Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, 
      see Getting Started with Amazon Web Services in China
         (PDF). 
    Use the Nvidia RAPIDS Accelerator for Apache
                Spark
With Amazon EMR release 6.2.0 and later, you can use the RAPIDS Accelerator for Apache
                Spark plugin by Nvidia to accelerate Spark using EC2 graphics processing
            unit (GPU) instance types. RAPIDS Accelerator will GPU-accelerate your Apache Spark 3.0
            data science pipelines without code changes, and speed up data processing and model
            training while substantially lowering infrastructure costs.
The following sections guide you through configuring your EMR cluster to use the
            Spark-RAPIDS Plugin for Spark.
            Choose instance types
            To use the Nvidia Spark-RAPIDS plugin for Spark, the core and task instance groups
                must use EC2 GPU instance types that meet the Hardware requirements of
                Spark-RAPIDS. To view a complete list of Amazon EMR supported GPU instance types, please
                see Supported
                    instance types in the Amazon EMR Management Guide. Instance
                type for the primary instance group can be either GPU or non-GPU types, but ARM
                instance types aren't supported.
         
            Set up application configurations for
                    your cluster
            1. Enable Amazon EMR to install the plugins on your new
                    cluster
            To install plugins, supply the following configuration when you create your
                cluster:
            {
	"Classification":"spark",
	"Properties":{
		"enableSparkRapids":"true"
	}
}
            2. Configure YARN to use GPU
            For details on how to use GPU on YARN, see Using GPU on YARN in Apache Hadoop documentation. The following
                examples show sample YARN configurations for Amazon EMR 6.x and 7.x releases:
            
                - Amazon EMR 7.x
 - 
                        
Example YARN configuration for Amazon EMR
                                7.x
                        {
    "Classification":"yarn-site",
    "Properties":{
        "yarn.nodemanager.resource-plugins":"yarn.io/gpu",
        "yarn.resource-types":"yarn.io/gpu",
        "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto",
        "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin",
        "yarn.nodemanager.linux-container-executor.cgroups.mount":"true",
        "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/spark-rapids-cgroup",
        "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn",
        "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor"
    }
},{
    "Classification":"container-executor",
    "Properties":{
        
    },
    "Configurations":[
        {
            "Classification":"gpu",
            "Properties":{
                "module.enabled":"true"
            }
        },
        {
            "Classification":"cgroups",
            "Properties":{
                "root":"/spark-rapids-cgroup",
                "yarn-hierarchy":"yarn"
            }
        }
    ]
}
                     
                - Amazon EMR 6.x
 - 
                        
Example YARN configuration for Amazon EMR
                                6.x
                        {
    "Classification":"yarn-site",
    "Properties":{
        "yarn.nodemanager.resource-plugins":"yarn.io/gpu",
        "yarn.resource-types":"yarn.io/gpu",
        "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto",
        "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin",
        "yarn.nodemanager.linux-container-executor.cgroups.mount":"true",
        "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/sys/fs/cgroup",
        "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn",
        "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor"
    }
},{
    "Classification":"container-executor",
    "Properties":{
        
    },
    "Configurations":[
        {
            "Classification":"gpu",
            "Properties":{
                "module.enabled":"true"
            }
        },
        {
            "Classification":"cgroups",
            "Properties":{
                "root":"/sys/fs/cgroup",
                "yarn-hierarchy":"yarn"
            }
        }
    ]
}
                     
            
            3. Configure Spark to use RAPIDS
            Here are the required configurations to enable Spark to use RAPIDS plugin:
            {
	"Classification":"spark-defaults",
	"Properties":{
		"spark.plugins":"com.nvidia.spark.SQLPlugin",
		"spark.executor.resource.gpu.discoveryScript":"/usr/lib/spark/scripts/gpu/getGpusResources.sh",
		"spark.executor.extraLibraryPath":"/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/compat/lib:/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native"
	}
}
            XGBoost4J-Spark library in XGBoost documentation is also available when
                the Spark RAPIDS plugin is enabled on your cluster. You can use the following
                configuration to integrate XGBoost with you Spark job:
            {
	"Classification":"spark-defaults",
	"Properties":{
		"spark.submit.pyFiles":"/usr/lib/spark/jars/xgboost4j-spark_3.0-1.4.2-0.3.0.jar"
	}
}
            For additional Spark configurations that you can use to tune a GPU-accelerated
                EMR cluster, please refer to the Rapids
                    Accelerator for Apache Spark tuning guide in Nvidia.github.io
                documentation.
            4. Configure YARN Capacity Scheduler
            DominantResourceCalculator must be configured to enable GPU
                scheduling and isolation. For more information, please refer to Using GPU on YARN in Apache Hadoop documentation.
            {
	"Classification":"capacity-scheduler",
	"Properties":{
		"yarn.scheduler.capacity.resource-calculator":"org.apache.hadoop.yarn.util.resource.DominantResourceCalculator"
	}
}
            5. Create a JSON file to include your
                    configurations
            You can create a JSON file that contains your configuration to use the RAPIDS
                plugin for your Spark cluster. You supply the file later when you launch your
                cluster.
            You can store the file locally or on S3. For more information of how to supply
                application configurations for your clusters, see Configure applications.
            Use the following sample files as templates to build your own
                configurations.
            
                - Amazon EMR 7.x
 - 
                        
Example my-configurations.json file for Amazon EMR
                            7.x
                        [
    {
        "Classification":"spark",
        "Properties":{
            "enableSparkRapids":"true"
        }
    },
    {
        "Classification":"yarn-site",
        "Properties":{
            "yarn.nodemanager.resource-plugins":"yarn.io/gpu",
            "yarn.resource-types":"yarn.io/gpu",
            "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto",
            "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin",
            "yarn.nodemanager.linux-container-executor.cgroups.mount":"true",
            "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/spark-rapids-cgroup",
            "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn",
            "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor"
        }
    },
    {
        "Classification":"container-executor",
        "Properties":{
            
        },
        "Configurations":[
            {
                "Classification":"gpu",
                "Properties":{
                    "module.enabled":"true"
                }
            },
            {
                "Classification":"cgroups",
                "Properties":{
                    "root":"/spark-rapids-cgroup",
                    "yarn-hierarchy":"yarn"
                }
            }
        ]
    },
    {
        "Classification":"spark-defaults",
        "Properties":{
            "spark.plugins":"com.nvidia.spark.SQLPlugin",
            "spark.executor.resource.gpu.discoveryScript":"/usr/lib/spark/scripts/gpu/getGpusResources.sh",
            "spark.executor.extraLibraryPath":"/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/compat/lib:/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native",
            "spark.submit.pyFiles":"/usr/lib/spark/jars/xgboost4j-spark_3.0-1.4.2-0.3.0.jar",
            "spark.rapids.sql.concurrentGpuTasks":"1",
            "spark.executor.resource.gpu.amount":"1",
            "spark.executor.cores":"2",
            "spark.task.cpus":"1",
            "spark.task.resource.gpu.amount":"0.5",
            "spark.rapids.memory.pinnedPool.size":"0",
            "spark.executor.memoryOverhead":"2G",
            "spark.locality.wait":"0s",
            "spark.sql.shuffle.partitions":"200",
            "spark.sql.files.maxPartitionBytes":"512m"
        }
    },
    {
        "Classification":"capacity-scheduler",
        "Properties":{
            "yarn.scheduler.capacity.resource-calculator":"org.apache.hadoop.yarn.util.resource.DominantResourceCalculator"
        }
    }
]
                     
                - Amazon EMR 6.x
 - 
                        
Example my-configurations.json file for Amazon EMR
                            6.x
                        [
    {
        "Classification":"spark",
        "Properties":{
            "enableSparkRapids":"true"
        }
    },
    {
        "Classification":"yarn-site",
        "Properties":{
            "yarn.nodemanager.resource-plugins":"yarn.io/gpu",
            "yarn.resource-types":"yarn.io/gpu",
            "yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices":"auto",
            "yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables":"/usr/bin",
            "yarn.nodemanager.linux-container-executor.cgroups.mount":"true",
            "yarn.nodemanager.linux-container-executor.cgroups.mount-path":"/sys/fs/cgroup",
            "yarn.nodemanager.linux-container-executor.cgroups.hierarchy":"yarn",
            "yarn.nodemanager.container-executor.class":"org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor"
        }
    },
    {
        "Classification":"container-executor",
        "Properties":{
            
        },
        "Configurations":[
            {
                "Classification":"gpu",
                "Properties":{
                    "module.enabled":"true"
                }
            },
            {
                "Classification":"cgroups",
                "Properties":{
                    "root":"/sys/fs/cgroup",
                    "yarn-hierarchy":"yarn"
                }
            }
        ]
    },
    {
        "Classification":"spark-defaults",
        "Properties":{
            "spark.plugins":"com.nvidia.spark.SQLPlugin",
            "spark.executor.resource.gpu.discoveryScript":"/usr/lib/spark/scripts/gpu/getGpusResources.sh",
            "spark.executor.extraLibraryPath":"/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/compat/lib:/usr/local/cuda/lib:/usr/local/cuda/lib64:/usr/lib/hadoop/lib/native:/usr/lib/hadoop-lzo/lib/native:/docker/usr/lib/hadoop/lib/native:/docker/usr/lib/hadoop-lzo/lib/native",
            "spark.submit.pyFiles":"/usr/lib/spark/jars/xgboost4j-spark_3.0-1.4.2-0.3.0.jar",
            "spark.rapids.sql.concurrentGpuTasks":"1",
            "spark.executor.resource.gpu.amount":"1",
            "spark.executor.cores":"2",
            "spark.task.cpus":"1",
            "spark.task.resource.gpu.amount":"0.5",
            "spark.rapids.memory.pinnedPool.size":"0",
            "spark.executor.memoryOverhead":"2G",
            "spark.locality.wait":"0s",
            "spark.sql.shuffle.partitions":"200",
            "spark.sql.files.maxPartitionBytes":"512m"
        }
    },
    {
        "Classification":"capacity-scheduler",
        "Properties":{
            "yarn.scheduler.capacity.resource-calculator":"org.apache.hadoop.yarn.util.resource.DominantResourceCalculator"
        }
    }
]
                     
            
         
            Add a bootstrap action for your
                    cluster
            For more information on how to supply bootstrap action scripts when you create
                your cluster, see Bootstrap
                    action basics in the Amazon EMR Management Guide.
            The following example scripts show how to make a bootstrap action file for Amazon EMR
                6.x and 7.x:
            
                - Amazon EMR 7.x
 - 
                        
Example
                                    my-bootstrap-action.sh file for Amazon EMR
                                7.x
                        To use YARN to manage GPU resources with Amazon EMR 7.x releases, you must
                            manually mount CGroup v1 on your cluster. You can do this
                            with as bootstrap action script, as shown in this example.
                        #!/bin/bash
set -ex
 
sudo mkdir -p /spark-rapids-cgroup/devices
sudo mount -t cgroup -o devices cgroupv1-devices /spark-rapids-cgroup/devices
sudo chmod a+rwx -R /spark-rapids-cgroup
                     
                - Amazon EMR 6.x
 - 
                        
Example
                                    my-bootstrap-action.sh file for Amazon EMR
                                6.x
                        For Amazon EMR 6.x releases, you must open CGroup
                            permissions to YARN on your cluster. You can do this with a bootstrap
                            action script, as shown in this example.
                        #!/bin/bash
set -ex
 
sudo chmod a+rwx -R /sys/fs/cgroup/cpu,cpuacct
sudo chmod a+rwx -R /sys/fs/cgroup/devices
                     
            
         
            Launch your cluster
            The last step is to launch your cluster with the cluster configurations mentioned
                above. Here's an example command to launch a cluster from the Amazon EMR CLI:
             aws emr create-cluster \
--release-label emr-7.10.0 \
--applications Name=Hadoop Name=Spark \
--service-role EMR_DefaultRole_V2 \
--ec2-attributes KeyName=my-key-pair,InstanceProfile=EMR_EC2_DefaultRole \
--instance-groups InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m4.4xlarge \                 
                  InstanceGroupType=CORE,InstanceCount=1,InstanceType=g4dn.2xlarge \    
                  InstanceGroupType=TASK,InstanceCount=1,InstanceType=g4dn.2xlarge \
--configurations file:///my-configurations.json \
--bootstrap-actions Name='My Spark Rapids Bootstrap action',Path=s3://amzn-s3-demo-bucket/my-bootstrap-action.sh