OpenZFS User Guide

FSx for OpenZFS
FSx for OpenZFS: OpenZFS User Guide
Table of Contents

What is Amazon FSx for OpenZFS? .. 1
 Features of Amazon FSx for OpenZFS .. 2
 Security and data protection .. 3
 Availability and durability ... 4
 Pricing for FSx for OpenZFS .. 4
 Are you a first-time Amazon FSx user? ... 4

Setting up ... 6
 .. 6
 Sign up for an Amazon Web Services account ... 6
 Secure IAM users .. 6
 Next step .. 7

Getting started .. 8
 Step 1: Create your FSx for OpenZFS file system ... 8
 Step 2: Mounting your file system .. 10
 Step 3: Clean up resources .. 11

Accessing your data ... 14
 Accessing data within the Amazon Web Services Cloud .. 14
 Accessing from the same VPC .. 15
 Access from a different VPC .. 15
 Access from on-premises .. 19
 Accessing Multi-AZ file systems .. 19
 Mounting volumes ... 19
 Mounting on Linux clients ... 20
 Mounting to Windows clients ... 23
 Mounting to macOS clients ... 24
 Additional mounting considerations .. 25
 Using FSx for OpenZFS with Amazon container services ... 26
 Mounting from Amazon ECS .. 26
 Using FSx for OpenZFS with Autodesk Flame on Amazon .. 28

Availability and durability .. 29
 Choosing between Single-AZ and Multi-AZ deployment types ... 29
 Deployment type availability .. 30
 Failover process for FSx for OpenZFS .. 32
 Testing failover on a Multi-AZ file system ... 33
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working with file system resources</td>
<td>33</td>
</tr>
<tr>
<td>Subnets</td>
<td>33</td>
</tr>
<tr>
<td>File system elastic network interfaces</td>
<td>33</td>
</tr>
<tr>
<td>Performance</td>
<td>36</td>
</tr>
<tr>
<td>How FSx for OpenZFS file systems work</td>
<td>36</td>
</tr>
<tr>
<td>File system performance</td>
<td>37</td>
</tr>
<tr>
<td>Data access from cache</td>
<td>38</td>
</tr>
<tr>
<td>Data access from disk</td>
<td>42</td>
</tr>
<tr>
<td>Single-AZ 1 Example: storage capacity and throughput capacity</td>
<td>47</td>
</tr>
<tr>
<td>Single client performance</td>
<td>47</td>
</tr>
<tr>
<td>Tips for maximizing performance</td>
<td>47</td>
</tr>
<tr>
<td>Client considerations</td>
<td>47</td>
</tr>
<tr>
<td>File system and volume configurations</td>
<td>50</td>
</tr>
<tr>
<td>Monitoring performance</td>
<td>52</td>
</tr>
<tr>
<td>Security</td>
<td>53</td>
</tr>
<tr>
<td>Data protection</td>
<td>54</td>
</tr>
<tr>
<td>Encryption at rest</td>
<td>55</td>
</tr>
<tr>
<td>Encryption in transit</td>
<td>57</td>
</tr>
<tr>
<td>File System Access Control with Amazon VPC</td>
<td>57</td>
</tr>
<tr>
<td>Amazon VPC security groups</td>
<td>58</td>
</tr>
<tr>
<td>Identity and access management</td>
<td>59</td>
</tr>
<tr>
<td>Audience</td>
<td>60</td>
</tr>
<tr>
<td>Authenticating with identities</td>
<td>60</td>
</tr>
<tr>
<td>Managing access using policies</td>
<td>63</td>
</tr>
<tr>
<td>How Amazon FSx for OpenZFS works with IAM</td>
<td>66</td>
</tr>
<tr>
<td>Identity-based policy examples</td>
<td>72</td>
</tr>
<tr>
<td>Amazon managed policies</td>
<td>75</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>88</td>
</tr>
<tr>
<td>Using tags with Amazon FSx</td>
<td>90</td>
</tr>
<tr>
<td>Using service-linked roles</td>
<td>95</td>
</tr>
<tr>
<td>Compliance validation</td>
<td>100</td>
</tr>
<tr>
<td>Interface VPC endpoints</td>
<td>101</td>
</tr>
<tr>
<td>Considerations for Amazon FSx interface VPC endpoints</td>
<td>101</td>
</tr>
<tr>
<td>Creating an interface VPC endpoint for Amazon FSx API</td>
<td>102</td>
</tr>
<tr>
<td>Creating a VPC endpoint policy for Amazon FSx</td>
<td>103</td>
</tr>
<tr>
<td>Resilience</td>
<td>103</td>
</tr>
</tbody>
</table>
Working with user-initiated backups ... 151
Copying backups .. 152
Restoring backups .. 154
Deleting backups ... 158
Using Amazon Backup with Amazon FSx ... 159
Working with snapshots .. 162
Using snapshots to create volumes ... 162
Creating a snapshot ... 163
Deleting a snapshot ... 164
Viewing a snapshot .. 165
Restoring a volume from a snapshot ... 165
Restoring individual files and folders ... 166
Setting up a custom snapshot schedule .. 166
On-demand data replication ... 173

Monitoring file systems .. 184
 Monitoring with CloudWatch ... 184
 How to use FSx for OpenZFS metrics .. 186
 Accessing CloudWatch metrics ... 189
 FSx CloudWatch metrics .. 191
 Performance warnings and recommendations .. 196
 Creating alarms .. 197

Logging with Amazon CloudTrail ... 200
 Amazon FSx Information in CloudTrail ... 200
 Understanding Amazon FSx Log File Entries .. 201

Troubleshooting ... 204
 Creating a file system fails .. 204
 Cannot create a file system because of misconfigured security group 204
 You can't access your file system .. 204
 The Elastic IP address attached to the file system elastic network interface was deleted ... 205
 The file system's elastic network interface was modified or deleted 205
 The compute instance's subnet doesn't use any of the route tables associated with your file system ... 205
 Volume mounting issues .. 205
 Mounting a volume fails right away .. 206
 Mounting a volume hangs and then fails with timeout error 206
 Mounting a volume using a DNS name fails .. 206
Storage issues .. 207
 Deleting files does not reduce used storage capacity ... 207
Quotas ... 208
 Quotas that you can increase .. 208
 Resource quotas for each file system .. 209
 Maximum storage capacity of Multi-AZ file systems ... 210
 Maximum storage capacity of Single-AZ 1 file systems .. 211
Document history ... 212
What is Amazon FSx for OpenZFS?

Amazon FSx for OpenZFS is a fully managed file storage service that makes it easy to move data to Amazon from on-premises ZFS or other Linux-based file servers. You can do this without changing your application code or how you manage data. It offers highly reliable, scalable, performance, and feature-rich file storage built on the open-source OpenZFS file system. It combines these capabilities with the agility, scalability, and simplicity of a fully managed Amazon service.

Amazon FSx for OpenZFS file systems are broadly accessible from Linux, Windows, and macOS compute instances and containers using the industry-standard NFS protocol (v3, v4.0, v4.1, v4.2). Powered by the latest Amazon compute, disk, and networking technologies, including Amazon Scalable Reliable Datagram networking and the Amazon Nitro system, Amazon FSx for OpenZFS delivers up to 2 million IOPS with latencies of hundreds of microseconds. With complete support for OpenZFS features like instant point-in-time snapshots and data cloning, FSx for OpenZFS makes it easy for you to replace your on-premises file servers with Amazon storage that provides familiar file system capabilities and eliminates the need to perform lengthy qualifications and change or re-architect existing applications or tools. What's more, by combining the power of OpenZFS data management capabilities with the high performance and cost efficiency of the latest Amazon technologies, FSx for OpenZFS enables you to build and run high-performance, data-intensive applications.

As a fully managed service, FSx for OpenZFS makes it easy to launch, run, and scale fully managed file systems on Amazon that replace the file servers you run on premises while helping to provide better agility and lower costs. With Amazon FSx for OpenZFS, you no longer have to worry about setting up and provisioning file servers and storage volumes, replicating data, installing and patching file server software, detecting and addressing hardware failures, or manually performing backups. FSx for OpenZFS also provides rich integration with other Amazon services, such as Amazon Identity and Access Management IAM, Amazon Key Management Service (Amazon KMS), Amazon CloudWatch, and Amazon CloudTrail.

Amazon FSx for OpenZFS is available in the following Amazon Web Services Regions.

- US East (N. Virginia)
- US East (Ohio)
- US West (Oregon)
- Amazon GovCloud (US-West)
• Amazon GovCloud (US-East)
• Asia Pacific (Hong Kong)
• Asia Pacific (Tokyo)
• Asia Pacific (Seoul)
• Asia Pacific (Osaka)
• Asia Pacific (Singapore)
• Asia Pacific (Sydney)
• Asia Pacific (Jakarta)
• Asia Pacific (Mumbai)
• Asia Pacific (Hyderabad)
• Canada (Central)
• China (Beijing)
• China (Ningxia)
• Europe (Milan)
• Europe (Spain)
• Europe (Frankfurt)
• Europe (Zurich)
• Europe (Ireland)
• Europe (London)
• Europe (Paris)
• Europe (Stockholm)
• Middle East (UAE)
• Middle East (Bahrain)
• South America (São Paulo)
• Israel (Tel Aviv)
• Africa (Cape Town)

Features of Amazon FSx for OpenZFS

With FSx for OpenZFS, you get a fully managed file storage solution with:
• Support for access from Linux, Windows, and macOS compute instances and containers, including those running on Amazon or on-premises, via the industry-standard NFS protocol (v3, v4.0, v4.1, and v4.2).

• Millions of IOPS with latencies of a few hundred microseconds, and up to 21 GB/s of throughput for frequently accessed data from in-memory or NVMe cache. Up to 400,000 IOPS and up to 10 GB/s of read/write throughput (up to 21 GB/s compressed) for data accessed from SSD disks. For more information, see File system performance.

• Powerful OpenZFS data management capabilities including data compression, near instant point-in-time snapshots, and data cloning, designed for use with the Amazon FSx API.

• Two levels of availability and durability, with Single-AZ and Multi-AZ file systems.

• Support for multiple volumes per file system, thin provisioning, and user and group quotas for cost-efficient shared file systems across multiple users and applications.

• Support for the following data protection and security features:
 • Built-in, fully managed file system backups stored on S3, with support for cross-region backup copies.
 • Near-instant point-in-time OpenZFS snapshots stored locally on each file system.
 • Automatic encryption of file system data and backups at rest using KMS keys.
 • Automatic encryption in-transit when accessed from supported EC2 instances.

Security and data protection

Amazon FSx provides multiple levels of security and compliance to help ensure that your data is protected. It automatically encrypts data at rest in file systems and backups using keys that you manage in Amazon Key Management Service (Amazon KMS). Encryption of data in transit is automatically enabled when you access an Amazon FSx file system from Amazon EC2 instances that support this feature. For more information, see Data protection in Amazon FSx for OpenZFS.

Amazon FSx has been assessed to comply with International Organization for Standardization (ISO), Payment Card Industry Data Security Standard (PCI DSS), and System and Organization Controls (SOC) certifications, and is Health Insurance Portability and Accountability Act of 1996 (HIPAA) eligible. For more information, see Compliance validation for Amazon FSx for OpenZFS.

Amazon FSx provides access control at the file system level using Amazon Virtual Private Cloud (Amazon VPC) security groups, and at the API level using Amazon Identity and Access Management (IAM) access policies. To provide access control at the file and folder level, Amazon FSx supports
Unix permissions. Amazon FSx integrates with Amazon CloudTrail to monitor and log your Amazon FSx API calls so that you can see actions taken by users on your Amazon FSx resources. For more information, see [Logging FSx for OpenZFS API calls with Amazon CloudTrail](#).

Additionally, Amazon FSx protects your data with highly durable file system backups. Amazon FSx performs automatic daily backups, and you can take additional backups at any point. For more information, see [Protecting your Amazon FSx for OpenZFS data with backups and snapshots](#).

Availability and durability

FSx for OpenZFS offers two levels of availability and durability for file systems: Single-AZ and Multi-AZ. Single-AZ file systems ensure self-healing recovery within a single Availability Zone (AZ) by automatically detecting and addressing component failures. Multi-AZ file systems provide high availability and failover support across multiple Availability Zones by provisioning and maintaining a standby file server in a separate AZ within an Amazon Web Services Region. For more information, see [Availability and durability](#).

Pricing for FSx for OpenZFS

With Amazon FSx, there are no upfront hardware or software costs. You pay for only the resources used, with no minimum commitments, setup costs, or additional fees. For information about the pricing and fees associated with the service, see [FSx for OpenZFS pricing](#).

Are you a first-time Amazon FSx user?

If you're a first-time user of Amazon FSx, we recommend that you read the following sections in order:

1. If you're new to Amazon, see [Setting up Amazon FSx for OpenZFS](#) to set up an Amazon Web Services account.
2. If you're ready to create your first Amazon FSx file system, follow the instructions in [Getting started with Amazon FSx for OpenZFS](#).
3. For information about performance, see [Amazon FSx for OpenZFS performance](#).
4. For Amazon FSx security details, see [Security in Amazon FSx for OpenZFS](#).
5. For information about the Amazon FSx API, see [Amazon FSx API Reference](#).
6. For information about the Amazon FSx Amazon CLI, see [Amazon Command Line Interface Command Reference for Amazon FSx](#).
7. For more information about pricing and fees associated with the service, see FSx for OpenZFS pricing.
Setting up Amazon FSx for OpenZFS

Before you use Amazon FSx for the first time, complete the following tasks:

1. Sign up for an Amazon Web Services account
2. Secure IAM users

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time, you can view your current account activity and manage your account by going to http://www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM User Guide:

- Creating an IAM user in your Amazon Web Services account
- Access management for Amazon resources
- Example IAM identity-based policies
Next step

To get started using FSx for OpenZFS, see Getting started with Amazon FSx for OpenZFS for instructions to create your Amazon FSx resources.
Getting started with Amazon FSx for OpenZFS

Learn how to get started using Amazon FSx for OpenZFS. This getting started exercise includes the following steps:

Topics

- Step 1: Create an Amazon FSx for OpenZFS file system
- Step 2: Mounting your file system from an Amazon EC2 Linux instance
- Step 3: Clean up resources

Step 1: Create an Amazon FSx for OpenZFS file system

The Amazon FSx console has two options for creating a file system – a Quick create option and a Standard create option. To rapidly and easily create an Amazon FSx for OpenZFS file system with the service recommended configuration, use the Quick create option.

The Quick create option creates a file system with a default root volume configuration. This configuration specifies an NFS exports setting in which Client addresses is an asterisk (*) and NFS options is rw,crossmnt. With these settings, any clients permitted by your VPC and security group settings can access the volume with read and write permissions. After your file system is created, you can create additional volumes as needed.

For information about using the Standard create option to create a file system with a customized configuration, see Creating FSx for OpenZFS file systems.

To create your file system

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. On the dashboard, choose Create file system to start the file system creation wizard.
3. On the Select file system type page, choose Amazon FSx for OpenZFS, and then choose Next. The Create OpenZFS file system page appears. For Creation method, choose Quick create. To create a file system using the Standard create method, see Creating FSx for OpenZFS file systems.
4. In the **Quick configuration** section, for **File system name - optional**, enter a name for your file system. It's easier to find and manage your file systems when you name them. You can use a maximum of 256 Unicode letters, white space, and numbers, plus these special characters: + - (hyphen) = . _ (underscore) : /

5. For **Deployment type**, select either **Multi-AZ** or **Single-AZ**.

 - **Multi-AZ** file systems replicate your data and support failover across multiple Availability Zones in the same Amazon Web Services Region.
 - **Single-AZ** file systems ensure self-healing recovery within a single Availability Zone by automatically detecting and addressing component failures.
6. For **SSD storage capacity**, specify the storage capacity of your file system, in gibibytes (GiBs). Enter any whole number in the range of 64–524,288.

7. For **Virtual Private Cloud (VPC)**, choose the Amazon VPC that you want to associate with your file system.

8. For **Subnet**, choose the subnet in which your file system's elastic network interface resides.

9. Choose **Next**.

10. Review the file system configuration shown on the **Create OpenZFS file system** page. For your reference, note which file system settings you can modify after the file system is created.

11. Choose **Create file system**.

Quick create creates a file system with one root volume named `fsx`. The volume has a path of `/fsx`, and a record size of 128 KiB. The file system data is encrypted at rest using your default service managed Amazon KMS key, named `aws/fsx/ (default)`. For more information about file system settings, see **File system properties**. For more information about volume and root volume properties, see **Volume properties**.

Step 2: Mounting your file system from an Amazon EC2 Linux instance

You can mount your file system from an Amazon Elastic Compute Cloud (Amazon EC2) instance. This procedure uses an instance running Amazon Linux 2.

To mount your file system from Amazon EC2

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

2. Create or select an Amazon EC2 instance running Amazon Linux 2 that is in the same virtual private cloud (VPC) as your file system. For more information about launching an instance, see **Step 1: Launch an instance** in the *Amazon EC2 User Guide for Linux Instances*.

3. Connect to your Amazon EC2 Linux instance. For more information, see **Connect to your Linux instance** in the *Amazon EC2 User Guide for Linux Instances*.

4. Open a terminal on your Amazon EC2 instance using secure shell (SSH), and log in with the appropriate credentials.
5. Make a directory on your Amazon EC2 instance for the volume's local mount path with the following command. In the following example, replace fsx with your desired location.

```
$ sudo mkdir /fsx
```

6. Use the following mount command to mount your Amazon FSx for OpenZFS file system to the directory that you created. Replace the following:

- Replace `nfs-version` with an NFS protocol version, such as 4.2.
- Replace `fs-dns-name` with the DNS name or the IP address of the file system.
- Replace `volume-path` with the path of the volume to mount. For example, use `/fsx` to mount the root volume or a path such as `/fsx/sales` to mount the top-level `fsx/sales` directory.
- Replace `local-mount-path` with the directory path of your local mount path, such as `/fsx` for the directory you created in step 5.

```
sudo mount -t nfs -o nfsvers=nfs-version fs-dns-name:volume-path local-mount-path
```

The following example uses sample values.

```
sudo mount -t nfs -o nfsvers=4.2 fs01234567.fsx.us-east-1.amazonaws.com:/fsx /fsx
```

You can also use the IP address of the file system instead of its DNS name.

```
sudo mount -t nfs -o nfsvers=4.2 198.51.100.5:/fsx /fsx
```

If you have issues with your Amazon EC2 instance (such as connections timing out), see Troubleshoot EC2 instances in the Amazon EC2 User Guide for Linux Instances.

For more information on mounting FSx for OpenZFS file systems from Linux, macOS, or Windows instances, see Mounting FSx for OpenZFS volumes.

Step 3: Clean up resources

After you have finished this exercise, you should follow these steps to clean up your resources and protect your Amazon Web Services account.
To clean up resources

1. On the Amazon EC2 console, terminate your instance. For more information, see Terminate Your Instance in the Amazon EC2 User Guide for Linux Instances.

2. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.

3. On the Amazon FSx console, delete your file system. When you delete a file system, all volumes and automatic backups are deleted automatically. However, you still must delete any manually created backups. The following steps outline this process.

 a. From the console dashboard, choose the name of the file system that you created for this exercise.

 b. For Actions, choose Delete file system.

 c. In the Delete file system dialog box that opens, decide whether you want to create a final backup. If you do, provide a name for the final backup. Any automatically created backups are also deleted.

 ! Important

 New file systems can be created from backups. We recommend that you create a final backup as a best practice. If you find you don't need it after a certain period of time, you can delete this and other manually created backups.

 d. Enter the ID of the file system that you want to delete in the File system ID box.

 e. Choose Delete file system.

 f. The file system is now being deleted, and its status in the dashboard changes to DELETING. When the file system has been deleted, it no longer appears in the dashboard. Any automatic backups are deleted along with the file system.

 g. Now you can delete any manually created backups for your file system. From the left-side navigation, choose Backups.

 h. From the dashboard, choose any backups that have the same File system ID as the file system that you deleted, and choose Delete backup. Be sure to retain the final backup, if you created one.

 i. The Delete backups dialog box opens. Keep the check box selected for the IDs of the backups that you want to delete, and then choose Delete backups.
Your Amazon FSx file system and any related automatic backups are now deleted, along with any manual backups that you chose to delete as well.
Accessing data

You can access your Amazon FSx file systems using a variety of supported clients in the Amazon Web Services Cloud and on premise environments.

You can access data on your Amazon FSx for OpenZFS file systems using a wide variety of compute instances and operating systems using the Network File System (NFS) protocol (v3, v4.0, v4.1, and v4.2), including Amazon Elastic Compute Cloud (Amazon EC2) instances running Linux, (including Amazon Linux, Amazon Linux 2), Microsoft Windows, and MacOS. For more information, see Mounting FSx for OpenZFS volumes.

You can also access data on your FSx for OpenZFS file systems using other Amazon Web Services, including Amazon Elastic Container Service and Amazon Elastic Kubernetes Service. For more information, see Using FSx for OpenZFS with Amazon container services.

Once mounted, FSx for OpenZFS file systems appear as a local directory or drive letter over NFS, providing fully managed, shared network file storage that can be simultaneously accessed by up to thousands of clients.

You can find information about how to access your FSx for OpenZFS file systems in the following sections.

Topics

- Accessing data within the Amazon Web Services Cloud
- Access from on-premises
- Mounting FSx for OpenZFS volumes
- Using FSx for OpenZFS with Amazon container services
- Using FSx for OpenZFS with Autodesk Flame on Amazon

Accessing data within the Amazon Web Services Cloud

Amazon VPC helps you to launch Amazon resources into a virtual network that you define. This virtual network closely resembles a traditional network that you operate in your own data center, with the benefits of using the scalable infrastructure of Amazon. For more information, see What is Amazon VPC in the Amazon Virtual Private Cloud User Guide.
Each Amazon FSx file system is associated with a Virtual Private Cloud (VPC). You can access your FSx for OpenZFS file system from anywhere in the same VPC within which it is deployed regardless of the Availability Zone (AZ). You can also access your file system from other VPCs. These VPCs can be in different accounts or regions. In addition to any requirements listed in the following sections for accessing FSx for OpenZFS resources, you also need to ensure that your file system's VPC security group has the correct settings. It needs to allow data to flow between your file system and any clients that connect to it. For more information, see Amazon VPC security groups.

Topics

- Access from within the same VPC
- Access from a different VPC

Access from within the same VPC

When you create your Amazon FSx for OpenZFS file system, you select the Amazon VPC in which it is located. All volumes associated with the FSx for OpenZFS file system are also located in the same VPC. When the file system and the client mounting the volume are located in the same VPC and Amazon Web Services account, you can mount a volume using the file system's DNS name over the NFS protocol. For more information, see Mounting FSx for OpenZFS volumes.

You can achieve better performance and avoid data transfer charges by accessing an FSx for OpenZFS volume using a client in the same Availability Zone as the file system's subnet. To identify a file system's subnet, choose File systems in the Amazon FSx console, then choose the FSx for OpenZFS file system whose volume you are mounting. The subnet or preferred subnet (Multi-AZ) is displayed in the Subnet or Preferred subnet panel.

Accessing a Single-AZ file system using a client located in a different Availability Zone results in data transfer charges. There are no data transfer charges for accessing a Multi-AZ file system from any Availability Zone in the same region.

Access from a different VPC

The section describes how to access an FSx for OpenZFS file system's endpoint from Amazon Web Services Regions outside of the file system's deployment VPC.

Accessing Single-AZ file systems

You can access your FSx for OpenZFS file system from compute instances in a different VPC, Amazon Web Services account, or Amazon Web Services Region from that associated with your
file system by using VPC peering or transit gateways. When you use a VPC peering connection or transit gateway to connect VPCs, compute instances that are in one VPC can access Amazon FSx file systems in another VPC. This access is possible even if the VPCs belong to different Amazon Web Services accounts, and even if the VPCs reside in different Amazon Web Services Regions.

A VPC peering connection is a networking connection between two VPCs that you can use to route traffic between them using private IPv4 or IPv6 addresses. You can use VPC peering to connect VPCs within the same Amazon Web Services Region or between Amazon Web Services Regions. For more information on VPC peering, see What is VPC peering? in the Amazon Virtual Private Cloud VPC Peering Guide.

A transit gateway is a network transit hub that you can use to interconnect your VPCs and on-premises networks. For more information, see Work with transit gateways in the Amazon VPC Transit Gateways.

Accessing Multi-AZ file systems

The NFS endpoints on FSx for OpenZFS Multi-AZ file systems use floating IP addresses so that connected clients seamlessly transition between the preferred and standby file servers during a failover event. For more information about failovers, see Failover process for FSx for OpenZFS.

When you create a file system, you can optionally specify the endpoint IP address range in which these floating IP addresses are created. By default, the Amazon FSx API selects a CIDR block of 16 available addresses from within the VPC's CIDR ranges. Additionally, you can optionally specify the VPC route tables in which rules for routing traffic to the correct file server will be created. By default, the Amazon FSx API selects the VPC's default route table.

Only Amazon Transit Gateway supports routing to floating IP addresses, which is also known as transitive peering. VPC Peering, Amazon Direct Connect, and Amazon VPN don't support transitive peering. Therefore, you are required to use Transit Gateway in order to access these interfaces from networks that are outside of your file system's VPC.

When you access your Multi-AZ file system from outside of the file system's VPC, FSx for OpenZFS will manage routing configurations as long as the file system's EndpointIpAddressRange is within the CIDR range of the file system's VPC. However, if you access your Multi-AZ file system from outside of the file system's VPC, and the file system's EndpointIpAddressRange is outside of the CIDR range of the file system's VPC, you will need to set up additional routing in Transit Gateway. For information on how to configure Transit Gateway to access your FSx for OpenZFS file system, see Configuring routing using Amazon Transit Gateway.
The following diagram illustrates using Transit Gateway for NFS access to a Multi-AZ file system that is in a different VPC than the clients that are accessing it.

Note

Ensure that all of the route tables you're using are associated with your Multi-AZ file system. Doing so helps prevent loss of availability during a failover. For information about associating your Amazon VPC route tables with your file system, see [Updating a file system](#).

Configuring routing using Amazon Transit Gateway

If you have a Multi-AZ file system with an `EndpointIPAddressRange` that's outside your VPC's CIDR range, you need to set up additional routing in your Amazon Transit Gateway to access your file system from peered or on-premises networks. No additional Transit Gateway configuration is required for Single-AZ file systems or Multi-AZ file systems with an `EndpointIPAddressRange` that's within your VPC's IP address range.
Important

To access a Multi-AZ file system using a Transit Gateway, each of the Transit Gateway's attachments must be created in a subnet whose route table is associated with your file system.

To configure routing using Amazon Transit Gateway

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. Choose the FSx for OpenZFS file system for which you are configuring access from a peered network.
3. **In Network & security** copy the **Endpoint IP address range**.

4. Add a route to Transit Gateway that routes traffic destined for this IP address range to your file system's VPC. For more information, see [Work with transit gateways](https://docs.aws.amazon.com/vpc/latest/userguide/vpc-transit-gateway.html) in the Amazon VPC Transit Gateways.

5. Confirm that you can access your FSx for OpenZFS file system from the peered network.

To add the route table to your file system, see **Updating a file system**.

Note

DNS records for the NFS endpoints are only resolvable from within the same VPC as the file system. In order to mount a volume or connect to a management port from another network, you need to use the endpoint's IP address. These IP addresses do not change over time.
Access from on-premises

FSx for OpenZFS supports the use of Amazon Direct Connect or Amazon VPN to access your file systems from your on-premises compute instances. Using Amazon Direct Connect, you access your file system over a dedicated network connection from your on-premises environment. Using Amazon VPN, you access your file system from your on-premises devices over a secure and private tunnel.

After you connect your on-premises environment to the VPC associated with your Amazon FSx file system, you can access your file system using its DNS name or a DNS alias. You do so just as you do from compute instances within the VPC. For more information about Amazon Direct Connect, see What is Amazon Direct Connect? in the Amazon Direct Connect User Guide. For more information on setting up Amazon VPN connections, see VPN connections in the Amazon VPC User Guide.

Accessing Multi-AZ file systems

Amazon FSx requires that you use Amazon Transit Gateway to access Multi-AZ file systems from an on-premises network. In order to support failover across AZs for Multi-AZ file systems, Amazon FSx uses floating IP addresses for the interfaces used for NFS endpoints. Because the NFS endpoints use floating IPs, you must use Amazon Transit Gateway in conjunction with Amazon Direct Connect or Amazon VPN to access these interfaces from an on-premises network. The floating IP addresses used for these interfaces are within the EndpointIpAddressRange you specify when creating your Multi-AZ file system. By default, the Amazon FSx API selects a CIDR block of 16 available addresses from within the VPC's CIDR ranges. The floating IP addresses are used to enable a seamless transition of your clients to the standby file system in the event a failover is required. For more information, see Failover process for FSx for OpenZFS.

If you have a Multi-AZ file system with an EndpointIpAddressRange that's outside your VPC's CIDR range, you need to set up additional routing in your Amazon Transit Gateway to access your file system from peered or on-premises networks. For information, see Configuring routing using Amazon Transit Gateway.

Mounting FSx for OpenZFS volumes

You access the data in FSx for OpenZFS by mounting individual volumes on your client. The commands in this section use the DNS name of the file system in which the volume is created to mount it. To identify a file system's DNS name in the Amazon FSx console, choose File systems,
then choose the FSx for OpenZFS file system whose volume you are mounting. The DNS name will be displayed in the Network & security panel. You can also find this information in the response of the DescribeVolumes API operation.

Topics

- Mounting FSx for OpenZFS volumes to Linux clients
- Mounting FSx for OpenZFS volumes to Microsoft Windows clients
- Mounting FSx for OpenZFS volumes to macOS clients
- Additional mounting considerations

Mounting FSx for OpenZFS volumes to Linux clients

To mount an FSx for OpenZFS volume on a Linux client

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.
2. Create or select a Linux-based Amazon EC2 instance that is in the same VPC as the file system.

 For more information on launching an EC2 Linux instance, see Step 1: Launch an instance in the Amazon EC2 User Guide for Linux Instances.

3. Connect to your Amazon EC2 Linux instance. For more information, see Connect to your Linux instance in the Amazon EC2 User Guide for Linux Instances.

4. Open a terminal on your EC2 instance using secure shell (SSH), and log in with the appropriate credentials.

5. If you are using CentOS, RedHat, or Ubuntu, install the NFS client. This step is not necessary if you are using the latest version of the Amazon Linux 2.

 a. For CentOS and RedHat use the following command: sudo yum –y install nfs-utils
 b. For Ubuntu use this command: sudo apt-get -y install nfs-common

6. Create a directory on the EC2 instance for mounting the FSx for OpenZFS volume as follows:

   ```
   sudo mkdir /localpath
   ```

7. Mount the volume using the following command.

   ```
   sudo mount -t nfs filesystem_dns_name:/volume_path /localpath
   ```
The following example uses sample values. Replace volume-path with the path of the volume to mount. For example, use /fsx to mount the root volume or a full volume path such as /fsx/vol1 to mount the vol1 volume within your root volume.

```
sudo mount -t nfs fs-01234567890abcdef1.fsx.us-east-1.amazonaws.com:/fsx/vol1 /fsx
```

You can also view and copy the exact commands to mount any FSx for OpenZFS volume in the Amazon FSx console by choosing Attach on that volume's details page.

To automatically mount FSx for OpenZFS file systems on instance reboot using /etc/fstab

To automatically remount your FSx for OpenZFS volume that's mounted on an Amazon EC2 Linux instance when the instance reboots, use the /etc/fstab file. The /etc/fstab file contains information about file systems. The command `mount -a`, which runs during instance start-up, mounts the file systems listed in /etc/fstab.

Note

FSx for OpenZFS file systems do not support automatic mounting using /etc/fstab on Amazon EC2 Mac instances.

Note

Before you can update the /etc/fstab file of your EC2 instance, make sure that you already created your FSx for OpenZFS file system. For more information, see Creating FSx for OpenZFS file systems.

1. Connect to your EC2 instance:
 - To connect to your instance from a computer running macOS or Linux, specify the .pem file for your SSH command. To do this, use the `-i` option and the path to your private key.
 - To connect to your instance from a computer running Windows, you can use either MindTerm or PuTTY. To use PuTTY, install it and convert the .pem file to a .ppk file.
For more information, see the following topics in the Amazon EC2 User Guide for Linux Instances:

- Connecting to your Linux instance using SSH
- Connecting to your Linux instance from Windows using PuTTY

2. Create a local directory that will be used to mount the FSx for OpenZFS volume.

```
sudo mkdir /fsx
```

3. Open the `/etc/fstab` file in an editor of your choice.

4. Add the following line to the `/etc/fstab` file. Insert a tab character between each parameter. It should appear as one line with no line breaks.

```
filesystem-dns-name:volume-path /localpath nfs vers=nfs-version defaults 0 0
```

The last three parameters indicate NFS options (which we set to default), dumping of file system and filesystem check (these are typically not used so we set them to 0).

5. Save the changes to the file.

6. Test the fstab entry by using the mount command with the fake all verbose options.

```
sudo mount -fav
  filesystem-dns-name:/vol_path : successfully mounted
```

Now mount the volume using the following command. The next time the EC2 instance restarts, the volume will be mounted automatically.

```
sudo mount /localpath
sudo mount filesystem-dns-name:/volume-path
```

Your EC2 instance is now configured to mount the FSx for OpenZFS volume whenever it restarts.
Mounting FSx for OpenZFS volumes to Microsoft Windows clients

Mounting FSx for OpenZFS volumes to Windows clients leverages the NFS v3 protocol. The following instructions include the necessary steps to install the NFS client on your Windows-based EC2 instance.

To mount an FSx for OpenZFS volume on an EC2 Windows client

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

2. Create or select an Amazon EC2 instance running Microsoft Windows that is in the same VPC as the file system.

 For more information on launching an instance, see Step 1: Launch an instance in the Amazon EC2 User Guide for Windows Instances.

3. Connect to your Amazon EC2 Windows instance. For more information, see Connecting to your Windows instance in the Amazon EC2 User Guide for Windows Instances.

4. Open PowerShell as an administrator, and install the NFS client.

 Install-WindowsFeature -Name NFS-Client

 If prompted to do so, restart and reconnect to your Windows instance.

5. Open a command prompt window with standard user privileges. If you run the mount command as Administrator, the mounted drive will not appear in File Explorer.

 Note

 To ensure this mounted drive appears in File Explorer, please open the Command Prompt window with standard user privileges. If you run this command as Administrator, it will not appear in File Explorer.

6. You can mount the drive using a command prompt, or using a Powershell path

 a. Mount the volume to any available drive letter by running the following command, replacing Z: with any available drive letter:

 • Replace filesystem-dns-name with the DNS name or the IP address of the file system.
• Replace `vol_path` with the path of the FSx for OpenZFS volume you are trying to mount.

• Replace `Z:` with any available drive letter.

```
mount \filesystem-dns-name\vol_path Z:
```

The following example uses sample values.

```
mount \fs-01234567890abcdef1.fsx.us-east-1.amazonaws.com\fsx\vol1 Z:
```

b. You can also view and copy the exact commands to mount any FSx for OpenZFS volume in the Amazon FSx console by choosing **Attach** on that volume's details page.

You can also mount the file system using the following Powershell path:

```
New-PSDrive -Name "Z" -PSProvider "FileSystem" -Root "\\filesystem-dns-name\" -Persist
```

The following example uses a sample file system DNS name.

```
New-PSDrive -Name "Z" -PSProvider "FileSystem" -Root "\\fs-0239c0e31af65bff1.fsx.us-east-1.amazonaws.com\fsx" -Persist
```

Mounting FSx for OpenZFS volumes to macOS clients

To mount an FSx for OpenZFS volume on an EC2 macOS client

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.
2. Create or select an Amazon EC2 Mac instance running the macOS that is in the same VPC as the file system.

 For more information on launching an instance, see [Step 1: Launch an instance](https://docs.aws.amazon.com/en_us/ec2/userguide/launch-an-instance.html) in the *Amazon EC2 User Guide for Linux Instances*.

3. Connect to your Amazon EC2 Mac instance. For more information, see [Connect to your Linux instance](https://docs.aws.amazon.com/en_us/ec2/userguide/connect-to-your-linux-instance.html) in the *Amazon EC2 User Guide for Linux Instances*.

Mounting to macOS clients
4. Open a terminal on your EC2 Mac instance using secure shell (SSH), and log in with the appropriate credentials.

5. Create a directory on the EC2 instance for mounting the volume as follows:

   ```bash
   sudo mkdir /localpath
   ```

6. Mount the volume using the following command.

   ```bash
   sudo mount -t nfs -o resvport file-system-dns-name:/vol_path mount-point
   ```

 The following example uses sample values.

   ```bash
   sudo mount -t nfs -o resvport fs-01234567890abcde5.fsx.us-east-1.amazonaws.com:/
   fsx/vol1 /fsx
   ```

 You can also view and copy the exact commands to mount any FSx for OpenZFS volume in the Amazon FSx console by choosing Attach on that volume’s details page.

Additional mounting considerations

To improve the performance of your file system, you can also include the following options when mounting your file system.

- **rsize=1048576** – Sets the maximum number of bytes of data that the NFS client can receive for each network READ request. This value applies when reading data from a file on an FSx for OpenZFS volume. We recommend that you use the largest size possible, 1048576. Due to lower memory capacity on file systems with 64 MB/s and 128 MB/s of provisioned throughput, these file systems will only accept a maximum rsize of 262144 and 524288 bytes, respectively.

- **wsize=1048576** – Sets the maximum number of bytes of data that the NFS client can send for each network WRITE request. This value applies when writing data to a file on an FSx for OpenZFS volume. We recommend that you use the largest size possible, 1048576. Due to lower memory capacity on file systems with 64 MB/s and 128 MB/s of provisioned throughput, these file systems will only accept a maximum wsize of 262144 and 524288 bytes, respectively.

- **timeo=600** – Sets the timeout value that the NFS client uses to wait for a response before it retries an NFS request to 600 deciseconds (60 seconds).
• *_netdev* – When present in `/etc/fstab`, prevents the client from attempting to mount the FSx for OpenZFS volume until the network has been enabled.

The following example uses sample values.

```bash
sudo mount -t nfs -o rsize=1048576,wsize=1048576,timeo=600
    fs-01234567890abcdef1.fsx.us-east-1.amazonaws.com:/fsx/vol1 /fsx
```

Using FSx for OpenZFS with Amazon container services

In addition to Amazon EC2, you can use the following Amazon container services with your FSx for OpenZFS volumes to access your data.

- **Amazon Elastic Container Service** – You can access your Amazon FSx for OpenZFS file systems from an Amazon Elastic Container Service (Amazon ECS) Docker container on an Amazon EC2 Linux instance. For more information, see [Mounting FSx for OpenZFS from Amazon Elastic Container Service](#).

- **Amazon Elastic Kubernetes Service** – The [Amazon FSx for OpenZFS CSI Driver](#) provides a CSI interface that allows Amazon EKS clusters to manage the life cycle of Amazon FSx for OpenZFS file systems and volumes.

Mounting FSx for OpenZFS from Amazon Elastic Container Service

You can access your Amazon FSx for OpenZFS file systems from an Amazon Elastic Container Service (Amazon ECS) Docker container on an Amazon EC2 Linux instance by using a bind mount. For more information, see [Bind mounts](#) in the [Amazon Elastic Container Service Developer Guide](#).

Mounting FSx for OpenZFS volumes on Amazon ECS Linux containers

1. Create an ECS cluster using the EC2 Linux + Networking cluster template for your Linux containers. For more information, see [Creating a cluster](#) in the [Amazon ECS Developer Guide](#).

2. Create a directory on the EC2 instance for mounting the volume as follows:

   ```bash
   sudo mkdir /fsxopenzfs
   ```

3. Mount your FSx for OpenZFS volume on the Linux EC2 instance by either using a user-data script during instance launch, or by running the following commands:
The following example uses sample values in the mount command.

```
sudo mount -t nfs -o nfsvers=4.1 fs-01234567890abcdef1.fsx.us-east-1.amazonaws.com:/fsx/vol1 /fsxopenzfs
```

You can also use the file system's IP address instead of its DNS name.

```
sudo mount -t nfs -o nfsvers=4.1 198.51.100.1:/fsx/vol1 /fsxopenzfs
```

4. When creating your Amazon ECS task definitions, add the following volumes and mountPoints container properties in the JSON container definition. Replace the sourcePath with the mount point and directory in your FSx for OpenZFS file system.

```
{
  "volumes": [
    {
      "name": "openzfs-volume",
      "host": {
        "sourcePath": "mountpoint"
      }
    }
  ],
  "mountPoints": [
    {
      "containerPath": "container_local_path",
      "sourceVolume": "openzfs-volume"
    }
  ]
}
```
Using FSx for OpenZFS with Autodesk Flame on Amazon

You can use Amazon FSx for OpenZFS with Autodesk Flame on Amazon for individual artist and workgroup storage needs. For more information, see Introducing Autodesk Flame on Amazon.
Availability and durability

FSx for OpenZFS supports two file system deployment types, Single-AZ and Multi-AZ, that offer different levels of availability and durability. The following sections provide information to help you choose the right deployment type for your workloads. For information on the service's availability SLA (Service Level Agreement), see Amazon FSx Service Level Agreement.

Topics
- Choosing between Single-AZ and Multi-AZ deployment types
- Deployment type availability
- Failover process for FSx for OpenZFS
- Working with file system resources

Choosing between Single-AZ and Multi-AZ deployment types

Single-AZ file systems are composed of a single file server instance and a set of storage volumes within a single Availability Zone (AZ). Amazon FSx continuously monitors for hardware failures, and automatically recovers from failure events by replacing the failed infrastructure component. Single-AZ file systems are offline—typically for less than 20 minutes—during these failure recovery events, and during the planned file system maintenance window that you configure for your file system. For Single-AZ file systems, file system failure may be unrecoverable in rare cases. For example, when there are multiple component failures. In these cases, you can recover your file system from the most recent backup.

Multi-AZ file systems are composed of a high-availability (HA) pair of file servers spread across two Availability Zones (a preferred AZ and a standby AZ) and a set of storage volumes on each of the two Availability Zones. Data is replicated synchronously as it is written within each individual Availability Zone and between the two Availability Zones. Relative to Single-AZ deployment, Multi-AZ deployments provide enhanced durability by further replicating data across Availability Zones, and enhanced availability by automatically failing over to the standby AZ during planned system maintenance, and in cases of unplanned service disruption. This allows you to continue accessing your data, and helps to protect your data against instance failure and AZ disruption.

We recommend using Multi-AZ file systems for most production workloads, given the high availability and durability model they provide. Single-AZ deployment is designed as a cost-efficient solution for test and development workloads, production workloads that don't require additional
storage-level redundancy, and production workloads that have relaxed availability and Recovery Point Objective (RPO) needs. Workloads with relaxed availability and RPO needs can tolerate temporary loss of availability for up to 20 minutes in the event of planned file system maintenance or unplanned service disruption and, in rare cases, the loss of data updates since the most recent backup.

Deployment type availability

Amazon FSx for OpenZFS is available in the following Amazon Web Services Regions, depending on your deployment type:

<table>
<thead>
<tr>
<th>Amazon Web Services Region</th>
<th>Single-AZ 1</th>
<th>Multi-AZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>US East (N. Virginia)*</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>US East (Ohio)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>US West (N. California)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>US West (Oregon)*</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Amazon GovCloud (US-West)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Amazon GovCloud (US-East)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asia Pacific (Hong Kong)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asia Pacific (Tokyo)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asia Pacific (Seoul)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asia Pacific (Osaka)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Amazon Web Services Region</td>
<td>Deployment Type</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-AZ 1</td>
<td>Multi-AZ</td>
</tr>
<tr>
<td>Asia Pacific (Singapore)*</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asia Pacific (Sydney)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asia Pacific (Jakarta)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asia Pacific (Mumbai)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Asia Pacific (Hyderabad)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Canada (Central)*</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>China (Beijing)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>China (Ningxia)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Europe (Milan)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Europe (Spain)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Europe (Frankfurt)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Europe (Zurich)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Europe (Ireland)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Europe (London)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Europe (Paris)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Europe (Stockholm)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Middle East (UAE)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Middle East (Bahrain)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Amazon Web Services Region | Deployment Type
---|---
| Single-AZ 1 | Multi-AZ |
South America (São Paulo) | ✓ | ✓ |
Israel (Tel Aviv) | ✓ | ✓ |
Africa (Cape Town) | ✓ | ✓ |

Note

*Due to differences in infrastructure capabilities and configurations, your file system type may be unavailable in specific AZs within these regions.

Failover process for FSx for OpenZFS

Multi-AZ file systems automatically fail over from the preferred file server to the standby file server under the following conditions:

- The preferred file server becomes unavailable.
- The file system's throughput capacity is changed.
- The preferred file server undergoes planned maintenance.
- An Availability Zone disruption occurs.

When failing over from one file server to another, the new active file server automatically begins serving all file system read and write requests. For Multi-AZ file systems, when the preferred file server is fully recovered and becomes available, Amazon FSx automatically fails back to it, with failback usually taking less than 60 seconds. A failover typically takes less than 60 seconds from the detection of the failure on the active file server to the promotion of the standby file server to active status. Upon completion of the failover, you continue to have access to your data without manual intervention.
Testing failover on a Multi-AZ file system

You can test failover on your Multi-AZ file system by modifying its throughput capacity. When you modify your file system's throughput capacity, Amazon FSx switches out the file system's file servers sequentially. File systems automatically fail over to the secondary server while Amazon FSx replaces the preferred file server first. After the update, the file system automatically fails back to the new primary server and Amazon FSx replaces the secondary file server.

You can monitor the progress of the throughput capacity update request in the Amazon FSx console, the CLI, and the API. For more information about modifying your file system's throughput capacity and monitoring the progress of the request, see Managing throughput capacity.

Working with file system resources

Subnets

When you create a VPC, it spans all the Availability Zones (AZs) in the region. AZs are distinct locations that are engineered to be isolated from failures in other AZs. After creating a VPC, you can add one or more subnets in each AZ. The default VPC has a subnet in each AZ. Each subnet must reside entirely within one AZ and cannot span zones. When you create a Single-AZ Amazon FSx file system, you specify a single subnet for the file system. The subnet you choose defines the AZ in which the file system is created.

When you create a Multi-AZ file system, you specify two subnets, one for the preferred file server, and one for the standby file server. The two subnets you choose must be in different Availability Zones within the same Amazon Region. For more information about Amazon VPC, see What is Amazon VPC? in the Amazon VPC user guide.

For in-Amazon applications, we recommend that you launch your clients in the same Availability Zone as your preferred file server to minimize latency.

File system elastic network interfaces

For Single-AZ file systems, Amazon FSx provisions one elastic network interface (ENI) in the subnet that you associate with your file system. For Multi-AZ file systems, Amazon FSx provisions two ENIs—one in each of the subnets that you associate with your file system. Clients communicate with your Amazon FSx file system using the elastic network interface that's attached to the file server that serves the data. Network interfaces are considered to be within the service scope of Amazon FSx, despite being part of your account's VPC.
Warning

You must not modify or delete the elastic network interfaces associated with your file system. Modifying or deleting the network interface can cause a permanent loss of connection between your VPC and your file system.

The following table summarizes the subnet, elastic network interface, and IP address resources for FSx for OpenZFS file system deployment types:

<table>
<thead>
<tr>
<th>File system deployment type</th>
<th>Number of subnets</th>
<th>Number of elastic network interfaces</th>
<th>Number of IP addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-AZ</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Single-AZ</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Once a file system is created, its IP addresses don't change until the file system is deleted. For Multi-AZ file systems, the number of IP addresses includes a floating IP address, which allows connected clients to transition between the preferred and standby file servers during a failover event. For more information, see Accessing data.

Important

Amazon FSx doesn't support accessing file systems from, or exposing file systems to the public Internet. If an Elastic IP address, which is a public IP address reachable from the Internet, is attached to a file system's elastic network interface, Amazon FSx automatically detaches it.

Backups

FSx for OpenZFS offers a native backups feature that's designed to support archival, data retention, and compliance needs. A backup is a secondary, offline copy of your file system. Amazon FSx backups are crash-consistent and incremental, which means that only the changes from your most recent backup are saved. This saves on backup storage costs by not duplicating data. By default, Amazon FSx takes an automatic daily backup of your file system during a backup window.
that you specify. You can create additional backups at any time using the Amazon Web Services Management Console, Amazon Command Line Interface, or Amazon FSx API.
Amazon FSx for OpenZFS performance

Amazon FSx for OpenZFS provides simple, high-performance file storage. In this section, we provide an overview of FSx for OpenZFS performance for Single-AZ and Multi-AZ deployment types, and describe how your file system configuration impacts key performance dimensions. We also include some important tips and recommendations for maximizing the performance of your file system.

Topics

• How FSx for OpenZFS file systems work
• File system performance
• Tips for maximizing performance
• Monitoring performance

How FSx for OpenZFS file systems work

Each FSx for OpenZFS file system consists of the file server that clients communicate with and a set of disks attached to that file server. Each file server employs a fast, in-memory cache to enhance performance for the most frequently accessed data. FSx for OpenZFS utilizes the Adaptive Replacement Cache (ARC) and L2ARC that are built into the OpenZFS file system, which improves the portion of data access driven from the in-memory cache.

When a client accesses data that's stored in the in-memory cache, the file server doesn't need to read it from disk, and the data is served directly to the requesting client as network I/O. When a client accesses data that is not in this cache, it is read from disk as disk I/O and then served to the client as network I/O; data read from disk is also subject to the IOPS and bandwidth limits of the underlying disks.

FSx for OpenZFS file systems can serve network I/O about three times faster than disk I/O, which means that clients can drive greater throughput and IOPS with lower latencies for frequently accessed data in cache. The following diagram illustrates how data is accessed from an FSx for OpenZFS file system.
File-based workloads are typically spiky, characterized by short, intense periods of high I/O with plenty of idle time between bursts. To support spiky workloads, in addition to the baseline speeds that a file system can sustain 24/7, Amazon FSx provides the capability to burst to higher speeds for periods of time for both network I/O and disk I/O operations. Amazon FSx uses a network I/O credit mechanism to allocate throughput and IOPS based on average utilization — file systems accrue credits when their throughput and IOPS usage is below their baseline limits, and can use these credits when they perform I/O operations.

File system performance

File system performance is typically measured in latency, throughput, and I/O operations per second (IOPS). Amazon FSx for OpenZFS offers two deployment options, Single-AZ and Multi-AZ. Each deployment option offers a different performance profile. In this section, we document the performance you can expect for frequently accessed data from the in-memory or NVMe caches and data accessed from disk for both deployment types. We also document the baseline performance you can always deliver, as well as the burst performance you can drive for short periods of time.

The specific level of performance a file system can provide is defined by its provisioned throughput capacity, which determines the size of the file server hosting the file system. Provisioned
throughput capacity is equivalent to the baseline disk throughput supported by your file server. For data access from disks, your file system's performance is also dependent on the number of provisioned SSD disk IOPS configured for the file system's underlying disks.

The following sections provide details about the maximum levels of network throughput capacity, disk throughput capacity, and IOPS you can drive with each provisioned throughput capacity configuration. Note that the actual level of performance you can drive for your workload depends on a variety of factors. For more information, see Tips for maximizing performance.

Data access from cache

For read access directly from the in-memory ARC or NVMe L2ARC cache, performance is primarily defined by two components: the performance supported by the client-server network I/O connection, and the size of the cache. The following tables show the cached read performance of Single-AZ 1 and Multi-AZ file systems, based on Amazon Web Services Regions.

Single-AZ 1 (China (Beijing), China (Ningxia), US West (N. California), Africa (Cape Town), Asia Pacific (Hyderabad), Asia Pacific (Jakarta), Middle East (UAE), Amazon GovCloud (US-West), Amazon GovCloud (US-East))

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>In-memory cache (GB)</th>
<th>Maximum network throughput capacity (MB/s)</th>
<th>Maximum network IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline</td>
<td>Burst</td>
</tr>
<tr>
<td>64</td>
<td>5.6</td>
<td>97</td>
<td>1,562</td>
</tr>
<tr>
<td>128</td>
<td>11.2</td>
<td>195</td>
<td>1,562</td>
</tr>
<tr>
<td>256</td>
<td>22.4</td>
<td>390</td>
<td>1,562</td>
</tr>
<tr>
<td>512</td>
<td>44.8</td>
<td>781</td>
<td>1,562</td>
</tr>
<tr>
<td>1,024</td>
<td>89.6</td>
<td>1,562</td>
<td>–</td>
</tr>
<tr>
<td>2,048</td>
<td>179.2</td>
<td>3,125</td>
<td>–</td>
</tr>
<tr>
<td>3,072</td>
<td>268.8</td>
<td>4,687</td>
<td>–</td>
</tr>
</tbody>
</table>

Data access from cache
FSx for OpenZFS

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>In-memory cache (GB)</th>
<th>Maximum network throughput capacity (MB/s)</th>
<th>Maximum network IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,096</td>
<td>358.4</td>
<td>6,250</td>
<td>Up to 1 million IOPS</td>
</tr>
</tbody>
</table>

Single-AZ 1 (All other Amazon Web Services Regions)

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>In-memory cache (GB)</th>
<th>Maximum network throughput capacity (MB/s)</th>
<th>Maximum network IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Burst</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0.25</td>
<td>200</td>
<td>3,200</td>
</tr>
<tr>
<td>128</td>
<td>1.0</td>
<td>400</td>
<td>3,200</td>
</tr>
<tr>
<td>256</td>
<td>3.0</td>
<td>800</td>
<td>3,200</td>
</tr>
<tr>
<td>512</td>
<td>11.2</td>
<td>1,600</td>
<td>3,200</td>
</tr>
<tr>
<td>1,024</td>
<td>22.4</td>
<td>3,200</td>
<td>–</td>
</tr>
<tr>
<td>2,048</td>
<td>44.8</td>
<td>6,400</td>
<td>–</td>
</tr>
<tr>
<td>3,072</td>
<td>67.2</td>
<td>9,600</td>
<td>–</td>
</tr>
<tr>
<td>4,096</td>
<td>89.6</td>
<td>12,800</td>
<td>–</td>
</tr>
</tbody>
</table>

Data access from cache
Multi-AZ (China (Beijing), China (Ningxia), US West (N. California), Africa (Cape Town), Asia Pacific (Hyderabad), Asia Pacific (Jakarta), Middle East (UAE) Amazon GovCloud (US-West), Amazon GovCloud (US-East))

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>In-memory cache (GB)</th>
<th>Network throughput capacity (MB/s)</th>
<th>Maximum network IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline</td>
<td>Burst</td>
</tr>
<tr>
<td>160</td>
<td>11.2</td>
<td>195</td>
<td>1,562</td>
</tr>
<tr>
<td>320</td>
<td>22.4</td>
<td>390</td>
<td>1,562</td>
</tr>
<tr>
<td>640</td>
<td>44.8</td>
<td>781</td>
<td>1,562</td>
</tr>
<tr>
<td>1,280</td>
<td>89.6</td>
<td>1,562</td>
<td>–</td>
</tr>
<tr>
<td>2,560</td>
<td>179.2</td>
<td>3,125</td>
<td>–</td>
</tr>
<tr>
<td>3,840</td>
<td>268.8</td>
<td>4,687</td>
<td>–</td>
</tr>
<tr>
<td>5,120</td>
<td>358.4</td>
<td>6,250</td>
<td>–</td>
</tr>
</tbody>
</table>

Tens of thousands of IOPS

Hundreds of thousands of IOPS

Up to 1 million IOPS

Multi-AZ (US East (N. Virginia), US East (Ohio), Europe (Ireland), US West (Oregon), Asia Pacific (Tokyo), Asia Pacific (Sydney), Europe (Frankfurt), Asia Pacific (Singapore))

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>In-memory cache (GB)</th>
<th>NVMe L2ARC cache (GB)</th>
<th>Network throughput capacity (MB/s)</th>
<th>Maximum network IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseline</td>
<td>Burst</td>
</tr>
<tr>
<td>160</td>
<td>5.6</td>
<td>40</td>
<td>375</td>
<td>6,250</td>
</tr>
<tr>
<td>320</td>
<td>11.2</td>
<td>80</td>
<td>775</td>
<td>6,250</td>
</tr>
</tbody>
</table>

Tens of thousands of IOPS
Provisioned throughp

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>In-memory cache (GB)</th>
<th>NVMe L2ARC cache (GB)</th>
<th>Network throughput capacity (MB/s)</th>
<th>Maximum network IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>640</td>
<td>22.4</td>
<td>160</td>
<td>1,550</td>
<td>6,250</td>
</tr>
<tr>
<td>1,280</td>
<td>44.8</td>
<td>320</td>
<td>3,125</td>
<td>6,250</td>
</tr>
<tr>
<td>2,560</td>
<td>89.6</td>
<td>640</td>
<td>6,250</td>
<td>–</td>
</tr>
<tr>
<td>3,840</td>
<td>134.4</td>
<td>960</td>
<td>9,375</td>
<td>–</td>
</tr>
<tr>
<td>5,120</td>
<td>179.2</td>
<td>1,280</td>
<td>12,500</td>
<td>–</td>
</tr>
<tr>
<td>7,680</td>
<td>268.8</td>
<td>1,920</td>
<td>18,750</td>
<td>–</td>
</tr>
<tr>
<td>10,240</td>
<td>358.4</td>
<td>2,560</td>
<td>21,000</td>
<td>–</td>
</tr>
</tbody>
</table>

Multi-AZ (All other Amazon Web Services Regions)

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>In-memory cache (GB)</th>
<th>Network throughput capacity (MB/s)</th>
<th>Maximum network IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Burst</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>1.0</td>
<td>400</td>
<td>3,200</td>
</tr>
<tr>
<td>320</td>
<td>5.6</td>
<td>800</td>
<td>3,200</td>
</tr>
<tr>
<td>640</td>
<td>11.2</td>
<td>1,600</td>
<td>3,400</td>
</tr>
<tr>
<td>1,280</td>
<td>22.4</td>
<td>3,200</td>
<td>–</td>
</tr>
<tr>
<td>2,560</td>
<td>44.8</td>
<td>6,400</td>
<td>–</td>
</tr>
<tr>
<td>3,840</td>
<td>67.2</td>
<td>9,600</td>
<td>–</td>
</tr>
<tr>
<td>5,120</td>
<td>89.6</td>
<td>12,800</td>
<td>–</td>
</tr>
</tbody>
</table>

Data access from cache
Data access from disk

For read and write access from the disks attached to the file server, performance depends on the performance supported by the server's disk I/O connection. Similar to data accessed from cache, the performance of this connection is determined by the provisioned throughput capacity of the file system, which is equivalent to the baseline throughput capacity of your file server.

Single-AZ 1 (All Amazon Web Services Regions)

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>Maximum disk throughput capacity (MB/s)</th>
<th>Maximum disk IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Burst</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>1,024</td>
</tr>
<tr>
<td>128</td>
<td>128</td>
<td>1,024</td>
</tr>
<tr>
<td>256</td>
<td>256</td>
<td>1,024</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>1,024</td>
</tr>
<tr>
<td>1,024</td>
<td>1,024</td>
<td>–</td>
</tr>
<tr>
<td>2,048</td>
<td>2,048</td>
<td>–</td>
</tr>
<tr>
<td>3,072</td>
<td>3,072</td>
<td>–</td>
</tr>
<tr>
<td>4,096</td>
<td>4,096</td>
<td>–</td>
</tr>
</tbody>
</table>
Multi-AZ (China (Beijing), China (Ningxia), US West (N. California), Africa (Cape Town), Asia Pacific (Hyderabad), Asia Pacific (Jakarta), Middle East (UAE), Amazon GovCloud (US-West), Amazon GovCloud (US-East))

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>Maximum disk throughput capacity (MB/s)*</th>
<th>Maximum disk IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Burst</td>
</tr>
<tr>
<td>160</td>
<td>160</td>
<td>1,250</td>
</tr>
<tr>
<td>320</td>
<td>320</td>
<td>1,250</td>
</tr>
<tr>
<td>640</td>
<td>640</td>
<td>1,250</td>
</tr>
<tr>
<td>1,280</td>
<td>1,280</td>
<td>–</td>
</tr>
<tr>
<td>2,560</td>
<td>2,560</td>
<td>–</td>
</tr>
<tr>
<td>3,840</td>
<td>3,840</td>
<td>–</td>
</tr>
<tr>
<td>5,120</td>
<td>5,120</td>
<td>–</td>
</tr>
</tbody>
</table>

Note

Deployment hardware differences in these regions may cause disk throughput capacity to vary by up to 5% from the values shown in this table.

Multi-AZ (US East (N. Virginia), US East (Ohio), Europe (Ireland), US West (Oregon), Asia Pacific (Tokyo), Asia Pacific (Sydney), Europe (Frankfurt), Asia Pacific (Singapore))

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>Maximum disk throughput capacity (MB/s)</th>
<th>Maximum disk IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Burst</td>
</tr>
</tbody>
</table>
| Data access from disk
<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>Maximum disk throughput capacity (MB/s)</th>
<th>Maximum disk IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>160</td>
<td>3,125</td>
</tr>
<tr>
<td>320</td>
<td>320</td>
<td>3,125</td>
</tr>
<tr>
<td>640</td>
<td>640</td>
<td>3,125</td>
</tr>
<tr>
<td>1,280</td>
<td>1,280</td>
<td>3,125</td>
</tr>
<tr>
<td>2,560</td>
<td>2,560</td>
<td>3,125</td>
</tr>
<tr>
<td>3,840</td>
<td>3,840</td>
<td>3,125</td>
</tr>
<tr>
<td>5,120</td>
<td>5,120</td>
<td>3,125</td>
</tr>
<tr>
<td>7,680</td>
<td>7,680</td>
<td>3,125</td>
</tr>
<tr>
<td>10,240</td>
<td>10,240*</td>
<td>3,125</td>
</tr>
</tbody>
</table>

Note

*If you have a Multi-AZ file system with a throughput capacity of 10,240 MB/s, performance will be limited to 7,500 MB/s for write traffic only. Otherwise, for read traffic on all Multi-AZ file systems, and all other throughput capacity levels, your file system will support the performance limits shown in the table.

Multi-AZ (All other Amazon Web Services Regions)

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)*</th>
<th>Maximum disk throughput capacity (MB/s) Baseline</th>
<th>Burst</th>
<th>Maximum disk IOPS Baseline</th>
<th>Burst</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>160</td>
<td>1,187</td>
<td>5,000</td>
<td>40,000</td>
</tr>
</tbody>
</table>
Maximum disk throughput capacity (MB/s) for Provisioned throughput capacity (MB/s):

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>Maximum disk throughput capacity (MB/s)*</th>
<th>Maximum disk IOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>320</td>
<td>320</td>
<td>10,000</td>
</tr>
<tr>
<td>640</td>
<td>640</td>
<td>20,000</td>
</tr>
<tr>
<td>1,280</td>
<td>1,280</td>
<td>40,000</td>
</tr>
<tr>
<td>2,560</td>
<td>2,560</td>
<td>80,000</td>
</tr>
<tr>
<td>3,840</td>
<td>3,840</td>
<td>120,000</td>
</tr>
<tr>
<td>5,120</td>
<td>5,120</td>
<td>160,000</td>
</tr>
</tbody>
</table>

*Deployment hardware differences in these regions may cause disk throughput capacity to vary by up to 5% from the values shown in this table.

Note

The previous tables show your file system’s throughput capacity for uncompressed data. However, because data compression reduces the amount of data that needs to be transferred as disk I/O, you can often deliver higher levels of throughput for compressed data. For example, if your data is compressed to be 50% smaller (that is, a compression ratio of 2), then you can drive up to 2x the throughput than you could if the data were uncompressed. For more information, see [Data compression](#).

SSD IOPS and performance

Data accessed from disk is also subject to the performance of those underlying disks, which is determined by the number of provisioned SSD IOPS configured on the file system. The maximum IOPS levels you can achieve are defined by the lower of either the maximum IOPS supported by your file server’s disk I/O connection, or the maximum SSD disk IOPS supported by your disks. In order to drive the maximum performance supported by the server-disk connection, you should configure your file system’s provisioned SSD IOPS to match the maximum IOPS in the table above.
If you select **Automatic provisioned SSD IOPS**, Amazon FSx will provision 3 IOPS per GB of storage capacity up to the maximum for your file system, which is the highest IOPS level supported by the disk I/O connection documented above. If you select **User-provisioned**, you can configure any level of SSD IOPS from the minimum of 3 IOPS per GB of storage, up to the maximum for your file system, as long as you don't exceed 1000 IOPS per GiB*.

Note

File systems in the following Amazon Web Services Regions have a maximum IOPS to storage ratio of 50 IOPS per GiB: Africa (Cape Town), Asia Pacific (Hyderabad), Asia Pacific (Jakarta), Middle East (UAE), Middle East (Bahrain), Asia Pacific (Osaka), Europe (Milan), Europe (Paris), South America (São Paulo) Region, Israel (Tel Aviv), Asia Pacific (Hong Kong), Asia Pacific (Seoul), Asia Pacific (Mumbai), Canada (Central), Europe (Stockholm), and Europe (London).

The following graph illustrates the maximum IOPS for Single-AZ 1 and Multi-AZ depending on storage capacity.
Single-AZ 1 Example: storage capacity and throughput capacity

The following example illustrates how throughput capacity and provisioned IOPS impact performance for file systems with Single-AZ 1 deployment type.

A file system that is configured with 2 TiB of SSD storage capacity and 512 MB/s of throughput capacity can support the following performance:

- Data access from in-memory cache – 1,600 MB/s baseline throughput and 3,200 MB/s burst throughput.
- Disk access from disks – 512 MB/s baseline throughput and 1,024 MB/s burst throughput. 6,144 disk IOPS by default (3 IOPS per GiB), and up to 20,000 baseline IOPS and 40,000 burst IOPS if you provision additional SSD IOPS.

Single client performance

FSx for OpenZFS file systems are designed to deliver the maximum performance of your file system across your clients in aggregate, whether you are supporting data access from a single client, or thousands of clients. The following sections provide some practical tips on how to maximize client performance.

Tips for maximizing performance

Client considerations

Amazon EC2 instances

When launching the Amazon EC2 instances that will work with your FSx for OpenZFS file system, ensure that they can support the level of performance your file system needs to deliver. Ensure they have the compute, memory, and network capacity sufficient to drive the throughput, IOPS, and latencies provided by your FSx for OpenZFS file system.

To determine your EC2 instance’s compute and memory capacity, see Instance types in the Amazon EC2 User Guide for Linux Instances. To determine its network capacity, see Amazon EC2 instance network bandwidth in the same guide. The performance characteristics of FSx for OpenZFS file systems don’t depend on the use of Amazon EC2–optimized instances.
NFS nconnect

With FSx for OpenZFS, NFS clients can use the `nconnect` mount option to have multiple TCP connections (up to 16) associated with a single NFS mount. Such an NFS client multiplexes file operations onto multiple TCP connections (multi-flow) in a round-robin fashion to obtain improved performance beyond single TCP connection (single-flow) limits. For more information on single-flow limits, see Amazon EC2 instance network bandwidth in the Amazon EC2 User Guide for Linux Instances.

The following command demonstrates how to use the `nconnect` mount option to mount an FSx for OpenZFS volume with a maximum of 16 simultaneous connections:

```bash
sudo mount -t nfs -o nconnect=16 filesystem_dns_name:/vol_path /localpath
```

The `nconnect` mount option is supported for all NFS versions (v3, v4.0, v4.1, v4.2). NFS `nconnect` is supported by default in Linux kernel versions 5.3 and above, including the latest Ubuntu 18.04 LTS. In addition, RHEL8.3 supports `nconnect` by way of a backport into the 4.18.0-240.el8 kernel and newer.

NFS v3

FSx for OpenZFS file systems flexibly support multiple versions of the NFS protocol (v3, v4.0, v4.1, v4.2). While more recent versions of NFS can better support simultaneous access from many clients (due to a more robust file-locking mechanism) and client-side caching, NFS v3 may still provide improved latency, throughput, and IOPS performance for performance-sensitive workloads. You can mount using NFS v3 from Linux, Windows, or macOS EC2 instances. For more information, see Mounting FSx for OpenZFS volumes.

The following example illustrates how to specify NFS v3 when mounting an FSx for OpenZFS volume:

```bash
sudo mount -t nfs -o nfsvers=3 fs-dns-name:/vol_path /local_path
```

NFS delegations

To improve the ability of NFS clients to cache data locally, NFS v4 introduced NFS delegations, or the ability of the server to delegate certain responsibilities to the client. If the client is granted a read delegation, it is assured that no other client has the ability to write to the file for the duration
of the delegation, meaning that the client can read from its local copy instead of having to go back to the file server.

FSx for OpenZFS file systems support NFS v4 file read delegations. To take advantage of this capability, ensure your clients are mounting with NFS v4.0 or higher.

Request model

When you mount your file system, asynchronous writes are enabled by default (that is, `-o async`). With asynchronous writes, pending write operations are buffered on the client before they are written to your Amazon FSx file system, enabling lower latencies for these operations. A client that has enabled synchronous writes (that is, `-o sync`), or one that opens files using an option that bypasses the cache (for example, `O_DIRECT`), issues synchronous requests, which means that every operation incurs a round-trip between your client and the file server. We recommend using the default asynchronous write option to maximize client performance.

Other recommended mount options

To improve the performance of your file system, you can also configure the following options when mounting your file system:

- `rsize=1048576` – Sets the maximum number of bytes of data that the NFS client can receive for each network READ request to 1048576 bytes (1 MB). Due to lower memory capacity on file systems with 64 MB/s and 128 MB/s of provisioned throughput, these file systems will only accept a maximum `rsize` of 262144 and 524288 bytes, respectively.

- `wsize=1048576` – Sets the maximum number of bytes of data that the NFS client can send for each network WRITE request to 1048576 bytes (1 MB). Due to lower memory capacity on file systems with 64 MB/s and 128 MB/s of provisioned throughput, these file systems will only accept a maximum `wsize` of 262144 and 524288 bytes, respectively.

- `timeo=600` – Sets the timeout value that the NFS client uses to wait for a response before it retries an NFS request to 600 deciseconds (60 seconds).

- `_netdev` – When present in `/etc/fstab`, prevents the client from attempting to mount the FSx for OpenZFS volume until the network has been enabled.

The following example uses sample values.

```
sudo mount -t nfs -o rsize=1048576,wsize=1048576,timeo=600
    fs-0123456789abcdef1.fsx.us-east-1.amazonaws.com:/fsx/vol1 /fsx
```
File system and volume configurations

Provisioned throughput capacity and in-memory cache

In addition to defining the throughput and IOPS that a file system can deliver, a file system's provisioned throughput capacity also determines the amount of in-memory cache on your file server. Increasing your file system's throughput capacity improves workload performance in two ways.

First, it increases the throughput and IOPS you can drive from disk (disk I/O) and from in-memory cache. Second, by increasing the amount of in-memory cache, you can store more data in your file server's in-memory cache, which drives higher cached performance for larger workloads.

Some request- or metadata-intensive workloads will also benefit from a larger file server in-memory cache. These types of workloads can generate and store a large volume of metadata in the in-memory cache. To ensure the size of your file server's in-memory cache is not a bottleneck for your file system performance, we recommend provisioning at least 128 MB/s of throughput capacity for these types of workloads.

NFS export options (sync and async)

On the file server side, the sync or async NFS export option can impact performance. (This is distinct from the similarly-named option you use when mounting your FSx for OpenZFS volume on your client.) This option determines whether your file server will acknowledge client I/O requests as complete when they are written to the file server's in-memory cache (async), or only after they are committed to the file server's persistent disks (sync). sync is the default option and is generally recommended for most workloads.

If you have performance-intensive workloads that can use an FSx for OpenZFS volume as temporary storage for shorter-term data processing or workloads that are resilient to data loss, you can use the async option to achieve substantially higher performance. Because an FSx for OpenZFS volume exported with the async option will acknowledge client writes before they are committed to durable disk storage, clients can write data to the file server at a significantly faster rate. However, this performance comes at the cost that a file server crash or reboot will cause data loss of acknowledged writes that have not yet been committed to the server's disks.

To help you take advantage of this option, you can also make your workloads more resilient to data loss by leveraging FSx for OpenZFS file system backups and volume snapshots. For more information, see Protecting your Amazon FSx for OpenZFS data with backups and snapshots.
Data compression

For read-heavy workloads, compression can significantly improve the overall throughput performance of your file system because it reduces the amount of data that needs to be sent between the underlying storage and the file server. FSx for OpenZFS volumes support the following data compression algorithms.

- **Zstandard compression** delivers very high levels of on-disk data compression, with higher read throughput and reduced write throughput performance than LZ4 compression.
- **LZ4 compression** delivers higher write throughput performance, but achieves lower levels of data compression than Zstandard compression.

With data compression, you can improve your read throughput on data accessed from disk up to the same levels you deliver for frequently accessed cached data. The specific improvement depends upon the amount by which compression can reduce the size of your dataset. Your effective throughput will be roughly equivalent to the product of your provisioned disk throughput and your compression ratio (defined as the ratio of the size of the compressed data to the size of the uncompressed data). For the highest provisioned throughput level (4096 MB/s), common Z-Standard compression ratios of 2-3x can increase your effective read throughput by up to 8-12 GB/s.

You can change a volume's data compression to improve performance. Changing this property affects only newly-written data on the volume.

ZFS record size

The ZFS record size specifies a suggested block size for files in the volume. This property is designed solely for use with databases and other workloads that access files in fixed-size records. ZFS automatically tunes block sizes according to internal algorithms optimized for typical access patterns. When you create a volume, the default record size is 128 KiB. General purpose workflows perform well using the default record size, and we don't recommend changing it, as it may adversely affect performance.

For database workflows that create very large files but access them in small random chunks, specifying a record size greater than or equal to the record size of the database can result in significant performance gains. For databases that use a fixed disk block or record size for I/O, set the ZFS record size to match it. See [Dataset record size](#) in the OpenZFS documentation for more information.
Streaming workflows such as multimedia and video can benefit from setting a larger record size than the default value. For more information about setting the record size on a volume, see Managing FSx for OpenZFS volumes.

You can change a volume's record size to make performance improvements. Changing the volume record size affects only files created afterward; existing files are unaffected.

Monitoring performance

Every minute, FSx for OpenZFS emits usage metrics to Amazon CloudWatch and you can use these metrics to help identify opportunities to improve the performance your clients can drive from your file system.

You can investigate aggregate file system performance with the Sum statistic of each metric. For example, the Sum of the DataReadBytes statistic reports the total read throughput by file system or volume, and the Sum of the DataWriteBytes statistic reports the total write throughput by file system or volume.

For more information on monitoring your file system's performance, see Monitoring with Amazon CloudWatch.
Security in Amazon FSx for OpenZFS

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from data centers and network architectures that are built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model describes this as security of the cloud and security in the cloud:

- **Security of the cloud** – Amazon is responsible for protecting the infrastructure that runs Amazon services in the Amazon Web Services Cloud. Amazon also provides you with services that you can use securely. Third-party auditors regularly test and verify the effectiveness of our security as part of the Amazon Compliance Programs. To learn about the compliance programs that apply to Amazon FSx for OpenZFS, see Amazon Services in Scope by Compliance Program.

- **Security in the cloud** – Your responsibility is determined by the Amazon service that you use. You are also responsible for other factors including the sensitivity of your data, your company’s requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using Amazon FSx. The following topics show you how to configure Amazon FSx to meet your security and compliance objectives. You also learn how to use other Amazon services that help you to monitor and secure your Amazon FSx resources.

Topics

- [Data protection in Amazon FSx for OpenZFS](#)
- [File System Access Control with Amazon VPC](#)
- [Identity and access management for Amazon FSx for OpenZFS](#)
- [Compliance validation for Amazon FSx for OpenZFS](#)
- [Amazon FSx for OpenZFS and interface VPC endpoints (Amazon PrivateLink)](#)
- [Resilience in Amazon FSx for OpenZFS](#)
- [Infrastructure security in Amazon FSx for OpenZFS](#)
Data protection in Amazon FSx for OpenZFS

The Amazon shared responsibility model applies to data protection in Amazon FSx for OpenZFS. As described in this model, Amazon is responsible for protecting the global infrastructure that runs all of the Amazon Web Services Cloud. You are responsible for maintaining control over your content that is hosted on this infrastructure. You are also responsible for the security configuration and management tasks for the Amazon Web Services that you use. For more information about data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and Access Management (IAM). That way, each user is given only the permissions necessary to fulfill their job duties. We also recommend that you secure your data in the following ways:

- Use multi-factor authentication (MFA) with each account.
- Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS 1.3.
- Set up API and user activity logging with Amazon CloudTrail.
- Use Amazon encryption solutions, along with all default security controls within Amazon Web Services.
- Use advanced managed security services such as Amazon Macie, which assists in discovering and securing sensitive data that is stored in Amazon S3.
- If you require FIPS 140-2 validated cryptographic modules when accessing Amazon through a command line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your customers' email addresses, into tags or free-form text fields such as a Name field. This includes when you work with Amazon FSx or other Amazon Web Services using the console, API, Amazon CLI, or Amazon SDKs. Any data that you enter into tags or free-form text fields used for names may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not include credentials information in the URL to validate your request to that server.
Encryption at rest

Encryption of data at rest is automatically enabled when you create an Amazon FSx for OpenZFS file system through the Amazon Web Services Management Console, the Amazon CLI, or programmatically through the Amazon FSx API or one of the Amazon SDKs. Your organization might require the encryption of all data that meets a specific classification or is associated with a particular application, workload, or environment. When you create a file system using the custom create flow, you can specify the KMS key with which to encrypt the data. If you create a file system using the Quick create flow, the data is encrypted using the Amazon managed key. For more information about creating a file system encrypted at rest using the console, see Create Your Amazon FSx for OpenZFS File System and Creating FSx for OpenZFS file systems.

Note

The Amazon key management infrastructure uses Federal Information Processing Standards (FIPS) 140-2 approved cryptographic algorithms. The infrastructure is consistent with National Institute of Standards and Technology (NIST) 800-57 recommendations.

For more information on how FSx for OpenZFS uses Amazon KMS, see How Amazon FSx for OpenZFS uses Amazon KMS.

How encryption at rest works

In an encrypted file system, data and metadata are automatically encrypted before being written to the file system. Similarly, as data and metadata are read, they are automatically decrypted before being presented to the application. These processes are handled transparently by Amazon FSx for OpenZFS, so you don’t have to modify your applications.

Amazon FSx for OpenZFS uses industry-standard AES-256 encryption algorithm to encrypt file system data at rest. For more information, see Cryptography Basics in the Amazon Key Management Service Developer Guide.

How Amazon FSx for OpenZFS uses Amazon KMS

Amazon FSx for OpenZFS integrates with Amazon Key Management Service (Amazon KMS) for key management for encrypting data at rest. Amazon FSx uses Amazon KMS keys to encrypt your file system in the following way:
• **Encrypting data at rest** – Amazon FSx for OpenZFS uses a KMS key, either the Amazon managed key for Amazon FSx or a custom KMS key, to encrypt and decrypt file system data. All Amazon FSx for OpenZFS file systems are encrypted at rest with keys managed by the service. Data is encrypted using an XTS-AES-256 block cipher. The keys used to encrypt data at-rest are unique per file system and destroyed after the file system is deleted. You can enable, disable, or revoke grants on this KMS key. This KMS key can be one of the two following types:

• **Amazon managed key for Amazon FSx** – This is the default KMS key. You're not charged to create and store a KMS key, but there are usage charges. For more information, see [Amazon Key Management Service pricing](https://aws.amazon.com/kms/pricing/).

• **Customer managed key** – This is the most flexible KMS key to use, because you can configure its key policies and grants for multiple users or services. For more information on creating customer managed keys, see [Creating keys](https://docs.aws.amazon.com/kms/latest/developerguide/creating-keys.html) in the Amazon Key Management Service Developer Guide.

If you use a customer managed key as your KMS key for file data encryption and decryption, you can enable key rotation. When you enable key rotation, Amazon KMS automatically rotates your key once per year. Additionally, with a customer managed key, you can choose when to disable, re-enable, delete, or revoke access to your customer managed key at any time. For more information, see [Rotating Amazon KMS keys](https://docs.aws.amazon.com/kms/latest/developerguide/rotating-keys.html) and [Enabling and disabling keys](https://docs.aws.amazon.com/kms/latest/developerguide/enabling-disabling-keys.html) in the Amazon Key Management Service Developer Guide.

⚠️ **Important**

Amazon FSx accepts only symmetric KMS keys. You can't use asymmetric KMS keys with Amazon FSx.

Amazon FSx Key Policies for Amazon KMS

Key policies are the primary way to control access to KMS keys. For more information on key policies, see [Using key policies in Amazon KMS](https://docs.aws.amazon.com/kms/latest/developerguide/using-key-policies.html) in the Amazon Key Management Service Developer Guide. The following list describes all the Amazon KMS–related permissions supported by Amazon FSx for encrypted at rest file systems:

• **kms:Encrypt** – (Optional) Encrypts plain-text into cipher-text. This permission is included in the default key policy.
• **kms:Decrypt** – (Required) Decrypts ciphertext. Ciphertext is plaintext that has been previously encrypted. This permission is included in the default key policy.

• **kms:ReEncrypt** – (Optional) Encrypts data on the server side with a new KMS key, without exposing the plaintext of the data on the client side. The data is first decrypted and then re-encrypted. This permission is included in the default key policy.

• **kms:GenerateDataKeyWithoutPlaintext** – (Required) Returns a data encryption key encrypted under a KMS key. This permission is included in the default key policy under `kms:GenerateDataKey*`.

• **kms:CreateGrant** – (Required) Adds a grant to a key to specify who can use the key and under what conditions. Grants are alternate permission mechanisms to key policies. For more information on grants, see Using grants in the Amazon Key Management Service Developer Guide. This permission is included in the default key policy.

• **kms:DescribeKey** – (Required) Provides detailed information about the specified KMS key. This permission is included in the default key policy.

• **kms:ListAliases** – (Optional) Lists all of the key aliases in the account. When you use the console to create an encrypted file system, this permission populates the list to select the KMS key. We recommend using this permission to provide the best user experience. This permission is included in the default key policy.

Encryption in transit

Amazon FSx for OpenZFS file systems automatically encrypt data in transit when they are accessed from Amazon EC2 instances that support encryption in transit. For more information about which EC2 instances support encryption in transit, see Encryption in transit in the Amazon EC2 User Guide for Linux Instances. In-transit encryption of data is available in all Amazon Web Services Regions where Amazon FSx for OpenZFS is available. For more information, see Deployment type availability.

File System Access Control with Amazon VPC

You access your Amazon FSx for OpenZFS file systems and volumes using the file system's DNS name. The DNS name maps to the private IP address of the file system's elastic network interface in your VPC. Only resources within the associated VPC, or resources connected with the associated VPC by Amazon Direct Connect or VPN, can access the data in your file system over the NFS protocol. For more information, see What is Amazon VPC? in the Amazon VPC User Guide.
Warning
You must not modify or delete the elastic network interface(s) associated with your file system. Modifying or deleting the network interface can cause a permanent loss of connection between your VPC and your file system.

Amazon VPC security groups

A security group acts as a virtual firewall for your FSx for OpenZFS file systems to control incoming and outgoing traffic. Inbound rules control the incoming traffic to your file system, and outbound rules control the outgoing traffic from your file system. When you create a file system, you specify the VPC that it gets created in, and the default security group for that VPC is applied. You can add rules to each security group that allow traffic to or from its associated file systems and volumes. You can modify the rules for a security group at any time. New and modified rules are automatically applied to all resources that are associated with the security group. When Amazon FSx decides whether to allow traffic to reach a resource, it evaluates all of the rules from all of the security groups that are associated with the resource.

To use a security group to control access to your Amazon FSx file system, add inbound and outbound rules. Inbound rules control incoming traffic, and outbound rules control outgoing traffic from your file system. Make sure that you have the right network traffic rules in your security group to map your Amazon FSx file system's file share to a folder on your supported compute instance.

For more information on security group rules, see Security Group Rules in the Amazon EC2 User Guide for Linux Instances.

Creating a VPC security group

To create a security group for Amazon FSx

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2.
2. In the navigation pane, choose Security Groups.
4. Specify a name and description for the security group.
5. For VPC, choose the Amazon VPC associated with your file system to create the security group within that VPC.
6. Remove any outbound rules on the security group. FSx for OpenZFS file systems do not initiate outbound connections in your VPC.

7. Add the following rules to the inbound ports of your security group.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Ports</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>111</td>
<td>Remote procedure call for NFS</td>
</tr>
<tr>
<td>UDP</td>
<td>111</td>
<td>Remote procedure call for NFS</td>
</tr>
<tr>
<td>TCP</td>
<td>2049</td>
<td>NFS server daemon</td>
</tr>
<tr>
<td>UDP</td>
<td>2049</td>
<td>NFS server daemon</td>
</tr>
<tr>
<td>TCP</td>
<td>20001 - 20003</td>
<td>NFS mount, status monitor, and lock daemon</td>
</tr>
<tr>
<td>UDP</td>
<td>20001 - 20003</td>
<td>NFS mount, status monitor, and lock daemon</td>
</tr>
</tbody>
</table>

Disallow access to a file system

To temporarily disallow network access to your file system from all clients, you can remove all the security groups associated with your file system’s elastic network interface(s) and replace them with a group that has no inbound/outbound rules.

Identity and access management for Amazon FSx for OpenZFS

Amazon Identity and Access Management (IAM) is an Amazon Web Service that helps an administrator securely control access to Amazon resources. IAM administrators control who can be authenticated (signed in) and authorized (have permissions) to use Amazon FSx resources. IAM is an Amazon Web Service that you can use with no additional charge.

Topics

- Audience
- Authenticating with identities
- Managing access using policies
- How Amazon FSx for OpenZFS works with IAM
• Identity-based policy examples for Amazon FSx for OpenZFS
• Amazon managed policies for Amazon FSx
• Troubleshooting Amazon FSx for OpenZFS identity and access
• Using tags with Amazon FSx
• Using service-linked roles for Amazon FSx

Audience

How you use Amazon Identity and Access Management (IAM) differs, depending on the work that you do in Amazon FSx.

Service user – If you use the Amazon FSx service to do your job, then your administrator provides you with the credentials and permissions that you need. As you use more Amazon FSx features to do your work, you might need additional permissions. Understanding how access is managed can help you request the right permissions from your administrator. If you cannot access a feature in Amazon FSx, see Troubleshooting Amazon FSx for OpenZFS identity and access.

Service administrator – If you're in charge of Amazon FSx resources at your company, you probably have full access to Amazon FSx. It's your job to determine which Amazon FSx features and resources your service users should access. You must then submit requests to your IAM administrator to change the permissions of your service users. Review the information on this page to understand the basic concepts of IAM. To learn more about how your company can use IAM with Amazon FSx, see How Amazon FSx for OpenZFS works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you can write policies to manage access to Amazon FSx. To view example Amazon FSx identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon FSx for OpenZFS.

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be authenticated (signed in to Amazon) as the Amazon Web Services account root user, as an IAM user, or by assuming an IAM role.

If you access Amazon programmatically, Amazon provides a software development kit (SDK) and a command line interface (CLI) to cryptographically sign your requests by using your credentials. If you don't use Amazon tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing Amazon API requests in the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional security information. For example, Amazon recommends that you use multi-factor authentication (MFA) to increase the security of your account. To learn more, see Using multi-factor authentication (MFA) in Amazon in the IAM User Guide.

Amazon Web Services account root user

When you create an Amazon Web Services account, you begin with one sign-in identity that has complete access to all Amazon Web Services and resources in the account. This identity is called the Amazon Web Services account root user and is accessed by signing in with the email address and password that you used to create the account. We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your root user credentials and use them to perform the tasks that only the root user can perform. For the complete list of tasks that require you to sign in as the root user, see Tasks that require root user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use federation with an identity provider to access Amazon Web Services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the Amazon Directory Service, or any user that accesses Amazon Web Services by using credentials provided through an identity source. When federated identities access Amazon Web Services accounts, they assume roles, and the roles provide temporary credentials.

IAM users and groups

An IAM user is an identity within your Amazon Web Services account that has specific permissions for a single person or application. Where possible, we recommend relying on temporary credentials instead of creating IAM users who have long-term credentials such as passwords and access keys. However, if you have specific use cases that require long-term credentials with IAM users, we recommend that you rotate access keys. For more information, see Rotate access keys regularly for use cases that require long-term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named `IAMAdmins` and give that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but roles provide temporary credentials. To learn more, see [When to create an IAM user (instead of a role)](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_roles.html) in the IAM User Guide.

IAM roles

An **IAM role** is an identity within your Amazon Web Services account that has specific permissions. It is similar to an IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in the Amazon Web Services Management Console by switching roles. You can assume a role by calling an Amazon CLI or Amazon API operation or by using a custom URL. For more information about methods for using roles, see [Using IAM roles](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles-using.html) in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

- **Federated user access** – To assign permissions to a federated identity, you create a role and define permissions for the role. When a federated identity authenticates, the identity is associated with the role and is granted the permissions that are defined by the role. For information about roles for federation, see [Creating a role for a third-party Identity Provider](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles-for-federation.html) in the IAM User Guide.

- **Temporary IAM user permissions** – An IAM user or role can assume an IAM role to temporarily take on different permissions for a specific task.

- **Cross-account access** – You can use an IAM role to allow someone (a trusted principal) in a different account to access resources in your account. Roles are the primary way to grant cross-account access. However, with some Amazon Web Services, you can attach a policy directly to a resource (instead of using a role as a proxy). To learn the difference between roles and resource-based policies for cross-account access, see [How IAM roles differ from resource-based policies](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles-resource-based.html) in the IAM User Guide.

- **Cross-service access** – Some Amazon Web Services use features in other Amazon Web Services. For example, when you make a call in a service, it's common for that service to run applications in Amazon EC2 or store objects in Amazon S3. A service might do this using the calling principal's permissions, using a service role, or using a service-linked role.

- **Forward access sessions (FAS)** – When you use an IAM user or role to perform actions in Amazon, you are considered a principal. When you use some services, you might perform an action that then initiates another action in a different service. FAS uses the permissions of...
the principal calling an Amazon Web Service, combined with the requesting Amazon Web Service to make requests to downstream services. FAS requests are only made when a service receives a request that requires interactions with other Amazon Web Services or resources to complete. In this case, you must have permissions to perform both actions. For policy details when making FAS requests, see Forward access sessions.

- **Service role** – A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For more information, see Creating a role to delegate permissions to an Amazon Web Service in the IAM User Guide.

- **Service-linked role** – A service-linked role is a type of service role that is linked to an Amazon Web Service. The service can assume the role to perform an action on your behalf. Service-linked roles appear in your Amazon Web Services account and are owned by the service. An IAM administrator can view, but not edit the permissions for service-linked roles.

- **Applications running on Amazon EC2** – You can use an IAM role to manage temporary credentials for applications that are running on an EC2 instance and making Amazon CLI or Amazon API requests. This is preferable to storing access keys within the EC2 instance. To assign an Amazon role to an EC2 instance and make it available to all of its applications, you create an instance profile that is attached to the instance. An instance profile contains the role and enables programs that are running on the EC2 instance to get temporary credentials. For more information, see Using an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user) in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or resources. A policy is an object in Amazon that, when associated with an identity or resource, defines their permissions. Amazon evaluates these policies when a principal (user, root user, or role session) makes a request. Permissions in the policies determine whether the request is allowed or denied. Most policies are stored in Amazon as JSON documents. For more information about the structure and contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use Amazon JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.
By default, users and roles have no permissions. To grant users permission to perform actions on the resources that they need, an IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the operation. For example, suppose that you have a policy that allows the `iam:GetRole` action. A user with that policy can get role information from the Amazon Web Services Management Console, the Amazon CLI, or the Amazon API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such as an IAM user, group of users, or role. These policies control what actions users and roles can perform, on which resources, and under what conditions. To learn how to create an identity-based policy, see [Creating IAM policies](#) in the IAM User Guide.

Identity-based policies can be further categorized as *inline policies* or *managed policies*. Inline policies are embedded directly into a single user, group, or role. Managed policies are standalone policies that you can attach to multiple users, groups, and roles in your Amazon Web Services account. Managed policies include Amazon managed policies and customer managed policies. To learn how to choose between a managed policy or an inline policy, see [Choosing between managed policies and inline policies](#) in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-based policies are IAM `role trust policies` and Amazon S3 `bucket policies`. In services that support resource-based policies, service administrators can use them to control access to a specific resource. For the resource where the policy is attached, the policy defines what actions a specified principal can perform on that resource and under what conditions. You must [specify a principal](#) in a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon Web Services.

Resource-based policies are inline policies that are located in that service. You can't use Amazon managed policies from IAM in a resource-based policy.
Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy document format.

Amazon S3, Amazon WAF, and Amazon VPC are examples of services that support ACLs. To learn more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer Guide.

Other policy types

Amazon supports additional, less-common policy types. These policy types can set the maximum permissions granted to you by the more common policy types.

- **Permissions boundaries** – A permissions boundary is an advanced feature in which you set the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role). You can set a permissions boundary for an entity. The resulting permissions are the intersection of an entity's identity-based policies and its permissions boundaries. Resource-based policies that specify the user or role in the Principal field are not limited by the permissions boundary. An explicit deny in any of these policies overrides the allow. For more information about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

- **Service control policies (SCPs)** – SCPs are JSON policies that specify the maximum permissions for an organization or organizational unit (OU) in Amazon Organizations. Amazon Organizations is a service for grouping and centrally managing multiple Amazon Web Services accounts that your business owns. If you enable all features in an organization, then you can apply service control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in member accounts, including each Amazon Web Services account root user. For more information about Organizations and SCPs, see How SCPs work in the Amazon Organizations User Guide.

- **Session policies** – Session policies are advanced policies that you pass as a parameter when you programmatically create a temporary session for a role or federated user. The resulting session’s permissions are the intersection of the user or role's identity-based policies and the session policies. Permissions can also come from a resource-based policy. An explicit deny in any of these policies overrides the allow. For more information, see Session policies in the IAM User Guide.
Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated to understand. To learn how Amazon determines whether to allow a request when multiple policy types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon FSx for OpenZFS works with IAM

Before you use IAM to manage access to Amazon FSx, learn what IAM features are available to use with Amazon FSx.

IAM features you can use with Amazon FSx for OpenZFS

<table>
<thead>
<tr>
<th>IAM feature</th>
<th>Amazon FSx support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity-based policies</td>
<td>Yes</td>
</tr>
<tr>
<td>Resource-based policies</td>
<td>No</td>
</tr>
<tr>
<td>Policy actions</td>
<td>Yes</td>
</tr>
<tr>
<td>Policy resources</td>
<td>Yes</td>
</tr>
<tr>
<td>Policy condition keys</td>
<td>Yes</td>
</tr>
<tr>
<td>ACLs</td>
<td>No</td>
</tr>
<tr>
<td>ABAC (tags in policies)</td>
<td>Yes</td>
</tr>
<tr>
<td>Temporary credentials</td>
<td>Yes</td>
</tr>
<tr>
<td>Forward access sessions</td>
<td>Yes</td>
</tr>
<tr>
<td>Service roles</td>
<td>No</td>
</tr>
<tr>
<td>Service-linked roles</td>
<td>Yes</td>
</tr>
</tbody>
</table>

To get a high-level view of how Amazon FSx and other Amazon services work with most IAM features, see Amazon services that work with IAM in the IAM User Guide.
Identity-based policies for Amazon FSx

<table>
<thead>
<tr>
<th>Supports identity-based policies</th>
<th>Yes</th>
</tr>
</thead>
</table>

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such as an IAM user, group of users, or role. These policies control what actions users and roles can perform, on which resources, and under what conditions. To learn how to create an identity-based policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well as the conditions under which actions are allowed or denied. You can't specify the principal in an identity-based policy because it applies to the user or role to which it is attached. To learn about all of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

Identity-based policy examples for Amazon FSx

To view examples of Amazon FSx identity-based policies, see Identity-based policy examples for Amazon FSx for OpenZFS.

Resource-based policies within Amazon FSx

<table>
<thead>
<tr>
<th>Supports resource-based policies</th>
<th>No</th>
</tr>
</thead>
</table>

Policy actions for Amazon FSx

<table>
<thead>
<tr>
<th>Supports policy actions</th>
<th>Yes</th>
</tr>
</thead>
</table>

Administrators can use Amazon JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny access in a policy. Policy actions usually have the same name as the associated Amazon API operation. There are some exceptions, such as permission-only actions that don't have a matching
API operation. There are also some operations that require multiple actions in a policy. These additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon FSx actions, see Actions defined by Amazon FSx in the Service Authorization Reference.

Policy actions in Amazon FSx use the following prefix before the action:

```json
"Action": [ 
   "fsx:action1",
   "fsx:action2"
]
```

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin with the word Describe, include the following action:

```json
"Action": "fsx:Describe*"
```

To view examples of Amazon FSx identity-based policies, see Identity-based policy examples for Amazon FSx for OpenZFS.

Policy resources for Amazon FSx

<table>
<thead>
<tr>
<th>Supports policy resources</th>
<th>Yes</th>
</tr>
</thead>
</table>

Administrators can use Amazon JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard (*) to indicate that the statement applies to all resources.

"Resource": "*

To see a list of Amazon FSx resource types and their ARNs, see Resources defined by Amazon FSx in the Service Authorization Reference. To learn with which actions you can specify the ARN of each resource, see Actions defined by Amazon FSx.

To view examples of Amazon FSx identity-based policies, see Identity-based policy examples for Amazon FSx for OpenZFS.

Policy condition keys for Amazon FSx

| Supports service-specific policy condition keys | Yes |

Administrators can use Amazon JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement is in effect. The Condition element is optional. You can create conditional expressions that use condition operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition element, Amazon evaluates them using a logical AND operation. If you specify multiple values for a single condition key, Amazon evaluates the condition using a logical OR operation. All of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM user permission to access a resource only if it is tagged with their IAM user name. For more information, see IAM policy elements: variables and tags in the IAM User Guide.
Amazon supports global condition keys and service-specific condition keys. To see all Amazon global condition keys, see Amazon global condition context keys in the IAM User Guide.

To see a list of Amazon FSx condition keys, see Condition keys for Amazon FSx in the Service Authorization Reference. To learn with which actions and resources you can use a condition key, see Actions defined by Amazon FSx.

To view examples of Amazon FSx identity-based policies, see Identity-based policy examples for Amazon FSx for OpenZFS.

Access control lists (ACLs) in Amazon FSx

<table>
<thead>
<tr>
<th>Supports ACLs</th>
<th>No</th>
</tr>
</thead>
</table>

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy document format.

Attribute-based access control (ABAC) with Amazon FSx

<table>
<thead>
<tr>
<th>Supports ABAC (tags in policies)</th>
<th>Yes</th>
</tr>
</thead>
</table>

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on attributes. In Amazon, these attributes are called tags. You can attach tags to IAM entities (users or roles) and to many Amazon resources. Tagging entities and resources is the first step of ABAC. Then you design ABAC policies to allow operations when the principal's tag matches the tag on the resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy using the `aws:ResourceTag/key-name`, `aws:RequestTag/key-name`, or `aws:TagKeys` condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the service. If a service supports all three condition keys for only some resource types, then the value is Partial.
For more information about ABAC, see [What is ABAC?](#) in the *IAM User Guide*. To view a tutorial with steps for setting up ABAC, see [Use attribute-based access control (ABAC)](#) in the *IAM User Guide*.

For more information about tagging Amazon FSx resources, see [Tag your Amazon FSx resources](#).

To view an example identity-based policy for limiting access to a resource based on the tags on that resource, see [Using tags to control access to your Amazon FSx resources](#).

Using Temporary credentials with Amazon FSx

<table>
<thead>
<tr>
<th>Supports temporary credentials</th>
<th>Yes</th>
</tr>
</thead>
</table>

Some Amazon Web Services don't work when you sign in using temporary credentials. For additional information, including which Amazon Web Services work with temporary credentials, see [Amazon Web Services that work with IAM](#) in the *IAM User Guide*.

You are using temporary credentials if you sign in to the Amazon Web Services Management Console using any method except a user name and password. For example, when you access Amazon using your company's single sign-on (SSO) link, that process automatically creates temporary credentials. You also automatically create temporary credentials when you sign in to the console as a user and then switch roles. For more information about switching roles, see [Switching to a role (console)](#) in the *IAM User Guide*.

You can manually create temporary credentials using the Amazon CLI or Amazon API. You can then use those temporary credentials to access Amazon. Amazon recommends that you dynamically generate temporary credentials instead of using long-term access keys. For more information, see [Temporary security credentials in IAM](#).

Forward access sessions for Amazon FSx

<table>
<thead>
<tr>
<th>Supports forward access sessions (FAS)</th>
<th>Yes</th>
</tr>
</thead>
</table>

When you use an IAM user or role to perform actions in Amazon, you are considered a principal. When you use some services, you might perform an action that then initiates another action in a different service. FAS uses the permissions of the principal calling an Amazon Web Service, combined with the requesting Amazon Web Service to make requests to downstream services. FAS requests are only made when a service receives a request that requires interactions with other
Amazon Web Services or resources to complete. In this case, you must have permissions to perform both actions. For policy details when making FAS requests, see Forward access sessions.

Service roles for Amazon FSx

| Supports service roles | No |

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For more information, see Creating a role to delegate permissions to an Amazon Web Service in the IAM User Guide.

⚠️ **Warning**

Changing the permissions for a service role might break Amazon FSx functionality. Edit service roles only when Amazon FSx provides guidance to do so.

Service-linked roles for Amazon FSx

| Supports service-linked roles | Yes |

A service-linked role is a type of service role that is linked to an Amazon Web Service. The service can assume the role to perform an action on your behalf. Service-linked roles appear in your Amazon Web Services account and are owned by the service. An IAM administrator can view, but not edit the permissions for service-linked roles.

For details about creating or managing Amazon FSx service-linked roles, see Using service-linked roles for Amazon FSx.

Identity-based policy examples for Amazon FSx for OpenZFS

Topics

- Policy best practices
- Using the Amazon FSx console
- Allow users to view their own permissions
Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon FSx resources in your account. These actions can incur costs for your Amazon Web Services account. When you create or edit identity-based policies, follow these guidelines and recommendations:

- **Get started with Amazon managed policies and move toward least-privilege permissions** – To get started granting permissions to your users and workloads, use the *Amazon managed policies* that grant permissions for many common use cases. They are available in your Amazon Web Services account. We recommend that you reduce permissions further by defining Amazon customer managed policies that are specific to your use cases. For more information, see *Amazon managed policies* or *Amazon managed policies for job functions* in the *IAM User Guide*.

- **Apply least-privilege permissions** – When you set permissions with IAM policies, grant only the permissions required to perform a task. You do this by defining the actions that can be taken on specific resources under specific conditions, also known as *least-privilege permissions*. For more information about using IAM to apply permissions, see *Policies and permissions in IAM* in the *IAM User Guide*.

- **Use conditions in IAM policies to further restrict access** – You can add a condition to your policies to limit access to actions and resources. For example, you can write a policy condition to specify that all requests must be sent using SSL. You can also use conditions to grant access to service actions if they are used through a specific Amazon Web Service, such as Amazon CloudFormation. For more information, see *IAM JSON policy elements: Condition* in the *IAM User Guide*.

- **Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional permissions** – IAM Access Analyzer validates new and existing policies so that the policies adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides more than 100 policy checks and actionable recommendations to help you author secure and functional policies. For more information, see *IAM Access Analyzer policy validation* in the *IAM User Guide*.

- **Require multi-factor authentication (MFA)** – If you have a scenario that requires IAM users or a root user in your Amazon Web Services account, turn on MFA for additional security. To require MFA when API operations are called, add MFA conditions to your policies. For more information, see *Configuring MFA-protected API access* in the *IAM User Guide*.

For more information about best practices in IAM, see *Security best practices in IAM* in the *IAM User Guide*.
Using the Amazon FSx console

To access the Amazon FSx for OpenZFS console, you must have a minimum set of permissions. These permissions must allow you to list and view details about the Amazon FSx resources in your Amazon Web Services account. If you create an identity-based policy that is more restrictive than the minimum required permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API operation that they're trying to perform.

To ensure that users and roles can still use the Amazon FSx console, also attach the Amazon FSx AmazonFSxConsoleFullAccess or AmazonFSxConsoleReadOnlyAccess Amazon managed policy to the entities. For more information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and managed policies that are attached to their user identity. This policy includes permissions to complete this action on the console or programmatically using the Amazon CLI or Amazon API.

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "ViewOwnUserInfo",
      "Effect": "Allow",
      "Action": [
        "iam:GetUserPolicy",
        "iam:ListGroupsForUser",
        "iam:ListAttachedUserPolicies",
        "iam:ListUserPolicies",
        "iam:GetUser"
      ],
      "Resource": ["arn:aws-cn:iam::*:user/${aws:username}"],
    },
    {
      "Sid": "NavigateInConsole",
      "Effect": "Allow",
      "Action": [
        "s3:ListAllMyBuckets",
        "s3:GetObject"
      ],
      "Resource": ["arn:aws-cn:s3:::bucket/${aws:username}"],
    }
  ]
}
```
Amazon managed policies for Amazon FSx

An Amazon managed policy is a standalone policy that is created and administered by Amazon. Amazon managed policies are designed to provide permissions for many common use cases so that you can start assigning permissions to users, groups, and roles.

Keep in mind that Amazon managed policies might not grant least-privilege permissions for your specific use cases because they're available for all Amazon customers to use. We recommend that you reduce permissions further by defining customer managed policies that are specific to your use cases.

You cannot change the permissions defined in Amazon managed policies. If Amazon updates the permissions defined in an Amazon managed policy, the update affects all principal identities (users, groups, and roles) that the policy is attached to. Amazon is most likely to update an Amazon managed policy when a new Amazon Web Service is launched or new API operations become available for existing services.

For more information, see Amazon managed policies in the IAM User Guide.

AmazonFSxServiceRolePolicy

Allows Amazon FSx to manage Amazon resources on your behalf. See Using service-linked roles for Amazon FSx to learn more.
Amazon managed policy: AmazonFSxDeleteServiceLinkedRoleAccess

You can't attach AmazonFSxDeleteServiceLinkedRoleAccess to your IAM entities. This policy is linked to a service and used only with the service-linked role for that service. You cannot attach, detach, modify, or delete this policy. For more information, see Using service-linked roles for Amazon FSx.

This policy grants administrative permissions that allow Amazon FSx to delete its Service Linked Role for Amazon S3 access, used only by Amazon FSx for Lustre.

Permissions details

This policy includes permissions in `iam` to allow Amazon FSx to view, delete, and view the deletion status for the FSx Service Linked Roles for Amazon S3 access.

To view the permissions for this policy, see AmazonFSxDeleteServiceLinkedRoleAccess in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AmazonFSxFullAccess

You can attach AmazonFSxFullAccess to your IAM entities. Amazon FSx also attaches this policy to a service role that allows Amazon FSx to perform actions on your behalf.

Provides full access to Amazon FSx and access to related Amazon services.

Permissions details

This policy includes the following permissions.

- `fsx` – Allows principals full access to perform all Amazon FSx actions, except for BypassSnaplockEnterpriseRetention.
- `ds` – Allows principals to view information about the Amazon Directory Service directories.
- `ec2`
 - Allows principals to create tags under the specified conditions.
 - To provide enhanced security group validation of all security groups that can be used with a VPC.
- `iam` – Allows principles to create an Amazon FSx service linked role on the user's behalf. This is required so that Amazon FSx can manage Amazon resources on the user's behalf.
• logs – Allows principals to create log groups, log streams, and write events to log streams. This is required so that users can monitor FSx for Windows File Server file system access by sending audit access logs to CloudWatch Logs.

• firehose – Allows principals to write records to Amazon Data Firehose. This is required so that users can monitor FSx for Windows File Server file system access by sending audit access logs to Firehose.

To view the permissions for this policy, see AmazonFSxFullAccess in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AmazonFSxConsoleFullAccess

You can attach the AmazonFSxConsoleFullAccess policy to your IAM identities.

This policy grants administrative permissions that allow full access to Amazon FSx and access to related Amazon services via the Amazon Web Services Management Console.

Permissions details

This policy includes the following permissions.

• fsx – Allows principals to perform all actions in the Amazon FSx management console, except for BypassSnaplockEnterpriseRetention.

• cloudwatch – Allows principals to view CloudWatch Alarms and metrics in the Amazon FSx management console.

• ds – Allows principals to list information about an Amazon Directory Service directory.

• ec2
 • Allows principals to create tags on route tables, list network interfaces, route tables, security groups, subnets and the VPC associated with an Amazon FSx file system.
 • Allows principals to To provide enhanced security group validation of all security groups that can be used with a VPC.

• kms – Allows principals to list aliases for Amazon Key Management Service keys.

• s3 – Allows principals to list some or all of the objects in an Amazon S3 bucket (up to 1000).

• iam – Grants permission to create a service linked role that allows Amazon FSx to perform actions on the user's behalf.
To view the permissions for this policy, see AmazonFSxConsoleFullAccess in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AmazonFSxConsoleReadOnlyAccess

You can attach the AmazonFSxConsoleReadOnlyAccess policy to your IAM identities.

This policy grants read-only permissions to Amazon FSx and related Amazon services so that users can view information about these services in the Amazon Web Services Management Console.

Permissions details

This policy includes the following permissions.

- **fsx** – Allows principals to view information about Amazon FSx file systems, including all tags, in the Amazon FSx Management Console.
- **cloudwatch** – Allows principals to view CloudWatch Alarms and metrics in the Amazon FSx Management Console.
- **ds** – Allows principals to view information about an Amazon Directory Service directory in the Amazon FSx Management Console.
- **ec2**
 - Allows principals to view network interfaces, security groups, subnets and the VPC associated with an Amazon FSx file system in the Amazon FSx Management Console.
 - To provide enhanced security group validation of all security groups that can be used with a VPC.
- **kms** – Allows principals to view aliases for Amazon Key Management Service keys in the Amazon FSx Management Console.
- **log** – Allows principals to describe the Amazon CloudWatch Logs log groups associated with the account making the request. This is required so that principals can view the existing file access auditing configuration for an FSx for Windows File Server file system.
- **firehose** – Allows principals to describe the Amazon Data Firehose delivery streams associated with the account making the request. This is required so that principals can view the existing file access auditing configuration for an FSx for Windows File Server file system.
To view the permissions for this policy, see AmazonFSxConsoleReadOnlyAccess in the Amazon Managed Policy Reference Guide.

Amazon managed policy: AmazonFSxReadOnlyAccess

You can attach the AmazonFSxReadOnlyAccess policy to your IAM identities.

- **fsx** – Allows principals to view information about Amazon FSx file systems, including all tags, in the Amazon FSx Management Console.
- **ec2** – To provide enhanced security group validation of all security groups that can be used with a VPC.

To view the permissions for this policy, see AmazonFSxReadOnlyAccess in the Amazon Managed Policy Reference Guide.

Amazon FSx updates to Amazon managed policies

View details about updates to Amazon managed policies for Amazon FSx since this service began tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the Amazon FSx Document history for Amazon FSx for OpenZFS page.

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmazonFSxServiceRolePolicy – Update to an existing policy</td>
<td>Amazon FSx added new permission, ec2:GetSecurityGroupsForVpc that allows principals to provide enhanced security group validation of all security groups that can be used with a VPC.</td>
<td>January 9, 2024</td>
</tr>
<tr>
<td>AmazonFSxReadOnlyAccess – Update to an existing policy</td>
<td>Amazon FSx added new permission, ec2:GetSecurityGroupsForVpc that allows principals to provide enhanced security group validation of all security groups that can be used with a VPC.</td>
<td>January 9, 2024</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>security groups that can be</td>
<td>security groups that can be used with a VPC.</td>
<td></td>
</tr>
<tr>
<td>used with a VPC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AmazonFSxConsoleReadOnly</td>
<td>Amazon FSx added new permission, <code>ec2:GetSecurityGroupsForVpc</code> that allows principals to provide enhanced security group validation of all security groups that can be used with a VPC.</td>
<td>January 9, 2024</td>
</tr>
<tr>
<td>AmazonFSxFullAccess</td>
<td>Amazon FSx added new permission, <code>ec2:GetSecurityGroupsForVpc</code> that allows principals to provide enhanced security group validation of all security groups that can be used with a VPC.</td>
<td>January 9, 2024</td>
</tr>
<tr>
<td>AmazonFSxConsoleFullAccess</td>
<td>Amazon FSx added new permission, <code>ec2:GetSecurityGroupsForVpc</code> that allows principals to provide enhanced security group validation of all security groups that can be used with a VPC.</td>
<td>January 9, 2024</td>
</tr>
<tr>
<td>AmazonFSxFullAccess</td>
<td>Amazon FSx added new permission to enable users to perform cross-region and cross-account data replication for FSx for OpenZFS file systems.</td>
<td>December 20, 2023</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>AmazonFSxConsoleFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permission to enable users to perform cross-region and cross-account data replication for FSx for OpenZFS file systems.</td>
<td>December 20, 2023</td>
</tr>
<tr>
<td>AmazonFSxFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permission to enable users to perform on-demand replication of volumes for FSx for OpenZFS file systems.</td>
<td>November 26, 2023</td>
</tr>
<tr>
<td>AmazonFSxConsoleFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permission to enable users to perform on-demand replication of volumes for FSx for OpenZFS file systems.</td>
<td>November 26, 2023</td>
</tr>
<tr>
<td>AmazonFSxFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to enable users to view, enable, and disable shared VPC support for FSx for ONTAP Multi-AZ file systems.</td>
<td>November 14, 2023</td>
</tr>
<tr>
<td>AmazonFSxConsoleFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to enable users to view, enable, and disable shared VPC support for FSx for ONTAP Multi-AZ file systems.</td>
<td>November 14, 2023</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>AmazonFSxFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow Amazon FSx to manage network configurations for FSx for OpenZFS Multi-AZ file systems.</td>
<td>August 9, 2023</td>
</tr>
</tbody>
</table>
| **Amazon managed policy:** AmazonFSxServiceRolePolicy | **AmazonFSxServiceRolePolicy** – Update to an existing policy
Amazon FSx modified the existing cloudwatch:PutMetricData permission so that Amazon FSx publishes CloudWatch metrics to the Amazon/FSx namespace. | July 24, 2023 |
<p>| AmazonFSxFullAccess – Update to an existing policy | Amazon FSx updated the policy to remove the fsx:* permission and add specific fsx actions. | July 13, 2023 |
| AmazonFSxConsoleFullAccess – Update to an existing policy | Amazon FSx updated the policy to remove the fsx:* permission and add specific fsx actions. | July 13, 2023 |
| AmazonFSxConsoleReadOnlyAccess – Update to an existing policy | Amazon FSx added new permissions to enable users to view enhanced performance metrics and recommended actions for FSx for Windows File Server file systems in the Amazon FSx console. | September 21, 2022 |</p>
<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmazonFSxConsoleFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to enable users to view enhanced performance metrics and recommended actions for FSx for Windows File Server file systems in the Amazon FSx console.</td>
<td>September 21, 2022</td>
</tr>
<tr>
<td>AmazonFSxReadOnlyAccess – Started tracking policy</td>
<td>This policy grants read-only access to all Amazon FSx resources and any tags associated with them.</td>
<td>February 4, 2022</td>
</tr>
<tr>
<td>AmazonFSxDeleteServiceLinkedRoleAccess – Started tracking policy</td>
<td>This policy grants administrative permissions that allow Amazon FSx to delete its Service Linked Role for Amazon S3 access.</td>
<td>January 7, 2022</td>
</tr>
<tr>
<td>AmazonFSxServiceRolePolicy – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow Amazon FSx to manage network configurations for Amazon FSx for NetApp ONTAP file systems.</td>
<td>September 2, 2021</td>
</tr>
<tr>
<td>AmazonFSxFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow Amazon FSx to create tags on EC2 route tables for scoped down calls.</td>
<td>September 2, 2021</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>AmazonFSxConsoleFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow Amazon FSx to create Amazon FSx for NetApp ONTAP Multi-AZ file systems.</td>
<td>September 2, 2021</td>
</tr>
<tr>
<td>AmazonFSxConsoleFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow Amazon FSx to create tags on EC2 route tables for scoped down calls.</td>
<td>September 2, 2021</td>
</tr>
<tr>
<td>AmazonFSxServiceRolePolicy – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow Amazon FSx to describe and write to CloudWatch Logs log streams. This is required so that users can view file access audit logs for FSx for Windows File Server file systems using CloudWatch Logs.</td>
<td>June 8, 2021</td>
</tr>
<tr>
<td>AmazonFSxServiceRolePolicy – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow Amazon FSx to describe and write to Amazon Data Firehose delivery streams. This is required so that users can view file access audit logs for an FSx for Windows File Server file system using Amazon Data Firehose.</td>
<td>June 8, 2021</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>AmazonFSxFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow principals to describe and create CloudWatch Logs log groups, log streams, and write events to log streams. This is required so that principals can view file access audit logs for FSx for Windows File Server file systems using CloudWatch Logs.</td>
<td>June 8, 2021</td>
</tr>
<tr>
<td>AmazonFSxFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow principals to describe and write records to a Amazon Data Firehose. This is required so that users can view file access audit logs for an FSx for Windows File Server file system using Amazon Data Firehose.</td>
<td>June 8, 2021</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>AmazonFSxConsoleFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow principals to describe the Amazon CloudWatch Logs log groups associated with the account making the request. This is required so that principals can choose an existing CloudWatch Logs log group when configuring file access auditing for an FSx for Windows File Server file system.</td>
<td>June 8, 2021</td>
</tr>
<tr>
<td>AmazonFSxConsoleFullAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow principals to describe the Amazon Data Firehose delivery streams associated with the account making the request. This is required so that principals can choose an existing Firehose delivery stream when configuring file access auditing for an FSx for Windows File Server file system.</td>
<td>June 8, 2021</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>AmazonFSxConsoleReadOnlyAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow principals to describe the Amazon CloudWatch Logs log groups associated with the account making the request. This is required so that principals can view the existing file access auditing configuration for an FSx for Windows File Server file system.</td>
<td>June 8, 2021</td>
</tr>
<tr>
<td>AmazonFSxConsoleReadOnlyAccess – Update to an existing policy</td>
<td>Amazon FSx added new permissions to allow principals to describe the Amazon Data Firehose delivery streams associated with the account making the request. This is required so that principals can view the existing file access auditing configuration for an FSx for Windows File Server file system.</td>
<td>June 8, 2021</td>
</tr>
<tr>
<td>Amazon FSx started tracking changes</td>
<td>Amazon FSx started tracking changes for its Amazon managed policies.</td>
<td>June 8, 2021</td>
</tr>
</tbody>
</table>
Troubleshooting Amazon FSx for OpenZFS identity and access

Use the following information to help you diagnose and fix common issues that you might encounter when working with Amazon FSx and IAM.

Topics

- I am not authorized to perform an action in Amazon FSx
- I am not authorized to perform iam:PassRole
- I want to allow people outside of my Amazon Web Services account to access my Amazon FSx resources

I am not authorized to perform an action in Amazon FSx

If you receive an error that you're not authorized to perform an action, your policies must be updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console to view details about a fictional my-example-widget resource but doesn't have the fictional fsx:GetWidget permissions.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform: fsx:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-example-widget resource by using the fsx:GetWidget action.

If you need help, contact your Amazon administrator. Your administrator is the person who provided you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your policies must be updated to allow you to pass a role to Amazon FSx.

Some Amazon Web Services allow you to pass an existing role to that service instead of creating a new service role or service-linked role. To do this, you must have permissions to pass the role to the service.
The following example error occurs when an IAM user named marymajor tries to use the console to perform an action in Amazon FSx. However, the action requires the service to have permissions that are granted by a service role. Mary does not have permissions to pass the role to the service.

```
User: arn:aws-cn:iam::123456789012:user/marymajor is not authorized to perform:
iam:PassRole
```

In this case, Mary's policies must be updated to allow her to perform the `iam:PassRole` action.

If you need help, contact your Amazon administrator. Your administrator is the person who provided you with your sign-in credentials.

I want to allow people outside of my Amazon Web Services account to access my Amazon FSx resources

You can create a role that users in other accounts or people outside of your organization can use to access your resources. You can specify who is trusted to assume the role. For services that support resource-based policies or access control lists (ACLs), you can use those policies to grant people access to your resources.

To learn more, consult the following:

- To learn whether Amazon FSx supports these features, see [How Amazon FSx for OpenZFS works with IAM](#).
- To learn how to provide access to your resources across Amazon Web Services accounts that you own, see [Providing access to an IAM user in another Amazon Web Services account that you own](#) in the [IAM User Guide](#).
- To learn how to provide access to your resources to third-party Amazon Web Services accounts, see [Providing access to Amazon Web Services accounts owned by third parties](#) in the [IAM User Guide](#).
- To learn how to provide access through identity federation, see [Providing access to externally authenticated users (identity federation)](#) in the [IAM User Guide](#).
- To learn the difference between using roles and resource-based policies for cross-account access, see [How IAM roles differ from resource-based policies](#) in the [IAM User Guide](#).
Using tags with Amazon FSx

You can use tags to control access to Amazon FSx resources and to implement attribute-based access control (ABAC). Users need to have permission to apply tags to Amazon FSx resources during creation.

Grant permission to tag resources during creation

Some resource-creating Amazon FSx API actions enable you to specify tags when you create the resource. You can use resource tags to implement attribute-based access control (ABAC). For more information, see What is ABAC for Amazon in the IAM User Guide.

To enable users to tag resources on creation, they must have permissions to use the action that creates the resource, such as fsx:CreateFileSystem or fsx:CreateVolume. If tags are specified in the resource-creating action, Amazon performs additional authorization on the fsx:TagResource action to verify if users have permissions to create tags. Therefore, users must also have explicit permissions to use the fsx:TagResource action.

The following example demonstrates a policy that allows users to create file systems and volumes and apply tags to them during creation in a specific Amazon Web Services account.

```json
{
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "fsx:CreateFileSystem",
        "fsx:CreateVolume",
        "fsx:TagResource"
      ],
    }
  ]
}
```

Similarly, the following policy allows users to create backups on a specific file system and apply any tags to the backup during backup creation.
The `fsx:TagResource` action is only evaluated if tags are applied during the resource-creating action. Therefore, a user that has permissions to create a resource (assuming there are no tagging conditions) does not require permissions to use the `fsx:TagResource` action if no tags are specified in the request. However, if the user attempts to create a resource with tags, the request fails if the user does not have permissions to use the `fsx:TagResource` action.

For more information about tagging Amazon FSx resources, see Tagging resources. For more information about using tags to control access to FSx resources, see Using tags to control access to your Amazon FSx resources.

Using tags to control access to your Amazon FSx resources

To control access to Amazon FSx resources and actions, you can use Amazon Identity and Access Management (IAM) policies based on tags. You can provide the control in two ways:

1. Control access to Amazon FSx resources based on the tags on those resources.
2. Control what tags can be passed in an IAM request condition.

For information about how to use tags to control access to Amazon resources, see Controlling access using tags in the IAM User Guide. For more information about tagging Amazon FSx resources
Controlling access based on tags on a resource

To control what actions a user or role can perform on an Amazon FSx resource, you can use tags on the resource. For example, you might want to allow or deny specific API operations on a file system resource based on the key-value pair of the tag on the resource.

Example policy – Create a file system on when providing a specific tag

This policy allows the user to create a file system only when they tag it with a specific tag key value pair, in this example, key=Department, value=Finance.

```json
{
   "Effect": "Allow",
   "Action": [
      "fsx:CreateFileSystem",
      "fsx:TagResource"
   ],
   "Condition": {
      "StringEquals": {
         "aws:RequestTag/Department": "Finance"
      }
   }
}
```

Example policy – Create backups only of Amazon FSx file systems with a specific tag

This policy allows users to create backups only of file systems that are tagged with the key value pair key=Department, value=Finance, and the backup will be created with the tag Department=Finance.

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Action": [
            "fsx:CreateBackup"
         ],
         "Condition": {
            "StringEquals": {
               "aws:RequestTag/Department": "Finance"
            }
         }
      }
   ]
}
```
Example policy – Create a file system with a specific tag from backups with a specific tag

This policy allows users to create file systems that are tagged with Department=Finance only from backups that are tagged with Department=Finance.
Example policy – Delete file systems with specific tags

This policy allows a user to delete only file systems that are tagged with Department=Finance. If they create a final backup, then it must be tagged with Department=Finance.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "fsx:DeleteFileSystem"
            ],
            "Condition": {
                "StringEquals": {
                    "aws:ResourceTag/Department": "Finance"
                }
            }
        },
        {
            "Effect": "Allow",
            "Action": [
                "fsx:TagResource"
            ],
            "Condition": {
                "StringEquals": {
                    "aws:RequestTag/Department": "Finance"
                }
            }
        }
    ]
}
```
Using service-linked roles for Amazon FSx

Amazon FSx uses Amazon Identity and Access Management (IAM) service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to Amazon FSx. Service-linked roles are predefined by Amazon FSx and include all the permissions that the service requires to call other Amazon services on your behalf.

A service-linked role makes setting up Amazon FSx easier because you don't have to manually add the necessary permissions. Amazon FSx defines the permissions of its service-linked roles, and unless defined otherwise, only Amazon FSx can assume its roles. The defined permissions include the trust policy and the permissions policy, and that permissions policy cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects your Amazon FSx resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see Amazon Services That Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon FSx

Amazon FSx uses the service-linked role named AWSServiceRoleForAmazonFSx – which performs certain actions in your account, like creating Elastic Network Interfaces for your file systems in your VPC.

For updates to this policy, see AmazonFSxServiceRolePolicy

Permissions details

The AWSServiceRoleForAmazonFSx role permissions are defined by the AmazonFSxServiceRolePolicy Amazon managed policy. The AWSServiceRoleForAmazonFSx has the following permissions:

Note

The AWSServiceRoleForAmazonFSx is used by all Amazon FSx file system types; some of the listed permissions are not applicable to FSx for OpenZFS.
• ds – Allows Amazon FSx to view, authorize, and unauthorize applications in your Amazon Directory Service directory.

• ec2 – Allows Amazon FSx to do the following:
 • View, create, and disassociate network interfaces associated with an Amazon FSx file system.
 • View one or more Elastic IP addresses associated with an Amazon FSx file system.
 • View Amazon VPCs, security groups, and subnets associated with an Amazon FSx file system.
 • To provide enhanced security group validation of all security groups that can be used with a VPC.
 • Create a permission for an Amazon-authorized user to perform certain operations on a network interface.

• cloudwatch – Allows Amazon FSx to publish metric data points to CloudWatch under the Amazon/FSx namespace.

• route53 – Allows Amazon FSx to associate an Amazon VPC with a private hosted zone.

• logs – Allows Amazon FSx to describe and write to CloudWatch Logs log streams. This is so that users can send file access audit logs for an FSx for Windows File Server file system to a CloudWatch Logs stream.

• firehose – Allows Amazon FSx to describe and write to Amazon Data Firehose delivery streams. This is so that users can publish the file access audit logs for an FSx for Windows File Server file system to an Amazon Data Firehose delivery stream.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "CreateFileSystem",
            "Effect": "Allow",
            "Action": [
                "ds:AuthorizeApplication",
                "ds:GetAuthorizedApplicationDetails",
                "ds:UnauthorizeApplication",
                "ec2:CreateNetworkInterface",
                "ec2:CreateNetworkInterfacePermission",
                "ec2:DeleteNetworkInterface",
                "ec2:DescribeAddresses",
                "ec2:DescribeDhcpOptions",
                "ec2:DescribeNetworkInterfaces",
                "cloudwatch:PutMetricData"
            ]
        }
    ]
}
```
"ec2:DescribeRouteTables",
"ec2:DescribeSecurityGroups",
"ec2:DescribeSubnets",
"ec2:DescribeVPCs",
"ec2:DisassociateAddress",
"ec2:GetSecurityGroupsForVpc",
"route53:AssociateVPCWithHostedZone"
],
"Resource": "*
",
{
"Sid": "PutMetrics",
"Effect": "Allow",
"Action": [
"cloudwatch:PutMetricData"
],
"Resource": [
"*
],
"Condition": {
"StringEquals": {
"cloudwatch:namespace": "AWS/FSx"
}
}
},

{
"Sid": "TagResourceNetworkInterface",
"Effect": "Allow",
"Action": [
"ec2:CreateTags"
],
"Resource": [
"arn:aws:ec2:*:*:network-interface/*"
],
"Condition": {
"StringEquals": {
"ec2:CreateAction": "CreateNetworkInterface"
},
"ForAllValues:StringEquals": {
"aws:TagKeys": "AmazonFSx.FileSystemId"
}
}
}
```
{
    "Sid": "ManageNetworkInterface",
    "Effect": "Allow",
    "Action": [
        "ec2:AssignPrivateIpAddress",
        "ec2:ModifyNetworkInterfaceAttribute",
        "ec2:UnassignPrivateIpAddress"
    ],
    "Resource": [
        "arn:aws:ec2:*:*:network-interface/*"
    ],
    "Condition": {
        "Null": {
            "aws:ResourceTag/AmazonFSx.FileSystemId": "false"
        }
    }
},
{
    "Sid": "ManageRouteTable",
    "Effect": "Allow",
    "Action": [
        "ec2:CreateRoute",
        "ec2:ReplaceRoute",
        "ec2:DeleteRoute"
    ],
    "Resource": [
        "arn:aws:ec2:*:*:route-table/*"
    ],
    "Condition": {
        "StringEquals": {
            "aws:ResourceTag/AmazonFSx": "ManagedByAmazonFSx"
        }
    }
},
{
    "Sid": "PutCloudWatchLogs",
    "Effect": "Allow",
    "Action": [
        "logs:DescribeLogGroups",
        "logs:DescribeLogStreams",
        "logs:PutLogEvents"
    ],
    "Resource": "arn:aws:logs:*:*:log-group:/aws/fsx/*"
}
```

Any updates to this policy are described in Amazon FSx updates to Amazon managed policies.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in the IAM User Guide.

Creating a service-linked role for Amazon FSx

You don't need to manually create a service-linked role. When you create a file system in the Amazon Web Services Management Console, the IAM CLI, or the IAM API, Amazon FSx creates the service-linked role for you.

⚠️ Important

This service-linked role can appear in your account if you completed an action in another service that uses the features supported by this role. To learn more, see A New Role Appeared in My IAM Account.

If you delete this service-linked role, and then need to create it again, you can use the same process to recreate the role in your account. When you create a file system, Amazon FSx creates the service-linked role for you again.

Editing a service-linked role for Amazon FSx

Amazon FSx does not allow you to edit the AWSServiceRoleForAmazonFSx service-linked role. After you create a service-linked role, you cannot change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Amazon FSx

If you no longer need to use a feature or service that requires a service-linked role, we recommend that you delete that role. That way you don’t have an unused entity that is not actively monitored or maintained. However, you must delete all of your file systems and backups before you can manually delete the service-linked role.

Note

If the Amazon FSx service is using the role when you try to delete the resources, then the deletion might fail. If that happens, wait for a few minutes and try the operation again.

To manually delete the service-linked role using IAM

Use the IAM console, the IAM CLI, or the IAM API to delete the AWSServiceRoleForAmazonFSx service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported regions for Amazon FSx service-linked roles

Amazon FSx supports using service-linked roles in all of the regions where the service is available. For more information, see Amazon Regions and Endpoints.

Compliance validation for Amazon FSx for OpenZFS

Third-party auditors assess the security and compliance of Amazon FSx for OpenZFS as part of multiple Amazon compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others. Amazon FSx has been assessed to comply with PCI DSS, ISO 9001, 27001, 27017, and 27018, and SOC 1, 2, and 3, in addition to being HIPAA eligible.

To learn whether an Amazon Web Service is within the scope of specific compliance programs, see Amazon Web Services in Scope by Compliance Program and choose the compliance program that you are interested in. For general information, see Amazon Web Services Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see Downloading Reports in Amazon Artifact.
Your compliance responsibility when using Amazon Web Services is determined by the sensitivity of your data, your company's compliance objectives, and applicable laws and regulations. Amazon provides the following resources to help with compliance:

- **Security and Compliance Quick Start Guides** – These deployment guides discuss architectural considerations and provide steps for deploying baseline environments on Amazon that are security and compliance focused.
- **Amazon Compliance Resources** – This collection of workbooks and guides might apply to your industry and location.
- **Evaluating Resources with Rules** in the *Amazon Config Developer Guide* – The Amazon Config service assesses how well your resource configurations comply with internal practices, industry guidelines, and regulations.
- **Amazon Security Hub** – This Amazon Web Service provides a comprehensive view of your security state within Amazon. Security Hub uses security controls to evaluate your Amazon resources and to check your compliance against security industry standards and best practices. For a list of supported services and controls, see [Security Hub controls reference](#).

Amazon FSx for OpenZFS and interface VPC endpoints (Amazon PrivateLink)

You can improve the security posture of your VPC by configuring Amazon FSx to use an interface VPC endpoint. Interface VPC endpoints are powered by Amazon PrivateLink, a technology that enables you to privately access Amazon FSx APIs without an internet gateway, NAT device, VPN connection, or Amazon Direct Connect connection. Instances in your VPC don't need public IP addresses to communicate with Amazon FSx APIs. Traffic between your VPC and Amazon FSx does not leave the Amazon network.

Each interface VPC endpoint is represented by one or more elastic network interfaces in your subnets. A network interface provides a private IP address that serves as an entry point for traffic to the Amazon FSx API.

Considerations for Amazon FSx interface VPC endpoints

Before you set up an interface VPC endpoint for Amazon FSx, be sure to review [Interface VPC endpoint properties and limitations](#) in the *Amazon VPC User Guide*.
You can call any of the Amazon FSx API operations from your VPC. For example, you can create an FSx for OpenZFS file system by calling the CreateFileSystem API from within your VPC. For the full list of Amazon FSx APIs, see Actions in the Amazon FSx API Reference.

VPC peering considerations

You can connect other VPCs to the VPC with interface VPC endpoints using VPC peering. VPC peering is a networking connection between two VPCs. You can establish a VPC peering connection between your own two VPCs, or with a VPC in another Amazon Web Services account. The VPCs can also be in two different Amazon Web Services Regions.

Traffic between peered VPCs stays on the Amazon network and does not traverse the public internet. Once VPCs are peered, resources like Amazon Elastic Compute Cloud (Amazon EC2) instances in both VPCs can access the Amazon FSx API through interface VPC endpoints created in the one of the VPCs.

Creating an interface VPC endpoint for Amazon FSx API

You can create a VPC endpoint for the Amazon FSx API using either the Amazon VPC console or the Amazon Command Line Interface (Amazon CLI). For more information, see Creating an interface VPC endpoint in the Amazon VPC User Guide.

To create an interface VPC endpoint for Amazon FSx, use one of the following:

- com.amazonaws.region.fsx – Creates an endpoint for Amazon FSx API operations.
- com.amazonaws.region.fsx-fips – Creates an endpoint for the Amazon FSx API that complies with Federal Information Processing Standard (FIPS) 140-2.

To use the private DNS option, you must set the enableDnsHostnames and enableDnsSupport attributes of your VPC. For more information, see Viewing and updating DNS support for your VPC in the Amazon VPC User Guide.

Excluding Amazon Web Services Regions in China, if you enable private DNS for the endpoint, you can make API requests to Amazon FSx with the VPC endpoint using its default DNS name for the Amazon Web Services Region, for example fsx.us-east-1.amazonaws.com. For the China (Beijing) and China (Ningxia) Amazon Web Services Regions, you can make API requests with the VPC endpoint using fsx-api.cn-north-1.amazonaws.com.cn and fsx-api.cn-northwest-1.amazonaws.com.cn, respectively.
For more information, see "Accessing a service through an interface VPC endpoint" in the Amazon VPC User Guide.

Creating a VPC endpoint policy for Amazon FSx

To control access to the Amazon FSx API, you can attach an Amazon Identity and Access Management (IAM) policy to your VPC endpoint. The policy specifies the following:

- The principal that can perform actions.
- The actions that can be performed.
- The resources on which actions can be performed.

For more information, see "Controlling access to services with VPC endpoints" in the Amazon VPC User Guide.

Resilience in Amazon FSx for OpenZFS

The Amazon global infrastructure is built around Amazon Web Services Regions and Availability Zones. Amazon Web Services Regions provide multiple physically separated and isolated Availability Zones, which are connected with low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can design and operate applications and databases that automatically fail over between zones without interruption. Availability Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about Amazon Web Services Regions and Availability Zones, see Amazon Global Infrastructure.

In addition to the Amazon global infrastructure, Amazon FSx offers several features to help support your data resiliency and backup needs.

Backup and restore

Amazon FSx creates and saves automated backups of the volumes in your Amazon FSx for OpenZFS file system. Amazon FSx creates automated backups of your volumes during the backup window of your Amazon FSx for OpenZFS file system. Amazon FSx saves the automated backups of your volumes according to the backup retention period that you specify. You can also back up your volumes manually, by creating a user-initiated backup. You restore a volume backup at any time by creating a new volume with the backup specified as the source.
Snapshots

Amazon FSx provides the ability to take snapshots of volumes within your file systems. A snapshot is a read-only image of your OpenZFS volume at a point in time, offering protection against accidental deletion or modification of files in your volumes by end users. For more information, see Working with FSx for OpenZFS snapshots.

Infrastructure security in Amazon FSx for OpenZFS

As a managed service, Amazon FSx for OpenZFS is protected by Amazon global network security. For information about Amazon security services and how Amazon protects infrastructure, see Amazon Cloud Security. To design your Amazon environment using the best practices for infrastructure security, see Infrastructure Protection in Security Pillar Amazon Well-Architected Framework.

You use Amazon published API calls to access Amazon FSx through the network. Clients must support the following:

- Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.
- Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS) to generate temporary security credentials to sign requests.
Managing Amazon FSx for OpenZFS resources

You can manage your Amazon FSx for OpenZFS file system and volume using the Amazon Web Services Management Console, or programmatically using the Amazon Command Line Interface (Amazon CLI) or API.

The following topics provide information about file system and volume management tasks, such as:

- Creating, listing, updating, and deleting file systems and volumes.
- Managing tags, storage capacity quotas and reservations, throughput capacity scaling, ZFS record size, automatic daily backup settings, and maintenance window settings.

Topics

- Managing FSx for OpenZFS file system resources
- Managing FSx for OpenZFS volumes
- FSx for OpenZFS file system status
- Tag your Amazon FSx resources
- Working with Amazon FSx maintenance windows

Managing FSx for OpenZFS file system resources

A file system is the primary FSx for OpenZFS resource. You can create, list, update, and delete FSx for OpenZFS file systems using the Amazon Web Services Management Console, Amazon CLI, and API.

Configurable FSx for OpenZFS file system properties

When you create a file system, you specify the following file system properties:

- Deployment type – The deployment type of your file system (Multi-AZ or Single-AZ). Single-AZ file systems replicate your data and provide automatic self-healing within a single Availability Zone. Multi-AZ file systems provide additional resiliency by replicating your data and providing high availability by automatically failing over across multiple Availability Zones within the same Amazon Region.
• **Storage capacity** – The storage capacity of your file system, from a range of 64 to 524,288 GiB.

• **Provisioned SSD IOPS** – The maximum number of read and write operations for your file system. You can use the default setting of 3 IOPS per GB of SSD storage, or you can provision the SSD IOPS to a maximum of 160,000 SSD IOPS per file system for Single-AZ 1 and Multi-AZ*. You pay for additional SSD IOPS that you provision above the default 3 IOPS per GB of SSD storage.

 Note

 *The maximum SSD IOPS you can provision for Multi-AZ file systems depends on the Amazon Web Services Region your file system is located in. For more information, see Data access from disk.

• **Throughput capacity** – The sustained speed at which the file server that hosts your file system can serve data, in MB per second (MB/s). You can use the default Amazon FSx-provisioned value or you can specify a different value. You pay for additional throughput capacity that you provision above the Amazon FSx default value.

 You can increase the amount of throughput capacity as needed at any time after you create the file system. For more information, see Managing throughput capacity.

• **Network and security** – The VPC and subnets for the management and data access endpoints that your file system creates. For Multi-AZ file systems, you also define an IP address range and route tables. The maximum number of route tables that you can specify is 15.

• **Encryption** – Amazon FSx automatically encrypts the data in your file system at rest using the Amazon FSx service Amazon Key Management Service key for your Amazon Web Services account by default. You can choose to use a different KMS key.

When you create a new file system, Amazon FSx automatically configures a root volume if you use the **Quick create** option. You can customize the root volume configuration when creating a file system by using the **Standard create** option. All new volumes that you create on a file system are children of the root volume. For more information about the properties you'll use to configure the root volume, see Volume properties. After your file system is created, you can create additional volumes as needed to organize your data. For more information, see Creating a volume.

Creating FSx for OpenZFS file systems

You can create an FSx for OpenZFS file system using the Amazon FSx console, Amazon CLI, or the Amazon FSx API.
To create a file system (console)

This procedure uses the **Standard create** creation option to create an FSx for OpenZFS file system with a configuration that you customize for your needs. For information about using the **Quick create** creation option to create a file system with a default set of configuration parameters, see [Step 1: Create an Amazon FSx for OpenZFS file system](#).

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. On the dashboard, choose **Create file system** to start the file system creation wizard.
3. On the **Select file system type** page, choose **FSx for OpenZFS**, and then choose **Next**. The **Create file system** page appears.
4. For **Creation method**, choose **Standard create**.

 Begin your configuration with the **File system details** section.
5. For **File system name - optional**, enter a name for your file system. It’s easier to find and manage your file systems when you name them. You can use a maximum of 256 Unicode letters, white space, and numbers, plus these special characters: + - = . _ : /
6. For **Deployment type**, choose **Multi-AZ** or **Single-AZ 1**.

 - Multi-AZ file systems replicate your data and support failover across multiple Availability Zones in the same Amazon Web Services Region.

 - Single-AZ 1 file systems provide automatic self-healing within a single Availability Zone.

 For more information, see [Deployment type availability](#) and [File system performance](#).
7. For **Storage capacity**, enter the storage capacity of your file system, in GiB. Enter any whole number from 64–524288.
8. For **Provisioned SSD IOPS**, you have two options to provision the number of IOPS for your file system:

 - Choose **Automatic** (the default) if you want Amazon FSx to automatically provision 3 IOPS per GB of SSD storage.

 - Choose **User-provisioned** if you want to specify the number of IOPS, up to the maximum for your file system. You pay for SSD IOPS that you provision above 3 IOPS per GB of SSD storage.
9. **Throughput capacity** is the sustained speed at which the file server that hosts your file system can serve data. For **Throughput capacity**, choose from two options to provide your desired throughput capacity in MB per second (MB/s).

 - Choose the default **Recommended throughput capacity** if you want Amazon FSx to automatically choose the throughput capacity. The recommended value is based on the storage capacity that you choose.
 - Choose **Specify throughput capacity** if you want to specify the throughput capacity value.

 - For Multi-AZ and SINGLE_AZ_2 file systems, valid values are 160, 320, 640, 1280, 2560, 3840, 5120, 7680, or 10240 MBps.
 - For SINGLE_AZ_1 file systems, valid values are 64, 128, 256, 512, 1024, 2048, 3072, or 4096 MB/s.

 You pay for throughput capacity that you provision that exceeds the recommended amount.

 You can increase the amount of throughput capacity as needed at any time after you create the file system. For more information, see [Managing throughput capacity](#).

10. In the **Network & security** section, provide networking and security group information:

 - For **Virtual Private Cloud (VPC)**, choose the Amazon VPC that you want to associate with your file system.
 - For **VPC Security Groups**, the ID for the default security group for your VPC should already be populated.
 - For **Subnet**, choose any value from the list of available subnets. If you are creating a Multi-AZ file system, also choose a **Standby subnet** for the standby file server.
 - (Multi-AZ only) For **Select route tables**, specify the VPC route tables in which rules for routing traffic to the correct file server will be created. Select all VPC route tables associated with the subnets in which your clients are located. By default, Amazon FSx selects your VPC's default route table.
 - (Multi-AZ only) **Endpoint IP address range** specifies the IP address range in which the endpoints to access your file system are created. You have three options for the endpoint IP address range:

 - **Unallocated IP address range from your VPC** – Amazon FSx chooses a block of 16 available IP addresses from the VPC's CIDR range to use as the endpoint IP address range for the file system.
• **Floating IP address range outside your VPC** – Amazon FSx chooses a 198.19.x.0/24 address range.

• **Enter an IP address range** – You can provide a CIDR range of your own choosing. The IP address range that you choose can either be inside or outside the VPC’s IP address range, as long as it doesn’t overlap with any subnet.

11. In the **Encryption** section, for **Encryption key**, choose the Amazon Key Management Service (Amazon KMS) encryption key that protects your file system’s data at rest.

12. For **Root volume configuration**, you can set the following options for the file system’s root volume:

• For **Data compression type**, choose the type of compression to use for your volume—either **Zstandard**, **LZ4**, or **No compression**. Zstandard compression provides more data compression and higher read throughput than LZ4 compression. LZ4 compression provides less compression and higher write throughput performance than Zstandard compression. For more information about the storage and performance benefits of the volume data compression options, see [Data compression](#).

• For **Copy tags to snapshots**, choose whether to copy tags to the volume's snapshot.

• For **NFS exports**, you can modify or remove the default client configuration setting. Client configurations determine client access and permissions for the volume.

To provide additional client configurations:

1. In the **Client addresses** field, specify which clients can access the volume. Enter an asterisk (*) for any client, a specific IP address, or a CIDR range of IP addresses.

2. In the **NFS options** field, enter a comma-delimited set of export options. For example, enter `rw` to allow read and write permissions to the volume for the specified **Client addresses**.

3. Choose **Add client configuration**.

4. Repeat the procedure to add another client configuration.

For more information, see [NFS exports](#).

• For **Record size**, choose whether to use the default suggested record size of 128 KiB, or to set a custom suggested record size for the volume. Workloads that write in fixed small or large record sizes might benefit from setting a custom record size, such as database workloads (small record size) or media streaming workloads (large record size). We
recommend using the default setting in most cases. For more information about setting record size, see Volume properties.

- For **User and group quotas**, you can set a storage quota for a user or group:
 1. For **Quota type**, choose USER or GROUP.
 2. For **User or group ID**, choose the ID number for the user or group.
 3. For **Usage quota**, choose the storage quota number for the user or group.
 4. Choose **Add quota**.
 5. Repeat the procedure to add a quota for another user or group.

13. In **Backup and maintenance - optional**, you can set the following options:

- For **Daily automatic backup**, choose **Enabled** for automatic daily backups. This option is enabled by default.
- For **Daily automatic backup window**, set the time of the day in Coordinated Universal Time (UTC) that you want the daily automatic backup window to start. The window is 30 minutes starting from this specified time. This window can't overlap with the weekly maintenance backup window.
- For **Automatic backup retention period**, set a period from 1–90 days to retain automatic backups.
- For **Weekly maintenance window**, you can set the time of the week that you want the maintenance window to start. Day 1 is Monday, 2 is Tuesday, and so on. The window is 30 minutes starting from this specified time. This window can't overlap with the daily automatic backup window.

14. For **Tags - optional**, you can enter a key and value to add tags to your file system. A tag is a case-sensitive key-value pair that helps you manage, filter, and search for your file system.

Choose **Next**.

15. Review the file system configuration on the **Create file system** page. Note which file system settings you can modify after the file system is created.

16. Choose **Create file system**.

To create a file system (CLI)

To create an FSx for OpenZFS file system, use the `create-file-system` CLI command (or the equivalent CreateFileSystem API operation). The following example creates an FSx for OpenZFS file system with a SINGLE_AZ_1 deployment type.
aws fsx create-file-system
--region us-east-1 \
--file-system-type OPENZFS \
--storage-capacity 10000 \
--storage-type SSD \
--security-group-ids sg-0123456789abcdef3,sg-0123abcd4567ef89a \
--subnet-ids subnet-1234567890abcdef4 \
--tags Key=creator,Value=allison \
--open-zfs-configuration '{
 "AutomaticBackupRetentionDays": 30,
 "CopyTagsToBackups": true,
 "DailyAutomaticBackupStartTime": "02:00",
 "DeploymentType": "SINGLE_AZ_1",
 "DiskIopsConfiguration": {
 "Iops": 250,
 "Mode": "USER_PROVISIONED"
 },
 "RootVolumeConfiguration": {
 "CopyTagsToSnapshots": true,
 "DataCompressionType": "LZ4",
 "NfsExports": [
 {
 "ClientConfigurations": [
 {
 "Clients": "*",
 "Options": ["rw","root_squash","crossmnt"]
 }
]
 }
],
 "ReadOnly": false,
 "RecordSizeKiB": 128,
 "UserAndGroupQuotas": [
 {
 "Id": 1001,
 "StorageCapacityQuotaGiB": 2000,
 "Type": "GROUP"
 }
],
 "ThroughputCapacity": 128
 }
}'
After successfully creating the file system, Amazon FSx returns the file system's description in JSON format.

Viewing a file system

You can view the details of your FSx for OpenZFS file system using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API and SDKs.

To view a file system:

- **Using the console** – Choose a file system to view the File systems detail page. The Summary panel shows the file system ID, lifecycle status, deployment type, availability zone, storage type, storage capacity, throughput capacity, provisioned IOPS, and creation time.

 The tabs provide detailed information and configuration functions for the file system's features, such as backups and volumes.

- **Using the CLI or API** – Use the `describe-file-systems` CLI command or the `DescribeFileSystems` API operation.

Updating a file system

You can modify the following FSx for OpenZFS file system properties using the Amazon Web Services Management Console, CLI, and API.

- **Automatic daily backups** – Back up your file system automatically on a daily basis. Modify the backup window and the backup retention period. For more information about backups, see Working with automatic daily backups.

- **Copy tags to backups** – Copy file system tags to file system backups.

- **Copy tags to volumes** – Copy file system tags to the volumes that are attached to the file system.

- **Provisioned SSD IOPS** – Set a fixed number of IOPS or have Amazon FSx automatically maintain 3 SSD IOPS per GiB of storage capacity. For more information, see Managing SSD storage capacity and provisioned IOPS.

- **Storage capacity** – increase storage capacity as needed.

- **Throughput capacity** – increases or decreases your file system's throughput capacity.

- **Weekly maintenance window** – Set the day of the week and time that Amazon FSx performs file system maintenance and updates.
• **Amazon VPC route tables.** For Multi-AZ file systems, FSx for OpenZFS creates an endpoint for accessing your file system in a VPC route table. You can associate new route tables that you create with your existing Multi-AZ file systems—allowing you to configure which clients can access your data even as your network evolves. You can also disassociate (remove) existing route tables from your file system.

You can update an FSx for OpenZFS file system's configuration using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API.

To update a file system (console)

To update how file system tags are copied

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. In the left navigation pane, choose **File systems**, and then choose the FSx for OpenZFS file system that you want to update.
3. For **Actions**, choose **Update file system**. The **Update file system** dialog box displays.
 • For **Copy tags to backups**, choose whether to copy tags from the file system to any backup that's taken.
 • For **Copy tags to volumes**, choose whether to copy tags from the file system to any volume that you create.
4. Choose **Update** to update the file system with your changes.

To update the weekly maintenance window

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. To display the file system details page, in the left navigation pane, choose **File systems**, and then choose the FSx for OpenZFS file system that you want to update.
3. Choose the **Administration** tab in the second panel on the page.
4. Choose **Update**.
5. Modify the weekly maintenance window for this file system.
6. Choose **Save** to save your changes.
To update automatic daily backups

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. To display the file system details page, in the left navigation pane, choose File systems, and then choose the FSx for OpenZFS file system that you want to update.
3. Choose the Backups tab, and then choose Update.
4. Modify the automatic daily backup settings for this file system, and then choose Save.

To update the file system's VPC route tables

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. To display the file system details page, in the left navigation pane, choose File systems, and then choose the FSx for OpenZFS file system that you want to update.
3. For Actions, choose Update route tables. This option is only available for Multi-AZ file systems.
4. In the Manage route tables dialog box, do one of the following:
 - To associate a new VPC route table, select a route table from the Associate new route tables dropdown list, and then choose Associate.
 - To disassociate an existing VPC route table, select a route table from the Current route tables pane, and then choose Disassociate.
5. Choose Close.

To update a file system (CLI)

To update the configuration of an FSx for OpenZFS file system, use the update-file-system CLI command (or the equivalent UpdateFileSystem API operation), as shown in the following example.

```
aws fsx update-file-system \
   --file-system-id fs-0123456789abcdef0 \
   --open-zfs-configuration
   AutomaticBackupRetentionDays=30,DailyAutomaticBackupStartTime=01:00, \
   WeeklyMaintenanceStartTime=1:01:30,AddRouteTableIds=rtb-0123abcd
```
Managing SSD storage capacity and provisioned IOPS

When you need additional storage for your dataset, you can increase the solid state drive (SSD) storage capacity of your Amazon FSx for OpenZFS file system without any disruption to your end users or applications by using the Amazon FSx console, Amazon FSx API, or Amazon Command Line Interface (Amazon CLI).

You can also change the provisioned SSD IOPS for your file system when you increase SSD storage capacity, or as an independent action. To specify the amount of provisioned SSD IOPS for your file system, use one of two IOPS modes:

- Use **Automatic** mode if you want Amazon FSx to automatically scale your SSD IOPS.
- Use **User-provisioned** mode if you want to provision a specific amount of SSD IOPS.

For more information about these modes, see [Considerations when updating storage and IOPS](#).

When you increase the SSD storage capacity of your Amazon FSx file system, the new capacity is available for use within minutes. You can update the SSD storage capacity or SSD IOPS at anytime, as long as storage capacity increases are at least 6 hours apart. These updates do not impact the availability of your file system in any way. You will be billed for the new SSD storage capacity after it becomes available to you. For more information, see [Amazon FSx for OpenZFS Pricing](#).

You can track the progress of an SSD storage capacity increase or SSD IOPS update at any time by using the Amazon FSx console, CLI, and API. For more information, see [Monitoring storage capacity and IOPS updates](#).

Once the increased SSD capacity is available, if the file system's root volume storage capacity quota is set to the same size as the file system, FSx will automatically update the volume's storage capacity quota to match the newly-increased file system capacity. Otherwise, you need to manually increase the storage capacity quota of the root volume, and any other volumes in your file system. For more information, see [Updating a volume configuration](#).

Topics

- [Considerations when updating storage and IOPS](#)
- [When to increase storage capacity](#)
- [How to update SSD storage capacity and provisioned IOPS](#)
- [Monitoring storage capacity and IOPS updates](#)
Considerations when updating storage and IOPS

Here are a few important considerations when modifying your SSD storage capacity and provisioned IOPS:

- **Storage capacity increase only** – You can only *increase* the amount of SSD storage capacity for a file system; you cannot decrease the storage capacity.

- **Storage capacity minimum increase** – Each SSD storage capacity increase must be a minimum of 10 percent of the file system’s current SSD storage capacity, up to the maximum allowed value of 512 Tebibytes (TiB)*.

Note

*The maximum storage capacity of your file system depends on the Amazon Web Services Region in which it is located. For more information, see Resource quotas for each file system.

- **Time between increases** – You can't make further SSD storage capacity increases on a file system until 6 hours after the last increase was requested.

- **Allocating increased storage capacity** – If the file system's root volume storage capacity quota is set to the same size as the file system, FSx will automatically update the volume's storage capacity quota to match the newly-increased file system capacity. Otherwise, you will need to manually increase storage on the root volume and any other volumes in your file system.

- **Provisioned IOPS modes** – For a provisioned IOPS change, you must specify a mode. The two IOPS modes are the following:

 - **Automatic** mode – Amazon FSx automatically scales your SSD IOPS to maintain 3 SSD IOPS per GiB of storage capacity, up to the maximum number of IOPS for your file system.

 - **User-provisioned** mode – You specify the number of SSD IOPS, which must be greater than or equal to 3 IOPS per GiB of storage capacity. If the amount of SSD IOPS is not at least 3 IOPS per GiB, the request will fail. You can optionally provision a higher level of IOPS. If you do so, you pay for the average IOPS provisioned above 3 IOPS per GiB per file system.
Note

For file systems that are already configured with **User-provisioned** SSD IOPS, you must specify a value for **User-provisioned** SSD IOPS when you are updating your file system, or the update request will fail.

When to increase storage capacity

If you are running out of SSD storage, we recommend that you increase the storage capacity of your file system. You can monitor SSD storage capacity on the file system using these file system-level Amazon CloudWatch metrics.

- **StorageCapacity** measure the total amount of file system SSD storage capacity.
- **UsedStorageCapacity** measures the amount of used SSD storage capacity.

You can use these metrics to measure storage capacity and create alarms. The following are some examples:

- Per cent storage capacity used = \(\frac{\text{UsedStorageCapacity}}{\text{StorageCapacity}} \)
- Per cent storage capacity available = \(\frac{\text{StorageCapacity}}{\text{UsedStorageCapacity}} \)
- Amount of free storage capacity = \(\text{StorageCapacity} - \text{UsedStorageCapacity} \)

You can create a CloudWatch alarm on a metric and get notified when it drops below a specific threshold. For more information, see [Monitoring with Amazon CloudWatch](#).

How to update SSD storage capacity and provisioned IOPS

You can increase a file system's SSD storage capacity and modify your provisioned SSD IOPS by using the Amazon FSx console, the Amazon CLI, or the Amazon FSx API.

To update SSD storage capacity and provisioned IOPS for a file system (console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. In the left navigation pane, choose **File systems**. In the **File systems** list, choose the FSx for OpenZFS file system that you want to update SSD storage capacity and SSD IOPS for.
3. On the **Summary** panel, choose **Update** next to the file system's **SSD storage capacity** value.

 The **Update SSD storage capacity and IOPS** dialog box appears.

4. To increase SSD storage capacity, select **Modify storage capacity**.

5. For **Input type**, choose one of the following:

 - To enter the new SSD storage capacity as a percentage change from the current value, choose **Percentage**.

 For **Desired % increase**, enter the percentage by which you want to increase storage capacity. This value must be at least 10 percent.

 - To enter the new value in GiB, choose **Absolute**.

 For **Desired storage capacity**, enter the new value for SSD storage capacity value in GiB, up to the maximum allowed value of 512 TiB*.

 ![Note](image)

 The maximum storage capacity of your file system depends on the Amazon Web Services Region in which it is located. For more information, see [Resource quotas for each file system](#).

6. For **Provisioned SSD IOPS**, you have two options to modify the number of provisioned SSD IOPS for your file system:

 - If you want Amazon FSx to automatically scale your SSD IOPS to maintain 3 provisioned SSD IOPS per GiB of primary storage capacity, up to a maximum of 160,000 for Single-AZ 1 and 400,000 for Multi-AZ*, choose **Automatic**.

 - If you want to specify the number of SSD IOPS, choose **User-provisioned**. Enter an absolute number of IOPS that is at least 3 times the amount of GiB of your primary storage tier, and less than or equal to the maximum number of IOPS for your file system.

7. Choose **Update**.

To update SSD storage capacity and provisioned IOPS for a file system (CLI)

To update the SSD storage capacity and provisioned IOPS for an FSx for OpenZFS file system, use the Amazon CLI command `update-file-system` (UpdateFileSystem is the equivalent API action). Set the following parameters:
• Set `--file-system-id` to the ID of the file system that you are updating.

• To increase your SSD primary storage capacity, set `--storage-capacity` to a value that is at least 10 percent greater than the current value.

• To modify your provisioned SSD IOPS, use the `--open-zfs-configuration` `DiskIopsConfiguration` property. This property has two parameters, `Iops` and `Mode`:

 • If you want to specify the number of provisioned SSD IOPS, use `Iops=number_of_IOPS`, up to a maximum of 160,000 for Single-AZ 1 and Multi-AZ*, and `Mode=USER_PROVISIONED`. The SSD IOPS value must be greater than or equal to 3 times the requested SSD storage capacity. If you're not increasing the storage capacity, the IOPs value must be greater than or equal to 3 times the current SSD storage capacity.

 Note
 *The maximum SSD IOPS you can provision for Multi-AZ file systems depends on the Amazon Web Services Region your file system is located in. For more information, see Data access from disk.

 • If you want Amazon FSx to automatically increase your SSD IOPS, use `Mode=AUTOMATIC` and don't use the `Iops` parameter. Amazon FSx will automatically maintain 3 provisioned SSD IOPS per GiB of your primary storage capacity, up to a maximum of 160,000 for Single-AZ 1 and Multi-AZ.

The following example requests an increase of 2000 GiB to the file system's SSD storage capacity. It also requests 7000 provisioned SSD IOPS.

```
aws fsx update-file-system \
  --file-system-id fs-0123456789abcdef0 \
  --storage-capacity 2000 \
  --open-zfs-configuration 'DiskIopsConfiguration={Iops=7000,Mode=USER_PROVISIONED}'
```

To monitor the progress of the update, use the `describe-file-systems` Amazon CLI command. Look for the `AdministrativeActions` section in the output.

For more information, see AdministrativeAction in the Amazon FSx for OpenZFS API Reference.
Monitoring storage capacity and IOPS updates

You can monitor the progress of an SSD storage capacity and IOPS update by using the Amazon FSx console, the API, or the Amazon CLI.

Monitoring updates in the console

You can monitor file system updates in the Updates tab on the File system details page.

<table>
<thead>
<tr>
<th>Update type</th>
<th>Target value</th>
<th>Status</th>
<th>Progress %</th>
<th>Request time</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOPS Mode</td>
<td>USER_PROVISIONED</td>
<td>Pending</td>
<td>-</td>
<td>2022-05-13T15:36:26:04:00</td>
</tr>
<tr>
<td>SSD IOPS</td>
<td>3400</td>
<td>Pending</td>
<td>-</td>
<td>2022-05-13T15:36:26:04:00</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>1127</td>
<td>Pending</td>
<td>-</td>
<td>2022-05-13T15:36:26:04:00</td>
</tr>
</tbody>
</table>

For SSD storage capacity and IOPS updates, you can view the following information:

Update type

Supported types are Storage capacity, IOPS Mode, and SSD IOPS. The IOPS Mode and SSD IOPS values are listed for all storage capacity and IOPS scaling requests.

Target value

The updated value for the file system's SSD storage capacity or IOPs.

Status

The current status of the update. The possible values are as follows:

- **Pending** – Amazon FSx has received the update request, but has not started processing it.
- **In progress** – Amazon FSx is processing the update request.
- **Completed** – The update finished successfully.
- **Failed** – The update request failed. Choose the question mark (?) to see details on why the request failed.

Request time

The time that Amazon FSx received the update action request.
Monitoring increases with the Amazon CLI and API

You can view and monitor file system SSD storage capacity increase requests using the `describe-file-systems` Amazon CLI command and the `DescribeFileSystems` API operation. The `AdministrativeActions` array lists the 10 most recent update actions for each administrative action type. When you increase a file system's SSD storage capacity, a `FILE_SYSTEM_UPDATE` `AdministrativeActions` is generated.

The following example shows an excerpt of the response of a `describe-file-systems` CLI command. The file system has a pending administrative action to increase the SSD storage capacity to 2000 GiB and the provisioned SSD IOPS to 7000.

```json
"AdministrativeActions": [
    {
        "AdministrativeActionType": "FILE_SYSTEM_UPDATE",
        "RequestTime": 1586797629.095,
        "Status": "PENDING",
        "TargetFileSystemValues": {
            "StorageCapacity": 2000,
            "OpenZFSConfiguration": {
                "DiskIopsConfiguration": {
                    "Mode": "USER_PROVISIONED",
                    "Iops": 7000
                }
            }
        }
    }
]
```

Amazon FSx processes the `FILE_SYSTEM_UPDATE` action, increasing the file system's storage capacity. When the new storage is available to the file system, the `FILE_SYSTEM_UPDATE` status changes to COMPLETED. The storage capacity shows the new larger value. This behavior is shown in the following excerpt of the response of a `describe-file-systems` CLI command.

```json
"AdministrativeActions": [
    {
        "AdministrativeActionType": "FILE_SYSTEM_UPDATE",
        "RequestTime": 1586799169.445,
        "Status": "UPDATED_OPTIMIZING",
        "TargetFileSystemValues": {
            "StorageCapacity": 2000,
            "OpenZFSConfiguration": {
                "DiskIopsConfiguration": {
                    "Mode": "USER_PROVISIONED",
                    "Iops": 7000
                }
            }
        }
    }
]
```
If the storage capacity or IOPS update request fails, the status of the FILE_SYSTEM_UPDATE action changes to FAILED, as shown in the following example. The FailureDetails property provides information about the failure.

```json
"AdministrativeActions": [ 
  { 
    "AdministrativeActionType": "FILE_SYSTEM_UPDATE",
    "RequestTime": 1586373915.697,
    "Status": "FAILED",
    "TargetFileSystemValues": { 
      "StorageCapacity": 2000,
      "OpenZFSConfiguration": { 
        "DiskIopsConfiguration": { 
          "Mode": "USER_PROVISIONED",
          "Iops": 7000
        }
      }
    },
    "FailureDetails": { 
      "Message": "failure-message"
    }
  }
]
```

Managing throughput capacity

Every FSx for OpenZFS file system has a throughput capacity that is configured when you create the file system. You can modify your file system's throughput capacity at any time, as needed. Throughput capacity is one factor that determines the speed at which the file server hosting the file system can serve file data. Higher levels of throughput capacity also come with higher levels of I/O operations per second (IOPS) and more memory for caching of data on the file server. For more information, see Amazon FSx for OpenZFS performance.
When you modify your file system's throughput capacity, behind the scenes, Amazon FSx switches out the file system's file server. For Multi-AZ file systems, it results in an automatic failover and failback while Amazon FSx switches out the preferred and secondary file servers. For single-AZ systems, your file system will be unavailable for a few minutes during throughput capacity scaling. You are billed for the new amount of throughput capacity once it is available to your file system.

File systems offer varying levels of throughput capacity, depending on your deployment type. The values of throughput capacity (in MB/s) for Single-AZ 1 and Multi-AZ are as follows:

- **Multi-AZ** – 160, 320, 640, 1280, 2560, 3840, 5120, 7680, 10240
- **Single-AZ 1** – 64, 128, 256, 512, 1024, 2048, 3072, 4096

When to modify throughput capacity

Amazon FSx integrates with Amazon CloudWatch, enabling you to monitor your file system's ongoing throughput usage levels. The performance (throughput and IOPS) that you can drive through your file system depends on your specific workload's characteristics, in addition to your file system's throughput capacity, storage capacity, and storage type. You can use CloudWatch metrics to determine which of these dimensions to change to improve performance. For more information, see [Monitoring with Amazon CloudWatch](https://docs.aws.amazon.com/AmazonCloudWatch/latest/UserGuide/Overview.html).

How to modify throughput capacity

You can modify a file system's throughput capacity using the Amazon FSx console, the Amazon Command Line Interface (Amazon CLI), or the Amazon FSx API.

To modify a file system's throughput capacity (console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. Navigate to **File systems**, and choose the FSx for OpenZFS file system that you want to increase the throughput capacity for.
3. For **Actions**, choose **Update throughput capacity**. Or, in the **Summary** panel, choose **Update** next to the file system's **Throughput capacity**.
The **Update throughput capacity** window appears.

4. Choose the new value for **Desired throughput capacity** from the list.

![Update throughput capacity window](image)

5. Choose **Update** to initiate the throughput capacity update.

Note

Your file system may experience a very brief period of unavailability during the update.

To modify a file system's throughput capacity (CLI)

- To modify a file system's throughput capacity, use the `update-file-system` CLI command (or the equivalent `UpdateFileSystem` API operation), as shown in the following example.

```
aws fsx update-file-system \
    --file-system-id fs-0123456789abcdef0 \
    --open-zfs-configuration '"ThroughputCapacity":512"'
```

Deleting a file system

You can delete an FSx for OpenZFS file system using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API and SDKs.
To delete a file system:

- **Using the console** – Follow the procedure described in [Step 3: Clean up resources](#).
- **Using the CLI or API** – Use the `delete-file-system` CLI command or the `DeleteFileSystem` API operation. The following is an example using the CLI to delete:

  ```shell
  aws fsx delete-file-system \
  --file-system-id fs-1234567890abcdef0 \
  --open-zfs-configuration '{
    "FinalBackupTags": [
      {
        "Key": "string",
        "Value": "string"
      }
    ],
    "Options": [ "DELETE_CHILD_VOLUMES_AND_SNAPSHOTS" ],
    "SkipFinalBackup": boolean
  }'
  ```

Note

To delete a file system which still has child volumes present, you must include `DELETE_CHILD_VOLUMES_AND_SNAPSHOTS` in the `Options` property, otherwise the delete request will fail.

Managing FSx for OpenZFS volumes

An FSx for OpenZFS file system can contain one or more *volumes*, which are isolated data containers for files and directories. Every FSx for OpenZFS file system has one (and only one) *root volume*, which is created at file system creation time. All other volumes created on a file system are children of the root volume.

After the file system is created, you can create volumes as needed. Each customer-created volume is a child of another volume. This means that all volumes are children or descendants of the root volume. For example, you could create 10 volumes with each one being a child of the root volume (that is, all 10 volumes are siblings) or you could create a hierarchy of 10 volumes in which each volume is a child of the previous volume.
You use volumes to logically separate an individual file system into multiple namespaces. This allows you to independently manage the storage capacity, compression, NFS exports, record size, and user and group quotas at the volume level.

You access volumes from Linux, Windows, or macOS clients over the Network File System (NFS) protocol (v3, v4.0, v4.1, or v4.2). FSx for OpenZFS presents data to your users and applications as a local directory or drive.

Volume properties

When you create a volume, you can set the following configuration properties to customize and control the storage aspects of the volume.

- **Volume name** provides a name for the volume. Please ensure that the specified name does not conflict with an existing file or directory on the parent volume.

- **Data compression type** reduces the storage capacity that your data consumes and can also help increase your effective throughput. You can choose either **Zstandard**, **LZ4**, or **No compression**. Zstandard compression provides a higher level of data compression and higher read throughput performance than LZ4 compression. LZ4 compression provides a lower level of compression and higher write throughput performance than Zstandard compression. For more information about the storage and performance benefits of the volume data compression options, see [Data compression](#).

- **Storage capacity quota** sets a volume quota, which is the maximum storage size for the volume. A volume quota limits the amount of storage space that the volume can consume to the configured amount, but does not guarantee the space will be available. To guarantee quota space, you must also set **Storage capacity reservation**.

 By setting quotas without setting a **Storage capacity reservation**, you can create space-efficient **thin-provisioned** volumes where capacity is allocated only as storage is being consumed. With thin-provisioned volumes, you can assign quotas that are collectively larger than the existing capacity of the file system or quota of a parent volume. If your file system is nearing capacity or a parent volume is nearing its quota, note that your users or applications may not be able to write in a child volume even though the volume has not reached its quota limit.

- **Storage capacity reservation** guarantees a specified amount of storage space to always be available for the volume. The reservation reserves a configured amount of storage space from the parent volume. Only the volume with the reservation can use that storage space, regardless of the volume quotas that other volumes may have. Note that unlike volume quotas, you can't
reserve an amount of storage space that doesn't exist in its immediate parent. Set a reservation if an application must have a certain amount of storage space or it will fail.

- **Record size** sets the suggested block size for a volume in a ZFS dataset. Choose whether to use the default record size of 128 KiB, or to set a custom record size for the volume. We recommend using the default setting for the majority of use cases. For more information about the record size setting, see [ZFS record size](#). Generally, workloads that write in fixed small or large record sizes may benefit from setting a custom record size, like database workloads (small record size) or media streaming workloads (large record size). See the OpenZFS documentation for more information about [Dataset record size](#) and ZFS datasets.

- **NFS exports** use NFS-level export policies to define how the file system should be exported over the NFS protocol. The NFS exports setting defines which clients can access the volume and what permissions they have. For more information, see [NFS exports](#).

- **User and group quotas** configures individual user and/or group quotas for volumes, which sets a limit on the amount of storage space they can consume on the volume. To determine quota usage, add up the total size of files owned by the user or group specified in the quota. Only data in the volume on which the quota is applied counts toward the user or group's volume quota utilization. Other files and directories that exist only in snapshots or child volumes do not count toward quota usage.

- **Source snapshot ID** specifies a snapshot from which to create a volume. Then use **Source snapshot copy strategy** to specify the type of volume to create:

 - **Clone** creates a clone volume. A clone volume is a writable copy that is initialized with the same data as the snapshot from which it was created. Because clone volumes reference the data from the snapshot, clone volumes are created almost instantly, and initially consume no additional capacity. They only consume the capacity required for the incremental changes made to the source snapshot, providing an easy way to support multiple users or applications in parallel from a shared dataset. However, a clone volume maintains a dependency on its source snapshot, so you cannot delete this source snapshot while the clone volume is in use.

 - **Full copy** creates a full-copy volume. A full-copy volume is a writable copy that is initialized with the same data as the snapshot from which it was created. Unlike a clone volume, it does not maintain any dependency on its source snapshot. Because a full-copy volume requires copying all of the source snapshot data to a new volume, creation time will depend on the size of the source snapshot. While this data is being copied, your full-copy volume will be read only. Once a full-copy volume is created, it is identical to a standard FSx for OpenZFS volume. Files in the source snapshot will maintain their original record size regardless of the record size of
the destination volume. Files will be compressed according to the compression property on the
destination volume.

For more information on snapshots, see Working with FSx for OpenZFS snapshots.

NFS exports

NFS exports are NFS-level export policies that configure which clients can access the volume and
the options that are available. Each volume has its own NFS exports setting, so a client may be able
to mount one volume on the file system but not a different volume.

When creating a volume from the console, you provide the NFS exports information in an array of
client configurations, each of which has Client addresses and NFS options fields.

The Client addresses field specifies which hosts can mount over the NFS protocol and contains one
of these settings:

- * is a wildcard that means anyone who can route to the file server can mount it.
- The IP address of a client's computer (such as 10.0.0.1) that means a client from that specific
 IP address can mount the file system.
- A CIDR block range (such as 192.0.2.0/24) that means any client from that address range can
 mount the file system.

Note

If an IP address is permitted to mount a parent volume, it is also automatically permitted to
mount any of the child volumes.

The NFS options field lists a set of exports options available on the volume. Following are
descriptions of the most common NFS options. For a more comprehensive list of exports options,
see the exports(5) - Linux man page on the die.net web site.

- rw allows both read and write requests on this NFS volume from the specified Client addresses.
- ro allows only read requests on this NFS volume. The specified Client addresses can't write to
 the volume.
• `crossmnt` allows clients to inherit access to any child volumes within this volume (if configured along with the `no_sub_tree_check` option, which is included by default). This option is required to provide file-level access to your snapshots in the `.zfs/snapshot` directory of each volume.

• `all_squash` maps all User IDs (UIDs) and group IDs (GIDs) to the anonymous user.

• `root_squash` maps requests from UID/GID 0 to the anonymous UID/GID. It prevents remote root user from having superuser (root) privileges on remote NFS-mounted volumes. `root_squash` is the default unless overridden by `all_squash` or `no_root_squash`.

• `no_root_squash` turns off root squashing.

• `anonuid` and `anongid` explicitly set the UID and GID of the anonymous account. Valid values are 0 - 2147483647, inclusive.

• `sync` replies to client requests only after the changes have been committed to stable storage (that is, disk drives). `sync` is the default unless overridden by `async`.

• `async` replies to client requests (such as write requests) after the changes have been committed to memory, but before any changes made by that request have been committed to stable storage (that is, disk drives). This setting can improve performance for latency-intensive or IOPS-intensive workloads. For more information, see Amazon FSx for OpenZFS performance.

Warning

Use of the `async` option can cause data to be lost or corrupted if a write request is acknowledged but the server crashes before the write request is fully written to disk.

When you create a volume, the default for **Client addresses** is an asterisk (*) and the default for **NFS options** is `rw,crossmnt`.

![Image](https://example.com/image.png)

Creating a volume

You can create an FSx for OpenZFS volume using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API. You can create new volumes, or create a volume from an existing volume snapshot.

To create a volume (console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. In the left navigation pane, choose **File systems**, and then choose the FSx for OpenZFS file system that you want to create a volume for.

3. Choose the **Volumes** tab.

4. Choose **Create volume**.

 The **Create volume** dialog box appears.

5. In the **File system** field, choose the file system to create the volume on.

6. In the **Parent volume ID** field, choose the ID of the parent volume, which can be the root volume or another volume.

7. In the **Volume name** field, provide a name for the volume. You can use a maximum of 203 alphanumeric characters, plus the underscore (_) special character. The name must be unique among all the volume names on the same parent volume on the same file system.

8. For **Storage capacity quota - optional**, you can set a quota that will be the maximum storage size for the volume. This quota cannot be larger than the parent volume quota. To set no quota and allow this volume to consume any available capacity in your file system, set this property to -1.

9. For **Storage capacity reservation - optional**, you can enter the reservation for the volume. This reserves dedicated space on the file system storage pool, meaning the space available to all other volumes is reduced by the amount specified. It cannot be set to a value that's greater than the parent volume quota or the remaining reservation space on the file system storage. To set no reservation and allow this volume to consume any available capacity in your file system, set this property to 0 or -1.

10. For **Data compression type**, choose the type of compression to use for your volume, either **Zstandard**, **LZ4**, or **No compression**. Zstandard compression provides more data compression and higher read throughput than LZ4 compression. LZ4 compression provides less compression and higher write throughput performance than Zstandard compression. For more information about the storage and performance benefits of the volume data compression options, see **Data compression**.

11. For **Copy tags to snapshots**, enable or disable the option to copy tags on the root volume to snapshots.

12. For **NFS exports**, there is a default client configuration setting which you can modify or remove. Client configurations define which clients can access the volume and their permissions.

 To provide additional client configurations:
a. In the **Client addresses** field, specify which clients can access the volume. Enter an asterisk (*) for any client, a specific IP address, or a CIDR range of IP addresses.

b. In the **NFS options** field, enter a comma-delimited set of exports options. For example, enter `rw` to allow read and write permissions to the volume.

c. Choose **Add client configuration**.

d. Repeat the procedure to add another client configuration.

For more information, see [NFS exports](#).

13. For **Record size**, choose whether to use the default suggested record size of 128 KiB, or to set a **User-configured** suggested record size for the volume. Generally, workloads that write in fixed small or large record sizes may benefit from setting a custom record size, like database workloads (small record size) or media streaming workloads (large record size). We recommend using the default setting for the majority of use cases. For more information about the record size setting, see [Volume properties](#).

14. For **User and group quotas**, you can set a storage quota for a user or group:

 a. For **Quota type**, choose USER or GROUP.

 b. For **User or group ID**, choose a number that is the ID of the user or group.

 c. For **Usage quota**, choose a number that is the storage quota of the user or group.

 d. Choose **Add quota**.

 e. Repeat the procedure to add a quota for another user or group.

15. To create a volume from an existing volume snapshot, use **Source snapshot ID - optional**, to specify the ID of a snapshot from which to create a volume. Then choose a **Source snapshot copy strategy** option for the type of volume you're creating:

 - **Clone** creates a clone volume. The snapshot will provide the seed content for the volume.
 - **Full copy** creates a volume that will contain data copied from the snapshot.

16. Choose **Confirm** to create the volume.

You can monitor the progress on the **File systems** detail page, in the **Status** column of the **Volumes** pane. The volume is ready for use when its status is **Created**.
To create a volume (CLI)

- To create an FSx for OpenZFS volume, use the `create-volume` CLI command (or the equivalent `CreateVolume` API operation). The following example creates a new volume by cloning an existing snapshot.

```
aws fsx create-volume \
  --name vol2 \  
  --volume-type OPENZFS \  
  --tags Key=creator,Value=Liu \  
  --open-zfs-configuration '{
    "CopyTagsToSnapshots": true, 
    "DataCompressionType": "LZ4", 
    "NfsExports": [
      {
        "ClientConfigurations": [
          {
            "Clients": "*", 
            "Options": ["rw","root_squash","crossmnt"]
          }
        ]
      },
      "OriginSnapshot": { 
        "CopyStrategy": "CLONE", 
      },
      "ParentVolumeId": "fsvol-abcdef01234567890", 
      "ReadOnly": false, 
      "RecordSizeKiB": 128, 
      "StorageCapacityQuotaGiB": 10000, 
      "StorageCapacityReservationGiB": -1, 
      "UserAndGroupQuotas": [
        {
          "Id": 1004, 
          "StorageCapacityQuotaGiB": 2000, 
          "Type": "GROUP"
        }
      ]
    }
  }
```

Creating a volume
After successfully creating the volume, Amazon FSx returns its description in JSON format.

Updating a volume configuration

You can update the following FSx for OpenZFS *volume properties*:

- **Storage capacity quota** – you can change an existing quota setting, set a new quota, or unset the capacity quota.
- **Storage capacity reservation** – you can change an existing storage capacity setting, enable storage capacity reservation, or unset the capacity reservation.
- **Data compression type** – you can enable compression, change the compression type, and turn compression off. Changing this property affects only newly-written data.
- **NFS exports** – you can manage access to the volume by modifying *Client addresses* and **NFS options**. For more information, see [NFS exports](#).
- **User and group quotas** – you can change or remove existing quotas and add new quotas.
- **Volume record size** – you can change the record size for the volume. Changing the volume record size affects only files created afterward; existing files are unaffected. For more information, see [ZFS record size](#).

You can update the volume using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API.

To update a volume configuration (console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. Navigate to **File systems** and choose the FSx for OpenZFS file system that you want to update a volume for.
3. Choose the **Volumes** tab.
4. Choose the volume that you want to update.
5. For **Actions**, choose **Update volume**.

 The **Update volume** dialog box displays with the volume's current settings.
6. For **Storage capacity quota - optional**, you can set a quota that will be the maximum storage size for the volume. This quota cannot be larger than the parent volume quota. To set no quota and allow this volume to consume any available capacity in your file system, set this property to -1.
7. **For Storage capacity reservation - optional**, you can enter the reservation for the volume. This reserves dedicated space on the file system storage pool, meaning the space available to all other volumes is reduced by the amount specified. It cannot be set to a value that's greater than the parent volume quota or the remaining reservation space on the file system storage. To set no reservation and allow this volume to consume any available capacity in your file system, set this property to 0 or -1.

8. **For Data compression type**, choose the type of compression to use for your volume—either **Zstandard**, **LZ4**, or **No compression**. Zstandard compression provides more data compression and higher read throughput than LZ4 compression. LZ4 compression provides less compression and higher write throughput performance than Zstandard compression. Changing this property affects only newly-written data. For more information about the storage and performance benefits of volume data compression options, see [Data compression](#).

9. **For NFS exports**, you can modify or remove the existing client configurations that define which clients can access the volume and what permissions they have.

 You can provide additional client configurations for the volume:

 a. In the **Client addresses** field, specify which clients can access the volume. Enter an asterisk (*) for any client, a specific IP address, or a CIDR range of IP addresses.
 b. In the **NFS options** field, enter a comma-delimited set of exports options. For example, enter `rw` to allow read and write permissions to the volume.
 c. Choose **Add client configuration**.
 d. Repeat the procedure to add another client configuration.

 For more information, see [NFS exports](#).

10. **For Record size**, choose whether to use the default suggested record size of 128 KiB, or to set a **User-configured** suggested record size for the volume. Generally, workloads that write in fixed small or large record sizes may benefit from setting a custom record size, like database workloads (small record size) or media streaming workloads (large record size). We recommend the default setting for the majority of use cases. For more information about the record size setting, see [Volume properties](#).

11. **For User and group quotas**, you can change or set a storage quota for a user or group:

 a. For **Quota type**, choose USER or GROUP.
 b. For **User or group ID**, enter a number that is the ID of the user or group.
c. For **Usage quota**, enter a number that is the storage quota in GiB of the user or group.

d. To create additional user or group quotas, choose **Add quota** and repeat the procedure to change or add a quota for another user or group.

12. For **Record size**, enter the desired maximum size of a logical block in a ZFS dataset. Valid values are 4, 8, 16, 32, 64, 128, 256, 512, or 1024 KiB. The default is 128 KiB. Most file systems will use the default value. Database workflows can benefit from a smaller record size, while streaming workflows can benefit from a larger record size. For more information about Record size and file system performance, see [ZFS record size](#).

13. Choose **Update** to update the volume.

To update a volume configuration (CLI)

- To update the configuration of an FSx for OpenZFS volume, use the `update-volume` CLI command (or the equivalent `UpdateVolume` API operation), as shown in the following example. In this example, the `StorageCapacityQuota` and `StorageCapacityReservationGiB` properties are unset, turning off the quota capacity reservation for the volume.

```bash
aws fsx update-volume \
--volume-id fsxvol-0123456789abcdef0 \
--open-zfs-configuration '{
  "DataCompressionType": "ZSTD",
  "NfsExports": [
    {
      "ClientConfigurations": [
        {
          "Clients": "192.0.2.0/24",
          "Options": [ "crossmnt" ]
        }
      ],
      "RecordSizeKiB": 128,
      "StorageCapacityQuotaGiB": -1,
      "StorageCapacityReservationGiB": -1,
      "UserAndGroupQuotas": [
        {
          "Id": 1102,
          "StorageCapacityQuotaGiB": 2000,
          ...
        }
      ]
    }
  ]
}'}
```

Updating a volume configuration
Deleting a volume

You can delete an FSx for OpenZFS volume using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API.

When you delete a volume, the operation has the following results:

- Deletes all data in the volume
- Deletes all snapshots
- Deletes all child volumes and their snapshots

Note

You cannot delete a root volume. You also cannot delete any volumes from a client mount (for example, with a `rm -r /fsx/vol1` command).

Before you delete a volume, make sure that no applications are accessing the data in the volume that you want to delete.

To delete a volume (console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. In the left navigation pane, choose **File systems**, and then choose the FSx for OpenZFS file system that you want to delete a volume from.
3. Choose the **Volumes** tab.
4. Choose the volume that you want to delete.
5. For **Actions**, choose **Delete volume**.
6. In the delete dialog, do the following:
 a. Acknowledge that you understand the results of deleting the volume.
b. Confirm the volume deletion by entering `delete` in the Confirm delete field.

7. Choose **Delete volume(s)**.

To delete a volume (CLI)

- To delete an FSx for OpenZFS volume, use the `delete-volume` CLI command (or the equivalent `DeleteVolume` API operation), as shown in the following example.

  ```bash
  aws fsx delete-volume --volume-id fsxvol-0123456789abcdef1
  ```

Viewing a volume

You can see the FSx for OpenZFS volumes that are currently on your file system using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API and SDKs.

To view the volumes on your file system:

- **Using the console** – Choose a file system to view the File systems detail page. Choose the Volumes tab to list all the volumes on the file system, and then choose the volume you want to view.
- **Using the CLI or API** – Use the `describe-volumes` CLI command or the `DescribeVolumes` API operation.

FSx for OpenZFS file system status

You can view the status of an Amazon FSx file system by using the Amazon FSx console, the Amazon CLI command `describe-file-systems`, or the API operation `DescribeFileSystems`.

<table>
<thead>
<tr>
<th>File system status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVAILABLE</td>
<td>The file system has been successfully created and is available for use.</td>
</tr>
<tr>
<td>CREATING</td>
<td>Amazon FSx is creating a new file system.</td>
</tr>
<tr>
<td>DELETING</td>
<td>Amazon FSx is deleting an existing file system.</td>
</tr>
<tr>
<td>File system status</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MISCONFIGURED</td>
<td>The file system is in a misconfigured but recoverable state.</td>
</tr>
</tbody>
</table>
| FAILED | 1. The file system has failed and Amazon FSx can't recover it.
 2. When creating new file system, Amazon FSx was unable to create a new file system. |

Tag your Amazon FSx resources

To help you manage your file systems and other Amazon FSx resources, you can assign your own metadata to each resource in the form of tags. Tags enable you to categorize your Amazon resources in different ways, for example, by purpose, owner, or environment. This is useful when you have many resources of the same type—you can quickly identify a specific resource based on the tags that you've assigned to it. This topic describes tags and shows you how to create them.

Topics

- Tag basics
- Tagging your resources
- Tag restrictions
- Permissions and tag

Tag basics

A tag is a label that you assign to an Amazon resource. Each tag consists of a key and an optional value, both of which you define.

Tags enable you to categorize your Amazon resources in different ways, for example, by purpose, owner, or environment. For example, you could define a set of tags for your account's Amazon FSx file systems that helps you track each instance's owner and stack level.

We recommend that you devise a set of tag keys that meets your needs for each resource type. Using a consistent set of tag keys makes it easier for you to manage your resources. You can search
and filter the resources based on the tags you add. For more information about how to implement an effective resource tagging strategy, see the Amazon whitepaper [Tagging Best Practices](#).

Tags don't have any semantic meaning to Amazon FSx and are interpreted strictly as a string of characters. Also, tags are not automatically assigned to your resources. You can edit tag keys and values, and you can remove tags from a resource at any time. You can set the value of a tag to an empty string, but you can't set the value of a tag to null. If you add a tag that has the same key as an existing tag on that resource, the new value overwrites the old value. If you delete a resource, any tags for the resource are also deleted.

If you're using the Amazon FSx API, the Amazon CLI, or an Amazon SDK, you can use the `TagResource` API action to apply tags to existing resources. Additionally, some resource-creating actions enable you to specify tags for a resource when the resource is created. If tags cannot be applied during resource creation, we roll back the resource creation process. This ensures that resources are either created with tags or not created at all, and that no resources are left untagged at any time. By tagging resources at the time of creation, you can eliminate the need to run custom tagging scripts after resource creation. For more information about enabling users to tag resources on creation, see [Grant permission to tag resources during creation](#).

Tagging your resources

You can tag Amazon FSx resources that exist in your account. If you're using the Amazon FSx console, you can apply tags to resources by using the Tags tab on the relevant resource screen. When you create resources, you can apply the Name key with a value, and you can apply tags of your choice when creating a new file system. The console may organize resources according to the Name tag, but this tag doesn't have any semantic meaning to the Amazon FSx service.

You can apply tag-based resource-level permissions in your IAM policies to the Amazon FSx API actions that support tagging on creation to implement granular control over the users and groups that can tag resources on creation. Your resources are properly secured from creation—tags are applied immediately to your resources, therefore any tag-based resource-level permissions controlling the use of resources are immediately effective. Your resources can be tracked and reported on more accurately. You can enforce the use of tagging on new resources, and control which tag keys and values are set on your resources.

You can also apply resource-level permissions to the `TagResource` and `UntagResource` Amazon FSx API actions in your IAM policies to control which tag keys and values are set on your existing resources.
For more information about tagging your resources for billing, see [Using cost allocation tags](#) in the *Amazon Billing User Guide*.

Tag restrictions

The following basic restrictions apply to tags:

- Maximum number of tags per resource – 50
- For each resource, each tag key must be unique, and each tag key can have only one value.
- Maximum key length – 128 Unicode characters in UTF-8
- Maximum value length – 256 Unicode characters in UTF-8
- The allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
- Tag keys and values are case-sensitive.
- The `aws:` prefix is reserved for Amazon use. If a tag has a tag key with this prefix, then you can't edit or delete the tag's key or value. Tags with the `aws:` prefix do not count against your tags per resource limit.

You can't delete a resource based solely on its tags; you must specify the resource identifier. For example, to delete a file system that you tagged with a tag key called `DeleteMe`, you must use the `DeleteFileSystem` action with the file system resource identifier, such as `fs-1234567890abcdef0`.

When you tag public or shared resources, the tags you assign are available only to your Amazon Web Services account; no other Amazon Web Services account will have access to those tags. For tag-based access control to shared resources, each Amazon Web Services account must assign its own set of tags to control access to the resource.

Permissions and tag

For more information about the permissions required to tag Amazon FSx resources at creation, see [Grant permission to tag resources during creation](#).

For more information about using tags to restrict access to Amazon FSx resources in IAM policies, see [Using tags to control access to your Amazon FSx resources](#).
Working with Amazon FSx maintenance windows

Amazon FSx for OpenZFS performs routine software patching for the OpenZFS software it manages. The maintenance window is your opportunity to control what day and time of the week this software patching occurs. You can choose the maintenance window during file system creation, or at a later time. If you have no time preference, a 30-minute default window is assigned.

FSx for OpenZFS allows you to adjust your maintenance window as needed to accommodate your workload and operational requirements. You can move your maintenance window as frequently as required, provided that a maintenance window is scheduled at least once every 14 days. If a patch is released and you haven’t scheduled a maintenance window within 14 days, FSx for OpenZFS will proceed with maintenance on the file system to ensure its security and reliability.

Patching occurs infrequently, typically once every several weeks. Patching should require only a fraction of your 30-minute maintenance window. While patching is in progress, you should expect that your Single-AZ file systems will be unavailable, typically for less than 20 minutes. Your Multi-AZ file systems will remain available and automatically fail over and fail back between the preferred file server and the standby file server. For more information, see Failover process for FSx for OpenZFS. Because patching for Multi-AZ file systems involves failover and failback, any write traffic to the file system during the time when only one file server is up and running will need to be synchronized to the other file server once it is fully back up. To reduce the duration and impact of this synchronization traffic, we recommend scheduling your maintenance window during idle periods when there is minimal load on your file system.

Note

To ensure data integrity during maintenance activity, FSx for OpenZFS completes pending write operations to the underlying storage volumes that host your file system before maintenance begins.

You can use the Amazon FSx Management Console, Amazon CLI, Amazon API, or one of the Amazon SDKs to change the maintenance window for your file systems.

To change the weekly maintenance window (console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. Choose File systems in the left hand navigation column.
3. Choose the file system that you want to change the weekly maintenance window for. The file system details page displays.

4. Choose **Administration** to display the file system administration **Settings** panel.

5. Choose **Update** to display the **Change maintenance window** window.

6. Enter the new day and time that you want the weekly maintenance window to start.

7. Choose **Save** to save your changes. The new maintenance start time is displayed in the file system administration **Settings** panel.

To change the weekly maintenance window using the `update-file-system` CLI command, see **To update a file system (CLI)**.
Migrating to Amazon FSx for OpenZFS

The following sections provide information on how to migrate your existing file storage to Amazon FSx for OpenZFS using Amazon DataSync, \texttt{rsync} or Robocopy.

- **Amazon DataSync** – is an online data transfer service designed to simplify, automate, and accelerate copying large amounts of data to and from Amazon storage services.

- **\texttt{rsync}** – Remote sync is an open source utility for efficiently transferring and synchronizing files commonly available on most Linux or other Unix-based operating systems.

- **Robocopy** – Robust File Copy is a command line directory and file replication command set for Microsoft Windows.

Topics

- **Before you begin**

- How to migrate existing files to FSx for OpenZFS using Amazon DataSync

- How to migrate existing files to Amazon FSx using \texttt{rsync}

- How to migrate existing files to Amazon FSx using Robocopy

- Cutting over to Amazon FSx

Before you begin

Before you begin using the procedures described in the following sections, be sure that the following prerequisites are met:

- You have created a destination FSx for OpenZFS file system. For more information, see [Creating FSx for OpenZFS file systems](#).

- The source and destination file systems are connected in the same virtual private cloud (VPC). The source file system can be located on-premises or in another Amazon VPC, Amazon Web Services account, or Amazon Web Services Region, but it must be in a network peered with that of the destination file system using Amazon VPC Peering, Transit Gateway, Amazon Direct Connect, or Amazon VPN. For more information, see [Access from a different VPC](#) and [What is VPC peering?](#) in the [Amazon VPC Peering Guide](#).
How to migrate existing files to FSx for OpenZFS using Amazon DataSync

We recommend using Amazon DataSync to transfer data between FSx for OpenZFS file systems. DataSync is a data transfer service that simplifies, automates, and accelerates moving and replicating data between self-managed storage systems and Amazon storage services over the internet or Amazon Direct Connect. DataSync can transfer your file system data and metadata, such as ownership, timestamps, and access permissions.

You can use DataSync to transfer files between two FSx for OpenZFS file systems, and also move data to a file system in a different Amazon Web Services Region or Amazon account. You can also use DataSync with FSx for OpenZFS file systems for other tasks. For example, you can perform one-time data migrations, periodically ingest data for distributed workloads, and schedule replication for data protection and recovery.

In DataSync, a location is an endpoint for an FSx for OpenZFS file system. For information about specific transfer scenarios, see Working with locations in the Amazon DataSync User Guide.

Prerequisites

To migrate data into your FSx for OpenZFS setup, you need a server and network that meet the DataSync requirements. To learn more, see Requirements for DataSync in the Amazon DataSync User Guide.

Basic steps for migrating files using DataSync

Transferring files from a source to a destination using DataSync involves the following basic steps:

• Download and deploy an agent in your environment and activate it (not required if transferring between Amazon Web Services).
• Create a source and destination location.
• Create a task.
• Run the task to transfer files from the source to the destination.

For more information, see the following topics in the Amazon DataSync User Guide:

• Data transfer between self-managed storage and Amazon
How to migrate existing files to Amazon FSx using rsync

With rsync, you can replicate data between any source and destination, but at least one must be locally accessible to the client instance.

To migrate existing files to Amazon FSx from a Linux-based Amazon EC2 instance

The following procedure configures your FSx for OpenZFS destination volume as a local NFS mount on a Linux-based EC2 instance and uses the rsync command to synchronize data from your source file system or existing directory on your EC2 instance.

1. Launch a Linux-based Amazon EC2 instance or connect to an existing EC2 instance that contains your desired source data.
2. Mount your destination FSx for OpenZFS source volume; for more information, see Mounting FSx for OpenZFS volumes to Linux clients. The following step assumes that you have mounted your desired destination on your OpenZFS volume to /fsx/destination_path on your EC2 instance.
3. Run rsync from this EC2 instance to synchronize data from your source. If your source data is already on the EC2 instance, use the following command:

```
sudo rsync -avR /source_path /fsx/destination_path
```

Note

You can also run rsync with GNU parallel to maximize performance. The following instructions apply for EC2 Linux instances running Amazon Linux 2:.

```
sudo amazon-linux-extras install epel
sudo yum install nload sysstat parallel -y
sudo time find -L /source_path -type f | parallel rsync -avR {} /fsx/destination_path
```

If your source is a directory on a remote host, use the following command:
FSx for OpenZFS

OpenZFS User Guide

Use the following variant if you need to use .pem key-based authentication:

```bash
sudo rsync -avR -e "ssh -i key.pem" username@source_dns_or_ip:/source_path /fsx/destination_path
```

To migrate existing files to Amazon FSx from your on-premises Linux-based source

The following procedure configures your FSx for OpenZFS destination volume as a local NFS mount on a Linux-based EC2 instance. Then, you use `rsync` from your source to connect to this EC2 instance and synchronize files to the path where the destination Amazon FSx volume is mounted.

1. Launch a Linux-based Amazon EC2 instance and mount your destination FSx for OpenZFS source volume. For more information, see Mounting FSx for OpenZFS volumes to Linux clients. The following step assumes that you have mounted the desired destination on your OpenZFS volume to `/fsx/destination_path` on your EC2 instance.

2. From your on-premises Linux-based source, run `rsync` to connect to this EC2 instance and synchronize data from any locally accessible path. For example, `source_path` can refer to a locally accessible directory or a path on another shared file system.

   ```bash
   sudo rsync -e "ssh -i key.pem" /source_path ec2-user@ec2_dns_name.amazonaws.com:/fsx/destination_path
   ```

How to migrate existing files to Amazon FSx using Robocopy

Robocopy is designed to replicate data between two locations that are locally accessible on the same host. To use Robocopy to migrate data to your FSx for OpenZFS file system, you need to mount the source file system and the destination OpenZFS volume on the same Windows-based EC2 client instance. The following procedure outlines the necessary steps to perform this migration using a new EC2 instance.

To migrate existing files to Amazon FSx

1. Launch a Windows Server 2016 Amazon EC2 instance in the same Amazon VPC as that of your Amazon FSx file system.
2. Connect to your Amazon EC2 instance. For more information, see Connect to Your Windows instance in the Amazon EC2 User Guide for Windows Instances.

3. Open Command Prompt and map the source file share on your existing file server (on-premises or in Amazon) to a drive letter (for example, Y:) as follows. As part of this, you provide credentials for a member of your on-premises Active Directory's Domain Administrators group.

   ```
   C:\>net use Y: \fileserver1.mydata.com\localdata /user:mydata.com\Administrator
   Enter the password for 'fileserver1.mydata.com': 
   Drive Y: is now connected to \fileserver1.mydata.com\localdata.
   The command completed successfully.
   ```

4. Map the target file share on your Amazon FSx file system to a different drive letter (for example, Z:) on your Amazon EC2 instance using the Mounting on a Windows EC2 client instructions.

5. Choose Run as Administrator from the context menu. Open Command Prompt or Windows PowerShell as an administrator, and run the following Robocopy command to copy all the files on the source share to the target share. The example command uses the following elements and options:

 - **Y** – Refers to the source share located in the on-premises Active Directory forest mydata.com.
 - **Z** – Refers to the target share \amznfsxabcdef1.mydata.com\share on Amazon FSx.
 - **/copy** – Specifies the following file properties to be copied:
 - **D** – data
 - **A** – attributes
 - **T** – timestamps
 - **/e** – Copies subdirectories, including empty ones.
 - **/b** – Uses the backup and restore privilege in Windows to copy files even if their NTFS ACLs deny permissions to the current user.
 - **/MT:8** – Specifies how many threads to use for performing multithreaded copies.

   ```
   robocopy Y:\ Z:\ /copy:DAT /e /b /MT:8
   ```
Note

If you are copying large files over a slow or unreliable connection, you can enable restartable mode by using the `/zb` option in place of the `/b` option. With restartable mode, if the transfer of a large file is interrupted, a subsequent Robocopy operation can pick up in the middle of the transfer instead of having to re-copy the entire file from the beginning. Using the restartable mode can reduce data transfer speeds.

Cutting over to Amazon FSx

To cut over to your FSx for OpenZFS file system, do the following:

- Disconnect all clients that write to the source file system.
- Perform an `rsync` or `Robocopy` final file sync to ensure there is no data loss when cutting over.
- Connect all clients to your FSx for OpenZFS file system.

Now your FSx for OpenZFS file system is available with the data from the source file system and is available for clients to read and write to it. To make this data accessible to clients and applications, see [Accessing data](#).
Protecting your Amazon FSx for OpenZFS data with backups and snapshots

Amazon FSx for OpenZFS provides you with the following options to further protect the data stored on your file systems:

- Built-in Amazon FSx backups support your backup retention and compliance needs within Amazon FSx. For more information, see Working with backups.
- Amazon Backup backups of your Amazon FSx file systems work as part of a centralized and automated backup solution across Amazon services in the cloud and on premises. For more information, see Using Amazon Backup with Amazon FSx.
- Snapshots enable your users to easily undo file changes and compare file versions by restoring files to previous versions. For more information, see Working with FSx for OpenZFS snapshots.
- On-demand data replication makes it easy to replicate data sets across file systems, within or across Amazon Web Services Regions and accounts. For more information, see On-demand data replication.

Topics

- Working with backups
- Working with FSx for OpenZFS snapshots

Working with backups

With FSx for OpenZFS, backups are file-system-consistent, highly durable, and incremental. To ensure high durability, Amazon FSx stores backups in Amazon Simple Storage Service (Amazon S3).

Amazon FSx backups are incremental, whether they are generated using the automatic daily backup or the user-initiated backup feature. This means that only the data on the file system that has changed after your most recent backup is saved. This minimizes the time required to create the backup and saves on storage costs by not duplicating data. When you delete a backup, only the data unique to that backup is removed. Each FSx for OpenZFS backup contains all of the information that is needed to create a new file system from the backup, effectively restoring a point-in-time snapshot of the file system.
Creating regular backups for your file system is a best practice that complements the replication that FSx for OpenZFS performs for your file system. Amazon FSx backups help support your backup retention and compliance needs. Working with Amazon FSx backups is easy, whether it's creating backups, copying a backup, restoring a file system from a backup, or deleting a backup.

Topics

- Working with automatic daily backups
- Working with user-initiated backups
- Copying backups
- Restoring backups
- Deleting backups
- Using Amazon Backup with Amazon FSx

Working with automatic daily backups

By default, Amazon FSx takes an automatic daily backup of your file system. These automatic daily backups occur during the daily backup window that was established when you created the file system. At some point during the daily backup window, storage I/O might be suspended briefly while the backup process initializes (typically for less than a few seconds). When you choose your daily backup window, we recommend that you choose a convenient time of the day. This time ideally is outside of the normal operating hours for the applications that use the file system.

Automatic daily backups are kept for a certain period of time, known as a retention period. When you create a file system in the Amazon FSx console, the default automatic daily backup retention period is 30 days. The default retention period is different in the Amazon FSx API and CLI. You can set the retention period to be between 1–90 days. Automatic daily backups are deleted when the file system is deleted.

Note

While automatic daily backups have a maximum retention period of 90 days, user-initiated backups are kept forever, unless you delete them. For more information about user-initiated backups, see [Working with user-initiated backups](#).
You can use the Amazon CLI or one of the Amazon SDKs to change the backup window and backup retention period for your file systems. Use the UpdateFileSystem API operation or the update-file-system CLI command.

Working with user-initiated backups

With Amazon FSx, you can manually take backups of your file systems at any time. You can do so using the Amazon FSx console, API, or the Amazon Command Line Interface (Amazon CLI). Your user-initiated backups of Amazon FSx file systems never expire, and they are available for as long as you want to keep them. User-initiated backups are retained even after you delete the file system that was backed up. You can delete user-initiated backups only by using the Amazon FSx console, API, or CLI. They are never automatically deleted by Amazon FSx. For more information, see [Deleting backups](#).

Creating user-initiated backups

The following procedure guides you through how to create a user-initiated backup in the Amazon FSx console for an existing file system.

To create a user-initiated file system backup

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. From the console dashboard, choose the name of the file system that you want to back up.
3. From Actions, choose Create backup.
4. In the Create backup dialog box that opens, provide a name for your backup. Backup names can be a maximum of 256 Unicode characters, including letters, white space, numbers, and the special characters `. + - = _ : /`
5. Choose Create backup.

You have now created your file system backup. You can find a table of all your backups in the Amazon FSx console by choosing **Backups** in the left side navigation. You can search for the name you gave your backup, and the table filters to only show matching results.

When you create a user-initiated backup as this procedure described, it has the type User-Initiated, and it has the Creating status until it is fully available.
Copying backups

You can use Amazon FSx to manually copy backups within the same Amazon account to another Amazon Region (cross-Region copies) or within the same Amazon Region (in-Region copies). You can make cross-Region copies only within the same Amazon partition. You can create user-initiated backup copies using the Amazon FSx console, Amazon CLI, or API. When you create a user-initiated backup copy, it has the type `USER_INITIATED`.

Cross-Region backup copies are particularly valuable for cross-Region disaster recovery. You take backups and copy them to another Amazon Region so that in the event of a disaster in the primary Amazon Region, you can restore from backup and recover availability quickly in the other Amazon Region. You can also use backup copies to clone your file dataset to another Amazon Region or within the same Amazon Region. You make backup copies within the same Amazon account (cross-Region or in-Region) by using the Amazon FSx console, Amazon CLI, or Amazon FSx API.

Backup copy limitations

The following are some limitations when you copy backups:

- Cross-Region backup copies are supported only between any two commercial Amazon Regions, between the China (Beijing) and China (Ningxia) Regions, and between the Amazon GovCloud (US-East) and Amazon GovCloud (US-West) Regions, but not across those sets of Regions.
- Cross-Region backup copies are not supported in opt-in Regions.
- You can make in-Region backup copies within any Amazon Region.
- Cross-account backup copies are not supported.
- The source backup must have a status of AVAILABLE before you can copy it.
- You cannot delete a source backup if it is being copied. There might be a short delay between when the destination backup becomes available and when you are allowed to delete the source backup. You should keep this delay in mind if you retry deleting a source backup.
- You can have up to five backup copy requests in progress to a single destination Amazon Region per account.

Permissions for cross-Region backup copies

You use an IAM policy statement to grant permissions to perform a backup copy operation. To communicate with the source Amazon Region to request a cross-Region backup copy, the requester (IAM role or IAM user) must have access to the source backup and the source Amazon Region.
You use the policy to grant permissions to the CopyBackup action for the backup copy operation. You specify the action in the policy's Action field, and you specify the resource value in the policy's Resource field, as in the following example.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "fsx:CopyBackup",
            "Resource": "arn:aws:fsx:*:11111111111:backup/*"
        }
    ]
}
```

For more information on IAM policies, see Policies and permissions in IAM in the IAM User Guide.

Full and incremental copies

When you copy a backup to a different Amazon Region from the source backup, the first copy is a full backup copy. After the first backup copy, all subsequent backup copies to the same destination Region within the same Amazon account are incremental, provided that you haven't deleted all previously-copied backups in that Region and have been using the same Amazon KMS key. If both conditions aren't met, the copy operation results in a full (not incremental) backup copy.

To copy a backup within the same account (cross-Region or in-Region) using the console

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. In the navigation pane, choose Backups.
3. In the Backups table, choose the backup that you want to copy, and then choose Copy backup.
4. In the Settings section, do the following:
 - In the Destination Region list, choose a destination Amazon Region to copy the backup to. The destination can be in another Amazon Region (cross-Region copy) or within the same Amazon Region (in-Region copy).
 - (Optional) Select Copy Tags to copy tags from the source backup to the destination backup. If you select Copy Tags and also add tags at step 6, all the tags are merged.
5. For Encryption, choose the Amazon KMS encryption key to encrypt the copied backup.
6. For **Tags - optional**, enter a key and value to add tags for your copied backup. If you add tags here and also selected **Copy Tags** at step 4, all the tags are merged.

7. Choose **Copy backup**.

Your backup is copied within the same Amazon account to the selected Amazon Region.

To copy a backup within the same account (cross-Region or in-Region) using the CLI

- Use the `copy-backup` CLI command or the [CopyBackup](#) API operation to copy a backup within the same Amazon account, either across an Amazon Region or within an Amazon Region.

The following command copies a backup with an ID of `backup-0abc123456789cba7` from the `us-east-1` Region.

```
aws fsx copy-backup \\
  --source-backup-id backup-0abc123456789cba7 \\
  --source-region us-east-1
```

The response shows the description of the copied backup.

You can view your backups on the Amazon FSx console or programmatically using the `describe-backups` CLI command or the [DescribeBackups](#) API operation.

Restoring backups

You can use an available backup to create a new file system, effectively restoring a point-in-time snapshot of another file system. You can restore a backup using the Amazon Backup or Amazon FSx consoles, Amazon CLI, or one of the Amazon SDKs. For more information on using the Amazon Backup console, see [Restoring backups in Amazon Backup](#)

Restoring a backup to a new file system takes the same amount of time as creating a new file system. The data restored from the backup is lazy-loaded onto the file system, during which time you will experience slightly higher latency.

The following procedure guides you through how to restore a backup to a new file system using the Amazon FSx console.
To restore a file system from backup (Amazon FSx console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. From the console dashboard, choose Backups from the left side navigation.
3. Choose the backup that you want to restore from the Backups table, and then choose Restore backup.

Doing so opens the file system creation wizard.

<table>
<thead>
<tr>
<th>File system details</th>
</tr>
</thead>
<tbody>
<tr>
<td>File system name - optional Info</td>
</tr>
<tr>
<td>FSx File System</td>
</tr>
<tr>
<td>Maximum of 256 Unicode letters, whitespace, and numbers, plus + - _ : /</td>
</tr>
<tr>
<td>SSD storage capacity Info</td>
</tr>
<tr>
<td>Provisioned SSD IOPS Info</td>
</tr>
<tr>
<td>Amazon FSx automatically provides 3 IOPS per GiB of storage capacity provisioned. You can also provision additional SSD IOPS as needed.</td>
</tr>
<tr>
<td>• Automatic (3 IOPS per GiB of SSD storage)</td>
</tr>
<tr>
<td>• User-provisioned</td>
</tr>
<tr>
<td>Throughput capacity Info</td>
</tr>
<tr>
<td>The sustained speed at which the file server hosting your file system can serve data. The file server can also burst to higher speeds for periods of time.</td>
</tr>
</tbody>
</table>

4. For **File system name - optional**, you can enter a name using a maximum of 256 Unicode letters, white space, and numbers, plus these special characters: + - _ : /

5. For **Storage capacity**, enter a value that is equal to or greater than the storage capacity of the original file of which the backup was taken, in GiB. The range of valid values is 64–524288 GiB.

6. For **Provisioned SSD IOPS**, you have two options to provision the number of IOPS for your file system:
 - Choose **Automatic** (the default) if you want Amazon FSx to automatically provision 3 IOPS per GiB of SSD storage.
 - Choose **User-provisioned** if you want to specify the number of IOPS. You can provision a maximum of 160,000 SSD IOPS per file system for Single-AZ 1 and Multi-AZ*. You pay for SSD IOPS that you provision that exceed 3 IOPS per GiB of SSD storage.
7. For **Throughput capacity**, you have two options to provide your desired throughput capacity in Megabytes per second (MB/s). **Throughput capacity** is the sustained speed at which the file server that hosts your file system can serve data.

 - Choose **Recommended throughput capacity** (the default) if you want Amazon FSx to automatically choose the throughput capacity. The recommended value is based on the amount of storage capacity that you chose.
 - Choose **Specify throughput capacity** if you want to specify the throughput capacity value, and choose a value of 64, 128, 256, 512, 1024, 2048, 3072, or 4096 MB/s. You pay for additional throughput capacity that you provision above the recommended amount.

 You can increase the amount of throughput capacity as needed at any time after you create the file system. For more information, see [Managing throughput capacity](#).

8. In the **Network & security** section, provide networking and security group information:

 - For **Virtual Private Cloud (VPC)**, choose the Amazon VPC that you want to associate with your file system.
 - For **VPC Security Groups**, the ID for the default security group for your VPC should be already added.
 - For **Subnet**, choose any value from the list of available subnets.

9. In the **Encryption** section, for **Encryption key**, choose the Amazon Key Management Service (Amazon KMS) encryption key that protects your file system's data at rest.

10. In **Root volume configuration**, you can set the following options for the file system's root volume:

 - For **Data compression type**, choose the type of compression to use for your volume, either **Zstandard**, **LZ4**, or **No compression**. Zstandard compression provides more data compression and higher read throughput than LZ4 compression. LZ4 compression provides less compression and higher write throughput performance than Zstandard compression.
For more information about the storage and performance benefits of the volume data compression options, see [Data compression](#).

- For **Copy tags to snapshots**, enable or disable the option to copy tags to the volume's snapshot.

- For **NFS exports**, there is a default client configuration setting which you can modify or remove. Client configurations define which clients can access the volume and their permissions.

To provide additional client configurations:

1. In the **Client addresses** field, specify which clients can access the volume. Enter an asterisk (*) for any client, a specific IP address, or a CIDR range of IP addresses.
2. In the **NFS options** field, enter a comma-delimited set of exports options. For example, enter `rw` to allow read and write permissions to the volume for the specified **Client addresses**.
3. Choose **Add client configuration**.
4. Repeat the procedure to add another client configuration.

For more information, see [NFS exports](#).

- For **Record size**, choose whether to use the default suggested record size of 128 KiB, or to set a custom suggested record size for the volume. Generally, workloads that write in fixed small or large record sizes may benefit from setting a custom record size, like database workloads (small record size) or media streaming workloads (large record size). We recommend using the default setting for the majority of use cases. For more information about the record size setting, see [Volume properties](#).

- For **User and group quotas**, you can set a storage quota for a user or group:
 1. For **Quota type**, choose USER or GROUP.
 2. For **User or group ID**, choose a number that is the ID of the user or group.
 3. For **Usage quota**, choose a number that is the storage quota of the user or group.
 4. Choose **Add quota**.
 5. Repeat the procedure to add a quota for another user or group.

11. In **Backup and maintenance - optional**, you can set the following options:

 - For **Daily automatic backup**, choose **Enabled** for automatic daily backups. This option is enabled by default.
For **Daily automatic backup window**, set the time of the day in Coordinated Universal Time (UTC) that you want the daily automatic backup window to start. The window is 30 minutes starting from this specified time. This window can't overlap with the weekly maintenance backup window.

For **Automatic backup retention period**, set a period from 1–90 days that you want to retain automatic backups.

For **Weekly maintenance window**, you can set the time of the week that you want the maintenance window to start. Day 1 is Monday, 2 is Tuesday, and so on. The window is 30 minutes starting from this specified time. This window can't overlap with the daily automatic backup window.

12. For **Tags - optional**, you can enter a key and value to add tags to your file system. A tag is a case-sensitive key-value pair that helps you manage, filter, and search for your file system.

 Choose **Next**.

13. Review the file system configuration shown on the **Create file system** page. For your reference, note which file system settings you can modify after the file system is created.

14. Choose **Create file system**.

Deleting backups

Deleting a backup is a permanent, unrecoverable action. Any data in a deleted backup is also deleted. Do not delete a backup unless you're sure you won't need that backup again in the future.

To delete a backup

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. From the console dashboard, choose **Backups** from the left side navigation.
3. From the **Backups** table, choose the backup that you want to delete.
4. For **Actions**, choose **Delete backup**.
5. In the **Delete backups** dialog box that opens, confirm that the ID of the backup identifies the backup that you want to delete.
6. Confirm that the check box is checked for the backup that you want to delete.
7. Choose **Delete backups**.

Your backup and all included data are now permanently and irrecoverably deleted.
Using Amazon Backup with Amazon FSx

Amazon Backup is a simple and cost-effective way to protect your data by backing up your Amazon FSx for OpenZFS file systems. Amazon Backup is a unified backup service designed to simplify the creation, restoration, and deletion of backups, while providing improved reporting and auditing. Amazon Backup makes it easier to develop a centralized backup strategy for legal, regulatory, and professional compliance. Amazon Backup also makes protecting your Amazon storage file systems, databases, and file systems simpler by providing a central place where you can do the following:

- Configure and audit the Amazon resources that you want to back up.
- Automate backup scheduling.
- Set retention policies.
- Copy backups across Amazon Web Services Regions and Amazon Web Services accounts
- Monitor all recent backup, copy, and restore activity.

Amazon Backup uses the built-in backup functionality of Amazon FSx. Backups taken from the Amazon Backup console have the same level of file system consistency and performance, are incremental relative to any other Amazon FSx backups you take of your file system (user-initiated or automatic), and offer the same restore options as backups taken through the Amazon FSx console. If you use Amazon Backup to manage these backups, you gain additional functionality, such as unlimited retention options and the ability to create scheduled backups as frequently as every hour. In addition, Amazon Backup and Amazon FSx retain your immutable backups even after the source file system is deleted. This protects against accidental or malicious deletion.

Backups taken by Amazon Backup are considered user-initiated backups, and they count toward the user-initiated backup quota for Amazon FSx. You can view and restore backups taken by Amazon Backup in the Amazon FSx console, CLI, and API. However, you can't delete backups taken by Amazon Backup in the Amazon FSx console, CLI, or API. For more information about how to use Amazon Backup to back up your Amazon FSx file systems and how to delete backups, see Working with Amazon FSx File Systems in the Amazon Backup Developer Guide.

Restoring backups in Amazon Backup

You can use an available backup to create a new file system, effectively restoring a point-in-time snapshot of a file system. You can restore a backup using the Amazon Web Services Management Console, Amazon CLI, or one of the Amazon SDKs. When you restore a backup, Amazon FSx must
download the data in your backup onto the file system before the file system can be brought online. This process utilizes the unused portion of your file system's throughput capacity, and can take from a few minutes to a few hours depending on the size of your backup and level of unused throughput capacity on your file system.

The following procedure guides you through how to restore a backup using the console to create a new file system. You can also restore a backup using the CLI `create-file-system-from-backup` command or the equivalent API action `CreateFileSystemFromBackup`.

To restore an FSx for OpenZFS file system (Amazon Backup console)

1. Open the Amazon Backup console at https://console.amazonaws.cn/backup.
2. In the navigation pane, choose ** Protected resources**, and then choose the Amazon FSx resource ID that you want to restore.
3. On the **Resource details** page, a list of recovery points for the selected resource ID is shown. Choose the recovery point ID of the resource.
4. In the upper-right corner of the pane, choose **Restore** to open the **Restore backup to new file system** page.
5. In the **Settings** section, the ID of your backup is shown under **Backup ID**, and the file system type is shown under **File system type**. File system type should be **FSx for OpenZFS**.
6. Under **Restore options**, you may select **Quick restore** or **Standard restore**. Quick restore uses the settings of the source file system. If you choose Standard restore, specify the additional following configurations:
 a. **Provisioned SSD IOPS**: You can choose the **Automatic radio button** or you can choose the **User-provisioned option**.
 b. **Throughput capacity**: You can choose the **Recommended throughput capacity** of 64 MB/sec or you can choose to **Specify throughput capacity**.
 c. **(Optional) VPC security groups**: You can specify VPC security groups to associate with your file system's network interface.
 d. **Encryption key**: Specify the Amazon Key Management Service key to protect the restored file system data at rest.
 e. **(Optional) Root Volume configuration**: This configuration is collapsed by default. You may expand it by clicking the down-pointing carat (arrow). Creating a file system from a backup will create a new file system; the volumes and snapshots will retain their source configurations.
f. *(Optional)* **Backup and maintenance:** To set a scheduled backup, click the down-pointing carat (arrow) to expand the section. You may choose the backup window, hour and minute, retention period, and weekly maintenance window.

7. *(Optional)* You may enter a name for your volume.

8. The **SSD Storage capacity** will display the file system’s storage capacity.

9. Choose the **Virtual Private Cloud** (VPC) from which your file system can be accessed.

10. In the **Subnet** dropdown menu, choose the subnet in which your file system's network interface resides.

11. In the **Restore role** section, choose the IAM role that Amazon Backup will use to create and manage your backups on your behalf. We recommend that you choose the **Default role**. If there is no default role, one is created for you with the correct permissions. You can also choose an IAM role.

12. Verify all your entries, and choose **Restore Backup**.

Note

When restoring a file system with a storage capacity greater than 144 TiB, you must use the same KMS encryption key that you used when creating the backup. If you want to restore the file system with a new KMS encryption key, you must first copy the backup using the new encryption key, and then restore the file system with this backup.

Deleting backups

Deleting a backup is a permanent, unrecoverable action. Any data in a deleted backup is also deleted. Do not delete a backup unless you're sure you won't need that backup again in the future. You can't delete backups taken by Amazon FSx in the Amazon FSx console, CLI, or API. For information on deleting backups taken with Amazon Backup see [Deleting Backups](#) in the Amazon Backup Developer Guide.

To delete a backup

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. From the console dashboard, choose **Backups** from the left side navigation.
3. Choose the backup that you want to delete from the Backups table, and then choose Delete backup.

4. In the Delete backups dialog box that opens, confirm that the ID of the backup identifies the backup that you want to delete.

5. Confirm that the check box is checked for the backup that you want to delete.

Your backup and all included data are now permanently deleted and unrecoverable.

Working with FSx for OpenZFS snapshots

A snapshot is a read-only image of an FSx for OpenZFS volume at a point in time. Snapshots offer protection against accidental deletion or modification of files in your volumes. With snapshots, your users can easily view and restore individual folders and files from an earlier snapshot. Doing this enables users to easily undo changes and compare file versions.

Because snapshots are stored alongside your file system's data, they consume the file system's storage capacity. However, snapshots consume storage capacity only for the changed portions of files since the last snapshot.

Snapshots are stored in the .zfs/snapshot directory at the root of a volume.

Topics
- Using snapshots to create volumes
- Creating a snapshot
- Deleting a snapshot
- Viewing a snapshot
- Restoring a volume from a snapshot
- Restoring individual files and folders
- Setting up a custom snapshot schedule
- On-demand data replication

Using snapshots to create volumes

You can use a snapshot to create a clone volume or a full-copy volume.
A clone volume is a writable copy that is initialized with the same data as the snapshot from which it was created. Clone volumes provide an easy way to support multiple users or applications in parallel from a shared dataset, as well as quickly test new changes to your databases or applications. Clone volumes are created almost instantly and initially consume no additional storage capacity. (They only consume capacity for incremental changes to the source snapshot.) However, each clone volume maintains a dependency on its source snapshot, so you cannot delete this source snapshot while the clone volume is in use. To split a clone from its source snapshot and remove this dependency, you must create a new full-copy volume from that clone.

A full-copy volume is also initialized with the same data as its source snapshot, but is a fully independent writable copy. However, because a full-copy volume requires transferring all of the data from the source snapshot, it can take a significantly longer time to create than a clone volume. Once a full-copy volume is created, it is identical to a standard FSx for OpenZFS volume and does not maintain any relationship to its source snapshot.

For more information on creating clone and full-copy volumes, see Managing FSx for OpenZFS volumes.

Creating a snapshot

You can create an FSx for OpenZFS snapshot using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API.

To create a snapshot (console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. In the left navigation pane, under OpenZFS, choose Snapshots. Then in the Snapshots pane, choose Create snapshot.

 You can also create a snapshot directly by navigating to the Snapshots tab of an individual volume and choosing Create snapshot.

3. In the File system field of the Create snapshot dialog box, choose the file system to create the snapshot on.
4. In the Volume field, choose an existing volume you want to take a snapshot of.
5. In the Snapshot name field, provide a name for the snapshot. You can use a maximum of 203 alphanumeric characters, and the special characters . - _ :

6. Choose Confirm to create the snapshot.
The snapshot is ready for use when its status is **Available**.

To create a snapshot (CLI)

- To create an FSx for OpenZFS snapshot, use the `create-snapshot` CLI command (or the equivalent `CreateSnapshot` API operation), as shown in the following example.

  ```
  aws fsx create-snapshot \
  --volume-id fsvol-123 \
  --name snapshot2
  ```

 The command example uses the following parameters:
 - `volume-id` - The ID of the volume that you are taking a snapshot of.
 - `name` - The name of the source snapshot.

 After successfully creating the snapshot, Amazon FSx returns its description in JSON format.

Deleting a snapshot

You can delete an FSx for OpenZFS snapshot using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API. After deletion, the snapshot no longer exists, and its data is gone. Deleting a snapshot doesn't affect snapshots stored in a file system backup.

Note

A snapshot can't be deleted if it was previously cloned and that clone is still available. Before you can delete the snapshot, you must first delete all of the snapshot's clones.

To delete a snapshot (console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. In the left navigation pane, under **OpenZFS**, choose **Snapshots**.
3. In the **Snapshots** page, choose the snapshot that you want to delete.
4. In the **Summary** page for the snapshot, choose **Delete**.
To delete a snapshot (CLI)

- To delete an FSx for OpenZFS volume, use the `delete-volume` CLI command (or the equivalent `DeleteVolume` API operation), as shown in the following example.

```
aws fsx delete-snapshot --snapshot-id fsvolsnap-1234
```

Viewing a snapshot

You can see the FSx for OpenZFS volumes that are currently on your file system using the Amazon FSx console, the Amazon CLI, and the Amazon FSx API and SDKs.

To view the snapshots on your file system:

- **Using the console** – Choose a file system to view the File systems detail page. Choose the Volumes tab to list all the volumes on the file system, and then choose a volume. The volume’s Summary page has a Snapshots tab that lists the snapshots for the volume.

- **Using the CLI or API** – Use the `describe-snapshots` CLI command or the `DescribeSnapshots` API operation.

Restoring a volume from a snapshot

You can return a volume to a state saved by a specified snapshot. You use the `restore-volume-from-snapshot` CLI command (or the equivalent `RestoreVolumeFromSnapshot` API operation), as shown in the following example.

```
aws fsx restore-volume-from-snapshot
--volume-id fsvol-12345
--snapshot-id fsvolsnap-67890
--options DELETE_INTERMEDIATE_SNAPSHOTS DELETE_CLONED_VOLUMES
```

The command example uses the following parameters:

- `volume-id` - The ID of the volume that you are restoring.
- `snapshot-id` - The ID of the source snapshot. Specifies the snapshot you are restoring from.
Restoring individual files and folders

Using the snapshots on your Amazon FSx file system, your users can quickly restore previous versions of individual files or folders. Doing this enables them to recover deleted or changed files stored on the shared file system. They do this in a self-service manner directly on their desktop without administrator assistance. This self-service approach increases productivity and reduces administrative workload.

Linux, macOS, and Windows clients can view snapshots in the .zfs/snapshot directory hidden at the root of a volume. The .zfs directory is hidden, so it will not appear in any ls or dir results. You must also specify the crossmnt option in the NFS exports configuration of your FSx for OpenZFS volume to enable your clients to navigate to this directory.

To restore a file from a snapshot (Linux, macOS, and Windows clients)

1. If the original file still exists and you do not want it overwritten by the file in a snapshot, then use your Linux, macOS, or Windows client to rename the original file or move it to a different directory.
2. In the .zfs/snapshot directory, locate the snapshot that contains the version of the file that you want to restore.
3. Copy the file from the .zfs/snapshot directory to the directory in which the file originally existed.

Data in snapshots is read only. If you want to make modifications to files and folders in a snapshot, you must save a copy of the files and folders to a writable location and make modifications to these copies.

Setting up a custom snapshot schedule

You can set up an automated custom snapshot schedule for FSx for OpenZFS volumes using the resources and configuration template provided in this topic. The custom snapshot scheduling
solution performs user-initiated snapshots of your Amazon FSx volumes on a custom schedule that you define. For example, you can configure a custom schedule to take a snapshot every hour and automatically delete snapshots that are older than two days.

For more information on CRON schedule patterns, see Schedule expressions for rules in the Amazon CloudWatch Events User Guide.

Architecture overview

Deploying this solution builds the following resources in the Amazon Web Services Cloud:

1. The solution Amazon CloudFormation template deploys an CloudWatch Event, an Amazon Lambda function, an Amazon Simple Notification Service (Amazon SNS) queue, and an IAM role. The IAM role gives the Lambda function permission to invoke the necessary Amazon FSx API operations.
2. The CloudWatch event runs on a schedule you define as a CRON pattern, during the initial deployment. This event invokes the solution’s snapshot manager Lambda function that invokes the Amazon FSx CreateSnapshot API operation to initiate a snapshot.

3. The snapshot manager retrieves a list of existing user-initiated snapshots for the specified volume using DescribeSnapshots. It then deletes snapshots older than the retention period, which you specify during the initial deployment.

4. The snapshot manager sends a notification message to the Amazon SNS queue on a successful snapshot if you choose the option to be notified during the initial deployment. A notification is always sent in the event of a failure.

Required permissions

The following permissions are required to use the custom snapshot schedule Amazon CloudFormation template:

- AWSCloudFormationFullAccess
- AmazonS3FullAccess
- AmazonEventBridgeFullAccess
- IAMFullAccess
- AmazonSNSFullAccess
- AWSKeyManagementServicePowerUser
- AWSLambda_FullAccess

You can use the following custom policy in place of the second set of permissions to provide scoped-down access.

```json
{
   "Version": "2012-10-17",
   "Statement": [
   {
      "Sid": "VisualEditor0",
      "Effect": "Allow",
      "Action": [
         "lambda:CreateFunction",
         "sns:TagResource",
         "sns:DeleteTopic",
         "kms:PutKeyPolicy",
```
"events:PutRule",
"iam:CreateRole",
"iam:PutRolePolicy",
"iam:PassRole",
"kms:TagResource",
"kms:ScheduleKeyDeletion",
"iam:DeleteRolePolicy",
"kms:DescribeKey",
"sns:Subscribe",
"events:RemoveTargets",
"lambda:DeleteFunction",
"iam:GetRole",
"events:DescribeRule",
"sns:GetTopicAttributes",
"lambda:GetFunction",
"sns:CreateTopic",
"iam:DeleteRole",
"events:DeleteRule",
"events:PutTargets",
"lambda:AddPermission",
"iam:CreateServiceLinkedRole",
"lambda:RemovePermission",
"iam:GetRolePolicy"
],
"Resource": [
"arn:aws:sns::*:aws_account_id:*",
"arn:aws:events::*:aws_account_id:rule/*/*",
"arn:aws:kms::*:aws_account_id:key/*",
"arn:aws:lambda::*:aws_account_id:function:*",
"arn:aws:iam::*:aws_account_id:role/*"
]
},
{
"Sid": "VisualEditor1",
"Effect": "Allow",
"Action": [
"events:DeleteRule",
"events:PutTargets",
"events:DescribeRule",
"events:PutRule",
"events:RemoveTargets"
],
"Resource": "arn:aws:events::*:aws_account_id:rule/*"}
Amazon CloudFormation template

This solution uses Amazon CloudFormation to automate the deployment of the Amazon FSx custom snapshot scheduling solution. To use this solution, download the `fsx-openzfs-scheduled-snapshot.template` Amazon CloudFormation template.

Automated deployment

The following procedure configures and deploys this custom snapshot scheduling solution. It takes about five minutes to deploy. Before you start, you must have the ID of a volume on an Amazon FSx...
FSx file system running in an Amazon Virtual Private Cloud (Amazon VPC) in your Amazon account. For more information on creating these resources, see Creating a volume.

Note
Implementing this solution incurs billing for the associated Amazon services. For more information, see the pricing details pages for those services.

To launch the custom snapshot solution stack

1. Download the fsx-openzfs-scheduled-snapshot.template Amazon CloudFormation template. For more information on creating an Amazon CloudFormation stack, see Creating a stack on the Amazon CloudFormation console in the Amazon CloudFormation User Guide.

 Note
 By default, this template launches in the US East (N. Virginia) Amazon Web Services Region. Amazon FSx for OpenZFS is currently only available in specific Amazon Web Services Regions. You must launch this solution in an Amazon Web Services Region where FSx for OpenZFS is available. For more information, see Amazon FSx endpoints and quotas in the Amazon Web Services General Reference.

2. For Parameters, review the parameters for the template and modify them for the needs of your file system volumes. This solution uses the following default values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSx for OpenZFS resource ID</td>
<td>No default value</td>
<td>The file system ID or volume ID on which the snapshot schedule will apply. If you provide a file system ID, the schedule will take snapshots of all volumes within that file system.</td>
</tr>
<tr>
<td>CRON schedule pattern for snapshots</td>
<td>0 0/6 * * ? *</td>
<td>The schedule to run the CloudWatch event, triggering...</td>
</tr>
<tr>
<td>Parameter</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>[Every 6 hours]</td>
<td>g a new snapshot and deleting old snapshots outside of the retention period.</td>
</tr>
<tr>
<td>Snapshot retention (days)</td>
<td>7</td>
<td>The number of days to keep user-initiated snapshots. The Lambda function deletes user-initiated snapshots older than this number of days.</td>
</tr>
<tr>
<td>Name for snapshots</td>
<td>User-scheduled_snapshot</td>
<td>The name for these snapshots, which appears in the Snapshot Name column of the Amazon FSx Management Console.</td>
</tr>
<tr>
<td>Snapshot Notification</td>
<td>Yes</td>
<td>Choose whether to be notified when snapshots are successfully initiated. A notification is always sent if there's an error.</td>
</tr>
<tr>
<td>Email address</td>
<td>No default value</td>
<td>The email address to use in subscribing to the SNS notifications.</td>
</tr>
</tbody>
</table>

3. Choose **Next**.

4. For **Options**, choose **Next**.

5. For **Review**, review and confirm the settings. Select the check box acknowledging that the template creates IAM resources.

6. Choose **Create** to deploy the stack.

You can view the status of the stack in the Amazon CloudFormation console in the **Status** column. You should see a status of **CREATE_COMPLETE** in about five minutes.
Additional options

You can use the Lambda function created by this solution to perform custom scheduled snapshots of more than one FSx for OpenZFS volume. The volume ID is passed to the Amazon FSx function in the input JSON for the CloudWatch event. The default JSON passed to the Lambda function is as follows, where the values for VolumeId and SuccessNotification are passed from the parameters specified when launching the Amazon CloudFormation stack.

```
{
   "start-snapshot": "true",
   "purge-snapshots": "true",
   "volume-id": "${VolumeId}'",
   "notify_on_success": "${SuccessNotification}'"
}
```

To schedule snapshots for an additional FSx for OpenZFS volume, create another CloudWatch event rule. You do so using the Schedule event source, with the Lambda function created by this solution as the target. Choose **Constant (JSON text)** under **Configure Input**. For the JSON input, simply substitute the volume ID of the FSx for OpenZFS volume to back up in place of `${VolumeId}`. Also, substitute either Yes or No in place of `${SuccessNotification}` in the JSON above.

Any additional CloudWatch Event rules you create manually aren't part of the Amazon CloudFormation stack for the Amazon FSx custom scheduled snapshot solution. Thus, they aren't removed if you delete the stack.

On-demand data replication

Amazon FSx for OpenZFS supports on-demand data replication, enabling you to transfer snapshots of data between file systems within and across Amazon Web Services Regions. You can use on-demand data replication for a variety of tasks such as:

- Synchronizing or distributing data to your development or test environments.
- Establishing and maintaining read replicas to provide scale-out read performance.
- Maintaining a passive standby file system for use in disaster recovery cases.

With on-demand data replication, Amazon FSx automatically establishes and maintains network connectivity between file systems to handle interruptions and resume data transfer as needed. Amazon FSx also encrypts data in transit and at rest.
On-demand data replication is available for all deployment types in Amazon Web Services Regions where Amazon FSx for OpenZFS is available. For more information, see Deployment type availability.

Topics

- Prerequisites for using on-demand data replication
- Performance considerations for on-demand data replication
- Using on-demand data replication
- Monitoring progress of on-demand data replication
- Setting up ongoing periodic data replication

Prerequisites for using on-demand data replication

Before using on-demand data replication, make sure that you have met the following prerequisites.

- Single-AZ 1 file systems must have a provisioned throughput capacity of 256 MB/s or above. It is also recommended that Single-AZ 1 file systems have a provisioned SSD IOPS level of 6,000 or above.

- Multi-AZ file systems must have a provisioned throughput capacity of 160 MB/s or above. It is also recommended that Multi-AZ file systems have a provisioned SSD IOPS level of 6,000 or above.

- Users or roles must have permission to take the `CreateVolume` and `CopySnapshotAndUpdateVolume` actions in an Amazon account. You can control these permissions by using Amazon Identity and Access Management (IAM) policies. For more information, see Actions, resources, and condition keys for Amazon FSx in the Service Authorization Reference.

Performance considerations for on-demand data replication

On-demand data replication shares provisioned throughput with other file system clients. To accommodate data replication activity without impacting other workloads, we recommend provisioning twice the level of throughput capacity that your workload normally needs. You can use Amazon CloudWatch metrics with FSx for OpenZFS to monitor your file system's performance utilization and scale up your file system's performance as needed to avoid slowing down your ongoing workloads. For more information, see How to use FSx for OpenZFS metrics.
Using on-demand data replication

On-demand data replication only transfers data from the indicated source snapshot, which does not include data from child volumes. To transfer data from child volumes, you must initiate additional data replication jobs using source snapshots from the child volumes.

Each file system can only be used as the source file system or the destination file system for one on-demand data replication task at a time. You must wait until the first on-demand replication task is completed or cancelled before initiating another request. You can only have a maximum of twenty concurrent cross-file system replication jobs per account, per Amazon Web Services Region.

Replicating data across file systems on the same account

You can create or update a replica volume across file systems that are on the same Amazon account by using the Amazon FSx Console, API, or CLI.

To update a volume from a snapshot (Console)

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. In the left navigation pane, choose Volumes, and then choose the volume that you would like to use as your destination volume.
3. For Actions, choose Update volume with snapshot. The Copy snapshot and update volume panel displays.
4. Choose the source region of the snapshot.
5. Choose the snapshot that you would like to update the volume from.
6. For Source snapshot copy strategy, choose Incremental copy or Full copy. An incremental copy returns the destination volume to the most recent common ancestor that it shares with the source volume and then updates the destination volume, transferring only the data that is not already included in the most recent common ancestor. A full copy will remove any clones, snapshots, and intermediate data on the destination volume and transfer all of the data from the source volume. During incremental copy, your destination volume will be read-only. During full copy, your destination volume will be unmounted and automatically remounted after the transfer is completed.
7. If the destination volume has any intermediate clones, dependent snapshots, or intermediate data, select the checkboxes to delete them. If you are using incremental copy, you must delete all descendent data for the update to succeed.
8. Choose Update to update the volume.
To update a volume from a snapshot (CLI)

- To update an FSx for OpenZFS volume with a snapshot, use the `copy-snapshot-and-update-volume` CLI command, or the equivalent `CopySnapshotAndUpdateVolume` API command, and specify the following properties:
 - `--volume-id` – The ID of the volume that you would like to update.
 - `--source-snapshot-arn` – The ARN of the source snapshot.
 - `--options` – Any intermediate clones, dependent snapshots, or intermediate data that need to be deleted. Valid values are `DELETE_INTERMEDIATE_SNAPSHOTS`, `DELETE_CLONED_VOLUMES`, and `DELETE_INTERMEDIATE_DATA`.
 - `--copy-strategy` – Strategy used to copy data from the source volume. Value values are `FULL_COPY` and `INCREMENTAL_COPY`.

The following example shows how to update a volume with a snapshot using incremental copy and deleting all intermediate clones, dependent snapshots, and intermediate data.

```bash
aws fsx copy-snapshot-and-update-volume \
  --volume-id fsvol-1234567890abcdef0 \
  --source-snapshot-arn arn:aws:fsx:555555555555:snapshot/fsvol-1234567890abcdef0/\n  fsvolsnap-021345abcdef6789\n  --options DELETE_INTERMEDIATE_SNAPSHOTS DELETE_CLONED_VOLUMES DELETE_INTERMEDIATE_DATA\n  --copy-strategy INCREMENTAL_COPY
```

The example above returns the following response.

```json
{
    "VolumeId": "fsvol-1234567890abcdef0",
    "Lifecycle": "AVAILABLE",
    "AdministrativeActions": [
        {
            "AdministrativeActionType": "VOLUME_UPDATE_WITH_SNAPSHOT",
            "FailureDetails": {
                "Message": "string"
            },
            "ProgressPercent": 80,
            "RequestTime": "2023-11-03T09:26:55-07:00",
            "Status": "IN_PROGRESS",
            "TargetVolumeValues": {
```
Monitoring progress of on-demand data replication

You can monitor the progress of your data replication using the Amazon Web Services Management Console on the **Volume details** page. When you initiate a replication task, the destination snapshot will enter the **CREATING** state. Once the data transfer is complete, the destination snapshot will become **AVAILABLE**.

You can also use the Amazon CLI or Amazon FSx API to track more detailed progress of your replication by using the **describe-volumes** Amazon CLI command or the **DescribeVolumes** API operation to display the **AdministrativeActions** for the destination volume. The **AdministrativeActions** array lists the 10 most recent update actions for each administrative action type. When you initiate an on-demand data replication, a **VOLUME_UPDATE_WITH_SNAPSHOT** action is generated. Progress will be reported using the **ProgressPercent** property.

The following example shows the response for an incremental copy on-demand data replication task.

```json
{
    "VolumeId": "fsvol-1234567890abcdef0",
    "Lifecycle": "AVAILABLE",
    "AdministrativeActions": [
        {
            "AdministrativeActionType": "VOLUME_UPDATE_WITH_SNAPSHOT",
            "FailureDetails": {
                "Message": "string"
            }
        }
    ]
}
```
When Amazon FSx processes the request successfully, the status changes to COMPLETED. If the on-demand data replication task fails, the status changes to FAILED, and the FailureDetails property provides information about the failure.

Setting up ongoing periodic data replication

With ongoing periodic data replication, you can set up a schedule that automatically takes a snapshot of a source volume and performs an incremental replication of that snapshot on a destination volume at a certain interval, for example every 15 minutes. You can schedule ongoing periodic data replication between two volumes on FSx for OpenZFS file systems on the same account, within or across Amazon Web Services Regions, by using the solution provided in this section.

Topics

- [Architecture overview](#)
- [Required permissions](#)
- [Step 1: Initializing and deploying the application](#)
- [Step 2: Monitoring periodic replication](#)

Architecture overview

Deploying this solution builds the following resources in the Amazon Web Services Cloud.
The diagram illustrates the following periodic replication workflow.

1. Amazon Serverless Application Model (SAM) automates the deployment of the FSx for OpenZFS periodic replication solution. For more information about Amazon SAM, see What is the Amazon Serverless Application Model (Amazon SAM)? in the Amazon Serverless Application Model User Guide.

2. The SAM template deploys an Amazon EventBridge scheduler, an Amazon Lambda function, an Amazon SNS queue, and an IAM role. The IAM role gives the Lambda function permission to call the necessary Amazon FSx API operations.

3. The EventBridge scheduler runs on a schedule you specify as a cron pattern during the initial deployment. For more information about cron patterns, see Creating an Amazon EventBridge rule that runs on a schedule in the Amazon EventBridge User Guide. The scheduler invokes a Lambda function that calls the Amazon FSx CreateSnapshot API operation to create a snapshot of the source volume.

4. Once the snapshot is available, the Lambda function calls the Amazon FSx CopySnapshotAndUpdateVolume API operation to start replicating the source snapshot data to the destination volume.
5. The Lambda function sends a notification message to the Amazon SNS queue when replication starts, if you choose to be notified during the initial deployment. A notification is always sent when a snapshot cannot be created or the replication cannot be initiated.

Required permissions

The following permissions are required to use the custom snapshot schedule Amazon CloudFormation template.

- AmazonS3FullAccess
- AWSCloudFormationFullAccess
- AmazonEventBridgeFullAccess
- IAMFullAccess
- AmazonSNSFullAccess
- AWSKeyManagementServicePowerUser
- AWSLambda_FullAccess

For more information about using IAM to set up permissions, see [How Amazon FSx for OpenZFS works with IAM](#).

Step 1: Initializing and deploying the application

The following procedure configures and deploys the periodic replication solution. It takes about five minutes to deploy. Before you begin this step, make sure that you have the ID of the source and destination volumes that you would like to initiate the replication between. For more information on these resources, see [Creating a volume](#), [Creating a snapshot](#), and [Using on-demand data replication](#).

Note

Implementing this solution incurs billing for the associated Amazon services. For more information, see the pricing details pages for those services.
To launch the periodic replication solution stack

1. Follow the instructions on the Replicate FSx-OpenZFS volumes across file systems page to download the serverless pattern.

2. For **Parameters**, review the following parameters for the template and modify them for the needs of your periodic replication. This solution uses the following default values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source volume ID</td>
<td>No default value</td>
<td>The ID of the source volume from which data will be periodically replicated.</td>
</tr>
<tr>
<td>Destination volume ID</td>
<td>No default value</td>
<td>The ID of the destination volume that will become a replica of the source volume.</td>
</tr>
<tr>
<td>CronSchedule</td>
<td>[0 0/6 **?*] (every six hours)</td>
<td>The schedule to replicate data from the source volume to the destination volume.</td>
</tr>
<tr>
<td>SnapshotName</td>
<td>fsx-scheduled-snapshot</td>
<td>The name for the scheduled snapshots that will be taken of the source volume. Appears in the Snapshot Name column of the Amazon FSx Console.</td>
</tr>
<tr>
<td>Snapshot retention (days)</td>
<td>7</td>
<td>The number of days to keep user-initiated snapshots. The Lambda function deletes user-initiated snapshots that are kept after this number of days.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>SuccessNotification</td>
<td>Yes</td>
<td>Choose whether to be notified when the replication is successfully initiated. A notification is always sent when a snapshot fails to create or the replication fails to start.</td>
</tr>
<tr>
<td>Email</td>
<td>No default value</td>
<td>The email address that you would like notifications to be sent to.</td>
</tr>
<tr>
<td>CopyStrategy</td>
<td>INCREMENTAL_COPY</td>
<td>The CopyStrategy parameter for the CopySnapshotAndUpdateVolume API operation. For more information, see CopySnapshots hotAndUpdateVolume in the Amazon FSx API.</td>
</tr>
<tr>
<td>Options</td>
<td>None</td>
<td>The Options parameter for the CopySnapshots hotAndUpdateVolume API operation. For more information, see CopySnapshots hotAndUpdateVolume in the Amazon FSx API.</td>
</tr>
</tbody>
</table>

3. In the Amazon SAM CLI, run the following command to deploy the resources specified in the SAM template.

```bash
sam deploy --guided \   
--stack-name fsxz-periodic-replication \   
--template-file fsx-openzfs-periodic-replication.yaml \   
--capabilities CAPABILITY_AUTO_EXPAND CAPABILITY_IAM CAPABILITY_NAMED_IAM
```
You will be asked if you would like to update any parameters.

4. Choose Enter to deploy the template.

Step 2: Monitoring periodic replication

You can monitor the status of the periodic replication workflow using the Amazon FSx Console, Amazon CLI, and API. For more information on how to monitor periodic replication using the Amazon FSx Console, see [Monitoring progress of on-demand data replication](#).

To use the Amazon CLI or API to track the progress of your replication, call the `describe-volumes` CLI command or the `DescribeVolumes` API operation to view the `AdministrativeActions` array for the destination volume. The following example shows the response for an incremental copy on-demand data replication task.

```json
"AdministrativeActions": [
  {
    "AdministrativeActionType": "VOLUME_UPDATE_WITH_SNAPSHOT",
    "ProgressPercent": 100,
    "RequestTime": 1699997847.438,
    "Status": "COMPLETED",
    "TargetVolumeValues": {
      "OpenZFSConfiguration": {
        "RecordSizeKiB": 128,
        "DataCompressionType": "ZSTD",
        "DeleteIntermediateSnapshots": true,
        "DeleteClonedVolumes": false,
        "DeleteIntermediateData": true,
        "SourceSnapshotARN": "arn:aws:fsx:us-east-1:609492434915:snapshot/fsvol-0e1ab0de954a352f/fsvolsnap-01dda47dcbb24ddd0",
        "DestinationSnapshot": "fsvolsnap-0afef62088c7c9060"
      }
    },
    "TotalTransferBytes": 44144,
    "RemainingTransferBytes": 0
  }
],
"On-demand data replication"
183
Monitoring Amazon FSx for OpenZFS

Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon FSx and your other Amazon solutions. Collect monitoring data from all parts of your Amazon solution so that you can more easily debug a multi-point failure if one occurs.

Amazon provides the following monitoring tools to watch Amazon FSx for OpenZFS, report when something is wrong, and take action automatically when appropriate:

- **Amazon CloudWatch** – Monitors your Amazon resources and the applications that you run on Amazon in real time. You can collect and track metrics, create customized dashboards, and set alarms that notify you when a specified metric reaches a threshold that you specify. For example, you can have CloudWatch track storage capacity or other metrics for your Amazon FSx instances and automatically launch new instances when needed. For more information, see the [Amazon CloudWatch User Guide](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/).

- **Amazon CloudTrail** – Captures API calls and related events made by or on behalf of your Amazon Web Services account and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users and accounts called Amazon, the source IP address from which the calls were made, and when the calls occurred. For more information, see the [Amazon CloudTrail User Guide](https://docs.aws.amazon.com/AmazonCloudTrail/latest/userguide/).

For more information about logging and monitoring in Amazon FSx, see the following topics.

**Topics**

- [Monitoring with Amazon CloudWatch](#)
- [Logging FSx for OpenZFS API calls with Amazon CloudTrail](#)

**Monitoring with Amazon CloudWatch**

You can monitor Amazon FSx using CloudWatch, which collects raw data and processes it into readable, near real-time metrics. These statistics are kept for 15 months so that you can access historical information and gain a better perspective on how your application or service is performing. You can also set alarms that watch for certain thresholds and send notifications or take actions when those thresholds are met. For more information about CloudWatch, see [What is Amazon CloudWatch?](https://docs.aws.amazon.com/AmazonCloudWatch/latest/userguide/) in the [Amazon CloudWatch User Guide](https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/).
FSx for OpenZFS publishes CloudWatch metrics in the following domains:

- **Network I/O metrics** – Measure activity between clients that access the file system and the file server.
- **File server metrics** – Measure network throughput utilization, file server CPU and memory, and file server disk throughput and IOPS utilization.
- **Disk metrics** – Measure activity between the file server and the SSD storage.
- **Storage capacity metrics** – Measure storage usage.

The following diagram illustrates an FSx for OpenZFS file system, its components, and its metric domains.

By default, FSx for OpenZFS sends metric data to CloudWatch at 1-minute intervals. The following are exceptions to the default, and are sent at 5-minute intervals:

- FileServerDiskThroughputBalance
- FileServerDiskIopsBalance

**Note**

Metrics might not be published during file system maintenance for Single-AZ file systems, or during failover and failback between the primary and secondary file servers for Multi-AZ file systems.
How to use FSx for OpenZFS metrics

There are two primary architectural components of each Amazon FSx file system:

- The **file server** that serves data to clients that access the file system.
- The **storage volumes** that host the data in your file system.

FSx for OpenZFS reports metrics in CloudWatch that track performance and resource utilization for your file system's file server and storage volumes. The following diagram illustrates an Amazon FSx file system with its architectural components, and the performance and resource CloudWatch metrics that are available for monitoring. The key property for a set of metrics is the file system property that determines the capacity for those metrics. Adjusting that property modifies the file system's performance for that set of metrics.

You can use the **Monitoring & performance** panel on your file system's dashboard in the Amazon FSx console to view the metrics that are described in the following table. For more information, see [Accessing CloudWatch metrics](#).
<table>
<thead>
<tr>
<th>Monitor &amp; performance panel</th>
<th>How do I...</th>
<th>Chart</th>
<th>Relevant metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>...determine my file system's total throughput?</td>
<td>Total throughput</td>
<td>SUM(DataReadBytes + DataWriteBytes )/Period (in seconds)</td>
</tr>
<tr>
<td></td>
<td>...determine my file system's total IOPS?</td>
<td>Total IOPS</td>
<td>SUM(DataReadOperations + DataWriteOperations + MetadataOperations )/Period (in seconds)</td>
</tr>
<tr>
<td></td>
<td>...determine the number of connections that are established between clients and the file server?</td>
<td>Client connections</td>
<td>ClientConnections</td>
</tr>
<tr>
<td>Storage</td>
<td>...determine how much primary storage is available?</td>
<td>Available primary storage capacity (bytes)</td>
<td>StorageCapacity {SSD} - UsedStorageCapacity {SSD}</td>
</tr>
<tr>
<td></td>
<td>...determine the percentage of used primary storage for my file system?</td>
<td>Primary storage capacity utilization (percent)</td>
<td>StorageCapacity {SSD} * 100/UsedStorageCapacity {SSD}</td>
</tr>
<tr>
<td>File server performance</td>
<td>...determine the network throughput for clients that access the file system as a percentage of the file system's provisioned throughput?</td>
<td>Network throughput utilization</td>
<td>NetworkThroughputUtilization</td>
</tr>
<tr>
<td>Monitor &amp; performance panel</td>
<td>How do I...</td>
<td>Chart</td>
<td>Relevant metrics</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>...determine the disk throughput between the file server and its storage volumes as a percentage of the provisioned limit, which is determined by throughput capacity?</td>
<td>Disk throughput utilization</td>
<td>FileServerDiskThroughputUtilization</td>
</tr>
<tr>
<td></td>
<td>...determine the percentage of available burst credits for disk throughput between the file server and its storage volumes?</td>
<td>Disk throughput burst balance</td>
<td>FileServerDiskThroughputBalance</td>
</tr>
<tr>
<td></td>
<td>...determine the amount of disk IOPS between the file server and storage volumes as a percentage of the provisioned limit, which is determined by throughput capacity?</td>
<td>Disk IOPS utilization</td>
<td>FileServerDiskIopsUtilization</td>
</tr>
<tr>
<td></td>
<td>...determine the percentage of available burst credits for disk IOPS between the file server and storage volumes?</td>
<td>Disk IOPS burst balance</td>
<td>FileServerDiskIopsBalance</td>
</tr>
<tr>
<td></td>
<td>...determine the file server's CPU utilization percentage?</td>
<td>CPU utilization</td>
<td>CPUUtilization</td>
</tr>
<tr>
<td></td>
<td>...determine the file server's memory utilization percentage?</td>
<td>Memory utilization</td>
<td>MemoryUtilization</td>
</tr>
<tr>
<td></td>
<td>...determine my workload's usage of the file system's in-memory (ARC) and NVMe (L2ARC) caches?</td>
<td>Cache hit ratio</td>
<td>FileServerCacheHitRatio</td>
</tr>
</tbody>
</table>
How do I... determine the IOPS for operations that access storage volumes as a percentage of the provisioned limit determined by SSD storage capacity?

Relevant metrics: Disk IOPS utilization (SSD)

How do I... determine the savings from data compression?

Relevant metrics: Compression ratio, \( \frac{\text{UsedStorageCapacity}}{\text{CompressionRatio}} - \text{UsedStorageCapacity} \)

**Note**

We recommend that you provision throughput capacity so that the utilization of any performance-related dimension,—such as typical network, CPU, and memory utilization is less than 50%. This ensures that you have enough spare throughput capacity for unexpected spikes in your workload, as well as for background storage operations.

Accessing CloudWatch metrics

You can access Amazon FSx metrics for CloudWatch in the following ways:

- The Amazon FSx console.
- The CloudWatch console.
- The CloudWatch command line interface (CLI).
- The CloudWatch API.

The following procedures show you how to access the metrics using these tools.
Using the Amazon FSx console

To view metrics using the Amazon FSx console

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. From the navigation pane, choose File systems, then choose the file system that has the metrics that you want to view.
3. Choose Actions > View details.
4. On the Summary page, choose Monitoring and performance to see the metrics for your file system.

Using the CloudWatch console

To view metrics using the CloudWatch console

1. Open the CloudWatch console.
2. In the navigation pane, choose Metrics.
3. Select the FSx namespace.
4. (Optional) To view a metric, enter its name in the search field.
5. (Optional) To explore metrics, select the category that best matches your question. File system metrics and Volume metrics report summary-level metrics for individual file systems or volumes. File system detailed metrics and Volume detailed metrics report more granular metrics within a file system or volume. For example, storage capacity that’s used by snapshots.

Using the Amazon CLI

To access metrics from the Amazon CLI

- Use the list-metrics command with the --namespace "AWS/FSx" namespace. For more information, see the Amazon CLI Command Reference.

Using the CloudWatch API

To access metrics from the CloudWatch API

- Call GetMetricStatistics. For more information, see Amazon CloudWatch API Reference.
Metrics and dimensions

Amazon FSx publishes the metrics described in the following tables in the AWS/FSx namespace in Amazon CloudWatch for all FSx for OpenZFS file systems:

Topics

- FSx for OpenZFS network I/O metrics
- FSx for OpenZFS file server metrics
- FSx for OpenZFS disk metrics
- FSx for OpenZFS storage capacity metrics
- FSx for OpenZFS dimensions

FSx for OpenZFS network I/O metrics

The AWS/FSx namespace includes the following network I/O metrics.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataReadBytes</td>
<td>The number of bytes for read operations for clients that access the file system.</td>
</tr>
<tr>
<td></td>
<td>Unit: Bytes</td>
</tr>
<tr>
<td></td>
<td>Valid statistic: Sum</td>
</tr>
<tr>
<td>DataWriteBytes</td>
<td>The number of bytes for write operations for clients that access the file system.</td>
</tr>
<tr>
<td></td>
<td>Unit: Bytes</td>
</tr>
<tr>
<td></td>
<td>Valid statistic: Sum</td>
</tr>
<tr>
<td>DataReadOperations</td>
<td>The number of read operations for clients that access the file system.</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
<tr>
<td></td>
<td>Valid statistic: Sum</td>
</tr>
</tbody>
</table>
### Metric Description

**DataWrite Operations**
- The number of write operations for clients that access the file system.
- Unit: Count
- Valid statistic: Sum

**ClientConnections**
- The number of active connections between clients and the file server.
- Unit: Count

**MetadataOperations**
- The number of metadata operations for clients that access the file system.
- Unit: Count
- Valid statistic: Sum

**NfsBadCalls**
- The number of calls rejected by the NFS server remote procedure call (RPC) mechanism.
- Unit: Count
- Valid statistic: Sum

---

**FSx for OpenZFS file server metrics**

The AWS/FSx namespace includes the following file server metrics.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetworkThroughputUtilization</td>
<td>The network throughput for clients that access the file system, as a percentage of the provisioned limit. For Multi-AZ file systems, this metric includes replication traffic.</td>
</tr>
<tr>
<td></td>
<td>Unit: Percent</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>CPUUtilization</td>
<td>The percentage utilization of your file server's CPU resources. Unit: Percent</td>
</tr>
<tr>
<td>FileServerDiskThroughputUtilization</td>
<td>The disk throughput between your file server and its storage volumes. Listed as a percentage of the provisioned limit, which is determined by throughput capacity. Unit: Percent</td>
</tr>
<tr>
<td>FileServerDiskThroughputBalance</td>
<td>The percentage of available burst credits for disk throughput between your file server and its storage volumes. Unit: Percent</td>
</tr>
<tr>
<td>FileServerDiskIopsUtilization</td>
<td>The disk IOPS between your file server and storage volumes, as a percentage of the provisioned limit, which is determined by throughput capacity. Unit: Percent</td>
</tr>
<tr>
<td>FileServerDiskIopsBalance</td>
<td>The percentage of available burst credits for disk IOPS between your file server and its storage volumes. Unit: Percent</td>
</tr>
<tr>
<td>MemoryUtilization</td>
<td>The percentage of your file server's memory resources that are utilized. Unit: Percent</td>
</tr>
<tr>
<td>FileServerCacheHitRatio</td>
<td>The percentage of cache hits. For Single-AZ 1 file systems, this metric reports only the cache hit ratio for the ARC cache. Unit: Percent</td>
</tr>
</tbody>
</table>
## FSx for OpenZFS disk metrics

The AWS/FSx namespace includes the following disk metrics.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiskReadBytes</td>
<td>The number of bytes for read operations that access storage volumes.</td>
</tr>
<tr>
<td></td>
<td>Unit: Bytes</td>
</tr>
<tr>
<td></td>
<td>Valid statistic: Sum</td>
</tr>
<tr>
<td>DiskWriteBytes</td>
<td>The number of bytes for write operations that access storage volumes.</td>
</tr>
<tr>
<td></td>
<td>Unit: Bytes</td>
</tr>
<tr>
<td></td>
<td>Valid statistic: Sum</td>
</tr>
<tr>
<td>DiskReadOperations</td>
<td>The number of read operations for the file server that accesses storage volumes.</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
<tr>
<td></td>
<td>Valid statistic: Sum</td>
</tr>
<tr>
<td>DiskWriteOperations</td>
<td>The number of write operations for the file server that accesses storage volumes.</td>
</tr>
<tr>
<td></td>
<td>Unit: Count</td>
</tr>
<tr>
<td></td>
<td>Valid statistic: Sum</td>
</tr>
<tr>
<td>DiskThroughputBalance</td>
<td>The percentage of available burst credits for disk throughput for the storage volumes.</td>
</tr>
<tr>
<td></td>
<td>Unit: Percent</td>
</tr>
<tr>
<td>DiskIopsUtilization</td>
<td>The disk IOPS between your file server and storage volumes, as a percentage of the provisioned IOPS limit that has been determined by the storage volumes.</td>
</tr>
</tbody>
</table>
## FSx for OpenZFS storage capacity metrics

The AWS/FSx namespace includes the following storage capacity metrics.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StorageCapacity</td>
<td>The total storage capacity, equal to the sum of used and available storage capacity.</td>
</tr>
<tr>
<td></td>
<td>Unit: Bytes</td>
</tr>
<tr>
<td></td>
<td>Valid statistics: Average, Minimum</td>
</tr>
<tr>
<td>UsedStorageCapacity</td>
<td>The amount of storage that's used.</td>
</tr>
<tr>
<td></td>
<td>Unit: Bytes</td>
</tr>
<tr>
<td></td>
<td>Valid statistics: Average, Minimum</td>
</tr>
<tr>
<td>CompressionRatio</td>
<td>The ratio of compressed storage usage to uncompressed storage usage.</td>
</tr>
<tr>
<td></td>
<td>Valid statistics: Average, Minimum</td>
</tr>
</tbody>
</table>

## FSx for OpenZFS dimensions

FSx for OpenZFS provides additional dimensions to further refine the metrics listed in the previous table. FSx for OpenZFS metrics use the FSx namespace and provide metrics at the file system or volume granularity by using the FileSystemId or VolumeId.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FileSystemId</td>
<td>This dimension filters the metrics that you request to an individual file system.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>VolumeId</td>
<td>This dimension filters the metrics that you request to an individual volume within a file system. This dimension must be used in combination with FileSystemId.</td>
</tr>
<tr>
<td>CacheType</td>
<td>This dimension filters the metrics that you request by the type of cache used, either ARC for in-memory caching or L2ARC for SSD and NVMe caching. This dimension must be used in combination with FileSystemId.</td>
</tr>
<tr>
<td>DataType</td>
<td>This dimension filters the metrics that you requested to a specific type of stored data. Metrics with DataType set to Snapshot report information about the snapshots within the volume. Metrics without a DataType dimension report aggregated information from the volume, which includes any child volumes and snapshots within the volume.</td>
</tr>
</tbody>
</table>

FSx for OpenZFS metrics use the FSx namespace and provide metrics for the dimensions that are listed in the table above.

**Performance warnings and recommendations**

FSx for OpenZFS displays a warning for CloudWatch metrics when one of these metrics approaches or crosses a predetermined threshold for multiple consecutive data points. These warnings provide you with actionable recommendations that you can use to optimize your file system's performance.

Warnings are accessible in several areas of the Monitoring & performance dashboard on the Amazon FSx console. All active or recent Amazon FSx performance warnings and CloudWatch alarms configured for the file system that are in an alarm state appear in the Monitoring & performance panel in the Summary section. The warning also appears in the section of the dashboard where the metric graph is displayed.
You can create CloudWatch alarms for any of the Amazon FSx metrics. For more information, see Creating CloudWatch alarms to monitor Amazon FSx.

Use performance warnings to improve file system performance

Amazon FSx provides actionable recommendations that you can use to optimize your file system's performance. You can take the recommended action if you expect the issue to continue, or if it's causing an impact to your file system's performance. Depending on which metric has triggered a warning, you can resolve it by increasing the file system's throughput capacity or storage capacity, as described in the following table.

<table>
<thead>
<tr>
<th>If there's a warning for this metric</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network throughput – utilization</td>
<td></td>
</tr>
<tr>
<td>File server &gt; Disk IOPS – utilization</td>
<td></td>
</tr>
<tr>
<td>File server &gt; Disk throughput – utilization</td>
<td>Increase throughput capacity</td>
</tr>
<tr>
<td>File server &gt; Disk IOPS – burst balance</td>
<td></td>
</tr>
<tr>
<td>File server &gt; Disk throughput – burst balance</td>
<td></td>
</tr>
<tr>
<td>File server &gt; CPU utilization</td>
<td></td>
</tr>
<tr>
<td>Storage capacity utilization</td>
<td>Increase storage capacity</td>
</tr>
<tr>
<td>Storage volume &gt; Disk IOPS – utilization (SSD)</td>
<td>Increase SSD IOPS</td>
</tr>
</tbody>
</table>

For more information about file system performance, see Amazon FSx for OpenZFS performance.

Creating CloudWatch alarms to monitor Amazon FSx

You can create a CloudWatch alarm that sends an Amazon SNS message when the alarm changes state. An alarm watches a single metric over a time period that you specify and performs one or more actions based on the value of the metric relative to a given threshold over a specified period of time. The action is a notification that's sent to an Amazon SNS topic or Auto Scaling policy.
Alarms invoke actions for sustained state changes only. CloudWatch alarms don't invoke actions because they are in a particular state. The state must change and remain changed for a specified period of time. You can create an alarm on the Amazon FSx console or the CloudWatch console.

The following procedures describe how to create alarms for Amazon FSx using the console, Amazon CLI, and API.

**To set alarms using the Amazon FSx console**

1. Open the Amazon FSx console at https://console.amazonaws.cn/fsx/.
2. From the navigation pane, choose **File systems**, and then choose the file system that you want to create the alarm for.
3. Choose **Actions > View details**.
4. On the **Summary** page, choose **Monitoring and performance**.
5. Choose **Create CloudWatch alarm**. You are redirected to the CloudWatch console.
6. Choose **Select metrics**, and choose **Next**.
7. In the **Metrics** section, choose **FSX**.
8. Choose **File System Metrics**, choose the metric that you want to set the alarm for, and then choose **Select metric**.
9. In the **Conditions** section, choose the conditions for the alarm, and choose **Next**.

![Note](image)

Metrics might not be published during file system maintenance. To prevent unnecessary and misleading alarm condition changes and to configure your alarms so that they are resilient to missing data points, see Configuring how CloudWatch alarms treat missing data in the Amazon CloudWatch User Guide.

10. If you want CloudWatch to send you an email or SNS notification when the alarm state triggers the action, choose **Whenever this alarm state is**.

    For **Select an SNS topic**, choose an existing SNS topic. If you select **Create topic**, you can set the name and email addresses for a new email subscription list. This list is saved and appears in the field for future alarms. Choose **Next**.
11. Fill in the Name, Description, and Whenever values for the metric, and choose Next.

12. On the Preview and create page, review the alarm and choose Create Alarm.

To set alarms using the CloudWatch console

1. Sign in to the Amazon Web Services Management Console and open the CloudWatch console at [https://console.amazonaws.cn/cloudwatch/](https://console.amazonaws.cn/cloudwatch/).

2. Choose Create Alarm to start the Create Alarm Wizard.

3. Choose FSx Metrics to locate a metric. To narrow the results, you can search for your file system ID. Select the metric that you want to create an alarm for and choose Next.

4. Enter a Name and a Description, and choose a Whenever value for the metric.

5. If you want CloudWatch to send you an email when the alarm state is reached, choose State is ALARM for Whenever this alarm. For Send notification to, choose an existing SNS topic. If you select Create topic, you can set up the names and email addresses for a new email subscription list. This list is saved and appears in the field for future alarms.

6. View the Alarm Preview and then choose Create Alarm or go back to make changes.

To set an alarm using the Amazon CLI

- Call `put-metric-alarm`. For more information, see [Amazon CLI Command Reference](https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-alarm.html).
To set an alarm using the CloudWatch

- Call `PutMetricAlarm`. For more information, see *Amazon CloudWatch API Reference*.

Logging FSx for OpenZFS API calls with Amazon CloudTrail

Amazon FSx is integrated with Amazon CloudTrail, a service that provides a record of actions taken by a user, role, or an Amazon service in Amazon FSx. CloudTrail captures all API calls for Amazon FSx as events. Captured calls include calls from the Amazon FSx console and from code calls to Amazon FSx API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for Amazon FSx. If you don't configure a trail, you can still view the most recent events in the CloudTrail console in *Event history*. Using the information collected by CloudTrail, you can determine the request that was made to Amazon FSx. You can also determine the IP address from which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the *Amazon CloudTrail User Guide*.

Amazon FSx Information in CloudTrail

CloudTrail is enabled on your Amazon account when you create the account. When API activity occurs in Amazon FSx, that activity is recorded in a CloudTrail event along with other Amazon service events in *Event history*. You can view, search, and download recent events in your Amazon account. For more information, see *Viewing events with CloudTrail Event history*.

For an ongoing record of events in your Amazon account, including events for Amazon FSx, create a trail. A *trail* enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a trail in the console, the trail applies to all Amazon Regions. The trail logs events from all Amazon Regions in the Amazon partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can configure other Amazon services to further analyze and act upon the event data collected in CloudTrail logs. For more information, see the following topics in the *Amazon CloudTrail User Guide*:

- [Creating a trail for your Amazon Web Services account](#)
- [Amazon Web Service integrations with CloudTrail Logs](#)
- [Configuring Amazon SNS notifications for CloudTrail](#)
**Receiving CloudTrail log files from multiple regions** and **Receiving CloudTrail log files from multiple accounts**

All Amazon FSx API calls are logged by CloudTrail. For example, calls to the CreateFileSystem and TagResource operations generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity information helps you determine the following:

- Whether the request was made with root or user credentials.
- Whether the request was made with temporary security credentials for a role or federated user.
- Whether the request was made by another Amazon service.

For more information, see the CloudTrail userIdentity element in the Amazon CloudTrail User Guide.

**Understanding Amazon FSx Log File Entries**

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you specify. CloudTrail log files contain one or more log entries. An event represents a single request from any source and includes information about the requested action, the date and time of the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the TagResource operation when a tag for a file system is created from the console.

```json
{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "Root",
 "principalId": "111122223333",
 "arn": "arn:aws:sts::111122223333:root",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-11-14T22:36:07Z"
 }
 }
 }
}
```
The following example shows a CloudTrail log entry that demonstrates the UntagResource action when a tag for a file system is deleted from the console.

```json
{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "Root",
 "principalId": "111122223333",
 "arn": "arn:aws:sts::111122223333:root",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-11-14T23:40:54Z"
 }
 }
 },
 "eventTime": "2018-11-14T23:40:54Z",
 "eventSource": "fsx.amazonaws.com",
 "eventName": "UntagResource",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "console.amazonaws.com",
 "requestParameters": {
 "resourceARN": "arn:aws:fsx:us-east-1:111122223333:file-system/fs-ab12cd34ef56gh789"
 },
 "responseElements": null,
 "requestID": "aEXAMPLE-abcd-1234-56ef-b4cEXAMPLE51",
 "eventID": "bEXAMPLE-gl12-3f5h-3sh4-ab6EXAMPLE9p",
 "eventType": "AwsApiCall",
 "apiVersion": "2018-03-01",
 "recipientAccountId": "111122223333"
}
```
"awsRegion": "us-east-1",
"sourceIPAddress": "192.0.2.0",
"userAgent": "console.amazonaws.com",
"requestParameters": {
  "resourceARN": "arn:aws:fsx:us-east-1:111122223333:file-system/fs-ab12cd34ef56gh789"
},
"responseElements": null,
"requestID": "aEXAMPLE-abcd-1234-56ef-b4cEXAMPLE51",
"eventID": "bEXAMPLE-gl12-3f5h-3sh4-ab6EXAMPLE9p",
"eventType": "AwsApiCall",
"apiVersion": "2018-03-01",
"recipientAccountId": "111122223333"
}
Troubleshooting Amazon FSx for OpenZFS

Use the following sections to help troubleshoot problems that you have with FSx for OpenZFS.

Topics

- Creating an FSx for OpenZFS file system fails
- You can't access your file system
- Troubleshooting volume mounting issues
- Troubleshooting storage issues

Creating an FSx for OpenZFS file system fails

This section describes what can cause creating a new file system to fail.

Cannot create a file system because of misconfigured security group

Creating an FSx for OpenZFS file system fails with the following error message:

The file system cannot be created because the default security group in the subnet provided or the provided security groups do not permit inbound NFSv4 traffic on TCP port 2049

Make sure that the VPC security group you are using for the creation operation is configured as described in File System Access Control with Amazon VPC. You must set up the security group to allow inbound traffic on port 2049 from the security group itself or the full subnet CIDR. This is required to allow the file system hosts to communicate with each other.

You can't access your file system

There are a number of potential causes for being unable to access your file system, each with their own resolution, as follows.

Topics

- The Elastic IP address attached to the file system elastic network interface was deleted
- The file system's elastic network interface was modified or deleted
• The compute instance's subnet doesn't use any of the route tables associated with your file system

The Elastic IP address attached to the file system elastic network interface was deleted

Amazon FSx doesn't support accessing file systems from the public Internet. Amazon FSx automatically detaches any public Elastic IP addresses (an IP address that is reachable from the public Internet), that gets attached to a file system's elastic network interface.

The file system's elastic network interface was modified or deleted

You must not modify or delete any of the file system's elastic network interfaces. Modifying or deleting a network interface can cause a permanent loss of connection between your virtual private cloud (VPC) and your file system. To resolve this issue, you must create a new file system, and do not modify or delete the Amazon FSx network interface. For more information, see File System Access Control with Amazon VPC.

The compute instance's subnet doesn't use any of the route tables associated with your file system

FSx for OpenZFS creates an endpoint for accessing your file system in a VPC route table. We recommend that you configure your file system to use all of the VPC route tables that are associated with the subnets in which your clients are located. By default, Amazon FSx uses your VPC's main route table. You can optionally specify one or more route tables for Amazon FSx to use when you create your file system.

If your client is in a subnet that's not associated with any of your file system's route tables, you need to update your file system's route tables. For information about updating your file system's Amazon VPC route tables, see Updating a file system.

Troubleshooting volume mounting issues

This section describes symptoms, causes, and resolutions for when mounting a file system fails.

Topics
• Mounting a volume fails right away
Mounting a volume fails right away

Using the `mount` command fails right away, as shown in the following example.

```
mount.nfs: access denied by server while mounting fs-02b568bbca05a9129.fsx.us-east-1.amazonaws.com:/abc
```

This error can occur if you are using an invalid `volume_path` for the volume you are mounting in the `mount` command. The `volume_path` must match the fully-qualified path to the volume you want to mount. For example, to mount the root volume, specify the `volume_path` in the `mount` command using the following format: `file-system-DNS-name:/fsx`. A file system’s DNS name is viewable in the Amazon FSx console on the file system detail page, in the **Network & security** tab.

You can view and copy the exact commands to mount any OpenZFS volume in the Amazon FSx console by choosing Attach on that volume’s details page. For more information, see [Mounting FSx for OpenZFS volumes](#).

Mounting a volume hangs and then fails with timeout error

The `mount` command hangs for a minute or two, and then fails with a timeout error similar to the following example:

```
mount.nfs: Connection timed out
```

This error can occur because the security groups for the Amazon EC2 instance or the file system aren’t configured properly. Make sure that the security groups assigned to the file system have the inbound rules described in [File System Access Control with Amazon VPC](#).

Mounting a volume using a DNS name fails

A misconfigured Domain Name Service (DNS) name can cause volume mount failures with the following message:

```
Host filesystem_dns_name not found: 3(NXDOMAIN)
```

When this occurs, you will need to check your virtual private cloud (VPC) configuration. If you are using a custom VPC, make sure that DNS settings are enabled. For more information, see DNS attributes for your VPC in the Amazon VPC User Guide.

Here are some considerations when using a DNS name in the mount command:

- Ensure that the Amazon EC2 instance is in the same VPC as your FSx for OpenZFS file system.
- Connect your Amazon EC2 instance inside a VPC configured to use the DNS server provided by Amazon. For more information, see DHCP Options Sets in the Amazon VPC User Guide.
- Ensure that the VPC of the connecting Amazon EC2 instance has DNS host names enabled. For more information, see Updating DNS Support for Your VPC in the Amazon VPC User Guide.
- Ensure that DHCP option set has AmazonProvidedDNS configured as a domain name server. Amazon FSx uses Route53 private hosted zones for DNS. For more information, see What is Amazon Route 53 Resolver in the Amazon Route 53 Resolver Developer Guide.

**Troubleshooting storage issues**

This section describes symptoms, causes, and resolutions for storage issues on your file system.

**Deleting files does not reduce used storage capacity**

If deleting a file does not reduce used storage capacity, it's likely that the file's data is part of an OpenZFS snapshot that you created previously. Snapshots minimize the amount of storage capacity they consume by only storing each data block once, including blocks used in the most recent version of the file. This means that if you delete the file but the data blocks are still part of a non-deleted snapshot, those data blocks will be retained. To reduce your used storage capacity, consider deleting snapshots that you no longer need.
Quotas

Following, you can find out about quotas when working with Amazon FSx for OpenZFS.

Topics

- Quotas that you can increase
- Resource quotas for each file system

Quotas that you can increase

Following are the quotas for Amazon FSx for OpenZFS for each Amazon Web Services account, per Amazon Web Services Region, that you can increase.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenZFS file systems</td>
<td>100</td>
<td>The maximum number of Amazon FSx for OpenZFS file systems that you can create in this account.</td>
</tr>
<tr>
<td>OpenZFS SSD storage capacity</td>
<td>65,536 (262,144 in US East (N. Virginia), US East (Ohio), and US West (Oregon))</td>
<td>The maximum amount of SSD storage capacity (in GiB) that you can configure for all Amazon FSx for OpenZFS file systems in this account.</td>
</tr>
<tr>
<td>OpenZFS throughput capacity</td>
<td>10,240</td>
<td>The total amount of throughput capacity (in MB/s) allowed for all Amazon FSx for OpenZFS file systems in this account.</td>
</tr>
<tr>
<td>OpenZFS disk IOPS</td>
<td>400,000</td>
<td>The total amount of disk IOPS allowed for all Amazon FSx for OpenZFS file systems in this account.</td>
</tr>
<tr>
<td>Resource</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>OpenZFS backups</td>
<td>10,000</td>
<td>The maximum number of user-initiated backups for all Amazon FSx for OpenZFS file systems that you can have in this account.</td>
</tr>
</tbody>
</table>

To request a quota increase

1. Open the [Amazon Web Services Support](https://aws.amazon.com/support/) page, sign in if necessary, and then choose Create case.

2. For Create case, choose Account and billing support.

3. In the Case details panel make the following entries:

   - For Type choose Account.
   - For Category choose Other Account Issues.
   - For Subject enter Amazon FSx for OpenZFS service limit increase request.
   - Provide a detailed Description of your request, including:
     - The FSx quota that you want increased, and the value you want it increased to, if known.
     - The reason why you are seeking the quota increase.
     - The file system ID and region for each file system you are requesting an increase for.

4. Provide your preferred Contact options and choose Submit.

Resource quotas for each file system

Following are the quotas on FSx for OpenZFS resources for each file system in an Amazon Web Services Region.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Limit per file system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum storage capacity</td>
<td>64 GiB</td>
</tr>
<tr>
<td>Maximum storage capacity</td>
<td>128 TiB</td>
</tr>
<tr>
<td>Resource</td>
<td>Limit per file system</td>
</tr>
<tr>
<td>-----------------------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Minimum throughput capacity</td>
<td>64 MB/s</td>
</tr>
<tr>
<td>Maximum throughput capacity</td>
<td>5,120 MB/s</td>
</tr>
<tr>
<td>Maximum number of volumes</td>
<td>100</td>
</tr>
<tr>
<td>Maximum number of users and groups per volume</td>
<td>100</td>
</tr>
<tr>
<td>Maximum number of snapshots</td>
<td>700</td>
</tr>
<tr>
<td>Maximum number of tags</td>
<td>50</td>
</tr>
<tr>
<td>Maximum retention period for automated backups</td>
<td>90 days</td>
</tr>
<tr>
<td>Maximum retention period for user-initiated backups</td>
<td>no retention limit</td>
</tr>
</tbody>
</table>

**Note**

The maximum storage capacity for Single-AZ 1 and Multi-AZ file systems depends on the file system's provisioned throughput capacity, deployment type, and Amazon Web Services Region. For more information, see the following tables.

### Maximum storage capacity of Multi-AZ file systems

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>Maximum Storage Capacity (TiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>96</td>
</tr>
<tr>
<td>320</td>
<td>128</td>
</tr>
<tr>
<td>640</td>
<td>128</td>
</tr>
<tr>
<td>1,280</td>
<td>128</td>
</tr>
<tr>
<td>2,560</td>
<td>128</td>
</tr>
<tr>
<td>Provisioned throughput capacity (MB/s)</td>
<td>Maximum Storage Capacity (TiB)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>3,840</td>
<td>128</td>
</tr>
<tr>
<td>5,120</td>
<td>128</td>
</tr>
<tr>
<td>7,680</td>
<td>–</td>
</tr>
<tr>
<td>10,240</td>
<td>–</td>
</tr>
</tbody>
</table>

**Maximum storage capacity of Single-AZ 1 file systems**

<table>
<thead>
<tr>
<th>Provisioned throughput capacity (MB/s)</th>
<th>Maximum Storage Capacity (TiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>128</td>
</tr>
<tr>
<td>1,024</td>
<td>128</td>
</tr>
<tr>
<td>2,048</td>
<td>128</td>
</tr>
<tr>
<td>3,072</td>
<td>128</td>
</tr>
<tr>
<td>4,096</td>
<td>128</td>
</tr>
</tbody>
</table>
# Document history for Amazon FSx for OpenZFS

- **API version:** 2018-03-01
- **Latest documentation update:** March 11, 2024

The following table describes important changes to the *Amazon FSx for OpenZFS User Guide*. For notifications about documentation updates, you can subscribe to the RSS feed.

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Amazon Web Services Region support added.</td>
<td>FSx for OpenZFS is now available in China (Beijing), China (Ningxia), Amazon GovCloud (US-West), Amazon GovCloud (US-East), Europe (Spain), and Europe (Zurich). For more information, see <a href="#">Deployment type availability</a>.</td>
<td>March 11, 2024</td>
</tr>
<tr>
<td>Amazon FSx for OpenZFS now supports up to 400,000 IOPS for Single-AZ 2 file systems</td>
<td>Amazon FSx for OpenZFS now supports up to 400,000 IOPS for Single-AZ 2 file systems. For more information, see <a href="#">Amazon FSx for OpenZFS Performance</a>.</td>
<td>January 17, 2024</td>
</tr>
<tr>
<td>Amazon FSx updated the AmazonFsxFullAccess, AmazonFsxConsoleFullAccess, AmazonFsxReadOnlyAccess, AmazonFsxConsoleReadOnlyAccess, and AmazonFsxServiceRolePolicy Amazon managed policies</td>
<td>Amazon FSx updated the AmazonFsxFullAccess, AmazonFsxConsoleFullAccess, AmazonFsxReadOnlyAccess, AmazonFsxConsoleReadOnlyAccess, and AmazonFsxServiceRolePolicy policies to add the ec2:GetSecurityGroupsForVpc permission</td>
<td>January 9, 2024</td>
</tr>
</tbody>
</table>
Amazon FSx updated the AmazonFSxFullAccess and the AmazonFSxConsoleFullAccess Amazon managed policies

Amazon FSx updated the AmazonFSxFullAccess and AmazonFSxConsoleFullAccess policies to add the ManageCrossAccount DataReplication action. For more information, see Amazon FSx updates to Amazon managed policies.

December 20, 2023

Amazon FSx for OpenZFS now offers cross-region and cross-account data replication

You can now use on-demand data replication with Amazon FSx for OpenZFS to securely transfer data across file systems in any Amazon Account and Amazon Web Services Region. For more information, see On-demand data replication.

December 20, 2023

Amazon FSx updated the AmazonFSxFullAccess and the AmazonFSxConsoleFullAccess Amazon managed policies

Amazon FSx updated the AmazonFSxFullAccess and AmazonFSxConsoleFullAccess policies to add the fsx:CopySnapshotAndUpdateVolume permission. For more information, see Amazon FSx updates to Amazon managed policies.

November 26, 2023
<table>
<thead>
<tr>
<th><strong>Amazon FSx for OpenZFS now offers on-demand data replication</strong></th>
<th>You can now use on-demand data replication with Amazon FSx for OpenZFS to securely transfer data across file systems in the same Amazon Account and Amazon Web Services Region. For more information, see <a href="#">On-demand data replication</a>.</th>
<th>November 26, 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Additional Amazon Web Services Region support added.</strong></td>
<td>FSx for OpenZFS is now available in Canada (Central) and US West (N. California). For more information, see <a href="#">Deployment type availability</a>.</td>
<td>November 16, 2023</td>
</tr>
<tr>
<td><strong>Amazon FSx updated the AmazonFSxFullAccess and the AmazonFSxConsoleFullAccess Amazon managed policies</strong></td>
<td>Amazon FSx updated the AmazonFSxFullAccess and AmazonFSxConsoleFullAccess policies to add the fsx:CopySnapshotAndUpdateVolume permission. For more information, see <a href="#">Amazon FSx updates to Amazon managed policies</a>.</td>
<td>November 14, 2023</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>November 9, 2023</td>
<td><strong>Additional Amazon Web Services Region support added.</strong> FSx for OpenZFS is now available in Middle East (Bahrain), Asia Pacific (Osaka), Europe (Milan), Europe (Paris), South America (São Paulo) Region, Israel (Tel Aviv), Africa (Cape Town), Asia Pacific (Hyderabad), Asia Pacific (Jakarta), and Middle East (UAE). For more information, see <a href="#">Deployment type availability</a>.</td>
<td></td>
</tr>
<tr>
<td>August 9, 2023</td>
<td><strong>Update to AmazonFSx FullAccess policy.</strong> Amazon FSx added new permissions to allow Amazon FSx to manage network configurations for FSx for OpenZFS Multi-AZ file systems. For more information, see <a href="#">Amazon managed policies for Amazon FSx</a>.</td>
<td></td>
</tr>
<tr>
<td>August 9, 2023</td>
<td><strong>FSx for OpenZFS now offers the Multi-AZ deployment type.</strong> You can now use Multi-AZ deployment for FSx for OpenZFS to create file systems with high availability that span across multiple Availability Zones (AZs). For more information, see <a href="#">Availability and durability</a>.</td>
<td></td>
</tr>
<tr>
<td>Update</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Amazon FSx updated the AmazonFSxServiceRolePolicy Amazon managed policy</td>
<td>Amazon FSx updated the cloudwatch:PutMetricData permission in the AmazonFSxServiceRolePolicy. For more information, see <a href="#">Amazon FSx updates to Amazon managed policies</a>.</td>
<td>July 24, 2023</td>
</tr>
<tr>
<td>Amazon FSx updated the AmazonFSxFullAccess Amazon managed policy</td>
<td>Amazon FSx updated the AmazonFSxFullAccess policy to remove the fsx:* permission and add specific fsx actions. For more information, see <a href="#">AmazonFSx FullAccess policy</a>.</td>
<td>July 13, 2023</td>
</tr>
<tr>
<td>Amazon FSx updated the AmazonFSxConsoleFullAccess Amazon managed policy</td>
<td>Amazon FSx updated the AmazonFSxConsoleFullAccess policy to remove the fsx:* permission and add specific fsx actions. For more information, see <a href="#">AmazonFSx ConsoleFullAccess policy</a>.</td>
<td>July 13, 2023</td>
</tr>
<tr>
<td>Support added for using the Amazon Elastic Kubernetes Service container storage interface (CSI) driver for FSx for OpenZFS.</td>
<td>The Amazon FSx for OpenZFS CSI Driver provides a CSI interface that allows Amazon EKS clusters to manage the life cycle of Amazon FSx for OpenZFS file systems and volumes. For more information, see <a href="#">Using FSx for OpenZFS with Amazon container services</a> and <a href="#">Amazon FSx for OpenZFS CSI Driver</a> on GitHub.</td>
<td>June 30, 2023</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Support added for a new generation Single-AZ 2 deployment type.</td>
<td>You can now specify file systems with 10 GB/s maximum throughput, 350,000 maximum IOPS, and data access from a new NVMe L2ARC read cache. For more information, see Amazon FSx for OpenZFS performance.</td>
<td>November 28, 2022</td>
</tr>
<tr>
<td>Support added for restoring backups to file system's with increased storage capacity and throughput capacity</td>
<td>You can now specify a storage capacity equal to or greater than the original file system's storage capacity when restoring an FSx for OpenZFS backup to a new file system. For more information, see Restoring backups.</td>
<td>September 29, 2022</td>
</tr>
<tr>
<td>Additional Amazon Web Services Region support added</td>
<td>FSx for OpenZFS is now available in the Asia Pacific (Hong Kong), Asia Pacific (Seoul), Asia Pacific (Mumbai), and Europe (Stockholm) Amazon Web Services Regions.</td>
<td>September 29, 2022</td>
</tr>
<tr>
<td>Support added for SSD storage capacity and provisioned IOPS scaling</td>
<td>You can now increase the SSD storage capacity and provisioned IOPS for existing FSx for OpenZFS file systems as your storage and IOPS requirements evolve. For more information, see Managing SSD storage capacity and provisioned IOPS.</td>
<td>May 31, 2022</td>
</tr>
</tbody>
</table>
Amazon FSx is now integrated with Amazon Backup

You can now use Amazon Backup to back up and restore your FSx file systems in addition to using the native Amazon FSx backups. For more information, see Using Amazon Backup with Amazon FSx.

May 18, 2022

Additional Amazon Web Services Region support added

FSx for OpenZFS is now available in the Europe (London), Asia Pacific (Singapore), and Asia Pacific (Sydney) Amazon Web Services Regions.

April 19, 2022

Support added for using Amazon DataSync to migrate files to your FSx for OpenZFS file systems.

You can now use Amazon DataSync to migrate files from existing file systems to FSx for OpenZFS file systems. For more information, see How to migrate existing files to FSx for OpenZFS using Amazon DataSync.

April 5, 2022

Support added for Amazon PrivateLink interface VPC endpoints.

You can now use interface VPC endpoints to access the Amazon FSx API from your VPC without sending traffic over the internet. For more information, see Amazon FSx and interface VPC endpoints.

April 5, 2022
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Support added to unset, or turn off volume storage capacity quotas and reservations.</strong></td>
<td>You can now unset or turn off a volume's storage capacity quota and reservation settings. For more information, see <a href="#">Volume properties</a>.</td>
<td>February 28, 2022</td>
</tr>
<tr>
<td><strong>Support added for customizing a volume's ZFS record size.</strong></td>
<td>You can now set the ZFS record size on a per volume basis to improve performance for specific workflows. For more information, see <a href="#">Volume properties</a>.</td>
<td>February 28, 2022</td>
</tr>
<tr>
<td><strong>Support added for LZ4 data compression.</strong></td>
<td>You can now use LZ4 data compression in addition to Z-Standard data compression on a per volume basis. For more information, see <a href="#">Volume properties</a>.</td>
<td>February 28, 2022</td>
</tr>
<tr>
<td><strong>Support added for full-copy volumes</strong></td>
<td>You can use a snapshot to create an FSx for OpenZFS full-copy volume. A full-copy volume is initialized with the same data as its source snapshot, but is a fully independent writable copy. For more information, see <a href="#">Managing FSx for OpenZFS volumes</a>.</td>
<td>February 2, 2022</td>
</tr>
</tbody>
</table>
Amazon FSx for OpenZFS is now generally available

Amazon FSx for OpenZFS is a fully managed file storage service that makes it easy to move data residing in on-premises ZFS or other NFS file servers to Amazon without changing your application code or how you manage data. It offers highly reliable, scalable, performant, and feature-rich file storage built on the open-source OpenZFS file system.

November 30, 2021