the instance
quota for your account. Check the service health dashboard to ensure that the Elastic Compute
Cloud (Amazon EC2) service is green, or request a quota increase.

Configuration

Event: The stack stack_id associated with environment environment-ID is in stack-status
state

The underlying Amazon CloudFormation stack of your environment may be in a *_FAILED
status. This status must be remedied in order to continue Elastic Beanstalk operations on your

Health 1658

http://status.aws.amazon.com/
https://console.amazonaws.cn/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-ec2-instances

Amazon Elastic Beanstalk Developer Guide

environment. For more information, see Recovering your Elastic Beanstalk environment from an
invalid state.

Event: You cannot configure an Elastic Beanstalk environment with values for both the Elastic Load
Balancing Target option and Application Healthcheck URL option

The Target option in the aws:elb:healthcheck namespace is deprecated. Remove the Target
option namespace) from your environment and try updating again.

Event: ELB cannot be attached to multiple subnets in the same AZ

This message can be seen if you try to move a load balancer between subnets in the same
Availability Zone. Changing subnets on the load balancer requires moving it out of the original
availability zone(s) and then back into the original with the desired subnets. During the process, all
of your instances will be migrated between AZs, causing significant downtime. Instead, consider
creating a new environment and perform a CNAME swap.

Troubleshooting Docker containers

Event: Failed to pull Docker image :latest: Invalid repository name (), only [a-z0-9-_.] are allowed. Tail
the logs for more details.

Check the syntax of the dockerrun.aws.json file using a JSON validator. Also verify the
dockerfile contents against the requirements described in Preparing your Docker image for
deployment to Elastic Beanstalk

Event: No EXPOSE directive found in Dockerfile, abort deployment

The Dockerfile or the dockerrun.aws.json file does not declare the container port. Use the
EXPOSE instruction (Dockerfile) or Ports block (dockerrun.aws.json file) to expose a port
for incoming traffic.

Event: Failed to download authentication credentials repository from bucket name

The dockerrun.aws.json provides an invalid EC2 key pair and/or S3 bucket for the
.dockercfg file. Or, the instance profile does not have GetObject authorization for the S3 bucket.
Verify that the .dockercfg file contains a valid S3 bucket and EC2 key pair. Grant permissions
for the action s3:GetObject to the IAM role in the instance profile. For details, go to Managing
Elastic Beanstalk instance profiles

Event: Activity execution failed, because: WARNING: Invalid auth configuration file

Docker 1659

Amazon Elastic Beanstalk Developer Guide

Your authentication file (config.json) is not formatted correctly. See Using images from a
private repository in Elastic Beanstalk

FAQ

Question: How can I change my application URL from myapp.us-west-2.elasticbeanstalk.com to
www.myapp.com?

In a DNS server, register a CNAME record such as www.mydomain.com CNAME
mydomain.elasticbeanstalk.com.

Question: How do I specify a specific Availability Zone for my Elastic Beanstalk application?

You can pick a specific Availability Zone by using the APIs, CLI, Eclipse plugin, or Visual Studio
plugin. For instructions about using the Elastic Beanstalk console to specify an Availability Zone,
see Auto Scaling your Elastic Beanstalk environment instances.

Question: How do I change my environment's instance type?

To change your environment's instance type go to the environment configuration page and choose
Edit in the Instances configuration category. Then, select a new instance type and choose Apply
to update your environment. After this, Elastic Beanstalk terminates all running instances and
replaces them with new ones.

Question: How do I determine if anyone made configuration changes to an environment?

To see this information, in the navigation pane of the Elastic Beanstalk console choose Change
history to display a list of configuration changes for all environments. This list includes the date
and time of the change, the configuration parameter and value it was changed to, and the IAM user
that made the change. For more information, see Change history.

Question: Can I prevent Amazon EBS volumes from being deleted when instances are terminated?

Instances in your environment use Amazon EBS for storage; however, the root volume is deleted
when an instance is terminated by Auto Scaling. We don'trecommend that you store state or
other data on your instances. If needed, you can prevent volumes from being deleted with the
Amazon CLI: $ aws ec2 modify-instance-attribute -b '/dev/sdc=<vol-id>:false as
described in the Amazon CLI Reference.

Question: How do I delete personal information from my Elastic Beanstalk application?

FAQ 1660

https://docs.amazonaws.cn/cli/latest/reference/ec2/modify-instance-attribute.html

Amazon Elastic Beanstalk Developer Guide

Amazon resources that your Elastic Beanstalk application uses might store personal information.
When you terminate an environment, Elastic Beanstalk terminates the resources that it created.
Resources you added using configuration files are also terminated. However, if you created Amazon
resources outside of your Elastic Beanstalk environment and associated them with your application,
you might need to manually check that personal information that your application might have
stored isn't retained. Throughout this developer guide, whenever we discuss creating additional
resources, we also mention when you should consider deleting them.

Common Errors

This topic lists common error messages encountered when using the EB CLI and possible solutions.
If you encounter an error message not shown here, use the Feedback links to let us know about it.

ERROR: An error occurred while handling git command. Error code: 128 Error: fatal: Not a valid
object name HEAD

Cause: This error message is shown when you have initialized a Git repository but have not
yet committed. The EB CLI looks for the HEAD revision when your project folder contains a Git
repository.

Solution: Add the files in your project folder to the staging area and commit:

~/my-app$ git add .
~/my-app$ git commit -m "First commit"

ERROR: This branch does not have a default environment. You must either specify an
environment by typing "eb status my-env-name" or set a default environment by typing "eb
use my-env-name".

Cause: When you create a new branch in git, it is not attached to an Elastic Beanstalk environment
by default.

Solution: Run eb list to see a list of available environments. Then run eb use env-name to use one
of the available environments.

ERROR: 2.0+ Platforms require a service role. You can provide one with --service-role option

Cause: If you specify an environment name with eb create (for example, eb create my-env), the EB
CLI will not attempt to create a service role for you. If you don't have the default service role, the
above error is shown.

Troubleshooting deployments 1661

Amazon Elastic Beanstalk Developer Guide

Solution: Run eb create without an environment name and follow the prompts to create the
default service role.

Deployment errors

Your Elastic Beanstalk deployment might response with a 404 (if your application failed to launch)
or 500 (if your application fails during runtime) response. To troubleshoot many common issues,
you can use the EB CLI to check the status of your deployment, view its logs, gain access to your
EC2 instance with SSH, or to open the Amazon Management Console page for your application
environment.

To use the EB CLI to help troubleshoot your deployment

1. Run eb status to see the status of your current deployment and health of your EC2 hosts. For
example:

$ eb status --verbose

Environment details for: python_eb_app
 Application name: python_eb_app
 Region: us-west-2
 Deployed Version: app-150206_035343
 Environment ID: e-wa8u6rrmqy
 Platform: 64bit Amazon Linux 2014.09 v1.1.0 running Python 2.7
 Tier: WebServer-Standard-
 CNAME: python_eb_app.elasticbeanstalk.com
 Updated: 2015-02-06 12:00:08.557000+00:00
 Status: Ready
 Health: Green
 Running instances: 1
 i-8000528c: InService

Note

Using the --verbose switch provides information about the status of your running
instances. Without it, eb status will print only general information about your
environment.

2. Run eb health to view health information about your environment:

Deployment errors 1662

Amazon Elastic Beanstalk Developer Guide

$ eb health --refresh
 elasticBeanstalkExa-env Degraded
 2016-03-28 23:13:20
WebServer
 Ruby 2.1 (Puma)
 total ok warning degraded severe info pending unknown
 5 2 0 2 1 0 0 0

 instance-id status cause
 Overall Degraded Incorrect application version found on 3 out of 5
 instances. Expected version "Sample Application" (deployment 1).
 i-d581497d Degraded Incorrect application version "v2" (deployment 2).
 Expected version "Sample Application" (deployment 1).
 i-d481497c Degraded Incorrect application version "v2" (deployment 2).
 Expected version "Sample Application" (deployment 1).
 i-136e00c0 Severe Instance ELB health has not been available for 5 minutes.
 i-126e00c1 Ok
 i-8b2cf575 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75
 p50 p10
 Overall 646.7 100.0 0.0 0.0 0.0 0.003 0.002 0.001
 0.001 0.000
 i-dac3f859 167.5 1675 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-05013a81 161.2 1612 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-04013a80 0.0 - - - - - - -
 - -
 i-3ab524a1 155.9 1559 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-bf300d3c 162.1 1621 0 0 0 0.003 0.002 0.001
 0.001 0.000

 instance-id type az running load 1 load 5 user% nice%
 system% idle% iowait%
 i-d581497d t2.micro 1a 25 mins 0.16 0.1 7.0 0.0
 1.7 91.0 0.1
 i-d481497c t2.micro 1a 25 mins 0.14 0.1 7.2 0.0
 1.6 91.1 0.0
 i-136e00c0 t2.micro 1b 25 mins 0.0 0.01 0.0 0.0
 0.0 99.9 0.1

Deployment errors 1663

Amazon Elastic Beanstalk Developer Guide

 i-126e00c1 t2.micro 1b 25 mins 0.03 0.08 6.9 0.0
 2.1 90.7 0.1
 i-8b2cf575 t2.micro 1c 1 hour 0.05 0.41 6.9 0.0
 2.0 90.9 0.0

 instance-id status id version ago
 deployments
 i-d581497d Deployed 2 v2 9 mins
 i-d481497c Deployed 2 v2 7 mins
 i-136e00c0 Failed 2 v2 5 mins
 i-126e00c1 Deployed 1 Sample Application 25 mins
 i-8b2cf575 Deployed 1 Sample Application 1 hour

The above example shows an environment with five instances where the deployment of
version "v2" failed on the third instance. After a failed deployment, the expected version is
reset to the last version that succeeded, which in this case is "Sample Application" from the
first deployment. See Using the EB CLI to monitor environment health for more information.

3. Run eb logs to download and view the logs associated with your application deployment.

$ eb logs

4. Run eb ssh to connect with the EC2 instance that's running your application and examine
it directly. On the instance, your deployed application can be found in the /opt/python/
current/app directory, and your Python environment will be found in /opt/python/run/
venv/.

5. Run eb console to view your application environment on the Amazon Management Console.
You can use the web interface to easily examine various aspects of your deployment, including
your application's configuration, status, events, logs. You can also download the current or
past application versions that you've deployed to the server.

Deployment errors 1664

http://www.amazonaws.cn/console/

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk resources

The following related resources can help you as you work with this service.

• Elastic Beanstalk API Reference A comprehensive description of all SOAP and Query APIs.
Additionally, it contains a list of all SOAP data types.

• elastic-beanstalk-samples on GitHub – A GitHub repository with Elastic Beanstalk sample
configuration files (.ebextensions). The repository's README.md file has links to additional
GitHub repositories with sample applications.

• Elastic Beanstalk Technical FAQ – The top questions developers have asked about this product.

• Amazon Elastic Beanstalk Release Notes – Details about new features, updates, and fixes in
Elastic Beanstalk service, platform, console, and EB CLI releases.

• Getting Started Resource Center – Learn how to set up your Amazon Web Services account, join
the Amazon community, and launch your first application.

• Amazon Web Services Support Center – The hub for creating and managing your Amazon Web
Services Support cases. Also includes links to other helpful resources, such as forums, technical
FAQs, service health status, and Amazon Trusted Advisor.

• Amazon Web Services Support – The primary webpage for information about Amazon Web
Services Support, a one-on-one, fast-response support channel to help you build and run
applications in the cloud.

• Contact Us – A central contact point for inquiries concerning Amazon billing, account, events,
abuse, and other issues.

• Amazon Site Terms – Detailed information about our copyright and trademark; your account,
license, and site access; and other topics.

Sample applications

The following are download links to the sample applications that are deployed as part of Learn
how to get started with Elastic Beanstalk.

Sample applications 1665

https://docs.amazonaws.cn/elasticbeanstalk/latest/api/
https://github.com/awsdocs/elastic-beanstalk-samples/
http://www.amazonaws.cn/elasticbeanstalk/faqs/
https://docs.amazonaws.cn/elasticbeanstalk/latest/relnotes/
http://www.amazonaws.cn/getting-started/?ref=docs_id=res1
https://console.amazonaws.cn/support/home#/
http://www.amazonaws.cn/support-plans/
http://www.amazonaws.cn/contact-us/
http://www.amazonaws.cn/terms/

Amazon Elastic Beanstalk Developer Guide

Note

Some samples use features that may have been released since the release of the platform
you are using. If the sample fails to run, try updating your platform to a current version, as
described in the section called “Supported platforms”.

• Docker – docker_cn.zip

• Multicontainer Docker – docker-multicontainer-v2.zip

• Preconfigured Docker (Glassfish) – docker-glassfish-v1.zip

• Go – go.zip

• Corretto – corretto.zip

• Tomcat – tomcat.zip

• .NET Core on Linux – dotnet-core-linux.zip

• .NET Core – dotnet-asp-windows.zip

• Node.js – nodejs.zip

• PHP – php.zip

• Python – python.zip

• Ruby – ruby.zip

Amazon SDK for Java

The Amazon SDK for Java provides a Java API you can use to build applications that use Amazon
infrastructure services. With the Amazon SDK for Java, you can get started in minutes with a single,
downloadable package that includes the Amazon Java library, code examples, and documentation.

The Amazon SDK for Java requires the J2SE Development Kit. You can download the latest Java
software from http://developers.sun.com/downloads/. The SDK also requires Apache Commons
(Codec, HTTPClient, and Logging) and Saxon-HE third-party packages, which are included in the
third-party directory of the SDK.

For more information, see Amazon SDK for Java. For more information about the SDK, example
code, documentation, tools, and additional resources, see the Java on Amazon Developer Center.

Amazon SDK for Java 1666

samples/docker_cn.zip
samples/docker-multicontainer-v2.zip
samples/docker-glassfish-v1.zip
samples/go.zip
samples/corretto.zip
samples/tomcat.zip
samples/dotnet-core-linux.zip
samples/dotnet-asp-windows.zip
samples/nodejs.zip
samples/php.zip
samples/python.zip
samples/ruby.zip
http://developers.sun.com/downloads/
http://www.amazonaws.cn/sdk-for-java/
https://www.amazonaws.cn/developer/language/java

Amazon Elastic Beanstalk Developer Guide

Amazon SDK for .NET

With the Amazon SDK for .NET, you can get started quickly with a single, downloadable package
that includes the Amazon .NET library, code examples, and documentation.

For more information, see Amazon SDK for .NET. For supported .NET Framework and Visual Studio
versions, see the Amazon SDK for .NET Developer Guide.

For more information about the SDK, example code, documentation, tools, and additional
resources, see the .NET on Amazon Developer Center.

Amazon Toolkit for Visual Studio

With the Amazon Toolkit for Visual Studio plug-in, you can deploy an existing .NET application to
Elastic Beanstalk. You can also create projects using the Amazon templates that are preconfigured
with the Amazon SDK for .NET.

For prerequisite and installation information, see the Amazon Toolkit for Visual Studio. To get
started creating your Elastic Beanstalk application using Visual Studio, see Deploying .NET
Windows applications with Elastic Beanstalk.

Amazon SDK for JavaScript in Node.js

With the Amazon SDK for JavaScript in Node.js, you can get started quickly with a single,
downloadable package that includes the Amazon Node.js library, code examples, and
documentation.

For more information, see the Amazon SDK for JavaScript in Node.js.

Amazon SDK for PHP

With the Amazon SDK for PHP, you can get started quickly with a single, downloadable package
that includes the Amazon PHP library, code examples, and documentation.

For more information, see the Amazon SDK for PHP. For more information about the SDK, example
code, documentation, tools, and additional resources, see the PHP on Amazon Developer Center.

Amazon SDK for .NET 1667

http://www.amazonaws.cn/sdk-for-net/
https://docs.amazonaws.cn/sdk-for-net/latest/developer-guide/
https://www.amazonaws.cn/developer/language/net
http://www.amazonaws.cn/visualstudio/
http://www.amazonaws.cn/sdk-for-node-js/
http://www.amazonaws.cn/sdk-for-php/
https://www.amazonaws.cn/developer/language/php

Amazon Elastic Beanstalk Developer Guide

Amazon SDK for Python (Boto)

With the Amazon SDK for Python (Boto), you can get started quickly with a single, downloadable
package that includes the Amazon Python library, code examples, and documentation. You can
build Python applications on top of APIs that take the complexity out of coding directly against
web service interfaces.

The all-in-one library provides Python developer-friendly APIs that hide many of the lower-level
tasks associated with programming for the Amazon Cloud, including authentication, request
retries, and error handling. The SDK provides practical examples in Python for how to use the
libraries to build applications.

For information about Boto, example code, documentation, tools, and additional resources, see the
Python on Amazon Developer Center.

Amazon SDK for Ruby

With the Amazon Ruby library, code examples, and documentation, you can build Ruby
applications on top of APIs that take the complexity out of coding directly against web services
interfaces.

The all-in-one library provides Ruby developer-friendly APIs that hide many of the lower-level
tasks associated with programming for the Amazon Cloud, including authentication, request
retries, and error handling. The SDK provides practical examples in Ruby for how to use the
libraries to build applications.

For information about the SDK, example code, documentation, tools, and additional resources, see
the Ruby on Amazon Developer Center.

Amazon SDK for Python (Boto) 1668

http://www.amazonaws.cn/python/
http://www.amazonaws.cn/ruby/

Amazon Elastic Beanstalk Developer Guide

Document history

The following table describes the important changes to the Amazon Elastic Beanstalk Developer
Guide since April 2024.

Change Description Date

Revised topic: What is
Amazon Elastic Beanstalk?

New architecture diagram and
condensed introduction for
clarity.

June 5, 2025

Revised topic: Setting up the
EB CLI

Condensed and focused
installation instructions.

June 5, 2025

Revised topic: PHP Quickstart Added a step to update and
redeploy the application and
improved some instructions.

June 5, 2025

Revised topic: Getting started
tutorial

Streamlined the Getting
Started tutorial for clarity and
quicker onboarding.

June 5, 2025

Reorganized content Reorganized content structure
to highlight essential
information and improve
discoverability.

June 5, 2025

New topic: Managing EC2
security groups

Elastic Beanstalk adds
support to opt out environme
nt from default EC2 security
group.

April 30, 2025

New topic: Migrating IIS
applications to Elastic
Beanstalk

Elastic Beanstalk adds feature
to migrate your Windows
IIS applications to Amazon
Elastic Beanstalk.

April 18, 2025

1669

https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/Welcome.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/Welcome.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/eb-cli3.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/eb-cli3.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/php-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/GettingStarted.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/GettingStarted.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/Welcome.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-features.managing.ec2.instances.sg.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-features.managing.ec2.instances.sg.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/dotnet-migrating-applications.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/dotnet-migrating-applications.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/dotnet-migrating-applications.html

Amazon Elastic Beanstalk Developer Guide

New topic: Using Elastic
Beanstalk with Amazon
Secrets Manager and Amazon
Systems Manager Parameter
Store

Elastic Beanstalk adds
support to reference Amazon
Secrets Manager secrets and
Amazon Systems Manager
Parameter Store parameters
with environment variables.

March 31, 2025

Amazon managed policy
updates for AWSElasti
cBeanstalkManagedU
pdatesCustomerRole
Policy .

Updated permissions in
Amazon managed policy.

February 27, 2025

Launch configurations
deprecated in favor of launch
templates

Revised this topic to explain
how Elastic Beanstalk
environments are affected
by Amazon EC2 Auto Scaling
deprecation of launch
configurations in favor of
launch templates. We also
revised other content related
to launch configurations and
launch templates.

January 23, 2025

New topic: Using EC2 Fast
Launch with Windows
platform branches

Elastic Beanstalk Windows
platform releases include
base AMIs with EC2 Fast
Launch enabled.

January 22, 2025

New topic: Spot Instance
allocation strategy

Elastic Beanstalk adds
support for Spot Allocation
Strategy configuration during
environment creation.

January 15, 2025

AdministratorAcces
s-AWSElasticBeanst
alk Amazon managed policy

Updated permissions in
Amazon managed policy.

December 11, 2024

1670

https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/AWSHowTo.secrets.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/AWSHowTo.secrets.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/AWSHowTo.secrets.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/AWSHowTo.secrets.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/AWSHowTo.secrets.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/environments-cfg-autoscaling-launch-templates.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/environments-cfg-autoscaling-launch-templates.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/environments-cfg-autoscaling-launch-templates.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/dotnet-ec2fastlaunch.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/dotnet-ec2fastlaunch.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/dotnet-ec2fastlaunch.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/environments-cfg-autoscaling-spot-allocation-strategy.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/environments-cfg-autoscaling-spot-allocation-strategy.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html

Amazon Elastic Beanstalk Developer Guide

Recommendations for
Graviton arm64 first wave
environments to Archived
content chapter

Moved EB Recommendations
for Graviton arm64 first wave
environments to Archived
content chapter

October 5, 2024

Launch templates New topic: Launch templates
. This topic explains how
Amazon EC2 Auto Scaling is
phasing out launch configura
tions in favor of launch
templates.

October 1, 2024

QuickStartfor Python New topic: QuickStart for
Python

September 24, 2024

Required Amazon S3 bucket
permissions for restrictive
VPC endpoint policies

New topic: Required Amazon
S3 bucket permissions for
restrictive VPC endpoint
policies

September 18, 2024

QuickStart for Java on Tomcat New topic: QuickStart for Java
JSP application running on
Tomcat

September 12, 2024

QuickStart for Java New topic: QuickStart for Java September 12, 2024

Using the Amazon EC2
Systems Manager for Docker
private repositories

Reinstated topic: Using
the Amazon EC2 Systems
Manager for Docker private
repositories. Replaces topic
Using the Amazon Secrets
Manager for Docker private
repositories until Elastic
Beanstalk / SSM integration is
supported.

September 8, 2024

EB CLI 2.6 (retired) to
Archived content chapter

Moved EB CLI 2.6 (retired) to
Archived content chapter

August 15, 2024

1671

https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-features.managing.ec2.graviton-wave-1.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-features.managing.ec2.graviton-wave-1.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-features.managing.ec2.graviton-wave-1.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-features.managing.ec2.graviton-wave-1.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/environments-cfg-autoscaling-launch-templates.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/python-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/vpc-vpce.policy.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/vpc-vpce.policy.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/vpc-vpce.policy.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/tomcat-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/java-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/docker-configuration.remote-repo.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/docker-configuration.remote-repo.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/docker-configuration.remote-repo.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/eb-cli.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/eb-cli.html

Amazon Elastic Beanstalk Developer Guide

EB API (retired) to Archived
content chapter

Moved EB API (retired) to
Archived content chapter

August 15, 2024

Deploying Elastic Beanstalk
applications from Docker
containers

Updated and reorganized:
Deploying Elastic Beanstalk
applications from Docker
containers

August 15, 2024

Archived content New chapter: Archived
content

August 15, 2024

QuickStart for Windows
ASP.NET

New topic: QuickStart for
Windows ASP.NET

July 5, 2024

QuickStart for .NET Core on
Windows

New topic: QuickStart
for .NET Core on Windows

June 28, 2024

QuickStart for Docker New topic: QuickStart for
Docker

June 19, 2024

Preventing cross-environment
Amazon S3 bucket access

New topic: Preventing cross-
environment Amazon S3
bucket access

June 12, 2024

QuickStart for .NET Core on
Linux

New topic: QuickStart
for .NET Core on Windows

May 28, 2024

QuickStart for PHP New topic: QuickStart for PHP May 10, 2024

QuickStart for Node.js New topic: QuickStart for
Node.js

May 5, 2024

QuickStart for Go New topic: QuickStart for Go May 5, 2024

1672

https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-api-cli.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-api-cli.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create_deploy_docker.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create_deploy_docker.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create_deploy_docker.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/ebdg.archived-content.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/aspnet-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/aspnet-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/dotnet-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/dotnet-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/docker-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/AWSHowTo.iam.cross-env-s3-access.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/AWSHowTo.iam.cross-env-s3-access.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create-deploy-dotnet-core-linux.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create-deploy-dotnet-core-linux.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/php-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/nodejs-quickstart.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/go-quickstart.html

Amazon Elastic Beanstalk Developer Guide

Elastic Beanstalk platform
release schedule

Added new topic that includes
a schedule of Upcoming
platform branch releases.
Moved Retiring platform
branch schedule and Retired
platform branch history to
this topic.

May 1, 2024

AWSElasticBeanstal
kRoleCore Amazon
managed policy

Updated permissions in
Amazon managed policy.

April 30, 2024

AWSElasticBeanstal
kManagedUpdatesSer
viceRolePolicy Amazon
managed policy

Updated permissions in
Amazon managed policy.

April 30, 2024

AWSElasticBeanstal
kManagedUpdatesInt
ernalServiceRolePo
licy Amazon managed
policy

Updated permissions in
Amazon managed policy.

April 30, 2024

AWSElasticBeanstal
kMaintenance Amazon
managed policy

Updated permissions in
Amazon managed policy.

April 30, 2024

AWSElasticBeanstal
kInternalMaintenan
ceRolePolicy Amazon
managed policy

Updated permissions in
Amazon managed policy.

April 30, 2024

1673

https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/platforms-schedule.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/platforms-schedule.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/security-iam-awsmanpol.html

	Amazon Elastic Beanstalk
	Table of Contents
	What is Amazon Elastic Beanstalk?
	Supported platforms
	Application deploy workflow
	Pricing
	Next steps

	Learn how to get started with Elastic Beanstalk
	What you will build
	Step 1 - Create an application
	Step 2 - Deploy your application
	Step 3 - Explore the Elastic Beanstalk environment
	Troubleshooting with logs

	Step 4 - Update your application
	Step 5 - Scale your application
	Increase capacity settings
	Verify increased capacity

	Cleaning up your Elastic Beanstalk environment
	Next steps

	Setting up the EB command line interface (EB CLI) to manage Elastic Beanstalk
	Install EB CLI with setup script (recommended)
	Manually install the EB CLI
	Install the EB CLI in a virtual environment
	Install the EB CLI with homebrew
	Configure the EB CLI
	Ignoring files using .ebignore
	Using named profiles
	Deploying an artifact instead of the project folder
	Configuration settings and precedence
	Instance metadata

	Using the EB CLI with Git
	Associating Elastic Beanstalk environments with Git branches
	Deploying changes
	Using Git submodules
	Assigning Git tags to your application version

	EB CLI command reference
	Common options
	eb abort
	Description
	Syntax
	Options
	Output
	Example

	eb appversion
	Description
	Syntax
	Options
	Using the command interactively
	Output
	Examples

	eb clone
	Description
	Syntax
	Options
	Output
	Example

	eb codesource
	Description
	Syntax
	Options
	Output
	Examples

	eb config
	Description
	Syntax
	Options
	Output
	Examples

	eb console
	Description
	Syntax
	Options

	eb create
	Description
	Syntax
	Options
	Output
	Examples

	eb deploy
	Description
	Syntax
	Options
	Output
	Example

	eb events
	Description
	Syntax
	Options
	Output
	Example

	eb health
	Description
	Syntax
	Options
	Output
	Example

	eb init
	Description
	Syntax
	Options
	CodeBuild support
	Output
	Example

	eb labs
	Description

	eb list
	Description
	Syntax
	Options
	Output
	Example 1
	Example 2

	eb local
	Description
	Syntax
	Options
	Output
	Examples

	eb logs
	Description
	Syntax
	Options
	Output
	Examples

	eb migrate
	Description
	Syntax
	Subcommands
	explore
	cleanup

	Options
	Output
	Examples
	Basic Usage
	Advanced Configuration Examples
	Security Configuration Examples
	Remote Execution Examples

	eb open
	Description
	Syntax
	Options
	Output

	eb platform
	Description
	Using eb platform for custom platforms
	Syntax
	Options
	Common options
	Eb platform create
	Options

	Eb platform delete
	Options

	Eb platform events
	Options

	Eb platform init
	Options

	Eb platform list
	Options

	Eb platform logs
	Options

	Eb platform status
	Options

	Eb platform use
	Options

	Using eb platform for environments
	Syntax
	Options
	Example 1
	Example 2
	Example 3

	eb printenv
	Description
	Syntax
	Options
	Output
	Example

	eb restore
	Description
	Syntax
	Options
	Output
	Example

	eb scale
	Description
	Syntax
	Options
	Output
	Example

	eb setenv
	Description
	Syntax
	Options
	Output
	Example

	eb ssh
	Description
	Syntax
	Options
	Output
	Example

	eb status
	Description
	Syntax
	Options
	Output
	Example

	eb swap
	Description
	Syntax
	Options
	Output
	Examples

	eb tags
	Description
	Syntax
	Options
	Output
	Examples

	eb terminate
	Description
	Syntax
	Options
	Output
	Example

	eb upgrade
	Description
	Syntax
	Options
	Output
	Example

	eb use
	Description
	Syntax
	Options

	Understanding concepts in Elastic Beanstalk
	Application
	Application version
	Environment
	Environment tier
	Environment configuration
	Saved configuration
	Platform
	Elastic Beanstalk web server environments
	Elastic Beanstalk worker environments
	Design considerations for your Elastic Beanstalk applications
	Scalability
	Security
	Persistent storage
	Fault tolerance
	Content delivery
	Software updates and patching
	Connectivity

	Managing Elastic Beanstalk applications
	Elastic Beanstalk application management console
	Managing application versions
	Creating application versions
	Deleting application versions
	Configuring application version lifecycle settings
	Setting the application lifecycle settings in the console

	Tagging application versions
	Adding tags during application version creation
	Managing tags of an existing application version

	Create an Elastic Beanstalk application source bundle
	Creating a source bundle from the command line
	Creating a source bundle with Git
	Zipping files in Mac OS X Finder or Windows explorer
	Creating a source bundle for a .NET application
	Testing your source bundle

	Using the EB CLI with Amazon CodeBuild
	Creating an application
	Building and deploying your application code

	Tagging applications
	Adding tags during application creation
	Managing tags of an existing application

	Tagging Elastic Beanstalk application resources
	Resources you can tag
	Tag propagation to launch templates

	Creating environments in Elastic Beanstalk
	Using the Elastic Beanstalk environment management console
	Accessing the environment management console
	Environment overview pane
	Health
	Domain
	Environment id
	Application name
	Running version
	Platform

	Environment detail
	Configuration
	Events
	Health
	Logs
	Monitoring
	Alarms
	Managed updates
	Tags

	Environment actions
	Load configuration
	Save configuration
	Swap environment Domains (URLs)
	Clone environment
	Clone with latest platform
	Abort current operation
	Restart app servers
	Rebuild environment
	Terminate environment

	Creating an Elastic Beanstalk environment
	Create IAM Role for EC2 instance profile
	The create new environment wizard
	Wizard page
	Select a platform for the new environment
	Provide application code

	Wizard configuration page
	Choose a preset configuration
	Customize your configuration
	Software settings
	Instances
	Capacity
	Load balancer
	Rolling updates and deployments
	Security
	Create IAM Role for EC2 instance profile

	Monitoring
	Managed updates
	Notifications
	Network
	Database
	Tags
	Worker environment

	Clone an Elastic Beanstalk environment
	Amazon management console
	Elastic Beanstalk command line interface (EB CLI)

	Terminate an Elastic Beanstalk environment
	Elastic Beanstalk console
	Amazon CLI
	API

	Creating Elastic Beanstalk environments with the Amazon CLI
	Creating Elastic Beanstalk environments with the API
	Constructing a Launch Now URL
	URL parameters
	Example

	Creating and updating groups of Elastic Beanstalk environments
	Using the Compose Environments API

	Managing multiple Elastic Beanstalk environments as a group with the EB CLI
	Deploying applications to Elastic Beanstalk environments
	Choosing a deployment policy
	Deploying a new application version
	Redeploying a previous version
	Other ways to deploy your application
	Deployment policies and settings
	Configuring application deployments
	How rolling deployments work
	How traffic-splitting deployments work
	Deployment option namespaces

	Blue/Green deployments with Elastic Beanstalk

	Configuration changes
	Elastic Beanstalk rolling environment configuration updates
	Rolling updates versus rolling deployments
	Configuring rolling updates
	The aws:autoscaling:updatepolicy:rollingupdate namespace

	Immutable environment updates
	Configuring immutable updates
	The aws:autoscaling:updatepolicy:rollingupdate namespace

	Updating your Elastic Beanstalk environment's platform version
	Docker
	Multicontainer Docker
	Preconfigured Docker
	Go
	Java SE
	Java with Tomcat
	.NET on Windows server with IIS
	Node.js
	PHP
	Python
	Ruby
	Method 1 – Update your environment's platform version
	Method 2 – Perform a Blue/Green deployment
	Managed platform updates
	Permissions required to perform managed platform updates
	Managed update maintenance window
	Minor and patch version updates
	Immutable environment updates
	Managing managed updates
	Managed action option namespaces

	Migrating your application from a legacy platform version
	What new features are legacy platform versions missing?
	Why are some platform versions marked legacy?

	Migrating your Elastic Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2
	Migration from Amazon Linux 2 to Amazon Linux 2023
	Differences and compatibility
	General migration process
	More references to help plan your migration

	Migration from Amazon Linux AMI (AL1) to AL2 or AL2023
	Differences and compatibility
	General migration process
	More references to help plan your migration
	Considerations for all Linux platforms
	Platform specific considerations
	Docker
	Go
	Amazon Corretto
	Tomcat
	Node.js
	PHP
	Python
	Ruby

	Platform retirement FAQ
	1. What does retirement of a platform branch mean?
	2. Why has Amazon retired the AL1-based platforms branches?
	3. Which platform branches are retired?
	4. Which platforms are currently supported?
	5. Will Elastic Beanstalk remove or terminate any components of my environment after retirement?
	6. Can I submit a request to extend the retirement date?
	7. What are the workarounds if I can't complete my AL2 or AL2023 migration in time?
	8. What is the recommended process to migrate to AL2 or AL2023 platforms?
	9. If I have an environment running on a retired platform, what would be the impact?
	10. What happens 90 days after the retirement date?
	11. Can I create a new environment based on a retired platform?
	12. If I have an existing environment running on a retired platform branch, until when can I create a new environment based on the retired platform branch? Can I do so using the console, CLI or API?
	13. Can I clone or rebuild my environment which is based on retired platform?
	14. After the retirement date, what would happen to the Amazon resources of my Elastic Beanstalk environment that is based on a retired platform branch? For example, if the running EC2 instance gets terminated, would Elastic Beanstalk be able to launch a new AL1 based EC2 instance to maintain capacity?
	15. What are key differences between the AL2023/AL2 and Amazon Linux AMI (AL1) operating systems? How are the Elastic Beanstalk AL2023/AL2 platform branches affected?

	Canceling environment configuration updates and application deployments
	Rebuilding Elastic Beanstalk environments
	Rebuilding a running environment
	Rebuilding a terminated environment

	Environment types
	Load-balanced, scalable environment
	Single-instance environment
	Changing environment type

	Elastic Beanstalk worker environments
	The worker environment SQS daemon
	Dead-letter queues
	Periodic tasks
	Use Amazon CloudWatch for automatic scaling in worker environment tiers
	Configuring worker environments

	Creating links between Elastic Beanstalk environments
	Recovering your Elastic Beanstalk environment from an invalid state
	Addressing the error
	Why the error occurs

	Configuring Elastic Beanstalk environments
	Provisioned resources
	Environment configuration using the Elastic Beanstalk console
	Configuration page
	Navigating the configuration page

	Review changes page

	The Amazon EC2 instances for your Elastic Beanstalk environment
	Amazon EC2 instance types
	Configuring Amazon EC2 instances using the Elastic Beanstalk console
	Instances category settings
	Monitoring interval
	Root volume (boot device)
	Instance metadata service
	EC2 security groups

	Capacity category settings
	Instance types
	AMI ID

	Managing EC2 security groups
	Managing EC2 security groups in multi-instance environments
	Inbound rules for traffic

	Configuring Amazon EC2 security groups and instance types using the Amazon CLI
	Configuring EC2 security groups using the Amazon CLI
	Configuring EC2 with instance types using the Amazon CLI

	Configuring Amazon EC2 instances with namespace options
	Configuring the IMDS on your Elastic Beanstalk environment's instances
	Platform support for IMDS
	Choosing IMDS methods
	Configuring IMDS using the Elastic Beanstalk console
	The aws:autoscaling:launchconfiguration namespace

	Auto Scaling your Elastic Beanstalk environment instances
	Migrating your Elastic Beanstalk environment to launch templates
	Option settings for launch templates
	Confirm whether your environment has launch configurations or launch templates
	Required permissions for launch templates
	More about launch templates

	Spot Instance support for your Elastic Beanstalk environment
	Enabling Spot Instances for your environment
	Spot Instance allocation strategy
	Managing On-Demand instances and Spot instances
	Applying both sets of namespace options
	Examples of scaling options settings

	Capacity configuration for your Elastic Beanstalk environment
	Configuration using the console
	Configuration using namespace options
	The aws:autoscaling:asg namespace
	The aws:ec2:instances namespace

	Configuration using the Amazon CLI
	Configuration using the EB CLI

	Auto Scaling triggers for your Elastic Beanstalk environment
	Configuring Auto Scaling triggers
	The aws:autoscaling:trigger namespace

	Scheduled Auto Scaling actions for your Elastic Beanstalk environments
	Configuring scheduled actions
	The aws:autoscaling:scheduledaction namespace

	Auto Scaling health check setting for your Elastic Beanstalk environment

	Load balancer for your Elastic Beanstalk environment
	Configuring a Classic Load Balancer
	Introduction
	Configuring a Classic Load Balancer using the Elastic Beanstalk console
	Listeners
	Sessions
	Cross-zone load balancing
	Connection draining
	Health check

	Configuring a Classic Load Balancer using the EB CLI
	Classic Load Balancer configuration namespaces

	Configuring an Application Load Balancer
	Introduction
	Configuring an Application Load Balancer using the Elastic Beanstalk console
	Listeners
	Processes
	Definition
	Health check
	Sessions

	Rules
	Access log capture

	Example: Application Load Balancer with a secure listener and two processes
	Configuring an Application Load Balancer using the EB CLI
	Application Load Balancer namespaces

	Configuring a shared Application Load Balancer
	Introduction
	Configuring a shared Application Load Balancer using the Elastic Beanstalk console
	Shared Application Load Balancer
	Processes
	Definition
	Health check
	Sessions

	Rules

	Example: use a shared Application Load Balancer for a secure micro-service-based application
	Configuring a shared Application Load Balancer using the EB CLI
	Shared Application Load Balancer namespaces

	Configuring a Network Load Balancer
	Introduction
	Configuring a Network Load Balancer using the Elastic Beanstalk console
	Listeners
	Processes
	Definition
	Health check

	Example: Network Load Balancer for an environment with end-to-end encryption
	Configuring a Network Load Balancer using the EB CLI
	Network Load Balancer namespaces

	Configuring access logs

	Adding a database to your Elastic Beanstalk environment
	Database lifecycle
	Adding an Amazon RDS DB instance to your environment using the console
	Connecting to the database
	Configuring an integrated RDS DB instance using the console
	Configuring an integrated RDS DB instance using configuration files
	Decoupling an RDS DB instance using the console
	Decoupling an RDS DB instance using configuration files

	Your Amazon Elastic Beanstalk environment security
	Configuring your environment security
	Service role
	EC2 key pair
	IAM instance profile

	Environment security configuration namespaces

	Tagging resources in your Elastic Beanstalk environments
	Adding tags during environment creation
	Managing tags of an existing environment

	Environment variables and other software settings
	Configure platform-specific settings
	Configuring environment properties (environment variables)
	Software setting namespaces
	Accessing environment properties
	Configuring Amazon X-Ray debugging
	Configuring debugging
	The aws:elasticbeanstalk:xray namespace

	Viewing your Elastic Beanstalk environment logs
	Configuring instance log viewing
	Configuring environment health log viewing
	Log viewing namespaces

	Elastic Beanstalk environment notifications with Amazon SNS
	Configuring notifications using the Elastic Beanstalk console
	Configuring notifications using configuration options
	Configuring permissions to send notifications
	Permissions for a default topic
	Permissions for an external topic

	Configuring Amazon Virtual Private Cloud (Amazon VPC) with Elastic Beanstalk
	Configuring VPC settings in the Elastic Beanstalk console
	VPC
	Load balancer visibility
	Load balancer subnets
	Instance public IP address
	Instance subnets
	Database subnets

	The aws:ec2:vpc namespace
	Migrating Elastic Beanstalk environments from EC2-Classic to a VPC
	Why you should migrate
	Migrate an environment from EC2-Classic into a new Amazon account (recommended)
	Migrate an environment from EC2-Classic within your same Amazon account
	Migrate your environments to a custom VPC

	Your Elastic Beanstalk environment's Domain name

	Configuring Elastic Beanstalk environments (advanced)
	Configuration options
	Precedence
	Recommended values
	Setting configuration options before environment creation
	Configuration files (.ebextensions)
	Saved configurations
	Elastic Beanstalk console
	EB CLI
	Amazon CLI

	JSON document
	EB CLI configuration

	Setting configuration options during environment creation
	In the Elastic Beanstalk console
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using the new environment wizard

	Using the EB CLI
	Using configuration files (.ebextensions)
	Using saved configurations
	Using command line options

	Using the Amazon CLI
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using command line options

	Setting configuration options after environment creation
	The Elastic Beanstalk console
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using the Elastic Beanstalk console

	The EB CLI
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using eb config
	Using eb setenv

	The Amazon CLI
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using command line options

	General options for all environments
	aws:autoscaling:asg
	aws:autoscaling:launchconfiguration
	aws:autoscaling:scheduledaction
	aws:autoscaling:trigger
	aws:autoscaling:updatepolicy:rollingupdate
	aws:ec2:instances
	aws:ec2:vpc
	aws:elasticbeanstalk:application
	aws:elasticbeanstalk:application:environment
	aws:elasticbeanstalk:application:environmentsecrets
	aws:elasticbeanstalk:cloudwatch:logs
	aws:elasticbeanstalk:cloudwatch:logs:health
	aws:elasticbeanstalk:command
	aws:elasticbeanstalk:environment
	aws:elasticbeanstalk:environment:process:default
	aws:elasticbeanstalk:environment:process:process_name
	aws:elasticbeanstalk:environment:proxy:staticfiles
	aws:elasticbeanstalk:healthreporting:system
	aws:elasticbeanstalk:hostmanager
	aws:elasticbeanstalk:managedactions
	aws:elasticbeanstalk:managedactions:platformupdate
	aws:elasticbeanstalk:monitoring
	aws:elasticbeanstalk:sns:topics
	aws:elasticbeanstalk:sqsd
	aws:elasticbeanstalk:trafficsplitting
	aws:elasticbeanstalk:xray
	aws:elb:healthcheck
	aws:elb:loadbalancer
	aws:elb:listener
	aws:elb:listener:listener_port
	aws:elb:policies
	aws:elb:policies:policy_name
	aws:elbv2:listener:default
	aws:elbv2:listener:listener_port
	aws:elbv2:listenerrule:rule_name
	aws:elbv2:loadbalancer
	aws:rds:dbinstance

	Platform specific options
	Docker platform options
	Go platform options
	Amazon Linux AMI (pre-Amazon Linux 2) platform options
	Namespace: aws:elasticbeanstalk:container:golang:staticfiles

	Java SE platform options
	Amazon Linux AMI (pre-Amazon Linux 2) platform options
	Namespace: aws:elasticbeanstalk:container:java:staticfiles

	Java with Tomcat platform options
	.NET Core on Linux platform options
	.NET platform options
	Node.js platform options
	Amazon Linux AMI (pre-Amazon Linux 2) platform options
	Namespace: aws:elasticbeanstalk:container:nodejs
	Namespace: aws:elasticbeanstalk:container:nodejs:staticfiles

	PHP platform options
	Python platform options
	Amazon Linux AMI (pre-Amazon Linux 2) platform options
	Namespace: aws:elasticbeanstalk:container:python:staticfiles

	Ruby platform options

	Custom options

	Advanced environment customization with configuration files (.ebextensions)
	Option settings
	Syntax
	Examples

	Customizing software on Linux servers
	Packages
	Syntax
	Supported package formats
	Specifying versions
	Example snippet

	Groups
	Syntax
	Options
	Example snippet

	Users
	Syntax
	Options
	Example snippet

	Sources
	Syntax
	Supported formats
	Example snippet

	Files
	Syntax
	Options
	Example snippet

	Commands
	Syntax
	Options
	Example snippet

	Services
	Syntax
	Options
	Example snippet

	Container commands
	Syntax
	Options
	Example snippet

	Example: Using custom Amazon CloudWatch metrics
	.Ebextensions configuration file
	Permissions
	Viewing metrics in the CloudWatch console

	Customizing software on Windows servers
	Packages
	Syntax
	Examples

	Sources
	Syntax
	Supported formats
	Example

	Files
	Syntax
	Options
	Examples

	Commands
	Syntax
	Options
	Example

	Services
	Syntax
	Options
	Example

	Container commands
	Syntax
	Options
	Example

	Adding and customizing Elastic Beanstalk environment resources
	Modifying the resources that Elastic Beanstalk creates for your environment
	Other Amazon CloudFormation template keys
	Parameters
	Outputs
	Mappings

	Functions
	Ref
	Fn::GetAtt
	Fn::Join
	Fn::GetOptionSetting

	Custom resource examples
	Example: ElastiCache
	EC2-classic platforms
	EC2-VPC (default)
	EC2-VPC (custom)

	Example: SQS, CloudWatch, and SNS
	Example: DynamoDB, CloudWatch, and SNS

	Using Elastic Beanstalk saved configurations
	Tagging saved configurations
	Adding tags during saved configuration creation
	Managing tags of an existing saved configuration

	Environment manifest (env.yaml)
	Using a custom Amazon machine image (AMI) in your Elastic Beanstalk environment
	Creating a custom AMI
	Managing an environment with a custom AMI
	Platform updates
	Removing a custom AMI

	Cleaning up a custom AMI
	Preserving access to an Amazon Machine Image (AMI) for a retired platform
	Manual steps
	Standalone script
	Script source: copy_ami_and_update_env.sh

	Serving static files
	Configure static files using the console
	Configure static files using configuration options
	Amazon Linux AMI platform-specific namespaces

	Configuring HTTPS for your Elastic Beanstalk environment
	Server certificates
	Create and sign an X509 certificate
	Upload a certificate to IAM
	Storing private keys securely in Amazon S3

	Configuring HTTPS Termination at the load balancer
	Configuring a secure listener using the Elastic Beanstalk console
	Configuring a secure listener using a configuration file
	Configuring a security group

	Configuring HTTPS Termination at the instance
	Terminating HTTPS on EC2 instances running Docker
	Terminating HTTPS on EC2 instances running Go
	Terminating HTTPS on EC2 instances running Java SE
	Terminating HTTPS on EC2 instances running Node.js
	Terminating HTTPS on EC2 instances running PHP
	Terminating HTTPS on EC2 instances running Python
	Terminating HTTPS on EC2 instances running Ruby
	Configure HTTPS for Ruby with Puma
	Configure HTTPS for Ruby with Passenger

	Terminating HTTPS on EC2 instances running Tomcat
	Terminating HTTPS on Amazon EC2 instances running .NET Core on Linux
	Terminating HTTPS on Amazon EC2 instances running .NET

	Configuring end-to-end encryption in a load-balanced Elastic Beanstalk environment
	Configuring your environment's load balancer for TCP Passthrough
	Configuring HTTP to HTTPS redirection
	Configure your environment to handle HTTPS traffic
	Redirect HTTP traffic to HTTPS

	Elastic Beanstalk platforms
	Elastic Beanstalk platforms glossary
	Shared responsibility model for Elastic Beanstalk platform maintenance
	Elastic Beanstalk platform support policy
	Retired platform branches
	Beyond the 90 day grace period

	Elastic Beanstalk platform release schedule
	Planning resources
	Upcoming platform branch releases
	Retiring platform branch schedule
	Retired platform branch history
	Retired server and operation system history

	Elastic Beanstalk supported platforms
	Supported platforms and component history

	Elastic Beanstalk Linux platforms
	Supported Amazon Linux versions
	Amazon Linux 2023

	List of Elastic Beanstalk Linux platforms
	Instance deployment workflow
	Instance deployment workflow for ECS running on Amazon Linux 2 and later
	Platform script tools for your Elastic Beanstalk environments
	get-config
	get-config commands
	optionsettings – Configuration options
	environment – Environment properties
	container – On-instance configuration values
	addons – Add-on configuration values
	platformconfig – Constant configuration values

	get-config output options

	pkg-repo
	pkg-repo commands
	pkg-repo examples

	download-source-bundle (Amazon Linux AMI only)

	Extending Elastic Beanstalk Linux platforms
	Buildfile and Procfile
	Buildfile
	Procfile

	Platform hooks
	Application deployment platform hooks
	Configuration deployment platform hooks
	More about platform hooks

	Configuration files
	Reverse proxy configuration
	Configuring nginx
	Configuring Apache HTTPD

	Application example with extensions

	Deploying .NET Windows applications with Elastic Beanstalk
	QuickStart: Deploy a .NET Core on Windows application to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	EB CLI
	.NET Core on Windows

	Step 1: Create a .NET Core on Windows application
	Step 2: Run your application locally
	Step 3: Deploy your .NET Core on Windows application with the EB CLI
	Step 4: Run your application on Elastic Beanstalk
	Step 5: Clean up
	Amazon resources for your application
	Next steps
	Deploy with the Elastic Beanstalk console

	QuickStart: Deploy an ASP.NET application to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	Visual Studio
	Amazon Toolkit for Visual Studio

	Step 1: Create a ASP.NET application
	Step 2: Run your application locally
	Step 3: Deploy your ASP.NET application with the Amazon Toolkit for Visual Studio
	Step 4: Run your application on Elastic Beanstalk
	Step 5: Clean up
	Amazon resources for your application
	Next steps
	Deploy with the Elastic Beanstalk console

	Setting up your .NET development environment
	Installing an IDE
	Installing the Amazon Toolkit for Visual Studio

	Using the Elastic Beanstalk .NET Windows platform
	Configuring your .NET environment in the Elastic Beanstalk console
	Container options
	Log options
	Environment properties

	The aws:elasticbeanstalk:container:dotnet:apppool namespace
	Migrating across major versions of the Elastic Beanstalk Windows server platform
	What's new in major versions of the Windows server platform
	Windows server platform V2
	Windows server platform V1

	Migrating from earlier major versions of the Windows server platform
	From V1 to V2
	From pre-V1

	Running multiple applications and ASP.NET core applications with a deployment manifest
	.NET core apps
	Run multiple applications
	Configure application pools
	Define custom deployments
	Deployment manifest schema reference
	Manifest structure
	Top-level properties

	IIS configuration
	Application pools
	CPU configuration
	Recycling configuration

	Deployment types
	MSDeploy deployments
	MSDeploy parameters

	ASP.NET Core deployments
	Custom deployments

	Deployment scripts
	Script events
	Script properties

	Using EC2 Fast Launch with Windows platform branches
	Default EC2 Fast Launch availability
	Manually configuring EC2 Fast Launch

	Adding an Amazon RDS DB instance to your .NET application environment
	Adding a DB instance to your environment
	Downloading a driver
	Connecting to a database

	The Amazon Toolkit for Visual Studio
	Test locally
	Create an Elastic Beanstalk environment
	Terminating an environment
	Deploying to your environment
	Managing your Elastic Beanstalk application environments
	Changing environment configurations settings
	Configuring EC2 server instances using the Amazon toolkit for Visual Studio
	Amazon EC2 instance types
	Amazon EC2 security groups
	Amazon EC2 key pairs
	Monitoring interval
	Custom AMI ID

	Configuring Elastic Load Balancing using the Amazon toolkit for Visual Studio
	Ports
	Controlling the HTTP port
	Controlling the HTTPS port

	Health checks
	Sessions

	Configuring Auto Scaling using the Amazon toolkit for Visual Studio
	Launch the configuration
	Triggers

	Configuring notifications using Amazon toolkit for Visual Studio
	Configuring .NET containers using the Amazon toolkit for Visual Studio
	.NET container options
	Application settings

	Managing accounts
	

	Listing and connecting to server instances
	Monitoring application health
	Deploying Elastic Beanstalk applications in .NET using the deployment tool
	Prerequisites
	Deploy to Elastic Beanstalk

	Migrating your on-premises .NET application to Elastic Beanstalk
	Recommendations for Windows Server retired components on Elastic Beanstalk
	Windows Server 2012 R2 platform branches retired
	TLS 1.2 Compatibility

	Deploying .NET core (Linux) applications with Elastic Beanstalk
	QuickStart: Deploy a .NET Core on Linux application to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	EB CLI
	.NET Core on Linux

	Step 1: Create a .NET Core on Linux application
	Step 2: Run your application locally
	Step 3: Deploy your .NET Core on Linux application with the EB CLI
	Step 4: Run your application on Elastic Beanstalk
	Step 5: Clean up
	Amazon resources for your application
	Next steps
	Deploy with the Elastic Beanstalk console

	Setting up your .NET core on Linux development environment for Elastic Beanstalk
	Installing the .NET Core SDK
	Installing an IDE
	Installing the Amazon Toolkit for Visual Studio

	Using the Elastic Beanstalk .NET core on Linux platform
	.NET Core on Linux platform considerations
	Proxy server
	Application structure
	Platform configuration

	Configuring your .NET Core on Linux environment
	Log options
	Environment properties

	.NET Core on Linux configuration namespace
	Bundling applications for the .NET Core on Linux Elastic Beanstalk platform
	Examples

	Using a Procfile to configure your .NET Core on Linux Elastic Beanstalk environment
	Configuring the proxy server

	The Amazon Toolkit for Visual Studio - Working with .Net Core on Elastic Beanstalk
	Prerequisites
	Create a new application project
	Create an Elastic Beanstalk environment and deploy your application
	Terminating an environment
	Managing your Elastic Beanstalk application environments
	Changing environment configurations settings
	Configuring Amazon X-Ray using the Amazon toolkit for Visual Studio
	Configuring EC2 instances using the Amazon toolkit for Visual Studio
	Amazon EC2 instance types
	Amazon EC2 security groups
	Amazon EC2 key pairs
	Monitoring interval
	Custom AMI ID

	Configuring Elastic Load Balancing using the Amazon toolkit for Visual Studio
	Ports
	Controlling the HTTP port
	Controlling the HTTPS port

	Health checks
	Sessions

	Configuring Auto Scaling using the Amazon toolkit for Visual Studio
	Launch the configuration
	Triggers

	Configuring notifications using Amazon toolkit for Visual Studio
	Configuring additional environment options using Amazon toolkit for Visual Studio
	Configuring .NET Core containers using the Amazon toolkit for Visual Studio

	Monitoring application health

	Migrating from .NET on Windows Server platform to the .NET Core on Linux platform on Elastic Beanstalk
	Considerations for migrating to the .NET Core on Linux platform

	Deploying Go applications with Elastic Beanstalk
	QuickStart: Deploy a Go application to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	EB CLI

	Step 1: Create a Go application
	Step 2: Deploy your Go application with the EB CLI
	Step 3: Run your application on Elastic Beanstalk
	Step 4: Clean up
	Amazon resources for your application
	Next steps
	Deploy with the Elastic Beanstalk console

	Setting up your Go development environment for Elastic Beanstalk
	Installing Go
	Installing the Amazon SDK for Go

	Using the Elastic Beanstalk Go platform
	Configuring your Go environment
	Log options
	Static files
	Environment properties

	Go configuration namespace
	The Amazon Linux AMI (preceding Amazon Linux 2) Go platform
	Go configuration namespaces — Amazon Linux AMI (AL1)

	Configuring custom start commands with a Procfile on Elastic Beanstalk
	Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)
	Port passing — Amazon Linux AMI (AL1)

	Custom build and configuration with a Buildfile on Elastic Beanstalk
	Configuring the proxy server
	Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)
	Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

	Deploying Java applications with Elastic Beanstalk
	QuickStart: Deploy a Java application to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	EB CLI
	Java and Maven

	Step 1: Create a Java application
	Step 2: Run your application locally
	Step 3: Deploy your Java application with the EB CLI
	Step 4: Run your application on Elastic Beanstalk
	Step 5: Clean up
	Amazon resources for your application
	Next steps
	Deploy with the Elastic Beanstalk console

	QuickStart: Deploy a Java JSP web application for Tomcat to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	EB CLI

	Step 1: Create a Java JSP application
	Step 2: Deploy your Java JSP application with the EB CLI
	Step 3: Run your application on Elastic Beanstalk
	Step 4: Clean up
	Amazon resources for your application
	Next steps
	Deploy with the Elastic Beanstalk console

	Setting up your Java development environment
	Installing the Java development kit
	Installing a web container
	Downloading libraries
	Installing the Amazon SDK for Java
	Installing an IDE or text editor

	More Elastic Beanstalk example applications and tutorials for Java
	Launching an environment with a sample Java application
	Create IAM Role for EC2 instance profile

	Next steps

	Using the Elastic Beanstalk Tomcat platform
	Configuring your Tomcat environment
	Container options
	JVM container options
	Log options
	Static files
	Environment properties

	Tomcat configuration namespaces
	The Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform
	Tomcat configuration namespaces — Amazon Linux AMI (AL1)
	Include Elastic Beanstalk configurations files — Amazon Linux AMI (AL1)

	Bundling multiple WAR files for Tomcat environments
	Structuring your project folder
	Building a WAR file with a shell script
	Using .gitignore

	Configuring the proxy server
	Configuring the proxy on the Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform
	Choosing a proxy server for your Tomcat environment — Amazon Linux AMI (AL1)
	Migrating from Apache 2.2 to Apache 2.4 — Amazon Linux AMI (AL1)
	Extending and overriding the default Apache configuration — Amazon Linux AMI (AL1)
	Extending the default nginx configuration — Amazon Linux AMI (AL1)

	Using the Elastic Beanstalk Java SE platform
	Configuring your Java SE environment
	Log options
	Static files
	Environment properties

	Java SE configuration namespace
	The Amazon Linux AMI (preceding Amazon Linux 2) Java SE platform
	Java SE configuration namespaces — Amazon Linux AMI (AL1)

	Building JARs on-server with a Buildfile
	Configuring the application process with a Procfile
	Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)
	Port passing — Amazon Linux AMI (AL1)

	Configuring the proxy server
	Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)
	Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

	Adding an Amazon RDS DB instance to your Java Elastic Beanstalk environment
	Downloading the JDBC driver
	Connecting to a database (Java SE platforms)
	Connecting to a database (Tomcat platforms)
	Troubleshooting database connections
	Reviewing logs
	Connecting to an RDS DB Instance

	Java tools and resources

	Deploying Node.js applications with Elastic Beanstalk
	QuickStart: Deploy a Node.js application to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	EB CLI
	Node.js

	Step 1: Create a Node.js application
	Step 2: Run your application locally
	Step 3: Deploy your Node.js application with the EB CLI
	Step 4: Run your application on Elastic Beanstalk
	Step 5: Clean up
	Amazon resources for your application
	Next steps
	Deploy with the Elastic Beanstalk console

	Setting up your Node.js development environment for Elastic Beanstalk
	Install Node.js
	Confirm npm installation
	Install the Amazon SDK for Node.js
	Install the Express generator
	Set up an Express framework and server

	Using the Elastic Beanstalk Node.js platform
	Configuring your Node.js environment
	Container options
	Log options
	Static files
	Environment properties
	Configuring an Amazon Linux AMI (preceding Amazon Linux 2) Node.js environment
	Container options — Amazon Linux AMI (AL1)

	Node.js configuration namespace
	The Amazon Linux AMI (preceding Amazon Linux 2) Node.js platform
	Node.js platform-specific configuration options — Amazon Linux AMI (AL1)
	Node.js language versions — Amazon Linux AMI (AL1)
	Node.js configuration namespaces — Amazon Linux AMI (AL1)

	Configuring custom start commands with a Procfile on Elastic Beanstalk
	Configuring your application's dependencies on Elastic Beanstalk
	Specifying Node.js dependencies with a package.json file
	Including Node.js dependencies in a node_modules directory

	Locking dependencies with npm shrinkwrap on Elastic Beanstalk
	Configuring the proxy server
	Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)
	Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

	More Elastic Beanstalk example applications and tutorials for Node.js
	Launching an environment with a sample Node.js application
	Next steps

	Deploying a Node.js Express application to Elastic Beanstalk
	Prerequisites
	Create an Elastic Beanstalk environment
	Update the application to use Express
	Update the application to use Amazon RDS
	Clean up

	Deploying a Node.js Express application with clustering to Elastic Beanstalk
	Prerequisites
	Create an Elastic Beanstalk environment
	Update the application to use Express
	Clean up

	Deploying a Node.js application with DynamoDB to Elastic Beanstalk
	Prerequisites
	Create an Elastic Beanstalk environment
	Add permissions to your environment's instances
	Deploy the example application
	Create a DynamoDB table
	Update the application's configuration files
	Configure your environment for high availability
	Cleanup
	Next steps

	Adding an Amazon RDS DB instance to your Node.js Elastic Beanstalk environment
	Adding a DB instance to your environment
	Downloading a driver
	Connecting to a database

	Node.js tools and resources

	Deploying PHP applications with Elastic Beanstalk
	QuickStart: Deploy a PHP application to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	Step 1: Create a PHP application
	Step 2: Run your application locally
	Step 3: Initialize and deploy your PHP application
	Step 4: Browse your cloud application
	Step 5: Update and redeploy your application
	Clean up
	Next steps

	Using the Elastic Beanstalk PHP platform
	Installing the Amazon SDK for PHP
	Considerations for PHP 8.1 on Amazon Linux 2
	Considerations for PHP 8.1 on Amazon Linux 2
	RPM Packages

	Configuring your PHP environment
	PHP settings
	Log options
	Static files
	Environment properties

	Namespaces for configuration
	Installing your Elastic Beanstalk PHP application's dependencies
	Use a Composer file to install dependencies on instances
	Include dependencies in source bundle

	Updating Composer on Elastic Beanstalk
	Extending php.ini in your Elastic Beanstalk configuration

	Advanced examples for PHP in Elastic Beanstalk
	Adding an Amazon RDS DB instance to your PHP Elastic Beanstalk environment
	Adding a DB instance to your environment
	Downloading a driver
	Connecting to a database with a PDO or MySQLi
	Connecting to a database with Symfony

	Deploying a Laravel application to Elastic Beanstalk
	Prerequisites
	Launch an Elastic Beanstalk environment
	Install Laravel and generate a website
	Deploy your application
	Configure Composer settings
	Add a database to your environment
	Cleanup
	Next steps

	Deploying a CakePHP application to Elastic Beanstalk
	Prerequisites
	Launch an Elastic Beanstalk environment
	Install CakePHP and generate a website
	Deploy your application
	Add a database to your environment
	Cleanup
	Next steps

	Deploying a Symfony application to Elastic Beanstalk
	Prerequisites
	Launch an Elastic Beanstalk environment
	Install Symfony and generate a website
	Deploy your application
	Configure Composer settings
	Cleanup
	Next steps

	Deploying a high-availability PHP application with an external Amazon RDS database to Elastic Beanstalk
	Prerequisites
	Launch a DB instance in Amazon RDS
	Create an Elastic Beanstalk environment
	Configure security groups, environment properties, and scaling
	Deploy the sample application
	Cleanup
	Next steps

	Deploying a high-availability WordPress website with an external Amazon RDS database to Elastic Beanstalk
	Prerequisites
	Launch a DB instance in Amazon RDS
	Download WordPress
	Launch an Elastic Beanstalk environment
	Elastic Beanstalk created resources

	Configure security groups and environment properties
	Configure and deploy your application
	Install WordPress
	Update keys and salts
	Remove access restrictions
	Configure your Auto Scaling group
	Upgrade WordPress
	Clean up
	Next steps

	Deploying a high-availability Drupal website with an external Amazon RDS database to Elastic Beanstalk
	Prerequisites
	Launch a DB instance in Amazon RDS
	Launch an Elastic Beanstalk environment
	Configure security settings and environment properties
	Configure and deploy your application
	Install Drupal
	Update Drupal configuration and remove access restrictions
	Configure your Auto Scaling group
	Cleanup
	Next steps

	Deploying Python applications with Elastic Beanstalk
	QuickStart: Deploy a Python application to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	EB CLI
	Python and Flask framework

	Step 1: Create a Python application
	Step 2: Run your application locally
	Step 3: Deploy your Python application with the EB CLI
	Step 4: Run your application on Elastic Beanstalk
	Step 5: Clean up
	Amazon resources for your application
	Next steps
	Deploy with the Elastic Beanstalk console

	Setting up your Python development environment for Elastic Beanstalk
	Prerequisites
	Using a virtual environment
	Configuring a Python project for Elastic Beanstalk

	Using the Elastic Beanstalk Python platform
	Configuring your Python environment
	Python settings
	Amazon X-Ray settings
	Log options
	Static files
	Environment properties

	Python configuration namespaces
	The python3 executable
	Configuring the WSGI server with a Procfile on Elastic Beanstalk
	Specifying dependencies using a requirements file on Elastic Beanstalk
	Use pip and requirements.txt
	Use Pipenv and Pipfile
	Precedence

	Deploying a Flask application to Elastic Beanstalk
	Prerequisites
	Set up a Python virtual environment with Flask
	Create a Flask application
	Deploy your site with the EB CLI
	Cleanup
	Next steps

	Deploying a Django application to Elastic Beanstalk
	Prerequisites
	Set up a Python virtual environment and install Django
	Create a Django project
	Configure your Django application for Elastic Beanstalk
	Deploy your site with the EB CLI
	Update your application
	Modify your site settings
	Create a site administrator
	Add a database migration configuration file

	Clean up
	Next steps

	Adding an Amazon RDS DB instance to your Python Elastic Beanstalk environment
	Adding a DB instance to your environment
	Downloading a driver
	Connecting to a database

	Python tools and resources

	Deploying Ruby applications with Elastic Beanstalk
	Setting up your Ruby development environment for Elastic Beanstalk
	Installing Ruby
	Installing the Amazon SDK for Ruby
	Installing an IDE or text editor

	Using the Elastic Beanstalk Ruby platform
	Configuring your Ruby environment
	Log options
	Static files
	Environment properties

	Ruby configuration namespaces
	Installing packages with a Gemfile on Elastic Beanstalk
	Configuring the application process with a Procfile on Elastic Beanstalk.

	Deploying a rails application to Elastic Beanstalk
	Prerequisites
	Basic Elastic Beanstalk knowledge
	Command line
	Rails dependencies

	Launch an Elastic Beanstalk environment
	Install rails and generate a website
	Configure rails settings
	Deploy your application
	Cleanup
	Next steps

	Deploying a sinatra application to Elastic Beanstalk
	Prerequisites
	Launch an Elastic Beanstalk environment
	Write a basic sinatra website
	Deploy your application
	Cleanup
	Next steps

	Adding an Amazon RDS DB instance to your Ruby Elastic Beanstalk environment
	Adding a DB instance to your environment
	Downloading an adapter
	Connecting to a database

	Deploying with Docker containers to Elastic Beanstalk
	Elastic Beanstalk Docker platform branches
	Retired platform branches running on Amazon Linux AMI (AL1)
	Docker (Amazon Linux AMI)
	Multi-container Docker (Amazon Linux AMI)
	Preconfigured Docker containers

	Using the Elastic Beanstalk Docker platform branch
	QuickStart: Deploy a Docker application to Elastic Beanstalk
	Your Amazon account
	Create an Amazon account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Prerequisites
	EB CLI
	Docker

	Step 1: Create a Docker application and container
	Step 2: Run your application locally
	Step 3: Deploy your Docker application with the EB CLI
	Step 4: Run your application on Elastic Beanstalk
	Step 5: Clean up
	Amazon resources for your application
	Next steps
	Deploy with the Elastic Beanstalk console

	Preparing your Docker image for deployment to Elastic Beanstalk
	Managing your images with Docker Compose in Elastic Beanstalk
	Managing images without Docker Compose in Elastic Beanstalk
	Dockerrun.aws.json v1 configuration file
	Dockerrun.aws.json v1

	Building custom images with a Dockerfile

	Using the ECS managed Docker platform branch in Elastic Beanstalk
	ECS managed Docker platform overview
	Amazon ECS resources created by Elastic Beanstalk
	Dockerrun.aws.json v2 file
	Docker images
	Failed container deployments
	Extending ECS based Docker platforms for Elastic Beanstalk
	ECS managed Docker configuration for Elastic Beanstalk
	Configuring the Dockerrun.aws.json v2 file
	Dockerrun.aws.json v2
	Volume format
	Execution Role ARN format
	Additional permissions required for the Amazon ECS managed Docker platform

	Container definition format
	Authentication format – using images from a private repository
	Example Dockerrun.aws.json v2

	Container managed policy and EC2 instance role
	Using multiple Elastic Load Balancing listeners

	Creating an ECS managed Docker environment with the Elastic Beanstalk console
	Define ECS managed Docker containers
	Add content
	Deploy to Elastic Beanstalk
	Connect to a container instance
	Inspect the Amazon ECS container agent

	Migrating your Elastic Beanstalk application from ECS managed Multi-container Docker on AL1 to ECS on Amazon Linux 2023
	Migrate with the Elastic Beanstalk console
	Migrate with the Amazon CLI

	Using images from a private repository in Elastic Beanstalk
	Using images from an Amazon ECR repository
	Using the Amazon Systems Manager (SSM) Parameter Store
	Using the Dockerrun.aws.json file

	Configuring Elastic Beanstalk Docker environments
	Configuring software in Docker environments
	Container options
	Environment properties (environment variables)

	Referencing environment variables in containers
	Using interpolate feature for environment variables with Docker Compose
	Generating logs for enhanced health reporting with Docker Compose
	Docker container customized logging with Docker Compose
	Docker images
	Configuring managed updates for Docker environments
	Docker configuration namespaces
	Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)
	Using an authentication file for a private repository
	Configuring additional storage volumes

	Legacy platforms
	Migrating to Elastic Beanstalk Docker running on Amazon Linux 2 from Multi-container Docker running on Amazon Linux
	Legacy Migration from Multi-container Docker on Amazon Linux to the Docker Amazon Linux 2 platform branch
	The docker-compose.yml file
	Additional Migration Considerations
	Migration Steps

	Preconfigured Docker GlassFish containers on Elastic Beanstalk
	Getting started with preconfigured Docker containers - on Amazon Linux AMI (preceding Amazon Linux 2)
	Set up your local development environment
	Develop and test locally
	Deploy to Elastic Beanstalk

	Deploying a GlassFish application to the Docker platform: a migration path to Amazon Linux 2023
	Prerequisites
	Simple example: provide your application code
	Advanced example: provide a prebuilt Docker image

	Monitoring environments in Elastic Beanstalk
	Monitoring environment health in the Amazon management console
	Monitoring graphs
	Customizing the monitoring console

	Using the EB CLI to monitor environment health
	Reading the output
	Interactive health view
	Interactive health view options

	Basic health reporting
	Health colors
	Elastic Load Balancing health checks
	Single instance and worker tier environment health checks
	Additional checks
	Amazon CloudWatch metrics
	Worker environment health metric

	Enhanced health reporting and monitoring in Elastic Beanstalk
	The Elastic Beanstalk health agent
	Factors in determining instance and environment health
	Operations and commands
	Command timeout
	HTTP requests
	Operating system metrics

	Health check rule customization
	Enhanced health roles
	Enhanced health authorization
	Enhanced health events
	Enhanced health reporting behavior during updates, deployments, and scaling
	Enabling Elastic Beanstalk enhanced health reporting
	Enabling enhanced health reporting using the Elastic Beanstalk console
	Enabling enhanced health reporting using the EB CLI
	Enabling enhanced health reporting using a configuration file

	Enhanced health monitoring with the environment management console
	Environment overview
	Environment health page
	Monitoring page

	Health colors and statuses
	Instance status and environment status
	OK (green)
	Warning (yellow)
	Degraded (red)
	Severe (red)
	Info (green)
	Pending (grey)
	Unknown (grey)
	Suspended (grey)

	Instance metrics
	Web server metrics
	Operating system metrics
	Web server metrics capture in IIS on Windows server
	Implementation details

	Configuring enhanced health rules for an environment
	Configuring enhanced health rules using the Elastic Beanstalk console
	Configuring enhanced health rules using the EB CLI
	Configuring enhanced health rules using a config document

	Publishing Amazon CloudWatch custom metrics for an environment
	Enhanced health reporting metrics
	Configuring CloudWatch metrics using the Elastic Beanstalk console
	Configuring CloudWatch custom metrics using the EB CLI
	Providing custom metric config documents

	Using enhanced health reporting with the Elastic Beanstalk API
	Enhanced health configuration options

	Enhanced health log format
	Web server log configuration
	Generating logs for enhanced health reporting

	Notifications and troubleshooting
	Deployments
	Application server
	Worker instance
	Other resources

	Manage alarms
	Viewing an Elastic Beanstalk environment's change history
	Viewing an Elastic Beanstalk environment's event stream
	Viewing events with the Elastic Beanstalk console
	Viewing events with command line tools

	Listing and connecting to server instances
	Viewing logs from Amazon EC2 instances in your Elastic Beanstalk environment
	Log location on Amazon EC2 instances
	Log location in Amazon S3
	Log rotation settings on Linux
	Extending the default log task configuration
	Extending log rotation on Linux
	Extending log rotation on Windows server

	Streaming log files to Amazon CloudWatch Logs

	Using Elastic Beanstalk with other Amazon services
	Architectural overview
	Using Elastic Beanstalk with Amazon CloudFront
	Logging Elastic Beanstalk API calls with Amazon CloudTrail
	Elastic Beanstalk information in CloudTrail
	Understanding Elastic Beanstalk log file entries

	Using Elastic Beanstalk with Amazon CloudWatch
	Using Elastic Beanstalk with Amazon CloudWatch Logs
	Prerequisites to instance log streaming to CloudWatch Logs
	How Elastic Beanstalk sets up CloudWatch Logs
	Log files on Amazon Linux AMI platforms

	Streaming instance logs to CloudWatch Logs
	Instance log streaming using the Elastic Beanstalk console
	Instance log streaming using the EB CLI
	Instance log streaming using configuration files
	Custom log file streaming

	Troubleshooting CloudWatch Logs integration
	Streaming Elastic Beanstalk environment health information to Amazon CloudWatch Logs
	Prerequisites to environment health streaming to CloudWatch Logs
	Streaming environment health logs to CloudWatch Logs
	Environment health log streaming using the Elastic Beanstalk console
	Environment health log streaming using the EB CLI
	Environment health log streaming using configuration files

	Using Elastic Beanstalk with Amazon EventBridge
	Monitor an Elastic Beanstalk resource with EventBridge
	Example Elastic Beanstalk event patterns
	Example Elastic Beanstalk events
	Elastic Beanstalk event field mapping

	Finding and tracking Elastic Beanstalk resources with Amazon Config
	Setting up Amazon Config
	Configuring Amazon Config to record Elastic Beanstalk resources
	Viewing Elastic Beanstalk configuration details in the Amazon Config console
	Evaluating Elastic Beanstalk resources using Amazon Config rules

	Using Elastic Beanstalk with Amazon DynamoDB
	Using Elastic Beanstalk with Amazon ElastiCache
	Using Elastic Beanstalk with Amazon Elastic File System
	Configuration files
	Encrypted file systems
	Sample applications
	Cleaning up file systems

	Using Elastic Beanstalk with Amazon Identity and Access Management
	Managing Elastic Beanstalk instance profiles
	Creating an instance profile
	Adding permissions to the default instance profile
	Verifying the permissions assigned your instance profile
	Updating an out-of-date default instance profile

	Managing Elastic Beanstalk service roles
	Managing service roles using the Elastic Beanstalk console and EB CLI
	Managed service role policies
	AWSElasticBeanstalkEnhancedHealth
	AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

	Using the Elastic Beanstalk console
	Using the EB CLI

	Managing service roles using the Elastic Beanstalk API
	Using service-linked roles
	Verifying the default service role permissions
	Updating an out-of-date default service role
	Adding permissions to the default service role
	Creating a service role

	Using service-linked roles for Elastic Beanstalk
	The monitoring service-linked role
	Service-linked role permissions for Elastic Beanstalk
	AllowCloudformationReadOperationsOnElasticBeanstalkStacks

	Creating a service-linked role for Elastic Beanstalk
	Editing a service-linked role for Elastic Beanstalk
	Deleting a service-linked role for Elastic Beanstalk
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported regions for Elastic Beanstalk service-linked roles

	The maintenance service-linked role
	Service-linked role permissions for Elastic Beanstalk
	Creating a service-linked role for Elastic Beanstalk
	Editing a service-linked role for Elastic Beanstalk
	Deleting a service-linked role for Elastic Beanstalk
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported regions for Elastic Beanstalk service-linked roles

	The managed-updates service-linked role
	Service-linked role permissions for Elastic Beanstalk
	Creating a service-linked role for Elastic Beanstalk
	Editing a service-linked role for Elastic Beanstalk
	Deleting a service-linked role for Elastic Beanstalk
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported Regions for Elastic Beanstalk service-linked roles

	Managing Elastic Beanstalk user policies
	Policies for integration with other services
	Controlling access with managed policies
	Creating a custom user policy
	Enabling limited Elastic Beanstalk environment creation
	Enabling access to Elastic Beanstalk logs stored in Amazon S3
	Enabling management of a specific Elastic Beanstalk application

	Amazon resource name format for Elastic Beanstalk
	Resources and conditions for Elastic Beanstalk actions
	Policy information for Elastic Beanstalk actions
	Condition keys for Elastic Beanstalk actions

	Using tags to control access to Elastic Beanstalk resources
	Examples of tag conditions in policies

	Example policies based on managed policies
	Example 1: Admins group – All Elastic Beanstalk and related service APIs
	Example 2: Developers group – All but highly privileged operations
	Example 3: Testers – View only

	Example policies based on resource permissions
	Example 1: John – Development manager for app1, app2
	Example 2: Jill – Tester for app1, app2
	Example 3: Jack – Developer for app1

	Preventing cross-environment Amazon S3 bucket access
	Example of scoped down permissions

	Using Elastic Beanstalk with Amazon RDS
	Launching and connecting to an external Amazon RDS instance in a default VPC
	Storing the Amazon RDS credentials in Amazon Secrets Manager
	Cleaning up an external Amazon RDS instance

	Using Elastic Beanstalk with Amazon S3
	The Elastic Beanstalk Amazon S3 customer account bucket
	Contents of the Elastic Beanstalk Amazon S3 customer account bucket
	Deleting objects in the Elastic Beanstalk Amazon S3 bucket
	Deleting the Elastic Beanstalk Amazon S3 bucket

	Using Elastic Beanstalk with Amazon Secrets Manager and Amazon Systems Manager Parameter Store
	Fetching secrets and parameters to Elastic Beanstalk environment variables
	Pricing
	Configure secrets as Elastic Beanstalk environment variables
	Prerequisites
	Using the console
	Configuration using files in .ebextensions
	Configuration using the Amazon CLI
	Configuration using the Amazon SDK

	Best practices for secrets synchronization with Elastic Beanstalk environment variables
	Refreshing your environment variables
	Managing auto scaling effects on secret synchronization

	Multiline values in Amazon Linux 2 environment variables

	Required IAM permissions for Elastic Beanstalk to access secrets and parameters
	Required IAM permissions for Secrets Manager
	Required IAM permissions Systems Manager Parameter Store

	Using Amazon Secrets Manager and Amazon Systems Manager Parameter Store
	Using Secrets Manager to create and retrieve secrets
	Using Systems Manager Parameter Store to create and retrieve parameters

	Troubleshooting secrets integration with Elastic Beanstalk environment variables

	Using Elastic Beanstalk with Amazon VPC
	Public VPC
	Public/private VPC
	Private VPC
	Running an Elastic Beanstalk environment in a private VPC

	Example: Launching an Elastic Beanstalk application in a VPC with bastion hosts
	Create a VPC with a public and private subnet
	Create and configure the bastion host security group
	Update the instance security group
	Create a bastion host

	Example: Launching an Elastic Beanstalk in a VPC with Amazon RDS
	Create a VPC with a public and private subnet
	Create a DB subnet group
	Deploy to Elastic Beanstalk
	Deploying with the Elastic Beanstalk console
	Deploying with the Amazon toolkits, EB CLI, Amazon CLI, or API

	Using Elastic Beanstalk with VPC endpoints
	IPv6 support
	Setting up a VPC endpoint for Elastic Beanstalk
	Setting up a VPC endpoint for enhanced health
	Using VPC endpoints in a private VPC

	Using endpoint policies to control access with VPC endpoints
	Required Amazon S3 bucket permissions for restrictive VPC endpoint policies
	S3 Buckets that store assets to manage environment platforms
	S3 Bucket ARN
	Region-specific bucket ARN patterns

	Operations
	VPC endpoint policy example
	Example policy

	S3 Buckets owned by Amazon CloudFormation
	S3 Bucket ARN
	Operations
	VPC endpoint policy example
	Example policy

	S3 Buckets owned by customer accounts to store source code and other items
	S3 Bucket ARN
	Operations
	VPC endpoint policy example
	Example policy

	S3 Buckets owned by customer accounts to support Docker registry authentication
	S3 Bucket ARN
	Operations
	VPC endpoint policy example
	Example policy

	Updating your VPC endpoint policy

	Amazon Elastic Beanstalk security
	Data protection in Elastic Beanstalk
	Protecting data using encryption
	Encryption in transit
	Encryption at rest

	Internetwork traffic privacy

	Identity and access management for Elastic Beanstalk
	Amazon managed policies for Amazon Elastic Beanstalk
	Elastic Beanstalk updates to Amazon managed policies

	Logging and monitoring in Elastic Beanstalk
	Enhanced health reporting
	Amazon EC2 instance logs
	Environment notifications
	Amazon CloudWatch alarms
	Amazon CloudTrail logs
	Amazon X-Ray debugging

	Compliance validation for Elastic Beanstalk
	Resilience in Elastic Beanstalk
	Infrastructure security in Elastic Beanstalk
	Configuration and vulnerability analysis in Elastic Beanstalk
	Security best practices for Elastic Beanstalk
	Preventive security best practices
	Implement least privilege access
	Protect sensitive application data
	Update your platforms regularly
	Enforce IMDSv2 on environment instances

	Detective security best practices
	Implement monitoring
	Enable Amazon Config

	Elastic Beanstalk Service roles, instance profiles, and user policies
	Required roles for your Elastic Beanstalk environment
	Optional polices and roles to manage your Elastic Beanstalk environment
	Elastic Beanstalk service role
	AWSElasticBeanstalkEnhancedHealth
	AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

	Elastic Beanstalk instance profile
	Managed policies
	Creating an EC2 instance profile

	Elastic Beanstalk user policy

	Tutorials and samples
	Migrating IIS applications to Elastic Beanstalk
	Prerequisites
	Migration glossary
	Windows, IIS, and .NET terms
	Elastic Beanstalk terms
	Python terms

	Performing basic IIS migrations
	Exploring your IIS environment
	Understanding the discovery output

	Preparing for migration
	Your first migration
	Controlling the migration
	Monitoring progress
	Verifying the migration
	Managing migration artifacts

	Network configuration and port settings
	VPC configuration
	Automatic VPC detection
	On-premises or non-Amazon cloud hosts
	Custom VPC configuration
	Network security configuration
	Load balancer configuration

	Multi-site deployments with port configurations
	Shared configuration and dependencies
	Best practices
	Troubleshooting

	Security configurations and IAM roles
	Instance profile configuration
	Service role management
	Security group configuration
	SSL certificate integration
	Windows authentication
	Best practices and troubleshooting
	Role management
	Certificate management
	Security group management
	Logging and monitoring

	Understanding IIS to Elastic Beanstalk migration mapping
	IIS sites and applications in Elastic Beanstalk
	Virtual directory and application path management
	URL rewrite and application request routing (ARR)
	Migration artifact structure

	Advanced migration scenarios
	Multi-site migrations with Application Request Routing (ARR)
	ARR configuration detection
	ARR migration process
	Load balancer integration

	Multi-site migrations without ARR using host-based routing
	Host-based routing overview
	Migration process
	SSL/TLS configuration
	Best practices

	Virtual directory management
	Default permission configuration
	Password-protected virtual directories
	Custom permission management
	Best practices

	Custom application pool settings
	Deploying previous versions

	Troubleshooting and diagnostics
	Associating an EC2 keypair with your environment
	Accessing logs
	Accessing client-side artifacts
	Monitoring environment health
	EC2 performance optimization
	EBS volume configuration
	Common issues and solutions
	Getting support

	Comparing migration options: EB CLI vs. Amazon Application Migration Service
	When to use each migration option
	Migration workflow comparison
	Conclusion

	Troubleshooting your Elastic Beanstalk environment
	Using Amazon Systems Manager Elastic Beanstalk runbooks
	General guidance for troubleshooting your Elastic Beanstalk environment
	Environments that access secrets and parameters with environment variables
	Environment creation and instance launches
	Deployments
	Health
	Configuration
	Troubleshooting Docker containers
	FAQ
	Common Errors
	Deployment errors

	Elastic Beanstalk resources
	Sample applications
	Amazon SDK for Java
	Amazon SDK for .NET
	Amazon Toolkit for Visual Studio
	Amazon SDK for JavaScript in Node.js
	Amazon SDK for PHP
	Amazon SDK for Python (Boto)
	Amazon SDK for Ruby

	Document history

