
Realtime Servers Developer Guide

Amazon GameLift Servers

Version

Amazon GameLift Servers Realtime Servers Developer Guide

Amazon GameLift Servers: Realtime Servers Developer Guide

Amazon GameLift Servers Realtime Servers Developer Guide

Table of Contents

What are Realtime servers? .. 1
How Realtime servers work .. 1

Client server interaction .. 2
Pricing ... 3

Preparing your game ... 4
Customize a Realtime script ... 4

Manage game session life-cycle (required) .. 5
Add server-side game logic (optional) .. 5
Amazon GameLift Servers Realtime script example .. 6

Integrate a game client .. 10
Find or create game sessions and player sessions ... 11
Connect to games on Amazon GameLift Servers Realtime ... 12
Game client examples .. 12

Upload a Realtime script .. 16
Package script files ... 17
Upload script files from a local directory .. 17
Upload script files from Amazon S3 ... 18

Update a Realtime script .. 20
Creating a fleet for Realtime servers ... 22

Create a fleet and deploy Realtime servers ... 22
Debug Realtime fleet issues .. 29

Logging for Amazon GameLift Servers Realtime .. 31
Logging messages in your server script .. 31
Accessing server logs ... 33
Adjusting the logging level .. 33

Realtime reference guides .. 36
Realtime client API (C#) reference .. 36

Actions ... 37
Callbacks ... 42
Data types .. 45

Realtime script reference .. 50
Script callbacks .. 51
.. 54

Version iii

Amazon GameLift Servers Realtime Servers Developer Guide

What is Amazon GameLift Servers Realtime?

If you're looking for a game server solution for your multiplayer game, but you don't want to
expend the time and resources to develop, test, and deploy a fully custom game server, consider
using Amazon GameLift Servers Realtime. Realtime servers are lightweight, ready-to-go game
servers that Amazon GameLift Servers provides for you.

Amazon GameLift Servers Realtimekey features

• Full network stack for game client and server interaction

• Core game server functionality

• Customizable server logic

• Live updates to Realtime configurations and server logic

• FlexMatch matchmaking

• Flexible control of hosting resources

How to set up Realtime servers

Setting up your game to use Realtime servers involves these tasks:

• Get the default Realtime script (JavaScript) and configure it for your game. You can optionally
add server-side logic.

• Deploy a fleet of hosting resources with Realtime servers configured for your game.

• Create a simple backend service that your game client can use to find or start game sessions on
your Realtime servers.

• Add functionality to your game client (using provided APIs) to request a game session, connect
to it, and play the game.

How Amazon GameLift Servers Realtime servers work

A Realtime server acts as a stateless relay server, where the server relays packets of messages and
game data between the game clients that are connected to the game. The Realtime server doesn't
evaluate messages, process data, or perform any gameplay logic. Each game client maintains its
own view of the game state and provides updates to other players through the relay server. Each
game client is responsible for incorporating these updates and reconciling its own game state.

How Realtime servers work Version 1

Amazon GameLift Servers Realtime Servers Developer Guide

You set up Realtime servers by uploading a Realtime servers script to Amazon GameLift Servers
and deploying it to a managed EC2 hosting fleet. The Realtime script is a custom configuration for
your game. Amazon GameLift Servers uses the script's instructions to manage the tasks of setting
up and running game servers for your players.

The default Realtime script is a set of JavaScript code. You configuration it for use with your
game client. Amazon GameLift Servers defines a set of server-side callbacks for Realtime scripts.
Implement these callbacks to add event-driven functionality to your server. For example, you can:

• Authenticate a player when a game client tries to connect to the server.

• Validate whether a player can join a group upon request.

• Determine when to deliver messages from a certain player or to a target player, or perform
additional processing in response.

• Notify all players when a player leaves a group or disconnects from the server.

• View the content of game session objects or message objects, and use the data.

You can add custom logic for game session management by building it into the Realtime script.
You can write code to access server-specific objects, add event-driven logic using callbacks, or add
logic based on non-event scenarios. For example, you might add game logic to build a stateful
game with a server-authoritative view of the game state.

A key advantage of Amazon GameLift Servers Realtime is the ability to update your scripts at
any time. When you update a script, Amazon GameLift Servers distributes the new version to all
hosting resources within minutes. After Amazon GameLift Servers deploys the new script, all new
game sessions created after that point will use the new script version. (Existing game sessions will
continue to use the original version.)

How Realtime clients and servers interact

During a game session, game clients interact by sending messages to the Realtime server through
a backend service. The backend service then relays the messages among connected game clients to
exchange activity, game state, and relevant game data. If you've added custom game logic to the
Realtime script, a Realtime server might implement callbacks to start event-driven responses.

Communication protocol

Realtime servers and connected game clients communicate through two channels: a TCP
connection for reliable delivery, and a UDP channel for fast delivery. When creating messages,

Client server interaction Version 2

Amazon GameLift Servers Realtime Servers Developer Guide

game clients choose which protocol to use depending on the nature of the message. Message
delivery is set to UDP by default. If a UDP channel isn't available, Amazon GameLift Servers sends
messages using TCP as a fallback.

Message content

Message content consists of two elements: a required operation code (opCode) and an optional
payload. A message's opCode identifies a particular player activity or game event, and the payload
provides additional data related to the operation code. Both of these elements are developer-
defined. Your game client acts based on the opCodes in the messages that it receives.

Player groups

Amazon GameLift Servers Realtime provides functionality to manage groups of players. By
default, Amazon GameLift Servers places all players who connect to a game session into an "all
players" group. In addition, developers can set up other groups for their games, and players can
be members of multiple groups simultaneously. Group members can send messages and share
game data with all players in the group. For example, if your gameplay relies on teams, you can use
player groups to enable communication within team members as well as game-wide.

Amazon GameLift Servers Realtime pricing and cost planning

With Amazon GameLift Servers Realtime you pay for the managed EC2 hosting resources and
services you use to host Realtime servers. There's no additional charge for use of the Realtime
servers themselves.

For information about Amazon GameLift Servers hosting pricing and cost planning for managed
EC2 hosting, see . Pricing for Amazon GameLift Servers. For details pricing information, including
example pricing scenarios and pricing tools, see Amazon GameLift Servers Pricing.

New Amazon customers can use Amazon GameLift Servers without incurring charges under the
Free Tier for up to 12 months. Stay within Free Tier usage limits to avoid charges.

Pricing Version 3

https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-intro-pricing.html
https://www.amazonaws.cn/gamelift/pricing/

Amazon GameLift Servers Realtime Servers Developer Guide

Preparing your games for hosting with Amazon GameLift
Servers Realtime

Get your multiplayer games ready for hosting with Amazon GameLift Servers Realtime. This section
guides you through the steps required to create a hosting solution for your game using Realtime
servers and Amazon GameLift Servers managed EC2 hosting in the cloud.

Your solution will have the following components:

• A Realtime server that you customize to work with your game. This component is in the form
of a script containing JavaScript code that provides your custom configuration and optional
extensions. This script tells Amazon GameLift Servers how to set up and run Realtime servers for
you. To use this script, you upload it to the Amazon GameLift Servers service.

• A version of your game client that's been integrated with the Amazon SDK and the Amazon
GameLift Servers Realtime client SDK. Use these tools to add the necessary functionality to
communicate with the Amazon GameLift Servers service to start or join game sessions, as well as
connect to and interact with Realtime servers to play the game.

Topics

• Customize an Amazon GameLift Servers Realtime script

• Integrate a game client for Amazon GameLift Servers Realtime

• Upload a script for Amazon GameLift Servers Realtime servers

• Update an Amazon GameLift Servers Realtime script

Customize an Amazon GameLift Servers Realtime script

To use Amazon GameLift Servers Realtime servers for your game, you need to provide a script (in
the form of JavaScript code) to configure and optionally customize how the Amazon GameLift
Servers Realtime server run and interact with your game clients. When your script is ready,
upload it to the Amazon GameLift Servers service (see Upload a script for Amazon GameLift
Servers Realtime servers) and use it to create a fleet of game server hosts.

Start with the default Realtime script and configure it with the following functionality.

Customize a Realtime script Version 4

Amazon GameLift Servers Realtime Servers Developer Guide

Manage game session life-cycle (required)

At a minimum, a Realtime script must include the Init() function, which prepares the Realtime
server to start a game session. It is also highly recommended that you also provide a way to
terminate game sessions, to ensure that new game sessions can continue to be started on your
fleet.

The Init() callback function, when called, is passed a Realtime session object, which contains an
interface for the Realtime server. See Amazon GameLift Servers Realtime interface for more details
on this interface.

To gracefully end a game session, the script must also call the Realtime server's
session.processEnding function. This requires some mechanism to determine when to end a
session. The script example code illustrates a simple mechanism that checks for player connections
and triggers game session termination when no players have been connected to the session for a
specified length of time.

Amazon GameLift Servers Realtime with the most basic configuration--server process initialization
and termination--essentially act as stateless relay servers. The Realtime server relays messages and
game data between game clients that are connected to the game, but takes no independent action
to process data or perform logic. You can optionally add game logic, triggered by game events or
other mechanisms, as needed for your game.

Add server-side game logic (optional)

You can optionally add game logic to your Realtime script. For example, you might do any or all
of the following. The script example code provides illustration. See Script reference for Amazon
GameLift Servers Realtime.

• Add event-driven logic. Implement the callback functions to respond to client-server events.
See Script callbacks for Amazon GameLift Servers Realtime for a complete list of callbacks.

• Trigger logic by sending messages to the server. Create a set of special operation codes for
messages sent from game clients to the server, and add functions to handle receipt. Use the
callback onMessage, and parse the message content using the gameMessage interface (see
gameMessage.opcode).

• Enable game logic to access your other Amazon resources. For details, see Communicate with
other Amazon resources from your fleets.

Manage game session life-cycle (required) Version 5

https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-sdk-server-resources.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-sdk-server-resources.html

Amazon GameLift Servers Realtime Servers Developer Guide

• Allow game logic to access fleet information for the instance it is running on. For details, see Get
fleet data for an Amazon GameLift Servers instance.

Amazon GameLift Servers Realtime script example

This example illustrates a basic script needed to deploy Amazon GameLift Servers Realtime plus
some custom logic. It contains the required Init() function, and uses a timer mechanism to
trigger game session termination based on length of time with no player connections. It also
includes some hooks for custom logic, including some callback implementations.

// Example Realtime Server Script
'use strict';

// Example override configuration
const configuration = {
 pingIntervalTime: 30000,
 maxPlayers: 32
};

// Timing mechanism used to trigger end of game session. Defines how long, in
 milliseconds, between each tick in the example tick loop
const tickTime = 1000;

// Defines how to long to wait in Seconds before beginning early termination check in
 the example tick loop
const minimumElapsedTime = 120;

var session; // The Realtime server session object
var logger; // Log at appropriate level
 via .info(), .warn(), .error(), .debug()
var startTime; // Records the time the process started
var activePlayers = 0; // Records the number of connected players
var onProcessStartedCalled = false; // Record if onProcessStarted has been called

// Example custom op codes for user-defined messages
// Any positive op code number can be defined here. These should match your client
 code.
const OP_CODE_CUSTOM_OP1 = 111;
const OP_CODE_CUSTOM_OP1_REPLY = 112;
const OP_CODE_PLAYER_ACCEPTED = 113;
const OP_CODE_DISCONNECT_NOTIFICATION = 114;

Amazon GameLift Servers Realtime script example Version 6

https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-sdk-server-fleetinfo.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-sdk-server-fleetinfo.html

Amazon GameLift Servers Realtime Servers Developer Guide

// Example groups for user-defined groups
// Any positive group number can be defined here. These should match your client code.
// When referring to user-defined groups, "-1" represents all groups, "0" is reserved.
const RED_TEAM_GROUP = 1;
const BLUE_TEAM_GROUP = 2;

// Called when game server is initialized, passed server's object of current session
function init(rtSession) {
 session = rtSession;
 logger = session.getLogger();
}

// On Process Started is called when the process has begun and we need to perform any
// bootstrapping. This is where the developer should insert any code to prepare
// the process to be able to host a game session, for example load some settings or set
 state
//
// Return true if the process has been appropriately prepared and it is okay to invoke
 the
// GameLift ProcessReady() call.
function onProcessStarted(args) {
 onProcessStartedCalled = true;
 logger.info("Starting process with args: " + args);
 logger.info("Ready to host games...");

 return true;
}

// Called when a new game session is started on the process
function onStartGameSession(gameSession) {
 // Complete any game session set-up

 // Set up an example tick loop to perform server initiated actions
 startTime = getTimeInS();
 tickLoop();
}

// Handle process termination if the process is being terminated by Amazon GameLift
 Servers
// You do not need to call ProcessEnding here
function onProcessTerminate() {
 // Perform any clean up
}

Amazon GameLift Servers Realtime script example Version 7

Amazon GameLift Servers Realtime Servers Developer Guide

// Return true if the process is healthy
function onHealthCheck() {
 return true;
}

// On Player Connect is called when a player has passed initial validation
// Return true if player should connect, false to reject
function onPlayerConnect(connectMsg) {
 // Perform any validation needed for connectMsg.payload, connectMsg.peerId
 return true;
}

// Called when a Player is accepted into the game
function onPlayerAccepted(player) {
 // This player was accepted -- let's send them a message
 const msg = session.newTextGameMessage(OP_CODE_PLAYER_ACCEPTED, player.peerId,
 "Peer " + player.peerId + " accepted");
 session.sendReliableMessage(msg, player.peerId);
 activePlayers++;
}

// On Player Disconnect is called when a player has left or been forcibly terminated
// Is only called for players that actually connected to the server and not those
 rejected by validation
// This is called before the player is removed from the player list
function onPlayerDisconnect(peerId) {
 // send a message to each remaining player letting them know about the disconnect
 const outMessage = session.newTextGameMessage(OP_CODE_DISCONNECT_NOTIFICATION,
 session.getServerId(),
 "Peer " + peerId + " disconnected");
 session.getPlayers().forEach((player, playerId) => {
 if (playerId != peerId) {
 session.sendReliableMessage(outMessage, playerId);
 }
 });
 activePlayers--;
}

// Handle a message to the server
function onMessage(gameMessage) {
 switch (gameMessage.opCode) {
 case OP_CODE_CUSTOM_OP1: {
 // do operation 1 with gameMessage.payload for example sendToGroup

Amazon GameLift Servers Realtime script example Version 8

Amazon GameLift Servers Realtime Servers Developer Guide

 const outMessage = session.newTextGameMessage(OP_CODE_CUSTOM_OP1_REPLY,
 session.getServerId(), gameMessage.payload);
 session.sendGroupMessage(outMessage, RED_TEAM_GROUP);
 break;
 }
 }
}

// Return true if the send should be allowed
function onSendToPlayer(gameMessage) {
 // This example rejects any payloads containing "Reject"
 return (!gameMessage.getPayloadAsText().includes("Reject"));
}

// Return true if the send to group should be allowed
// Use gameMessage.getPayloadAsText() to get the message contents
function onSendToGroup(gameMessage) {
 return true;
}

// Return true if the player is allowed to join the group
function onPlayerJoinGroup(groupId, peerId) {
 return true;
}

// Return true if the player is allowed to leave the group
function onPlayerLeaveGroup(groupId, peerId) {
 return true;
}

// A simple tick loop example
// Checks to see if a minimum amount of time has passed before seeing if the game has
 ended
async function tickLoop() {
 const elapsedTime = getTimeInS() - startTime;
 logger.info("Tick... " + elapsedTime + " activePlayers: " + activePlayers);

 // In Tick loop - see if all players have left early after a minimum period of time
 has passed
 // Call processEnding() to terminate the process and quit
 if ((activePlayers == 0) && (elapsedTime > minimumElapsedTime)) {
 logger.info("All players disconnected. Ending game");
 const outcome = await session.processEnding();
 logger.info("Completed process ending with: " + outcome);

Amazon GameLift Servers Realtime script example Version 9

Amazon GameLift Servers Realtime Servers Developer Guide

 process.exit(0);
 }
 else {
 setTimeout(tickLoop, tickTime);
 }
}

// Calculates the current time in seconds
function getTimeInS() {
 return Math.round(new Date().getTime()/1000);
}

exports.ssExports = {
 configuration: configuration,
 init: init,
 onProcessStarted: onProcessStarted,
 onMessage: onMessage,
 onPlayerConnect: onPlayerConnect,
 onPlayerAccepted: onPlayerAccepted,
 onPlayerDisconnect: onPlayerDisconnect,
 onSendToPlayer: onSendToPlayer,
 onSendToGroup: onSendToGroup,
 onPlayerJoinGroup: onPlayerJoinGroup,
 onPlayerLeaveGroup: onPlayerLeaveGroup,
 onStartGameSession: onStartGameSession,
 onProcessTerminate: onProcessTerminate,
 onHealthCheck: onHealthCheck
};

Integrate a game client for Amazon GameLift Servers Realtime

When using Realtime servers, you need to add functionality to your game client so that players can
join and participate in game sessions hosted with Amazon GameLift Servers Realtime.

There are two sets of tasks needed to prepare your game client:

• Set up your game client to acquire information about existing games, request matchmaking,
start new game sessions, and reserve game session slots for a player.

• Enable your game client to join a game session hosted on a Realtime server and exchange
messages.

Integrate a game client Version 10

Amazon GameLift Servers Realtime Servers Developer Guide

Find or create game sessions and player sessions

Set up your game client to find or start game sessions, request FlexMatch matchmaking, and
reserve space for players in a game by creating player sessions.

Important

As a best practice, we highly recommend that your create a backend service to make all
direct requests to the Amazon GameLift Servers service. Set up game client actions that
initiate the backent service to make requests and then relay relevant responses back to the
game client. For more information about setting up a backend service, see Design your
backend service for Amazon GameLift Servers.

1. Add the Amazon SDK to your game client, initialize an Amazon GameLift Servers client, and
configure it to use the hosting resources in your fleets and queues. The Amazon SDK is available
in several languages; see the Amazon GameLift Servers SDKs Amazon GameLift Servers
development tools for game clients.

2. Add Amazon GameLift Servers functionality to your backend service. For more detailed
instructions, see Integrate your game client for Amazon GameLift Servers and (optionally)
Adding FlexMatch matchmaking.

Although not required, it is a best practice to use game session placement queues to create new
game sessions. This method lets you take full advantage of Amazon GameLift Servers to choose
the best possible locations to host new game sessions, based on a variety of factors, including
player latency data. At a minimum, your backend service must use one of the available methods
to request new game sessions and then handle game session data in response. You may also
want to add optional functionality, such as to search for information on existing game sessions
or to reserve player slots in a game session by creating individual player sessions.

3. Convey connection information back to the game client. The backend service receives game
session and player session objects in response to requests to the Amazon GameLift Servers
service. These objects contain information, in particular connection details (IP address and port)
and player session ID, that the game client needs to connect to the game session running on a
Realtime Server.

Find or create game sessions and player sessions Version 11

https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift_quickstart_customservers_designbackend.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift_quickstart_customservers_designbackend.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-supported.html#gamelift-supported-clients
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-supported.html#gamelift-supported-clients
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-sdk-client-api.html
https://docs.amazonaws.cn/gameliftservers/latest/flexmatchguide/match-intro.html

Amazon GameLift Servers Realtime Servers Developer Guide

Connect to games on Amazon GameLift Servers Realtime

Enable your game client to connect directly with a hosted game session on a Realtime server and
exchange messages with the server and with other players.

1. Get the client SDK for Amazon GameLift Servers Realtime, build it, and add it to your game
client project. See the README file for more information on SDK requirements and instructions
on how to build the client libraries.

2. Call Client() with a client configuration that specifies the type of client/server connection to use.

3. Add the following functionality to your game client. See the Amazon GameLift Servers Realtime
client API (C#) reference for more information.

• Connect to and disconnect from a game

• Connect()

• Disconnect()

• Send messages to target recipients

• SendMessage()

• Receive and process messages

• OnDataReceived()

• Join groups and leave player groups

• JoinGroup()

• RequestGroupMembership()

• LeaveGroup()

4. Set up event handlers for the client callbacks as needed. See Amazon GameLift Servers Realtime
client API (C#) reference: Asynchronous callbacks.

Game client examples

Basic realtime client (C#)

This example illustrates a basic game client integration with the client SDK (C#) for Amazon
GameLift Servers Realtime. As shown, the example initializes a Realtime client object, sets up event
handlers and implements the client-side callbacks, connects to a Realtime server, sends a message,
and disconnects.
Connect to games on Amazon GameLift Servers Realtime Version 12

Amazon GameLift Servers Realtime Servers Developer Guide

using System;
using System.Text;
using Aws.GameLift.Realtime;
using Aws.GameLift.Realtime.Event;
using Aws.GameLift.Realtime.Types;

namespace Example
{
 /**
 * An example client that wraps the client SDK for Amazon GameLift Servers Realtime
 *
 * You can redirect logging from the SDK by setting up the LogHandler as such:
 * ClientLogger.LogHandler = (x) => Console.WriteLine(x);
 *
 */
 class RealTimeClient
 {
 public Aws.GameLift.Realtime.Client Client { get; private set; }

 // An opcode defined by client and your server script that represents a custom
 message type
 private const int MY_TEST_OP_CODE = 10;

 /// Initialize a client for Amazon GameLift Servers Realtime and connect to a
 player session.
 /// <param name="endpoint">The DNS name that is assigned to Realtime server</
param>
 /// <param name="remoteTcpPort">A TCP port for the Realtime server</param>
 /// <param name="listeningUdpPort">A local port for listening to UDP traffic</
param>
 /// <param name="connectionType">Type of connection to establish between client
 and the Realtime server</param>
 /// <param name="playerSessionId">The player session ID that is assigned to the
 game client for a game session </param>
 /// <param name="connectionPayload">Developer-defined data to be used during
 client connection, such as for player authentication</param>
 public RealTimeClient(string endpoint, int remoteTcpPort, int listeningUdpPort,
 ConnectionType connectionType,
 string playerSessionId, byte[] connectionPayload)
 {
 // Create a client configuration to specify a secure or unsecure connection
 type

Game client examples Version 13

Amazon GameLift Servers Realtime Servers Developer Guide

 // Best practice is to set up a secure connection using the connection type
 RT_OVER_WSS_DTLS_TLS12.
 ClientConfiguration clientConfiguration = new ClientConfiguration()
 {
 // C# notation to set the field ConnectionType in the new instance of
 ClientConfiguration
 ConnectionType = connectionType
 };

 // Create a Realtime client with the client configuration
 Client = new Client(clientConfiguration);

 // Initialize event handlers for the Realtime client
 Client.ConnectionOpen += OnOpenEvent;
 Client.ConnectionClose += OnCloseEvent;
 Client.GroupMembershipUpdated += OnGroupMembershipUpdate;
 Client.DataReceived += OnDataReceived;

 // Create a connection token to authenticate the client with the Realtime
 server
 // Player session IDs can be retrieved using Amazon SDK for Amazon GameLift
 Servers
 ConnectionToken connectionToken = new ConnectionToken(playerSessionId,
 connectionPayload);

 // Initiate a connection with the Realtime server with the given connection
 information
 Client.Connect(endpoint, remoteTcpPort, listeningUdpPort, connectionToken);
 }

 public void Disconnect()
 {
 if (Client.Connected)
 {
 Client.Disconnect();
 }
 }

 public bool IsConnected()
 {
 return Client.Connected;
 }

 /// <summary>

Game client examples Version 14

Amazon GameLift Servers Realtime Servers Developer Guide

 /// Example of sending to a custom message to the server.
 ///
 /// Server could be replaced by known peer Id etc.
 /// </summary>
 /// <param name="intent">Choice of delivery intent i.e. Reliable, Fast etc. </
param>
 /// <param name="payload">Custom payload to send with message</param>
 public void SendMessage(DeliveryIntent intent, string payload)
 {
 Client.SendMessage(Client.NewMessage(MY_TEST_OP_CODE)
 .WithDeliveryIntent(intent)
 .WithTargetPlayer(Constants.PLAYER_ID_SERVER)
 .WithPayload(StringToBytes(payload)));
 }

 /**
 * Handle connection open events
 */
 public void OnOpenEvent(object sender, EventArgs e)
 {
 }

 /**
 * Handle connection close events
 */
 public void OnCloseEvent(object sender, EventArgs e)
 {
 }

 /**
 * Handle Group membership update events
 */
 public void OnGroupMembershipUpdate(object sender, GroupMembershipEventArgs e)
 {
 }

 /**
 * Handle data received from the Realtime server
 */
 public virtual void OnDataReceived(object sender, DataReceivedEventArgs e)
 {
 switch (e.OpCode)
 {
 // handle message based on OpCode

Game client examples Version 15

Amazon GameLift Servers Realtime Servers Developer Guide

 default:
 break;
 }
 }

 /**
 * Helper method to simplify task of sending/receiving payloads.
 */
 public static byte[] StringToBytes(string str)
 {
 return Encoding.UTF8.GetBytes(str);
 }

 /**
 * Helper method to simplify task of sending/receiving payloads.
 */
 public static string BytesToString(byte[] bytes)
 {
 return Encoding.UTF8.GetString(bytes);
 }
 }
}

Upload a script for Amazon GameLift Servers Realtime servers

When you're ready to deploy Amazon GameLift Servers Realtime for your game, upload completed
Realtime server script files to Amazon GameLift Servers. Do this by creating a Amazon GameLift
Servers script resource and specifying the location of your script files. You can also update server
script files that are already deployed by uploading new files for an existing script resource.

When you create a new script resource, Amazon GameLift Servers assigns it a unique script ID (for
example, script-1111aaaa-22bb-33cc-44dd-5555eeee66ff) and uploads a copy of the
script files. Upload time depends on the size of your script files and on your connection speed.

After you create the script resource, Amazon GameLift Servers deploys the script with a new
Amazon GameLift Servers Realtime fleet. Amazon GameLift Servers installs your server script onto
each instance in the fleet, placing the script files in /local/game.

To troubleshoot fleet activation problems related to the server script, see Debug managed EC2
fleets for Amazon GameLift Servers Realtime.

Upload a Realtime script Version 16

Amazon GameLift Servers Realtime Servers Developer Guide

Package script files

Your server script can include one or more files combined into a single .zip file for uploading.
The .zip file must contain all files that your script needs to run.

You can store your zipped script files in either a local file directory or in an Amazon Simple Storage
Service (Amazon S3) bucket.

Upload script files from a local directory

If you have your script files stored locally, you can upload them to Amazon GameLift Servers
from there. To create the script resource, use either the Amazon GameLift Servers console or the
Amazon Command Line Interface (Amazon CLI).

Amazon GameLift Servers console

To create a script resource

1. Open the Amazon GameLift Servers console.

2. In the navigation pane, choose Hosting, Scripts.

3. On the Scripts page, choose Create script.

4. On the Create script page, under Script settings, do the following:

a. For Name, enter a script name.

b. (Optional) For Version, enter version information. Because you can update the content
of a script, version data can be helpful in tracking updates.

c. For Script source, choose Upload a .zip file.

d. For Script files, choose Choose file, browse for the .zip file that contains your script,
and then choose that file.

5. (Optional) Under Tags, add tags to the script by entering Key and Value pairs.

6. Choose Create.

Amazon GameLift Servers assigns an ID to the new script and uploads the designated .zip
file. You can view the new script, including its status, on the Scripts page.

Package script files Version 17

https://www.amazonaws.cn/cli/
https://console.amazonaws.cn/gamelift/

Amazon GameLift Servers Realtime Servers Developer Guide

Amazon CLI

Use the create-script Amazon CLI command to define the new script and upload your
server script files.

To create a script resource

1. Place the .zip file into a directory where you can use the Amazon CLI.

2. Open a command line window and switch to the directory where you placed the .zip file.

3. Enter the following create-script command and parameters. For the --zip-file parameter,
be sure to add the string fileb:// to the name of the .zip file. It identifies the file as
binary so that Amazon GameLift Servers processes the compressed content.

aws gamelift create-script \
 --name user-defined name of script \
 --script-version user-defined version info \
 --zip-file fileb://name of zip file \
 --region region name

Example

aws gamelift create-script \
 --name "My_Realtime_Server_Script_1" \
 --script-version "1.0.0" \
 --zip-file fileb://myrealtime_script_1.0.0.zip \
 --region us-west-2

In response to your request, Amazon GameLift Servers returns the new script object.

4. To view the new script, call describe-script.

Upload script files from Amazon S3

You can store your script files in an Amazon S3 bucket and upload them to Amazon GameLift
Servers from there. When you create your script, you specify the S3 bucket location and Amazon
GameLift Servers retrieves your script files from Amazon S3.

Upload script files from Amazon S3 Version 18

https://docs.amazonaws.cn/cli/latest/reference/gamelift/create-script.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-script.html

Amazon GameLift Servers Realtime Servers Developer Guide

To create a script resource

1. Store your script files in an S3 bucket. Create a .zip file containing your server script files and
upload it to an S3 bucket in an Amazon Web Services account that you control. Take note of
the object URI—you need this when creating a Amazon GameLift Servers script.

Note

Amazon GameLift Servers doesn't support uploading from S3 buckets with names that
contain a period (.).

2. Give Amazon GameLift Servers access to your script files. To create an Amazon Identity and
Access Management (IAM) role that allows Amazon GameLift Servers to access the S3 bucket
containing your server script, follow the instructions in Set up an IAM service role for Amazon
GameLift Servers. After you create the new role, take note of its name, which you need when
creating a script.

3. Create a script. Use the Amazon GameLift Servers console or the Amazon CLI to create a new
script record. To make this request, you must have the IAM PassRole permission, as described
in IAM permission examples for Amazon GameLift Servers.

Console

1. In the Amazon GameLift Servers console, in the navigation pane, choose Hosting, Scripts.

2. On the Scripts page, choose Create script.

3. On the Create script page, under Script settings, do the following:

a. For Name, enter a script name.

b. (Optional) For Version, enter version information. Because you can update the content
of a script, version data can be helpful in tracking updates.

c. For Script source, choose Amazon S3 URI.

d. Enter the S3 URI of the script object that you uploaded to Amazon S3, and then
choose the Object version. If you don't remember the Amazon S3 URI and object
version, choose Browse S3, and then search for the script object.

4. (Optional) Under Tags, add tags to the script by entering Key and Value pairs.

5. Choose Create.

Upload script files from Amazon S3 Version 19

https://docs.amazonaws.cn/gameliftservers/latest/developerguide/setting-up-role.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/setting-up-role.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-iam-policy-examples.html
https://console.amazonaws.cn/gamelift

Amazon GameLift Servers Realtime Servers Developer Guide

Amazon GameLift Servers assigns an ID to the new script and uploads the designated .zip
file. You can view the new script, including its status, on the Scripts page.

Amazon CLI

Use the create-script Amazon CLI command to define the new script and upload your
server script files.

1. Open a command line window and switch to a directory where you can use the Amazon CLI.

2. Enter the following create-script command and parameters. The --storage-location
parameter specifies the Amazon S3 bucket location of your script files.

aws gamelift create-script \
 --name [user-defined name of script] \
 --script-version [user-defined version info] \
 --storage-location "Bucket"=S3 bucket name,"Key"=name of zip file in S3
 bucket,"RoleArn"=Access role ARN \
 --region region name

Example

aws gamelift create-script \
 --name "My_Realtime_Server_Script_1" \
 --script-version "1.0.0" \
 --storage-location "Bucket"="gamelift-
script","Key"="myrealtime_script_1.0.0.zip","RoleArn"="arn:aws:iam::123456789012:role/
S3Access" \
 --region us-west-2

In response to your request, Amazon GameLift Servers returns the new script object.

3. To view the new script, call describe-script.

Update an Amazon GameLift Servers Realtime script

You can update the metadata for a script resource using either the Amazon GameLift Servers
console or the update-script Amazon CLI command.

Update a Realtime script Version 20

https://docs.amazonaws.cn/cli/latest/reference/gamelift/create-script.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-script.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/update-script.html

Amazon GameLift Servers Realtime Servers Developer Guide

You can also update the script content for a script resource. Amazon GameLift Servers deploys
script content to all fleet instances that use the updated script resource. When the updated script
is deployed, instances use it when starting new game sessions. Game sessions that are already
running at the time of the update don't use the updated script.

To update script files

• For script files stored locally, to upload the updated script .zip file, use either the Amazon
GameLift Servers console or the update-script command.

• For script files stored in an Amazon S3 bucket, upload the updated script files to the S3 bucket.
Amazon GameLift Servers periodically checks for updated script files and retrieves them directly
from the S3 bucket.

Update a Realtime script Version 21

Amazon GameLift Servers Realtime Servers Developer Guide

Creating a managed EC2 fleet for Amazon GameLift
Servers Realtime

This section guides you through how to create an Amazon GameLift Servers managed EC2
fleet for Realtime servers. Managed fleets use Amazon Elastic Compute Cloud (Amazon EC2)
compute instances that are optimized for multiplayer game hosting. You can create a fleet that
deploys Realtime servers globally, in any Amazon Web Services Region or Local Zone that Amazon
GameLift Servers supports. For a list of supported locations, see Amazon GameLift Servers service
locations. You can set up multi-location fleets for your Realtime servers.

When you create a managed EC2 fleet, the fleet creation process starts immediately. This process
involves several phases as Amazon GameLift Servers prepares your Realtime servers based on
your configuration script, provisions EC2 instances and deploys the server code, and prepares to
host game servers on each instance. You can monitor a fleet's status in the console or using the
Amazon Command Line Interface (Amazon CLI). A fleet is ready to host game sessions when its
status reaches ACTIVE. For more guidance about creating a managed EC2 fleet, , see the following
topics in the Amazon GameLift Servers Hosting Guide:

• Amazon GameLift Servers managed EC2 fleets

• Customize your Amazon GameLift Servers managed EC2 fleets

• Debug Amazon GameLift Servers fleet issues

Topics

• Create a hosting fleet for Amazon GameLift Servers Realtime

• Debug managed EC2 fleets for Amazon GameLift Servers Realtime

Create a hosting fleet for Amazon GameLift Servers Realtime

When you're ready to deploy Realtime servers for your game, create an Amazon GameLift Servers
managed EC2 fleet. This topic assumes you've completed the following steps:

• Created a Realtime script that's configured for your game. See Customize an Amazon GameLift
Servers Realtime script.

• Uploaded your Realtime script to Amazon GameLift Servers. See Upload a script for Amazon
GameLift Servers Realtime servers.

Create a fleet and deploy Realtime servers Version 22

https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-regions.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-regions.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/fleets-intro-managed.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/fleets-design.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/fleets-creating-debug.html

Amazon GameLift Servers Realtime Servers Developer Guide

To create a managed EC2 fleet

Use either the Amazon GameLift Servers console or the Amazon Command Line Interface (Amazon
CLI) to create a managed EC2 fleet. If you're exploring the Realtime servers feature or want to get
your servers up and running fast, follow the guidance for a minimal fleet configuration.

Console

To create a managed EC2 fleet

1. In the Amazon GameLift Servers console, in the navigation pane, choose Fleets.

2. On the Fleets page, choose Create fleet.

3. Choose Managed EC2.

4. On the Fleet details page do the following:

a. For Name, enter a fleet name. We recommend including the fleet type (Spot or On-
demand) in your fleet names. This makes it much easier to identify fleet types when
viewing a list of fleets.

b. For Description, provide a short description of the fleet.

c. For Binary type, select Script to identify the type of game server to deploy to this
fleet.

d. Select a Script from the dropdown list of previously uploaded Realtime scripts.

5. (Optional) Under Additional details for the following:

a. For Instance role, specify an IAM role that authorizes applications in your game
build to access other Amazon resources in your account. For more information, see
Communicate with other Amazon resources from your fleets. To create a fleet with
an instance role, your account must have the IAM PassRole permission. For more
information, see IAM permission examples for Amazon GameLift Servers.

You can't update these settings after fleet creation.

b. For Metric group, Enter the name of a new or existing fleet metric group. You can
aggregate the metrics for multiple fleets by adding them to the same metric group.

You can't update the metric group after fleet creation.

6. Choose Next.

Create a fleet and deploy Realtime servers Version 23

https://console.amazonaws.cn/gamelift/
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-sdk-server-resources.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-sdk-server-resources.html
https://docs.amazonaws.cn/gameliftsevers/latest/developerguide/gamelift-iam-policy-examples.html

Amazon GameLift Servers Realtime Servers Developer Guide

7. On the Select locations page, select one or more additional remote locations to deploy
instances to. The home Region is automatically selected based on the Region you are
accessing the console from. If you select additional locations, fleet instances are also
deployed in these locations.

Important

To use Regions that aren't enabled by default, enable them in your Amazon Web
Services account.

• Fleets with Regions that aren't enabled that you created before February 28,
2022 are not affected by this requirement.

• To create new multi-location fleets or to update existing multi-location fleets,
first enable any Regions or Local Zones that you choose to use.

For more information about Regions that aren't enabled by default and how to
enable them, see Managing Amazon Web Services Regions in the Amazon Web
Services General Reference. See Getting started with Local Zones in the Amazon
Local Zones User Guide.

8. Choose Next.

9. On the Define instance details page, choose

a. On-demand or Spot instances for this fleet. For more information about fleet types,
see On-Demand Instances versus Spot Instances.

b. From the Filter architecture menu choose x64 or Arm.

Note

Graviton Arm instances require a server build for a Linux AMI. Server SDK 5.1.1
or newer is required for C++ and C#. Server SDK 5.0 or newer is required for Go.
These instances do not provide out-of-the-box support for Mono installation
on Amazon Linux 2023 (AL2023) or Amazon Linux 2 (AL2).

For information on Amazon EC2 Arm architectures, see Amazon Graviton Processor and
Amazon EC2 instance types.

Create a fleet and deploy Realtime servers Version 24

https://docs.amazonaws.cn/general/latest/gr/rande-manage.html
https://docs.amazonaws.cn/local-zones/latest/ug/getting-started.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-compute.html#gamelift-compute-spot
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/instance-types/

Amazon GameLift Servers Realtime Servers Developer Guide

For information on the instance types supported by Amazon GameLift Servers, see the
EC2InstanceType values under CreateFleet() request parameters.

10. Select an Amazon EC2 Instance type from the list. For more information about choosing an
instance type, see Instance types.

After you create the fleet, you can't change the instance type.

11. Choose Next.

12. On the Configure runtime page, under Runtime configuration do the following:

a. For Launch path, enter the path to the server script. Example:
MyRealtimeLaunchScript.js.

b. For Concurrent processes, choose the number of server processes to run concurrently
on each instance in the fleet. Review the Amazon GameLift Servers limits on number of
concurrent server processes.

Limits on concurrent server processes per instance apply to the total of concurrent
processes for all configurations. If you configure the fleet to exceed the limit, the fleet
can't activate.

13. Under Game session activation, provide limits for activating new game sessions on the
instances in this fleet:

a. For Max concurrent game session activation, enter the number of game sessions on
an instance that activate at the same time. This limit is useful when launching multiple
new game sessions may have an impact on the performance of other game sessions
running on the instance.

b. For New activation timeout, enter how long to wait for a session to activate. If the
game session doesn't move to ACTIVE status before the timeout, Amazon GameLift
Servers terminates the game session activation.

14. (Optional) Under EC2 port settings, do the following:

a. Choose Add port setting to define access permissions for inbound traffic connecting to
the server process deployed on the fleet.

b. For Type, choose Custom TCP or Custom UDP.

Create a fleet and deploy Realtime servers Version 25

https://docs.amazonaws.cn/gameliftservers/latest/apireference/API_CreateFleet.html#API_CreateFleet_RequestParameters
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/gamelift-compute.html#gamelift-compute-instance
http://www.amazonaws.cn//ec2/faqs/#Is_Amazon_EC2_used_in_conjunction_with_Amazon_S3

Amazon GameLift Servers Realtime Servers Developer Guide

c. For Port range, Enter a range of port numbers that allow inbound connections. A port
range must use the format nnnnn[-nnnnn], with values between 1026 and 60000.
Example: 1500 or 1500-20000.

d. For IP address range, Enter a range of IP addresses. Use CIDR notation. Example:
0.0.0.0/0 (This example allows access to anyone trying to connect.)

15. (Optional) Under Game session resource settings do the following:

a. For Game scaling protection policy, Turn on or off scaling protection. Amazon
GameLift Servers won't terminate instance with protection during a scale down event
if they're hosting an active game session.

b. For Resource creation limit, enter a maximum number of game sessions a player can
create during the policy period.

16. Choose Next.

17. (Optional) Add tags to the build by entering Key and Value pairs. Choose Next to continue
to fleet creation review.

18. Choose Create. Amazon GameLift Servers assigns an ID to the new fleet and begins the
fleet activation process. You can track the new fleet's status on the Fleets page.

You can update the fleet's metadata and configuration at any time, regardless of fleet status.
For more information, see Update an Amazon GameLift Servers fleet configuration. You can
update fleet capacity after the fleet has reached ACTIVE status. For more information, see
Scaling game hosting capacity with Amazon GameLift Servers.

You can also add or remove remote locations.

Amazon CLI

Use the create-fleet command to create a fleet of compute type EC2. Amazon GameLift
Servers creates the fleet resource in your current default Amazon Web Services Region (or you
can add a --region tag to specify a different Amazon Web Services Region).

Create a minimal managed fleet

The following example request creates a new fleet with the minimal settings that are required
to deploy a fleet with running game servers that game clients can connect to. The new fleet has
these characteristics:

Create a fleet and deploy Realtime servers Version 26

https://docs.amazonaws.cn/gameliftservers/latest/developerguide/fleets-editing.html
https://docs.amazonaws.cn/https://docs.aws.amazon.com/gameliftservers/latest/developerguide/fleets-manage-capacity.html
https://docs.amazonaws.cn/https://docs.aws.amazon.com/gameliftservers/latest/developerguide/fleets-manage-capacity.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/gamelift/create-fleet.html

Amazon GameLift Servers Realtime Servers Developer Guide

• It specifies a Realtime server script, which is uploaded to Amazon GameLift Servers and in
READY status.

• Is uses c5.large On-Demand Instances.

• It sets the fleet's home Amazon Web Services Region to us-west-2 and deploys instances to
that Region only.

• Based on the runtime configuration, each instance in the fleet runs one game server process,
which means that each instance can host only one game session at a time. By default, game
session activation timeout is set to 300 seconds, with no limit on the number of concurrent
activations.

• Players can connect to game servers using port 33435.

• All other features are either turned off or use default settings.

aws gamelift create-fleet \
 --name MinimalRealtimeFleet123 \
 --description "A basic test fleet" \
 --region us-west-2 \
 --ec2-instance-type c5.large \
 --fleet-type ON_DEMAND \
 --script-id script-1111aaaa-22bb-33cc-44dd-5555eeee66ff \
 --runtime-configuration "ServerProcesses=[{LaunchPath=/local/game/
megafrograce.js, ConcurrentExecutions=1}]" \
 --ec2-inbound-permissions
 "FromPort=33435,ToPort=33435,IpRange=0.0.0.0/0,Protocol=UDP"

Create a fully configured managed fleet

The following example request creates a production fleet with settings for all optional features.
The new fleet has these characteristics:

• It specifies a Realtime server script, which has been uploaded to Amazon GameLift Servers
and is in READY status.

• It uses c5.large On-Demand Instances with the operating system that matches the selected
game build.

• It sets the fleet's home Amazon Web Services Region to us-west-2 and deploys instances to
the home Region and one remote location sa-east-1.

• Based on the runtime configuration:

Create a fleet and deploy Realtime servers Version 27

Amazon GameLift Servers Realtime Servers Developer Guide

• Each compute in the fleet runs 10 game server processes with the same launch parameters,
which means that each compute can host up to 10 game sessions simultaneously.

• On each compute, only two game sessions can be activating at the same time. Activating
game sessions must be ready to host players within 300 seconds (5 minutes) or be
terminated.

• Players can connect to game servers using a port in the following range 33435 to 33535.

• All game sessions in the fleet have game session protection turned on.

• Individual players are limited to creating three new game sessions within a 15-minute period.

• Metrics for this fleet are included in the metric group AMERfleets, which (for this example)
aggregates metrics for a group of fleets in North, Central, and South America.

aws gamelift create-fleet \
 --name ProdRealtimeFleet123 \
 --description "A fully configured prod fleet" \
 --ec2-instance-type c5.large \
 --region us-west-2 \
 --locations "Location=sa-east-1" \
 --fleet-type ON_DEMAND \
 --script-id script-1111aaaa-22bb-33cc-44dd-5555eeee66ff \
 --certificate-configuration "CertificateType=GENERATED" \
 --runtime-configuration "GameSessionActivationTimeoutSeconds=300,
 MaxConcurrentGameSessionActivations=2, ServerProcesses=[{LaunchPath=/local/game/
megafrograce.js, ConcurrentExecutions=10}]" \
 --new-game-session-protection-policy "FullProtection" \
 --resource-creation-limit-policy "NewGameSessionsPerCreator=3,
 PolicyPeriodInMinutes=15" \
 --ec2-inbound-permissions
 "FromPort=33435,ToPort=33535,IpRange=0.0.0.0/0,Protocol=UDP" \
 --metric-groups "AMERfleets"

If the create-fleet request is successful, Amazon GameLift Servers returns a set of fleet
attributes that includes the configuration settings you requested and a new fleet ID. Amazon
GameLift Servers then initiates the fleet activation process and sets the fleet status and the
location statuses to New. You can track the fleet's status and view other fleet information using
these CLI commands:

• describe-fleet-events

• describe-fleet-attributes

Create a fleet and deploy Realtime servers Version 28

https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-fleet-events.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-fleet-attributes.html

Amazon GameLift Servers Realtime Servers Developer Guide

• describe-fleet-capacity

• describe-fleet-port-settings

• describe-fleet-utilization

• describe-runtime-configuration

• describe-fleet-location-attributes

• describe-fleet-location-capacity

• describe-fleet-location-utilization

You can change the fleet's capacity and other configuration settings as needed using these
commands:

• update-fleet-attributes

• update-fleet-capacity

• update-fleet-port-settings

• update-runtime-configuration

• create-fleet-locations

• delete-fleet-locations

Debug managed EC2 fleets for Amazon GameLift
Servers Realtime

This topic provides guidance on how to resolve issues with your Amazon GameLift Servers
managed EC2 fleets for Realtime servers. For general troubleshooting help with managed EC2
fleets, see also Debug Amazon GameLift Servers fleet issues .

Zombie game sessions: They start and run a game, but they never end.

You might observe this issues as any of the following scenarios:

• Script updates are not picked up by the fleet's Realtime servers.

• The fleet quickly reaches maximum capacity and does not scale down when player activity
(such as new game session requests) decreases.

This is almost certainly a result of failing to successfully call processEnding in your Realtime
script. Although the fleet goes active and game sessions are started, there is no method for

Debug Realtime fleet issues Version 29

https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-fleet-capacity.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-fleet-port-settings.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-fleet-utilization.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-runtime-configuration.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-fleet-location-attributes.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-fleet-location-capacity.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/describe-fleet-location-utilization.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/update-fleet-attributes.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/update-fleet-capacity.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/update-fleet-port-settings.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/update-runtime-configuration.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/create-fleet-locations.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/delete-fleet-locations.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/fleets-creating-debug.html

Amazon GameLift Servers Realtime Servers Developer Guide

stopping them. As a result, the Realtime server that is running the game session is never freed
up to start a new one, and new game sessions can only start when new Realtime servers are
spun up. In addition, updates to the Realtime script do not impact already- running game
sessions, only ones.

To prevent this from happening, scripts need to provide a mechanism to trigger a
processEnding call. As illustrated in the Amazon GameLift Servers Realtime script example,
one way is to program an idle session timeout where, if no player is connected for a certain
amount of time, the script will end the current game session.

However, if you do fall into this scenario, there are a couple workarounds to get your Realtime
servers unstuck. The trick is to trigger the Realtime server processes—or the underlying fleet
instances—to restart. In this event, Amazon GameLift Servers automatically closes the game
sessions for you. Once Realtime servers are freed up, they can start new game sessions using
the latest version of the Realtime script.

There are a couple of methods to achieve this, depending on how pervasive the problem is:

• Scale the entire fleet down. This method is the simplest to do but has a widespread effect.
Scale the fleet down to zero instances, wait for the fleet to fully scale down, and then scale
it back up. This will wipe out all existing game sessions, and let you start fresh with the most
recently updated Realtime script.

• Remotely access the instance and restart the process. This is a good option if you have only a
few processes to fix. If you are already logged onto the instance, such as to tail logs or debug,
then this may be the quickest method. See Remotely connect to Amazon GameLift Servers
fleet instances.

If you opt not to include way to call processEnding in your Realtime script, there are a couple of
tricky situations that might occur even when the fleet goes active and game sessions are started.
First, a running game session does not end. As a result, the server process that is running that
game session is never free to start a new game session. Second, the Realtime server does not pick
up any script updates.

Debug Realtime fleet issues Version 30

https://docs.amazonaws.cn/gameliftservers/latest/developerguide/fleets-remote-access
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/fleets-remote-access

Amazon GameLift Servers Realtime Servers Developer Guide

Logging server messages for Amazon GameLift
Servers Realtime

You can capture a variety of custom server messages from your Amazon GameLift Servers Realtime
servers and save them to game session log files. When a game session ends, Amazon GameLift
Servers automatically uploads the session logs to Amazon Simple Storage Service (Amazon S3).
This topic provides instructions on how to add log messaging to your server scripts and then access
game session logs from Amazon S3 storage. You can also configure logging levels to manage the
volume of log messages that your servers generate.

Important

There is a limit on the size of a log file per game session (see Amazon GameLift Servers
endpoints and quotas in the Amazon Web Services General Reference). When a game session
ends, Amazon GameLift Servers uploads the server logs to Amazon Simple Storage Service
(Amazon S3). Amazon GameLift Servers will not upload logs that exceed the limit. Logs can
grow very quickly and exceed the size limit. You should monitor your logs and limit the log
output to necessary messages only.

Logging messages in your server script

You can output custom messages in the script for your Amazon GameLift Servers Realtime. Use the
following steps to send server messages to a log file:

1. Create a variable to hold the reference to the logger object.

var logger;

2. In the init() function, get the logger from the session object and assign it to your logger
variable.

function init(rtSession) {
 session = rtSession;
 logger = session.getLogger();
}

Logging messages in your server script Version 31

https://docs.amazonaws.cn/general/latest/gr/gamelift.html
https://docs.amazonaws.cn/general/latest/gr/gamelift.html

Amazon GameLift Servers Realtime Servers Developer Guide

3. Call the appropriate function on the logger to output a message.

Debug messages

logger.debug("This is my debug message...");

Informational messages

logger.info("This is my info message...");

Warning messages

logger.warn("This is my warn message...");

Error messages

logger.error("This is my error message...");

Fatal error messages

logger.fatal("This is my fatal error message...");

Customer experience fatal error messages

logger.cxfatal("This is my customer experience fatal error message...");

For an example of the logging statements in a script, see Amazon GameLift Servers Realtime script
example.

The output in the log files indicates the type of message (DEBUG, INFO, WARN, ERROR, FATAL,
CXFATAL), as shown in the following lines from an example log:

09 Sep 2021 11:46:32,970 [INFO] (gamelift.js) 215: Calling GameLiftServerAPI.InitSDK...
09 Sep 2021 11:46:32,993 [INFO] (gamelift.js) 220: GameLiftServerAPI.InitSDK succeeded
09 Sep 2021 11:46:32,993 [INFO] (gamelift.js) 223: Waiting for Realtime server to
 start...

Logging messages in your server script Version 32

Amazon GameLift Servers Realtime Servers Developer Guide

09 Sep 2021 11:46:33,15 [WARN] (index.js) 204: Connection is INSECURE. Messages will be
 sent/received as plaintext.

Accessing server logs

When a game session ends, Amazon GameLift Servers automatically stores the logs in Amazon S3
and retains them for 14 days. You can use the GetGameSessionLogUrl API call to get the location
of the logs for a game session. Use URL returned by the API call to download the logs.

Adjusting the logging level

Logs can grow very quickly and exceed the size limit. You should monitor your logs and limit the
log output to necessary messages only. For Amazon GameLift Servers Realtime, you can adjust
the logging level by providing a parameter in your fleet's runtime configuration in the form
loggingLevel:LOGGING_LEVEL, where LOGGING_LEVEL is one of the following values:

1. debug

2. info (default)

3. warn

4. error

5. fatal

6. cxfatal

This list is ordered from least severe (debug) to most severe (cxfatal). You set a single
loggingLevel and the server will only log messages at that severity level or a higher severity
level. For example, setting loggingLevel:error will make all of the servers in your fleet only
write error, fatal, and cxfatal messages to the log.

You can set the logging level for your fleet when you create it or after it is running. Changing
your fleet's logging level after it is running will only affect logs for game sessions created after
the update. Logs for any existing game sessions won't be affected. If you don't set a logging level
when you create your fleet, your servers will set the logging level to info by default. Refer to the
following sections for instructions to set the logging level.

Setting the logging level when creating a Amazon GameLift Servers Realtime fleet (Console)

Accessing server logs Version 33

https://docs.amazonaws.cn/gamelift/latest/apireference/API_GetGameSessionLogUrl.html

Amazon GameLift Servers Realtime Servers Developer Guide

Follow the instructions at Create a hosting fleet for Amazon GameLift Servers Realtime to create
your fleet, with the following addition:

• In the Process management step, under Server process allocation, provide the logging level
key-value pair (such as loggingLevel:error) as a value for Launch parameters. Use a non-
alphanumeric character (except comma) to separate the logging level from any additional
parameters (for example, loggingLevel:error +map Winter444).

Setting the logging level when creating a Amazon GameLift Servers Realtime fleet (Amazon
CLI)

Follow the instructions at Create a hosting fleet for Amazon GameLift Servers Realtime to create
your fleet, with the following addition:

• In the argument to the --runtime-configuration parameter for create-fleet, provide
the logging level key-value pair (such as loggingLevel:error) as a value for Parameters.
Use a non-alphanumeric character (except comma) to separate the logging level from any
additional parameters. See the following example:

--runtime-configuration "GameSessionActivationTimeoutSeconds=60,
 MaxConcurrentGameSessionActivations=2,
 ServerProcesses=[{LaunchPath=/local/game/myRealtimeLaunchScript.js,
 Parameters=loggingLevel:error +map Winter444,
 ConcurrentExecutions=10}]"

Setting the logging level for a running Amazon GameLift Servers Realtime fleet (Console)

Follow the instructions at Update an Amazon GameLift Servers fleet configuration to update your
fleet using the Amazon GameLift Servers Console, with the following addition:

• On the Edit fleet page, under Server process allocation, provide the logging level key-value pair
(such as loggingLevel:error) as a value for Launch parameters. Use a non-alphanumeric
character (except comma) to separate the logging level from any additional parameters (for
example, loggingLevel:error +map Winter444).

Setting the logging level for a running Amazon GameLift Servers Realtime fleet (Amazon CLI)

Adjusting the logging level Version 34

https://docs.amazonaws.cn/cli/latest/reference/gamelift/create-fleet.html
https://docs.amazonaws.cn/gameliftservers/latest/developerguide/fleets-editing

Amazon GameLift Servers Realtime Servers Developer Guide

Follow the instructions at Update an Amazon GameLift Servers fleet configuration to update your
fleet using the Amazon CLI, with the following addition:

• In the argument to the --runtime-configuration parameter for update-runtime-
configuration, provide the logging level key-value pair (such as loggingLevel:error) as
a value for Parameters. Use a non-alphanumeric character (except comma) to separate the
logging level from any additional parameters. See the following example:

--runtime-configuration "GameSessionActivationTimeoutSeconds=60,
 MaxConcurrentGameSessionActivations=2,
 ServerProcesses=[{LaunchPath=/local/game/myRealtimeLaunchScript.js,
 Parameters=loggingLevel:error +map Winter444,
 ConcurrentExecutions=10}]"

Adjusting the logging level Version 35

https://docs.amazonaws.cn/gameliftservers/latest/developerguide/fleets-editing
https://docs.amazonaws.cn/cli/latest/reference/gamelift/update-runtime-configuration.html
https://docs.amazonaws.cn/cli/latest/reference/gamelift/update-runtime-configuration.html

Amazon GameLift Servers Realtime Servers Developer Guide

Amazon GameLift Servers Realtime reference guides

This section contains reference documentation for Amazon GameLift Servers Realtime. If you're
building a game to use ready-to-use game servers provided by Amazon GameLift Servers for multi-
player games, use these resources to help create a configuration script for the Realtime servers and
prepare your game client to work with the servers.

For detailed guidance on getting your game ready to use Amazon GameLift Servers Realtime
servers, see Preparing your games for hosting with Amazon GameLift Servers Realtime.

Topics

• Amazon GameLift Servers Realtime client API (C#) reference

• Script reference for Amazon GameLift Servers Realtime

Amazon GameLift Servers Realtime client API (C#) reference

Use this reference guide to understand how to implement Realtime client API functionality into
your multiplayer game clients. For guidance on how to integrate this API into your game clients,
see Integrate a game client for Amazon GameLift Servers Realtime.

The Realtime client API includes a set of synchronous API calls and asynchronous callbacks that
enable a game client to connect to a Realtime server and exchange messages and data with other
game clients via the server.

This API is defined in the following libraries:

Client.cs

• Synchronous actions

• Asynchronous callbacks

• Data types

To set up the Realtime client API

1. Download the Amazon GameLift ServersRealtime client SDK.

2. Build the C# SDK libraries. Locate the solution file
GameLiftRealtimeClientSdkNet45.sln. See the README.md file for the C# Server SDK

Realtime client API (C#) reference Version 36

http://www.amazonaws.cn/gamelift/getting-started

Amazon GameLift Servers Realtime Servers Developer Guide

for minimum requirements and additional build options. In an IDE, load the solution file. To
generate the SDK libraries, restore the NuGet packages and build the solution.

3. Add the Realtime Client libraries to your game client project.

Amazon GameLift Servers Realtime client API (C#) reference: Actions

This C# Realtime Client API reference can help you prepare your multiplayer game for use with
Amazon GameLift Servers Realtime deployed on Amazon GameLift Servers fleets.

• Synchronous Actions

• Asynchronous Callbacks

• Data Types

Client()

Initializes a new client to communicate with the Realtime server and identifies the type of
connection to use.

Syntax

public Client(ClientConfiguration configuration)

Parameters

clientConfiguration

Configuration details specifying the client/server connection type. You can opt to call Client()
without this parameter; however, this approach results in an unsecured connection by default.

Type: ClientConfiguration

Required: No

Return value

Returns an instance of the Realtime client for use with communicating with the Realtime server.

Actions Version 37

Amazon GameLift Servers Realtime Servers Developer Guide

Connect()

Requests a connection to a server process that is hosting a game session.

Syntax

public ConnectionStatus Connect(string endpoint, int remoteTcpPort, int listenPort,
 ConnectionToken token)

Parameters

endpoint

DNS name or IP address of the game session to connect to. The endpoint is specified in
a GameSession object, which is returned in response to a client call to the Amazon SDK
Amazon GameLift Servers API actions StartGameSessionPlacement, CreateGameSession, or
DescribeGameSessions.

Type: String

Required: Yes

remoteTcpPort

Port number for the TCP connection assigned to the game session. This information is specified
in a GameSession object, which is returned in response to a StartGameSessionPlacement
CreateGameSession, or DescribeGameSession request.

Type: Integer

Valid Values: 1900 to 2000.

Required: Yes

listenPort

Port number that the game client is listening on for messages sent using the UDP channel.

Type: Integer

Valid Values: 33400 to 33500.

Actions Version 38

https://docs.amazonaws.cn/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.amazonaws.cn/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.amazonaws.cn/gamelift/latest/apireference/API_SearchGameSessions.html
https://docs.amazonaws.cn/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.amazonaws.cn/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.amazonaws.cn/gamelift/latest/apireference/API_DescribeGameSession.html

Amazon GameLift Servers Realtime Servers Developer Guide

Required: Yes

token

Optional information that identifies the requesting game client to the server process.

Type: ConnectionToken

Required: Yes

Return value

Returns a ConnectionStatus enum value indicating the client's connection status.

Disconnect()

When connected to a game session, disconnects the game client from the game session.

Syntax

public void Disconnect()

Parameters

This action has no parameters.

Return value

This method does not return anything.

NewMessage()

Creates a new message object with a specified operation code. Once a message object is returned,
complete the message content by specifying a target, updating the delivery method, and adding a
data payload as needed. Once completed, send the message using SendMessage().

Syntax

public RTMessage NewMessage(int opCode)

Actions Version 39

Amazon GameLift Servers Realtime Servers Developer Guide

Parameters

opCode

Developer-defined operation code that identifies a game event or action, such as a player move
or a server notification.

Type: Integer

Required: Yes

Return value

Returns an RTMessage object containing the specified operation code and default delivery method.
The delivery intent parameter is set to FAST by default.

SendMessage()

Sends a message to a player or group using the delivery method specified.

Syntax

public void SendMessage(RTMessage message)

Parameters

message

Message object that specifies the target recipient, delivery method, and message content.

Type: RTMessage

Required: Yes

Return value

This method does not return anything.

Actions Version 40

Amazon GameLift Servers Realtime Servers Developer Guide

JoinGroup()

Adds the player to the membership of a specified group. Groups can contain any of the players that
are connected to the game. Once joined, the player receives all future messages sent to the group
and can send messages to the entire group.

Syntax

public void JoinGroup(int targetGroup)

Parameters

targetGroup

Unique ID that identifies the group to add the player to. Group IDs are developer-defined.

Type: Integer

Required: Yes

Return value

This method does not return anything. Because this request is sent using the reliable (TCP) delivery
method, a failed request triggers the callback OnError().

LeaveGroup()

Removes the player from the membership of a specified group. Once no longer in the group, the
player does not receive messages sent to the group and cannot send messages to the entire group.

Syntax

public void LeaveGroup(int targetGroup)

Parameters

targetGroup

Unique ID identifying the group to remove the player from. Group IDs are developer-defined.

Type: Integer

Actions Version 41

Amazon GameLift Servers Realtime Servers Developer Guide

Required: Yes

Return value

This method does not return anything. Because this request is sent using the reliable (TCP) delivery
method, a failed request triggers the callback OnError().

RequestGroupMembership()

Requests that a list of players in the specified group be sent to the game client. Any player can
request this information, regardless of whether they are a member of the group or not. In response
to this request, the membership list is sent to the client via an OnGroupMembershipUpdated()
callback.

Syntax

public void RequestGroupMembership(int targetGroup)

Parameters

targetGroup

Unique ID identifying the group to get membership information for. Group IDs are developer-
defined.

Type: Integer

Required: Yes

Return value

This method does not return anything.

Amazon GameLift Servers Realtime client API (C#) reference:
Asynchronous callbacks

Use this C# Realtime Client API reference to help you prepare your multiplayer game for use with
Amazon GameLift Servers Realtime deployed on Amazon GameLift Servers fleets.

• Synchronous Actions

Callbacks Version 42

Amazon GameLift Servers Realtime Servers Developer Guide

• Asynchronous Callbacks

• Data Types

A game client needs to implement these callback methods to respond to events. The Realtime
server invokes these callbacks to send game-related information to the game client. Callbacks for
the same events can also be implemented with custom game logic in the Realtime server script.
See Script callbacks for Amazon GameLift Servers Realtime.

Callback methods are defined in ClientEvents.cs.

OnOpen()

Invoked when the server process accepts the game client's connection request and opens a
connection.

Syntax

public void OnOpen()

Parameters

This method takes no parameters.

Return value

This method does not return anything.

OnClose()

Invoked when the server process terminates the connection with the game client, such as after a
game session ends.

Syntax

public void OnClose()

Parameters

This method takes no parameters.

Callbacks Version 43

Amazon GameLift Servers Realtime Servers Developer Guide

Return value

This method does not return anything.

OnError()

Invoked when a failure occurs for a Realtime Client API request. This callback can be customized to
handle a variety of connection errors.

Syntax

private void OnError(byte[] args)

Parameters

This method takes no parameters.

Return value

This method does not return anything.

OnDataReceived()

Invoked when the game client receives a message from the Realtime server. This is the primary
method by which messages and notifications are received by a game client.

Syntax

public void OnDataReceived(DataReceivedEventArgs dataReceivedEventArgs)

Parameters

dataReceivedEventArgs

Information related to message activity.

Type: DataReceivedEventArgs

Required: Yes

Return value

This method does not return anything.

Callbacks Version 44

Amazon GameLift Servers Realtime Servers Developer Guide

OnGroupMembershipUpdated()

Invoked when the membership for a group that the player belongs to has been updated. This
callback is also invoked when a client calls RequestGroupMembership.

Syntax

public void OnGroupMembershipUpdated(GroupMembershipEventArgs groupMembershipEventArgs)

Parameters

groupMembershipEventArgs

Information related to group membership activity.

Type: GroupMembershipEventArgs

Required: Yes

Return value

This method does not return anything.

Amazon GameLift Servers Realtime client API (C#) reference: Data
types

This C# Realtime Client API reference can help you prepare your multiplayer game for use with
Amazon GameLift Servers Realtime deployed on Amazon GameLift Servers fleets.

• Synchronous Actions

• Asynchronous Callbacks

• Data Types

ClientConfiguration

Information about how the game client connects to a Realtime server.

Data types Version 45

Amazon GameLift Servers Realtime Servers Developer Guide

Contents

ConnectionType

Type of client/server connection to use, either secured or unsecured. If you don't specify a
connection type, the default is unsecured.

Type: A ConnectionType enum value.

Required: No

ConnectionToken

Information about the game client and/or player that is requesting a connection with a Realtime
server.

Contents

playerSessionId

Unique ID issued by Amazon GameLift Servers when a new player session is created. A
player session ID is specified in a PlayerSession object, which is returned in response to a
client call to the GameLift API actions StartGameSessionPlacement, CreateGameSession,
DescribeGameSessionPlacement, or DescribePlayerSessions.

Type: String

Required: Yes

payload

Developer-defined information to be communicated to the Realtime server on connection. This
includes any arbitrary data that might be used for a custom sign-in mechanism. For examples, a
payload may provide authentication information to be processed by the Realtime server script
before allowing a client to connect.

Type: byte array

Required: No

Data types Version 46

https://docs.amazonaws.cn/gamelift/latest/apireference/API_StartGameSessionPlacement.html
https://docs.amazonaws.cn/gamelift/latest/apireference/API_CreateGameSession.html
https://docs.amazonaws.cn/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html
https://docs.amazonaws.cn/gamelift/latest/apireference/API_DescribeGameSessionPlacement.html
https://docs.amazonaws.cn/gamelift/latest/apireference/API_DescribePlayerSessions.html

Amazon GameLift Servers Realtime Servers Developer Guide

RTMessage

Content and delivery information for a message. A message must specify either a target player or a
target group.

Contents

opCode

Developer-defined operation code that identifies a game event or action, such as a player move
or a server notification. A message's Op code provides context for the data payload that is being
provided. Messages that are created using NewMessage() already have the operation code set,
but it can be changed at any time.

Type: Integer

Required: Yes

targetPlayer

Unique ID identifying the player who is the intended recipient of the message being sent. The
target may be the server itself (using the server ID) or another player (using a player ID).

Type: Integer

Required: No

targetGroup

Unique ID identifying the group that is the intended recipient of the message being sent. Group
IDs are developer defined.

Type: Integer

Required: No

deliveryIntent

Indicates whether to send the message using the reliable TCP connection or using the fast UDP
channel. Messages created using NewMessage().

Type: DeliveryIntent enum

Data types Version 47

Amazon GameLift Servers Realtime Servers Developer Guide

Valid values: FAST | RELIABLE

Required: Yes

payload

Message content. This information is structured as needed to be processed by the game
client based on the accompanying operation code. It may contain game state data or other
information that needs to be communicated between game clients or between a game client
and the Realtime server.

Type: Byte array

Required: No

DataReceivedEventArgs

Data provided with an OnDataReceived() callback.

Contents

sender

Unique ID identifying the entity (player ID or server ID) who originated the message.

Type: Integer

Required: Yes

opCode

Developer-defined operation code that identifies a game event or action, such as a player move
or a server notification. A message's Op code provides context for the data payload that is being
provided.

Type: Integer

Required: Yes

data

Message content. This information is structured as needed to be processed by the game
client based on the accompanying operation code. It may contain game state data or other

Data types Version 48

Amazon GameLift Servers Realtime Servers Developer Guide

information that needs to be communicated between game clients or between a game client
and the Realtime server.

Type: Byte array

Required: No

GroupMembershipEventArgs

Data provided with an OnGroupMembershipUpdated() callback.

Contents

sender

Unique ID identifying the player who requested a group membership update.

Type: Integer

Required: Yes

opCode

Developer-defined operation code that identifies a game event or action.

Type: Integer

Required: Yes

groupId

Unique ID identifying the group that is the intended recipient of the message being sent. Group
IDs are developer defined.

Type: Integer

Required: Yes

playerId

List of player IDs who are current members of the specified group.

Type: Integer array

Required: Yes

Data types Version 49

Amazon GameLift Servers Realtime Servers Developer Guide

Enums

Enums defined for the client SDK for Amazon GameLift Servers Realtime are defined as follows:

ConnectionStatus

• CONNECTED – Game client is connected to the Realtime server with a TCP connection only.
All messages regardless of delivery intent are sent via TCP.

• CONNECTED_SEND_FAST – Game client is connected to the Realtime server with a TCP and
a UDP connection. However, the ability to receive messages via UDP is not yet verified; as a
result, all messages sent to the game client use TCP.

• CONNECTED_SEND_AND_RECEIVE_FAST – Game client is connected to the Realtime server
with a TCP and a UDP connection. The game client can send and receive messages using
either TCP or UDP.

• CONNECTING Game client has sent a connection request and the Realtime server is
processing it.

• DISCONNECTED_CLIENT_CALL – Game client was disconnected from the Realtime server in
response to a Disconnect()request from the game client.

• DISCONNECTED – Game client was disconnected from the Realtime server for a reason other
than a client disconnect call.

ConnectionType

• RT_OVER_WSS_DTLS_TLS12 – Secure connection type.

• RT_OVER_WS_UDP_UNSECURED – Non-secure connection type.

• RT_OVER_WEBSOCKET – Non-secure connection type. This value is no longer preferred.

DeliveryIntent

• FAST – Delivered using a UDP channel.

• RELIABLE – Delivered using a TCP connection.

Script reference for Amazon GameLift Servers Realtime

Use this reference guide to understand the options available when configuring a Realtime script
and optionally adding custom game logic for Amazon GameLift Servers Realtime servers. For
guidance on how to configure a Realtime script, including required elements, see Customize an
Amazon GameLift Servers Realtime script.

Realtime script reference Version 50

Amazon GameLift Servers Realtime Servers Developer Guide

Topics

• Script callbacks for Amazon GameLift Servers Realtime

• Amazon GameLift Servers Realtime interface

Script callbacks for Amazon GameLift Servers Realtime

You can provide custom logic to respond to events by implementing these callbacks in your
Realtime script.

Init

Initializes the Realtime server and receives a Realtime server interface.

Syntax

init(rtsession)

onMessage

Invoked when a received message is sent to the server.

Syntax

onMessage(gameMessage)

onHealthCheck

Invoked to set the status of the game session health. By default, health status is healthy (or true.
This callback can be implemented to perform custom health checks and return a status.

Syntax

onHealthCheck()

onStartGameSession

Invoked when a new game session starts, with a game session object passed in.

Script callbacks Version 51

Amazon GameLift Servers Realtime Servers Developer Guide

Syntax

onStartGameSession(session)

onProcessTerminate

Invoked when the server process is being terminated by the Amazon GameLift Servers
service. This can act as a trigger to exit cleanly from the game session. There is no need to call
processEnding().

Syntax

onProcessTerminate()

onPlayerConnect

Invoked when a player requests a connection and has passed initial validation.

Syntax

onPlayerConnect(connectMessage)

onPlayerAccepted

Invoked when a player connection is accepted.

Syntax

onPlayerAccepted(player)

onPlayerDisconnect

Invoked when a player disconnects from the game session, either by sending a disconnect request
or by other means.

Syntax

onPlayerDisconnect(peerId)

Script callbacks Version 52

Amazon GameLift Servers Realtime Servers Developer Guide

onProcessStarted

Invoked when a server process is started. This callback allows the script to perform any custom
tasks needed to prepare to host a game session.

Syntax

onProcessStarted(args)

onSendToPlayer

Invoked when a message is received on the server from one player to be delivered to another
player. This process runs before the message is delivered.

Syntax

onSendToPlayer(gameMessage)

onSendToGroup

Invoked when a message is received on the server from one player to be delivered to a group. This
process runs before the message is delivered.

Syntax

onSendToGroup(gameMessage))

onPlayerJoinGroup

Invoked when a player sends a request to join a group.

Syntax

onPlayerJoinGroup(groupId, peerId)

onPlayerLeaveGroup

Invoked when a player sends a request to leave a group.

Script callbacks Version 53

Amazon GameLift Servers Realtime Servers Developer Guide

Syntax

onPlayerLeaveGroup(groupId, peerId)

Amazon GameLift Servers Realtime interface

When an Amazon GameLift Servers Realtime script initializes, an interface to the Realtime server
is returned. This topic describes the properties and methods available through the interface. Learn
more about writing Realtime scripts and view a detailed script example in Customize an Amazon
GameLift Servers Realtime script.

The Realtime interface provides access to the following objects:

• session

• player

• gameMessage

• configuration

Realtime Session object

Use these methods to access server-related information and perform server-related actions.

getPlayers()

Retrieves a list of peer IDs for players that are currently connected to the game session. Returns an
array of player objects.

Syntax

rtSession.getPlayers()

broadcastGroupMembershipUpdate()

Triggers delivery of an updated group membership list to player group. Specify which membership
to broadcast (groupIdToBroadcast) and the group to receive the update (targetGroupId). Group IDs
must be a positive integer or "-1" to indicate all groups. See Amazon GameLift Servers Realtime
script example for an example of user-defined group IDs.

Version 54

Amazon GameLift Servers Realtime Servers Developer Guide

Syntax

rtSession.broadcastGroupMembershipUpdate(groupIdToBroadcast, targetGroupId)

getServerId()

Retrieves the server's unique peer ID identifier, which is used to route messages to the server.

Syntax

rtSession.getServerId()

getAllPlayersGroupId()

Retrieves the group ID for the default group that contains all players currently connected to the
game session.

Syntax

rtSession.getAllPlayersGroupId()

processEnding()

Triggers the Realtime server to terminate the game server. This function must be called from the
Realtime script to exit cleanly from a game session.

Syntax

rtSession.processEnding()

getGameSessionId()

Retrieves the unique ID of the game session currently running.

Syntax

rtSession.getGameSessionId()

Version 55

Amazon GameLift Servers Realtime Servers Developer Guide

getLogger()

Retrieves the interface for logging. Use this to log statements that will be captured in your game
session logs. The logger supports use of "info", "warn", and "error" statements. For example:
logger.info("<string>").

Syntax

rtSession.getLogger()

sendMessage()

Sends a message, created using newTextGameMessage or newBinaryGameMessage, from
the Realtime server to a player recipient using the UDP channel. Identify the recipient using the
player's peer ID.

Syntax

rtSession.sendMessage(gameMessage, targetPlayer)

sendGroupMessage()

Sends a message, created using newTextGameMessage or newBinaryGameMessage, from
the Realtime server to all players in a player group using the UDP channel. Group IDs must be
a positive integer or "-1" to indicate all groups. See Amazon GameLift Servers Realtime script
example for an example of user-defined group IDs.

Syntax

rtSession.sendGroupMessage(gameMessage, targetGroup)

sendReliableMessage()

Sends a message, created using newTextGameMessage or newBinaryGameMessage, from the
Realtime server to a player recipient using the TCP channel. Identify the recipient using the player's
peer ID.

Syntax

rtSession.sendReliableMessage(gameMessage, targetPlayer)

Version 56

Amazon GameLift Servers Realtime Servers Developer Guide

sendReliableGroupMessage()

Sends a message, created using newTextGameMessage or newBinaryGameMessage, from the
Realtime server to all players in a player group using the TCP channel. Group IDs which must be
a positive integer or "-1" to indicate all groups. See Amazon GameLift Servers Realtime script
example for an example of user-defined group IDs.

Syntax

rtSession.sendReliableGroupMessage(gameMessage, targetGroup)

newTextGameMessage()

Creates a new message containing text, to be sent from the server to player recipients using
the SendMessage functions. Message format is similar to the format used in the client SDK for
Realtime (see RTMessage). Returns a gameMessage object.

Syntax

rtSession.newTextGameMessage(opcode, sender, payload)

newBinaryGameMessage()

Creates a new message containing binary data, to be sent from the server to player recipients using
the SendMessage functions. Message format is similar to the format used in the client SDK for
Realtime (see RTMessage). Returns a gameMessage object.

Syntax

rtSession.newBinaryGameMessage(opcode, sender, binaryPayload)

Player object

Access player-related information.

player.peerId

Unique ID that is assigned to a game client when it connects to the Realtime server and joined the
game session.

Version 57

Amazon GameLift Servers Realtime Servers Developer Guide

player.playerSessionId

Player session ID that was referenced by the game client when it connected to the Realtime server
and joined the game session.

Game message object

Use these methods to access messages that are received by the Realtime server. Messages received
from game clients have the RTMessage structure.

getPayloadAsText()

Gets the game message payload as text.

Syntax

gameMessage.getPayloadAsText()

gameMessage.opcode

Operation code contained in a message.

gameMessage.payload

Payload contained in a message. May be text or binary.

gameMessage.sender

Peer ID of the game client that sent a message.

gameMessage.reliable

Boolean indicating whether the message was sent via TCP (true) or UDP (false).

Configuration object

The configuration object can be used to override default configurations.

configuration.maxPlayers

The maximum number of client / server connections that can be accepted by RealTimeServers.

Version 58

Amazon GameLift Servers Realtime Servers Developer Guide

The default is 32.

configuration.pingIntervalTime

Time interval in milliseconds that server will attempt to send a ping to all connected clients to
verify connections are healthy.

The default is 3000ms.

Version 59

	Amazon GameLift Servers
	Table of Contents
	What is Amazon GameLift Servers Realtime?
	How Amazon GameLift Servers Realtime servers work
	How Realtime clients and servers interact

	Amazon GameLift Servers Realtime pricing and cost planning

	Preparing your games for hosting with Amazon GameLift Servers Realtime
	Customize an Amazon GameLift Servers Realtime script
	Manage game session life-cycle (required)
	Add server-side game logic (optional)
	Amazon GameLift Servers Realtime script example
	

	Integrate a game client for Amazon GameLift Servers Realtime
	Find or create game sessions and player sessions
	Connect to games on Amazon GameLift Servers Realtime
	Game client examples
	Basic realtime client (C#)

	Upload a script for Amazon GameLift Servers Realtime servers
	Package script files
	Upload script files from a local directory
	Upload script files from Amazon S3

	Update an Amazon GameLift Servers Realtime script

	Creating a managed EC2 fleet for Amazon GameLift Servers Realtime
	Create a hosting fleet for Amazon GameLift Servers Realtime
	Debug managed EC2 fleets for Amazon GameLift Servers Realtime

	Logging server messages for Amazon GameLift Servers Realtime
	Logging messages in your server script
	Accessing server logs
	Adjusting the logging level

	Amazon GameLift Servers Realtime reference guides
	Amazon GameLift Servers Realtime client API (C#) reference
	Amazon GameLift Servers Realtime client API (C#) reference: Actions
	Client()
	Syntax
	Parameters
	Return value

	Connect()
	Syntax
	Parameters
	Return value

	Disconnect()
	Syntax
	Parameters
	Return value

	NewMessage()
	Syntax
	Parameters
	Return value

	SendMessage()
	Syntax
	Parameters
	Return value

	JoinGroup()
	Syntax
	Parameters
	Return value

	LeaveGroup()
	Syntax
	Parameters
	Return value

	RequestGroupMembership()
	Syntax
	Parameters
	Return value

	Amazon GameLift Servers Realtime client API (C#) reference: Asynchronous callbacks
	OnOpen()
	Syntax
	Parameters
	Return value

	OnClose()
	Syntax
	Parameters
	Return value

	OnError()
	Syntax
	Parameters
	Return value

	OnDataReceived()
	Syntax
	Parameters
	Return value

	OnGroupMembershipUpdated()
	Syntax
	Parameters
	Return value

	Amazon GameLift Servers Realtime client API (C#) reference: Data types
	ClientConfiguration
	Contents

	ConnectionToken
	Contents

	RTMessage
	Contents

	DataReceivedEventArgs
	Contents

	GroupMembershipEventArgs
	Contents

	Enums

	Script reference for Amazon GameLift Servers Realtime
	Script callbacks for Amazon GameLift Servers Realtime
	Init
	Syntax

	onMessage
	Syntax

	onHealthCheck
	Syntax

	onStartGameSession
	Syntax

	onProcessTerminate
	Syntax

	onPlayerConnect
	Syntax

	onPlayerAccepted
	Syntax

	onPlayerDisconnect
	Syntax

	onProcessStarted
	Syntax

	onSendToPlayer
	Syntax

	onSendToGroup
	Syntax

	onPlayerJoinGroup
	Syntax

	onPlayerLeaveGroup
	Syntax

	Amazon GameLift Servers Realtime interface
	getPlayers()
	Syntax

	broadcastGroupMembershipUpdate()
	Syntax

	getServerId()
	Syntax

	getAllPlayersGroupId()
	Syntax

	processEnding()
	Syntax

	getGameSessionId()
	Syntax

	getLogger()
	Syntax

	sendMessage()
	Syntax

	sendGroupMessage()
	Syntax

	sendReliableMessage()
	Syntax

	sendReliableGroupMessage()
	Syntax

	newTextGameMessage()
	Syntax

	newBinaryGameMessage()
	Syntax

	Player object
	player.peerId
	player.playerSessionId

	getPayloadAsText()
	Syntax

	gameMessage.opcode
	gameMessage.payload
	gameMessage.sender
	gameMessage.reliable
	Configuration object
	configuration.maxPlayers
	configuration.pingIntervalTime

