MonthName class - Amazon Glue
Services or capabilities described in Amazon Web Services documentation might vary by Region. To see the differences applicable to the China Regions, see Getting Started with Amazon Web Services in China (PDF).

MonthName class

The MonthName transform creates a new column containing the name of the month, from a string that represents a date.

Example

from pyspark.context import SparkContext from pyspark.sql import SparkSession from awsgluedi.transforms import * sc = SparkContext() spark = SparkSession(sc) spark.conf.set("spark.sql.legacy.timeParserPolicy", "LEGACY") input_df = spark.createDataFrame( [ ("20-2018-12",), ("2018-20-12",), ("20182012",), ("12202018",), ("20122018",), ("20-12-2018",), ("12/20/2018",), ("02/02/02",), ("02 02 2009",), ("02/02/2009",), ("August/02/2009",), ("02/june/2009",), ("02/2020/june",), ("2013-02-21 06:35:45.658505",), ("August 02 2009",), ("2013/02/21",), (None,), ], ["column_1"], ) try: df_output = datetime_functions.MonthName.apply( data_frame=input_df, spark_context=sc, source_column="column_1", target_column="target_column" ) df_output.show() except: print("Unexpected Error happened ") raise

Output

The output will be:

``` +------------+------------+ | column_1|target_column| +------------+------------+ |20-2018-12 | December | |2018-20-12 | null | | 20182012| null | | 12202018| null | | 20122018| null | |20-12-2018 | December | |12/20/2018 | December | | 02/02/02 | February | |02 02 2009 | February | |02/02/2009 | February | |August/02/2009| August | |02/june/2009| null | |02/2020/june| null | |2013-02-21 06:35:45.658505| February | |August 02 2009| August | | 2013/02/21| February | | null | null | +------------+------------+ ```

The MonthName transformation takes the `source_column` as `"column_1"` and the `target_column` as `"target_column"`. It attempts to extract the month name from the date/time strings in the `"column_1"` column and places it in the `"target_column"` column. If the date/time string is in an unrecognized format or cannot be parsed, the `"target_column"` value is set to `null`.

The transformation successfully extracts the month name from various date/time formats, such as "20-12-2018", "12/20/2018", "02/02/2009", "2013-02-21 06:35:45.658505", and "August 02 2009".

Methods

__call__(spark_context, data_frame, target_column, source_column=None, value=None)

The MonthName transform creates a new column containing the name of the month, from a string that represents a date.

  • source_column – The name of an existing column.

  • value – A character string to evaluate..

  • target_column – A name for the newly created column.

apply(cls, *args, **kwargs)

Inherited from GlueTransform apply.

name(cls)

Inherited from GlueTransform name.

describeArgs(cls)

Inherited from GlueTransform describeArgs.

describeReturn(cls)

Inherited from GlueTransform describeReturn.

describeTransform(cls)

Inherited from GlueTransform describeTransform.

describeErrors(cls)

Inherited from GlueTransform describeErrors.

describe(cls)

Inherited from GlueTransform describe.