I 58 =%
Developer Guide

Amazon loT Events

Amazon loT Events Developer Guide

Amazon loT Events: Developer Guide

Amazon loT Events Developer Guide

Table of Contents

... viii
What is AMazon 10T EVENTS?ccciiiiiiiiiiinnnss 1
BENETIS QN FEALUIES ...ttt ettt sa ettt s b e e e s sasa e e nas 1
USE CASES ..ttt ettt ettt st ettt s e bt st e st s s et et e b e st e e Rt s b e et e Rt e b e et e e st et e et e seesbesateanas 2
Monitor and maintain reMOtE AEVICEScoueviviririiireretreee ettt sae e sens 2
Manage iNAUSLIAl FODOLScvieeeeeeeeeee ettt e e e e e e e e s ae st e ae s e e e e e ennennans 3
Track building automMation SYSTEMS ...ttt s ns 3
Amazon 10T Events end Of SUPPOItccciiiiiiiiieeeenniiiiiiiieiiiinneeesssssssssssssess 4
Considerations when migrating away from Amazon 10T EVeNtScceceeeeceeciecieceneeeceeeeeeeeeene 4
DELECLOI MOAELS ..ttt sttt ettt et s s be st et s b et et e e sba st esassasessensssassensssensans 5
CoOMPAriNG ArCHITECTUIES ...ttt ettt et e st e e se e e e e e e e e e e aenaesaneas 5
Step 1: (Optional) export Amazon loT Events detector model configurationsccueune.ee. 6

Step 2: Create AN IAM TOLE ettt ettt sttt e et et e sae st e b e s e e e e e e aennanes 7
Step 3: Create Amazon Kinesis Data STreams ...ttt sre e e 10
Step 4: Create or update the MQTT message routing rulecccoeeeeeeeeceeceeceececececeee e 11

Step 5: Get the endpoint for the destination MQTT tOPIC ..ccoceeeeeeeeeeceeeeeeeece e, 12

Step 6: Create an Amazon DynamoDB table ...t 13

Step 7: Create an Amazon Lambda function (CONSoLE)cceeeeeeeeeecieciiciecececeeececeeee e 13

Step 8: Add an Amazon Kinesis Data Streams trigger ... eeeeeceeceecenesececee et 21
Step 9: Test data ingestion and output functionality (Amazon CLI)ccceeveevecececeneeeceenee 22
ALGITIIS .ottt ettt sttt et s s b et et e et et s s e s s et e e s b et et s s et et e se e b et e se e s e b et e s e b et e st e ae b et eseesa st eneesateneesn 23
CoMPAriNg ArChITECIUIESueeeeeee et ste st e e e s e s e et et e saestesbasseeseennennanes 23
Step 1: Enable MQTT notifications on the asset property ... 24
Step 2: Create an Amazon Lambda fUNCLION ... 25
Step 3: Create Amazon IoT Core message routing rUleccceeeeeeeceeceeceeceesececeee e 26
Step 4: View CloudWatch MELHICS ...ttt st e e s sa e ae e 27
Step 5: Create CloudWatch Qlarmss ...ttt ste e ae e e senens 28
Step 6: (Optional) import the CloudWatch alarm into Amazon loT SiteWiseccccecveueneee. 28
SEELING UP cereiiiiiiiiiiiiiieeennniiiiiieieiintesss 29
Setting up an Amazon Web Services aCCOUNT ...ttt e e nnens 29
Sign up for an Amazon Web Services aCCOUNTcccceeeeererenieeetetecte e e et sre e s 29
SEOUIE TAM USEIS ..ttt ettt sttt e ae st s st s st st e st e e st s s be st e e st sbe st e st esesasesstsnsasasas 29
Setting up permissions for AMazon 10T EVENEScciecieciicececeeeeeeee ettt sae e 30

ACTION PEIMUSSIONS .ooviieieeitirteerteertee st estessreesrtessatestessseesaesssessssessssesssesssessssessseesssesssessssessseessaessseans 30

Amazon loT Events Developer Guide

SeCUNNG INPUL dAa oottt st et e e e e e e et e e st e st e e e sesse e e ennennans 32
Amazon CloudWatch 1ogging role POLICY ..ottt 33
Amazon SNS mMessaging role POLICY ..ottt te e e e e a e saa s 36
Getting StArtedccciiiiiiiieeeericiiiiiieiiiiiiieeeeseeeiissiseetesss 38
PrEIEGQUISITES .ottt ettt te s st e st e s sae e st e s sae e st e s saees b e s aeessaesssesssaassseessaessseesssessseesssessseesseesnses 40
Create QN INPUL .ttt st see s e e st e s s st e s b e s aa e s aessbaessaessaessnasssaasssessssessaassseanns 41
Create @ JSON INPUL FILE ettt e et e st st s snennans 41
Create and configure @n INPUL ...ttt et sa e s e s eenens 41
Create an input within the Detector MOdel ... 42
Create @ deteCtor MOAEL .ottt st et ettt et s b e b e e s s nes 43
Test the deteCtor MOAEL ...ttt ettt s b e s e s ba s e ene 50
BESt PracCtiCes ..ucccceiiiiiinneeennnniiiiiieceiiiennennsssnssssssseessass 54

Enable Amazon CloudWatch logging when developing Amazon loT Events detector models ... 54
Publish regularly to save your detector model when working in the Amazon loT Events

CONSOLE ettt ettt ettt st et e st e b et s ae s s et e se s b et e se e s et et e se e s et et eae s e st esassan b et enentaneeneene 55
TUROKHIALS ceverreriiinniniiiiiiiiiittiieiieiieieiieeeeesses 56
Using Amazon loT Events to monitor your 10T deVICESccceceeereeeeeieeceeeetececesee e eee e saeaens 56
How do you know which states you need in a detector model?ccovveveecececenecececeeeenen. 58
How do you know if you need one instance of a detector or several?cccooeeveeervevecvennenee. 59
SimMple SteP-bY-StEP EXAMPLE ...ttt te et e e e e e a e aesaenaans 60
Create an input to capture device data ... 62
Create a detector model to represent device States ... 63
Send messages as iNPULS t0 @ AELECLON ...ttt sre e e aea e nenaens 67
Detector model restrictions and LMItatioNscoecvireniinieninnecree et ne 70
A commented example: HVAC temperature CONrolccoeeeeeeeeeeeeeeeecesec e 74
Input definitions for detector MOELS ... 75
Create a detector model definition ...t 78
Use BatChUpPAAtEDELECTON ...ttt te ettt et esae s e s e s s e e e e e aenaantans 98
Use BatchPutMessage fOr iINPULS ...ttt sttt neaesaeaens 100
INGESt MQTT MESSAGES ..ooeviiiiieieicrteeieecteete et esste e st estessseessaessseessessseesssesssaessaasssessssessssesssesssesnes 103
Generate AMAzon SNS MESSAGESeivieeviiritireerieertesre et essteesreesssessssessseesseesssessssesssessssasssesnes 104
Configure the DescribeDEteCtOr AP ... ettt st e e a e ae s 105
Use the AmMazon 10T COre ruleS ENGINEcccceeieieiecieeeceeeeeeeeeete e stestesaesse s e e e e e e aesaesaenseneas 107
SUPPOIrtEd QCLIONS ..cceeeeeiiiiiiiiiiiiiiineneneiiiiiieeetetiesses 111
USE DUILE-IN QCHIONS ..ottt ettt sttt et e s b st et s e a e e s sse st e e ssanen 112
St LIMEE QCHION ettt et et ae st st e s e s b e st s ae st e st e snessaasnaens 112

Amazon loT Events Developer Guide

RESEL LIMEI QCLION ..ttt et ettt e sa e s sa e st ssnessnens 112
CLEar tIMEN QCLION .ottt ettt ettt et ettt et s b et e e ssa st e st ssessessesassansenesansan 113
St Variable QCHION ..ottt ettt st e s a e e ee 113
Work with other AMAzZON SEIVICES ..ottt ettt se st e s e sae e e 114
AMAZON 1OT COFE ittt ettt st s e st e sb et s s s sae st s se st e st e sesasesstesessesasanness 115
AMAZON [OT EVENTS ...ttt et s e st s ea et e st s s st e st s eae et e st esnesne st s 116
AMAZON 10T SITEWISE ..ttt ettt sa e st st e s st s st e s s ae st e sassnenne 117
AMAzon DYNAMODB ...ttt st sae st e s sae s s e e st e e st e s aesssaessaessseesssesssaesssassssasssasane 119
AmMaAzon DYNAMODB(V2) ..ottt ettt s te e e e e e e sae s e stesbesaessesse e e e s e saesaastensansanes 122
AMAzZOoN DAta FIr€R0OSE ..ottt st ettt et e sa s st s nans 123
AMAZON LamMbBAQ ..ottt ettt et sttt st b et e s st et e ae e e e nas 124
Amazon Simple NOtIfiCation SEIrVICE ...ttt aas 125
Amazon SimMple QUEUE SEIVICEueeeeeeeeeetectetesteeee e e et e e stestesse s e e e e e e e et e ssassassassassasnnensanes 126
EXPIESSIONS ..cciiiiieeeeennnnissieeeeenneesesssasssee | 28
Syntax to filter dEVICe data ...ttt e st e e s et b naens 128
LITEIALS ettt ettt sttt ettt e b et et e s et et e e b et e e be st et esetan 128
OPEFALOIS .eeiieiiteeteecteete ettt et e s ste s st e s ste s st e e sae s s e esssesssaessaesstesseesstassseesssassseasssessseesssessseesssensseenseens 128
FUNCLIONS FOI EXPIrESSIONSceeieieieteteeteeeeee ettt e st e e e et et e st e saeste s b e s se e e s e e s eaesensansansans 130
Reference for inputs and variables in @XPressionsceeeeeeeerecceeceececece e 134
SUDSEITULION TEMIPLALES ...ttt te e re et s ae s ae st re e e e nn e aenes 137
USQGE ettt et s st e e e st s et s st e e et e st e s b e e b e e s e e e et e e b e e e b e e st e e st e e st e e b e e ae e et e e s e e et e e st eesseesraenaees 138
Writing Amazon 10T EVENTS @XPIreSSIONScuiicieeiiirieiseirteesreestessreesseessseesssessseesssesssessssessssssseens 138
Detector model eXamPLles ...cccciiiieeeeeeeeciiiiiiciiiinnnnneessensssssssecessses 140
HVAC temMPerature CONTIOLottt steste e e e e e s saesaesaesaesaesse e e s s enneaennans 140
BACKGIrOUNG STOMY ..ttt te e st e et e st et e aesbe s s e e e e e e e e s et esaessassassassnenaennans 140
INPUL AEFINITIONS .ttt a ettt a e s sse e e e e e e a et e tassanes 141
Detector Model definition ...ttt a et a e 143
BatchPUtMESSAge @XAMPLESeceeeeececeeeeeee ettt e sa ettt esbesse e e e s neaeaeneans 161
BatchUpdateDetector @XAMPLE ...ttt e ettt e st et nn e nes 167
Amazon (0T COre rUlES ENGINEcceiieieieeeececeeee et ree e stesae e ste s e s e e s e e e s et e ssessessassassessseseanes 169
CFANES ettt ettt ettt ettt et s e bt st et s b st e e st e b s b e et e s e st e e Rt e Rt et e Rt e Rt st e e Rt e e Rt e b e et e st e beent e neeane 172
SENA COMMANS ..ottt ettt s e st et s e st et s e s s et e e esasbestesassessesassassensessssassenees 173
DELECLOI MOAELS ..ottt ettt st ettt e s s et e e s e be st e e sbestesassasensssssassanens 174
INPULES ettt st s e e e e s st e s sae e s b e s se e s b e e s ae e s b e e aa e et e e s e e et e e e e e e e e e e e st e e st e st e e ae e neaeaeans 181
MESSQAGES ..eeveiiieiieirieeiteete et esste e st e st e s sse e st assseessaesssessssesssaessaassseasseessseesstesssessstessseesseesssessseessessseessensses 181
Example: Event detection With SENSOIS ...ttt st ean 183

Amazon loT Events Developer Guide

DEVICe HEAMTBEAL ...ttt ettt st e st s s a e st sb e st s s s b saens 185
ISA QLA ettt b e st ettt s st st s s e st et e st et e s R et et e s e b et e e b et et e s et eneenane 188
SIMIPLE QLAIIT ottt e e st e s e e e e e s et e st e st e st e s aesseesaesa e e esaesaensansessassassessaesaansans 198
Monitoring With Qlarmsccciirreeecciiiiiieiiiiiiinneeeneniiiiiieeiittesssns 203
Working with AMAzon 10T SILEWISEeceeeeeieieeeeeecee ettt sa et st sae s s ns 203
ACKNOWLEAGE TLOW ..ttt ettt s te st e et e e e e et et ae st e st e s bassessaesa e e e e esaansansanean 204
Creating an alarm MOAEL ... ettt se et et este s s e s be s e e e e s e e esaesaaneans 204
REQUIFEIMENTS ...ttt sttt ettt s s e e sae e st e s s ae e st e s sae e st e s saessaessaeesssasssaesssassseesssesssennnes 205
Creating an alarm mModel (CONSOLE) ..ottt eeaens 205
RESPONAING 10 GLAIMNS ..ttt te st s e e et sa e st e s ta b e se e e e e e st esaesansansansas 208
Managing alarm NOLIfICAtIONS ...ttt sttt re e nnan 210
Creating @ Lambda fUNCHION ...ttt sa e e aesaa e 210
Using the Lambda fUNCLION ...ttt 219
Manage alarm FECIPIENTSccue ittt te s te s e e e e e e e e e st e b e stesaestassessae e ennenaenaanes 220
SECUNITY ceiiiiiiiieennniiiieiiiiitnnensessssssssssssecssesss 222
Identity and access MANAGEMENT ..ottt st e ae s e e e e e e e e e e esaesaaneans 222
AUAIENCE ...ttt ettt sttt s b et s s b et et e s b et e e s s et et s s e b et esassastestesassantesessensensesanes 223
Authenticating With identities ...ttt ens 223
Managing access USING POLICIES ...coiceeieiiecieeecececeeeete et ste et te e e e e e e e s e e e stestessessesse e e esnennennan 224

More about identity and access ManagemMENtcooveciececereneeee ettt ae s 226

How Amazon 10T Events Works With TAM ...ttt se e saene 226
Identity-based POliCYy EXAMPLES ...ttt ae s e e et aesaenaens 230
Cross-service confused deputy prevention for Amazon I0T Eventsccccceeeeeeveeceeceecvenenee. 236
TrOUBLESNOOTING .ottt sttt et et e st esae s be e e e sa e e e e e s e b entanean 241
MONIEOTING «eviiiiieieiteeeert ettt et e s st es e e e sae e st e s sseessaeesaeessae s saesssesseesssessseesssessseesssessseesssessstesssenssaensnes 242
Available tools to monitor AmMazon 10T EVENTS ...ttt ees 243
Monitoring Amazon loT Events with Amazon CloudWatch ... 245
Logging Amazon loT Events API calls with Amazon CloudTrailcceeveeeveneceeececeeeeeeeee. 246
ComPLiANCe VAliIdAtioN ..ottt sttt e sae s ae s e s b e s e e e e e e aenanaans 266
RESILIEICE .ttt ettt et ettt s s b et et s s et et e e b et esa s s et e st ssassastesesanseneess 266
INFrasStrUCTUIE SECUNILY cuviieeeieeceeee ettt ettt e st e s e e e e e e e b e sae b e s aasseeseesnesaesaenaensansans 266

[11T) - 13PN 268
TAGGING ceerrniiiiiiiiiiiinnanennnsiissseeieesesss 269
TAG DASICS ettt ettt et e sttt et e et e s e et e e e e e e et et et et eeraesaeaeere et ensentetasansans 269
Tag restrictions and LMItAtioNs ...ttt aan 270
USiNG tags With TAM POLICIESccueeueeieeeteeeeee ettt e st te st e stesaesse e e e e e s esaessanaans 270

Vi

Amazon loT Events Developer Guide

TroubleShOOtiNg ..ccciiiiiiieuiiiiiiiiiiiiiiiinieenneniiiieeeeiitttessses 2714

Common Amazon IoT Events issues and SOLULIONScccceueviverenieienenierincnetsesest e sse e 274
Detector Model Creation EITOIS ...ttt st et be st e s e st e e s e sae e ssesaens 275
Updates from a deleted detector MOdel ... 275
Action trigger failure (when meeting a condition)ccoceoeeeceneneciceceeeee e 275
Action trigger failure (when breeching a threshold) ..., 276
INCOITECT STATE USQAGE ..ottt rte et et e s re e s ee s s s e e st e s saessaessaeesssesssaessnasssaesssannne 276
CONNECLION MESSAGE ...ueeeeiiiieeieirreerteste st este s st e saessseessteesatesssesssaesssessseasssessssesssessssesssessssessseesseens 276
INValidReqUESTEXCEPLION MESSAGEeecveereeeeeieeeeieeetecteste e te et e e et estestesaesse s e s e e e esnesaesaensanean 277
Amazon CloudWatch Logs action.SetTimeTI €rrors ... eeceneeceseseeeeee e eesesaens 277
Amazon CloudWatch payload ErTOrsS ...ttt e e sa e st sa et ae s 278
INCOMPALIDLE LA TYPES ettt ettt te e e s e e e st et e sae st e s besse s e nnennan 280
Failed to send message to AMazon 10T EVENTS ...ttt 281

Troubleshooting @ detector MOEL ...ttt sa s aens 282
Diagnostic iINFOrMAtIONc.vovieeeeeeeee e e ettt e e s b e s be s e e e aenennan 282
Analyze a detector Model (CONSOLE) ...ttt s ae e 294
Analyze a detector model (AMAzZON CLI) vttt sa e sa e aan 295

COMMANS .ceueerreenennnennesnneennenneennnnnetnittttieitsetsss 90 1
AMAzZOoN (0T EVENTS QCLIONS ..ottt sttt et s a et sr e st s sae s a et e ne e 301
AMAzZoN 10T EVENTS Ata ..ccoiiiieieieteenieieeretet sttt sttt se s e st et s e sse st e e ssasae e e e ssesaesasnas 301

DOCUMENT NISTOIY auuuiiiiiiiiiiiiinenennnniiiiiieeeininneeessssssssssssssess 302
EQrlIEr UPAALES ...ttt sttt st e st e st e e e s e e se st et et et e tesbessassaesesssensansansansan 303

vii

Amazon loT Events Developer Guide

End of support notice: On May 20, 2026, Amazon will end support for Amazon loT Events. After
May 20, 2026, you will no longer be able to access the Amazon IoT Events console or Amazon loT
Events resources. For more information, see Amazon loT Events end of support.

viii

https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-end-of-support.html

Amazon loT Events Developer Guide

What is Amazon loT Events?

Amazon loT Events enables you to monitor your equipment or device fleets for failures or changes
in operation, and to trigger actions when such events occur. Amazon loT Events continuously
watches loT sensor data from devices, processes, applications, and other Amazon services to
identify significant events so you can take action.

Use Amazon loT Events to build complex event monitoring applications in the Amazon Cloud that
you can access through the Amazon IoT Events console or APIs.

loT Events Define Detect & Trigger
Helps you monitor your Define conditional logic Detect events and Action
equipment changes in and states to evaluate trigger actions when
operation and trigger alerts incoming telemetry data events are detected
Inputs to respond when events occur to detect events in

equipment or a process

Topics

o Benefits and features

e Use cases

Benefits and features

Accept inputs from multiple sources

Amazon loT Events accepts inputs from many loT telemetry data sources. These include sensor
devices, management applications, and other Amazon loT services, such as Amazon loT Core
and Amazon loT Analytics. You can push any telemetry data input to Amazon loT Events by
using a standard API interface (BatchPutMessage API) or the Amazon loT Events console.

For more information on getting started with Amazon loT Events, see Getting started with the
Amazon loT Events console.

Benefits and features 1

Amazon loT Events Developer Guide

Use simple logical expressions to recognize complex patterns of events

Amazon loT Events can recognize patterns of events that involve multiple inputs from a single
loT device or application, or from diverse equipment and many independent sensors. This is
especially useful because each sensor and application provides important information. But
only by combining diverse sensor and application data can you get a complete picture of the
performance and quality of operations. You can configure Amazon loT Events detectors to
recognize these events using simple logical expressions instead of complex code.

For more information on logical expressions, see Expressions to filter, transform, and process
event data.

Trigger actions based on events

Amazon loT Events enables you to directly trigger actions in Amazon Simple Notification
Service (Amazon SNS), Amazon loT Core, Lambda, Amazon SQS and Amazon Kinesis Firehose.
You can also trigger an Amazon Lambda function using the Amazon loT rules engine which
makes it possible to take actions using other services, such as Amazon Connect, or your own
enterprise resource planning (ERP) applications.

Amazon loT Events includes a prebuilt library of actions you can take, and also enables you to
define your own.

To learn more about triggering actions based on events, see Supported actions to receive data
and trigger actions in Amazon loT Events.

Automatically scale to meet the demands of your fleet

Amazon loT Events scales automatically when you are connecting homogeneous devices. You
can define a detector once for a specific type of device, and the service will automatically scale
and manage all instances of that device that connect to Amazon loT Events.

To explore examples of detector models, see Amazon loT Events detector model examples.

Use cases
Amazon loT Events has many uses. Here are a few example use cases.
Monitor and maintain remote devices

Monitoring a fleet of remotely deployed machines can be challenging, especially when a
malfunction occurs without clear context. If one machine stops functioning, this might mean

Use cases 2

Amazon loT Events Developer Guide

replacing the entire processing unit or machine. But this isn't sustainable. With Amazon loT Events
you can receive messages from multiple sensors on each machine to help you diagnose specific
issues over time. Instead of replacing the whole unit, you now have the necessary information to
send a technician with the exact part that needs replacement. With millions of machines, savings
can add up to millions of dollars, lowering your total cost of owning or maintaining each machine.

Manage industrial robots

Deploying robots in your facilities to automate package movement can greatly enhance efficiency.
To minimize costs, robots can be equipped with simple, low-cost sensors that report data to the
cloud. However, with dozens of sensors and hundreds of operating modes, detecting issues in real
time can be challenging. Using Amazon loT Events, you can build an expert system that processes
this sensor data in the cloud, creating alerts to automatically notify technical staff if a failure is
imminent.

Track building automation systems

In data centers, monitoring for high temperatures and low humidity helps to prevent equipment
failures. Sensors are often purchased from many manufacturers and each type comes with its own
management software. However, management software from different vendors sometimes isn't
compatible, making it difficult to detect problems. Using Amazon loT Events, you can set up alerts
to notify your operations analysts of issues with your heating and cooling systems well in advance
of failures. In this way, you can prevent an unscheduled data center shutdown that would cost
thousands of dollars in equipment replacement and potential lost revenue.

Manage industrial robots 3

Amazon loT Events Developer Guide

Amazon loT Events end of support

After careful consideration, we decided to end support for the Amazon loT Events service, effective
May 20, 2026. Amazon loT Events will no longer accept new customers beginning May 20, 2025.
As an existing customer with an account signed up for the service before May 20, 2025, you can
continue to use Amazon loT Events features. After May 20, 2026, you will no longer be able to use
Amazon loT Events.

This page provides instructions and considerations for Amazon IoT Events customers to transition
to an alternate solution to meet your business needs.

® Note

The solutions presented in these guides are meant to serve as an illustrative examples, not
as a production-ready replacements for Amazon loT Events functionality. Customize the
code, workflow, and related Amazon resources to your business needs.

Topics

» Considerations when migrating away from Amazon loT Events

» Migration procedure for detector models in Amazon loT Events

« Migration procedure for Amazon loT SiteWise alarms in Amazon loT Events

Considerations when migrating away from Amazon loT Events

« Implement security best practices, including using IAM roles with least privilege for each
component and encrypting data at rest and in transit. For more information, see Security best
practices in IAM in the IAM User Guide.

« Consider the number of shards for the Kinesis stream based on your data ingestion requirements.
For more information on Kinesis shards, see Amazon Kinesis Data Streams terminology and

concepts in the Amazon Kinesis Data Streams Developer Guide.

» Set up comprehensive monitoring and debugging using CloudWatch for metrics and logs. For
more information, see What is CloudWatch? in the Amazon CloudWatch User Guide.

Considerations when migrating away from Amazon loT Events 4

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/streams/latest/dev/key-concepts.html
https://docs.amazonaws.cn/streams/latest/dev/key-concepts.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Amazon loT Events Developer Guide

« Consider the structure of your error handling, including how to manage messages that fail
processing repeatedly, implementing retry policies, and setting up a process to isolate and
analyze problematic messages.

» Use the Amazon Pricing Calculator to estimate costs for your specific use case.

Migration procedure for detector models in Amazon loT Events

This section describes alternative solutions that deliver similar detector model functionality as you
migrate away from Amazon loT Events.

You can migrate data ingestion through Amazon loT Core rules to a combination of other Amazon
services. Instead of data ingestion through the BatchPutMessage API, the data can be routed to the
Amazon loT Core MQTT topic.

This migration approach leverages Amazon loT Core MQTT topics as the entry point for your loT
data, replacing the direct input to Amazon loT Events. MQTT topics are chosen for several key
reasons. They offer broad compatibility with l1oT devices due to MQTT's widespread use in the
industry. These topics can handle high volumes of messages from numerous devices, ensuring
scalability. They also provide flexibility in routing and filtering messages based on content or
device type. Additionally, Amazon loT Core MQTT topics integrate seamlessly with other Amazon
services, facilitating the migration process.

Data flows from MQTT topics into an architecture combining Amazon Kinesis Data Streams, a
Amazon Lambda function, a Amazon DynamoDB table, and Amazon EventBridge schedules. This
combination of services replicates and enhances the functionality previously provided by Amazon
loT Events, offering you more flexibility and control over your loT data processing pipeline.

Comparing architectures

The current Amazon loT Events architecture ingests data through an Amazon loT Core rule and
the BatchPutMessage API. This architecture uses Amazon loT Core for data ingestion and event
publishing, with messages routed through Amazon IoT Events inputs to detector models that
define the state logic. An IAM role manages the necessary permissions.

The new solution maintains Amazon loT Core for data ingestion (now with dedicated input and
output MQTT topics). It introduces Kinesis Data Streams for data partitioning and an evaluator
Lambda function for state logic. Device states are now stored in a DynamoDB table, and an
enhanced IAM role manages permissions across these services.

Detector models 5

https://calculator.aws
https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html

Amazon loT Events

Developer Guide

Purpose

Data ingestion -
Receives data from
loT devices

Message direction
— Routes incoming
messages to
appropriate services

Data processin

g — Handles and
organizes incoming
data streams

Logic evaluation

— Processes state
changes and triggers
actions

State managemen
t — Maintains device
states

Security — Manages
service permissions

Solution

Amazon loT Core

Amazon loT Core
message routing rule

Kinesis Data Streams

Evaluator Lambda

DynamoDB table

IAM role

Differences

Now requires two distinct MQTT topics: one
for ingesting device data and another for
publishing output events

Maintains same routing functionality but now
directs messages to Kinesis Data Streams
instead of Amazon loT Events

Replaces Amazon loT Events input functiona
lity, providing data ingestion with device ID
partitioning for message processing

Replaces Amazon loT Events detector model,
providing customizable state logic evaluation
through code instead of visual workflow

New component that provides persistent
storage of device states, replacing internal
Amazon loT Events state management

Updated permissions now include access
to Kinesis Data Streams, DynamoDB, and
EventBridge in addition to existing Amazon
loT Core permissions

Step 1: (Optional) export Amazon loT Events detector model

configurations

Before creating new resources, export your Amazon loT Events detector model definitions. These

contain your event processing logic and can serve as a historical reference for implementing your

new solution.

Step 1: (Optional) export Amazon loT Events detector model configurations

Amazon loT Events Developer Guide

Console

Using the Amazon loT Events Amazon Web Services Management Console, perform the
following steps to export your detector model configurations:

To export detector models using the Amazon Web Services Management Console

1.

2
3.
4

Log into the Amazon loT Events console .

In the left navigation pane, choose Detector models.
Select the detector model to export.

Choose Export. Read the information message regarding the output and then choose
Export again.

Repeat the process for each detector model that you want to export.

A file containing a JSON output of your detector model is added to your browser's download
folder. You can optionally save each detector model configuration to preserve historical data.

Amazon CLI

Using the Amazon CLI, run the following commands to export your detector model
configurations:

To export detector models using Amazon CLI

1.

2.

3.

List all detector models in your account:

aws iotevents list-detector-models

For each detector model, export its configuration by running:

aws iotevents describe-detector-model \
--detector-model-name your-detector-model-name

Save the output for each detector model.

Step 2: Create an IAM role

Create an IAM role to provide permissions to replicate the functionality of Amazon loT Events.
The role in this example grants access to DynamoDB for state management, EventBridge for

Step 2: Create an IAM role 7

https://console.amazonaws.cn/iotevents/

Amazon loT Events Developer Guide

scheduling, Kinesis Data Streams for data ingestion, Amazon loT Core for publishing messages, and
CloudWatch for logging. Together, these services to work as a replacement for Amazon loT Events.

1. Create an IAM role with the following permissions. For more detailed instructions on creating
an IAM role, see Create a role to delegate permissions to an Amazon service in the IAM User
Guide.

JSON

{
"Version":"2012-10-17",
"Statement": [
{

"Sid": "DynamoDBAccess",

"Effect": "Allow",

"Action": [

"dynamodb:GetItem",
"dynamodb:PutItem",
"dynamodb:UpdateItem",
"dynamodb:DeleteItem",
"dynamodb :Query",
"dynamodb:Scan"

1,

"Resource": "arn:aws-cn:dynamodb:us-east-1:123456789012:table/

EventsStateTable"
}I
{

"Sid": "SchedulerAccess",

"Effect": "Allow",

"Action": [
"scheduler:CreateSchedule"”,
"scheduler:DeleteSchedule"

1,

"Resource": "arn:aws-cn:scheduler:us-

east-1:123456789012:schedule/*"
}I
{
"Sid": "KinesisAccess",

"Effect": "Allow",

"Action": [
"kinesis:GetRecoxds",
"kinesis:GetShardIteratox",

Step 2: Create an IAM role 8

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon loT Events

Developer Guide

"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": "arn:aws-cn:kinesis:us-east-1:123456789012:stxeam/*"

"Sid": "IoTPublishAccess",

"Effect": "Allow",

"Action": "iot:Publish",

"Resource": "arn:aws-cn:iot:us-east-1:123456789012:topic/*"

"Effect": "Allow",
"Action": "logs:CreatelLogGroup",
"Resource": "arn:aws-cn:logs:us-east-1:123456789012:*"

"Effect": "Allow",
"Action": [
"logs:CreateLogStream",
"logs:PutLogEvents"
]I
"Resource": [
"arn:aws-cn:logs:us-east-1:123456789012:1o0g-group:/aws/

lambda/your-lambda:*"

1

2. Add the following IAM role trust policy. A trust policy allows the specified Amazon services
to assume the IAM role so that they can to perform necessary actions. For more detailed

instructions on creating an 1AM trust policy, see Create a role using custom trust policies in the

IAM User Guide.

JSON

"Version":"2012-10-17",
"Statement": [

{

"Effect": "Allow",

Step 2: Create an IAM role

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-custom.html

Amazon loT Events Developer Guide

"Principal": {

"Sexvice": [
"scheduler.amazonaws.com",
"lambda.amazonaws.com",
"iot.amazonaws.com"

},

"Action": "sts:AssumeRole"

Step 3: Create Amazon Kinesis Data Streams

Create Amazon Kinesis Data Streams using the Amazon Web Services Management Console or
Amazon CLI.

Console

To create a Kinesis data stream using the Amazon Web Services Management Console, follow
the procedure found on the Create a data stream page in the Amazon Kinesis Data Streams

Developer Guide.

Adjust the shard count based on your device count and message payload size.

Amazon CLI

Using Amazon CLI, create Amazon Kinesis Data Streams to ingest and partition the data from
your devices.

Kinesis Data Streams are used in this migration to replace the data ingestion functionality of
Amazon loT Events. It provides a scalable and efficient way to collect, process, and analyze
real-time streaming data from your loT devices, while providing flexible data handling and
integration with other Amazon services.

aws kinesis create-stream --stream-name your-kinesis-stream-name --shard-count 4 --
region your-region

Adjust the shard count based on your device count and message payload size.

Step 3: Create Amazon Kinesis Data Streams 10

https://docs.amazonaws.cn/streams/latest/dev/tutorial-stock-data-kplkcl-create-stream.html

Amazon loT Events Developer Guide

Step 4: Create or update the MQTT message routing rule

You can create a new MQTT message routing rule or update an existing rule.

Console

o Uk WD

Determine if you need a new MQTT message routing rule or if you can update an existing
rule.

Open the Amazon loT Core console.

In the navigation pane, choose Message Routing, and then choose Rules.
In the Manage section, choose Message routing, and then Rules.
Choose Create rule.

On the Specify rule properties page, enter the Amazon loT Core rule name for Rule name.
For Rule Description - optional, enter a description to identify that you're processing
events and forwarding them to Kinesis Data Streams.

On the Configure SQL statement page, enter the following for the SQL statement:
SELECT * FROM 'your-database’', then choose Next.

On the Attach rules actions page, and under Rule actions, choose kinesis.

Choose your Kinesis stream for the stream. For the partition key, enter your-instance-
id. Select the appropriate role for the IAM role, and then choose Add rule action.

For more information, see Creating Amazon loT rules to route device data to other services.

Amazon CLI

Create a JSON file with the following contents. This JSON configuration file defines an
Amazon loT Core rule that selects all messages from a topic and forwards them to the
specified Kinesis stream, using the instance ID as the partition key.

{
"sql": "SELECT * FROM 'your-config-file'",
"description": "Rule to process events and forward to Kinesis Data Streams",
"actions": [
{
"kinesis": {
"streamName": "your-kinesis-stream-name",
"roleArn": "arn:aws-cn:iam::your-account-id:role/service-

role/your-iam-role",

Step 4: Create or update the MQTT message routing rule 11

https://console.amazonaws.cn/iot/
https://docs.amazonaws.cn/iot/latest/developerguide/iot-rules-tutorial.html

Amazon loT Events Developer Guide

"partitionKey": "${your-instance-id}"

1,
"ruleDisabled": false,
"awsIotSglVersion": "2016-03-23"

2. Create the MQTT topic rule using the Amazon CLI. This step uses the Amazon CLI to create
an Amazon loT Core topic rule using the configuration defined in the events_xrule. json
file.

aws iot create-topic-rule \
--rule-name "your-iot-core-rule" \
--topic-rule-payload file://your-file-name.json

Step 5: Get the endpoint for the destination MQTT topic

Use the destination MQTT topic to configure where your topics publish outgoing messages,
replacing the functionality previously handled by Amazon IoT Events. The endpoint is unique to
your Amazon account and region.

Console

1. Open the Amazon loT Core console.

2. Inthe Connect section on the left navigation panel, choose Domain configuration.
3. Choose the iot:Data-ATS domain configuration to open the configuration's detail page.
4. Copy the Domain name value. This value is the endpoint. Save the endpoint value because
you'll need it in later steps.
Amazon CLI

Run the following command to get the Amazon loT Core endpoint for publishing outgoing
messages for your account.

aws iot describe-endpoint --endpoint-type iot:Data-ATS --region your-region

Step 5: Get the endpoint for the destination MQTT topic 12

https://console.amazonaws.cn/iot/

Amazon loT Events Developer Guide

Step 6: Create an Amazon DynamoDB table

A Amazon DynamoDB table replaces the state management functionality of Amazon loT Events,
providing a scalable and flexible way to persist and manage the state of your devices and the
detector model logic in your new solution architecture.

Console

Create a Amazon DynamoDB table to persist the state of the detector models. For more
information, see Create a table in DynamoDB in the Amazon DynamoDB Developer Guide.

Use the following for the table details:

» For Table name, enter a table name of your choosing.
« For Partition key, enter your own instance ID.

» You can use the Default settings for the Table settings

Amazon CLI

Run the following command to create a DynamoDB table.

aws dynamodb create-table \

--table-name your-table-name \

--attribute-definitions AttributeName=your-instance-
id,AttributeType=S \

--key-schema AttributeName=your-instance-id,KeyType=HASH \

Step 7: Create an Amazon Lambda function (console)

The Lambda function serves as the core processing engine, replacing the detector model
evaluation logic of Amazon loT Events. In the example, we integrate with other Amazon services to
handle incoming data, manage state, and trigger actions based on your defined rules.

Create a Lambda function with NodeJS runtime. Use the following code snippet, replacing the
hard-coded constants:

1. Open the Amazon Lambda console.

2. Choose Create function.

Step 6: Create an Amazon DynamoDB table 13

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://console.amazonaws.cn/lambda/

Amazon loT Events Developer Guide

3. Enter a name for the Function name.
4. Select NodelS 22.x as the Runtime.

5. In the Change default execution role dropdown, choose Use existing role, and then select the
IAM role that you created in earlier steps.

6. Choose Create function.
7. Paste in the following code snippet after replacing the hard coded constants.

8. After your function creates, under the Code tab, paste the following code example, replacing
the your-destination-endpoint endpoint with your own.

import { DynamoDBClient, GetItemCommand } from '@aws-sdk/client-dynamodb';

import { PutItemCommand } from '@aws-sdk/client-dynamodb';

import { IoTDataPlaneClient, PublishCommand } from "eaws-sdk/client-iot-data-plane";
import { SchedulerClient, CreateScheduleCommand, DeleteScheduleCommand } from "@aws-
sdk/client-scheduler"; // ES Modules import

//// External Clients and Constants
const scheduler = new SchedulerClient({});
const iot = new IoTDataPlaneClient({
endpoint: 'https://your-destination-endpoint-ats.iot.your-region.amazonaws.com/"'

1)
const ddb = new DynamoDBClient({});

//// Lambda Handler function
export const handler = async (event) => {
console.log('Incoming event:', JSON.stringify(event, null, 2));
if (!event.Records) {
throw new Error('No records found in event');

const processedRecords = [];

for (const record of event.Records) {

try {
if (record.eventSource !== 'aws:kinesis') {
console.log("Skipping non-Kinesis record from ${record.eventSource}');
continue;

Step 7: Create an Amazon Lambda function (console) 14

Amazon loT Events

Developer Guide

} ca

}

}

return {
stat
body
)

};

};

// Helper fu
async functi
try {

// Assumes that we are processing records from Kinesis

const payload = record.kinesis.data;

const decodedData = Buffer.from(payload, 'base64').toString();
console.log("decoded payload is ", decodedData);

const output = await handleDecodedData(decodedData);

// Add additional processing logic here
const processedData = {
output,
sequenceNumber: record.kinesis.sequenceNumber,
partitionKey: record.kinesis.partitionKey,
timestamp: record.kinesis.approximateArrivalTimestamp

};
processedRecords.push(processedData);
tch (error) {

console.error('Error processing record:', error);
console.error('Failed record:', record);

// Decide whether to throw error or continue processing other records

// throw error; // Uncomment to stop processing on first error

usCode: 200,

: JSON.stringify({

message: 'Processing complete’,
processedCount: processedRecords.length,
records: processedRecords

nction to handle decoded data
on handleDecodedData(payload) {

// Parse the decoded data

cons

// E

t parsedData = JSON.parse(payload);

xtract instanceld

Step 7: Create an Amazon Lambda function (console)

15

Amazon loT Events Developer Guide

const instanceld = parsedData.instanceld;

// Parse the input field

const inputData = JSON.parse(parsedData.payload);

const temperature = inputData.temperature;

console.log('For Instanceld: ', instanceld, ' the temperature is:',
temperature);

await iotEvents.process(instanceld, inputData)

return {
instanceld,
temperature,
// Add any other fields you want to return
rawInput: inputData
};
} catch (error) {
console.error('Error handling decoded data:', error);
throw error;

//// Classes for declaring/defining the state machine
class CurrentState {
constructor(instanceld, stateName, variables, inputs) {
this.stateName = stateName;
this.variables = variables;
this.inputs = inputs;
this.instanceld = instanceld

static async load(instancelId) {
console.log('Loading state for id ${instanceId}’);
try {
const { Item: { state: { S: stateContent } } } = await ddb.send(new
GetItemCommand({
TableName: 'EventsStateTable',
Key: {
'InstanceId': { S: “${instanceld}’ }
}
1)

const { stateName, variables, inputs } = JSON.parse(stateContent);

Step 7: Create an Amazon Lambda function (console) 16

Amazon loT Events Developer Guide

return new CurrentState(instanceld, stateName, variables, inputs);
} catch (e) {

console.log('No state for id ${instanceld}: ${el}’);

return undefined;

static async save(instanceld, state) {
console.log("Saving state for id ${instanceId}’);
await ddb.send(new PutItemCommand({
TableName: 'your-events-state-table-name',
Item: {
'InstanceId': { S: “${instanceId}’ 1},
'state': { S: state }
}
1)

setVariable(name, value) {
this.variables[name] = value;

changeState(stateName) {
console.log(‘Changing state from ${this.stateName} to ${stateNamel}');
this.stateName = stateName;

async setTimer(instanceld, frequencyInMinutes, payload) {
console.log("Setting timer ${instanceld} for frequency of ${frequencyInMinutes}
minutes’);

const base64Payload = Buffer.from(JSON.stringify(payload)).toString();
console.log(base64Payload);

const scheduleName = “your-schedule-name-${instanceld}-schedule";
const scheduleParams = {

Name: scheduleName,

FlexibleTimeWindow: {

Mode: 'OFF'
1,
ScheduleExpression: ‘rate(${frequencyInMinutes} minutes) ",
Target: {

Arn: "arn:aws-cn::kinesis:your-region:your-account-id:stream/your-
kinesis-stream-name",

Step 7: Create an Amazon Lambda function (console) 17

Amazon loT Events Developer Guide

RoleArn: "arn:aws-cn::iam::your-account-id:role/service-role/your-iam-

role",
Input: base64Payload,
KinesisParameters: {
PartitionKey: instanceld,
I
RetryPolicy: {
MaximumRetryAttempts: 3
}
I
I
const command = new CreateScheduleCommand(scheduleParams);
console.log("Sending command to set timer ${JSON.stringify(command)}’);
await scheduler.send(command);
}

async clearTimer(instancelId) {
console.log(Cleaning timer ${instanceld}’);

const scheduleName = ‘your-schedule-name-${instanceld}-schedule";
const command = new DeleteScheduleCommand({
Name: scheduleName

1)

await scheduler.send(command);

async executeAction(actionType, actionPayload) {
console.log('Will execute the ${actionType} with payload ${actionPayload}’);
await iot.send(new PublishCommand({
topic: “${this.instanceld}’,
payload: actionPayload,
qos: @
)

setInput(value) {
this.inputs = { ...this.inputs, ...value };

input(name) {
return this.inputs[name];

Step 7: Create an Amazon Lambda function (console) 18

Amazon loT Events

Developer Guide

}

class IoTEvents {

constructor(initialState) {

this.initialState = initialState;
this.states = {};

state(name) {

const state = new IoTEventsState();
this.states[name] = state;
return state;

async process(instanceId, input) {

let currentState = await CurrentState.load(instanceld) || new

CurrentState(instanceld, this.initialState, {3}, {3});

currentState.setInput(input);

console.log("With inputs as: ${JSON.stringify(currentState)l}’);
const state = this.states[currentState.stateName];

currentState = await state.evaluate(currentState);
console.log("With output as: ${JSON.stringify(currentState)}’);

await CurrentState.save(instanceld, JSON.stringify(currentState));

class Event {

constructor(condition, action) {

this.condition = condition;
this.action = action;

class IoTEventsState {

constructor() {

this.eventsList = []

events(eventListArg) {

Step 7: Create an Amazon Lambda function (console)

19

Amazon loT Events

Developer Guide

this.eventsList.push(...eventListArg);
return this;

async evaluate(currentState) {
for (const e of this.eventsList) {
console.log("Evaluating event ${e.condition}’);
if (e.condition(currentState)) {
console.log(Event condition met’);
// Execute any action as defined in iotEvents DM Definition
await e.action(currentState);

return currentState;

////// DetectorModel Definitions - replace with your own defintions
let processAlarmStateEvent = new Event(
(currentState) => {
const source = currentState.input('source');
return (
currentState.input('temperature') < 70
);
o
async (currentState) => {
currentState.changeState('normal"');
await currentState.clearTimer(currentState.instanceld)
await currentState.executeAction('MQTT', *{"state": "alarm cleared,
deleted" });
}
);

let processTimerEvent = new Event(
(currentState) => {
const source = currentState.input('source');
console.log(‘Evaluating timer event with source ${source}');

const booleanOutput = (source !== undefined && source !== null &&
typeof source === 'string' &&
source.tolowerCase() === 'timer' &&
// check if the currentState == state from the timer payload
currentState.input('currentState') !== undefined &&
currentState.input('currentState') !== null &&

timer

Step 7: Create an Amazon Lambda function (console)

20

Amazon loT Events Developer Guide

currentState.input('currentState').toLowerCase !== 'normal');
console.log('Timer event evaluated as ${booleanOutput}’);
return booleanOutput;

iy
async (currentState) => {
await currentState.executeAction('MQTT', “{'"state": "timer timed out in
Alarming state" }°);
}

)

let processNormalEvent = new Event(
(currentState) => currentState.input('temperature') > 70,
async (currentState) => {
currentState.changeState('alarm');
await currentState.executeAction('MQTT', ‘{"state": "alarm detected, timer
started" }°);
await currentState.setTimer(currentState.instanceld, 5, {
"instancelId": currentState.instanceld,
"payload":"{\"currentState\": \"alarm\", \"source\": \"timer\"}"

});

)i
const iotEvents = new IoTEvents('normal');
iotEvents
.state('normal"')
.events(
[
processNormalEvent
1);
iotEvents
.state('alarm')
.events([
processAlarmStateEvent,
processTimerEvent

);
Step 8: Add an Amazon Kinesis Data Streams trigger

Add a Kinesis Data Streams trigger to the Lambda function using the Amazon Web Services
Management Console or Amazon CLI.

Step 8: Add an Amazon Kinesis Data Streams trigger 21

Amazon loT Events Developer Guide

Adding a Kinesis Data Streams trigger to your Lambda function establishes the connection
between your data ingestion pipeline and your processing logic, letting it automatically evaluate
incoming loT data streams and react to events in real-time, similar to how Amazon loT Events
processes inputs.

Console

For more information, see Create an event source mapping to invoke a Lambda function in the
Amazon Lambda Developer Guide.

Use the following for the event source mapping details:

« For Function name, enter the lambda name used in Step 7: Create an Amazon Lambda
function (console).

» For Consumer - optional, enter the ARN for the your Kinesis stream.

« For Batch size, enter 10.

Amazon CLI

Run the following command to create the Lambda function trigger.

aws lambda create-event-source-mapping \

--function-name your-lambda-name \

--event-source arn:aws-cn:kinesis:your-region:your-account-id:stream/your-
kinesis-stream-name \

--batch-size 10 \

--starting-position LATEST \

--region your-region

Step 9: Test data ingestion and output functionality (Amazon CLI)

Publish a payload to the MQTT topic based on what you defined in your detector model. The
following is an example payload to the MQTT topic your-topic-name to test an implementation.

{

"instanceId": "your-instance-id",
"payload": "{\"temperature\":78}"
}

Step 9: Test data ingestion and output functionality (Amazon CLI) 22

https://docs.amazonaws.cn/lambda/latest/dg/services-kinesis-create.html#services-kinesis-eventsourcemapping

Amazon loT Events Developer Guide

You should see an MQTT message published to a topic with the following (or similar) content:

"state": "alarm detected, timer started"

Migration procedure for Amazon IoT SiteWise alarms in
Amazon loT Events

This section describes alternative solutions that deliver similar alarm functionality as you migrate
away from Amazon loT Events.

For Amazon loT SiteWise properties that use Amazon loT Events alarms, you can migrate to a
solution using CloudWatch alarms. This approach provides robust monitoring capabilities with
established SLAs and additional features like anomaly detection and grouped alarms.

Comparing architectures

The current Amazon loT Events alarm configuration for Amazon loT SiteWise properties requires
creating AssetModelCompositeModels in the asset model, as described in Define external

alarms in Amazon loT SiteWise in the Amazon IoT SiteWise User Guide. Modifications to the new

solution are typically managed through the Amazon loT Events console.

The new solution provides alarm management by leveraging CloudWatch alarms. This approach
uses Amazon loT SiteWise notifications to publish property data points to Amazon loT Core MQTT
topics, which are then processed by a Lambda function. The function transforms these notifications
into CloudWatch metrics, enabling alarm monitoring through CloudWatch's alarming framework.

Purpose Solution Differences

Data source - Amazon loT SiteWise Replaces direct 1oT Events integration with
Property data from MQTT notifications MQTT notifications from Amazon loT SiteWise
Amazon loT SiteWise properties

Data processing — Lambda function Processes Amazon loT SiteWise property
Transforms property notifications and converts them to CloudWatc
data h metrics

Alarms 23

https://docs.amazonaws.cn/iot-sitewise/latest/userguide/define-external-alarms.html
https://docs.amazonaws.cn/iot-sitewise/latest/userguide/define-external-alarms.html

Amazon loT Events

Developer Guide

Purpose

Alarm evaluation -
Monitors metrics and
triggers alarms

Integration -
Connection with
Amazon loT SiteWise

Solution

Amazon CloudWatch
alarms

Amazon loT SiteWise
external alarms

Differences

Replaces Amazon loT Events alarms with
CloudWatch alarms, offering additional
features like anomaly detection

Optional capability to import CloudWatch
alarms back into Amazon loT SiteWise as
external alarms

Step 1: Enable MQTT notifications on the asset property

If you are using Amazon loT Events integrations for Amazon loT SiteWise alarms, you can turn on
MQTT notifications for each property to monitor.

1. Follow the Configure alarms on assets in Amazon loT SiteWise procedure until you each the
step to Edit the asset model's properties.

2. For each property to migrate, change the MQTT Notification status to ACTIVE.

Properties
Property Type o
Attributes
[0O Attributes (1)]
"Alarm-Recipient: MQTT Notification status
O Measurements (2) [] [ACTIVE v]

Must be less than 2048 characters. Motification will be published to topic $aws/sitewisefasset:

models/

O Transforms (0)
[assets/

/properties/

O Metrics (2)

3. Note the topic path to which the alarm publishes for each modified alarm attribute.

For more information, see the following documentation resources:

« Understand asset properties in MQTT topics in the Amazon IoT SiteWise User Guide.

« MQTT topics in the Amazon IoT Developer Guide.

Step 1: Enable MQTT notifications on the asset property 24

https://docs.amazonaws.cn/iot-sitewise/latest/userguide/configure-alarms.html#configure-alarm-threshold-value-console
https://docs.amazonaws.cn/iot-sitewise/latest/userguide/mqtt-topics.html
https://docs.amazonaws.cn/iot/latest/developerguide/topics.html

Amazon loT Events Developer Guide

Step 2: Create an Amazon Lambda function

Create an Lambda function for reading the TQV array published by the MQTT topic and publish
individual values to CloudWatch. We'll use this Lambda function as a destination action to trigger
in Amazon loT Core Message Rules.

Open the Amazon Lambda console.

Choose Create function.
Enter a name for the Function name.

Select NodelJS 22.x as the Runtime.

i W=

In the Change default execution role dropdown, choose Use existing role, and then select the
IAM role that you created in earlier steps.

(@ Note

This procedure assumes that you've already migrated your detector model. If you don't
have an IAM role, see ???.

6. Choose Create function.

7. Paste in the following code snippet after replacing the hard coded constants.

import json
import boto3
from datetime import datetime

Initialize CloudWatch client
cloudwatch = boto3.client('cloudwatch')

def lambda_handler(message, context):
try:
Parse the incoming IoT message
Extract relevant information
asset_id = message['payload']['assetId']
property_id = messagel['payload']['propertylId’']

Process each value in the values array

for value in messagel['payload']['values']:
Extract timestamp and value
timestamp = datetime.fromtimestamp(value['timestamp']['timeInSeconds'])
metric_value = value['value']['doubleValue']

Step 2: Create an Amazon Lambda function 25

https://console.amazonaws.cn/lambda

Amazon loT Events Developer Guide

quality = value.get('quality', 'UNKNOWN')

Publish to CloudWatch

response = cloudwatch.put_metric_data(
Namespace="'IoTSiteWise/AssetMetrics"',
MetricData=[

{
'MetricName': f'Property_your-property-id',
'Value': metric_value,
'Timestamp': timestamp,
'Dimensions': [
{
'Name': 'AssetId',
'Value': 'your-asset-id'
},
{
'Name': 'Quality’,
'Value': quality
}
]
}
]
)
return {

'statusCode': 200,
'"body': json.dumps('Successfully published metrics to CloudWatch')

except Exception as e:
print(f'Error processing message: {str(e)}')
return {
'statusCode': 500,
'body': json.dumps(f'Error: {str(e)}')

Step 3: Create Amazon loT Core message routing rule

« Follow the Tutorial: Republishing an MQTT message procedure entering the following

information when prompted:

a. Name message routing rule SiteWiseToCloudwatchAlarms.

Step 3: Create Amazon loT Core message routing rule 26

https://docs.amazonaws.cn/iot/latest/developerguide/iot-repub-rule.html

Amazon loT Events Developer Guide

For the query, you can use the following:

SELECT * FROM '$aws/sitewise/asset-models/your-asset-model-id/assets/your-
asset-id/properties/your-property-id'

In Rule actions, select the Lambda action to send the data generated from Amazon loT
SiteWise to CloudWatch. For example:

Rule actions info
Select one or more actions to happen when the above rule is matched by an inbound message. Actions define additional activities that occur when messages arrive, like storing them in a database, invoking cloud functions, or sending notifications.
You can add up to 10 actions.

Action 1

o [- |
Send a message to a Lambda function

Lambda function Info

(ListenForSiteWiseUpdates v] @ (View [2) (Create a Lambda function [2)

Lambda function version

{ $LATEST v J @

Add rule action

Step 4: View CloudWatch metrics

As you ingest data to Amazon loT SiteWise, the property selected earlier in Step 1: Enable MQTT
notifications on the asset property, the routes data to the Lambda function we created in Step 2:

Create an Amazon Lambda function. In this step, you can check to see the Lambda sending your

metrics to CloudWatch.

1.

P WD

Open the CloudWatch Amazon Web Services Management Console.

In the left navigation, choose Metrics, then All metrics.
Choose an alarm's URL to open it.

Under the Source tab, the CloudWatch output looks similar to this example. This source
information confirms that the metric data is feeding into CloudWatch.

"view": "timeSeries",
"stacked": false,
"metrics": [
["IoTSiteWise/AssetMetrics", "Property_your-property-id-hash", "Quality",

"GOOD", "AssetId", "your-asset-id-hash", { "id": "ml1" }]

]I

"region": "your-region"

Step 4: View CloudWatch metrics 27

https://console.amazonaws.cn/cloudwatch/

Amazon loT Events Developer Guide

Step 5: Create CloudWatch alarms

Follow the Create a CloudWatch alarm based on a static threshold procedure in the Amazon

CloudWatch User Guide to create alarms for each relevant metric.

® Note

There are many options for alarm configuration in Amazon CloudWatch For more
information on CloudWatch alarms, see Using Amazon CloudWatch alarms in the Amazon
CloudWatch User Guide.

Step 6: (Optional) import the CloudWatch alarm into Amazon loT
SiteWise

You can configure CloudWatch alarms to send data back to Amazon loT SiteWise using CloudWatch
alarm actions and Lambda. This integration enables you to view alarm states and properties in the
SiteWise Monitor portal.

1. Configure the external alarm as a property in an asset model. For more information, see Define
external alarms in Amazon loT SiteWise in the Amazon IoT SiteWise User Guide.

2. Create a Lambda function that uses the BatchPutAssetPropertyValue API found in the Amazon
loT SiteWise User Guide to send alarm data to Amazon loT SiteWise.

3. Set up CloudWatch alarm actions to invoke your Lambda function when alarm states change.
For more information, see the Alarm actions section in the Amazon CloudWatch User Guide.

Step 5: Create CloudWatch alarms 28

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.amazonaws.cn/iot-sitewise/latest/userguide/define-external-alarms.html
https://docs.amazonaws.cn/iot-sitewise/latest/userguide/define-external-alarms.html
https://docs.amazonaws.cn/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html#alarms-and-actions.html

Amazon loT Events Developer Guide

Setting up Amazon loT Events

This section provides a guide to setting up Amazon loT Events, including creating an Amazon
account, configuring necessary permissions, and establishing roles for managing access to
resources.

Topics

» Setting up an Amazon Web Services account

» Setting up permissions for Amazon loT Events

Setting up an Amazon Web Services account

Sign up for an Amazon Web Services account
If you do not have an Amazon Web Services account, use the following procedure to create one.
To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your |IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

Setting up an Amazon Web Services account 29

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon loT Events Developer Guide

» Creating an IAM user in your Amazon Web Services account

 Access management for Amazon resources

« Example IAM identity-based policies

Setting up permissions for Amazon IoT Events

Implementing proper permissions is important for secure and effective use of Amazon loT Events.
This section describes the permissions that are required to use some features of Amazon loT
Events. You can use Amazon CLI commands or the Amazon Identity and Access Management (IAM)
console to create roles and associated permission policies to access resources or perform certain
functions in Amazon loT Events.

The IAM User Guide has more detailed information about securely controlling permissions to access

Amazon resources. For information specific to Amazon loT Events, see Actions, resources, and

condition keys for Amazon loT Events.

To use the IAM console to create and manage roles and permissions, see IAM tutorial: Delegate
access across Amazon accounts using IAM roles.

(® Note

Keys can be 1-128 characters and can include:

» uppercase or lowercase letters a-z
« numbers 0-9

 special characters -, _, or:.

Action permissions for Amazon loT Events

Amazon loT Events enables you to trigger actions which use other Amazon services. To do so,
you must grant Amazon loT Events permission to perform these actions on your behalf. This
section contains a list of the actions and an example policy which grants permission to perform
all these actions on your resources. Change the region and account-1id references as required.
When possible, you should also change the wildcards (*) to refer to specific resources that will

be accessed. You can use the IAM console to grant permission to Amazon loT Events to send an
Amazon SNS alert that you have defined. .

Setting up permissions for Amazon loT Events 30

https://docs.amazonaws.cn//IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awsiotevents.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awsiotevents.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html

Amazon loT Events Developer Guide

Amazon loT Events supports the following actions that let you use a timer or set a variable:

e setTimer to create a timer.
e resetTimer to reset the timer.
e clearTimer to delete the timer.

e setVariable to create a variable.

Amazon loT Events supports the following actions that let you work with Amazon services:

e iotTopicPublish to publish a message on an MQTT topic.

« iotEvents to send data to Amazon loT Events as an input value.

« iotSiteWise to send data to an asset property in Amazon loT SiteWise.

« dynamoDB to send data to an Amazon DynamoDB table.

e dynamoDBv?2 to send data to an Amazon DynamoDB table.

« firehose to send data to an Amazon Data Firehose stream.
« lambda to invoke an Amazon Lambda function.

 sns to send data as a push notification.

 sgs to send data to an Amazon SQS queue.

Example Policy

JSON

"Version":"2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "iot:Publish",
"Resource": "arn:aws-cn:iot:us-east-1:123456789012:topic/*"
}I
{
"Effect": "Allow",
"Action": "iotevents:BatchPutMessage",
"Resource": "arn:aws-cn:iotevents:us-east-1:123456789012:input/*"
},

Action permissions 31

Amazon loT Events Developer Guide

{

"Effect": "Allow",

"Action": "iotsitewise:BatchPutAssetPropertyValue",

"Resource": "*"
},
{

"Effect": "Allow",

"Action": "dynamodb:PutItem",

"Resource": "arn:aws-cn:dynamodb:us-east-1:123456789012:table/*"
}I
{

"Effect": "Allow",

"Action": [

"firehose:PutRecord",
"firehose:PutRecordBatch"
]I
"Resource": "arn:aws-cn:firehose:us-
east-1:123456789012:delivexrystxream/*"

},
{

"Effect": "Allow",

"Action": "lambda:InvokeFunction",

"Resource": "arn:aws-cn:lambda:us-east-1:123456789012:function:*"
}I
{

"Effect": "Allow",

"Action": "sns:Publish",

"Resource": "arn:aws-cn:sns:us-east-1:123456789012:*"
},
{

"Effect": "Allow",

"Action": "sqs:SendMessage",

"Resource": "arn:aws-cn:sqs:us-east-1:123456789012:*"
}

Securing input data in Amazon loT Events

It's important to consider who can grant access to input data for use in a detector model.
If you have a user or entity whose overall permissions you want to restrict, but that is
permitted to create or update a detector model, you must also grant permission for that

Securing input data 32

Amazon loT Events Developer Guide

user or entity to update input routing. This means that in addition to granting permission for
iotevents:CreateDetectorModel and iotevents:UpdateDetectorModel, you must also
grant permission for iotevents:UpdateInputRouting.

Example
The following policy adds permission for iotevents:UpdateInputRouting.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "updateRoutingPolicy",
"Effect": "Allow",
"Action": [
"iotevents:UpdateInputRouting"
1,
"Resource™: "*"
}
]
}

You can specify a list of input Amazon Resource Names (ARNSs) instead of the wildcard "*" for the
"Resource" to limit this permission to specific inputs. This enables you to restrict access to the
input data that is consumed by detector models created or updated by the user or entity.

Amazon CloudWatch logging role policy for Amazon IoT Events

The following policy documents provide the role policy and trust policy that allow Amazon loT
Events to submit logs to CloudWatch on your behalf.

Role policy:

JSON

"Version":"2012-10-17",

Amazon CloudWatch logging role policy

33

Amazon loT Events

Developer Guide

"Statement": [
{

"Effect": "Allow",

"Action": [
"logs:CreatelLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents",
"logs:PutMetricFiltex",
"logs:PutRetentionPolicy",
"logs:GetLogEvents",
"logs:DeletelLogStream"

]I

"Resource": [
"arn:aws-cn:logs:*:*:*"

Trust policy:

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Sexvice": [
"iotevents.amazonaws.com"
]
}I
"Action": "sts:AssumeRole"
}
]
}

Amazon CloudWatch logging role policy

34

Amazon loT Events Developer Guide

You also need an IAM permissions policy attached to the user that allows the user to pass roles, as
follows. For more information, see Granting a user permissions to pass a role to an Amazon service
in the JAM User Guide.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Sid": "",
"Effect": "Allow",
"Action": [
"iam:GetRole",
"iam:PassRole"
1,
"Resource": "arn:aws-cn:iam::123456789012:role/Role_To_Pass"
}
]
}

You can use the following command to put the resource policy for CloudWatch logs. This allows
Amazon loT Events to put log events into CloudWatch streams.

aws logs put-resource-policy --policy-name ioteventslLoggingPolicy --policy-
document "{ \"Version\": \"2012-10-17\", \"Statement\": [{ \"Sid\":
\"IoTEventsToCloudWatchLogs\", \"Effect\": \"Allow\", \"Principal\": { \"Service\":

[\"iotevents.amazonaws.com\"] }, \"Action\":\"logs:PutLogEvents\", \'"Resource\": \"*

\"} 11"

Use the following command to put logging options. Replace the roleArn with the logging role
that you created.

aws iotevents put-logging-options --cli-input-json "{ \"loggingOptions\": {\"roleArn\":
\"arn:aws-cn:iam::123456789012:role/testLoggingRole\", \"level\": \"INFO\", \"enabled
\": true } }"

Amazon CloudWatch logging role policy 35

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon loT Events Developer Guide

Amazon SNS messaging role policy for Amazon IoT Events

Integrating Amazon loT Events with Amazon SNS requires careful permission management for
secure and efficient notification delivery. This guide walks you through the process of configuring
IAM roles and policies to allow Amazon loT Events to publish messages to Amazon SNS topics.

The following policy documents provide the role policy and trust policy that allow Amazon loT
Events to send SNS messages.

Role policy:
JSON
{
"Version":"2012-10-17",
"Statement": [
{
"Action": [
"sns:*"
]I
"Effect": "Allow",
"Resource": "arn:aws-cn:sns:us-east-1:123456789012:testAction"
}
]
}

Trust policy:

JSON

{
"Version":"2012-10-17",
"Statement": [
{

"Sid": "",

"Effect": "Allow",

"Principal": {

"Service": [
"iotevents.amazonaws.com"

Amazon SNS messaging role policy 36

Amazon loT Events Developer Guide

},

"Action": "sts:AssumeRole"

Amazon SNS messaging role policy 37

Amazon loT Events Developer Guide

Getting started with the Amazon loT Events console

This section shows you how to create an input and a detector model using the Amazon loT Events

console. You model two states of an engine: a normal state and an over-pressure condition. When
the measured pressure in the engine exceeds a certain threshold, the model transitions from

the normal state to the over-pressure state. Then it sends an Amazon SNS message to alert a
technician about the condition. When the pressure again drops below the threshold for three
consecutive pressure readings, the model returns to the normal state and sends another Amazon
SNS message as a confirmation.

We check for three consecutive readings below the pressure threshold to eliminate possible
stuttering of over-pressure or normal messages, in case of a nonlinear recovery phase or an
anomalous pressure reading.

On the console, you can also find several pre-made detector model templates which you can
customize. You can also use the console to import detector models that others have written or
export your detector models and use them in different Amazon Regions. If you import a detector
model, make sure that you create the required inputs or recreate them for the new Region, and
update any role ARNs used.

Use the Amazon loT Events console to learn about the following.
Define inputs

To monitor your devices and processes, they must have a way to get telemetry data into
Amazon loT Events. This is done by sending messages as inputs to Amazon loT Events. You can
do this in several ways:

« Use the BatchPutMessage operation.

« In Amazon loT Core, write an Amazon loT Events action rule for the Amazon loT rules engine

that forwards your message data into Amazon loT Events. You must identify the input by
name.

« In Amazon loT Analytics, use the CreateDataset operation to create a data set with

contentDeliveryRules. These rules specify the Amazon loT Events input where data set
contents are sent automatically.

Before your devices can send data in this way, you must define one or more inputs. To do
so, give each input a name and specify which fields in the incoming message data the input
monitors.

38

https://console.amazonaws.cn/iotevents/
https://console.amazonaws.cn/iotevents/
https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-rule-actions.html#iotevents-rule
https://docs.amazonaws.cn/iotanalytics/latest/userguide/automate.html#aws-iot-analytics-automate-create-dataset

Amazon loT Events Developer Guide

Create a detector model

Define a detector model (a model of your equipment or process) using states. For each state,
define conditional (Boolean) logic that evaluates the incoming inputs to detect significant
events. When the detector model detects an event, it can change the state or initiate custom-
built or predefined actions using other Amazon services. You can define additional events that
initiate actions when entering or exiting a state and, optionally, when a condition is met.

In this tutorial, you send an Amazon SNS message as the action when the model enters or exits
a certain state.

Monitor a device or process

If you monitor several devices or processes, specify a field in each input that identifies

the particular device or process from which the input comes. See the key field in
CreateDetectorModel. When the input field identified by the key recognizes a new value, a
new device is identified and a detector is created. Each detector is an instance of the detector
model. The new detector continues responding to inputs coming from that device until its
detector model is updated or deleted.

If you monitor a single process (even if several devices or subprocesses are sending inputs), you
don't specify a unique identifying key field. In this case, the model creates a single detector
(instance) when the first input arrives.

Send messages as inputs to your detector model

There are several ways to send a message from a device or process as an input into an Amazon
loT Events detector that don't require you to perform additional formatting on the message. In
this tutorial, you use the Amazon loT console to write an Amazon loT Events action rule for the

Amazon loT rules engine that forwards your message data into Amazon loT Events.

To do this, identify the input by name and continue to use the Amazon loT console to generate
messages that are forwarded as inputs to Amazon loT Events.

(® Note

This tutorial uses the console to create the same input and detector model shown
in the example at Tutorials for Amazon loT Events uses cases. You can use the this JSON

example to help you follow the tutorial.

39

https://docs.amazonaws.cn/iot/latest/developerguide/iot-rule-actions.html#iotevents-rule

Amazon loT Events Developer Guide

Topics

Prerequisites to get started with Amazon loT Events

Create an input for models in Amazon loT Events

Create a detector model in Amazon loT Events

Send inputs to test the detector model in Amazon IoT Events

Prerequisites to get started with Amazon loT Events

If you don't have an Amazon account, create one.

1.

Follow the step in Setting up Amazon IoT Events to ensure proper account setup and

permissions.

Create two Amazon Simple Notification Service (Amazon SNS) topics.

This tutorial (and the corresponding example) assume that you created two

Amazon SNS topics. The ARNs of these topics are shown as: arn:aws-cn:sns:us-
east-1:123456789012:underPressureAction and arn:aws-cn:sns:us-
east-1:123456789012:pressureClearedAction. Replace these values with the ARNs of
Amazon SNS topics that you create. For more information, see the Amazon Simple Notification

Service Developer Guide.

As an alternative to publishing alerts to Amazon SNS topics, you can have the detectors

send MQTT messages with a topic that you specify. With this option, you can verify that your
detector model is creating instances and that those instances are sending alerts by using the
Amazon loT Core console to subscribe to and monitor messages sent to those MQTT topics.
You can also define the MQTT topic name dynamically at runtime by using an input or variable
created in the detector model.

Choose an Amazon Web Services Region that supports Amazon loT Events. For more
information, see Amazon loT Events in the Amazon Web Services General Reference. For help,

see Getting started with a service in the Amazon Web Services Management Console in the

Getting Started with the Amazon Web Services Management Console.

Prerequisites 40

https://docs.amazonaws.cn/sns/latest/dg/
https://docs.amazonaws.cn/sns/latest/dg/
https://docs.amazonaws.cn/general/latest/gr/rande.html#iotevents_region
https://docs.amazonaws.cn/awsconsolehelpdocs/latest/gsg/start-service.html

Amazon loT Events Developer Guide

Create an input for models in Amazon loT Events

When you construct the inputs for your models, we recommend gathering files that contain sample
message payloads that your devices or processes send to report their health status. Having these
files helps you define the inputs that are required.

You can create an input through multiple methods that are described in this section.

Create a JSON input file

1. To get started, create a file named input. json on your local file system with the following
contents:

{
"motorid": "Fulton-A32",
"sensorData": {
"pressure": 23,
"temperature": 47
}
}

2. Now that you have this starter input. json file, you can create an input. There are two ways
to create an input. You can create an input by using the navigation pane in the Amazon loT
Events console . Or, you can create an input within the detector model after it's created.

Create and configure an input

Learn how to create an input, for an alarm model or a detector model.

1. Log into the Amazon loT Events console or select the option to Create a new Amazon loT
Events account.

2. Inthe Amazon loT Events console, in the upper left corner, select and expand the navigation
pane.

In the left navigation pane, select Inputs.
In the right corner of the console, choose Create input.

Provide a uniquelnputName.

o v &~ W

Optional - enter a Description for your input.

Create an input 41

https://console.amazonaws.cn/iotevents/
https://console.amazonaws.cn/iotevents/
https://console.amazonaws.cn/iotevents/

Amazon loT Events Developer Guide

7. To Upload a JSON file, select the input. json file that you created in the overview for Create

a JSON input file. Choose input attributes appears with a list of your entered attributes.

8. For Choose input attributes, select the attributes to use, and choose Create. In this example,
we select motorid and sensorData.pressure.

9. Optional - Add relevant Tags to the input.

(@ Note

You can also create additional inputs within the detector model in the Amazon loT Events

console . For more information, see Create an input within the Detector Model in Amazon
loT Events.

Create an input within the Detector Model in Amazon loT Events

Detector inputs in Amazon loT Events serve as the bridge between your data sources and detector
models. Detector inputs provide the raw data that powers the event detection and automation
capabilities of Amazon loT Events. Learn to configure detector inputs to help your models respond
accurately to real-world events and conditions in your loT ecosystem.

This section shows how to define an input for a detector model to receive telemetry data, or
messages.

To define an input for a detector model

1. Open the Amazon loT Events console.

In the Amazon loT Events console, choose Create detector model.
Choose Create new.

Choose Create input.

ok W

For the input, enter an InputName, an optional Description, and choose Upload file. In the
dialog box that displays, select the input. json file that you created in the overview for
Create a JSON input file.

6. For Choose input attributes, select the attributes to use, and choose Create. In this example,
we select motorld and sensorData.pressure.

Create an input within the Detector Model 42

https://console.amazonaws.cn/iotevents/
https://console.amazonaws.cn/iotevents/
https://console.amazonaws.cn/iotevents/

Amazon loT Events Developer Guide

Create a detector model in Amazon loT Events

In this topic, you define a detector model (a model of your equipment or process) using states.

For each state, you define conditional (Boolean) logic that evaluates the incoming inputs to detect
a significant event. When an event is detected, it changes the state and can initiate additional
actions. These events are known as transition events.

In your states, you also define events that can run actions whenever the detector enters or exits
that state or when an input is received (these are known as OnEnter, OnExit and OnInput
events). The actions run only if the event's conditional logic evaluates to true.

To create a detector model

1. The first detector state has been created for you. To modify it, select the circle with label
State_1 in the main editing space.

2. Inthe State pane, enter the State name and OnEnter, choose Add event.

3. Onthe Add OnEnter event page, enter an Event name and the Event condition. In this
example, enter true to indicate the event is always initiated when the state is entered.

4. Under Event actions, choose Add action.

5. Under Event actions, do the following:

a. Select Set variable

b. For Variable operation, choose Assign value.

c. For Variable name, enter the name of the variable to set.
d. For Variable value, enter the value @ (zero).

6. Choose Save.

A variable, like the one you defined, can be set (given a value) in any event in the detector
model. The variable's value can only be referenced (for example, in an event's conditional
logic) after the detector has reached a state and run an action where it is defined or set.

7. In the State pane, choose the X next to State to return to the Detector model palette.

8. To create a second detector state, in the Detector model palette, choose State and drag it into
the main editing space. This creates a state titled untitled_state_1.

9. Pause on the first state (Normal). An arrow appears on the circumference of the state.

Create a detector model 43

Amazon loT Events Developer Guide

10.

11.

12.
13.
14.

15.
16.
17.

18.

19.

Click and drag the arrow from the first state to the second state. A directed line from the first
state to the second state (labeled Untitled) appears.

Select the Untitled line. In the Transition event pane, enter an Event name and Event trigger
logic.

In the Transition event pane, choose Add action.
On the Add transition event actions pane, choose Add action.

For Choose an action, choose Set variable.

a. For Variable operation, choose Assign value.
b. For Variable name, enter the name of the variable.

c. For Assign value, enter the value such as: $variable.pressureThresholdBreached
+ 3

d. Choose Save.
Select the second state untitled_state_1.
In the State pane, enter the State name and for On Enter, choose Add event.

On the Add OnEnter event page, enter the Event name and Event condition. Choose Add
action.

For Choose an action, choose Send SNS message.

a. For SNS topic, enter the target ARN of your Amazon SNS topic.
b. Choose Save.

Continue to add the events in the example.

a. For Onlnput, choose Add event, and enter and save the following event information.

Event name: Overpressurized
Event condition: $input.PressurelInput.sensorData.pressure > 70
Event actions:
Set variable:
Variable operation: Assign value
Variable name: pressureThresholdBreached
Assign value: 3

b. For Oninput, choose Add event, and enter and save the following event information.

Event name: Pressure Okay

Create a detector model 44

Amazon loT Events Developer Guide

Event condition: $input.PressurelInput.sensorData.pressure <= 70
Event actions:
Set variable:
Variable operation: Decrement
Variable name: pressureThresholdBreached

c. For OnExit, choose Add event, and enter and save the following event information using
the ARN of the Amazon SNS topic that you created.

Event name: Normal Pressure Restored
Event condition: true
Event actions:
Send SNS message:
Target arn: arn:aws:sns:us-east-1:123456789012:pressureClearedAction

20. Pause on the second state (Dangerous). An arrow appears on the circumference of the state

21. Click and drag the arrow from the second state to the first state. A directed line with label
Untitled appears.

22. Choose the Untitled line and in the Transition event pane, enter an Event name and Event
trigger logic using the following information.

Event name: BackToNormal
Event trigger logic: $input.Pressurelnput.sensorData.pressure <= 70 &&
$variable.pressureThresholdBreached <= 0

}

For more information about why we test for the $input value and the $variable value in
the trigger logic, see the entry for availability of variable values in Amazon IoT Events detector

model restrictions and limitations.

23. Select the Start state. By default, this state was created when you created a detector model).
In the Start pane, choose the Destination state (for example, Normal).

24. Next, configure your detector model to listen for inputs. In the upper-right corner, choose
Publish.

25. On the Publish detector model page, do the following.

a. Enter a Detector model name, a Description, and the name of a Role. This role is created
for you.

Create a detector model 45

Amazon loT Events Developer Guide

b. Choose Create a detector for each unique key value. To create and use your own Role,
follow the steps in Setting up permissions for Amazon loT Events and enter it as the Role
here.

26. For Detector creation key, choose the name of one of the attributes of the input you defined
earlier. The attribute that you choose as the detector creation key must be present in each
message input, and must be unique to each device that sends messages. This example uses the
motorid attribute.

27. Choose Save and publish.

(@ Note

The number of unique detectors created for a given detector model is based on the

input messages sent. When a detector model is created, a key is selected from the input
attributes. This key determines which detector instance to use. If the key hasn't been seen
before (for this detector model), a new detector instance is created. If the key has been
seen before, we use the existing detector instance corresponding to this key value.

You can make a backup copy of your detector model definition (in JSON) recreate or update the
detector model or use as a template to create another detector model.

You can do this from the console or by using the following CLI command. If necessary, change the
name of the detector model to match what you used when you published it in the previous step.

aws iotevents describe-detector-model --detector-model-name motorDetectorModel >
motorDetectorModel. json

This creates a file (notorDetectorModel. json) that has contents similar to the following.

"detectorModel": {
"detectorModelConfiguration": {
"status": "ACTIVE",
"lastUpdateTime": 1552072424.212,
"roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole",
"creationTime": 1552072424.212,
"detectorModelArn": "arn:aws:iotevents:us-
west-2:123456789012:detectorModel/motorDetectorModel",

Create a detector model 46

Amazon loT Events

Developer Guide

"key": "motorid",
"detectorModelName": "motorDetectorModel",
"detectorModelVersion": "1"

iy

"detectorModelDefinition": {
"states": [

{
"onInput": {
"transitionEvents": [
{
"eventName": "Overpressurized",
"actions": [
{
"setVariable": {
"variableName":
"pressureThresholdBreached",
"value":
"$variable.pressureThresholdBreached + 3"
}
}
1,
"condition": "$input.Pressurelnput.sensorData.pressure
> 70",
"nextState": "Dangerous"
}
1,
"events": []
I
"stateName": "Normal",
"onEnter": {
"events": [
{
"eventName": "init",
"actions": [
{
"setVariable": {
"variableName":
"pressureThresholdBreached",
"value": "OQ"
}
}
1,
"condition": "true"
}
Create a detector model 47

Amazon loT Events Developer Guide

]
I
"onExit": {
"events": []
}
I
{
"onInput": {
"transitionEvents": [
{
"eventName": "Back to Normal",
"actions": [],
"condition": "$variable.pressureThresholdBreached <= 1
&& $input.Pressurelnput.sensorData.pressure <= 70",
"nextState": "Normal"
}
1,
"events": [
{
"eventName": "Overpressurized",
"actions": [
{
"setVariable": {
"variableName":
"pressureThresholdBreached",
"value": "3"
}
}
1,
"condition": "$input.Pressurelnput.sensorData.pressure
> 70"
I
{
"eventName": "Pressure Okay",
"actions": [
{
"setVariable": {
"variableName":
"pressureThresholdBreached",
"value":

"$variable.pressureThresholdBreached - 1"

1,

Create a detector model 48

Amazon loT Events Developer Guide

"condition": "$input.Pressurelnput.sensorData.pressure
<= 7®||

iy
"stateName": "Dangerous",
"onEnter": {

"events": [

{
"eventName": "Pressure Threshold Breached",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-
west-2:123456789012:MyIoTButtonSNSTopic"
}
}
1,
"condition": "$variable.pressureThresholdBreached > 1"
}
]
I
"onExit": {
"events": [
{
"eventName": "Normal Pressure Restored",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-
west-2:123456789012:IoTVirtualButtonTopic"
}
}
1,
"condition": "true"
}
]
}
}
1,
"initialStateName": "Normal"

Create a detector model 49

Amazon loT Events Developer Guide

}

Send inputs to test the detector model in Amazon loT Events

There are several ways to receive telemetry data in Amazon loT Events (see Supported actions
to receive data and trigger actions in Amazon loT Events). This topic shows you how to create an

Amazon loT rule in the Amazon loT console that forwards messages as inputs to your Amazon loT
Events detector. You can use the Amazon loT console's MQTT client to send test messages. You can
use this method to get telemetry data into Amazon IoT Events when your devices are able to send
MQTT messages using the Amazon loT message broker.

To send inputs to test the detector model

1. Open the Amazon loT Core console. In the left navigation pane, under Manage, choose

Message routing, then choose Rules.
2. Choose Create rule in the upper right.

3. Onthe Create a rule page, complete the following steps:

1. Step 1. Specify rule properties. Complete the following fields:

« Rule name. Enter a name for your rule, such as M\yIoTEventsRule.

(® Note

Do not use spaces.

» Rule description. This is optional.
« Choose Next.
2. Step 2. Configure SQL statement. Complete the following fields:
« SQL version. Select the appropriate option from the list.
« SQL statement. Enter SELECT *, topic(2) as motorid FROM 'motors/+/
status’.
Choose Next.
3. Step 3. Attach rule actions. In the Rule actions section, complete the following:

« Action 1. Select loT Events. The following fields appear:

Test the detector model 50

https://console.amazonaws.cn/iot/

Amazon loT Events Developer Guide

a. Input name. Select the appropriate option from the list. If your input doesn't appear,
choose Refresh.

To create a new input, choose Create loT Events input. Complete the following fields:
e Input name. Enter PressureInput.
» Description. This is optional.

» Upload a JSON file. Upload a copy of your JSON file. There is a link to a sample file
on this screen, if you don't have a file. The code includes:

{
"motorid": "Fulton-A32",
"sensorData": {
"pressure": 23,
"temperature": 47
}
}

« Choose input attributes. Select the appropriate option(s).

« Tags. This is optional.
Choose Create.

Return to the Create rule screen and refresh the Input name field. Select the input you
just created.

b. Batch mode. This is optional. If the payload is an array of messages, select this option.
c. Message ID. This is optional, but recommended.

d. IAM role. Select the appropriate role from the list. If the role isn't listed, choose Create
new role.

Type a Role name and choose Create.

To add another rule, choose Add rule action

« Error action. This section is optional. To add an action, choose Add error action and
select the appropriate action from the list.

Complete the fields that appear.

+ Choose Next.

Test th4 dSteprdIReview and create. Review the information on the screen and choose Create. 51

Amazon loT Events Developer Guide

4. In the left navigation pane, under Test, choose MQTT test client.

5. Choose Publish to a topic. Complete the following fields:

« Topic name. Enter a name to identify the message, such as motors/Fulton-A32/status.

« Message payload. Enter the following:

{
"messageld": 100,

"sensorData": {
"pressure": 39

}
}

(@ Note

Change the messageId each time you publish a new message.

6. For Publish, keep the topic the same, but change the "pressure" in the payload to a value
greater than the threshold value that you specified in the detector model (such as 85).

7. Choose Publish.

The detector instance that you created generates and sends you an Amazon SNS message.
Continue to send messages with pressure readings above or below the pressure threshold (70 for
this example) to see the detector in operation.

In this example, you must send three messages with pressure readings below the threshold to
transition back to the Normal state and receive an Amazon SNS message that indicates the
overpressure condition has cleared. Once back in the Normal state, one message with a pressure
reading above the limit causes the detector to enter the Dangerous state and send an Amazon SNS
message indicating that condition.

Now that you have created a simple input and detector model, try the following.

» See more detector model examples (templates) on the console.

» Follow the steps in Create an Amazon loT Events detector for two states using CLI to create an

input and detector model using the Amazon CLI

» Learn details of the Expressions to filter, transform, and process event data used in events.

Test the detector model 52

Amazon loT Events Developer Guide

» Learn about Supported actions to receive data and trigger actions in Amazon loT Events.

« If something isn't working, see Troubleshooting Amazon loT Events.

Test the detector model 53

Amazon loT Events Developer Guide

Best practices for Amazon loT Events

Follow these best practices to get the maximum benefit from Amazon IoT Events.

Topics

« Enable Amazon CloudWatch logging when developing Amazon loT Events detector models

» Publish reqularly to save your detector model when working in the Amazon IoT Events console

Enable Amazon CloudWatch logging when developing Amazon
loT Events detector models

Amazon CloudWatch monitors your Amazon resources and the applications that you run on
Amazon in real time. With CloudWatch, you gain system-wide visibility into resource use,
application performance, and operational health. When you develop or debug an Amazon loT
Events detector model, CloudWatch helps you know what Amazon IoT Events is doing, and any
errors that it encounters.

To enable CloudWatch

1. If you haven't already, follow the steps in Setting up permissions for Amazon IoT Events to

create a role with an attached policy that grants permission to create and manage CloudWatch
logs for Amazon loT Events.

Go to the Amazon loT Events console.

In the navigation pane, choose Settings.

On the Settings page, choose Edit.

ik W

On the Edit logging options page, in the Logging options section, do the following:

a. For Level of verbosity, select an option.

b. For Select role, select a role with sufficient permissions to perform the logging actions
that you chose.

c. (Optional) If you chose Debug for the Level of verbosity, you can add Debug targets by
doing the following:

i. Under Debug targets, choose Add Model Option.

Enable Amazon CloudWatch logging when developing Amazon loT Events detector models 54

https://console.amazonaws.cn/iotevents/

Amazon loT Events Developer Guide

ii. Enter a Detector Model Name and (optional) KeyValue to specify the detector
models and specific detectors (instances) to log.

6. Choose Update.

Your logging options are successfully updated.

Publish regularly to save your detector model when working in
the Amazon loT Events console

When you use the Amazon loT Events console, your work in progress is saved locally in your
browser. However, you must choose Publish to save your detector model to Amazon loT Events.
After you publish a detector model, your published work will become available in any browser that
you use to access your account.

® Note

If you don't publish your work, it will not be saved. After you publish a detector model, you
can't change its name. However, you can continue modifying its definition.

Publish regularly to save your detector model when working in the Amazon loT Events console 55

Amazon loT Events Developer Guide

Tutorials for Amazon loT Events uses cases

Amazon loT Events tutorials provide a collection of procedures covering various aspects of Amazon
loT Events, from basic setup to more specific use cases. Each tutorial shows examples of practical
scenarios, helping you build real-world skills in creating detector models, configuring inputs,
setting up actions, and integrating with other Amazon services to create powerful 10T solutions.

This chapter shows you how to:

» Get help to decide which states to include in your detector model, and determine whether you
need one detector instance or several.

» Follow an example that uses the Amazon CLI.

» Create an input to receive telemetry data from a device and a detector model to monitor and
report on the state of the device that sends that data.

» Review restrictions and limitations on inputs, detector models, and the Amazon loT Events
service.

» See a more complex example of a detector model, with comments included.

Topics

Using Amazon loT Events to monitor your loT devices

Create an Amazon loT Events detector for two states using CLI

Amazon loT Events detector model restrictions and limitations

A commented example: HVAC temperature control with Amazon loT Events

Using Amazon loT Events to monitor your loT devices

You can use Amazon loT Events to monitor your devices or processes, and take action based on
significant events. To do so, follow these basic steps:

Create inputs

You must have a way for your devices and processes to get telemetry data into Amazon
loT Events. You do this by sending messages as inputs to Amazon loT Events. You can send
messages as inputs in several ways:

» Use the BatchPutMessage operation.

Using Amazon loT Events to monitor your loT devices 56

https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html

Amazon loT Events Developer Guide

« Define an iotEvents rule-action for the Amazon loT Core rules engine. The rule-action
forwards message data from your input into Amazon loT Events.

« In Amazon loT Analytics, use the CreateDataset operation to create a data set with
contentDeliveryRules. These rules specify the Amazon loT Events input where data set
contents are sent automatically.

» Define an iotEvents action in an Amazon loT Events detector model's onInput, onExit or
transitionEvents event. Information about the detector model instance and the event
that initiated the action are fed back into the system as an input with the name that you

specify.

Before your devices start sending data in this way, you must define one or more inputs. To do
so, give each input a name and specify which fields in the incoming message data the input
monitors. Amazon loT Events receives its input, in the form of JSON payload, from many
sources. Each input can be acted on by itself, or combined with other inputs to detect more
complex events.

Create a detector model

Define a detector model (a model of your equipment or process) using states. For each state,

you define conditional (Boolean) logic that evaluates the incoming inputs to detect significant
events. When an event is detected, it can change the state or initiate custom-built or predefined
actions using other Amazon services. You can define additional events that initiate actions when
entering or exiting a state and, optionally, when a condition is met.

In this tutorial, you send an Amazon SNS message as the action when the model enters or exits
a certain state.

Monitor a device or process

If you're monitoring several devices or processes, you specify a field in each input that

identifies the particular device or process the input comes from. (See the key field in
CreateDetectorModel.) When a new device is identified (a new value is seen in the input
field identified by the key), a detector is created. (Each detector is an instance of the detector
model.) Then the new detector continues responding to inputs coming from that device until its
detector model is updated or deleted.

If you're monitoring a single process (even if several devices or subprocesses are sending inputs),
you don't specify a unique identifying key field. In this case, a single detector (instance) is
created when the first input arrives.

Using Amazon loT Events to monitor your loT devices 57

https://docs.amazonaws.cn/iot/latest/developerguide/iotevents-rule-action.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-rule-actions.html
https://docs.amazonaws.cn/iotanalytics/latest/userguide/automate.html#aws-iot-analytics-automate-create-dataset
https://docs.amazonaws.cn/iotevents/latest/apireference/API_IotEventsAction.html

Amazon loT Events Developer Guide

Send messages as inputs to your detector model

There are several ways to send a message from a device or process as an input into an Amazon
loT Events detector that don't require you to perform additional formatting on the message.
In this tutorial, you use the Amazon IoT console to write an Amazon loT Events action rule for

the Amazon loT Core rules engine that forwards your message data into Amazon loT Events. To
do this, you identify the input by name. Then you continue to use the Amazon loT console to
generate some messages that are forwarded as inputs to Amazon loT Events.

How do you know which states you need in a detector model?

To determine what states your detector model should have, first decide what actions you can take.
For example, if your automobile runs on gasoline, you look at the fuel gauge when you start a trip
to see if you need to refuel. Here you have one action: tell the driver to "go get gas". Your detector
model needs two states: "car doesn't need fuel”, and "car does need fuel". In general, you want to
define one state for each possible action, plus one more for when no action is required. This works
even if the action itself is more complicated. For example, you might want to look up and include
information on where to find the closest gas station, or the cheapest price, but you do this when
you send the message to "go get gas".

To decide which state to enter next, you look at inputs. Inputs contain the information that you
need to decide what state you should be in. To create an input, you select one or more fields in a
message sent by your device or process that help you decide. In this example, you need one input
that tells you the current fuel level ("percent full"). Maybe your car is sending you several different
messages, each with several different fields. To create this input, you must select the message
and the field that reports the current gas gauge level. The length of the trip you are about to take
("distance to destination") can be hardcoded to keep things simple; you can use your average trip
length. You'll do some calculations based on the input (how many gallons does that percent full
translate to? is the average trip length greater than the miles you can travel, given the gallons you
have and your average "miles per gallon"). You perform these calculations and send messages in
events.

So far you have two states and one input. You need an event in the first state that performs the
calculations based on the input and decides whether to go to the second state. That is a transition
event. (transitionEvents are in a state's onInput event list. On receiving an input in this first
state, the event performs a transition to the second state, if the event's condition is met.) When
you reach the second state, you send the message as soon as you enter the state. (You use an
onEnter event. On entering the second state, this event sends the message. No need to wait

How do you know which states you need in a detector model? 58

https://docs.amazonaws.cn/iot/latest/developerguide/iot-rule-actions.html#iotevents-rule

Amazon loT Events Developer Guide

for another input to arrive.) There are other types of events, but that's all you need for a simple
example.

The other types of events are onExit and onInput. As soon as an input is received, and the
condition is met, an onInput event performs the specified actions. When an operation exits its
current state, and the condition is met, the onExit event performs the specified actions.

Are you missing anything? Yes, how do you get back to the first "car doesn't need fuel" state? After
you fill your gas tank, the input shows a full tank. In your second state you need a transition event
back to the first state that happens when the input is received (in the second state's onInput:
events). It should transition back to the first state if its calculations show you now have enough gas
to get you where you want to go.

That's the basics. Some detector models get more complex by adding states that reflect important
inputs, not just possible actions. For example, you might have three states in a detector model that
keeps track of the temperature: a "normal" state, a "too hot" state, and a "potential problem" state.
You transition to the potential problem state when the temperature rises above a certain level, but
hasn't become too hot yet. You don't want to send an alarm unless it stays at this temperature for
more than 15 minutes. If the temperature returns to normal before then, the detector transitions
back to the normal state. If the timer expires, the detector transitions to the too hot state and
sends an alarm, just to be cautious. You could do the same thing using variables and a more
complex set of event conditions. But often it is easier to use another state to, in effect, store the
results of your calculations.

How do you know if you need one instance of a detector or several?

To decide how many instances you need, ask yourself "What are you interested in knowing?"

Let's say you want to know what the weather is like today. Is it raining (state)? Do you need to

take an umbrella (action)? You can have a sensor that reports the temperature, another that
reports the humidity, and others that report the barometric pressure, wind speed and direction,
and precipitation. But you must monitor all these sensors together to determine the state of the
weather (rain, snow, overcast, sunny) and the appropriate action to take (grab an umbrella or apply
sunscreen). In spite of the number of sensors, you want one detector instance to monitor the state
of the weather and inform you which action to take.

But if you're the weather forecaster for your region, you might have multiple instances of such
sensor arrays, situated at different locations throughout the region. People at each location need
to know what the weather is like in that location. In this case, you need multiple instances of your
detector. The data reported by each sensor in each location must include a field that you have

How do you know if you need one instance of a detector or several? 59

Amazon loT Events Developer Guide

designated as the key field. This field enables Amazon loT Events to create a detector instance for
the area, and then to continue to route this information to that detector instance as it continues to
arrive. No more ruined hair or sunburned noses!

Essentially, you need one detector instance if you have one situation (one process or one location)
to monitor. If you have many situations (locations, processes) to monitor, you need multiple
detector instances.

Create an Amazon loT Events detector for two states using CLI

In this example, we call the Amazon loT Events APIs using Amazon CLI commands to create a
detector that models two states of an engine: a normal state and an over-pressure condition.

When the measured pressure in the engine exceeds a certain threshold, the model transitions to
the over-pressure state and sends an Amazon Simple Notification Service (Amazon SNS) message
to alert a technician to the condition. When the pressure drops below the threshold for three
consecutive pressure readings, the model returns to the normal state and sends another Amazon
SNS message as a confirmation that the condition has cleared. We require three consecutive
readings below the pressure threshold to eliminate possible stuttering of over-pressure/normal
messages in case of a nonlinear recovery phase or a one-off anomalous recovery reading.

The following is an overview of the steps to create the detector.

Create inputs.

To monitor your devices and processes, they must have a way to get telemetry data into
Amazon loT Events. This is done by sending messages as inputs to Amazon loT Events. You can
do this in several ways:

« Use the BatchPutMessage operation. This method is easy but requires that your devices or
processes are able to access the Amazon loT Events API through an SDK or the Amazon CLI.

e In Amazon loT Core, write an Amazon loT Events action rule for the Amazon loT Core rules

engine that forwards your message data into Amazon loT Events. This identifies the input
by name. Use this method if your devices or processes can, or already are, sending messages
through Amazon loT Core. This method generally requires less computing power from a
device.

« In Amazon loT Analytics, use the CreateDataset operation to create a data set with

contentDeliveryRules that specify the Amazon IoT Events input, where data set contents

Simple step-by-step example 60

https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-rule-actions.html#iotevents-rule
https://docs.amazonaws.cn/iotanalytics/latest/userguide/automate.html#aws-iot-analytics-automate-create-dataset

Amazon loT Events Developer Guide

are sent automatically. Use this method if you want to control your devices or processes
based on data aggregated or analyzed in Amazon loT Analytics.

Before your devices can send data in this way, you must define one or more inputs. To do so,
give each input a name and specify which fields in the incoming message data that the input
monitors.

Create a detector model

Create a detector model (a model of your equipment or process) using states. For each state,
define conditional (Boolean) logic that evaluates the incoming inputs to detect significant
events. When an event is detected, it can change the state or initiate custom-built or predefined
actions using other Amazon services. You can define additional events that initiate actions when
entering or exiting a state and, optionally, when a condition is met.

Monitor several devices or processes

If you're monitoring several devices or processes and you want to keep track of each of them
separately, specify a field in each input that identifies the particular device or process the input
comes from. See the key field in CreateDetectorModel. When a new device is identified (a
new value is seen in the input field identified by the key), a detector instance is created. The
new detector instance continues to respond to inputs coming from that particular device until
its detector model is updated or deleted. You have as many unique detectors (instances) as
there are unique values in input key fields.

Monitor a single device or process

If you're monitoring a single process (even if several devices or subprocesses are sending inputs),
you don't specify a unique identifying key field. In this case, a single detector (instance) is
created when the first input arrives. For example, you might have temperature sensors in each
room of a house, but only one HVAC unit to heat or cool the entire house. So you can only
control this as a single process, even if each room occupant wants their vote (input) to prevail.

Send messages from your devices or processes as inputs to your detector model
We described the several ways to send a message from a device or process as an input into

an Amazon loT Events detector in inputs. After you created the inputs and build the detector
model, you're ready to start sending data.

Simple step-by-step example 61

Amazon loT Events Developer Guide

® Note

When you create a detector model, or update an existing one, it takes several minutes
before the new or updated detector model begins receiving messages and creating
detectors (instances). If the detector model is updated, during this time you might
continue to see behavior based on the previous version.

Topics

» Create an Amazon loT Events input to capture device data

» Create a detector model to represent device states in Amazon loT Events

« Send messages as inputs to a detector in Amazon loT Events

Create an Amazon loT Events input to capture device data

When setting up inputs for Amazon loT Events, you can leverage the Amazon CLI to define

how your devices communicate sensor data. For example, if your devices send JSON-formatted
messages with motor identifiers and sensor readings, you can capture this data by creating an
input that maps specific attributes from the messages, such as the pressure and the motor ID. The
process starts by defining an input in a JSON file, specifying the relevant data points, and using the
Amazon CLI to register the input for Amazon loT Events. This enables Amazon loT to monitor and
respond to critical conditions based on real-time sensor data.

As an example, suppose your devices send messages with the following format.

{
"motorid": "Fulton-A32",
"sensorData": {
"pressure": 23,
"temperature": 47
}
}

You can create an input to capture the pressure data and the motorid (that identifies the
specific device that sent the message) using the following Amazon CLI command.

Create an input to capture device data 62

Amazon loT Events Developer Guide

aws iotevents create-input --cli-input-json file://pressurelnput.json

The file pressurelInput. json contains the following.

{
"inputName": "Pressurelnput",
"inputDescription": "Pressure readings from a motor",
"inputDefinition": {
"attributes": [
{ "jsonPath": "sensorData.pressure" },
{ "jsonPath": "motorid" }
]
}
}

When you create your own inputs, remember to first collect example messages as JSON files from
your devices or processes. You can use them to create an input from the console or the CLI.

Create a detector model to represent device states in Amazon loT
Events

In Create an Amazon loT Events input to capture device data, you created an input based on a
message that reports pressure data from a motor. To continue with the example, here is a detector
model that responds to an over-pressure event in a motor.

You create two states: "Normal", and "Dangexrous". Each detector (instance) enters the "Normal"
state when it's created. The instance is created when an input with a unique value for the key
"motorid" arrives.

If the detector instance receives a pressure reading of 70 or greater, it enters the "Dangerous”
state and sends an Amazon SNS message as a warning. If the pressure readings return to normal
(less than 70) for three consecutive inputs, the detector returns to the "Normal" state and sends
another Amazon SNS message as an all clear.

This example detector model assumes you have created two Amazon SNS topics whose Amazon
Resource Names (ARNSs) are shown in the definition as "targetArn": "arn:aws:sns:us-
east-1:123456789012:underPressureAction" and "targetArn": "arn:aws:sns:us-
east-1:123456789012:pressureClearedAction".

Create a detector model to represent device states 63

Amazon loT Events Developer Guide

For more information, see the Amazon Simple Notification Service Developer Guide and, more

specifically, the documentation of the CreateTopic operation in the Amazon Simple Notification
Service API Reference.

This example also assumes you have created an Amazon Identity and Access Management (IAM)
role with appropriate permissions. The ARN of this role is shown in the detector model definition
as "roleArn": "arn:aws:iam::123456789012:ro0le/IoTEventsRole". Follow the stepsin
Setting up permissions for Amazon loT Events to create this role and copy the ARN of the role in

the appropriate place in the detector model definition.

You can create the detector model using the following Amazon CLI command.

aws iotevents create-detector-model --cli-input-json file://motorDetectorModel.json

The file "motorDetectorModel. json" contains the following.

"detectorModelName": "motorDetectorModel",
"detectorModelDefinition": {
"states": [
{
"stateName": "Normal",
"onEnter": {
"events": [
{
"eventName": "init",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "pressureThresholdBreached",
"value": "OQ"

iy
"onInput": {
"transitionEvents": [

{

Create a detector model to represent device states 64

https://docs.amazonaws.cn/sns/latest/dg/
https://docs.amazonaws.cn/sns/latest/api/API_CreateTopic.html

Amazon loT Events

Developer Guide

"eventName": "Overpressurized",
"condition": "$input.Pressurelnput.sensorData.pressure > 70",
"actions": [
{
"setVariable": {
"variableName": "pressureThresholdBreached",
"value": "$variable.pressureThresholdBreached + 3"
}
}
1,
"nextState": "Dangerous"
}
]
}
},
{
"stateName": "Dangerous",
"onEnter": {
"events": [
{
"eventName": "Pressure Threshold Breached",
"condition": "$variable.pressureThresholdBreached > 1",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-
east-1:123456789012:underPressureAction”
}
}
]
}
]
},
"onInput": {
"events": [
{
"eventName": "Overpressurized",
"condition": "$input.Pressurelnput.sensorData.pressure > 70",
"actions": [
{
"setVariable": {
"variableName": "pressureThresholdBreached",
"value": "3"

Create a detector model to represent device states

65

Amazon loT Events Developer Guide

}
]
},
{
"eventName": "Pressure Okay",
"condition": "$input.Pressurelnput.sensorData.pressure <= 70",
"actions": [
{
"setVariable": {
"variableName": "pressureThresholdBreached",
"value": "$variable.pressureThresholdBreached - 1"
}
}
]
}
1,
"transitionEvents": [
{
"eventName": "BackToNormal",
"condition": "$input.Pressurelnput.sensorData.pressure <= 70 &&
$variable.pressureThresholdBreached <= 1",
"nextState": "Normal"
}
]
},
"onExit": {
"events": [
{
"eventName": "Normal Pressure Restored",
"condition": "true",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-
east-1:123456789012:pressureClearedAction"
}
}
]
}
]
}
}
1,
"initialStateName": "Normal"

Create a detector model to represent device states 66

Amazon loT Events Developer Guide

iy
"key" : "motorid",
"roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole"

Send messages as inputs to a detector in Amazon loT Events

You have now defined an input that identifies the important fields in messages sent from a device
(see Create an Amazon loT Events input to capture device data). In the previous section, you

created a detector model that responds to an over-pressure event in a motor (see Create a
detector model to represent device states in Amazon loT Events).

To complete the example, send messages from a device (in this case a computer with the Amazon
CLI installed) as inputs to the detector.

(@ Note

When you create a detector model or update an existing one, it takes several minutes
before the new or updated detector model begins to receive messages and create detectors
(instances). If you update the detector model, during this time you might continue to see
behavior based on the previous version.

Use the following Amazon CLI command to send a message with data that breaches the threshold.

aws iotevents-data batch-put-message --cli-input-json file://highPressureMessage.json
--cli-binary-format raw-in-base64-out

The file "highPressureMessage. json" contains the following.

{
"messages": [
{
"messageId": "00001",
"inputName": "Pressurelnput",

"payload": "{\"motorid\": \"Fulton-A32\", \"sensorData\": {\"pressure\": 80,
\"temperature\": 39} }"
}

Send messages as inputs to a detector 67

Amazon loT Events Developer Guide

]
}

You must change the messageld in each message sent. If you don't change it, the Amazon loT
Events system deduplicates the messages. Amazon loT Events ignores a message if it has the same
messagelID as another message that was sent within the last five minutes.

At this point, a detector (instance) is created to monitor events for the motor "Fulton-A32".
This detector enters the "Normal" state when it's created. But because we sent a pressure
value above the threshold, it immediately transitions to the "Dangerous" state. As it does so,
the detector sends a message to the Amazon SNS endpoint whose ARN is arn:aws:sns:us-
east-1:123456789012:underPressureAction.

Run the following Amazon CLI command to send a message with data that is beneath the pressure
threshold.

aws iotevents-data batch-put-message --cli-input-json file://normalPressureMessage.json
--cli-binary-format raw-in-base64-out

The file normalPressureMessage. json contains the following.

{
"messages": [
{
"messageld": "00002",
"inputName": "Pressurelnput",

"payload": "{\"motorid\": \"Fulton-A32\", \"sensorData\": {\'"pressure\": 60,
\"temperature\": 29} }"
}

You must change the messageld in the file each time you invoke the BatchPutMessage
command within a five minute period. Send the message two more times. After

the message is sent three times, the detector (instance) for the motor "Fulton-

A32" sends a message to the Amazon SNS endpoint "arn:aws:sns:us-
east-1:123456789012:pressureClearedAction" and reenters the "Normal" state.

Send messages as inputs to a detector 68

Amazon loT Events Developer Guide

® Note

You can send multiple messages at one time with BatchPutMessage. However, the order
in which these messages are processed isn't guaranteed. To guarantee messages (inputs)
are processed in order, send them one at a time and wait for a successful response each
time the APl is called.

The following are example SNS message payloads created by the detector model example
described in this section.

on event "Pressure Threshold Breached"

IoT> {
"eventTime" :1558129816420,
"payload":{
"actionExecutionId":"5d7444df-a655-3587-a609-dbd7a0f55267",
"detector":{

"detectorModelName":"motorDetectorModel",
"keyValue":"Fulton-A32",
"detectorModelVersion":"1"

},

"eventTriggerDetails":{
"inputName":"PressureInput",
"messageld":"00001",
"triggerType":"Message"

b

"state":{
"stateName":"Dangerous",
"variables":{

"pressureThresholdBreached":3
},
"timers":{}
}
b

"eventName":"Pressure Threshold Breached"

on event "Normal Pressure Restored"

IoT> {
"eventTime" :1558129925568,

Send messages as inputs to a detector 69

Amazon loT Events Developer Guide

"payload":{
"actionExecutionId":"7e25fd38-2533-303d-899f-c979792al12ch",
"detector":{

"detectorModelName" :"motorDetectorModel",
"keyValue":"Fulton-A32",
"detectorModelVersion":"1"

},

"eventTriggerDetails":{
"inputName":"Pressurelnput",
"messageld":"00004",
"triggerType":"Message"

.

"state":{
"stateName":"Dangerous",
"variables":{

"pressureThresholdBreached":0
},
"timers":{}
}
.

"eventName":"Normal Pressure Restored"

If you have defined any timers, their current state is also shown in the SNS message payloads.

The message payloads contain information about the state of the detector (instance) at the
time the message was sent (that is, at the time the SNS action was run). You can use the https://
docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_DescribeDetector.html
operation to get similar information about the state of the detector.

Amazon loT Events detector model restrictions and limitations

The following things are important to consider when creating a detector model.

How to use the actions field

The actions field is a list of objects. You can have more than one object, but only one action is
allowed in each object.

Example

Detector model restrictions and limitations 70

https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_DescribeDetector.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_DescribeDetector.html

Amazon loT Events Developer Guide

"actions": [

{
"setVariable": {
"variableName": "pressureThresholdBreached",
"value": "$variable.pressureThresholdBreached - 1"
}
}
{
"setVariable": {
"variableName": "temperatureIsTooHigh",
"value": "$variable.temperatureIsTooHigh - 1"
}
}

How to use the condition field
The conditionis required for transitionEvents and is optional in other cases.
If the condition field isn't present, it's equivalent to "condition": true.

The result of the evaluation of a condition expression should be a Boolean value. If the result
isn't a Boolean value, it's equivalent to false and won't initiate the actions or transition to
the nextState specified in the event.

Availability of variable values

By default, if the value of a variable is set in an event, its new value isn't available or used to
evaluate conditions in other events in the same group. The new value isn't available or used in
an event condition in the same onInput, onEnter or onExit field.

Set the evaluationMethod parameter in the detector model definition to change this
behavior. When the evaluationMethod is set to SERIAL, variables are updated and event
conditions are evaluated in the order that the events are defined. Otherwise, when the
evaluationMethod is set to BATCH or defaults to it, variables within a state are updated and
events within a state are performed only after all event conditions are evaluated.

In the "Dangerous" state, in the onInput field,
"$variable.pressureThresholdBreached" is decremented by one in the "Pressure
Okay" event when the condition is met (when the current input has pressure less than or equal
to 70).

Detector model restrictions and limitations 71

Amazon loT Events Developer Guide

{
"eventName": "Pressure Okay",
"condition": "$input.Pressurelnput.sensorData.pressure <= 70",
"actions": [
{
"setVariable": {
"variableName": "pressureThresholdBreached",
"value": "$variable.pressureThresholdBreached - 1"
}
}
]
}

The detector should transition back to the "Normal" state when
"$variable.pressureThresholdBreached" reaches O (that is, when the detector has
received three contiguous pressure readings less than or equal to 70). The "BackToNormal"
event in transitionEvents must test that "$variable.pressureThresholdBreached"
is less than or equal to 1 (not 0), and also verify again that the current value given by
"$input.Pressurelnput.sensorData.pressure" is less than or equal to 70.

"transitionEvents": [

{
"eventName": "BackToNormal",
"condition": "$input.Pressurelnput.sensorData.pressure <= 70 &&
$variable.pressureThresholdBreached <= 1",
"nextState": "Normal"
}

Otherwise, if the condition tests for only the value of the variable, two normal

readings followed by an over-pressure reading would fulfill the condition and

transition back to the "Normal" state. The condition is looking at the value that
"$variable.pressureThresholdBreached" was given during the previous time an input
was processed. The value of the variable is reset to 3 in the "Overpressurized" event, but
remember that this new value is not yet available to any condition.

By default, every time a control enters the onInput field, a condition can only see the
value of a variable as it was at the start of processing the input, before it's changed by any

Detector model restrictions and limitations 72

Amazon loT Events Developer Guide

actions specified in onInput. The same is true for onEnter and onExit. Any change made to a
variable when we enter or exit the state isn't available to other conditions specified in the same
onEnter or onExit fields.

Latency when updating a detector model

If you update, delete, and recreate a detector model (see UpdateDetectorModel), there is

some delay before all spawned detectors (instances) are deleted and the new model is used to
recreate the detectors. They are recreated after the new detector model takes effect and new
inputs arrive. During this time inputs might continue to be processed by the detectors spawned
by the previous version of the detector model. During this period, you might continue to receive
alerts defined by the previous detector model.

Spaces in input keys

Spaces are allowed in input keys, but references to the key must be enclosed in backticks,
both in the definition of the input attribute and when the value of the key is referenced in an
expression. For example, given a message payload like the following:

{
"motor id": "A32",
"sensorData" {
"motor pressure": 56,
"motor temperature": 39
}
}

Use the following to define the input.

{
"inputName": "Pressurelnput",
"inputDescription": "Pressure readings from a motor",
"inputDefinition": {
"attributes": [
{ "jsonPath": "sensorData. motor pressure'" },
{ "jsonPath": " “motor id'" }
]
}
}

In a conditional expression, you must refer to the value of any such key using backticks also.

Detector model restrictions and limitations 73

https://docs.amazonaws.cn/iotevents/latest/apireference/API_UpdateDetectorModel.html

Amazon loT Events Developer Guide

$input.Pressurelnput.sensorData. ‘motor pressure’

A commented example: HVAC temperature control with
Amazon loT Events

Some of the following example JSON files have comments inline, which makes them invalid JSON.
Complete versions of these examples, without comments, are available at Example: Using HVAC

temperature control with Amazon loT Events.

This example implements a thermostat control model that gives you the ability to do the
following.

« Define just one detector model that can be used to monitor and control multiple areas. A
detector instance is created for each area.

« Ingest temperature data from multiple sensors in each control area.

« Change the temperature set point for an area.

« Set operational parameters for each area and reset these parameters while the instance is in use.
» Dynamically add or delete sensors from an area.

« Specify a minimum runtime to protect heating and cooling units.

» Reject anomalous sensor readings.

» Define emergency set points that immediately engage heating or cooling if any one sensor
reports a temperature above or below a given threshold.

» Report anomalous readings and temperature spikes.

Topics

« Input definitions for detector models in Amazon loT Events

o Create an Amazon loT Events detector model definition

» Use BatchUpdateDetector to update an Amazon loT Events detector model

» Use BatchPutMessage for inputs in Amazon loT Events

« Ingest MQTT messages in Amazon loT Events

« Generate Amazon SNS messages in Amazon loT Events

« Configure the DescribeDetector APl in Amazon loT Events

A commented example: HVAC temperature control 74

Amazon loT Events Developer Guide

» Use the Amazon loT Core rules engine for Amazon loT Events

Input definitions for detector models in Amazon loT Events

We want to create one detector model that we can use to monitor and control the temperature in
several different areas. Each area can have several sensors that report the temperature. We assume
each area is served by one heating unit and one cooling unit that can be turned on or off to control
the temperature in the area. Each area is controlled by one detector instance.

Because the different areas we monitor and control might have different characteristics that
demand different control parameters, we define the 'seedTemperatureInput' to provide those
parameters for each area. When we send one of these input messages to Amazon loT Events, a new
detector model instance is created that has the parameters we want to use in that area. Here's the
definition of that input.

CLI command:

aws iotevents create-input --cli-input-json file://seedInput.json

File: seedInput.json

{
"inputName": "seedTemperatureInput",
"inputDescription": "Temperature seed values.",
"inputDefinition": {
"attributes": [
{ "jsonPath": "areald" },
{ "jsonPath": "desiredTemperature" },
{ "jsonPath": "allowedError" 3},
{ "jsonPath": "rangeHigh" },
{ "jsonPath": "rangeLow" 3},
{ "jsonPath": "anomalousHigh" },
{ "jsonPath": "anomalousLow" },
{ "jsonPath": "sensorCount" },
{ "jsonPath": "noDelay" }
]
}
}
Response:

Input definitions for detector models 75

Amazon loT Events Developer Guide

"inputConfiguration": {
"status": "ACTIVE",
"inputArn": "arn:aws:iotevents:us-west-2:123456789012:input/
seedTemperatureInput",
"lastUpdateTime": 1557519620.736,
"creationTime": 1557519620.736,
"inputName": "seedTemperatureInput",
"inputDescription": "Temperature seed values."

Notes

A new detector instance is created for each unique 'areald' received in any message. See the
'key' field in the 'areaDetectorModel’ definition.

The average temperature can vary from the 'desiredTemperature' by the 'allowedError'
before the heating or cooling units are activated for the area.

If any sensor reports a temperature above the 'rangeHigh', the detector reports a spike and
immediately starts the cooling unit.

If any sensor reports a temperature below the 'rangelLow', the detector reports a spike and
immediately starts the heating unit.

If any sensor reports a temperature above the 'anomalousHigh' or below the
"anomalousLow', the detector reports an anomalous sensor reading, but ignores the reported
temperature reading.

The 'sensorCount' tells the detector how many sensors are reporting for the area. The
detector calculates the average temperature in the area by giving the appropriate weight factor
to each temperature reading it receives. Because of this, the detector won't have to keep track
of what each sensor reports, and the number of sensors can be changed dynamically, as needed.
However, if an individual sensor goes offline, the detector won't know this or make allowances
for it. We recommend that you create another detector model specifically for monitoring the
connection status of each sensor. Having two complementary detector models simplifies the
design of both.

The 'noDelay' value can be true or false. After a heating or cooling unit is turned on, it
should remain on for a certain minimum time to protect the integrity of the unit and lengthen
its operating life. If 'noDelay"' is set to false, the detector instance enforces a delay before it
turns off the cooling and heating units, to ensure that they are run for the minimum time. The

Input definitions for detector models 76

Amazon loT Events Developer Guide

number of seconds of delay has been hardcoded in the detector model definition because we are
unable to use a variable value to set a timer.

The 'temperatureInput' is used to transmit sensor data to a detector instance.

CLI command:

aws iotevents create-input --cli-input-json file://temperatureInput.json

File: temperatureIlnput. json

{
"inputName": "temperatureInput",
"inputDescription": "Temperature sensor unit data.",
"inputDefinition": {
"attributes": [
{ "jsonPath": "sensorId" },
{ "jsonPath": "areald" },
{ "jsonPath": "sensorData.temperature" }
]
}
}
Response:
{
"inputConfiguration": {
"status": "ACTIVE",
"inputArn": "arn:aws:iotevents:us-west-2:123456789012:input/temperaturelnput",
"lastUpdateTime": 1557519707.399,
"creationTime": 1557519707.399,
"inputName": "temperaturelnput",
"inputDescription": "Temperature sensor unit data."
}
}
Notes

« The 'sensorId' isn't used by an example detector instance to control or monitor a sensor
directly. It's automatically passed into notifications sent by the detector instance. From there, it

Input definitions for detector models 77

Amazon loT Events Developer Guide

can be used to identify the sensors that are failing (for example, a sensor that regularly sends
anomalous readings might be about to fail), or that have gone offline (when it's used as an input
to an additional detector model that monitors the device's heartbeat). The 'sensorId' can also
help identify warm or cold zones in an area if its readings regularly differ from the average.

« The '"areald' is used to route the sensor's data to the appropriate detector instance. A detector
instance is created for each unique 'areald' received in any message. See the 'key' field in
the 'areaDetectorModel' definition.

Create an Amazon loT Events detector model definition

The 'areaDetectorModel' example has comments inline.

CLI command:

aws iotevents create-detector-model --cli-input-json file://areaDetectorModel. json

File: areaDetectorModel. json

"detectorModelName": "areaDetectorModel",
"detectorModelDefinition": {
"states": [
{

"stateName": "start",

// In the 'start' state we set up the operation parameters of the new detector
instance.

// We get here when the first input message arrives. If that is a
'seedTemperatureInput’

// message, we save the operation parameters, then transition to the 'idle'
state. If

// the first message is a 'temperaturelInput', we wait here until we get a

// 'seedTemperaturelnput' input to ensure our operation parameters are set.
We can

// also reenter this state using the 'BatchUpdateDetector' API. This enables
us to

// reset the operation parameters without needing to delete the detector
instance.

"onEnter": {

"events": [

{

Create a detector model definition 78

Amazon loT Events Developer Guide

"eventName": "prepare",
"condition": "true",
"actions": [

"setVariable": {
// initialize 'sensorId' to an invalid value (@) until an actual
sensor reading
// arrives

"variableName": "sensorId",
"value": "0Q"
}
I
{
"setVariable": {
// initialize 'reportedTemperature' to an invalid value (0.1) until
an actual
// sensor reading arrives
"variableName": "reportedTemperature",
"value": "0.1"
}
},
{

"setVariable": {
// When using 'BatchUpdateDetector' to re-enter this state, this
variable should
// be set to true.

"variableName": "resetMe",
"value": "false"
}
}
]
}
]
I
"onInput": {
"transitionEvents": [
{
"eventName": "initialize",
"condition": "$input.seedTemperatureInput.sensorCount > @",
// When a 'seedTemperaturelnput' message with a valid 'sensorCount' is
received,
// we use it to set the operational parameters for the area to be
monitored.

"actions": [

Create a detector model definition 79

Amazon loT Events

Developer Guide

{
"setVariable": {
"variableName": "rangeHigh",
"value": "$input.seedTemperatureInput.rangeHigh"
}
I
{
"setVariable": {
"variableName": "rangelLow",
"value": "$input.seedTemperatureInput.rangelLow"
}
I
{
"setVariable": {
"variableName": "desiredTemperature",
"value": "$input.seedTemperatureInput.desiredTemperature"
}
I
{
"setVariable": {
// Assume we're at the desired temperature when we start.
"variableName": "averageTemperature",
"value": "$input.seedTemperatureInput.desiredTemperature"
}
},
{
"setVariable": {
"variableName": "allowedError",
"value": "$input.seedTemperatureInput.allowedError"
}
},
{
"setVariable": {
"variableName": "anomalousHigh",
"value": "$input.seedTemperatureInput.anomalousHigh"
}
},
{
"setVariable": {
"variableName": "anomalousLow",
"value": "$input.seedTemperatureInput.anomalousLow"
}
},
{

Create a detector model definition

80

Amazon loT Events Developer Guide

"setVariable": {

"variableName": "sensorCount",
"value": "$input.seedTemperatureInput.sensorCount"
}
},
{
"setVariable": {
"variableName": "noDelay",
"value": "$input.seedTemperaturelnput.noDelay == true"
}
}
1,
"nextState": "idle"
I
{

"eventName": "reset",

"condition": "($variable.resetMe == true) &&
($input.temperaturelnput.sensorData.temperature < $variable.anomalousHigh &&
$input.temperaturelnput.sensorData.temperature > $variable.anomalouslLow)",

// This event is triggered if we have reentered the 'start' state using
the

// 'BatchUpdateDetector' API with 'resetMe' set to true. When we
reenter using

// 'BatchUpdateDetector' we do not automatically continue to the 'idle'
state, but

// wait in 'start' until the next input message arrives. This event
enables us to

// transition to 'idle' on the next valid 'temperaturelInput' message
that arrives.

"actions": [

{
"setVariable": {
"variableName": "averageTemperature",
"value": "((($variable.averageTemperature * ($variable.sensorCount
- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount)"
}
}
1,

"nextState": "idle"

]

.

"onExit": {
"events": [

Create a detector model definition 81

Amazon loT Events Developer Guide

{
"eventName": "resetHeatCool",
"condition": "true",
// Make sure the heating and cooling units are off before entering
'idle'.
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
}
},
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:cool0ff"
}
I
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/Off"
}
},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/0Off"
}
}
]
}
]
}
},
{
"stateName": "idle",
"onInput": {
"events": [
{
"eventName": "whatWasInput",
"condition": "true",
// By storing the 'sensorId' and the 'temperature' in variables, we make
them
// available in any messages we send out to report anomalies, spikes,
or just

Create a detector model definition 82

Amazon loT Events Developer Guide

// if needed for debugging.
"actions": [

{
"setVariable": {
"variableName": "sensorId",
"value": "$input.temperatureInput.sensorId"
}
1,
{
"setVariable": {
"variableName": "reportedTemperature",
"value": "$input.temperatureInput.sensorData.temperature"
}
}
]
1,
{
"eventName": "changeDesired",
"condition": "$input.seedTemperaturelnput.desiredTemperature !=

$variable.desiredTemperature",

// This event enables us to change the desired temperature at any time by
sending a

// 'seedTemperatureInput' message. But note that other operational
parameters are not

// read or changed.

"actions": [

{
"setVariable": {
"variableName": "desiredTemperature",
"value": "$input.seedTemperatureInput.desiredTemperature"
}
}
]
1,
{
"eventName": "calculateAverage",
"condition": "$input.temperaturelnput.sensorData.temperature <

$variable.anomalousHigh && $input.temperatureInput.sensorData.temperature >
$variable.anomalousLow",

// If a valid temperature reading arrives, we use it to update the
average temperature.

// For simplicity, we assume our sensors will be sending updates at
about the same rate,

Create a detector model definition 83

Amazon loT Events Developer Guide

// so we can calculate an approximate average by giving equal weight to
each reading we receive.
"actions": [

{
"setVariable": {
"variableName": "averageTemperature",
"value": "((($variable.averageTemperature * ($variable.sensorCount
- 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
}
}
]
}
1,
"transitionEvents": [
{
"eventName": "anomalousInputArrived",
"condition": "$input.temperaturelnput.sensorData.temperature >=
$variable.anomalousHigh || $input.temperaturelInput.sensorData.temperature <=

$variable.anomalousLow",

// When an anomalous reading arrives, send an MQTT message, but stay in
the current state.

"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/anomaly"
}
}
1,
"nextState": "idle"
1,
{
"eventName": "highTemperatureSpike",
"condition": "$input.temperatureIlnput.sensorData.temperature >

$variable.rangeHigh",

// When even a single temperature reading arrives that is above the
'rangeHigh', take

// emergency action to begin cooling, and report a high temperature

spike.
"actions": [
{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}

Create a detector model definition 84

Amazon loT Events Developer Guide

}I

"sns": {

"targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"

}
I
{

"iotTopicPublish": {

"mqttTopic": "hvac/Cooling/On"

}
},
{

"setVariable": {

// This is necessary because we want to set a timer to delay the
shutoff

// of a cooling/heating unit, but we only want to set the timer
when we

// enter that new state initially.

"variableName": "enteringNewState",

"value": "true"

}
1,
"nextState": "cooling"

}I

"eventName": "lowTemperatureSpike",

"condition": "$input.temperaturelnput.sensorData.temperature <
$variable.rangelLow",

// When even a single temperature reading arrives that is below the
'rangelLow', take

// emergency action to begin heating, and report a low-temperature

spike.
"actions": [
{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
1,
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
}

Create a detector model definition 85

Amazon loT Events Developer Guide

},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/On"
}
I
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"
}
}
1,
"nextState": "heating"
},
{
"eventName": "highTemperatureThreshold",
"condition": "(((($variable.averageTemperature * ($variable.sensorCount

- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount) >
($variable.desiredTemperature + $variable.allowedError))",

// When the average temperature is above the desired temperature plus the
allowed error factor,

// it is time to start cooling. Note that we calculate the average
temperature here again

// because the value stored in the 'averageTemperature' variable is not
yet available for use

// in our condition.

"actions": [

{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:coo0lOn"
}
I
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/On"
}
},
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"
}

Create a detector model definition

86

Amazon loT Events Developer Guide

}
1,
"nextState": "cooling"
I
{
"eventName": "lowTemperatureThreshold",
"condition": "(((($variable.averageTemperature * ($variable.sensorCount

- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount) <
($variable.desiredTemperature - $variable.allowedError))",
// When the average temperature is below the desired temperature minus
the allowed error factor,
// it is time to start heating. Note that we calculate the average
temperature here again
// because the value stored in the 'averageTemperature' variable is not
yet available for use
// in our condition.
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
}
},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/On"
}
I
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"

}
]I

"nextState": "heating"

iy

"stateName": "cooling",

Create a detector model definition 87

Amazon loT Events Developer Guide

"onEnter": {
"events": [
{
"eventName": "delay",
"condition": "!$variable.noDelay && $variable.enteringNewState",
// If the operational parameters specify that there should be a minimum
time that the
// heating and cooling units should be run before being shut off again,

we set
// a timer to ensure the proper operation here.
"actions": [
{
"setTimer": {
"timerName": "coolingTimer",
"seconds": 180
}
},
{
"setVariable": {
// We use this 'goodToGo' variable to store the status of the timer
expiration
// for use in conditions that also use input variable values. If
// '"timeout()' is used in such mixed conditionals, its value is
lost.
"variableName": "goodToGo",
"value": "false"
}
}
]
I
{
"eventName": "dontDelay",
"condition": "$variable.noDelay == true",
// If the heating/cooling unit shutoff delay is not used, no need to
wait.

"actions": [

{

"setVariable": {
"variableName": "goodToGo",
"value": "true"

}

}
]
I

Create a detector model definition 88

Amazon loT Events

Developer Guide

{
"eventName": "beenHere",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "enteringNewState",
"value": "false"
}
}
]
}
]
.
"onInput": {

"events": [

// These are events that occur when an input is received (if the condition

is
// satisfied), but don't cause a transition to another state.
{
"eventName": "whatWasInput",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "sensorId",
"value": "$input.temperatureInput.sensorId"
}
I
{
"setVariable": {
"variableName": "reportedTemperature",
"value": "$input.temperatureInput.sensorData.temperature"
}
}
]
I
{
"eventName": "changeDesired",
"condition": "$input.seedTemperatureInput.desiredTemperature !=

$variable.desiredTemperature",
"actions": [

{

Create a detector model definition

89

Amazon loT Events Developer Guide

"setVariable": {

"variableName": "desiredTemperature",
"value": "$input.seedTemperatureInput.desiredTemperature"
}
}
]
},
{
"eventName": "calculateAverage",
"condition": "$input.temperaturelnput.sensorData.temperature <

$variable.anomalousHigh && $input.temperaturelnput.sensorData.temperature >
$variable.anomalousLow",
"actions": [

{
"setVariable": {
"variableName": "averageTemperature",
"value": "((($variable.averageTemperature * ($variable.sensorCount
- 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
}
}
]
I
{
"eventName": "areWeThereYet",
"condition": "(timeout(\"coolingTimer\"))",
"actions": [
{
"setVariable": {
"variableName": "goodToGo",
"value": "true"
}
}
]
}
1,

"transitionEvents": [

// Note that some tests of temperature values (for example, the test for an
anomalous value)

// must be placed here in the 'transitionEvents' because they work
together with the tests

// in the other conditions to ensure that we implement the proper
"if..elseif..else" logic.

// But each transition event must have a destination state ('nextState'),
and even if that

Create a detector model definition 90

Amazon loT Events Developer Guide

// is actually the current state, the "onEnter" events for this state
will be executed again.
// This is the reason for the 'enteringNewState' variable and related.

{
"eventName": "anomalousInputArrived",
"condition": "$input.temperaturelnput.sensorData.temperature >=
$variable.anomalousHigh || $input.temperaturelnput.sensorData.temperature <=

$variable.anomalousLow",
"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/anomaly"
}
}
1,
"nextState": "cooling"
1,
{
"eventName": "highTemperatureSpike",
"condition": "$input.temperaturelnput.sensorData.temperature >

$variable.rangeHigh",
"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
}
1,
"nextState": "cooling"
1,
{
"eventName": "lowTemperatureSpike",
"condition": "$input.temperaturelnput.sensorData.temperature <

$variable.rangelLow",
"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
I
{
"sns": {

Create a detector model definition 91

Amazon loT Events Developer Guide

"targetArn": "arn:aws:sns:us-west-2:123456789012:cool0ff"

}
},
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
}
I
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/Off"
}
},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/On"
}
I
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"
}
}
1,
"nextState": "heating"
},
{
"eventName": "desiredTemperature",
"condition": "(((($variable.averageTemperature * ($variable.sensorCount

- 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) <=
($variable.desiredTemperature - $variable.allowedError)) && $variable.goodToGo ==
true",

"actions": [

{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:cool0ff"
}
I
{

"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/Off"

Create a detector model definition 92

Amazon loT Events Developer Guide

}
1,
"nextState": "idle"
}
]
}
},
{
"stateName": "heating",

"onEnter": {
"events": [
{
"eventName": "delay",
"condition": "!$variable.noDelay && $variable.enteringNewState",
"actions": [
{
"setTimer": {
"timerName": "heatingTimer",
"seconds": 120
}
},
{
"setVariable": {
"variableName": "goodToGo",
"value": "false"

]
},
{
"eventName": "dontDelay",
"condition": "$variable.noDelay == true",
"actions": [
{
"setVariable": {
"variableName": "goodToGo",
"value": "true"

Create a detector model definition 93

Amazon loT Events

Developer Guide

"eventName": "beenHere",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "enteringNewState",
"value": "false"
}
}
]
}
]
},
"onInput": {
"events": [
{
"eventName": "whatWasInput",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "sensorId",
"value": "$input.temperatureInput.sensorId"
}
I
{
"setVariable": {
"variableName": "reportedTemperature",
"value": "$input.temperatureInput.sensorData.temperature"
}
}
]
I
{
"eventName": "changeDesired",
"condition": "$input.seedTemperatureInput.desiredTemperature !=

$variable.desiredTemperature",
"actions": [

{
"setVariable": {
"variableName": "desiredTemperature",
"value": "$input.seedTemperatureInput.desiredTemperature"
}

Create a detector model definition

94

Amazon loT Events Developer Guide

}
]
},
{
"eventName": "calculateAverage",
"condition": "$input.temperaturelnput.sensorData.temperature <

$variable.anomalousHigh && $input.temperaturelInput.sensorData.temperature >
$variable.anomalousLow",
"actions": [

{
"setVariable": {
"variableName": "averageTemperature",
"value": "((($variable.averageTemperature * ($variable.sensorCount
- 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
}
}
]
I
{
"eventName": "areWeThereYet",
"condition": "(timeout(\"heatingTimer\"))",
"actions": [
{
"setVariable": {
"variableName": "goodToGo",
"value": "true"
}
}
]
}
1,
"transitionEvents": [
{
"eventName": "anomalousInputArrived",
"condition": "$input.temperaturelnput.sensorData.temperature >=
$variable.anomalousHigh || $input.temperaturelInput.sensorData.temperature <=

$variable.anomalousLow",
"actions": [
{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/anomaly"

}
1,

Create a detector model definition 95

Amazon loT Events

Developer Guide

"nextState": "heating"

iy

"eventName": "highTemperatureSpike",

"condition": "$input.temperaturelnput.sensorData.temperature >
$variable.rangeHigh",

"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
},
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
}
1,
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
}
},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/Off"
}
1,
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/On"
}
},
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"
}
}
1,
"nextState": "cooling"
1,
{

Create a detector model definition

96

Amazon loT Events Developer Guide

"eventName": "lowTemperatureSpike",

"condition": "$input.temperaturelnput.sensorData.temperature <
$variable.rangelLow",

"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
}
1,
"nextState": "heating"
1,
{
"eventName": "desiredTemperature",
"condition": "(((($variable.averageTemperature * ($variable.sensorCount

- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount) >=
($variable.desiredTemperature + $variable.allowedError)) && $variable.goodToGo ==
true",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
}
},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/Off"

}
]I

"nextState": "idle"

1,

"initialStateName": "start"

iy
"key": "areald",
"roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole"

Create a detector model definition 97

Amazon loT Events Developer Guide

}

Response:

"detectorModelConfiguration": {
"status": "ACTIVATING",
"lastUpdateTime": 1557523491.168,
"roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole",
"creationTime": 1557523491.168,
"detectorModelArn": "arn:aws:iotevents:us-west-2:123456789012:detectorModel/

areaDetectorModel",
"key": "areald",
"detectorModelName": "areaDetectorModel",
"detectorModelVersion": "1"

Use BatchUpdateDetector to update an Amazon loT Events detector
model

You can use the BatchUpdateDetector operation to put a detector instance into a known

state, including timer and variable values. In the following example, the BatchUpdateDetector
operation resets operational parameters for an area that is under temperature monitoring and
control. This operation enables you to do this without having to delete, and recreate, or update the

detector model.

CLI command:

aws iotevents-data batch-update-detector --cli-input-json file://areaDM.BUD.json

File: areaDM.BUD. json

{
"detectors": [
{
"messageld": "0001",
"detectorModelName": "areaDetectorModel",
"keyValue": "Area5l",
"state": {

Use BatchUpdateDetector 98

Amazon loT Events Developer Guide

"stateName": "start",
"variables": [

{

"name": "desiredTemperature",
"value": "22"

"name": "averageTemperature",
"VHlue": Il22ll

"name": "allowedError",
"value": "1.0"

"name": "rangeHigh",
"value": "30.0"

"name": "rangelLow",
"value": "15.0"

"name": "anomalousHigh",
"value": "60.0"

"name": "anomalousLow",
"value": "0.0"

"name": "sensorCount",
"value": "12"

"name": "noDelay",
"value": "true"

"name": "goodToGo",
"value": "true"

"name": "sensorId",

Use BatchUpdateDetector 99

Amazon loT Events Developer Guide

"value": "0Q"

I

{
"name": "reportedTemperature",
"value": "0.1"

I

{

"name": "resetMe",

// When 'resetMe' is true, our detector model knows that we have reentered
the 'start' state

// to reset operational parameters, and will allow the next valid
temperature sensor

// reading to cause the transition to the 'idle' state.

"value": "true"
}
1,
"timers": [
]
}
}
]
}
Response:
{
"batchUpdateDetectorErrorEntries": []
}

Use BatchPutMessage for inputs in Amazon loT Events

Example 1

Use the BatchPutMessage operation to send a "seedTemperatureInput" message that sets
the operational parameters for a given area under temperature control and monitoring. Any
message received by Amazon loT Events that has a new "areaId" causes a new detector instance
to be created. But the new detector instance won't change state to "idle" and begin monitoring
the temperature and controlling heating or cooling units until a "seedTemperatureInput"
message is received for the new area.

CLI command:

Use BatchPutMessage for inputs 100

Amazon loT Events Developer Guide

aws iotevents-data batch-put-message --cli-input-json file://seedExample.json --cli-
binary-format raw-in-base64-out

File: seedExample. json

"messages": [

{
"messageId": "00001",

"inputName": "seedTemperatureInput",

"payload": "{\"areaId\": \"Area51\", \'"desiredTemperature\": 20.0, \"allowedError
\": 0.7, \"rangeHigh\": 30.0, \"rangeLow\": 15.0, \"anomalousHigh\": 60.0,
\"anomalousLow\": 0.0, \"sensorCount\": 10, \"noDelay\": false}"

}

Response:

"BatchPutMessageErrorEntries": []

Example
2

Use the BatchPutMessage operation to send a "temperatureInput" message to report
temperature sensor data for a sensor in a given control and monitoring area.

CLI command:

aws iotevents-data batch-put-message --cli-input-json file://temperatureExample.json --
cli-binary-format raw-in-base64-out

File: temperatureExample. json

"messages": [

{

Use BatchPutMessage for inputs 101

Amazon loT Events Developer Guide

"messageld": "00005",
"inputName": "temperaturelnput",
"payload": "{\"sensorId\": \"@5\", \"areaId\": \"Area51\", \"sensorData\":
{\"temperature\": 23.12} }"
}

Response:

"BatchPutMessageErrorEntries": []

Example 3

Use the BatchPutMessage operation to send a "seedTemperatureInput" message to change
the value of the desired temperature for a given area.

CLI command:

aws iotevents-data batch-put-message --cli-input-json file://seedSetDesiredTemp.json --
cli-binary-format raw-in-base64-out

File: seedSetDesiredTemp. json

{
"messages": [
{
"messageld": "0Q000l1",
"inputName": "seedTemperatureInput",
"payload": "{\"areaId\": \"Area51\", \"desiredTemperature\": 23.0}"
}
]
}
Response:
{
"BatchPutMessageErrorEntries": []
}

Use BatchPutMessage for inputs 102

Amazon loT Events Developer Guide

Ingest MQTT messages in Amazon loT Events

If your sensor computing resources can't use the "BatchPutMessage" API, but can send their
data to the Amazon loT Core message broker using a lightweight MQTT client, you can create an
Amazon loT Core topic rule to redirect message data to an Amazon loT Events input. The following
is a definition of an Amazon loT Events topic rule that takes the "areaId" and "sensorId"
input fields from the MQTT topic, and the "sensorData.temperature" field from the message
payload "temp" field, and ingests this data into our Amazon loT Events "temperatureInput".

CLI command:

aws iot create-topic-rule --cli-input-json file://temperatureTopicRule.json

File: seedSetDesiredTemp. json

"ruleName": "temperatureTopicRule",
"topicRulePayload": {
"sql": "SELECT topic(3) as areald, topic(4) as sensorld, temp as
sensorData.temperature FROM 'update/temperature/#'",

"description": "Ingest temperature sensor messages into IoT Events",
"actions": [
{
"iotEvents": {
"inputName": "temperatureInput",
"roleArn": "arn:aws:iam::123456789012:role/service-role/anotheRole"
}
}
1,

"ruleDisabled": false,
"awsIotSglVersion": "2016-03-23"

Response: [none]

If the sensor sends a message on the topic "update/temperature/Area51/03" with the
following payload.

{ "temp": 24.5 }

Ingest MQTT messages 103

Amazon loT Events Developer Guide

This results in data being ingested into Amazon loT Events as if the following
"BatchPutMessage" API call had been made.

aws iotevents-data batch-put-message --cli-input-json file://spoofExample.json --cli-
binary-format raw-in-base64-out

File: spoofExample. json

"messages": [

{
"messageId": "54321",

"inputName": "temperatureInput",
"payload": "{\"sensorId\": \"@3\", \"areaId\": \"Area51\", \"sensorData\":
{\"temperature\": 24.5} }"
}

Generate Amazon SNS messages in Amazon loT Events

The following are examples of SNS messages generated by the "Area51" detector instance.

Amazon loT Events can integrate with Amazon SNS to generate and publish notifications based

on detected events. This section demonstrates how an Amazon loT Events detector instance,
specifically the "Area51" detector, generates Amazon SNS messages. These examples showcase the
structure and content of Amazon SNS notifications triggered by various states and events within
the Amazon loT Events detector, illustrating the power of combining Amazon loT Events with
Amazon SNS for real-time alerting and communication.

Heating system off command> {
"eventTime":1557520274729,

"payload":{
"actionExecutionId":"f3159081-bac3-38a4-96f7-74af0940d0as",
"detector":{

"detectorModelName":"areaDetectorModel", "keyValue":"Area51", "detectorModelVersion":"1"}, "event
{"inputName":"seedTemperatureInput", "messageId":"00001","triggerType":"Message"}, "state":
{"stateName":"start", "variables":

Generate Amazon SNS messages 104

Amazon loT Events Developer Guide

{"sensorCount":10, "rangeHigh":30.0, "resetMe":false, "enteringNewState" :true, "averageTemperature"
{}3}3}, "eventName":"resetHeatCool"}

Cooling system off command> {"eventTime":1557520274729,"payload":
{"actionExecutionId":"98f6alb5-8f40-3cdb-9256-93afd4d66192", "detector":
{"detectorModelName":"areaDetectorModel", "keyValue":"Area51", "detectorModelVersion":"1"}, "event
{"inputName":"seedTemperatureInput", "messageId":"00001","triggerType":"Message"}, "state":
{"stateName":"start", "variables":

{"sensorCount":10, "rangeHigh":30.0, "resetMe":false, "enteringNewState" :true, "averageTemperature"
{}}}, "eventName" : "resetHeatCool"}

Configure the DescribeDetector APl in Amazon loT Events

The DescribeDetector APl in Amazon loT Events lets you to retrieve detailed information about
a specific detector instance. This operation provides insights into the current state, variable values,
and active timers of a detector. By using this API, you can monitor the real-time status of your
Amazon loT Events detectors, facilitating debugging, analysis, and management of your loT event
processing workflows.

CLI command:

aws iotevents-data describe-detector --detector-model-name areaDetectorModel --key-
value Area51

Response:

"detector": {
"lastUpdateTime": 1557521572.216,
"creationTime": 1557520274.405,

"state": {
"variables": [
{
"name": "resetMe",
"value": "false"
.
{

"name": "rangelLow",
"value": "15.0"

Configure the DescribeDetector API 105

Amazon loT Events Developer Guide

},

{
"name": "noDelay",
"value": "false"

},

{
"name": "desiredTemperature",
"value": "20.0"

},

{
"name": "anomalousLow",
"value": "0.0"

},

{
"name": "sensorId",
"value": "\"OQ1\""

},

{
"name": "sensorCount",
"value": "10"

},

{
"name": "rangeHigh",
"value": "30.0"

},

{
"name": "enteringNewState",
"value": "false"

},

{
"name": "averageTemperature",
"value": "19.572"

},

{
"name": "allowedError",
"value": "0Q.7"

},

{
"name": "anomalousHigh",
"value": "60.0"

},

{

"name": "reportedTemperature",
"value": "15.72"

Configure the DescribeDetector API 106

Amazon loT Events Developer Guide

},
{
"name": "goodToGo",
"value": "false"
}
1,
"stateName": "idle",
"timers": [
{
"timestamp": 1557520454.0,
"name": "idleTimer"
}
]
.
"keyValue": "Areabl",
"detectorModelName": "areaDetectorModel",
"detectorModelVersion": "1"

Use the Amazon loT Core rules engine for Amazon loT Events

The following rules republish Amazon loT Core MQTT messages as shadow update request
messages. We assume that Amazon loT Core things are defined for a heating unit and a cooling
unit for each area that is controlled by the detector model. In this example, we have defined things
named "Area51HeatingUnit" and "Area51CoolingUnit".

CLI command:

aws iot create-topic-rule --cli-input-json file://ADMShadowCoolOffRule.json

File: ADMShadowCoo0l0ffRule. json

{
"ruleName": "ADMShadowCoolOff",
"topicRulePayload": {
"sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Cooling/Off'",
"description'": "areaDetectorModel mgtt topic publish to cooling unit shadow
request",

"ruleDisabled": false,
"awsIotSqlVersion": "2016-03-23",

Use the Amazon loT Core rules engine 107

Amazon loT Events Developer Guide

"actions": [

{
"republish": {
"topic": "$$aws/things/${payload.detector.keyValue}CoolingUnit/shadow/
update",
"roleArn": "arn:aws:iam::123456789012:r0le/service-role/ADMShadowRole"
}
}

Response: [empty]

CLI command:

aws iot create-topic-rule --cli-input-json file://ADMShadowCoolOnRule.json

File: ADMShadowCoolOnRule. json

{
"ruleName": "ADMShadowCoolOn",
"topicRulePayload": {
"sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Cooling/On'",
"description": "areaDetectorModel mqgtt topic publish to cooling unit shadow
request",
"ruleDisabled": false,
"awsIotSglVersion": "2016-03-23",
"actions": [
{
"republish": {
"topic": "$$aws/things/${payload.detector.keyValue}CoolingUnit/shadow/
update",
"roleArn": "arn:aws:iam::123456789012:r0le/service-role/ADMShadowRole"
}
}
]
}
}

Response: [empty]

Use the Amazon loT Core rules engine 108

Amazon loT Events Developer Guide

CLI command:

aws iot create-topic-rule --cli-input-json file://ADMShadowHeatOffRule.json

File: ADMShadowHeatOffRule. json

{
"ruleName": "ADMShadowHeatOff",
"topicRulePayload": {
"sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Heating/Off'",
"description": "areaDetectorModel mgtt topic publish to heating unit shadow
request",
"ruleDisabled": false,
"awsIotSqlVersion": "2016-03-23",
"actions": [
{
"republish": {
"topic": "$$aws/things/${payload.detector.keyValue}HeatingUnit/shadow/
update",
"roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
}
}
]
}
}

Response: [empty]

CLI command:

aws iot create-topic-rule --cli-input-json file://ADMShadowHeatOnRule.json

File: ADMShadowHeatOnRule. json

{
"ruleName": "ADMShadowHeatOn",
"topicRulePayload": {
"sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Heating/On'",
"description": "areaDetectorModel mgtt topic publish to heating unit shadow
request",

Use the Amazon loT Core rules engine 109

Amazon loT Events Developer Guide

"ruleDisabled": false,
"awsIotSglVersion": "2016-03-23",
"actions": [

{
"republish": {
"topic": "$$aws/things/${payload.detector.keyValue}HeatingUnit/shadow/
update",
"roleArn": "arn:aws:iam::123456789012:ro0le/service-role/ADMShadowRole"
}
}

Response: [empty]

Use the Amazon loT Core rules engine 110

Amazon loT Events Developer Guide

Supported actions to receive data and trigger actions in
Amazon loT Events

Amazon loT Events can trigger actions when it detects a specified event or transition event. You
can define built-in actions to use a timer or set a variable, or send data to other Amazon resources.
Learn how to configure and customize these actions to create automated responses to your various
loT events.

(® Note

When you define an action in a detector model, you can use expressions for parameters
that are string data type. For more information, see Expressions.

Amazon loT Events supports the following actions that let you use a timer or set a variable:

e setTimer to create a timer.
e resetTimer to reset the timer.
e clearTimer to delete the timer.

e setVariable to create a variable.

Amazon loT Events supports the following actions that let you work with Amazon services:

e iotTopicPublish to publish a message on an MQTT topic.

« iotEvents to send data to Amazon loT Events as an input value.

« iotSiteWise to send data to an asset property in Amazon loT SiteWise.

« dynamoDB to send data to an Amazon DynamoDB table.

e dynamoDBv?2 to send data to an Amazon DynamoDB table.

« firehose to send data to an Amazon Data Firehose stream.
« lambda to invoke an Amazon Lambda function.

 sns to send data as a push notification.

+ sgs to send data to an Amazon SQS queue.

https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-expressions.html

Amazon loT Events Developer Guide

Use the Amazon loT Events built-in timer and variable actions

Amazon loT Events supports the following actions that let you use a timer or set a variable:

e setTimer to create a timer.
e resetTimer to reset the timer.
e clearTimer to delete the timer.

e setVariable to create a variable.

Set timer action
Set timer action

The setTimer action lets you create a timer with duration in seconds.

More information (2)
When you create a timer, you must specify the following parameters.
timerName

The name of the timer.

durationExpression
(Optional) The duration of the timer, in seconds.

The evaluated result of a duration expression is rounded down to the nearest whole number.
For example, if you set the timer to 60.99 seconds, the evaluated result of the duration
expression is 60 seconds.

For more information, see SetTimerAction in the Amazon loT Events APl Reference.

Reset timer action
Reset timer action

The resetTimer action lets you set the timer to the previously evaluated result of the duration
expression.

Use built-in actions 112

https://docs.amazonaws.cn/iotevents/latest/apireference/API_SetTimerAction.html

Amazon loT Events Developer Guide

More information (1)
When you reset a timer, you must specify the following parameter.
timerName
The name of the timer.

Amazon loT Events doesn't reevaluate the duration expression when you reset the timer.

For more information, see ResetTimerAction in the Amazon loT Events API Reference.

Clear timer action

Clear timer action

The clearTimer action lets you delete an existing timer.

More information (1)
When you delete a timer, you must specify the following parameter.
timerName

The name of the timer.

For more information, see ClearTimerAction in the Amazon loT Events API Reference.

Set variable action

Set variable action

The setVariable action lets you create a variable with a specified value.

More information (2)
When you create a variable, you must specify the following parameters.
variableName

The name of the variable.

Clear timer action 113

https://docs.amazonaws.cn/iotevents/latest/apireference/API_ResetTimerAction.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_ClearTimerAction.html

Amazon loT Events Developer Guide

value

The new value of the variable.

For more information, see SetVariableAction in the Amazon loT Events API Reference.

Amazon loT Events working with other Amazon services

Amazon loT Events supports the following actions that let you work with Amazon services:

iotTopicPublish to publish a message on an MQTT topic.

« iotEvents to send data to Amazon loT Events as an input value.

« iotSiteWise to send data to an asset property in Amazon loT SiteWise.

« dynamoDB to send data to an Amazon DynamoDB table.

« dynamoDBv?2 to send data to an Amazon DynamoDB table.

« firehose to send data to an Amazon Data Firehose stream.
« lambda to invoke an Amazon Lambda function.

 sns to send data as a push notification.

 sgs to send data to an Amazon SQS queue.

/A Important

» You must choose the same Amazon Region for both Amazon loT Events and the
Amazon services to work with. For the list of supported Regions, see Amazon loT Events
endpoints and quotas in the Amazon Web Services General Reference.

« You must use the same Amazon Region when you create other Amazon resources for
the Amazon loT Events actions. If you switch Amazon Regions, you might have issues
accessing the Amazon resources.

By default, Amazon loT Events generates a standard payload in JSON for any action. This action
payload contains all attribute-value pairs that have the information about the detector model
instance and the event that triggered the action. To configure the action payload, you can use a

Work with other Amazon services 114

https://docs.amazonaws.cn/iotevents/latest/apireference/API_SetVariableAction.html
https://docs.amazonaws.cn/general/latest/gr/iot-events.html
https://docs.amazonaws.cn/general/latest/gr/iot-events.html

Amazon loT Events Developer Guide

content expression. For more information, see Expressions to filter, transform, and process event
data and the Payload data type in the Amazon IoT Events API Reference.

Amazon loT Core

loT topic publish action

The Amazon IoT Core action lets you publish an MQTT message through the Amazon loT
message broker. For the list of supported Regions, see Amazon loT Core endpoints and quotas
in the Amazon Web Services General Reference.

The Amazon loT message broker connects Amazon loT clients by sending messages from
publishing clients to subscribing clients. For more information, see Device communication
protocols in the Amazon loT Developer Guide.

More information (2)
When you publish an MQTT message, you must specify the following parameters.
mqttTopic
The MQTT topic that receives the message.

You can define an MQTT topic name dynamically at runtime using variables or input values
created in the detector model.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the Amazon loT Events API
Reference.

(@ Note

Make sure that the policy attached to your Amazon loT Events service role grants the
iot:Publish permission. For more information, see Identity and access management
for Amazon loT Events.

For more information, see lotTopicPublishAction in the Amazon loT Events APl Reference.

Amazon loT Core 115

https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html
https://docs.amazonaws.cn/general/latest/gr/iot-core.html
https://docs.amazonaws.cn/iot/latest/developerguide/protocols.html
https://docs.amazonaws.cn/iot/latest/developerguide/protocols.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_IotTopicPublishAction.html

Amazon loT Events Developer Guide

Amazon loT Events
loT Events action

The Amazon loT Events action lets you send data to Amazon loT Events as input. For the list of
supported Regions, see Amazon loT Events endpoints and quotas in the Amazon Web Services

General Reference.

Amazon loT Events lets you to monitor your equipment or device fleets for failures or changes
in operation, and to trigger actions when such events occur. For more information, see What is
Amazon loT Events? in the Amazon loT Events Developer Guide.

More information (2)
When you send data to Amazon loT Events, you must specify the following parameters.
inputName

The name of the Amazon loT Events input that receives the data.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the Amazon loT Events API
Reference.

(@ Note

Make sure that the policy attached to your Amazon loT Events service role grants the
iotevents:BatchPutMessage permission. For more information, see Identity and
access management for Amazon loT Events.

For more information, see lotEventsAction in the Amazon loT Events APl Reference.

Amazon loT Events 116

https://docs.amazonaws.cn/general/latest/gr/iot-events.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/what-is-iotevents.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/what-is-iotevents.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_IotEventsAction.html

Amazon loT Events Developer Guide

Amazon loT SiteWise

loT SiteWise action

The Amazon loT SiteWise action lets you send data to an asset property in Amazon loT
SiteWise. For the list of supported Regions, see Amazon loT SiteWise endpoints and quotas in
the Amazon Web Services General Reference.

Amazon loT SiteWise is a managed service that lets you collect, organize, and analyze data from
industrial equipment at scale. For more information, see What is Amazon loT SiteWise? in the
Amazon loT SiteWise User Guide.

More information (11)

When you send data to an asset property in Amazon loT SiteWise, you must specify the
following parameters.

/A Important

To receive the data, you must use an existing asset property in Amazon loT SiteWise.

« If you use the Amazon loT Events console, you must specify propertyAlias to
identify the target asset property.

« If you use the Amazon CLI, you must specify either propertyAlias or both assetId
and propertyId to identify the target asset property.

For more information, see Mapping industrial data streams to asset properties in the
Amazon IoT SiteWise User Guide.

propertyAlias

(Optional) The alias of the asset property. You can also specify an expression.
assetId

(Optional) The ID of the asset that has the specified property. You can also specify an
expression.

propertyld

(Optional) The ID of the asset property. You can also specify an expression.

Amazon loT SiteWise 117

https://docs.amazonaws.cn/general/latest/gr/iot-sitewise.html
https://docs.amazonaws.cn/iot-sitewise/latest/userguide/what-is-sitewise.html
https://docs.amazonaws.cn/iot-sitewise/latest/userguide/connect-data-streams.html

Amazon loT Events Developer Guide

entryld

(Optional) A unique identifier for this entry. You can use the entry ID to track which data
entry causes an error in case of failure. The default is a new unique identifier. You can also

specify an expression.

propertyValue

A structure that contains details about the property value.

quality
(Optional) The quality of the asset property value. The value must be GOOD, BAD, or
UNCERTAIN. You can also specify an expression.

timestamp

(Optional) A structure that contains timestamp information. If you don't specify this
value, the default is the event time.
timeInSeconds

The timestamp, in seconds, in the Unix epoch format. The valid range is between

1-31556889864403199. You can also specify an expression.

offsetInNanos

(Optional) The nanosecond offset converted from timeInSeconds. The valid range is
between 0-999999999. You can also specify an expression.

value

A structure that contains an asset property value.

/A Important
You must specify one of the following value types, depending on the dataType
of the specified asset property. For more information, see AssetProperty in the
Amazon loT SiteWise API Reference.

Amazon loT SiteWise 118

https://docs.amazonaws.cn/iot-sitewise/latest/APIReference/API_AssetProperty.html

Amazon loT Events Developer Guide

booleanValue

(Optional) The asset property value is a Boolean value that must be TRUE or FALSE.

You can also specify an expression. If you use an expression, the evaluated result
should be a Boolean value.

doubleValue

(Optional) The asset property value is a double. You can also specify an expression. If
you use an expression, the evaluated result should be a double.

integerValue

(Optional) The asset property value is an integer. You can also specify an expression. If
you use an expression, the evaluated result should be an integer.

stringValue

(Optional) The asset property value is a string. You can also specify an expression. If
you use an expression, the evaluated result should be a string.

(® Note

Make sure that the policy attached to your Amazon loT Events service role grants the
iotsitewise:BatchPutAssetPropertyValue permission. For more information,
see Identity and access management for Amazon loT Events.

For more information, see lotSiteWiseAction in the Amazon loT Events API Reference.

Amazon DynamoDB

DynamoDB action

The Amazon DynamoDB action lets you send data to a DynamoDB table. One column of the
DynamoDB table receives all attribute-value pairs in the action payload that you specify. For the

list of supported Regions, see Amazon DynamoDB endpoints and quotas in the Amazon Web
Services General Reference.

Amazon DynamoDB 119

https://docs.amazonaws.cn/iotevents/latest/apireference/API_IotSiteWiseAction.html
https://docs.amazonaws.cn/general/latest/gr/ddb.html

Amazon loT Events Developer Guide

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and
predictable performance with seamless scalability. For more information, see What is

DynamoDB? in the Amazon DynamoDB Developer Guide.
More information (10)

When you send data to one column of a DynamoDB table, you must specify the following
parameters.

tableName
The name of the DynamoDB table that receives the data. The tableName value must match
the table name of the DynamoDB table. You can also specify an expression.

hashKeyField
The name of the hash key (also called partition key). The hashKeyField value must match
the partition key of the DynamoDB table. You can also specify an expression.

hashKeyType
(Optional) The data type of the hash key. The value of the hash key type must be STRING or
NUMBER. The default is STRING. You can also specify an expression.

hashKeyValue
The value of the hash key. The hashKeyValue uses substitution templates. These templates
provide data at runtime. You can also specify an expression.

rangeKeyField
(Optional) The name of the range key (also called the sort key). The rangeKeyField value
must match the sort key of the DynamoDB table. You can also specify an expression.

rangeKeyType
(Optional) The data type of the range key. The value of the hash key type must be STRING
or NUMBER. The default is STRING. You can also specify an expression.

rangeKeyValue

(Optional) The value of the range key. The rangeKeyValue uses substitution templates.
These templates provide data at runtime. You can also specify an expression.

Amazon DynamoDB 120

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Introduction.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Introduction.html

Amazon loT Events Developer Guide

operation

(Optional) The type of operation to perform. You can also specify an expression. The
operation value must be one of the following values:

o INSERT - Insert data as a new item into the DynamoDB table. This is the default value.
« UPDATE - Update an existing item of the DynamoDB table with new data.
« DELETE - Delete an existing item from the DynamoDB table.

payloadField

(Optional) The name of the DynamoDB column that receives the action payload. The default
name is payload. You can also specify an expression.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the Amazon loT Events API
Reference.

If the specified payload type is a string, DynamoDBAction sends non-JSON data to the
DynamoDB table as binary data. The DynamoDB console displays the data as Base64-
encoded text. The payloadField valueis payload-field_raw. You can also specify an
expression.

® Note

Make sure that the policy attached to your Amazon loT Events service role grants
the dynamodb : PutItem permission. For more information, see Identity and access
management for Amazon loT Events.

For more information, see DynamoDBAction in the Amazon IoT Events API Reference.

Amazon DynamoDB 121

https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_DynamoDBAction.html

Amazon loT Events Developer Guide

Amazon DynamoDB(v2)

DynamoDBv2 action

The Amazon DynamoDB(v2) action lets you write data to a DynamoDB table. A separate column
of the DynamoDB table receives one attribute-value pair in the action payload that you specify.
For the list of supported Regions, see Amazon DynamoDB endpoints and quotas in the Amazon
Web Services General Reference.

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and
predictable performance with seamless scalability. For more information, see What is
DynamoDB? in the Amazon DynamoDB Developer Guide.

More information (2)

When you send data to multiple columns of a DynamoDB table, you must specify the following
parameters.

tableName

The name of the DynamoDB table that receives the data. You can also specify an expression.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also

customize the payload. For more information, see Payload in the Amazon loT Events API
Reference.

/A Important

The payload type must be JSON. You can also specify an expression.

(@ Note

Make sure that the policy attached to your Amazon loT Events service role grants
the dynamodb : Put Item permission. For more information, see Identity and access
management for Amazon loT Events.

Amazon DynamoDB(v2) 122

https://docs.amazonaws.cn/general/latest/gr/ddb.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Introduction.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Introduction.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html

Amazon loT Events Developer Guide

For more information, see DynamoDBv2Action in the Amazon loT Events API Reference.

Amazon Data Firehose

Firehose action

The Amazon Data Firehose action lets you send data to an Firehose delivery stream. For the
list of supported Regions, see Amazon Data Firehose endpoints and quotas in the Amazon Web

Services General Reference.

Amazon Data Firehose is a fully managed service for delivering real-time streaming data to
destinations such as Amazon Simple Storage Service (Amazon Simple Storage Service), Amazon
Redshift, Amazon OpenSearch Service (OpenSearch Service), and Splunk. For more information,
see What is Amazon Data Firehose? in the Amazon Data Firehose Developer Guide.

More information (3)

When you send data to an Firehose delivery stream, you must specify the following parameters.

deliveryStreamName

The name of the Firehose delivery stream that receives the data.

separator

(Optional) You can use a character separator to separate continuous data sent to the
Firehose delivery stream. The separator value must be '\n'(newline), '\t"' (tab), '\r\n'
(Windows new line), or ', ' (comma).

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the Amazon IoT Events API
Reference.

(® Note

Make sure that the policy attached to your Amazon loT Events service role grants the
firehose:PutRecord permission. For more information, see Identity and access
management for Amazon loT Events.

Amazon Data Firehose 123

https://docs.amazonaws.cn/iotevents/latest/apireference/API_DynamoDBv2Action.html
https://docs.amazonaws.cn/general/latest/gr/fh.html
https://docs.amazonaws.cn/firehose/latest/dev/what-is-this-service.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html

Amazon loT Events Developer Guide

For more information, see FirehoseAction in the Amazon loT Events APl Reference.

Amazon Lambda
Lambda action

The Amazon Lambda action lets you call a Lambda function. For the list of supported Regions,
see Amazon Lambda endpoints and quotas in the Amazon Web Services General Reference.

Amazon Lambda is a compute service that lets you run code without provisioning or managing
servers. For more information, see What is Amazon Lambda? in the Amazon Lambda Developer
Guide.

More information (2)

When you call a Lambda function, you must specify the following parameters.

functionAxrn

The ARN of the Lambda function to call.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the Amazon loT Events API
Reference.

(@ Note

Make sure that the policy attached to your Amazon loT Events service role grants the
lambda: InvokeFunction permission. For more information, see Identity and access
management for Amazon loT Events.

For more information, see LambdaAction in the Amazon loT Events API Reference.

Amazon Lambda 124

https://docs.amazonaws.cn/iotevents/latest/apireference/API_FirehoseAction.html
https://docs.amazonaws.cn/general/latest/gr/lambda-service.html
https://docs.amazonaws.cn/lambda/latest/dg/welcome.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_LambdaAction.html

Amazon loT Events Developer Guide

Amazon Simple Notification Service
SNS action

The Amazon SNS topic publish action lets you publish an Amazon SNS message. For the list
of supported Regions, see Amazon Simple Notification Service endpoints and quotas in the

Amazon Web Services General Reference.

Amazon Simple Notification Service (Amazon Simple Notification Service) is a web service
that coordinates and manages the delivery or sending of messages to subscribing endpoints
or clients. For more information, see What is Amazon SNS? in the Amazon Simple Notification
Service Developer Guide.

® Note

The Amazon SNS topic publish action doesn't support Amazon SNS FIFO (first in, first
out) topics. Because the rules engine is a fully distributed service, the messages may not
display in a specified order when the Amazon SNS action is initiated.

More information (2)
When you publish an Amazon SNS message, you must specify the following parameters.
targetArn

The ARN of the Amazon SNS target that receives the message.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the Amazon loT Events API
Reference.

Amazon Simple Notification Service 125

https://docs.amazonaws.cn/general/latest/gr/sns.html
https://docs.amazonaws.cn/sns/latest/dg/welcome.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html

Amazon loT Events Developer Guide

® Note

Make sure that the policy attached to your Amazon loT Events service role grants the
sns:Publish permission. For more information, see Identity and access management
for Amazon loT Events.

For more information, see SNSTopicPublishAction in the Amazon loT Events API Reference.

Amazon Simple Queue Service
SQS action

The Amazon SQS action lets you send data to an Amazon SQS queue. For the list of supported
Regions, see Amazon Simple Queue Service endpoints and quotas in the Amazon Web Services
General Reference.

Amazon Simple Queue Service (Amazon SQS) offers a secure, durable, and available hosted
queue that lets you integrate and decouple distributed software systems and components. For
more information, see What is Amazon Simple Queue Service> in the Amazon Simple Queue
Service Developer Guide.

(® Note

The Amazon SQS action doesn't support >Amazon SQS FIFO (first in, first out) topics.
Because the rules engine is a fully distributed service, the messages may not display in a
specified order when the Amazon SQS action is initiated.

More information (3)

When you send data to an Amazon SQS queue, you must specify the following parameters.

queuelUrl

The URL of the Amazon SQS queue that receives the data.

Amazon Simple Queue Service 126

https://docs.amazonaws.cn/iotevents/latest/apireference/API_SNSTopicPublishAction.html
https://docs.amazonaws.cn/general/latest/gr/sqs-service.html
https://docs.amazonaws.cn/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html

Amazon loT Events Developer Guide

useBaseb4

(Optional) Amazon loT Events encodes the data into Base64 text, if you specify TRUE. The
default is FALSE.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the Amazon IoT Events API
Reference.

(@ Note

Make sure that the policy attached to your Amazon loT Events service role grants
the sgs:SendMessage permission. For more information, see Identity and access

management for Amazon loT Events.

For more information, see SNSTopicPublishAction in the Amazon IoT Events API Reference.

You can also use Amazon SNS and the Amazon loT Core rules engine to trigger an Amazon Lambda
function. This makes it possible to take actions using other services, such as Amazon Connect, or
even a company enterprise resource planning (ERP) application.

(® Note
To collect and process large streams of data records in real time, you can use other Amazon
services, such as Amazon Kinesis. From there, you can complete an initial analysis and then
send the results to Amazon loT Events as an input to a detector.

Amazon Simple Queue Service 127

https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_SNSTopicPublishAction.html
https://docs.amazonaws.cn/kinesis/index.html

Amazon loT Events Developer Guide

Expressions to filter, transform, and process event data

Expressions are used to evaluate incoming data, perform calculations, and determine the
conditions under which specific actions or state transitions should occur. Amazon loT Events
provides several ways to specify values when you create and update detector models. You can use
expressions to specify literal values, or Amazon loT Events can evaluate the expressions before you
specify particular values.

Topics

» Syntax to filter device data and define actions in Amazon loT Events

» Expression examples and usage for Amazon loT Events

Syntax to filter device data and define actions in Amazon loT
Events

Expressions offer syntax for filtering device data and defining actions. You can use literals,
operators, functions, references, and substitution templates in the Amazon loT Events expressions.
By combining these components, you can create powerful and flexible expressions to process loT
data, perform calculations, manipulate strings, and make logical decisions within your detector
models.

Literals

Integer

Decimal

String

Boolean

Operators

Unary
« Not (Boolean): !
e Not (bitwise): ~

e Minus (arithmetic): -

Syntax to filter device data 128

Amazon loT Events Developer Guide

String

» Concatenation: +
Both operands must be strings. String literals must be enclosed in single quotes (').

For example: 'my' + 'string' -> 'mystring’
Arithmetic
« Addition: +

Both operands must be numeric.
« Subtraction: -
« Division: /
The result of the division is a rounded integer value unless at least one of the operands
(divisor or dividend) is a decimal value.
o Multiplication: *
Bitwise (Integer)

e OR: |

For example: 13 | 5->13
« AND: &

For example: 13 & 5->5
e XOR: A

For example: 13 A 5->8

e NOT: ~

For example: ~13 -> -14
Boolean

e Less Than: <

Less Than Or Equal To: <=

Equal To: ==

Not Equal To: !'=

Greater Than Or Equal To: >=

Operators 129

Amazon loT Events Developer Guide

e Greater Than: >
e AND: &&
« OR: ||

(® Note

When a subexpression of | | contains undefined data, that subexpression is treated as
false.

Parentheses

You can use parentheses to group terms within an expression.

Functions to use in Amazon loT Events expressions

Amazon loT Events provides a set of built-in functions to enhance the capabilities of your detector
model expressions. These functions enable timer management, type conversion, null checking,
trigger type identification, input verification, string manipulation, and bitwise operations. By
leveraging these functions, you can create a responsive Amazon loT Events processing logic,
improving the overall effectiveness of your loT applications.

Built-in Functions

timeout("timer-name")

Evaluates to true if the specified timer has elapsed. Replace "timer-name" with
the name of a timer that you defined, in quotation marks. In an event action, you
can define a timer and then start the timer, reset it, or clear one that you previously
defined. See the field detectorModelDefinition.states.onInput|onEnter|
onExit.events.actions.setTimer.timerName.

A timer set in one state can be referenced in a different state. You must visit the state in
which you created the timer before you enter the state in which the timer is referenced.

For example, a detector model has two states, TemperatureChecked and
RecordUpdated. You created a timer in the TemperatureChecked state. You must visit
the TemperatureChecked state first before you can use the timer in the RecordUpdated
state.

To ensure accuracy, the minimum time that a timer should be set is 60 seconds.

Functions for expressions 130

Amazon loT Events Developer Guide

® Note

timeout () returns true only the first time it's checked following the actual timer
expiration and returns false thereafter.

convert(type, expression)

Evaluates to the value of the expression converted to the specified type. The type value
must be String, Boolean, or Decimal. Use one of these keywords or an expression that
evaluates to a string containing the keyword. Only the following conversions succeed and
return a valid value:

» Boolean -> string

Returns the string "true" or "false".
» Decimal -> string
» String -> Boolean

» String -> decimal

The string specified must be a valid representation of a decimal number, or convert()
fails.

If convert() doesn't return a valid value, the expression that it's a part of is also invalid.
This result is equivalent to false and won't trigger the actions or transition to the
nextState specified as part of the event in which the expression occurs.

isNull(expression)

Evaluates to true if the expression returns null. For example, if the input MyInput
receives the message { "a": null }, then the following evaluates to true, but
isUndefined($input.MyInput.a) evaluatesto false.

isNull($input.MyInput.a)

isUndefined(expression)

Evaluates to true if the expression is undefined. For example, if the input MyInput
receives the message { "a": null }, then the following evaluates to false, but
isNull($input.MyInput.a) evaluatesto true.

Functions for expressions 131

Amazon loT Events Developer Guide

isUndefined($input.MyInput.a)

triggexrType('"type")

The type value can be "Message" or "Timer". Evaluates to true if the event condition
in which it appears is being evaluated because a timer has expired like in the following
example.

triggerType("Timer")
Or an input message was received.
triggerType("Message")

currentInput("input")

Evaluates to true if the event condition in which it appears is being evaluated because
the specified input message was received. For example, if the input Command receives the
message { "value": "Abort" 3}, then the following evaluates to true.

currentInput("Command")

Use this function to verify that the condition is being evaluated because a particular input
has been received and a timer hasn't expired, as in the following expression.

currentInput("Command") && $input.Command.value == "Abort"

String Matching Functions

startsWith(expressionl, expression2)

Evaluates to true if the first string expression starts with the second string expression. For
example, if input MyInput receives the message { "status": "offline"}, then the
following evaluates to true.

startsWith($input.MyInput.status, "off")

Both expressions must evaluate to a string value. If either expression does not evaluate to a
string value, then the result of the function is undefined. No conversions are performed.

Functions for expressions 132

Amazon loT Events Developer Guide

endsWith(expressionl, expression2)

Evaluates to true if the first string expression ends with the second string expression. For
example, if input MyInput receives the message { "status": "offline" 1}, then the
following evaluates to true.

endsWith($input.MyInput.status, "line")

Both expressions must evaluate to a string value. If either expression does not evaluate to a
string value, then the result of the function is undefined. No conversions are performed.

contains(expressionl, expression2)

Evaluates to true if the first string expression contains the second string expression. For
example, if input MyInput receives the message { "status": "offline" 3}, then the
following evaluates to true.

contains($input.MyInput.value, "fli")

Both expressions must evaluate to a string value. If either expression does not evaluate to a
string value, then the result of the function is undefined. No conversions are performed.

Bitwise Integer Manipulation Functions

bitor(expressionl, expression2)

Evaluates the bitwise OR of the integer expressions (the binary OR operation is performed
on the corresponding bits of the integers). For example, if input MyInput receives the
message { "valuel": 13, "value2": 5 },then the following evaluates to 13.

bitor($input.MyInput.valuel, $input.MyInput.value2)

Both expressions must evaluate to an integer value. If either expression does not evaluate to
an integer value, then the result of the function is undefined. No conversions are performed.

bitand(expressionl, expression2)

Evaluates the bitwise AND of the integer expressions (the binary AND operation is
performed on the corresponding bits of the integers). For example, if input MyInput
receives the message { "valuel": 13, "value2": 5 },then the following evaluates to
5.

Functions for expressions 133

Amazon loT Events Developer Guide

bitand($input.MyInput.valuel, $input.MyInput.value2)

Both expressions must evaluate to an integer value. If either expression does not evaluate to
an integer value, then the result of the function is undefined. No conversions are performed.

bitxor(expressionl, expression2)

Evaluates the bitwise XOR of the integer expressions (the binary XOR operation is performed
on the corresponding bits of the integers). For example, if input MyInput receives the
message { "valuel": 13, "value2": 5 },then the following evaluates to 8.

bitxor($input.MyInput.valuel, $input.MyInput.value2)

Both expressions must evaluate to an integer value. If either expression does not evaluate to
an integer value, then the result of the function is undefined. No conversions are performed.

bitnot(expression)

Evaluates the bitwise NOT of the integer expression (the binary NOT operation is
performed on the bits of the integer). For example, if input MyInput receives the message
{ "value": 13 3}, then the following evaluates to -14.

bitnot($input.MyInput.value)

Both expressions must evaluate to an integer value. If either expression does not evaluate to
an integer value, then the result of the function is undefined. No conversions are performed.

Amazon loT Events reference for inputs and variables in expressions

Inputs
$input.input-name.path-to-data
input-name is an input that you create using the Createlnput action.

For example, if you have an input named TemperatureInput for which you defined
inputDefinition.attributes. jsonPath entries, the values might appear in the following
available fields.

Reference for inputs and variables in expressions 134

https://docs.amazonaws.cn/iotevents/latest/apireference/API_CreateInput.html

Amazon loT Events Developer Guide

"temperature": 78.5,
"date": "2018-10-03T16:09:09Z"

To reference the value of the temperature field, use the following command.

$input.TemperatureInput.temperature

For fields whose values are arrays, you can reference members of the array using [n]. For
example, given the following values:

{

"temperatures": [
78.4,
77.9,
78.8

1,

"date": "2018-10-03T16:09:09Z"

}

The value 78. 8 can be referenced with the following command.
$input.TemperatureInput.temperatures[2]

Variables
$variable.variable-name

The variable-name is a variable that you defined using the CreateDetectorModel action.

For example, if you have a variable named TechnicianID that you defined using
detectorDefinition.states.onInputEvents.actions.setVariable.variableName,
you can reference the (string) value most recently given to the variable with the following
command.

$variable.TechnicianID

You can set the values of variables only using the setVariable action. You can't assign values
for variables in an expression. A variable can't be unset. For example, you can't assign it the
value null.

Reference for inputs and variables in expressions 135

https://docs.amazonaws.cn/iotevents/latest/apireference/API_CreateDetectorModel.html

Amazon loT Events Developer Guide

® Note

In references that use identifiers that don't follow the (regular expression) pattern [a-zA-
Z][a-zA-Z0-9_]*, you must enclose those identifiers in backticks (). For example, a
reference to an input named MyInput with a field named _value must specify this field as
$input.MyInput. _value’.

When you use references in expressions, check the following:

« When you use a reference as an operand with one or more operators, make sure that all data
types that you reference are compatible.

For example, in the following expression, integer 2 is an operand of both the == and &&
operators. To ensure that the operands are compatible, $variable.testVariable + 1 and
$variable.testVariable must reference an integer or decimal.

In addition, integer 1 is an operand of the + operator. Therefore, $variable.testVariable
must reference an integer or decimal.

‘$variable.testVariable + 1 == 2 && $variable.testVariable’

« When you use a reference as an argument passed to a function, make sure that the function
supports the data types that you reference.

For example, the following timeout ("time-name") function requires a string with double
quotes as the argument. If you use a reference for the timer-name value, you must reference a
string with double quotes.

timeout("timer-name")

(® Note

For the convert(type, expression) function, if you use a reference for the type
value, the evaluated result of your reference must be String, Decimal, or Boolean.

Reference for inputs and variables in expressions 136

Amazon loT Events Developer Guide

Amazon loT Events expressions support integer, decimal, string, and Boolean data types. The
following table provides a list of incompatible pairs of types.

Incompatible pairs of types
Integer, string

Integer, Boolean

Decimal, string

Decimal, Boolean

String, Boolean

Substitution templates for Amazon loT Events expressions

'${expression}"’

The ${3} identifies the string as an interpolated string. The expression can be any Amazon loT
Events expression. This includes operators, functions, and references.

For example, you used the SetVariableAction action to define a variable. The variableName is

SensorlID, and the value is 10. You can create the following substitution templates.

Substitution template Result string

o "
'${'Sensor ' + $variable.SensorID}' Sensor 10

'Sensor ' + '${$variable.SensorID + Sensor 11

1}

'Sensor 10: ${$variable.SensorID == Sensor 10: true

103}

Substitution templates 137

https://docs.amazonaws.cn/iotevents/latest/apireference/API_SetVariableAction.html

Amazon loT Events Developer Guide

Substitution template Result string
"{\"sensor\":\"${$variable.SensorID "{\"sensor"\:\"11\"}"
+ 11"}

"{\"sensor\":${$variable.SensorID + {\"sensor\":11}

13}

Expression examples and usage for Amazon loT Events

You can specify values in a detector model in the following ways:

« Enter supported expressions in the Amazon loT Events console.

» Pass the expressions to the Amazon IoT Events APIs as parameters.

Expressions support literals, operators, functions, references, and substitution templates.

/A Important

Your expressions must reference a integer, decimal, string, or Boolean value.

Writing Amazon loT Events expressions

See the following examples to help you write your Amazon loT Events expressions:

Literal

For literal values, the expressions must contain single quotes. A Boolean value must be either
true or false.

'123! # Integer
'123.12" # Decimal
'hello' # String

"true' # Boolean

Usage 138

Amazon loT Events Developer Guide

Reference
For references, you must specify either variables or input values.
« The following input references a decimal number, 10.01.
$input.GreenhouselInput.temperature

« The following variable references a string, Greenhouse Temperature Table.

$variable.TableName
Substitution template

For a substitution template, you must use ${3}, and the template must be in single quotes.
A substitution template can also contain a combination of literals, operators, functions,
references, and substitution templates.

« The evaluated result of the following expression is a string, 50.018 in Fahrenheit.

'${$input.Greenhouselnput.temperature * 9 / 5 + 32} in Fahrenheit'

« The evaluated result of the following expression is a string, {\"sensor_id\":
\"Sensor_1\",\"temperature\":\"50.018\"}.

"{\"sensor_id\":\"${$input.GreenhouseInput.sensors[@].sensorl}\",\"temperature\":
\"${$input.GreenhouselInput.temperature*9/5+323\"}"

String concatenation

For a string concatenation, you must use +. A string concatenation can also contain a
combination of literals, operators, functions, references, and substitution templates.

« The evaluated result of the following expression is a string, Greenhouse Temperature
Table 2000-01-01.

'Greenhouse Temperature Table ' + $input.GreenhouseInput.date

Writing Amazon loT Events expressions 139

Amazon loT Events Developer Guide

Amazon loT Events detector model examples

This page provides a list of example use cases that demonstrate how to configure various Amazon
loT Events features. The examples range from basic detections like temperature thresholds to more
advanced anomaly detection and machine learning scenarios. Each example includes procedures
and code snippets to help you set up Amazon loT Events detections, actions, and integrations.
These examples showcase the flexibility of the Amazon IoT Events service and how it can be
customized for diverse loT applications and use cases. Refer to this page when exploring Amazon
loT Events capabilities or if you need guidance implementing a specific detection or automation
workflow.

Topics

« Example: Using HVAC temperature control with Amazon loT Events

« Example: A crane detecting conditions using Amazon loT Events

« Send commands in response to detected conditions in Amazon loT Events

« An Amazon loT Events detector model for crane monitoring

« Amazon loT Events inputs for crane monitoring

» Send alarm and operational messages with Amazon loT Events

« Example: Amazon loT Events event detection with sensors and applications

» Example: Device HeartBeat to monitor device connections with Amazon loT Events

o Example: An ISA alarm in Amazon loT Events

« Example: Build a simple alarm with Amazon loT Events

Example: Using HVAC temperature control with Amazon loT
Events

Background story

This example implements a temperature control model (a thermostat) with these features:

» One detector model you define that can monitor and control multiple areas. (A detector instance
will be created for each area.)

» Each detector instance receives temperature data from multiple sensors placed in each control
area.

HVAC temperature control 140

Amazon loT Events Developer Guide

« You can change the desired temperature (the set point) for each area at any time.

» You can define the operational parameters for each area and change these parameters at any
time.

» You can add sensors to or delete sensors from an area at any time.
» You can enable a minimum run for time heating and cooling units to protect them from damage.
» The detectors will reject, and report, anomalous sensor readings.

» You can define emergency temperature set points. If any one sensor reports a temperature above
or below the set points you have defined, heating or cooling units will be engaged immediately,
and the detector will report that temperature spike.

This example demonstrates the following functional capabilities:

» Create event detector models.

« Create inputs.

 Ingest inputs into a detector model.

« Evaluate trigger conditions.

» Refer to state variables in conditions and set the values of variables depending on conditions.
» Refer to timers in conditions and set timers depending on conditions.

» Take actions that send Amazon SNS and MQTT messages.

Input definitions for an HVAC system in Amazon loT Events

A seedTemperatureInput is used to create a detector instance for an area and define its
operational parameters.

Configuring inputs for HVAC systems in Amazon loT Events is important for effective climate
control. This example shows how to set up inputs that capture parameters such as, temperature,
humidity, occupancy, and energy consumption data. Learn to define input attributes, configure
data sources, and set up preprocessing rules to help your detector models receive accurate and
timely information for optimal management and efficiency.

CLI command used:

aws iotevents create-input --cli-input-json file://seedInput.json

Input definitions 141

Amazon loT Events

Developer Guide

File: seedInput.json

{
"inputName": "seedTemperatureInput",
"inputDescription": "Temperature seed values.",
"inputDefinition": {
"attributes": [
{ "jsonPath": "areald" },
{ "jsonPath": "desiredTemperature" 3},
{ "jsonPath": "allowedError" },
{ "jsonPath": "rangeHigh" 3},
{ "jsonPath": "rangelLow" 3},
{ "jsonPath": "anomalousHigh" },
{ "jsonPath": "anomalousLow" },
{ "jsonPath": "sensorCount" },
{ "jsonPath": "noDelay" }
]
}
}
Response:
{

"inputConfiguration": {
"status": "ACTIVE",
"inputArn": "arn:aws:iotevents:us-west-2:123456789012
seedTemperatureInput",
"lastUpdateTime": 1557519620.736,
"creationTime": 1557519620.736,
"inputName": "seedTemperatureInput",
"inputDescription": "Temperature seed values."

:input/

A temperatureInput should be sent by each sensor in each area, as necessary.

CLI command used:

aws iotevents create-input --cli-input-json file://temperatureInput.json

File: temperatureIlnput. json

Input definitions

142

Amazon loT Events Developer Guide

{
"inputName": "temperaturelnput",
"inputDescription": "Temperature sensor unit data.",
"inputDefinition": {
"attributes": [
{ "jsonPath": "sensorId" },
{ "jsonPath": "areald" },
{ "jsonPath": "sensorData.temperature" }
]
}
}
Response:
{
"inputConfiguration": {
"status": "ACTIVE",
"inputArn": "arn:aws:iotevents:us-west-2:123456789012:input/temperaturelnput",
"lastUpdateTime": 1557519707.399,
"creationTime": 1557519707.399,
"inputName": "temperaturelnput",
"inputDescription": "Temperature sensor unit data."
}
}

Detector model definition for an HVAC system using Amazon IoT Events

The areaDetectorModel defines how each detector instance works. Each state machine
instance will ingest temperature sensor readings, then change state and send control messages
depending on these readings.

CLI command used:

aws iotevents create-detector-model --cli-input-json file://areaDetectorModel. json

File: areaDetectorModel. json

"detectorModelName": "areaDetectorModel",
"detectorModelDefinition": {

Detector model definition 143

Amazon loT Events

Developer Guide

"states": [
{
"stateName": "start",
"onEnter": {
"events": [

{

"eventName": "prepare"

"condition": "true",
"actions": [
{

"setVariable": {
"variableName":
"value": "0Q"

}

},
{

"setVariable": {
"variableName":
"value": "0.1"

}

},
{

"setVariable": {
"variableName":
"value": "false"

iy
"onInput": {
"transitionEvents": [

{

’

"sensorId",

"reportedTemperature",

"resetMe",

"eventName": "initialize",

"condition": "$input.seedTemperatureInput.sensorCount > 0",

"actions": [
{

"setVariable": {

"variableName": "rangeHigh",

"value": "$input.seedTemperaturelnput.rangeHigh"

Detector model definition

144

Amazon loT Events

Developer Guide

"setVariable": {

"variableName": "rangelLow",
"value": "$input.seedTemperatureInput.
}
},
{
"setVariable": {
"variableName": "desiredTemperature",
"value": "$input.seedTemperatureInput
}
},
{
"setVariable": {
"variableName": "averageTemperature",
"value": "$input.seedTemperatureInput
}
},
{
"setVariable": {
"variableName": "allowedError",
"value": "$input.seedTemperaturelnput.
}
},
{
"setVariable": {
"variableName": "anomalousHigh",
"value": "$input.seedTemperatureInput.
}
},
{
"setVariable": {
"variableName": "anomalousLow",
"value": "$input.seedTemperatureInput.
}
},
{
"setVariable": {
"variableName": "sensorCount",
"value": "$input.seedTemperatureInput.
}
},
{

"setVariable": {

"variableName": "noDelay",

rangelLow"

.desiredTemperature"

.desiredTemperature"

allowedError"

anomalousHigh"

anomalousLow"

sensorCount"

Detector model definition

145

Amazon loT Events Developer Guide

"value": "$input.seedTemperaturelnput.noDelay == true"
}
}

1,

"nextState": "idle"
I
{

"eventName": "reset",

"condition": "($variable.resetMe == true) &&

($input.temperaturelnput.sensorData.temperature < $variable.anomalousHigh &&
$input.temperaturelnput.sensorData.temperature > $variable.anomalouslLow)",
"actions": [

{
"setVariable": {
"variableName": "averageTemperature",
"value": "((($variable.averageTemperature * ($variable.sensorCount
- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount)"
}
}
1,
"nextState": "idle"
}
]
I
"onExit": {
"events": [
{
"eventName": "resetHeatCool",
"condition": "true",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
}
},
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:cool0ff"
}
I
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/Off"
}

Detector model definition 146

Amazon loT Events

Developer Guide

},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/0Off"
}
}
]
}
]
}
},
{
"stateName": "idle",
"onInput": {
"events": [
{
"eventName": "whatWasInput",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "sensorId",
"value": "$input.temperatureInput.sensorId"
}
},
{
"setVariable": {
"variableName": "reportedTemperature",
"value": "$input.temperatureIlnput.sensorData.temperature"
}
}
]
},
{
"eventName": "changeDesired",
"condition": "$input.seedTemperatureInput.desiredTemperature !=

$variable.desiredTemperature",
"actions": [

{
"setVariable": {
"variableName": "desiredTemperature",
"value": "$input.seedTemperatureInput.desiredTemperature"

Detector model definition

147

Amazon loT Events Developer Guide

}
}
]
1,
{
"eventName": "calculateAverage",
"condition": "$input.temperaturelnput.sensorData.temperature <

$variable.anomalousHigh && $input.temperatureInput.sensorData.temperature >
$variable.anomalousLow",
"actions": [

{
"setVariable": {
"variableName": "averageTemperature",
"value": "((($variable.averageTemperature * ($variable.sensorCount
- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount)"
}
}
]
}
1,
"transitionEvents": [
{
"eventName": "anomalousInputArrived",
"condition": "$input.temperaturelnput.sensorData.temperature >=
$variable.anomalousHigh || $input.temperaturelnput.sensorData.temperature <=

$variable.anomalousLow",
"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/anomaly"
}
}
1,
"nextState": "idle"
},
{
"eventName": "highTemperatureSpike",
"condition": "$input.temperaturelnput.sensorData.temperature >

$variable.rangeHigh",
"actions": [
{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"

Detector model definition 148

Amazon loT Events

Developer Guide

}
1,
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
}
1,
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/On"
}
1,
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"
}
}
1,
"nextState": "cooling"
1,
{
"eventName": "lowTemperatureSpike",
"condition": "$input.temperaturelnput.sensorData.temperature <

$variable.rangelLow",
"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
1,
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
}
1,
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/On"
}
1,
{

"setVariable": {

Detector model definition

149

Amazon loT Events Developer Guide

"variableName": "enteringNewState",
"value": "true"
}
}
1,
"nextState": "heating"
},
{
"eventName": "highTemperatureThreshold",
"condition": "(((($variable.averageTemperature * ($variable.sensorCount

- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount) >
($variable.desiredTemperature + $variable.allowedError))",
"actions": [

{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
}
},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/On"
}
I
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"
}
}
1,
"nextState": "cooling"
},
{
"eventName": "lowTemperatureThreshold",
"condition": "(((($variable.averageTemperature * ($variable.sensorCount

- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount) <
($variable.desiredTemperature - $variable.allowedError))",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"

Detector model definition 150

Amazon loT Events Developer Guide

},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/On"
}
I
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"
}
}
1,
"nextState": "heating"
}
]
}
I
{
"stateName": "cooling",

"onEnter": {
"events": [
{
"eventName": "delay",
"condition": "!$variable.noDelay && $variable.enteringNewState",
"actions": [
{
"setTimer": {
"timerName": "coolingTimer",
"seconds": 180
}
I
{
"setVariable": {
"variableName": "goodToGo",
"value": "false"

]
iy
{

"eventName": "dontDelay",

Detector model definition 151

Amazon loT Events

Developer Guide

"condition": "$variable.noDelay == true",
"actions": [
{
"setVariable": {
"variableName": "goodToGo",
"value": "true"
}
}
]
I
{
"eventName": "beenHere",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "enteringNewState",
"value": "false"
}
}
]
}
]
I
"onInput": {
"events": [
{
"eventName": "whatWasInput",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "sensorId",
"value": "$input.temperatureInput.sensorId"
}
},
{
"setVariable": {
"variableName": "reportedTemperature",
"value": "$input.temperaturelnput.sensorData.temperature"
}
}
]

Detector model definition

152

Amazon loT Events Developer Guide

},
{
"eventName": "changeDesired",
"condition": "$input.seedTemperatureInput.desiredTemperature !=
$variable.desiredTemperature",
"actions": [

{
"setVariable": {
"variableName": "desiredTemperature",
"value": "$input.seedTemperatureInput.desiredTemperature"
}
}
]
1,
{
"eventName": "calculateAverage",
"condition": "$input.temperaturelnput.sensorData.temperature <

$variable.anomalousHigh && $input.temperatureInput.sensorData.temperature >
$variable.anomalousLow",
"actions": [

{
"setVariable": {
"variableName": "averageTemperature",
"value": "((($variable.averageTemperature * ($variable.sensorCount
- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount)"
}
}
]
},
{
"eventName": "areWeThereYet",
"condition": "(timeout(\"coolingTimer\"))",
"actions": [
{
"setVariable": {
"variableName": "goodToGo",
"value": "true"
}
}
]
}
1,
"transitionEvents": [
{

Detector model definition 153

Amazon loT Events Developer Guide

"eventName": "anomalousInputArrived",
"condition": "$input.temperaturelnput.sensorData.temperature >=
$variable.anomalousHigh || $input.temperaturelnput.sensorData.temperature <=

$variable.anomalousLow",
"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/anomaly"
}
}
1,
"nextState": "cooling"
1,
{
"eventName": "highTemperatureSpike",
"condition": "$input.temperaturelnput.sensorData.temperature >

$variable.rangeHigh",
"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
}
1,
"nextState": "cooling"
1,
{
"eventName": "lowTemperatureSpike",
"condition": "$input.temperaturelnput.sensorData.temperature <

$variable.rangelLow",
"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
},
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:cool0ff"
}
1,
{

Detector model definition 154

Amazon loT Events Developer Guide

"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
}
I
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/Off"
}
},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/On"
}
I
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"
}
}
1,
"nextState": "heating"
},
{
"eventName": "desiredTemperature",
"condition": "(((($variable.averageTemperature * ($variable.sensorCount

- 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) <=
($variable.desiredTemperature - $variable.allowedError)) && $variable.goodToGo ==
true",

"actions": [

{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:cool0ff"
}
I
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/Off"
}
}
1,

"nextState": "idle"

Detector model definition 155

Amazon loT Events Developer Guide

]

"stateName": "heating",
"onEnter": {
"events": [

{
"eventName": "delay",
"condition": "!$variable.noDelay && $variable.enteringNewState",
"actions": [
{
"setTimer": {
"timerName": "heatingTimer",
"seconds": 120
}
},
{

"setVariable": {
"variableName": "goodToGo",
"value": "false"

}

}
]
},
{
"eventName": "dontDelay",
"condition": "$variable.noDelay == true",
"actions": [
{

"setVariable": {
"variableName": "goodToGo",
"value": "true"

}

}
]
},
{
"eventName": "beenHere",
"condition": "true",
"actions": [
{

Detector model definition 156

Amazon loT Events

Developer Guide

"setVariable": {

"variableName": "enteringNewState",
"value": "false"
}
}
]
}
]
},
"onInput": {
"events": [
{
"eventName": "whatWasInput",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "sensorId",
"value": "$input.temperatureInput.sensorId"
}
I
{
"setVariable": {
"variableName": "reportedTemperature",
"value": "$input.temperatureInput.sensorData.temperature"
}
}
]
I
{
"eventName": "changeDesired",
"condition": "$input.seedTemperaturelnput.desiredTemperature !=

$variable.desiredTemperature",
"actions": [

{
"setVariable": {
"variableName": "desiredTemperature",
"value": "$input.seedTemperatureInput.desiredTemperature"
}
}
]
},
{

Detector model definition

157

Amazon loT Events Developer Guide

"eventName": "calculateAverage",

"condition": "$input.temperaturelnput.sensorData.temperature <
$variable.anomalousHigh && $input.temperaturelInput.sensorData.temperature >
$variable.anomalousLow",

"actions": [

{
"setVariable": {
"variableName": "averageTemperature",
"value": "((($variable.averageTemperature * ($variable.sensorCount
- 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
}
}
]
I
{
"eventName": "areWeThereYet",
"condition": "(timeout(\"heatingTimer\"))",
"actions": [
{
"setVariable": {
"variableName": "goodToGo",
"value": "true"
}
}
]
}
1,
"transitionEvents": [
{
"eventName": "anomalousInputArrived",
"condition": "$input.temperaturelnput.sensorData.temperature >=
$variable.anomalousHigh || $input.temperaturelInput.sensorData.temperature <=

$variable.anomalousLow",
"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/anomaly"
}
}
1,
"nextState": "heating"
1,
{

Detector model definition 158

Amazon loT Events

Developer Guide

"eventName": "highTemperatureSpike",

"condition": "$input.temperaturelnput.sensorData.temperature >
$variable.rangeHigh",

"actions": [

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
},
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
}
1,
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
}
},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/Off"
}
1,
{
"iotTopicPublish": {
"mqttTopic": "hvac/Cooling/On"
}
},
{
"setVariable": {
"variableName": "enteringNewState",
"value": "true"
}
}
1,
"nextState": "cooling"
1,
{
"eventName": "lowTemperatureSpike",
"condition": "$input.temperaturelnput.sensorData.temperature <

$variable.rangelLow",
"actions": [

Detector model definition

159

Amazon loT Events Developer Guide

{
"iotTopicPublish": {
"mqttTopic": "temperatureSensor/spike"
}
}
1,
"nextState": "heating"
1,
{
"eventName": "desiredTemperature",
"condition": "(((($variable.averageTemperature * ($variable.sensorCount

- 1)) + $input.temperaturelnput.sensorData.temperature) / $variable.sensorCount) >=
($variable.desiredTemperature + $variable.allowedError)) && $variable.goodToGo ==
true",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
}
},
{
"iotTopicPublish": {
"mqttTopic": "hvac/Heating/Off"

}
]I

"nextState": "idle"

1,

"initialStateName": "start"

iy
"key": "areald",
"roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole"

Response:

Detector model definition

160

Amazon loT Events Developer Guide

"detectorModelConfiguration": {
"status": "ACTIVATING",
"lastUpdateTime": 1557523491.168,
"roleArn": "arn:aws:iam::123456789012:ro0le/IoTEventsRole",
"creationTime": 1557523491.168,
"detectorModelArn": "arn:aws:iotevents:us-west-2:123456789012:detectorModel/
areaDetectorModel",
"key": "areald",
"detectorModelName": "areaDetectorModel",
"detectorModelVersion": "1"

BatchPutMessage examples for an HVAC system in Amazon loT Events

In this example, BatchPutMessage is used to create a detector instance for an area and define the
initial operating parameters.

CLI command used:

aws iotevents-data batch-put-message --cli-input-json file://seedExample.json --cli-
binary-format raw-in-base64-out

File: seedExample. json

"messages": [
{
"messageld": "00001",
"inputName": "seedTemperatureInput",
"payload": "{\"areaId\": \"Area51\", \"desiredTemperature\": 20.0, \"allowedError
\": 0.7, \"rangeHigh\": 30.0, \"rangeLow\": 15.0, \"anomalousHigh\": 60.0,
\"anomalousLow\": 0.0, \"sensorCount\": 10, \"noDelay\": false}"

}

Response:

"BatchPutMessageErrorEntries": []

BatchPutMessage examples 161

Amazon loT Events Developer Guide

}

In this example, BatchPutMessage is used to report temperature sensor readings for a single
sensor in an area.

CLI command used:

aws iotevents-data batch-put-message --cli-input-json file://temperatureExample.json --
cli-binary-format raw-in-base64-out

File: temperatureExample. json

"messages": [
{
"messageld": "0Q0005",
"inputName": "temperaturelnput",
"payload": "{\"sensorId\": \"@5\", \"areaId\": \"Area51\", \'"sensorData\":
{\"temperature\": 23.12} }"
}

Response:

"BatchPutMessageErrorEntries": []

In this example, BatchPutMessage is used to change the desired temperature for an area.

CLI command used:

aws iotevents-data batch-put-message --cli-input-json file://seedSetDesiredTemp.json --
cli-binary-format raw-in-base64-out

File: seedSetDesiredTemp. json

"messages": [

{
"messageId": "00001",

BatchPutMessage examples 162

Amazon loT Events Developer Guide

"inputName": "seedTemperatureInput",
"payload": "{\"areaId\": \"Area51\", \"desiredTemperature\": 23.0}"
}
]
}
Response:
{
"BatchPutMessageErrorEntries": []
}

Examples of Amazon SNS messages generated by the Area51 detector instance:

Heating system off command> {
"eventTime":1557520274729,

"payload":{
"actionExecutionId":"f3159081-bac3-38a4-96f7-74af0940d0as",
"detector":{

"detectorModelName":"areaDetectorModel",
"keyValue":"Area51",
"detectorModelVersion":"1"

},

"eventTriggerDetails":{
"inputName":"seedTemperaturelnput",
"messageld":"00001",
"triggerType":"Message"

.

"state":{

"stateName":"start",

"variables":{
"sensorCount":10,
"rangeHigh":30.0,
"resetMe":false,
"enteringNewState":true,
"averageTemperature":20.0,
"rangelLow":15.0,
"noDelay":false,
"allowedError":0.7,
"desiredTemperature":20.0,
"anomalousHigh":60.0,

BatchPutMessage examples 163

Amazon loT Events Developer Guide

"reportedTemperature":0.1,
"anomalousLow":0.0,
"sensorId":0
I
"timers": {3}
}
},

"eventName":"resetHeatCool"

Cooling system off command> {
"eventTime" :1557520274729,

"payload":{
"actionExecutionId":"98f6alb5-8f40-3cdb-9256-93afd4d66192",
"detector":{

"detectorModelName":"areaDetectorModel",
"keyValue":"Area51",
"detectorModelVersion":"1"

},

"eventTriggerDetails":{
"inputName":"seedTemperatureInput",
"messageld":"00001",
"triggerType":"Message"

b

"state":{

"stateName":"start",

"variables":{
"sensorCount":10,
"rangeHigh":30.0,
"resetMe":false,
"enteringNewState":true,
"averageTemperature":20.0,
"rangeLow":15.0,
"noDelay":false,
"allowedError":0.7,
"desiredTemperature":20.0,
"anomalousHigh":60.0,
"reportedTemperature":0.1,
"anomalousLow":0.0,
"sensorId":0

},

"timers":{}

BatchPutMessage examples 164

Amazon loT Events

Developer Guide

}
iy

"eventName":"resetHeatCool"

In this example, we use the DescribeDetector API to get information about the current state of
a detector instance.

aws iotevents-data describe-detector --detector-model-name areaDetectorModel --key-

value Area5l

Response:

"detector":

{

"lastUpdateTime": 1557521572.216,
"creationTime": 1557520274.405,

"state": {

"variables": [

{

}I

"name": "resetMe",
"value": "false"
"name": "rangeLow",

"value": "15.0"

"name": "noDelay",
"value": "false"
"name": "desiredTemperature",

"value": "20.0"

"name": "anomalousLow",
"value": "0.0"
"name": "sensorId",

Ilvaluell: Il\ll@l\llll

BatchPutMessage examples

165

Amazon loT Events Developer Guide

{
"name": "sensorCount",
"value": "10"

I

{
"name": "rangeHigh",
"value": "30.0"

I

{
"name": "enteringNewState",
"value": "false"

I

{
"name": "averageTemperature",
"value": "19.572"

I

{
"name": "allowedError",
"value": "0.7"

I

{
"name": "anomalousHigh",
"value": "60.0"

I

{
"name": "reportedTemperature",
"value": "15.72"

I

{
"name": "goodToGo",
"value": "false"

}

1,
"stateName": "idle",
"timers": [
{
"timestamp": 1557520454.0,
"name": "idleTimer"

iy

"keyValue": "Areab5l",
"detectorModelName": "areaDetectorModel",
"detectorModelVersion": "1"

BatchPutMessage examples 166

Amazon loT Events Developer Guide

}

BatchUpdateDetector example for an HVAC system in Amazon loT
Events

In this example, BatchUpdateDetector is used to change operational parameters for a working

detector instance.

Efficient HVAC system management often requires batch updates to multiple detectors. This
section demonstrates how to use Amazon loT Events's batch update feature for detectors. Learn
to simultaneously modify multiple control parameters, update threshold values, so that you can
adjust response actions across a fleet of devices, improving your ability to manage large-scale
systems effectively.

CLI command used:

aws iotevents-data batch-update-detector --cli-input-json file://areaDM.BUD. json

File: areaDM.BUD. json

{
"detectors": [
{
"messageld": "0001",
"detectorModelName": "areaDetectorModel",
"keyValue": "Areab5l",
"state": {
"stateName": "start",
"variables": [
{
"name": "desiredTemperature",
"value": "22"
},
{
"name": "averageTemperature",
"value": "22"
},
{
"name": "allowedError",

BatchUpdateDetector example

167

Amazon loT Events

Developer Guide

"value":

iy
{

Ilnamell .

"value":

Ilnamell .

"value":

Ilnamell .

"value":

Ilnamell .

"value":

Ilnamell .

"value":

Ilnamell .

"value":

Ilnamell .

"value":

Ilnamell .

"value":

Ilnamell .

"value":

Ilnamell .

"value":

}
]I

"timers":

[

Il1.®Il

"rangeHigh",
Il3®.®"

"rangelLow",
Il15-®"

"anomalousHigh",
Il6®.®"

"anomalousLow",
IIQ.QII

"sensorCount",
Il12ll

"noDelay",
Iltruell

"goodToGo",
Iltruell

"sensorId",
Il@ll

"reportedTemperature",
Il®.1ll

"resetMe",
Iltruell

BatchUpdateDetector example

168

Amazon loT Events Developer Guide

Response:

An error occurred (InvalidRequestException) when calling the BatchUpdateDetector
operation: Number of variables in the detector exceeds the limit 10

}

The Amazon loT Core rules engine and Amazon loT Events

The following rules republish Amazon loT Events MQTT messages as shadow update request
messages. We assume that Amazon loT Core things are defined for a heating unit and a cooling
unit for each area that is controlled by the detector model.

In this example, we have defined things named Area51HeatingUnit and Area51CoolingUnit.

CLI command used:
aws iot create-topic-rule --cli-input-json file://ADMShadowCoolOffRule.json

File: ADMShadowCoo0l0ffRule. json

{
"ruleName": "ADMShadowCoolOff",
"topicRulePayload": {
"sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Cooling/Off'",
"description": "areaDetectorModel mqgtt topic publish to cooling unit shadow
request",
"ruleDisabled": false,
"awsIotSqlVersion": "2016-03-23",
"actions": [
{
"republish": {
"topic": "$$aws/things/${payload.detector.keyValue}CoolingUnit/shadow/
update",

"roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"

Amazon loT Core rules engine 169

Amazon loT Events Developer Guide

Response: [empty]

CLI command used:

aws iot create-topic-rule --cli-input-json file://ADMShadowCoolOnRule. json

File: ADMShadowCoolOnRule. json

"ruleName": "ADMShadowCoolOn",
"topicRulePayload": {
"sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Cooling/On'",
"description": "areaDetectorModel mqtt topic publish to cooling unit shadow
request",
"ruleDisabled": false,
"awsIotSglVersion": "2016-03-23",
"actions": [

{
"republish": {
"topic": "$$aws/things/${payload.detector.keyValue}CoolingUnit/shadow/
update",
"roleArn": "arn:aws:iam::123456789012:ro0le/service-role/ADMShadowRole"
}
}

Response: [empty]

CLI command used:

aws iot create-topic-rule --cli-input-json file://ADMShadowHeatOffRule.json

File: ADMShadowHeatOffRule. json

Amazon loT Core rules engine 170

Amazon loT Events Developer Guide

{
"ruleName": "ADMShadowHeatOff",
"topicRulePayload": {
"sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Heating/Off'",
"description": "areaDetectorModel mqtt topic publish to heating unit shadow
request",
"ruleDisabled": false,
"awsIotSqlVersion": "2016-03-23",
"actions": [
{
"republish": {
"topic": "$$aws/things/${payload.detector.keyValue}HeatingUnit/shadow/
update",
"roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
}
}
]
}
}

Response: [empty]

CLI command used:

aws iot create-topic-rule --cli-input-json file://ADMShadowHeatOnRule. json

File: ADMShadowHeatOnRule. json

{
"ruleName": "ADMShadowHeatOn",
"topicRulePayload": {
"sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Heating/On'",
"description": "areaDetectorModel mqgtt topic publish to heating unit shadow
request",
"ruleDisabled": false,
"awsIotSqlVersion": "2016-03-23",
"actions": [
{
"republish": {
"topic": "$$aws/things/${payload.detector.keyValue}HeatingUnit/shadow/
update",

"roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"

Amazon loT Core rules engine 171

Amazon loT Events Developer Guide

Response: [empty]

Example: A crane detecting conditions using Amazon loT Events

An operator of many cranes wants to detect when the machines need maintenance or replacement
and trigger appropriate notifications. Each crane has a motor. A motor emits messages (inputs)
with information about pressure and temperature. The operator wants two levels of event
detectors:

« A crane-level event detector

« A motor-level event detector

Using messages from the motors (that contain metadata with both the craneId and the
motorid), the operator can execute both levels of event detectors using appropriate routing.
When event conditions are met, notifications should be sent to appropriate Amazon SNS topics.
The operator can configure the detector models so that duplicate notifications are not raised.

This example demonstrates the following functional capabilities:

» Create, Read, Update, Delete (CRUD) of inputs.

» Create, Read, Update, Delete (CRUD) of event detector models and different versions of event
detectors.

« Routing one input to multiple event detectors.

« Ingestion of inputs into a detector model.

« Evaluation of trigger conditions and lifecycle events.

« Ability to refer to state variables in conditions and set their values depending on conditions.
« Runtime orchestration with definition, state, trigger evaluator, and actions executor.

« Execution of actions in ActionsExecutor with an SNS target.

Cranes 172

Amazon loT Events

Developer Guide

Send commands in response to detected conditions in Amazon

loT Events

This page provides an example for using Amazon loT Events commands to set up inputs, create

detector models, and send simulated sensor data. The examples demonstrate how to leverage

Amazon loT Events to monitor industrial equipment like motors and cranes.

#Create Pressure Input

iotevents
iotevents
iotevents
iotevents
iotevents

aws
aws
aws
aws
aws

create-input --cli-input-json file://pressurelnput.json
describe-input --input-name Pressurelnput

update-input --cli-input-json file://pressurelnput.json
list-inputs

delete-input --input-name Pressurelnput

#Create Temperature Input

iotevents
iotevents
iotevents
iotevents
iotevents

aws
aws
aws
aws
aws

#Create Motor
aws iotevents
aws iotevents
aws iotevents

create-input --cli-input-json file://temperaturelnput.json
describe-input --input-name Temperaturelnput

update-input --cli-input-json file://temperaturelnput.json
list-inputs

delete-input --input-name TemperatureInput

Event Detector using pressure and temperature input

--cli-input-json file://motorDetectorModel. json
describe-detector-model --detector-model-name motorDetectorModel
update-detector-model --cli-input-json file://

create-detector-model

updateMotorDetectorModel. json

aws iotevents
aws iotevents
aws iotevents

#Create Crane
aws iotevents
aws iotevents
aws iotevents

list-detector-models
list-detector-model-versions --detector-model-name motorDetectorModel
delete-detector-model --detector-model-name motorDetectorModel

Event Detector using temperature input

create-detector-model --cli-input-json file://craneDetectorModel.json
describe-detector-model --detector-model-name craneDetectorModel
update-detector-model --cli-input-json file://

updateCraneDetectorModel. json

aws iotevents
aws iotevents
aws iotevents

list-detector-models
list-detector-model-versions --detector-model-name craneDetectorModel
delete-detector-model --detector-model-name craneDetectorModel

#Replace cranelds
sed -i '' "s/100008/100009/g" messages/*

Send commands

173

Amazon loT Events Developer Guide

#Replace motorIds
sed -i '' "s/200008/200009/9g" messages/*

#Send HighPressure message
aws iotevents-data batch-put-message --cli-input-json file://messages/
highPressureMessage.json --cli-binary-format raw-in-base64-out

#Send HighTemperature message
aws iotevents-data batch-put-message --cli-input-json file://messages/
highTemperatureMessage.json --cli-binary-format raw-in-base64-out

#Send LowPressure message
aws iotevents-data batch-put-message --cli-input-json file://messages/
lowPressureMessage.json --cli-binary-format raw-in-base64-out

#Send LowTemperature message
aws iotevents-data batch-put-message --cli-input-json file://messages/
lowTemperatureMessage.json --cli-binary-format raw-in-base64-out

An Amazon loT Events detector model for crane monitoring

Monitor your equipment or device fleets for failures or changes in operation, and trigger actions
when such events occur. You define detector models in JSON which specify states, rules, and
actions. This allows you to monitor inputs like temperature and pressure, track threshold breaches,
and send alerts. The examples show detector models for a crane and motor, detecting overheating
issues and notifying by Amazon SNS when a threshold is exceeded. You can update models to
refine behavior without disrupting monitoring.

File: craneDetectorModel. json

"detectorModelName": "craneDetectorModel",
"detectorModelDefinition": {
"states": [
{
"stateName": "Running",
"onEnter": {
"events": [

{

"eventName": "init",

Detector models 174

Amazon loT Events Developer Guide

"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "craneThresholdBreached",
"value": "0Q"
}
}
]
}
]
I
"onInput": {
"events": [
{
"eventName": "Overheated",
"condition": "$input.TemperatureInput.temperature > 35",
"actions": [
{
"setVariable": {
"variableName": "craneThresholdBreached",
"value": "$variable.craneThresholdBreached + 1"
}
}
]
I
{
"eventName": "Crane Threshold Breached",
"condition": "$variable.craneThresholdBreached > 5",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-
east-1:123456789012:CraneSNSTopic"
}
}
]
I
{
"eventName": "Underheated",
"condition": "$input.TemperatureInput.temperature < 25",
"actions": [
{

"setVariable": {

Detector models 175

Amazon loT Events

Developer Guide

"variableName": "craneThresholdBreached",
"value": "0Q"
}
}
]
}
]
}
}
1,
"initialStateName": "Running"
.
"key": "craneid",

"roleArn": "arn:aws:iam::123456789012:role/columboSNSRole"

To update an existing detector model. File: updateCraneDetectorModel. json

"detectorModelName": "craneDetectorModel",
"detectorModelDefinition": {
"states": [
{
"stateName": "Running",
"onEnter": {
"events": [

{
"eventName": "init",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "craneThresholdBreached",
"value": "OQ"
}
b
{
"setVariable": {
"variableName": "alarmRaised",
"value": "'false'"
}
}

Detector models

176

Amazon loT Events Developer Guide

}
]
},
"onInput": {
"events": [
{
"eventName": "Overheated",
"condition": "$input.TemperatureInput.temperature > 30",
"actions": [
{
"setVariable": {
"variableName": "craneThresholdBreached",
"value": "$variable.craneThresholdBreached + 1"
}
}
]
},
{
"eventName": "Crane Threshold Breached",
"condition": "$variable.craneThresholdBreached > 5 &&
$variable.alarmRaised == 'false'",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-
east-1:123456789012:CraneSNSTopic"
}
I
{
"setVariable": {
"variableName": "alarmRaised",
"value": "'true'"
}
}
]
I
{
"eventName": "Underheated",
"condition": "$input.TemperatureInput.temperature < 10",
"actions": [
{
"setVariable": {
"variableName": "craneThresholdBreached",
"value": "OQ"

Detector models 177

Amazon loT Events

Developer Guide

1,

"initialStateName": "Running"

iy

"roleArn": "arn:aws:iam::123456789012:role/columboSNSRole"

File: motorDetectorModel. json

"detectorModelName": "motorDetectorModel",

"detectorModelDefinition": {
"states": [
{
"stateName": "Running",
"onEnter": {
"events": [

"init",
"true",

"setVariable": {

{
"eventName":
"condition":
"actions": [
{
}
}
]
}
]
1,
"onInput": {
"events": [
{
"eventName":
"condition":

"variableName":
"Vall_le": "0"

"motorThresholdBreached",

"Overheated And Overpressurized",
"$input.PressureInput.pressure > 70 &&

$input.TemperatureInput.temperature > 30",

Detector models

178

Amazon loT Events Developer Guide

"actions": [

{
"setVariable": {
"variableName": "motorThresholdBreached",
"value": "$variable.motorThresholdBreached + 1"
}
}
]
},
{
"eventName": "Motor Threshold Breached",
"condition": "$variable.motorThresholdBreached > 5",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-
east-1:123456789012:MotorSNSTopic"
}
}
]
}
]
}
}
1,
"initialStateName": "Running"

iy
"key": "motorId",
"roleArn": "arn:aws:iam::123456789012:role/columboSNSRole"

To update an existing detector model. File: updateMotorDetectorModel. json

"detectorModelName": "motorDetectorModel",
"detectorModelDefinition": {
"states": [
{
"stateName": "Running",
"onEnter": {
"events": [

{

"eventName": "init",

Detector models 179

Amazon loT Events Developer Guide

"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "motorThresholdBreached",
"value": "0Q"
}
}
]
}
]
I
"onInput": {
"events": [
{
"eventName": "Overheated And Overpressurized",
"condition": "$input.Pressurelnput.pressure > 70 &&

$input.TemperatureInput.temperature > 30",
"actions": [

{
"setVariable": {
"variableName": "motorThresholdBreached",
"value": "$variable.motorThresholdBreached + 1"
}
}
]
},
{
"eventName": "Motor Threshold Breached",
"condition": "$variable.motorThresholdBreached > 5",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-
east-1:123456789012:MotorSNSTopic"
}
}
]
}
]
}
}
1,
"initialStateName": "Running"

Detector models 180

Amazon loT Events Developer Guide

I
"roleArn": "arn:aws:iam::123456789012:role/columboSNSRole"

Amazon loT Events inputs for crane monitoring

In this example, we demonstrate how to set up inputs for a crane monitoring system using Amazon
loT Events. It captures pressure and temperature inputs to illustrate how to structure inputs for
complex industrial equipment monitoring.

File: pressurelInput.json

{
"inputName": "Pressurelnput",
"inputDescription": "this is a pressure input description",
"inputDefinition": {
"attributes": [
{"jsonPath": "pressure"}
]
}
}

File: temperatureInput. json

{
"inputName": "Temperaturelnput",
"inputDescription": "this is temperature input description",
"inputDefinition": {
"attributes": [
{"jsonPath": "temperature"}
]
}
}

Send alarm and operational messages with Amazon loT Events

Effective message handling is important in crane monitoring systems. This section showcases
how to configure Amazon loT Events to process and respond to various message types from crane
sensors. Setting up alarms based on a particular message can help you parse, filter, and route
status updates to trigger appropriate actions.

Inputs 181

Amazon loT Events Developer Guide

File: highPressureMessage. json

{
"messages": [
{
"messageId": "1",
"inputName": "Pressurelnput",

"payload": "{\"craneid\": \"100009\", \"pressure\": 80, \"motorid\":
\Il2®®®®9\ll } 1]

File: highTemperatureMessage. json

{
"messages": [
{
"messageId": "2",
"inputName": "TemperatureInput",

"payload": "{\"craneid\": \"100009\", \"temperature\": 40, \"motorid\":
\||2®®®®9\n } "

}

File: lowPressureMessage. json

{
"messages": [
{
"messageId": "1",
"inputName": "PressurelInput",

"payload": "{\"craneid\": \"100009\", \"pressure\": 20, \"motorid\":
\||2®®®®9\n } n

}

File: lowTemperatureMessage. json

Messages 182

Amazon loT Events Developer Guide

{
"messages": [
{
"messageId": "2",
"inputName": "TemperatureInput",
"payload": "{\"craneid\": \"100009\", \"temperature\": 20, \"motorid\":
\"200009\"}"
}
]
}

Example: Amazon loT Events event detection with sensors and
applications

This detector model is one of the templates available from the Amazon IoT Events console. It's
included here for your convenience.

This example demonstrates Amazon loT Events's application event detection using sensor data. It
shows how you can create a detector model that monitors specified events so that you can trigger
appropriate actions. You can create multiple sensor inputs, define complex event conditions, and
set up graduated response mechanisms.

"detectorModelName": "EventDetectionSensorsAndApplications",
"detectorModelDefinition": {
"states": [

{
"onInput": {
"transitionEvents": [],
"events": []
},
"stateName": "Device_exception",
"onEnter": {
"events": [
{
"eventName": "Send_mqtt",
"actions": [
{
"iotTopicPublish": {
"mqttTopic": "Device_stolen"

Example: Event detection with sensors 183

Amazon loT Events Developer Guide

}
1,
"condition": "true"
}
]
I
"onExit": {
"events": []
}
I
{
"onInput": {
"transitionEvents": [
{
"eventName": "To_in_use",
"actions": [],
"condition": "$variable.position !=
$input.AWS_IoTEvents_Blueprints_Tracking_DeviceInput.gps_position",
"nextState": "Device_in_use"
}
1,
"events": []
},
"stateName": "Device_idle",
"onEnter": {
"events": [
{
"eventName": "Set_position",
"actions": [
{
"setVariable": {
"variableName": "position",
"value":
"$input.AWS_IoTEvents_Blueprints_Tracking_DeviceInput.gps_position"
}
}
1,
"condition": "true"
}
]
},
"onExit": {
"events": []
}

Example: Event detection with sensors 184

Amazon loT Events

Developer Guide

},
{
"onInput": {
"transitionEvents": [
{
"eventName": "To_exception",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_Tracking_UserInput.device_id !=
$input.AWS_IoTEvents_Blueprints_Tracking_DeviceInput.device_id",

"nextState": "Device_exception"
}
1,
"events": []
},
"stateName": "Device_in_use",

"onEnter": {
"events": []

},
"onExit": {
"events": []
}
}
1,
"initialStateName": "Device_idle"

Example: Device HeartBeat to monitor device connections with

Amazon loT Events

This detector model is one of the templates available from the Amazon IoT Events console. It's

included here for your convenience.

The Defective Heart Beat (DHB) example illustrates how Amazon loT Events can be used in
healthcare monitoring. This example shows how you can create a detector model that analyzes
heart rate data, detects irregular patterns, and triggers appropriate responses. Learn to set up
inputs, define thresholds, and configure alerts for potential cardiac issues, showcasing Amazon loT

Events's versatility in related healthcare applications.

Device HeartBeat

185

Amazon loT Events Developer Guide

"detectorModelDefinition": {
"states": [

{
"onInput": {
"transitionEvents": [
{
"eventName": "To_normal",
"actions": [],
"condition":
"currentInput(\"AWS_IoTEvents_Blueprints_Heartbeat_Input\")",
"nextState": "Normal"
}
1,
"events": []
},
"stateName": "Offline",
"onEnter": {
"events": [
{
"eventName": "Send_notification",
"actions": [
{
"sns": {
"targetArn": "sns-topic-arn"
}
}
1,
"condition": "true"
}
]
},
"onExit": {
"events": []
}
},
{
"onInput": {
"transitionEvents": [
{
"eventName": "Go_offline",
"actions": [],
"condition": "timeout(\"awake\")",

"nextState": "Offline"

Device HeartBeat 186

Amazon loT Events

Developer Guide

1,
"events": [
{
"eventName": "Reset_timer",
"actions": [
{
"resetTimer": {
"timerName": "awake"
}
}
1,
"condition":
"currentInput(\"AWS_IoTEvents_Blueprints_Heartbeat_Input\")"
}
]
I
"stateName": "Normal",
"onEnter": {
"events": [
{
"eventName": "Create_timer",
"actions": [
{
"setTimer": {
"seconds": 300,
"timerName": "awake"
}
}
1,
"condition":
"$input.AWS_IoTEvents_Blueprints_Heartbeat_Input.value > Q"
}
]
I
"onExit": {
"events": []
}
}
1,
"initialStateName": "Normal"

Device HeartBeat

187

Amazon loT Events Developer Guide

Example: An ISA alarm in Amazon loT Events

This detector model is one of the templates available from the Amazon IoT Events console. It's
included here for your convenience.

{
"detectorModelName": "AWS_IoTEvents_Blueprints_ISA_Alarm",
"detectorModelDefinition": {
"states": [
{
"onInput": {
"transitionEvents": [
{

"eventName": "unshelve",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unshelve\" &&
$variable.state == \"rtnunack\"",

"nextState": "RTN_Unacknowledged"

.
{

"eventName": "unshelve",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unshelve\" &&
$variable.state == \"ack\"",

"nextState": "Acknowledged"

.
{

"eventName": "unshelve",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unshelve\" &&
$variable.state == \"unack\"",

"nextState": "Unacknowledged"

.
{

"eventName": "unshelve",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unshelve\" &&
$variable.state == \"normal\"",

"nextState": "Normal"

ISA alarm 188

Amazon loT Events Developer Guide

1,

"events": []
.
"stateName": "Shelved",
"onEnter": {

"events": []

I
"onExit": {
"events": []
}
I
{
"onInput": {
"transitionEvents": [
{
"eventName": "abnormal_condition",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value > $variable.higher_threshold ||
$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value < $variable.lower_threshold",
"nextState": "Unacknowledged"

},
{
"eventName": "acknowledge",
"actions": [],
"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"acknowledge\"",
"nextState": "Normal"
I
{
"eventName": "shelve",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"shelve\"",

"nextState": "Shelved"

},

{
"eventName": "remove_from_service",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"remove\"",

"nextState": "Out_of_service"

I

ISA alarm 189

Amazon loT Events Developer Guide

"eventName": "suppression",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"suppressed\"",

"nextState": "Suppressed_by_design"

1,

"events": []
.
"stateName": "RTN_Unacknowledged",
"onEnter": {

"events": [

{
"eventName": "State Save",
"actions": [
{
"setVariable": {
"variableName": "state",
"value": "\"rtnunack\""
}
}
1,
"condition": "true"
}
]
},
"onExit": {
"events": []
}
},
{
"onInput": {
"transitionEvents": [
{
"eventName": "abnormal_condition",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value > $variable.higher_threshold ||
$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value < $variable.lower_threshold",
"nextState": "Unacknowledged"
I
{

"eventName": "shelve",

ISA alarm 190

Amazon loT Events Developer Guide

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"shelve\"",

"nextState": "Shelved"

},

{
"eventName": "remove_from_service",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"remove\"",

"nextState": "Out_of_service"

I

{
"eventName": "suppression",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"suppressed\"",
"nextState": "Suppressed_by_design"

}
1,
"events": [
{
"eventName": "Create Config variables",
"actions": [
{
"setVariable": {
"variableName": "lower_threshold",
"value":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.lower_threshold"
}
},
{
"setVariable": {
"variableName": "higher_threshold",
"value":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.higher_threshold"
}
}
1,
"condition": "$variable.lower_threshold !=

$variable.lower_threshold"

}

iy

ISA alarm 191

Amazon loT Events Developer Guide

"stateName": "Normal",
"onEnter": {
"events": [

{
"eventName": "State Save",
"actions": [
{
"setVariable": {
"variableName": "state",
"value": "\'"normal\""
}
}
1,
"condition": "true"
}
]
},
"onExit": {
"events": []
}
},
{
"onInput": {
"transitionEvents": [
{
"eventName": "acknowledge",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"acknowledge\"",

"nextState": "Acknowledged"

},

{
"eventName": "return_to_normal",
"actions": [],
"condition":

"($input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value <= $variable.higher_threshold
&& $input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value >=

$variable.lower_threshold)",
"nextState": "RTN_Unacknowledged"

iy
{

"eventName": "shelve",
"actions": [],

ISA alarm 192

Amazon loT Events Developer Guide

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"shelve\"",
"nextState": "Shelved"

I

{
"eventName": "remove_from_service",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"remove\"",

"nextState": "Out_of_service"

},

{
"eventName": "suppression",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"suppressed\"",
"nextState": "Suppressed_by_design"

}
1,
"events": []
},
"stateName": "Unacknowledged",

"onEnter": {
"events": [

{
"eventName": "State Save",
"actions": [
{
"setVariable": {
"variableName": "state",
"value": "\"unack\""
}
}
1,
"condition": "true"
}
]
.
"onExit": {
"events": []
}
.
{
"onInput": {

ISA alarm 193

Amazon loT Events Developer Guide

"transitionEvents": [

{

"eventName": "unsuppression",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unsuppressed\" &&
$variable.state == \"normal\"",

"nextState": "Normal"

},
{

"eventName": "unsuppression",

"actions": [],

"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unsuppressed\" &&
$variable.state == \"unack\"",
"nextState": "Unacknowledged"

1,
"eventName": "unsuppression",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unsuppressed\" &&
$variable.state == \"ack\"",
"nextState": "Acknowledged"

1,
"eventName": "unsuppression",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unsuppressed\" &&
$variable.state == \"rtnunack\"",
"nextState": "RTN_Unacknowledged"

}
1,
"events": []
I
"stateName": "Suppressed_by_design",

"onEnter": {
"events": []

iy
"onExit": {
"events": []

iy

ISA alarm 194

Amazon loT Events Developer Guide

{
"onInput": {
"transitionEvents": [
{
"eventName": "return_to_service",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"add\" && $variable.state
== \"rtnunack\"",
"nextState": "RTN_Unacknowledged"

},
{

"eventName": "return_to_service",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"add\" && $variable.state
== \"unack\"",

"nextState": "Unacknowledged"

},
{

"eventName": "return_to_service",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"add\" && $variable.state
== \"ack\"",

"nextState": "Acknowledged"

},
{

"eventName": "return_to_service",

"actions": [],

"condition":
"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"add\" && $variable.state
== \"normal\"",

"nextState": "Normal"

}

1,

"events": []
I
"stateName": "Out_of_service",
"onEnter": {

"events": []
I

"onExit": {
"events": []

ISA alarm 195

Amazon loT Events Developer Guide

}
I
{
"onInput": {
"transitionEvents": [

{
"eventName": "re-alarm",
"actions": [],
"condition": "timeout(\"snooze\")",
"nextState": "Unacknowledged"

},

{
"eventName": "return_to_normal",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"reset\"",

"nextState": "Normal"

I

{
"eventName": "shelve",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"shelve\"",
"nextState": "Shelved"

},

{
"eventName": "remove_from_service",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"remove\"",

"nextState": "Out_of_service"

I

{
"eventName": "suppression",
"actions": [],
"condition":

"$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"suppressed\"",
"nextState": "Suppressed_by_design"

15

"events": []
iy
"stateName": "Acknowledged",
"onEnter": {

ISA alarm 196

Amazon loT Events Developer Guide

"events": [

{
"eventName": "Create Timer",
"actions": [
{
"setTimer": {
"seconds": 60,
"timerName": "snooze"
}
}
1,
"condition": "true"
},
{
"eventName": "State Save",
"actions": [
{
"setVariable": {
"variableName": "state",
"value": "\"ack\""
}
}
1,
"condition": "true"
}
]
},
"onExit": {
"events": []
}
}
1,
"initialStateName": "Normal"
I
"detectorModelDescription": "This detector model is used to detect if a monitored

device is in an Alarming State in accordance to the ISA 18.2.",
"roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole",
"key": "alarmId"

ISA alarm 197

Amazon loT Events Developer Guide

Example: Build a simple alarm with Amazon loT Events

This detector model is one of the templates available from the Amazon IoT Events console. It's
included here for your convenience.

{
"detectorModelDefinition": {
"states": [
{
"onInput": {
"transitionEvents": [
{
"eventName": "not_fixed",
"actions": [],
"condition": "timeout(\"snoozeTime\")",
"nextState": "Alarming"
},
{
"eventName": "reset",
"actions": [],
"condition":
"$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.command == \"reset\"",
"nextState": "Normal"
}
1,
"events": [
{
"eventName": "DND",
"actions": [
{
"setVariable": {
"variableName": "dnd_active",
"value": "1"
}
}
1,
"condition":
"$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.command == \"dnd\""
}
]
},
"stateName": "Snooze",

"onEnter": {

Simple alarm 198

Amazon loT Events Developer Guide

"events": [

{
"eventName": "Create Timer",
"actions": [
{
"setTimer": {
"seconds": 120,
"timerName": "snoozeTime"
}
}
1,
"condition": "true"
}
]
},
"onExit": {
"events": []
}
},
{
"onInput": {
"transitionEvents": [
{
"eventName": "out_of_range",
"actions": [],
"condition":
"$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.value > $variable.threshold",
"nextState": "Alarming"
}
1,
"events": [
{
"eventName": "Create Config variables",
"actions": [
{
"setVariable": {
"variableName": "threshold",
"value":
"$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.threshold"
}
}
1,
"condition": "$variable.threshold != $variable.threshold"
}

Simple alarm 199

Amazon loT Events Developer Guide

iy

"stateName": "Normal",
"onEnter": {
"events": [

{
"eventName": "Init",
"actions": [
{
"setVariable": {
"variableName": "dnd_active",
"value": "OQ"
}
}
1,
"condition": "true"
}
]
},
"onExit": {
"events": []
}
},
{
"onInput": {
"transitionEvents": [
{
"eventName": "reset",
"actions": [],
"condition":
"$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.command == \"reset\"",
"nextState": "Normal"
},
{
"eventName": "acknowledge",
"actions": [],
"condition":
"$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.command == \"acknowledge\"",
"nextState": "Snooze"
}
1,
"events": [
{
"eventName": "Escalated Alarm Notification",

Simple alarm 200

Amazon loT Events

Developer Guide

"actions": [

{
"sns": {
"targetArn": "arn:aws:sns:us-
west-2:123456789012:escalatedAlarmNotification”
}
}
1,
"condition": "timeout(\"unacknowledgeTIme\")"
}
]
I
"stateName": "Alarming",
"onEnter": {
"events": [
{
"eventName": "Alarm Notification",
"actions": [
{
"sns": {
"targetArn": "arn:aws:sns:us-
west-2:123456789012:alarmNotification"
}
I
{
"setTimer": {
"seconds": 300,
"timerName": "unacknowledgeTIme"
}
}
1,
"condition": "$variable.dnd_active != 1"
}
]
},
"onExit": {
"events": []
}
}
1,
"initialStateName": "Normal"
I
"detectorModelDescription": "This detector model is used to detect if a monitored

device is in an Alarming State.",

Simple alarm

201

Amazon loT Events Developer Guide

"roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole",
"key": "alarmId"

Simple alarm 202

Amazon loT Events Developer Guide

Monitoring with alarms in Amazon loT Events

Amazon loT Events alarms help you monitor your data for changes. The data can be metrics that
you measure for your equipment and processes. You can create alarms that send notifications
when a threshold is breached. Alarms help you detect issues, streamline maintenance, and optimize
performance of your equipment and processes.

Alarms are instances of alarm models. The alarm model specifies what to detect, when to send
notifications, who gets notified, and more. You can also specify one or more supported actions that
occur when the alarm state changes. Amazon loT Events routes input attributes derived from your
data to the appropriate alarms. If the data that you're monitoring is outside the specified range,
the alarm is invoked. You can also acknowledge the alarms or set them to the snooze mode.

® Note

The alarm notifications feature isn't available in the China (Beijing) Region.

Working with Amazon loT SiteWise

You can use Amazon loT Events alarms to monitor asset properties in Amazon loT SiteWise.
Amazon loT SiteWise sends asset property values to Amazon loT Events alarms. Amazon loT Events
sends the alarm state to Amazon loT SiteWise.

Amazon loT SiteWise also supports external alarms. You might choose external alarms if you use
alarms outside of Amazon loT SiteWise and have a solution that returns alarm state data. The
external alarm contains a measurement property that ingests the alarm state data.

Amazon loT SiteWise doesn't evaluate the state of external alarms. Additionally, you can't
acknowledge or snooze an external alarm when the alarm state changes.

You can use the SiteWise Monitor feature to view the state of external alarms in SiteWise Monitor
portals.

For more information, see Monitoring data with alarms in the Amazon loT SiteWise User Guide and
Monitoring with alarms in the SiteWise Monitor Application Guide.

Working with Amazon loT SiteWise 203

https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-supported-actions.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-detector-input.html
https://docs.amazonaws.cn/iot-sitewise/latest/userguide/industrial-alarms.html
https://docs.amazonaws.cn//iot-sitewise/latest/appguide/monitor-alarms.html

Amazon loT Events Developer Guide

Acknowledge flow

When you create an alarm model, you choose whether to enable acknowledge flow. If you
enable acknowledge flow, your team gets notified when the alarm state changes. Your team
can acknowledge the alarm and leave a note. For example, you can include the information of
the alarm and the actions that you're going to take to address the issue. If the data that you're
monitoring is outside the specified range, the alarm is invoked.

Alarms have the following states:
DISABLED

When the alarm is in the DISABLED state, it isn't ready to evaluate data. To enable the alarm,
you must change the alarm to the NORMAL state.

NORMAL

When the alarm is in the NORMAL state, it's ready to evaluate data.
ACTIVE

If the alarm is in the ACTIVE state, the alarm is invoked. The data that you're monitoring is
outside the specified range.

ACKNOWLEDGED

When the alarm is in the ACKNOWLEDGED state, the alarm was invoked and you acknowledged
the alarm.

LATCHED

The alarm was invoked, but you didn't acknowledge the alarm after a period of time. The alarm
automatically changes to the NORMAL state.

SNOOZE_DISABLED

When the alarm is in the SNOOZE_DISABLED state, the alarm is disabled for a specified period
of time. After the snooze time, the alarm automatically changes to the NORMAL state.

Creating an alarm model in Amazon loT Events

You can use Amazon loT Events alarms to monitor your data and get notified when a threshold
is breached. Alarms provide parameters that you use to create or configure an alarm model. You

Acknowledge flow 204

Amazon loT Events Developer Guide

can use the Amazon loT Events console or Amazon loT Events API to create or configure the alarm
model. When you configure the alarm model, changes take effect as new data arrives.

Requirements

The following requirements apply when you create an alarm model.
» You can create an alarm model to monitor an input attribute in Amazon loT Events or an asset
property in Amazon loT SiteWise.

« If you choose to monitor an input attribute in Amazon loT Events, Create an input for models
in Amazon loT Events before you create the alarm model.

« If you choose to monitor an asset property, you must create an asset model in Amazon loT
SiteWise before you create the alarm model.

» You must have an IAM role that allows your alarm to perform actions and access Amazon
resources. For more information, see Setting up permissions for Amazon loT Events.

« All the Amazon resources that this tutorial uses must be in the same Amazon Region.

Creating an alarm model (console)

The following shows you how to create an alarm model to monitor an Amazon loT Events attribute
in the Amazon loT Events console.

1. Signin to the Amazon loT Events console.

In the navigation pane, choose Alarm models.

On the Alarm models page, choose Create alarm model.

P WD

In the Alarm model details section, do the following:

a. Enter a unique name.
b. (Optional) Enter a description.

5. Inthe Alarm target section, do the following:

/A Important

If you choose Amazon loT SiteWise asset property, you must have created an asset
model in Amazon loT SiteWise.

Requirements 205

https://docs.amazonaws.cn/iot-sitewise/latest/userguide/create-asset-models.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-start.html
https://console.amazonaws.cn/iotevents/

Amazon loT Events Developer Guide

a. Choose Amazon loT Events input attribute.
b. Choose the input.

c. Choose the input attribute key. This input attribute is used as a key to create the alarm.
Amazon loT Events routes inputs associated with this key to the alarm.

/A Important

If the input message payload does not contain this input attribute key, or if the key
is not in the same JSON path specified in the key, then the message will fail the
ingestion in Amazon loT Events.

6. In the Threshold definitions section, you define the input attribute, threshold value, and
comparison operator that Amazon loT Events uses to change the state of the alarm.

a. For Input attribute, choose the attribute that you want to monitor.

Each time that this input attribute receives new data, it's evaluated to determine the state
of the alarm.

b. For Operator, choose the comparison operator. The operator compares your input
attribute with the threshold value for your attribute.

You can choose from these options:

> greater than

>= greater than or equal to

< less than

<= less than or equal to

= equal to

= not equal to

c. For threshold Value, enter a number or choose an attribute in Amazon loT Events inputs.
Amazon loT Events compares this value with the value of the input attribute you choose.

d. (Optional) For Severity, Use a number that your team understands to reflect the severity
of this alarm.

7. (Optional) In the Notification settings section, configure notification settings for the alarm.

Creating an alarm model (console) 206

Amazon loT Events Developer Guide

® Note

The alarm notifications feature isn't available in the China (Beijing) Region.

You can add up to 10 notifications. For Notification 1, do the following:
a. For Protocol, choose from the following options:

« Email & text - The alarm sends an SMS notification and an email notification.
o Email - The alarm sends an email notification.
o Text - The alarm sends an SMS notification.

b. For Sender, specify the email address that can send notifications about this alarm.

To add more email addresses to your sender list, choose Add sender.

c. (Optional) For Recipient, choose the recipient.

To add more users to your recipient list, choose Add new user. You must add new users
to your IAM Identity Center store before you can add them to your alarm model. For more
information, see Manage IAM Identity Center access of alarm recipients in Amazon loT
Events.

d. (Optional) For Additional custom message, enter a message that describes what the
alarm detects and what actions the recipients should take.

8. In the Instance section, you can enable or disable all alarm instances that are created based on
this alarm model.

9. Inthe Advanced settings section, do the following:
a. For Acknowledge flow, you can enable or disable notifications.

« If you choose Enabled, you receive a notification when the alarm state changes. You
must acknowledge the notification before the alarm state can return to normal.

« If you choose Disabled, no action is required. The alarm automatically changes to the
normal state when the measurement returns to the specified range.

For more information, see Acknowledge flow.

b. For Permissions, choose one of the following options:

Creating an alarm model (console) 207

Amazon loT Events Developer Guide

» You can Create a new role from Amazon policy templates and Amazon loT Events
automatically creates an IAM role for you.

» You can Use an existing IAM role that allows this alarm model to perform actions and
access other Amazon resources.

For more information, see Identity and access management for Amazon loT Events.

c. For Additional notification settings, you can edit your Amazon Lambda function to
manage alarm notifications. Choose one of the following options for your Amazon
Lambda function:

« Create a new Amazon Lambda function - Amazon loT Events creates a new Amazon
Lambda function for you.

« Use an existing Amazon Lambda function - Use an existing Amazon Lambda function
by choosing an Amazon Lambda function name.

For more information about the possible actions, see Amazon loT Events working with

other Amazon services.

d. (Optional) For Set state action, you can add one or more Amazon loT Events actions to
take when the alarm state changes.

10. (Optional) You can add Tags to manage your alarms. For more information, see Tagging your
Amazon loT Events resources.

11. Choose Create.

Responding to alarms in Amazon loT Events

Responding to alarms effectively is an important aspect of managing loT systems with Amazon
loT Events. Explore various ways to configure and handle alarms, including: setting up notification
channels, defining escalation procedures, and implementing automated response actions. Learn
to create nuanced alarm conditions, prioritize alerts, and integrate with other Amazon services to
build a responsive alarm management system for your loT applications.

If you enabled acknowledge flow, you receive notifications when the alarm state changes. To

respond to the alarm, you can acknowledge, disable, enable, reset, or snooze the alarm.

Responding to alarms 208

https://docs.amazonaws.cn/iotevents/latest/developerguide/security-iam.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/tagging-iotevents.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/tagging-iotevents.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-alarms.html#acknowledge-flow

Amazon loT Events Developer Guide

Console

The following shows you how to respond to an alarm in the Amazon loT Events console.

1. Signin to the Amazon loT Events console.

In the navigation pane, choose Alarm models.
Choose the target alarm model.

In the List of alarms section, choose the target alarm.

ok W

You can choose one of the following options from Actions:

« Acknowledge - The alarm changes to the ACKNOWLEDGED state.
» Disable - The alarm changes to the DISABLED state.
« Enable - The alarm changes to the NORMAL state.
» Reset - The alarm changes to the NORMAL state.
» Snooze, and then do the following:
1. Choose the Snooze length or enter a Custom snooze length.

2. Choose Save.

The alarm changes to the SNOOZE_DISABLED state

For more information about the alarm states, see Acknowledge flow.

API

To respond to one or more alarms, you can use the following Amazon loT Events API
operations:

» BatchAcknowledgeAlarm

BatchDisableAlarm

BatchEnableAlarm

BatchResetAlarm

BatchSnoozeAlarm

Responding to alarms 209

https://console.amazonaws.cn/iotevents/
https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchAcknowledgeAlarm.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchDisableAlarm.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchEnableAlarm.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchResetAlarm.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchSnoozeAlarm.html

Amazon loT Events Developer Guide

Managing alarm notifications in Amazon loT Events

Amazon loT Events integrates with Lambda, offering custom event processing capabilities. This
section explores how to use Lambda functions within your Amazon loT Events detector models,
allowing you to execute complex logic, interact with external services, and implement sophisticated
event handling.

Amazon loT Events uses a Lambda function to manage alarm notifications. You can use the
Lambda function provided by Amazon loT Events or create a new one.

(® Note

The alarm notifications feature isn't available in the China (Beijing) Region.

Topics

» Creating a Lambda function in Amazon loT Events

» Using the Lambda function provided by Amazon loT Events

« Manage IAM ldentity Center access of alarm recipients in Amazon loT Events

Creating a Lambda function in Amazon loT Events

Amazon loT Events provides a Lambda function that enables alarms to send and receive email and
SMS notifications.

Requirements

The following requirements apply when you create a Lambda function for alarms:

« If your alarm sends SMS notifications, ensure Amazon SNS is configured to deliver SMS
messages.

o If your alarm sends email or SMS notifications, you must have an IAM role that allows Amazon
Lambda to work with Amazon SES and Amazon SNS.

Example policy:

Managing alarm notifications 210

Amazon loT Events Developer Guide

JSON

{
"Version":"2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"ses:GetIdentityVerificationAttributes",
"ses:SendEmail",
"ses:VerifyEmailIdentity"

]I

"Resource": "*"

}I
{
"Effect": "Allow",
"Action": [
"sns:Publish",
"sns:0ptInPhoneNumber"”,
"sns :CheckIfPhoneNumbexrIsOptedOut",
"sms-voice:DescribeOptedOutNumbers"
]I
"Resource": "*"
}I
{

"Effect": "Deny",

"Action": "sns:Publish",

"Resource": "arn:aws-cn:sns:*:*:*"

},

{
"Effect" : "Allow",
"Action" : [

"logs:CreatelLogGroup",

"logs:CreateLogStream"”,

"logs:PutLogEvents"

]I
"Resource" : "*"
}
]
}

Creating a Lambda function 211

Amazon loT Events Developer Guide

» You must choose the same Amazon Region for both Amazon loT Events and Amazon Lambda.
For the list of supported Regions, see Amazon loT Events endpoints and quotas and Amazon

Lambda endpoints and quotas in the Amazon Web Services General Reference.

Deploy a Lambda function for Amazon loT Events using Amazon CloudFormation

This tutorial uses an Amazon CloudFormation template to deploy a Lambda function. This
template automatically creates an IAM role that allows the Lambda function to work with Amazon
SES and Amazon SNS.

The following shows you how to use the Amazon Command Line Interface (Amazon CLI) to create a
CloudFormation stack.

1. Inyour device's terminal, run aws --version to check if you installed the Amazon CLI. For
more information, see Installing or updating to the latest version of the Amazon CLI in the

Amazon Command Line Interface User Guide.

2. Runaws configure list to check if you configured the Amazon CLI in the Amazon Region
that has all your Amazon resources for this tutorial. For more information, see Set and view
configuration settings using commands in the Amazon Command Line Interface User Guide

3. Download the CloudFormation template, notificationLambda.template.yaml.zip.

® Note

If you have difficulty downloading the file, the template is also available in the
CloudFormation template.

4. Unzip the content and save it locally as notificationLambda.template.yaml.

5. Open a terminal on your device and navigate to the directory where you downloaded the
notificationLambda.template.yaml file.

6. To create a CloudFormation stack, run the following command:

aws cloudformation create-stack --stack-name notificationLambda-stack --template-
body file://notificationLambda.template.yaml --capabilities CAPABILITY_IAM

You might modify this CloudFormation template to customize the Lambda function and its
behavior.

Creating a Lambda function 212

https://docs.amazonaws.cn/general/latest/gr/iot-events.html
https://docs.amazonaws.cn/general/latest/gr/lambda-service.html
https://docs.amazonaws.cn/general/latest/gr/lambda-service.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-files.html#cli-configure-files-methods
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-files.html#cli-configure-files-methods
samples/notificationLambda.template.yaml.zip

Amazon loT Events Developer Guide

® Note

Amazon Lambda retries function errors twice. If the function doesn't have enough capacity
to handle all incoming requests, events might wait in the queue for hours or days to be
sent to the function. You can configure an undelivered-message queue (DLQ) on the
function to capture events that weren't successfully processed. For more information, see
Asynchronous invocation in the Amazon Lambda Developer Guide.

You can also create or configure the stack in the CloudFormation console. For more information,
see Working with stacks, in the Amazon CloudFormation User Guide.

Creating a custom Lambda function for Amazon loT Events
You can create a Lambda function or modify the one provided by Amazon IoT Events.
The following requirements apply when you create a custom Lambda function.

« Add permissions that allow your Lambda function to perform specified actions and access
Amazon resources.

« If you use the Lambda function provided by Amazon IoT Events, make sure that you choose the
Python 3.7 runtime.

Example Lambda function:

import boto3
import json
import logging
import datetime
logger = logging.getlLogger()
logger.setlLevel(logging.INFO)
ses = boto3.client('ses"')
sns = boto3.client('sns')
def check_value(target):

if target:

return True
return False

Check whether email is verified. Only verified emails are allowed to send emails to
or from.

Creating a Lambda function 213

https://docs.amazonaws.cn/lambda/latest/dg/invocation-async.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/stacks.html

Amazon loT Events Developer Guide

def check_email(email):
if not check_value(email):
return False
result = ses.get_identity_verification_attributes(Identities=[email])
attr = result['VerificationAttributes']
if (email not in attr or attr[email]['VerificationStatus'] != 'Success'):
logging.info('Verification email for {} sent. You must have all the emails
verified before sending email.'.format(email))
ses.verify_email_identity(EmailAddress=email)
return False
return True

Check whether the phone holder has opted out of receiving SMS messages from your
account
def check_phone_number(phone_number):
try:
result = sns.check_if_phone_number_is_opted_out(phoneNumber=phone_number)
if (result['isOptedOut']):
logger.info('phoneNumber {} is not opt in of receiving SMS messages. Phone
number must be opt in first.'.format(phone_number))
return False
return True
except Exception as e:
logging.error('Your phone number {} must be in E.164 format in SSO. Exception
thrown: {}'.format(phone_number, e))
return False

def check_emails(emails):
result = True
for email in emails:
if not check_email(email):
result = False
return result

def lambda_handler(event, context):
logging.info('Received event: ' + json.dumps(event))
nep = json.loads(event.get('notificationEventPayload'))
alarm_state = nep['alarmState']
default_msg = 'Alarm ' + alarm_state['stateName'] + '\n'
timestamp =
datetime.datetime.utcfromtimestamp(float(nep['stateUpdateTime'])/1000).strftime('%Y-
%m-%d %SH:%M:%S')
alarm_msg = "{} {} {3} at {3} UTC ".format(nep['alarmModelName'], nep.get('keyValue',
'Singleton'), alarm_state['stateName'], timestamp)

Creating a Lambda function

214

Amazon loT Events Developer Guide

default_msg += 'Sev: ' + str(nep['severity']) + '\n'
if (alarm_state['ruleEvaluation']):
property = alarm_state['ruleEvaluation']['simpleRule']['inputProperty']
default_msg += 'Current Value: ' + str(property) + '\n'
operator = alarm_state['ruleEvaluation']['simpleRule']['operator']
threshold = alarm_state['ruleEvaluation']['simpleRule']['threshold"']
alarm_msg += '({} {3} {})'.format(str(property), operator, str(threshold))
default_msg += alarm_msg + '\n'

emails = event.get('emailConfigurations', [])
logger.info('Start Sending Emails')
for email in emails:
from_adr = email.get('from')
to_adrs = email.get('to', [])
cc_adrs = email.get('cc', [1)
bcc_adrs = email.get('bcc', [1)
msg = default_msg + '\n' + email.get('additionalMessage', '')
subject = email.get('subject', alarm_msg)
fa_ver = check_email(from_adr)
tas_ver = check_emails(to_adrs)
ccas_ver = check_emails(cc_adrs)
bccas_ver = check_emails(bcc_adrs)
if (fa_ver and tas_ver and ccas_ver and bccas_ver):
ses.send_email(Source=from_adr,
Destination={'ToAddresses': to_adrs, 'CcAddresses': cc_adrs,
'BccAddresses': bcc_adrs},
Message={'Subject': {'Data': subject}, 'Body': {'Text': {'Data':
msg}}})

logger.info('Emails have been sent')

logger.info('Start Sending SNS message to SMS')
sns_configs = event.get('smsConfigurations', [])
for sns_config in sns_configs:
sns_msg = default_msg + '\n' + sns_config.get('additionalMessage', '')
phone_numbers = sns_config.get('phoneNumbers', [])
sender_id = sns_config.get('senderId')
for phone_number in phone_numbers:
if check_phone_number(phone_number):
if check_value(sender_id):
sns.publish(PhoneNumber=phone_number, Message=sns_msg,
MessageAttributes={'AWS.SNS.SMS.SenderID':{'DataType': 'String', 'StringValue':
sender_id}})
else:
sns.publish(PhoneNumber=phone_number, Message=sns_msg)

Creating a Lambda function 215

Amazon loT Events

Developer Guide

logger.info('SNS messages have been sent')

For more information, see What is Amazon Lambda? in the Amazon Lambda Developer Guide.

CloudFormation template

Use the following CloudFormation template to create your Lambda function.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'Notification Lambda for Alarm Model'
Resources:
NotificationLambdaRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:

Statement:
- Effect: Allow
Principal:

Service: lambda.amazonaws.com
Action: sts:AssumeRole
Path: "/"
ManagedPolicyArns:
- 'arn:aws-cn:iam::aws:policy/AWSLambdaExecute'
Policies:
- PolicyName: "NotificationLambda"
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:
- "ses:GetIdentityVerificationAttributes"
- "ses:SendEmail"
- "ses:VerifyEmailIdentity"
Resource: "*"
- Effect: "Allow"
Action:
- "sns:Publish"
- "sns:0ptInPhoneNumber"
- "sns:CheckIfPhoneNumberIsOptedOut"
- "sms-voice:DescribeOptedOutNumbers"
Resource: "*"
- Effect: "Deny"
Action:
- "sns:Publish"

Creating a Lambda function

216

https://docs.amazonaws.cn/lambda/latest/dg/welcome.html

Amazon loT Events Developer Guide

Resource: "arn:aws-cn:sns:*:*:*"
NotificationLambdaFunction:
Type: AWS::Lambda::Function
Properties:
Role: !GetAtt NotificationLambdaRole.Arn
Runtime: python3.7
Handler: index.lambda_handler
Timeout: 300
MemorySize: 3008
Code:
ZipFile: |
import boto3
import json
import logging
import datetime
logger = logging.getlLogger()
logger.setlLevel(logging.INFO)
ses = boto3.client('ses')
sns = boto3.client('sns"')
def check_value(target):
if target:
return True
return False

Check whether email is verified. Only verified emails are allowed to send
emails to or from.
def check_email(email):
if not check_value(email):
return False
result = ses.get_identity_verification_attributes(Identities=[email])
attr = result['VerificationAttributes']
if (email not in attr or attr[email]['VerificationStatus'] != 'Success'):
logging.info('Verification email for {} sent. You must have all the
emails verified before sending email.'.format(email))
ses.verify_email_identity(EmailAddress=email)
return False
return True

Check whether the phone holder has opted out of receiving SMS messages from
your account
def check_phone_number(phone_number):
try:
result = sns.check_if_phone_number_is_opted_out(phoneNumber=phone_number)
if (result['isOptedOut']):

Creating a Lambda function 217

Amazon loT Events Developer Guide

logger.info('phoneNumber {} is not opt in of receiving SMS messages.
Phone number must be opt in first.'.format(phone_number))
return False
return True
except Exception as e:
logging.error('Your phone number {} must be in E.164 format in SSO.
Exception thrown: {}'.format(phone_number, e))
return False

def check_emails(emails):
result = True
for email in emails:
if not check_email(email):
result = False
return result

def lambda_handler(event, context):
logging.info('Received event: ' + json.dumps(event))
nep = json.loads(event.get('notificationEventPayload'))
alarm_state = nep['alarmState']
default_msg = 'Alarm ' + alarm_state['stateName'] + '\n'
timestamp =
datetime.datetime.utcfromtimestamp(float(nep['stateUpdateTime'])/1000).strftime('%Y-
%m-%d %H:%M:%S')
alarm_msg = "{} {3} {3} at {3} UTC ".format(nep['alarmModelName'],
nep.get('keyValue', 'Singleton'), alarm_state['stateName'], timestamp)
default_msg += 'Sev: ' + str(nep['severity']) + '\n'
if (alarm_state['ruleEvaluation']):
property = alarm_state['ruleEvaluation']['simpleRule']['inputProperty']
default_msg += 'Current Value: ' + str(property) + '\n'
operator = alarm_state['ruleEvaluation']['simpleRule']['operator']
threshold = alarm_state['ruleEvaluation']['simpleRule']['threshold"']
alarm_msg += '({} {3} {})'.format(str(property), operator, str(threshold))
default_msg += alarm_msg + '\n'

emails = event.get('emailConfigurations', [])
logger.info('Start Sending Emails')
for email in emails:
from_adr = email.get('from')
to_adrs email.get('to', [1)
cc_adrs email.get('cc', [1)
bcc_adrs = email.get('bcc', [1)
msg = default_msg + '\n' + email.get('additionalMessage', '')
subject = email.get('subject', alarm_msg)

Creating a Lambda function 218

Amazon loT Events Developer Guide

fa_ver = check_email(from_adr)
tas_ver = check_emails(to_adrs)
ccas_ver = check_emails(cc_adrs)
bccas_ver = check_emails(bcc_adrs)
if (fa_ver and tas_ver and ccas_ver and bccas_ver):
ses.send_email(Source=from_adr,
Destination={'ToAddresses': to_adrs, 'CcAddresses':
cc_adrs, 'BccAddresses': bcc_adrs},

Message={'Subject': {'Data': subject}, 'Body': {'Text':

{'Data': msg}}})
logger.info('Emails have been sent')

logger.info('Start Sending SNS message to SMS')
sns_configs = event.get('smsConfigurations', [])
for sns_config in sns_configs:
sns_msg = default_msg + '\n' + sns_config.get('additionalMessage', '')
phone_numbers = sns_config.get('phoneNumbers', [])
sender_id = sns_config.get('senderId')
for phone_number in phone_numbers:
if check_phone_number(phone_number):
if check_value(sender_id):
sns.publish(PhoneNumber=phone_number, Message=sns_msg,
MessageAttributes={'AWS.SNS.SMS.SenderID':{'DataType': 'String', 'StringValue':
sender_id}})
else:
sns.publish(PhoneNumber=phone_number, Message=sns_msg)
logger.info('SNS messages have been sent')

Using the Lambda function provided by Amazon loT Events

With alarm notifications, you can use the Lambda function provided by Amazon loT Events for
managing alarm notifications.

The following requirements apply when you use the Lambda function provided by Amazon loT

Events to manage your alarm notifications:

» You must verify the email address that sends the email notifications in Amazon Simple Email

Service (Amazon SES). For more information, see Verifying an email address identity, in the
Amazon Simple Email Service Developer Guide.

If you receive a verification link, click the link to verify your email address. You might also check

your spam folder for a verification email.

Using the Lambda function

219

https://docs.amazonaws.cn/ses/latest/dg/creating-identities.html#just-verify-email-proc

Amazon loT Events Developer Guide

o If your alarm sends SMS notifications, you must use E.164 international phone number
formatting for phone numbers. This format contains +<country-calling-code><area-
code><phone-number>.

Example phone numbers:

Country Local phone number E.164 formatted number
United States 206-555-0100 +12065550100

United Kingdom 020-1234-1234 +442012341234
Lithuania 8+601+12345 +37060112345

To find a country calling code, go to countrycode.org.

The Lambda function provided by Amazon IoT Events checks if you use E.164 formatted phone
numbers. However, it doesn't verify the phone numbers. If you ensure that you entered accurate
phone numbers but didn't receive SMS notifications, you might contact the phone carriers. The
carriers may block the messages.

Manage IAM Identity Center access of alarm recipients in Amazon loT
Events

Amazon loT Events uses Amazon IAM Identity Center to manage the SSO access of alarms
recipients. Implementing IAM Identity Center for Amazon loT Events notification recipients can
enhance security and user experience. To enable the alarm to send notifications to the recipients,
you must enable IAM Identity Center and add recipients to your IAM Identity Center store. For more
information, see Add Users in Amazon IAM Identity Center User Guide.

/A Important

» You must choose the same Amazon Region for Amazon loT Events, Amazon Lambda, and
IAM Identity Center.

« Amazon Organizations only supports one IAM Identity Center Region at a time. If you
want to make IAM Identity Center available in a different Region, you must first delete

Manage alarm recipients 220

https://countrycode.org/
https://docs.amazonaws.cn/singlesignon/latest/userguide/addusers.html

Amazon loT Events Developer Guide

your current IAM Identity Center configuration. For more information, see IAM Identity
Center Region Data in Amazon IAM Identity Center User Guide.

Manage alarm recipients 221

https://docs.amazonaws.cn/singlesignon/latest/userguide/regions.html#region-data
https://docs.amazonaws.cn/singlesignon/latest/userguide/regions.html#region-data

Amazon loT Events Developer Guide

Security in Amazon loT Events

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

» Security of the cloud — Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. The effectiveness of our security is regularly tested and verified by third-party auditors
as part of the Amazon compliance programs. To learn about the compliance programs that apply

to Amazon loT Events, see Amazon services in scope by compliance program.

« Security in the cloud - Your responsibility is determined by the Amazon service that you
use. You are also responsible for other factors including the sensitivity of your data, your
organization's requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using Amazon loT Events. The following topics show you how to configure Amazon loT Events to
meet your security and compliance objectives. You'll also learn how to use other Amazon services
that can help you to monitor and secure your Amazon IoT Events resources.

Topics

« Identity and access management for Amazon loT Events

« Monitoring Amazon loT Events to maintain reliability, availability, and performance

« Compliance validation for Amazon loT Events

« Resilience in Amazon loT Events

o Infrastructure security in Amazon loT Events

Identity and access management for Amazon loT Events

Amazon ldentity and Access Management (IAM) is an Amazon service that helps an administrator
securely control access to Amazon resources. IAM administrators control who can be authenticated

Identity and access management 222

http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon loT Events Developer Guide

(signed in) and authorized (have permissions) to use Amazon loT Events resources. IAM is an
Amazon service that you can use with no additional charge.

Topics

e Audience

« Authenticating with identities

« Managing access using policies

« More about identity and access management

« How Amazon loT Events works with IAM

« Amazon loT Events identity-based policy examples

» Cross-service confused deputy prevention for Amazon loT Events

» Troubleshoot Amazon loT Events identity and access

Audience

How you use Amazon Identity and Access Management (IAM) differs based on your role:

« Service user - request permissions from your administrator if you cannot access features (see
Troubleshoot Amazon loT Events identity and access)

« Service administrator - determine user access and submit permission requests (see How Amazon
loT Events works with IAM)

« IAM administrator - write policies to manage access (see Amazon loT Events identity-based
policy examples)

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be
authenticated as the Amazon Web Services account root user, an IAM user, or by assuming an IAM
role.

For programmatic access, Amazon provides an SDK and CLI to cryptographically sign requests. For
more information, see Amazon Signature Version 4 for AP| requests in the IAM User Guide.

Audience 223

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html

Amazon loT Events Developer Guide

Amazon Web Services account root user

When you create an Amazon Web Services account, you begin with one sign-in identity called the
Amazon Web Services account root user that has complete access to all Amazon Web Services
services and resources. We strongly recommend that you don't use the root user for everyday tasks.
For tasks that require root user credentials, see Tasks that require root user credentials in the IAM
User Guide.

IAM users and groups

An IAM user is an identity with specific permissions for a single person or application. We
recommend using temporary credentials instead of IAM users with long-term credentials. For more
information, see Require human users to use federation with an identity provider to access Amazon

using temporary credentials in the IAM User Guide.

An |AM group specifies a collection of IAM users and makes permissions easier to manage for large
sets of users. For more information, see Use cases for IAM users in the IAM User Guide.

IAM roles

An IAM role is an identity with specific permissions that provides temporary credentials. You can
assume a role by switching from a user to an IAM role (console) or by calling an Amazon CLI or

Amazon API operation. For more information, see Methods to assume a role in the IAM User Guide.

IAM roles are useful for federated user access, temporary IAM user permissions, cross-account
access, cross-service access, and applications running on Amazon EC2. For more information, see
Cross account resource access in IAM in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or
resources. A policy defines permissions when associated with an identity or resource. Amazon
evaluates these policies when a principal makes a request. Most policies are stored in Amazon as
JSON documents. For more information about JSON policy documents, see Overview of JSON
policies in the IAM User Guide.

Using policies, administrators specify who has access to what by defining which principal can
perform actions on what resources, and under what conditions.

Managing access using policies 224

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon loT Events Developer Guide

By default, users and roles have no permissions. An IAM administrator creates IAM policies and
adds them to roles, which users can then assume. IAM policies define permissions regardless of the
method used to perform the operation.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you attach to an identity (user,
group, or role). These policies control what actions identities can perform, on which resources, and
under what conditions. To learn how to create an identity-based policy, see Define custom IAM
permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be inline policies (embedded directly into a single identity) or managed
policies (standalone policies attached to multiple identities). To learn how to choose between
managed and inline policies, see Choose between managed policies and inline policies in the IAM
User Guide.

Other policy types

Amazon supports additional policy types that can set the maximum permissions granted by more
common policy types:

» Permissions boundaries — Set the maximum permissions that an identity-based policy can grant
to an IAM entity. For more information, see Permissions boundaries for IAM entities in the IAM
User Guide.

» Service control policies (SCPs) — Specify the maximum permissions for an organization or
organizational unit in Amazon Organizations. For more information, see Service control policies

in the Amazon Organizations User Guide.

» Resource control policies (RCPs) — Set the maximum available permissions for resources
in your accounts. For more information, see Resource control policies (RCPs) in the Amazon

Organizations User Guide.

» Session policies — Advanced policies passed as a parameter when creating a temporary session
for a role or federated user. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how Amazon determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Managing access using policies 225

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon loT Events Developer Guide

More about identity and access management

For more information about identity and access management for Amazon loT Events, continue to
the following pages:

« How Amazon loT Events works with IAM

o Troubleshoot Amazon loT Events identity and access

How Amazon loT Events works with IAM

Before you use IAM to manage access to Amazon loT Events, you should understand what IAM
features are available to use with Amazon loT Events. To get a high-level view of how Amazon loT
Events and other Amazon services work with IAM, see Amazon services that work with IAM in the
IAM User Guide.

Topics

« Amazon loT Events identity-based policies

« Amazon loT Events resource-based policies

« Authorization based on Amazon loT Events tags

« Amazon loT Events IAM roles

Amazon loT Events identity-based policies

With 1AM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. Amazon loT Events supports specific
actions, resources, and condition keys. To learn about all of the elements that you use in a JSON
policy, see IAM JSON policy elements reference in the IAM User Guide.

Actions

The Action element of an IAM identity-based policy describes the specific action or actions
that will be allowed or denied by the policy. Policy actions usually have the same name as the
associated Amazon API operation. The action is used in a policy to grant permissions to perform
the associated operation.

Policy actions in Amazon loT Events use the following prefix before the action: iotevents:.
For example, to grant someone permission to create an Amazon loT Events input with the

More about identity and access management 226

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html

Amazon loT Events Developer Guide

Amazon loT Events CreateInput API operation, you include the iotevents:CreateInput
action in their policy. To grant someone permission to send an input with the Amazon loT Events
BatchPutMessage API operation, you include the iotevents-data:BatchPutMessage action
in their policy. Policy statements must include either an Action or NotAction element. Amazon
loT Events defines its own set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:
"Action": [

"iotevents:actionl",
"iotevents:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "iotevents:Describe*"

To see a list of Amazon loT Events actions, see Actions Defined by Amazon loT Events in the IAM
User Guide.

Resources

The Resource element specifies the object or objects to which the action applies. Statements
must include either a Resource or a NotResource element. You specify a resource using an ARN
or using the wildcard (*) to indicate that the statement applies to all resources.

The Amazon loT Events detector model resource has the following ARN:

arn:${Partition}:iotevents:${Region}:${Account}:detectorModel/${detectorModelName}

For more information about the format of ARNSs, see Identify Amazon resources with Amazon
Resource Names (ARNS).

For example, to specify the Foobar detector model in your statement, use the following ARN:

"Resource": "arn:aws-cn:iotevents:us-east-1:123456789012:detectorModel/Foobar"

To specify all instances that belong to a specific account, use the wildcard (*):

How Amazon loT Events works with IAM 227

https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awsiotevents.html#awsiotevents-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html

Amazon loT Events Developer Guide

"Resource": "arn:aws-cn:iotevents:us-east-1:123456789012:detectorModel/*"

Some Amazon loT Events actions, such as those for creating resources, cannot be performed on a
specific resource. In those cases, you must use the wildcard (*).

"Resource": "*"

Some Amazon loT Events API actions involve multiple resources. For example,
CreateDetectorModel references inputs in its condition statements, so a user must have
permissions to use the input and the detector model. To specify multiple resources in a single
statement, separate the ARNs with commas.

"Resource": [
"resourcel",
"resource2"

To see a list of Amazon IoT Events resource types and their ARNs, see Resources Defined by

Amazon loT Events in the JAM User Guide. To learn with which actions you can specify the ARN of

each resource, see Actions Defined by Amazon loT Events.

Condition keys

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can build conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in

the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, Amazon evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, Amazon evaluates the condition using a logical OR operation. All
of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant a
user permission to access a resource only if it is tagged with their user name. For more information,
see IAM policy elements: Variables and tags in the IAM User Guide.

Amazon loT Events does not provide any service-specific condition keys, but it does support using
some global condition keys. To see all Amazon global condition keys, see Amazon global condition

context keys in the JAM User Guide."

How Amazon loT Events works with IAM 228

https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awsiotevents.html#awsiotevents-resources-for-iam-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awsiotevents.html#awsiotevents-resources-for-iam-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/list_awsiotevents.html#awsiotevents-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon loT Events Developer Guide

Examples

To view examples of Amazon loT Events identity-based policies, see Amazon |loT Events identity-
based policy examples.

Amazon loT Events resource-based policies

Amazon loT Events does not support resource-based policies." To view an example of a detailed
resource-based policy page, see https://docs.amazonaws.cn/lambda/latest/dg/access-control-
resource-based.html.

Authorization based on Amazon loT Events tags

You can attach tags to Amazon IoT Events resources or pass tags in a request to Amazon loT
Events. To control access based on tags, you provide tag information in the condition element

of a policy using the iotevents:ResourceTag/key-name, aws:RequestTag/key-name, or
aws : TagKeys condition keys. For more information about tagging Amazon loT Events resources,
see Tagging your Amazon loT Events resources.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see View Amazon loT Events inputs based on tags.

Amazon loT Events IAM roles
An IAM role is an entity within your Amazon Web Services account that has specific permissions.
Using temporary credentials with Amazon loT Events

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling Amazon Security Token
Service (Amazon STS) API operations such as AssumeRole or GetFederationToken.

Amazon loT Events does not support using temporary credentials.
Service-linked roles

Service-linked roles allow Amazon services to access resources in other services to complete an

action on your behalf. Service-linked roles appear in your IAM account and are owned by the
service. An IAM administrator can view but not edit the permissions for service-linked roles.

Amazon loT Events does not support service-linked roles.

How Amazon loT Events works with IAM 229

https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html
https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRole.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_GetFederationToken.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts

Amazon loT Events Developer Guide

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

Amazon loT Events supports service roles.

Amazon loT Events identity-based policy examples

By default, users and roles don't have permission to create or modify Amazon loT Events
resources. They also can't perform tasks using the Amazon Web Services Management Console,
Amazon CLI, or Amazon API. An IAM administrator must create IAM policies that grant users
and roles permission to perform specific APl operations on the specified resources they need.
The administrator must then attach those policies to the users or groups that require those
permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating policies on the JSON tab in the IAM User Guide.

Topics

Policy best practices

Using the Amazon loT Events console

Allow users to view their own permissions in Amazon loT Events

Access one Amazon loT Events input

View Amazon loT Events inputs based on tags

Policy best practices

Identity-based policies are very powerful. They determine whether someone can create, access, or
delete Amazon loT Events resources in your account. These actions can incur costs for your Amazon
Web Services account. When you create or edit identity-based policies, follow these guidelines and
recommendations:

» Get Started Using Amazon Managed Policies — To start using Amazon loT Events quickly, use
Amazon managed policies to give your employees the permissions they need. These policies
are already available in your account and are maintained and updated by Amazon. For more

Identity-based policy examples 230

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Amazon loT Events Developer Guide

information, see Get started using permissions with Amazon managed policies in the IAM User
Guide.

« Grant Least Privilege - When you create custom policies, grant only the permissions required
to perform a task. Start with a minimum set of permissions and grant additional permissions
as necessary. Doing so is more secure than starting with permissions that are too lenient and
then trying to tighten them later. For more information, see Grant least privilege in the IAM User
Guide.

« Enable MFA for Sensitive Operations — For extra security, require users to use multi-factor
authentication (MFA) to access sensitive resources or APl operations. For more information, see
Using multi-factor authentication (MFA) in Amazon in the IAM User Guide.

» Use Policy Conditions for Extra Security — To the extent that it's practical, define the conditions
under which your identity-based policies allow access to a resource. For example, you can write
conditions to specify a range of allowable IP addresses that a request must come from. You can
also write conditions to allow requests only within a specified date or time range, or to require
the use of SSL or MFA. For more information, see IAM JSON policy elements: Condition in the
IAM User Guide.

Using the Amazon loT Events console

To access the Amazon loT Events console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Amazon IoT Events resources in your
Amazon Web Services account. If you create an identity-based policy that is more restrictive than
the minimum required permissions, the console won't function as intended for entities (users or
roles) with that policy.

To ensure that those entities can still use the Amazon loT Events console, also attach the following
Amazon managed policy to the entities. For more information, see Adding permissions to a user in
the IAM User Guide:

JSON

"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

Identity-based policy examples 231

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon loT Events

Developer Guide

1,

"iotevents:BatchPutMessage",
"iotevents:BatchUpdateDetector",
"iotevents:CreateDetectorModel"”,
"iotevents:CreatelInput",
"iotevents:DeleteDetectorModel"”,
"iotevents:DeletelInput",
"iotevents:DescribeDetector",
"iotevents:DescribeDetectorModel”,
"iotevents:DescribelInput",
"iotevents:DescribeloggingOptions",
"jotevents:ListDetectorModelVersions",
"iotevents:ListDetectorModels",
"jiotevents:ListDetectors",
"iotevents:ListInputs",
"iotevents:ListTagsForResouxce",
"iotevents:PutLoggingOptions",
"iotevents:TagResouxce",
"iotevents:UntagResource",
"iotevents:UpdateDetectorModel”,
"iotevents:UpdatelInput",
"iotevents:UpdateInputRouting"

"Resource": "arn:aws-cn:iotevents:us-
east-1:123456789012:detectorModel/your-detector-model -name",
"Resource": "arn:aws-cn:iotevents:us-east-1:123456789012:input/your-input-

name"'

You don't need to allow minimum console permissions for users that are making calls only to

the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API

operation that you're trying to perform.

Allow users to view their own permissions in Amazon loT Events

This example shows how you might create a policy that allows users to view the inline and

managed policies that are attached to their user identity. Allowing users to view their own IAM

permissions is useful for security awareness and self-service capabilities. This policy includes

permissions to complete this action on the console or programmatically using the Amazon CLI or

Amazon API.

Identity-based policy examples

Amazon loT Events

Developer Guide

JSON

"Version":"2012-10-17",
"Statement": [

{

"Sid": "ViewOwnUserInfo",

"Effect": "Allow",

"Action": [
"iam:GetUsexPolicy",
"iam:ListGroupsForUser",
"iam:ListAttachedUserPolicies",
"iam:ListUserPolicies",
"iam:GetUser"

]I

"Resource": [
"arn:aws-cn:iam::*:user/${aws:username}"

"Sid": "NavigateInConsole",

"Effect": "Allow",

"Action": [
"iam:GetGroupPolicy",
"iam:GetPolicyVersion",
"iam:GetPolicy",
"iam:ListAttachedGroupPolicies",
"iam:ListGroupPolicies",
"iam:ListPolicyVersions",
"iam:ListPolicies",
"iam:ListUsexrs"

1,

"Resource": "*"

Identity-based policy examples

233

Amazon loT Events Developer Guide

Access one Amazon loT Events input

Granular access control to Amazon loT Events inputs is important for maintaining security in multi-
user or multi-team environments. This section shows how to create IAM policies that grant access
to specific Amazon loT Events inputs while restricting access to others.

In this example, you can grant a user in your Amazon Web Services account access to one of your
Amazon loT Events inputs, exampleInput. You also can allow the user to add, update, and delete
inputs.

The policy grants the iotevents:ListInputs, iotevents:Describelnput,
iotevents:Createlnput, iotevents:Deletelnput, and iotevents:Updatelnput
permissions to the user. For an example walkthrough for the Amazon Simple Storage Service
(Amazon S3) that grants permissions to users and tests them using the console, see Controlling
access to a bucket with user policies.

JSON

"Version":"2012-10-17",
"Statement":[

{
"Sid":"ListInputsInConsole"”,
"Effect":"Allow",
"Action":[
"iotevents:ListInputs"
1,
"Resource":"arn:aws-cn:iotevents:us-west-2:123456789012:input/*"
},
{
"Sid":"ViewSpecificInputInfo",
"Effect":"Allow",
"Action":[
"iotevents:DescribeInput"
1,
"Resource":"arn:aws-cn:iotevents:us-east-1:123456789012:input/inputName"
},
{

"Sid":"ManagelInputs",
"Effect":"Allow",
"Action":[

Identity-based policy examples 234

https://docs.amazonaws.cn/AmazonS3/latest/userguide/walkthrough1.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/walkthrough1.html

Amazon loT Events Developer Guide

"iotevents:CreateInput”,
"iotevents:DeletelInput",
"iotevents:DescribelInput",
"iotevents:ListInputs",
"iotevents:UpdateInput"”

1,

"Resource":"arn:aws-cn:iotevents:us-east-1:123456789012:input/*"

View Amazon loT Events inputs based on tags

Tags help you organize Amazon loT Events resources. You can use conditions in your identity-based
policy to control access to Amazon loT Events resources based on tags. This example shows how
you might create a policy that allows viewing an input. However, permission is granted only if the
input tag Owner has the value of that user's user name. This policy also grants the permissions
necessary to complete this action on the console.

JSON

"Version":"2012-10-17",
"Statement": [

{
"Sid": "ListInputsInConsole",
"Effect": "Allow",
"Action": "iotevents:ListInputs",
"Resource": "*"
},
{
"Sid": "ViewInputsIfOwner",
"Effect": "Allow",
"Action": "iotevents:ListInputs",
"Resource": "arn:aws-cn:iotevents:*:*:input/*",
"Condition": {
"StringEquals": {"aws:ResourceTag/Owner": "${aws:username}"}
}
}

Identity-based policy examples 235

Amazon loT Events Developer Guide

}

You can attach this policy to the users in your account. If a user named richard-roe attempts
to view an Amazon loT Events input, the input must be tagged Owner=richard-roe or
owner=richard-roe. Otherwise he is denied access. The condition tag key Owner matches both
Owner and owner because condition key names are not case-sensitive. For more information, see
IAM JSON policy elements: Condition in the IAM User Guide.

Cross-service confused deputy prevention for Amazon loT Events

(® Note

« The Amazon loT Events service only allows you to use roles to start actions in the same
account in which a resource was created. This helps prevent a confused deputy attack in
Amazon loT Events.

« This page serves as a reference for you to see how the confused deputy issue works and
can be prevented in the event that cross account resources were allowed in the Amazon
loT Events service.

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In Amazon, cross-
service impersonation can result in the confused deputy problem.

Cross-service impersonation can occur when one service (the calling service) calls another service
(the called service). The calling service can be manipulated to use its permissions to act on another
customer's resources in a way it should not otherwise have permission to access. To prevent this,
Amazon provides tools that help you protect your data for all services with service principals that
have been given access to resources in your account.

We recommend using the aws : SourceArn and aws : SourceAccount global condition context

keys in resource policies to limit the permissions that Amazon loT Events gives another service to
the resource. If the aws : SourceArn value does not contain the account ID, such as an Amazon
S3 bucket ARN, you must use both global condition context keys to limit permissions. If you use
both global condition context keys and the aws : SourceArn value contains the account ID, the
aws : SourceAccount value and the account in the aws : SourceArn value must use the same
account ID when used in the same policy statement.

Cross-service confused deputy prevention for Amazon loT Events 236

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon loT Events Developer Guide

Use aws : SourceArn if you want only one resource to be associated with the cross-service access.
Use aws : SourceAccount if you want to allow any resource in that account to be associated with
the cross-service use. The value of aws : SourceArn must be the Detector Model or Alarm model
associated with the sts:AssumeRole request.

The most effective way to protect against the confused deputy problem is to use the

aws : SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws : SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws-cn:iotevents:*:123456789012:*.

The following examples show how you can use the aws : SourceArn and aws : SourceAccount
global condition context keys in Amazon loT Events to prevent the confused deputy problem.

Topics

Example: Secure access to an Amazon loT Events detector model

Example: Secure access to an Amazon loT Events alarm model

Example: Access an Amazon loT Events resource in a specified region

Example: Configure logging options for Amazon loT Events

Example: Secure access to an Amazon loT Events detector model

This example demonstrates how to create an IAM policy that securely grants access to a specific
detector model in Amazon loT Events. The policy uses conditions to ensure that only the specified
Amazon account and Amazon loT Events service can assume the role, adding an extra layer of
security. In this example, the role can only access the detector model named WindTurbine@l.

JSON

"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Sexvice": [
"iotevents.amazonaws.com"

Cross-service confused deputy prevention for Amazon loT Events 237

Amazon loT Events Developer Guide

3,

"Action": "sts:AssumeRole",
"Condition": {

"StringEquals": {

"aws :SourceAccount": "123456789012"

},

"ArnEquals": {

"aws:SourceArn": "arn:aws:iotevents:us-
east-1:123456789012:detectorModel/WindTurbinedl1"

}

Example: Secure access to an Amazon loT Events alarm model

This example demonstrates how to create an IAM policy that allows Amazon IoT Events to securely
access alarm models. The policy uses conditions to ensure that only the specified Amazon account
and Amazon loT Events service can assume the role.

In this example, the role can access any alarm model within the specified Amazon account,
as indicated by the * wildcard in the alarm model ARN. The aws : SourceAccount and
aws : SourceArn conditions work together to prevent the confused deputy problem.

JSON

"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": [
"iotevents.amazonaws.com"

Y,

"Action": "sts:AssumeRole",
"Condition": {
"StringEquals": {

Cross-service confused deputy prevention for Amazon loT Events 238

Amazon loT Events Developer Guide

"aws :SourceAccount": "123456789012"

}I

"ArnEquals": {

"aws:SourceArn'": "arn:aws:iotevents:us-
east-1:123456789012:alarmModel/*"

}

Example: Access an Amazon loT Events resource in a specified region

This example demonstrates how to configure an IAM role to access Amazon loT Events resources
in a specific Amazon region. By using region-specific ARNs in your 1AM policies, you can restrict
access to Amazon loT Events resources across different geographical areas. This approach can help
maintain security and compliance in multi-region deployments. The region in this example is us -
east-1.

JSON

"Version":"2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Sexvice": [
"iotevents.amazonaws.com"
]
},
"Action": "sts:AssumeRole",
"Condition": {
"StringEquals": {
"aws :SourceAccount": "123456789012"
}I
"ArnEquals": {
"aws:SourceArn'": "arn:aws:iotevents:us-east-1:123456789012:*"
}
}
}

Cross-service confused deputy prevention for Amazon loT Events 239

Amazon loT Events Developer Guide

1

Example: Configure logging options for Amazon loT Events

Proper logging is important for monitoring, debugging, and auditing your Amazon loT Events
applications. This section provides an overview of logging options available in Amazon loT Events.

This example demonstrates how to configure an IAM role that allows Amazon loT Events to log
data to CloudWatch Logs. The use of wildcards (*) in the resource ARN allows for comprehensive
logging across your Amazon loT Events infrastructure.

JSON

{
"Version":"2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": [
"iotevents.amazonaws.com"
]
}I
"Action": "sts:AssumeRole",
"Condition": {
"StringEquals": {
"aws :SourceAccount": "123456789012"
},
"ArnEquals": {
"aws:SourceArn": "arn:aws:iotevents:us-east-1:123456789012:*"
}
}
}
]
}

Cross-service confused deputy prevention for Amazon loT Events 240

Amazon loT Events Developer Guide

Troubleshoot Amazon loT Events identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon IoT Events and IAM.

Topics

« | am not authorized to perform an action in Amazon loT Events

o | am not authorized to perform iam:PassRole

« | want to allow people outside of my Amazon Web Services account to access my Amazon loT

Events resources

I am not authorized to perform an action in Amazon loT Events

If the Amazon Web Services Management Console tells you that you're not authorized to perform
an action, then you must contact your administrator for assistance. Your administrator is the
person that provided you with your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console to
view details about a input but does not have iotevents:ListInputs permissions.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform:
iotevents:ListInputs on resource: my-example-input

In this case, Mateo asks his administrator to update his policies to allow him to access the my -
example-input resource using the iotevents:ListInput action.

| am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon loT Events.

Some Amazon Web Services services allow you to pass an existing role to that service instead of
creating a new service role or service-linked role. To do this, you must have permissions to pass the
role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon loT Events. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

Troubleshooting 241

Amazon loT Events Developer Guide

User: arn:aws-cn:iam::123456789012:user/marymajor is not authorized to perform:
iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

| want to allow people outside of my Amazon Web Services account to access my
Amazon loT Events resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

Consult the following topics to determine your best options:

« To learn whether Amazon loT Events supports these features, see How Amazon loT Events works
with I1AM.

» To learn how to provide access to your resources across Amazon Web Services accounts that you
own, see Providing access to an IAM user in another Amazon Web Services account that you own
in the IAM User Guide.

» To learn how to provide access to your resources to third-party Amazon Web Services accounts,
see Providing access to Amazon Web Services accounts owned by third parties in the IJAM User
Guide.

« To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

» To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Monitoring Amazon loT Events to maintain reliability,
availability, and performance

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon loT Events and your Amazon solutions. You should collect monitoring data from all parts
of your Amazon solution so that you can more easily debug a multi-point failure if one occurs.

Monitoring 242

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon loT Events Developer Guide

Before you start monitoring Amazon loT Events, you should create a monitoring plan that includes
answers to the following questions:

« What are your monitoring goals?

« Which resources will you monitor?

» How often will you monitor these resources?
» Which monitoring tools will you use?

o Who will perform the monitoring tasks?

« Who should be notified when something goes wrong?

The next step is to establish a baseline for normal Amazon loT Events performance in your
environment, by measuring performance at various times and under different load conditions. As
you monitor Amazon loT Events, store historical monitoring data so that you can compare it with
current performance data, identify normal performance patterns and performance anomalies, and
devise methods to address issues.

For example, if you're using Amazon EC2, you can monitor CPU utilization, disk 1/0, and network
utilization for your instances. When performance falls outside your established baseline, you might
need to reconfigure or optimize the instance to reduce CPU utilization, improve disk 1/0, or reduce
network traffic.

Topics

« Available tools to monitor Amazon loT Events

« Monitoring Amazon loT Events with Amazon CloudWatch

» Logging Amazon loT Events API calls with Amazon CloudTrail

Available tools to monitor Amazon loT Events

Amazon provides various tools that you can use to monitor Amazon loT Events. You can configure
some of these tools to do the monitoring for you, while some of the tools require manual
intervention. We recommend that you automate monitoring tasks as much as possible.

Automated monitoring tools

You can use the following automated monitoring tools to watch Amazon loT Events and report
when something is wrong:

Available tools to monitor Amazon loT Events 243

Amazon loT Events Developer Guide

« Amazon CloudWatch Logs — Monitor, store, and access your log files from Amazon CloudTrail or
other sources. For more information, see Using Amazon CloudWatch dashboards in the Amazon
CloudWatch User Guide.

« Amazon CloudTrail Log Monitoring — Share log files between accounts, monitor CloudTrail
log files in real time by sending them to CloudWatch Logs, write log-processing applications in
Java, and validate that your log files have not changed after delivery by CloudTrail. For more
information, see Working with CloudTrail log files in the Amazon CloudTrail User Guide.

Manual monitoring tools

Another important part of monitoring Amazon loT Events involves manually monitoring those
items that the CloudWatch alarms don't cover. The Amazon loT Events, CloudWatch, and other
Amazon console dashboards provide an at-a-glance view of the state of your Amazon environment.
We recommend that you also check the log files on Amazon loT Events.

« The Amazon loT Events console shows:

Detector models

Detectors

Inputs

Settings

o The CloudWatch home page shows:
« Current alarms and status
« Graphs of alarms and resources

« Service health status

In addition, you can use CloudWatch to do the following:

Create Creating a CloudWatch dashboard to monitor the services you care about

Graph metric data to troubleshoot issues and discover trends

Search and browse all your Amazon resource metrics

Create and edit alarms to be notified of problems

Available tools to monitor Amazon loT Events 244

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/create_dashboard.html

Amazon loT Events Developer Guide

Monitoring Amazon loT Events with Amazon CloudWatch

When you develop or debug an Amazon loT Events detector model, you need to know what
Amazon loT Events is doing, and any errors it encounters. Amazon CloudWatch monitors your
Amazon resources and the applications you run on Amazon in real time. With CloudWatch, you
gain systemwide visibility into resource use, application performance, and operational health.
Enable Amazon CloudWatch logging when developing Amazon loT Events detector models has
information on how to enable CloudWatch logging for Amazon IoT Events. To generate logs like
the one shown below you must set the Level of verbosity to 'Debug' and provide one or more
Debug Targets that is a Detector Model Name and an optional KeyValue.

The following example shows a CloudWatch DEBUG level log entry generated by Amazon loT
Events.

"timestamp": "2019-03-15T15:56:29.412Z",
"level”: "DEBUG",

"logMessage": "Summary of message evaluation",
"context": "MessageEvaluation",
"status": "Success",

"messageld": "SensorAggregate_2th846h",
"keyValue": "boiler_1",
"detectorModelName": "BoilerAlarmDetector",
"initialState": "high_temp_alarm",
"initialVariables": {
"high_temp_count": 1,
"high_pressure_count": 1
},
"finalState": "no_alarm",
"finalVariables": {
"high_temp_count": 0,
"high_pressure_count": 0@
.
"message": "{ \"temp\": 34.9, \"pressure\": 84.5}",
"messageType": "CUSTOMER_MESSAGE",
"conditionEvaluationResults": [
{
"result": "True",
"eventName": "alarm_cleared",
"state": "high_temp_alarm",
"lifeCycle": "OnInput",
"hasTransition": true

Monitoring Amazon loT Events with Amazon CloudWatch 245

Amazon loT Events Developer Guide

},
{
"result": "Skipped",
"eventName": "alarm_escalated",
"state": "high_temp_alarm",
"lifeCycle": "OnInput",
"hasTransition": true,
"resultDetails": "Skipped due to transition from alarm_cleared event"
},
{
"result": "True",
"eventName": "should_recall_technician",
"state": "no_alarm",
"lifeCycle": "OnEnter",
"hasTransition": true
}
]

Logging Amazon loT Events API calls with Amazon CloudTrail

Amazon loT Events is integrated with Amazon CloudTrail, a service that provides a record of actions
taken by a user, role, or an Amazon service in Amazon loT Events. CloudTrail captures all API calls
for Amazon loT Events as events, including calls from the Amazon loT Events console and from
code calls to the Amazon loT Events APlIs.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for Amazon loT Events. If you don't configure a trail, you can still view the
most recent events in the CloudTrail console in Event history. Using the information collected by
CloudTrail, you can determine the request that was made to Amazon loT Events, the IP address
from which the request was made, who made the request, when it was made, and additional
details.

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

Amazon loT Events information in CloudTrail

CloudTrail is enabled on your Amazon account when you create the account. When activity occurs
in Amazon loT Events, that activity is recorded in a CloudTrail event with other Amazon service
events in Event history. You can view, search, and download recent events in your Amazon
account. For more information, see Working with CloudTrail Event history.

Logging Amazon loT Events API calls with Amazon CloudTrail 246

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon loT Events Developer Guide

For an ongoing record of events in your Amazon account, including events for Amazon loT Events,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all Amazon Regions. The trail logs events
from all Regions in the Amazon partition and delivers the log files to the Amazon S3 bucket that
you specify. Additionally, you can configure other Amazon services to further analyze and act on
the event data collected in CloudTrail logs. For more information, see:

» Creating a trail for your Amazon account

o CloudTrail supported services and integrations

» Configuring Amazon SNS notifications for CloudTrail

» Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from

multiple accounts

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

o Whether the request was made with root or IAM user credentials.
o Whether the request was made with temporary security credentials for a role or federated user.

o Whether the request was made by another Amazon service.

For more information, see the CloudTrail userldentity element. Amazon loT Events actions are

documented in the Amazon loT Events API reference.

Understanding Amazon loT Events log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. Amazon CloudTrail log files contain one or more log entries. An event represents a
single request from any source and includes information about the requested action, the date and
time of the action, request parameters, and so on. CloudTrail log files are not an ordered stack
trace of the public API calls, so they don't appear in any specific order.

When CloudTrail logging is enabled in your Amazon account, most API calls made to Amazon loT
Events actions are tracked in CloudTrail log files where they are written with other Amazon service
records. CloudTrail determines when to create and write to a new file based on a time period and
file size.

Logging Amazon loT Events API calls with Amazon CloudTrail 247

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.amazonaws.cn/iotevents/latest/apireference/Welcome.html

Amazon loT Events Developer Guide

Every log entry contains information about who generated the request. The user identity
information in the log entry helps you determine the following:

o Whether the request was made with root or IAM user credentials.

« Whether the request was made with temporary security credentials for a role or federated user.

« Whether the request was made by another Amazon service.

To be notified upon log file delivery, you can configure CloudTrail to publish Amazon SNS
notifications when new log files are delivered. For more information, see Configuring Amazon SNS

notifications for CloudTrail.

You can also aggregate Amazon loT Events log files from multiple Amazon Regions and multiple
Amazon accounts into a single Amazon S3 bucket.

For more information, see Receiving CloudTrail log files from multiple regions and Receiving

CloudTrail log files from multiple accounts.

Example: DescribeDetector action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the DescribeDetector
action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/Admin/bertholt-brecht",
"accountId": "123456789012",
"accessKeyId": "access-key-id",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-08T18:53:58Z"
.
"sessionIssuer": {
"type": "Role",
"principalld": "AKIAI44QHS8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/Admin",
"accountId": "123456789012",

Logging Amazon loT Events API calls with Amazon CloudTrail 248

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon loT Events Developer Guide

"userName": "Admin"
}
}

.
"eventTime": "2019-02-08T19:02:447",
"eventSource": "iotevents.amazonaws.com",
"eventName": "DescribeDetector",
"awsRegion": "us-east-1",

"sourceIPAddress": "192.168.0.1",

"userAgent": "aws-cli/1.15.65 Python/3.7.1 Darwin/16.7.0 botocore/1.10.65",

"requestParameters": {
"detectorModelName": "pressureThresholdEventDetector-brecht",
"keyValue": "1"

I

"responseElements": null,

"requestID": "00f41283-ea@f-4e85-959f-bee37454627a",

"eventID": "5eb0180d-052b-49d9-a289-0eb8d08d4c27",

"eventType": "AwsApiCall",

"recipientAccountId": "123456789012"

Example: CreateDetectorModel action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
CreateDetectorModel action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalld": "AKIAI44QH8DHBEXAMPLE:IotEvents-Lambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEvents-RoleForIotEvents-
ABC123DEF456/IotEvents-Lambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z2"
.
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",

Logging Amazon loT Events API calls with Amazon CloudTrail 249

Amazon loT Events Developer Guide

arn": "arn:aws-cn:iam::123456789012:ro0le/IotEventsLambda-RoleForIotEvents-
ABC123DEF456",

"accountId": "123456789012",

"userName": "IotEventsLambda-RoleForIotEvents-ABC123DEF456"

}

}
},
"eventTime": "2019-02-07T23:54:437",
"eventSource": "iotevents.amazonaws.com",
"eventName": "CreateDetectorModel",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",

"requestParameters": {
"detectorModelName": "myDetectorModel",
"key": "HIDDEN_DUE_TO_SECURITY_REASONS",
"roleArn": "arn:aws-cn:iam::123456789012:role/events_action_execution_role"
.
"responseElements": null,
"requestID": "cecfbfal-e452-4fa6-b86b-89a89f392b66",
"eventID": "8138d46b-50a3-4af0-9c5e-5af5ef75ea55",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: Createlnput action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the CreateInput action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalld": "AKIAI44QH8DHBEXAMPLE:IotEvents-Lambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABC123DEF456/IotEvents-Lambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z2"
I

"sessionIssuer": {

Logging Amazon loT Events API calls with Amazon CloudTrail 250

Amazon loT Events Developer Guide

"type": "Role",

"principalId": "AKIAI44QH8DHBEXAMPLE",

"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABC123DEF456",

"accountId": "123456789012",

"userName": "IotEventsLambda-RoleForIotEvents-ABC123DEF456"

}

}
},
"eventTime": "2019-02-07T23:54:437",
"eventSource": "iotevents.amazonaws.com",
"eventName": "CreatelInput",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",
"requestParameters": {

"inputName": "batchputmessagedetectorupdated",

"inputDescription": "batchputmessagedetectorupdated"

},

"responseElements": null,

"requestID": "fb315af4-39e9-4114-94d1-89c9183394cl",
"eventID": "6d8cf67b-2a03-46e6-bbff-ell3a7bdedle",
"eventType": "AwsApiCall",

"recipientAccountId": "123456789012"

Example: DeleteDetectorModel action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
DeleteDetectorModel action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",

Logging Amazon loT Events API calls with Amazon CloudTrail 251

Amazon loT Events Developer Guide

"creationDate": "2019-02-07T22:22:30Z"
.
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
"accountId": "123456789012",
"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

}
.
"eventTime": "2019-02-07T23:54:117",
"eventSource": "iotevents.amazonaws.com",
"eventName": "DeleteDetectorModel",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",

"requestParameters": {
"detectorModelName": "myDetectorModel"
},
"responseElements": null,
"requestID": "149064cl-4e24-4160-a5b2-1065e63ee2e4",
"eventID": "7669db89-dcc@-4c42-904b-f24b764dd808",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: Deletelnput action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the DeleteInput action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",

Logging Amazon loT Events API calls with Amazon CloudTrail 252

Amazon loT Events Developer Guide

"creationDate": "2019-02-07T22:22:30Z"
.
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
"accountId": "123456789012",
"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

}
.
"eventTime": "2019-02-07T23:54:38Z7",
"eventSource": "iotevents.amazonaws.com",
"eventName": "Deletelnput",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",
"errorCode": "ResourceNotFoundException",
"errorMessage": "Input of name: NoSuchInput not found",

"requestParameters": {
"inputName": "NoSuchInput"
},
"responseElements": null,
"requestID": "ce6d28ac-5baf-423d-a5c3-afd009c967e3",
"eventID": "be@ef@ld-1c28-48cd-895e-c3ff3172c08e",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: DescribeDetectorModel action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
DescribeDetectorModel action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",

Logging Amazon loT Events API calls with Amazon CloudTrail 253

Amazon loT Events

Developer Guide

"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z"
.
"sessionIssuer": {
"type": "Role",
"principalId": "AAKIAI44QH8DHBEXAMPLE",

"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-

ABCD123DEF456",
"accountId": "123456789012",

"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

}
.
"eventTime": "2019-02-07T23:54:20Z2",
"eventSource": "iotevents.amazonaws.com",
"eventName": "DescribeDetectorModel",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",

"requestParameters": {
"detectorModelName": "myDetectorModel"

}I

"responseElements": null,

"requestID": "18al1l1622-8193-49a9-85cb-1fa6d3929394",
"eventID": "1ad80ff8-3e2b-4073-ac38-9cb3385bebds",

"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: Describelnput action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the DescribeInput

action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",

"principalld": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",

Logging Amazon loT Events API calls with Amazon CloudTrail

254

Amazon loT Events

Developer Guide

ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AAKIAI44QHS8DHBEXAMPLE",
"sessionContext": {

"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z"
.
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",

arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-

"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-

ABCD123DEF456",
"accountId": "123456789012",

"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

}
.
"eventTime": "2019-02-07T23:56:09Z7",
"eventSource": "iotevents.amazonaws.com",
"eventName": "DescribeInput",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",
"requestParameters": {

"inputName": "input_createinput"
},

"responseElements": null,

"requestID": "3af641fa-d8af-41c9-ba77-ac9c6260f8b8",
"eventID": "bc4ebcc@-55f7-45c1-b597-ec99aalsc81a”,

"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: DescribeLoggingOptions action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the

DescribeloggingOptions action.

"eventVersion": "1.05",

Logging Amazon loT Events API calls with Amazon CloudTrail

255

Amazon loT Events Developer Guide

"userIdentity": {
"type": "AssumedRole",
"principalld": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z"
.
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
"accountId": "123456789012",
"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

}
.
"eventTime": "2019-02-07T23:53:237",
"eventSource": "iotevents.amazonaws.com",
"eventName": "DescribeloggingOptions",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",

"requestParameters": null,

"responseElements": null,

"requestID": "b624b6c5-aa33-41d8-867b-025ec747ee8f",
"eventID": "9c7ce626-25c8-413a-96e7-92b823d6c850",
"eventType": "AwsApiCall",

"recipientAccountId": "123456789012"

Example: ListDetectorModels action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the ListDetectorModels
action.

"eventVersion": "1.05",

Logging Amazon loT Events API calls with Amazon CloudTrail 256

Amazon loT Events Developer Guide

"userIdentity": {
"type": "AssumedRole",
"principalld": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z"
.
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
"accountId": "123456789012",
"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

}
.
"eventTime": "2019-02-07T23:53:237",
"eventSource": "iotevents.amazonaws.com",
"eventName": "ListDetectorModels",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",

"requestParameters": {
"nextToken": "CkZEZXR1Y3RvcklvZGVsM19saXN@ZGVOZWNOb3Jtb2R1bHNOZXNOX2V10OWIkZTk1YT",
"maxResults": 3

.

"responseElements": null,

"requestID": "6d70f262-da95-4bb5-94b4-c08369df75bb",

"eventID": "2d@la25c-d5c7-4233-99fe-celb8ec@5516",

"eventType": "AwsApiCall",

"recipientAccountId": "123456789012"

Example: ListDetectorModelVersions action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
ListDetectorModelVersions action.

Logging Amazon loT Events API calls with Amazon CloudTrail 257

Amazon loT Events

Developer Guide

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",

arn":
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QH8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z"
},
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
ABCD123DEF456",
"accountId": "123456789012",
"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

}
},
"eventTime": "2019-02-07T23:53:337",
"eventSource": "iotevents.amazonaws.com",
"eventName": "ListDetectorModelVersions",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",

"requestParameters": {
"detectorModelName": "myDetectorModel",
"maxResults": 2
1,
"responseElements": null,
"requestID": "ebecb277-6bd8-44ea-8abd-fbf40ac04see",
"eventID": "fc6281a2-3fac-4ele-98e@-cab560b8b8be",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

"arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-

arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-

Logging Amazon loT Events API calls with Amazon CloudTrail

258

Amazon loT Events Developer Guide

Example: ListDetectors action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the ListDetectors
action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z2"
I
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
"accountId": "123456789012",
"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

.
"eventTime": "2019-02-07T23:53:547",

"eventSource": "iotevents.amazonaws.com",
"eventName": "ListDetectors",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",
"requestParameters": {
"detectorModelName": "batchputmessagedetectorinstancecreated",
"stateName": "HIDDEN_DUE_TO_SECURITY_REASONS"
I
"responseElements": null,
"requestID": "4783666d-1e87-42a8-85f7-22d43068af94",
"eventID": "@d2b7e9b-afeb6-4aef-afd2-a@bble9614a9",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Logging Amazon loT Events API calls with Amazon CloudTrail 259

Amazon loT Events Developer Guide

}

Example: Listinputs action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the ListInputs action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z"
},
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
"accountId": "123456789012",
"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

}
},
"eventTime": "2019-02-07T23:53:577",
"eventSource": "iotevents.amazonaws.com",
"eventName": "ListInputs",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",

"requestParameters": {
"nextToken": "CkhjYW5hcnlfdGVzdF9pbnB1ldF9saXN@ZGVOZWNOb3Jtb2R1bHNOZXN@ZDU30GZ",
"maxResults": 3

},

"responseElements": null,

"requestID": "dd6762al-1f24-4e63-a986-5ea3938a03da",

"eventID": "c500f6d8-e271-4366-8f20-da4413752469",

"eventType": "AwsApiCall",

Logging Amazon loT Events API calls with Amazon CloudTrail 260

Amazon loT Events Developer Guide

"recipientAccountId": "123456789012"

Example: PutLoggingOptions action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the PutLoggingOptions
action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z"
.
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
"accountId": "123456789012",
"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}

}
.
"eventTime": "2019-02-07T23:56:437",
"eventSource": "iotevents.amazonaws.com",
"eventName": "PutLoggingOptions",
"awsRegion": "us-east-1",
"sourceIPAddress": "192.168.0.1",
"userAgent": "aws-internal/3",

"requestParameters": {
"loggingOptions": {
"roleArn": "arn:aws-cn:iam::123456789012:role/logging__logging_role",
"level": "INFO",
"enabled": false

Logging Amazon loT Events API calls with Amazon CloudTrail 261

Amazon loT Events Developer Guide

}

.

"responseElements": null,

"requestID": "df570e50-fbl9-4636-9ec@-el50a94bc52c",
"eventID": "3247f928-26aa-471le-b669-e4a9e6fbcs2c",
"eventType": "AwsApiCall",

"recipientAccountId": "123456789012"

Example: UpdateDetectorModel action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
UpdateDetectorModel action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z"
.
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
"accountId": "123456789012",

"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}
}
.
"eventTime": "2019-02-07T23:55:517",
"eventSource": "iotevents.amazonaws.com",
"eventName": "UpdateDetectorModel",
"awsRegion": "us-east-1",

"sourceIPAddress": "192.168.0.1",

Logging Amazon loT Events API calls with Amazon CloudTrail 262

Amazon loT Events Developer Guide

"userAgent": "aws-internal/3",
"requestParameters": {
"detectorModelName": "myDetectorModel",
"roleArn": "arn:aws-cn:iam::123456789012:role/Events_action_execution_role"
},
"responseElements": null,
"requestID": "add29860-c1c5-4091-9917-d2efl3c356cf",
"eventID": "7baa9al4-6a52-47dc-aea@-3cace@5147c3",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: Updatelnput action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the UpdateInput action.

"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents
ABCD123DEF456/IotEvents-EventsLambda",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"attributes": {
"mfaAuthenticated": "false",
"creationDate": "2019-02-07T22:22:30Z"
},
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",
"arn": "arn:aws-cn:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
"accountId": "123456789012",
"userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"

}
}
},
"eventTime": "2019-02-07T23:53:00Z",
"eventSource": "iotevents.amazonaws.com",
"eventName": "UpdateInput",
"awsRegion": "us-east-1",

Logging Amazon loT Events API calls with Amazon CloudTrail 263

Amazon loT Events Developer Guide

"sourceIPAddress": "192.168.0.1",

"userAgent": "aws-internal/3",
"errorCode": "ResourceNotFoundException",
"errorMessage": "Input of name: NoSuchInput not found",

"requestParameters": {

"inputName": "NoSuchInput",

"inputDescription": "this is a description of an input"
I
"responseElements": null,
"requestID": "58d5d2bb-4110-4c56-896a-ee9156009f41",
"eventID": "c2df24la-fd53-4fd0-936c-ba3@9e5dc62d",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"

Example: BatchPutMessage action for CloudTrail

Amazon loT Events can use a CloudTrail integration for data plane API logging. This example adds
details on data events through the BatchPutMessage action.

"eventVersion": "1.09",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AKIAI44QH8DHBEXAMPLE:PrincipalId",
"arn": "arn:aws-cn:sts::123456789012:assumed-role/my-iam-role/my-iam-
role-entity",
"accountId": "123456789012",
"accessKeyId": "AKIAI44QHS8DHBEXAMPLE",
"sessionContext": {
"sessionIssuer": {
"type": "Role",
"principalId": "AKIAI44QH8DHBEXAMPLE",

"arn": "arn:aws-cn:iam::123456789012:role/my-iam-role",
"accountId": "123456789012",
"userName": "sample_user_name"

I,

"attributes": {
"creationDate": "2024-11-22T18:32:417",
"mfaAuthenticated": "false"

}I

Logging Amazon loT Events API calls with Amazon CloudTrail 264

Amazon loT Events Developer Guide

"eventTime": "2024-11-22T18:57:35Z7",

"eventSource": "iotevents.amazonaws.com",
"eventName": "BatchPutMessage",
"awsRegion": "us-east-1",
"sourceIPAddress": "3.239.107.128",
"userAgent": "aws-internal/3",

"requestParameters": {
"messages": [

{
"messageld": "e306d827-b2e4-4439-9c86-411d4242a397",
"payload": "HIDDEN_DUE_TO_SECURITY_REASONS",
"inputName": "my_input_name"

}

},
"responseElements": {
"batchPutMessageErrorEntries": []
.
"requestID": "cefc6b63-9ccf-4e31-9177-4aec8e701lbfe",
"eventID": "b994b52c-6011-4e3c-ad5f-e784e732fded",
"readOnly": false,
"resources": [

{
"accountId": "123456789012",
"type'": "AWS::IoTEvents::Input",
"ARN": "arn:aws-cn:iotevents:us-east-1:123456789012:input/
my_input_name"
}

1,

"eventType": "AwsApiCall",

"managementEvent": false,

"recipientAccountId": "123456789012",

"eventCategory": "Data",

"tlsDetails": {
"tlsVersion": "TLSv1.3",
"cipherSuite": "TLS_AES_128_GCM_SHA256",
"clientProvidedHostHeader": "iotevents.us-east-1.amazonaws.com"

}I

Logging Amazon loT Events API calls with Amazon CloudTrail 265

Amazon loT Events Developer Guide

Compliance validation for Amazon loT Events

To learn whether an Amazon Web Services service is within the scope of specific compliance
programs, see Amazon Web Services services in Scope by Compliance Program and choose the

compliance program that you are interested in. For general information, see Amazon Web Services

Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Your compliance responsibility when using Amazon Web Services services is determined by

the sensitivity of your data, your company's compliance objectives, and applicable laws and
regulations. For more information about your compliance responsibility when using Amazon Web
Services services, see Amazon Security Documentation.

Resilience in Amazon loT Events

The Amazon global infrastructure is built around Amazon Regions and Availability Zones. Amazon
Regions provide multiple physically separated and isolated Availability Zones, which are connected
with low-latency, high-throughput, and highly redundant networking. With Availability Zones,

you can design and operate applications and databases that automatically fail over between
Availability Zones without interruption. Availability Zones are more highly available, fault tolerant,
and scalable than traditional single or multiple data center infrastructures.

For more information about Amazon Regions and Availability Zones, see Amazon global

infrastructure.

Infrastructure security in Amazon loT Events

As a managed service, Amazon loT Events is protected by Amazon global network security. For
information about Amazon security services and how Amazon protects infrastructure, see Amazon
Cloud Security. To design your Amazon environment using the best practices for infrastructure

security, see Infrastructure Protection in Security Pillar Amazon Well-Architected Framework.

You use Amazon published API calls to access Amazon loT Events through the network. Clients
must support the following:

» Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

Compliance validation 266

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.amazonaws.cn/security/
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/security/
https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html

Amazon loT Events Developer Guide

 Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Infrastructure security 267

Amazon loT Events Developer Guide

Amazon service quotas for Amazon loT Events resources

The Amazon Web Services General Reference Guide provides the default quotas for Amazon loT
Events for an Amazon account. Unless specified, each quota is per Amazon Region. For more
information, see Amazon loT Events endpoints and quotas and Amazon Service Quotas in the
Amazon Web Services General Reference Guide.

To request a service quota increase, submit a support case in the Support center console. For more
information, see Requesting a quota increase in the Service Quotas User Guide.

(® Note

« All names for detector models and inputs must be unique within an account.

» You can't change names for detector models and inputs after they're created.

268

https://docs.amazonaws.cn/general/latest/gr/iot-events.html
https://docs.amazonaws.cn/general/latest/gr/aws_service_limits.html
https://console.amazonaws.cn/support/cases%23/create?issueType=service-limit-increase&%20%20%20%20%20%20%20%20%20%20%20%20%20limitType=service-code-iot
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html

Amazon loT Events Developer Guide

Tagging your Amazon loT Events resources

To help you manage and organize your detector models and inputs you can optionally assign your
own metadata to each of these resources in the form of tags. This section describes tags and shows
you how to create them.

Tag basics

Tags enable you to categorize your Amazon loT Events resources in different ways, for example, by
purpose, owner, or environment. This is useful when you have many resources of the same type.
You can quickly identify a specific resource based on the tags you've assigned to it.

Each tag consists of a key and optional value, both of which you define. For example, you could
define a set of tags for your inputs that helps you track the devices that send these inputs by their
type. We recommend that you create a set of tag keys that meets your needs for each kind of
resource. Using a consistent set of tag keys makes it easier for you to manage your resources.

You can search for and filter resources based on the tags you add or apply, use tags to categorize
and track your costs, and also use tags to control access to your resources as described in Using
tags with IAM policies in the Amazon loT Developer Guide.

For ease of use, the Tag Editor in the Amazon Web Services Management Console provides a
central, unified way to create and manage your tags. For more information, see Getting started

with Tag Editor in the Tagging Amazon Resources and Tag Editor User Guide.

You can also work with tags using the Amazon CLI and the Amazon loT Events API. You can
associate tags with detector models and inputs when you create them by using the "Tags" field in
the following commands:

+ CreateDetectorModel

» Createlnput

You can add, modify, or delete tags for existing resources that support tagging by using the
following commands:

» TagResource
 ListTagsForResource

« UntagResource

Tag basics 269

https://docs.amazonaws.cn/iot/latest/developerguide/tagging-iot-iam.html
https://docs.amazonaws.cn/iot/latest/developerguide/tagging-iot-iam.html
https://docs.amazonaws.cn/tag-editor/latest/userguide/gettingstarted.html
https://docs.amazonaws.cn/tag-editor/latest/userguide/gettingstarted.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_CreateDetectorModel.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_CreateInput.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_TagResource.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_ListTagsForResource.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_UntagResource.html

Amazon loT Events Developer Guide

You can edit tag keys and values, and you can remove tags from a resource at any time. You can set
the value of a tag to an empty string, but you can't set the value of a tag to null. If you add a tag
that has the same key as an existing tag on that resource, the new value overwrites the old value. If
you delete a resource, any tags associated with the resource are also deleted.

For more information, see Best Practices for Tagging Amazon Resources

Tag restrictions and limitations

The following basic restrictions apply to tags:

« Maximum number of tags per resource — 50

« Maximum key length — 127 Unicode characters in UTF-8

« Maximum value length — 255 Unicode characters in UTF-8
« Tag keys and values are case sensitive.

« Do not use the "aws:" prefix in your tag names or values because it's reserved for Amazon use.
You can't edit or delete tag names or values with this prefix. Tags with this prefix don't count
against your tags per resource limit.

« If your tagging schema is used across multiple services and resources, remember that other
services may have restrictions on allowed characters. Generally, allowed characters are: letters,
spaces, and numbers representable in UTF-8, and the following special characters: +-=._:/ @.

Using tags with IAM policies

You can apply tag-based resource-level permissions in the 1AM policies you use for Amazon loT
Events API actions. This gives you better control over what resources a user can create, modify, or
use.

You use the Condition element (also called the Condition block) with the following condition
context keys and values in an IAM policy to control user access (permissions) based on a resource's
tags:

« Use aws:ResourceTag/<tag-key>: <tag-value> to allow or deny user actions on resources
with specific tags.

« Use aws:RequestTag/<tag-key>: <tag-value> to require that a specific tag be used (or
not used) when making an API request to create or modify a resource that allows tags.

Tag restrictions and limitations 270

https://docs.amazonaws.cn/whitepapers/latest/tagging-best-practices/tagging-best-practices.html

Amazon loT Events Developer Guide

« Use aws:TagKeys: [<tag-key>, ...] torequire that a specificset of tag keys be used (or
not used) when making an API request to create or modify a resource that allows tags.

(@ Note

The condition context keys and values in an IAM policy apply only to those Amazon loT
Events actions where an identifier for a resource capable of being tagged is a required
parameter.

Controlling access using tags in the Amazon Identity and Access Management User Guide has
additional information on using tags. The IAM JSON policy reference section of that guide has
detailed syntax, descriptions, and examples of the elements, variables, and evaluation logic of
JSON policies in IAM.

The following example policy applies two tag-based restrictions. A user restricted by this policy:

« Cannot give a resource the tag "env=prod" (in the example, see the line "aws:RequestTag/
env" : "prod"

« Cannot modify or access a resource that has an existing tag "env=prod" (in the example, see the
line "aws:ResourceTag/env" : "prod").

JSON

"Version":"2012-10-17",
"Statement": [
{

"Effect": "Deny",

"Action": [
"iotevents:CreateDetectorModel”,
"iotevents:CreateAlarmModel"”,
"iotevents:CreatelInput",
"iotevents:TagResource"

]I

"Resource": "*",

"Condition": {

"StringEquals": {

Using tags with IAM policies 271

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html

Amazon loT Events Developer Guide

"aws:RequestTag/env": "prod"
}
}
}I
{

"Effect": "Deny",

"Action": [
"iotevents:DescribeDetectorModel”,
"jotevents:DescribeAlarmModel",
"iotevents:UpdateDetectorModel”,
"iotevents:UpdateAlarmModel",
"iotevents:DeleteDetectorModel”,
"iotevents:DeleteAlarmModel"”,
"iotevents:ListDetectorModelVersions",
"jiotevents:ListAlarmModelVersions",
"iotevents:UpdatelInput",
"iotevents:DescribelInput",
"iotevents:DeletelInput",
"iotevents:ListTagsForResouxce",
"iotevents:TagResouxce",
"iotevents:UntagResource",
"iotevents:UpdateInputRouting"

1,

"Resource": "*",

"Condition": {

"StringlLike": {
"aws:ResourceTag/env": "prod"
}
}
}I
{

"Effect": "Allow",

"Action": [
"iotevents:*"

1,

"Resource": "*"

}

You can also specify multiple tag values for a given tag key by enclosing them in a list, as follows.

Using tags with IAM policies 272

Amazon loT Events Developer Guide

"StringEquals" : {
"aws:ResourceTag/env" : ["dev", "test"]

(® Note

If you allow or deny users access to resources based on tags, you must consider explicitly
denying users the ability to add those tags to or remove them from the same resources.
Otherwise, it's possible for a user to circumvent your restrictions and gain access to a
resource by modifying its tags.

Using tags with IAM policies 273

Amazon loT Events Developer Guide

Troubleshooting Amazon loT Events

This troubleshooting guide provides solutions for common issues you may encounter when
using Amazon loT Events. Browse the topics to identify and resolve problems with detecting
events, accessing data, permissions, service integrations, device configurations, and more.

With troubleshooting advice for the Amazon loT Events console, API, CLI, errors, latency, and
integrations, this guide aims to quickly resolve your issues so you can build reliable and scalable
event-driven applications.

Topics

« Common Amazon loT Events issues and solutions

» Troubleshooting a detector model by running analyses in Amazon loT Events

Common Amazon loT Events issues and solutions

See the following section to troubleshoot errors and find possible solutions to resolve issues with
Amazon loT Events.

Errors

+ Detector model creation errors

« Updates from a deleted detector model

« Action trigger failure (when meeting a condition)

» Action trigger failure (when breeching a threshold)

e Incorrect state usage

« Connection message

 InvalidRequestException message

« Amazon CloudWatch Logs action.setTimer errors

o Amazon CloudWatch payload errors

» Incompatible data types

» Failed to send message to Amazon loT Events

Common Amazon loT Events issues and solutions 274

Amazon loT Events Developer Guide

Detector model creation errors

| get errors when | attempt to create a detector model.
Solution

When you create a detector model, you must consider the following limitations.

« Only one action is allowed in each action field.

« The conditionis required for transitionEvents. It's optional for OnEnter, OnInput, and
OnExit events.

« If the condition field is empty, the evaluated result of the condition expression is equivalent to
true.

« The evaluated result of the condition expression should be a Boolean value. If the result isn't
a Boolean value, it's equivalent to false and doesn't trigger the actions or transition to the
nextState specified in the event.

For more information, see Amazon loT Events detector model restrictions and limitations.

Updates from a deleted detector model

| updated or deleted a detector model a few minutes ago but I'm still getting state updates from
the old detector model through MQTT messages or SNS alerts.

Solution

If you update, delete, or recreate a detector model (see UpdateDetectorModel), there is a delay

before all detector instances are deleted and the new model is used. During this time, inputs might
continue to be processed by the instances of the previous version of the detector model. You might
continue to receive alerts defined by the previous detector model. Wait for at least seven minutes
before you recheck the update or report an error.

Action trigger failure (when meeting a condition)

The detector fails to trigger an action or transition to a new state when the condition is met.

Detector model creation errors 275

https://docs.amazonaws.cn/iotevents/latest/apireference/API_UpdateDetectorModel.html

Amazon loT Events Developer Guide

Solution

Verify that the evaluated result of the detector's conditional expression is a Boolean value. If the
result isn't a Boolean value, it's equivalent to false and doesn't trigger the action or transition to
the nextState specified in the event. For more information, see Conditional expression syntax.

Action trigger failure (when breeching a threshold)

The detector doesn't trigger an action or an event transition when the variable in a conditional
expression reaches a specified value.

Solution

If you update setVariable for onInput, onEnter, or onExit, the new value isn't used

when evaluating any condition during the current processing cycle. Instead, the original

value is used until the current cycle is complete. You can change this behavior by setting the
evaluationMethod parameter in the detector model definition. When evaluationMethod is set
to SERIAL, variables are updated and event conditions evaluated in the order that the events are
defined. When evaluationMethod is set to BATCH (the default), variables are updated and events
performed only after all event conditions are evaluated.

Incorrect state usage

The detector enters the wrong states when | attempt to send messages to inputs by using
BatchPutMessage.

Solution

If you use BatchPutMessage to send multiple messages to inputs, the order in which the messages

or inputs are processed isn't guaranteed. To guarantee ordering, send messages one at time and
wait each time for BatchPutMessage to acknowledge success.

Connection message

I geta ('Connection aborted.', error(54, 'Connection reset by peer')) error
when | attempt to call or invoke an API.

Action trigger failure (when breeching a threshold) 276

https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-conditional-expressions.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html

Amazon loT Events Developer Guide

Solution

Verify that OpenSSL uses TLS 1.1 or a later version to establish the connection. This should be the
default under most Linux distributions or Windows version 7 and later. Users of macOS might need
to upgrade OpenSSL.

InvalidRequestException message

I get InvalidRequestException when | attempt to call CreateDetectorModel and
UpdateDetectorModel APIs.

Solution

Check the following to help resolve the issue. For more information, see CreateDetectorModel and
UpdateDetectorModel.

» Make sure that you don't use both seconds and durationExpression as the parameters of
SetTimerAction at the same time.

« Make sure that your string expression for durationExpression is valid. The string
expression can contain numbers, variables ($variable.<variable-name>), or input values
($input.<input-name>.<path-to-datum>).

Amazon CloudWatch Logs action.setTimer errors

You can set up Amazon CloudWatch Logs to monitor Amazon loT Events detector model
instances. The following are common errors generated by Amazon loT Events, when you use
action.setTimer.

 Error: Your duration expression for the timer named <timer-name> could not be evaluated to a
number.

Solution

Make sure that your string expression for durationExpression can be converted to a number.
Other data types, such as Boolean, aren't allowed.

« Error: The evaluated result of your duration expression for the timer named <timer-name> is
greater than 31622440. To ensure accuracy, make sure that your duration expression refers to a
value between 60-31622400.

InvalidRequestException message 277

https://docs.amazonaws.cn/iotevents/latest/apireference/API_CreateDetectorModel.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_UpdateDetectorModel.html

Amazon loT Events Developer Guide

Solution

Make sure that the duration of your timer is less than or equal to 31622400 seconds. The
evaluated result of the duration is rounded down to the nearest whole number.

» Error: The evaluated result of your duration expression for the timer named <timer-name>
is less than 60. To ensure accuracy, make sure that your duration expression refers to a value
between 60-31622400.

Solution

Make sure that the duration of your timer is greater than or equal to 60 seconds. The evaluated
result of the duration is rounded down to the nearest whole number.

« Error: Your duration expression for the timer named <timer-name> could not be evaluated.
Check the variable names, input names, and paths to the data to make sure that you refer to the
existing variables and inputs.

Solution

Make sure that your string expression refers to the existing variables and inputs. The string
expression can contain numbers, variables ($variable.variable-name), and input values
($input.input-name.path-to-datum).

« Error: Failed to set the timer named <timer-name>. Check your duration expression, and try
again.

Solution

See the SetTimerAction action to ensure that you specified the correct parameters, and then set

the timer again.

For more information, see Enable Amazon CloudWatch logging when developing Amazon loT

Events detector models.

Amazon CloudWatch payload errors

You can set up Amazon CloudWatch Logs to monitor Amazon loT Events detector model instances.
The following are common errors and warnings generated by Amazon loT Events, when you
configure the action payload.

Amazon CloudWatch payload errors 278

https://docs.amazonaws.cn/iotevents/latest/apireference/API_SetTimerAction.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/best-practices.html#best-practices-cw-logs
https://docs.amazonaws.cn/iotevents/latest/developerguide/best-practices.html#best-practices-cw-logs

Amazon loT Events Developer Guide

o Error: We couldn't evaluate your expression for the action. Make sure that the variable names,
input names, and paths to the data refer to the existing variables and input values. Also, verify
that the size of the payload is less than 1 KB, the maximum allowed size of a payload.

Solution

Make sure that you enter the correct variable names, input names, and paths to the data. You
might also receive this error message if the action payload is larger than 1 KB.

« Error: We couldn't parse your content expression for the payload of <action-type>. Enter a
content expression with the correct syntax.

Solution

The content expression can contain strings (' string'), variables ($variable.variable-
name), input values ($input.input-name.path-to-datum), string concatenations, and strings
that contain ${}.

« Error: Your payload expression {expression}isn't valid. The defined payload type is JSON, so
you must specify an expression that Amazon loT Events would evaluate to a string.

Solution

If the specified payload type is JSON, Amazon IoT Events first checks if the service can evaluate
your expression to a string. The evaluated result can't be a Boolean or number. If the validation
fails, you might receive this error.

« Warning: The action was executed, but we couldn't evaluate your content expression for the
action payload to valid JSON. The defined payload type is JSON.

Solution

Make sure that Amazon loT Events can evaluate your content expression for the action payload
to valid JSON, if you define the payload type as JSON. Amazon loT Events runs the action even if
Amazon loT Events can't evaluate the content expression to valid JSON.

For more information, see Enable Amazon CloudWatch logging when developing Amazon loT

Events detector models.

Amazon CloudWatch payload errors 279

https://docs.amazonaws.cn/iotevents/latest/developerguide/best-practices.html#best-practices-cw-logs
https://docs.amazonaws.cn/iotevents/latest/developerguide/best-practices.html#best-practices-cw-logs

Amazon loT Events Developer Guide

Incompatible data types

Message: Incompatible data types [<inferred-types>] found for <reference> in the following
expression: <expression>

Solution

You might receive this error for one of the following reasons:

» The evaluated results of your references are not compatible with other operands in your
expressions.

» The type of the argument passed to a function is not supported.

When you use references in expressions, check the following:

« When you use a reference as an operand with one or more operators, make sure that all data
types that you reference are compatible.

For example, in the following expression, integer 2 is an operand of both the == and &&
operators. To ensure that the operands are compatible, $variable.testVariable + 1 and
$variable.testVariable must reference an integer or decimal.

In addition, integer 1 is an operand of the + operator. Therefore, $variable.testVariable
must reference an integer or decimal.

‘$variable.testVariable + 1 == 2 && $variable.testVariable’

« When you use a reference as an argument passed to a function, make sure that the function
supports the data types that you reference.

For example, the following timeout ("time-name") function requires a string with double
quotes as the argument. If you use a reference for the timer-name value, you must reference a
string with double quotes.

timeout("timer-name")

Incompatible data types 280

Amazon loT Events Developer Guide

® Note

For the convert(type, expression) function, if you use a reference for the type
value, the evaluated result of your reference must be String, Decimal, or Boolean.

For more information, see Amazon loT Events reference for inputs and variables in expressions.

Failed to send message to Amazon loT Events

Message: Failed to send message to lot Events
Solution

You might experience this error for the following reasons:

« The input message payload does not contain the Input attribute Key.
« The Input attribute Key is notin the same JSON path as specified in the input definition.

« The input message does not match with the schema, as defined in the Amazon loT Events input.

(@ Note

The data ingestion from other services will also experience failure.

Example

For example in Amazon loT Core, the Amazon loT rule will fail with the following message Verify
the Input Attribute key.

To resolve this, ensure that the input payload message schema conforms to the Amazon loT Events
Input definition and the Input attribute Key location matches. For more information, see
Create an input for models in Amazon loT Events to learn how to define Amazon loT Events Inputs.

Failed to send message to Amazon loT Events 281

Amazon loT Events Developer Guide

Troubleshooting a detector model by running analyses in
Amazon loT Events

Amazon loT Events can analyze your detector model and generate analysis results without sending
input data to your detector model. Amazon loT Events performs a series of analyses described in
this section to check your detector model. This advanced troubleshooting solution also summarizes
diagnostic information, including the severity level and location, so that you can quickly find and
fix potential issues in your detector model. For more information about diagnostic error types and
messages for your detector model, see Detector model analysis and diagnostic information for
Amazon loT Events.

You can use the Amazon loT Events console, API, Amazon Command Line Interface (Amazon CLI),
or Amazon SDK to view diagnostic error messages from the analysis of your detector model.

@ Note

» You must fix all errors before you can publish your detector model.

« We recommend that you review warnings and take necessary actions before you use your
detector model in production environments. Otherwise, the detector model might not
work as expected.

» You can have up to 10 analyses in the RUNNING status at the same time.

To learn how to analyze your detector model, see Analyze a detector model for Amazon loT Events
(Console) or Analyze a detector model in Amazon loT Events (Amazon CLI).

Topics

o Detector model analysis and diagnostic information for Amazon loT Events

» Analyze a detector model for Amazon loT Events (Console)

» Analyze a detector model in Amazon loT Events (Amazon CLI)

Detector model analysis and diagnostic information for Amazon loT
Events

Detector model analyses gather the following diagnostic information:

Troubleshooting a detector model 282

https://docs.amazonaws.cn/iotevents/latest/apireference/
https://docs.amazonaws.cn/cli/latest/reference/iotevents/index.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-sdks.html

Amazon loT Events Developer Guide

» Level - The severity level of the analysis result. Based on the severity level, analysis results fall
into three general categories:

« Information (INFO) — An information result tells you about a significant field in your detector
model. This type of result usually doesn't require immediate action.

« Warning (WARNING) — A warning result draws special attention to fields that might cause
issues for your detector model. We recommend that you review warnings and take necessary
actions before you use your detector model in production environments. Otherwise, the
detector model might not work as expected.

o Error (ERROR) — An error result notifies you about a problem found in your detector model.
Amazon loT Events automatically performs this set of analyses when you try to publish the
detector model. You must fix all errors before you can publish the detector model.

» Location - Contains information that you can use to locate the field in your detector model
that the analysis result references. A location typically includes the state name, transition event
name, event name, and expression (for example, in state TemperatureCheck in onEnter
in event Init in action setVariable).

« Type - The type of the analysis result. Analysis types fall into the following categories:

» supported-actions - Amazon loT Events can invoke actions when a specified event or
transition event is detected. You can define built-in actions to use a timer or set a variable, or
send data to other Amazon services. You must specify actions that work with other Amazon
services in an Amazon Region where the Amazon services are available.

e service-1limits - Service quotas, also known as limits, are the maximum or minimum
number of service resources or operations for your Amazon account. Unless otherwise noted,
each quota is Region-specific. Depending on your business needs, you can update your
detector model to avoid encountering limits or request a quota increase. You can request
increases for some quotas, and other quotas can't be increased. For more information, see
Quotas.

» structure - The detector model must have all required components such as states and follow
a structure that Amazon loT Events supports. A detector model must have at least one state and
a condition that evaluates the incoming input data to detect significant events. When an event is
detected, the detector model transitions to the next state and can invoke actions. These events
are known as transition events. A transition event must direct the next state to enter.

« expression-syntax - Amazon loT Events provides several ways to specify values when you
create and update detector models. You can use literals, operators, functions, references, and
substitution templates in the expressions. You can use expressions to specify literal values,
or Amazon loT Events can evaluate the expressions before you specify particular values. Your

Diagnostic information 283

https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-quotas.html

Amazon loT Events Developer Guide

expression must follow the required syntax. For more information, see Expressions to filter,

transform, and process event data.

Detector Model expressions in Amazon loT Events can reference specific data or a resource.

« data-type - Amazon loT Events supports integer, decimal, string, and Boolean data types.
If Amazon loT Events can automatically convert the data of one data type to another during
expression evaluation, these data types are compatible.

(® Note

« Integer and decimal are the only compatible data types supported by Amazon loT
Events.

« Amazon loT Events can't evaluate arithmetic expressions because Amazon loT Events
can't convert an integer to a string.

« referenced-data - You must define the data referenced in your detector model before you
can use the data. For example, if you want to send data to a DynamoDB table, you must define
a variable that references the table name before you can use the variable in an expression
($variable.TableName).

« referenced-resource - Resources that the detector model uses must be available.
You must define resources before you can use them. For example, you want to create a
detector model to monitor the temperature of a greenhouse. You must define an input
($input.Temperaturelnput) to route incoming temperature data to your detector model
before you can use the $input.Temperaturelnput.sensorData.temperature to
reference the temperature.

See the following section to troubleshoot errors and find possible solutions from the analysis of
your detector model.

Troubleshoot detector model errors in Amazon loT Events

The types of errors described above provide diagnostic information about a detector model and
correspond to messages that you might retrieve. Use these messages and suggested solutions to
troubleshoot errors with your detector model.

Messages and solutions

e Location

Diagnostic information 284

Amazon loT Events Developer Guide

supported-actions

service-limits
structure

expression-syntax

data-type

referenced-data

referenced-resource

Location

An analysis result with information about Location, corresponds to the following error message:

Message — Contains additional information about the analysis result. This can be an information,
warning, or error message.

Solution: You might receive this error message if you specified an action that Amazon loT Events
currently doesn't support. For a list of supported actions, see Supported actions to receive data

and trigger actions in Amazon loT Events.

supported-actions

An analysis result with information about supported-actions, corresponds to the following

error messages:

Message: Invalid action type present in action definition: action-definition.

Solution: You might receive this error message if you specified an action that Amazon loT Events
currently doesn't support. For a list of supported actions, see Supported actions to receive data

and trigger actions in Amazon loT Events.

Message: DetectorModel definition has an aws-service action, but the aws-service service
is not supported in the region region-name.

Solution: You might receive this error message if the action that you specified is supported

by Amazon IoT Events, but the action isn't available in your current Region. This might occur
when you try to send data to an Amazon service that isn't available in the Region. You must also
choose the same Region for both Amazon loT Events and the Amazon services that you're using.

Diagnostic information 285

Amazon loT Events Developer Guide

service-limits

An analysis result with information about service-1limits, corresponds to the following error
messages:

» Message: Content Expression allowed in payload exceeded the limit content-expression-
size bytesin event event-name in state state-name.

Solution: You might receive this error message if the content expression for your action payload
is greater than 1024 bytes. The size of the content expression for a payload can be up to 1024
bytes.

« Message: Number of states allowed in detector model definition exceeded the limit states-
per-detector-model.

Solution: You might receive this error message if your detector model has more than 20 states. A
detector model can have up to 20 states.

» Message: The duration for timer timer-name should be at least minimum-timer-duration
seconds long.

Solution: You might receive this error message if the duration of your timer is less than 60
seconds. We recommend that the duration of a timer is between 60 and 31622400 seconds. If
you specify an expression for the duration of your timer, the evaluated result of the duration
expression is rounded down to the nearest whole number.

« Message: Number of actions allowed per event exceeded the limit actions-per-event in
detector model definition

Solution: You might receive this error message if the event has more than 10 actions. You can
have up to 10 actions for each event in your detector model.

« Message: Number of transition events allowed per state exceeded the limit transition-
events-per-state in detector model definition.

Solution: You might receive this error message if the state has more than 20 transition events.
You can have up to 20 transition events for each state in your detector model.

« Message: Number of events allowed per state exceeded the limit events-per-state in
detector model definition

Solution: You might receive this error message if the state has more than 20 events. You can
have up to 20 events for each state in your detector model.

Diagnostic information 286

Amazon loT Events Developer Guide

» Message: The maximum number of detector models that can be associated with a single input
may have reached the limit. Input input-name is used in detector-models-per-input
detector model routes.

Solution: You might receive this warning message if you tried to route an input to more than
10 detector models. You can have up to 10 different detector models associated with a single
detector model.

structure

An analysis result with information about structure, corresponds to the following error
messages:

» Message: Actions may only have one type defined, but found an action with number-of-types
types. Please split into separate Actions.

Solution: You might receive this error message if you specified two or more actions in a single
field by using APl operations to create or update your detector model. You can define an array of
Action objects. Make sure that you define each action as a separate object.

« Message: The TransitionEvent transition-event-name transitions to a non-existent state
State-name.

Solution: You might receive this error message if Amazon loT Events couldn't find the next state
that your transition event referenced. Make sure that the next state is defined and that you
entered the correct state name.

» Message: The DetectorModelDefinition had a shared state name: found state state-name with
number-of-states repetitions.

Solution: You might receive this error message if you use the same name for one or more states.
Make sure that you give a unique name to each state in your detector model. The state name
must have 1-128 characters. Valid characters: a-z, A-Z, 0-9, _ (underscore), and - (hyphen).

» Message: The Definition's initialStateName initial-state-name did not correspond to a
defined State.

Solution: You might receive this error message if the initial state name is incorrect. The detector
model remains in the initial (start) state until an input arrives. Once an input arrives, the detector
model immediately transitions to the next state. Make sure that the initial state name is the
name of a defined state and that you enter the correct name.

Diagnostic information 287

Amazon loT Events Developer Guide

Message: Detector Model Definition must use at least one Input in a condition.

Solution: You might receive this error if you didn't specify an input in a condition. You must
use at least one input in at least one condition. Otherwise, Amazon loT Events doesn't evaluate
incoming data.

Message: Only one of seconds and durationExpression can be set in SetTimer.

Solution: You might receive this error message if you used both seconds and
durationExpression for your timer. Make sure that you use either seconds or
durationExpression as the parameters of SetTimerAction. For more information, see
SetTimerAction in the Amazon IoT Events API Reference.

Message: An action in your detector model is unreachable. Check the condition that initiates the
action.

Solution: If an action in your detector model is unreachable, the event's condition evaluates to
false. Check the condition of the event that contains the action, to ensure that it evaluates to
true. When the event's condition evaluates to true, the action should become reachable.

Message: An input attribute is being read, but this may be caused by a timer expiration.

Solution: An input attribute’s value can be read when either of the following occurs:
« A new input value has been received.

o When a timer in the detector has expired.

To ensure that an input attribute is being evaluated only when the new value for that input is
received, include a call to the triggerType(“Message”) function in your condition as follows:

The original condition being evaluated in the detector model:

if ($input.HeartBeat.status == “OFFLINE”)

would become similar to the following:

if (triggexType("MESSAGE") && $input.HeartBeat.status == “OFFLINE”)

where a call to the triggerType(“Message”) function comes before the initial input provided
in the condition. By using this technique, the triggerType("Message") function will evaluate
to true and satisfy the condition of receiving a new input value. For more information about the

Diagnostic information 288

https://docs.amazonaws.cn/iotevents/latest/apireference/API_SetTimerAction.html

Amazon loT Events Developer Guide

usage of the triggerType function, search for triggerType in the Expressions section in the
Amazon loT Events Developer Guide

» Message: A state in your detector model is unreachable. Check the condition that will cause a
transition to the desired state.

Solution: If a state in your detector model is unreachable, a condition that causes an incoming
transition to that state evaluates to false. Check that the conditions of the incoming transitions
to that unreachable state in your detector model evaluates to true, so the desired state can
become reachable.

« Message: An expiring timer can cause an unexpected amount of messages to be sent.

Solution: To prevent your detector model from entering into an infinite state of sending an
unexpected amount of messages because a timer has expired, consider using a call to the
triggerType("Message") function, in the conditions of your detector model as follows:

The original condition being evaluated in the detector model:

if (timeout("awake"))

would be transformed into a condition that looks similar to the following:

if (triggerType("MESSAGE") && timeout("awake"))

where a call to the triggerType(“Message”) function comes before the initial input provided
in the condition.

This change prevents initiating timer actions in your detector, preventing an infinite loop of
messages being sent. For more information about how to use timer actions in your detector, see
the Using built-in actions page of the Amazon IoT Events Developer Guide

expression-syntax

An analysis result with information about expression-syntax, corresponds to the following
error messages:

» Message: Your payload expression {expression} isn't valid. The defined payload type is JSON,
so you must specify an expression that Amazon loT Events would evaluate to a string.

Diagnostic information 289

https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-expressions.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/built-in-actions.html

Amazon loT Events Developer Guide

Solution: If the specified payload type is JSON, Amazon loT Events first checks if the service can
evaluate your expression to a string. The evaluated result can't be a Boolean or number. If the
validation doesn't succeed, you might receive this error.

» Message: SetVariableAction.value must be an expression. Failed to parse value
'variable-value'

Solution: You can use SetVariableAction to define a variable with a name and value. The
value can be a string, number, or Boolean value. You can also specify an expression for the
value. For more information, see SetVariableAction, in the Amazon loT Events API Reference.

» Message: We couldn't parse your expression of the attributes (attribute-name) for the
DynamoDB action. Enter expression with the correct syntax.

Solution: You must use expressions for all parameters in DynamoDBAction. substitution
templates. For more information, see DynamoDBAction in the Amazon loT Events APl Reference.

» Message: We couldn't parse your expression of the tableName for the DynamoDBv2 action. Enter
expression with the correct syntax.

Solution: The tableName in DynamoDBv2Action must be a string. You must use an expression
for the tableName. The expressions accept literals, operators, functions, references, and
substitution templates. For more information, see DynamoDBv2Action in the Amazon loT Events
API Reference.

« Message: We couldn't evaluate your expression to valid JSON. The DynamoDBv2 action only
supports the JSON payload type.

Solution: The payload type for DynamoDBv2 must be JSON. Make sure that Amazon loT Events
can evaluate your content expression for the payload to valid JSON. For more information, see
DynamoDBv2Action, in the Amazon loT Events API Reference.

» Message: We couldn't parse your content expression for the payload of action-type. Enter a
content expression with the correct syntax.

Solution: The content expression can contain strings (‘'string'), variables ($variable.variable-
name), input values ($input.input-name.path-to-datum), string concatenations, and strings
that contain ${}.

» Message: Customized Payloads must be non-empty.

Diagnostic information 290

https://docs.amazonaws.cn/iotevents/latest/apireference/API_SetVariableAction.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_DynamoDBAction.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_DynamoDBv2Action.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_DynamoDBv2Action.html

Amazon loT Events Developer Guide

Solution: You might receive this error message, if you chose Custom payload for your action
and didn't enter a content expression in the Amazon loT Events console. If you choose Custom
payload, you must enter a content expression under Custom payload. For more information, see
Payload in the Amazon IoT Events API Reference.

« Message: Failed to parse duration expression 'duration-expression' for timer'timer-name'.

Solution: The evaluated result of your duration expression for the timer must be a value
between 60-31622400. The evaluated result of the duration is rounded down to the nearest
whole number.

» Message: Failed to parse expression 'expression' for action-name
Solution: You might receive this message if the expression for the specified action has incorrect

syntax. Make sure that you enter an expression with the correct syntax. For more information, see
Syntax to filter device data and define actions in Amazon loT Events.

» Message: Your fieldName for IotSitewiseAction couldn't be parsed. You must use correct
syntax in your expression.

Solution: You might receive this error if Amazon loT Events couldn't parse your fieldName for
TotSitewiseAction. Make sure the fieldName uses an expression that Amazon loT Events
can parse. For more information, see lotSiteWiseAction in the Amazon IoT Events APl Reference.

data-type

An analysis result with information about data-type, corresponds to the following error
messages:

» Message: Duration expression duration-expression for timer timer-name is not valid, it
must return a number.

Solution: You might receive this error message if Amazon loT Events couldn't evaluate the
duration expression for your timer to a number. Make sure that your durationExpression can
be converted to a number. Other data types, such as Boolean, aren't supported.

» Message: Expression condition-expression is not a valid condition expression.

Solution: You might receive this error message if Amazon loT Events couldn't evaluate your
condition-expression to a Boolean value. The Boolean value must be either TRUE or FALSE.
Make sure that your condition expression can be converted to a Boolean value. If the result isn't

Diagnostic information 291

https://docs.amazonaws.cn/iotevents/latest/apireference/API_Payload.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_IotSiteWiseAction.html

Amazon loT Events Developer Guide

a Boolean value, it's equivalent to FALSE and doesn't invoke the actions or transition to the
nextState specified in the event.

« Message: Incompatible data types [inferred-types] found for reference in the following
expression: expression

Solution: Solution: All expressions for the same input attribute or variable in the detector model
must reference the same data type.

Use the following information to resolve the issue:

« When you use a reference as an operand with one or more operators, make sure that all data
types that you reference are compatible.

For example, in the following expression, integer 2 is an operand of both the == and &&
operators. To ensure that the operands are compatible, $variable.testVariable + 1 and
$variable.testVariable must reference an integer or decimal.

In addition, integer 1 is an operand of the + operator. Therefore, $variable.testVariable
must reference an integer or decimal.

‘$variable.testVariable + 1 == 2 && $variable.testVariable’

« When you use a reference as an argument passed to a function, make sure that the function
supports the data types that you reference.

For example, the following timeout (" time-name") function requires a string with double
quotes as the argument. If you use a reference for the timer-name value, you must reference
a string with double quotes.

timeout("timer-name")

(® Note

For the convert(type, expression) function, if you use a reference for the type
value, the evaluated result of your reference must be String, Decimal, or Boolean.

For more information, see Amazon loT Events reference for inputs and variables in expressions.

« Message: Incompatible data types [inferred-types] used with reference. This may lead to a
runtime error.

Diagnostic information 292

Amazon loT Events Developer Guide

Solution: You might receive this warning message if two expressions for the same input attribute
or variable reference two data types. Make sure that your expressions for the same input
attribute or variable reference the same data type in the detector model.

referenced-data

An analysis result with information about referenced-data, corresponds to the following error
messages:

» Message: Detected broken Timer: timer timer-name is used in an expression but is never set.

Solution: You might receive this error message if you use a timer that isn't set. You must set a
timer before you use it in an expression. Also, make sure that you enter the correct timer name.

» Message: Detected broken Variable: variable variable-name is used in an expression but is
never set.

Solution: You might receive this error message if you use a variable that isn't set. You must set
a variable before you use it in an expression. Also, make sure that you enter the correct variable
name.

» Message: Detected broken Variable: a variable is used in an expression before being set to a
value.

Solution: Each variable must be assigned to a value before it can be evaluated in an expression.
Set the value of the variable before every use so its value can be retrieved. Also, make sure that
you enter the correct variable name.

referenced-resource

An analysis result with information about referenced-resource, corresponds to the following
error messages:

» Message: Detector Model Definition contains reference to Input that does not exist.

Solution: You might receive this error message if you use expressions to reference an input that
doesn't exist. Make sure that your expression references an existing input and enter the correct
input name. If you don't have an input, create one first.

» Message: Detector Model Definition contains invalid InputName: input-name

Diagnostic information 293

Amazon loT Events Developer Guide

Solution: You might receive this error message if your detector model contains an invalid input
name. Make sure that you enter the correct input name. The input name must have 1-128
characters. Valid characters: a-z, A-Z, 0-9, _ (underscore), and - (hyphen).

Analyze a detector model for Amazon loT Events (Console)

Amazon loT Events allows you to monitor and react to loT data by detecting events and triggering
actions with the Amazon loT Events API. The following steps use the Amazon loT Events console to
analyze a detector model.

® Note

After Amazon loT Events starts analyzing your detector model, you have up to 24 hours to
retrieve the analysis results.

A detector model analysis can help you optimize your models, identify potential issues, and
ensure they're functioning as intended. For example, on a windfarm, the detector model analysis
could reveal if the model correctly identifies potential gear failures based on abnormal vibration
patterns. Or, if the model accurately triggers maintenance alerts when wind speeds exceed safe
operating thresholds. By refining a model based on the analysis, you can improve predictive
maintenance, reduce downtime, and enhance overall energy production efficiency.

To analyze a detector model

1. Signin to the Amazon loT Events console.

In the navigation pane, choose Detector models.
Under Detector models, choose the target detector model.

On your detector model page, choose Edit.

ok W

In the upper-right corner, choose Run analysis.

Analyze a detector model (Console) 294

https://console.amazonaws.cn/iotevents/

Amazon loT Events

Developer Guide

loT Events

Detector models

Inputs

Alarm models

Settings

temperatureDetectorModel Edit

Run analysis Create input Publish

X

+ Detector model palette

To build a detector model, drag
A and drop to add states. Draw

connection arrows on the canvas

to add transitions between states.
©

(O state
ha] @ Start y
/
. \
| TemperatureCheck
2 events

The following is an example analysis result in the Amazon loT Events console.

loT Events

Detector models

Inputs

Alarm models (@EED

Settings

temperatureDetectorModel Edit

| Rerun analysis H Create input ‘m

X
+
H @ Start ‘ /) 9
@
9 TemperatureCheck
2 events
c
N

Detector model palette

To build a detector model, drag
and drop to add states. Draw
connection arrows on the canvas
to add transitions between states.

(O state

Detector model analysis Learn more [4

[(1) All ® (0) Error A (0) Warning

@ (1) Information

@ Info: data-type
Message: Inferred data types [Integer] for $variable.temperatureChecked

Analyze a detector model in Amazon loT Events (Amazon CLI)

Analyzing your Amazon loT Events detector models programmatically provides valuable insights
into their structure, behavior, and performance. This APl-based approach allows for automated
analysis, integration with your existing workflows, and the ability to perform bulk operations
across multiple detector models. By leveraging the StartDetectorModelAnalysis API, you can

Analyze a detector model (Amazon CLI)

295

https://docs.amazonaws.cn/iotevents/latest/apireference/API_StartDetectorModelAnalysis.html

Amazon loT Events Developer Guide

initiate in-depth examinations of your models, helping you identify potential issues, optimize logic
flows, and ensure that your loT event processing aligns with your business requirements.

The following steps use the Amazon CLI to analyze a detector model.
To analyze a detector model using Amazon CLI

1. Run the following command to start an analysis.

aws iotevents start-detector-model-analysis --cli-input-json file://file-name.json

(® Note

Replace file-name with the name of the file that contains the detector model
definition.

Example Detector model definition

"detectorModelDefinition": {
"states": [

{
"stateName": "TemperatureCheck",
"onInput": {
"events": [
{
"eventName": "Temperature Received",
"condition":

"isNull($input.TemperatureInput.sensorData.temperature)==false",
"actions": [
{
"iotTopicPublish": {
"mqttTopic": "IoTEvents/Output"

]I

"transitionEvents": []

}I

Analyze a detector model (Amazon CLI) 296

Amazon loT Events Developer Guide

"onEnter": {
"events": [

{
"eventName": "Init",
"condition": "true",
"actions": [
{
"setVariable": {
"variableName": "temperatureChecked",
"value": "0Q"
}
}
]
}
]
.
"onExit": {
"events": []
}
}
1,
"initialStateName": "TemperatureCheck"

If you use the Amazon CLI to analyze an existing detector model, choose one of the following
to retrieve the detector model definition:
« If you want to use the Amazon loT Events console, do the following:

1. In navigation pane, choose Detector models.

2. Under Detector models, choose the target detector model.

3. Choose Export detector model from Action to download the detector model. The
detector model is saved in JSON.

4. Open the detector model JSON file.

5. You only need the detectorModelDefinition object. Remove the following:
« The first curly bracket ({) at the top of the page
« The detectorModel line
» The detectorModelConfiguration object

» The last curly bracket (}) at the bottom of the page

Analyze a detector model (Amazon CLI) 297

Amazon loT Events Developer Guide

6. Save the file.
« If you want to use the Amazon CLI, do the following:

1. Run the following command in a terminal.

aws iotevents describe-detector-model --detector-model-name detector-model-name

2. Replace detector-model -name with the name of your detector model.
3. Copy the detectorModelDefinition object to a text editor.

4. Add curly brackets ({}) outside of the detectorModelDefinition.

5. Save the file in JSON.

Example response

"analysisId": "c1133390-14e3-4204-9a66-31efd92as4fed"

2. Copy the analysis ID from the output.

3. Run the following command to retrieve the status of the analysis.

aws iotevents describe-detector-model-analysis --analysis-id "analysis-id"

(® Note

Replace analysis-id with the analysis ID that you copied.

Example response

"status": "COMPLETE"

The status can be one of the following values:

« RUNNING - Amazon loT Events is analyzing your detector model. This process can take up to

one minute to complete.
Analyze a detector model (Amazon CLI) 298

Amazon loT Events Developer Guide

o COMPLETE - Amazon loT Events finished analyzing your detector model.
o FAILED - Amazon loT Events couldn't analyze your detector model. Try again later.

4. Run the following command to retrieve one or more analysis results of the detector model.

(@ Note

Replace analysis-id with the analysis ID that you copied.

aws iotevents get-detector-model-analysis-results --analysis-id "analysis-id"

Example response

"analysisResults": [
{
"type": "data-type",
"level": "INFO",
"message": "Inferred data types [Integer] for
$variable.temperatureChecked",
"locations": []

I
{
"type": "referenced-resource",
"level": "ERROR",
"message": "Detector Model Definition contains reference to Input

'Temperaturelnput' that does not exist.",
"locations": [

{
"path": "states[@].onInput.events[0]"

Analyze a detector model (Amazon CLI) 299

Amazon loT Events Developer Guide

® Note

After Amazon loT Events starts analyzing your detector model, you have up to 24 hours to
retrieve the analysis results.

Analyze a detector model (Amazon CLI) 300

Amazon loT Events Developer Guide

Amazon loT Events commands

This chapter provides a comprehensive guide to all the API operations available in Amazon loT
Events. It offers detailed explanations, including sample requests, responses, and potential
errors for each operation across the supported web services protocols. Understanding these API
operations helps you effectively integrate Amazon loT Events into your loT applications and
automate your event detection and response workflows.

Amazon loT Events actions

You can use Amazon loT Events APl commands to create, read, update, and delete inputs and
detector models, and to list their versions. For more information, see the actions and data types

that are supported by Amazon loT Events in the Amazon IoT Events API Reference.

The Amazon loT Events sections in the Amazon CLI Command Reference include the Amazon CLI

commands that you can use to administer and manipulate Amazon loT Events.

Amazon loT Events data

You can use the Amazon loT Events Data APl commands to send inputs to detectors, list detectors,
and view or update a detector's status. For more information, see the actions and data types that
are supported by Amazon loT Events Data in the Amazon IoT Events API Reference.

The Amazon loT Events data sections in the Amazon CLI Command Reference includes the Amazon
CLI commands that you can use to process Amazon loT Events data.

Amazon loT Events actions 301

https://docs.amazonaws.cn/iotevents/latest/apireference/API_Operations_AWS_IoT_Events.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_Types_AWS_IoT_Events.html
https://docs.amazonaws.cn/cli/latest/reference/iotevents/index.html#cli-aws-iotevents
https://docs.amazonaws.cn/iotevents/latest/apireference/API_Operations_AWS_IoT_Events_Data.html
https://docs.amazonaws.cn/iotevents/latest/apireference/API_Types_AWS_IoT_Events_Data.html
https://docs.amazonaws.cn/cli/latest/reference/iotevents-data/index.html

Amazon loT Events

Developer Guide

Document history for Amazon loT Events

The following table describes the important changes to the Amazon IoT Events Developer Guide
after September 17, 2020. For more information about updates to this documentation, you can

subscribe to an RSS feed.

Change

End of support notice

Region launch

Region launch

Troubleshoot a detector

model by running analyses

Region launch

Expression usage

Description

End of support notice: On
May 20, 2026, Amazon will
discontinue support for

Amazon loT Events. After May

20, 2026, you will no longer
be able to access the Amazon
loT Events console or Amazon
loT Events resources.

Amazon loT Events is now
available in the Asia Pacific
(Mumbai) region.

Amazon loT Events is now
available in the Amazon
GovCloud (US-West) Region.

Amazon loT Events can now
analyze your detector model
and generate analysis results
that you can use to troublesh
oot your detector model.

Launched Amazon loT Events
in China (Beijing).

Added examples to show you
how to write expressions.

Date

May 20, 2025

September 30, 2021

September 22, 2021

February 23, 2021

September 30, 2020

September 22, 2020

302

https://docs.amazonaws.cn/general/latest/gr/iot-events.html
https://docs.amazonaws.cn/general/latest/gr/iot-events.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-analyze-api.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-analyze-api.html
https://docs.amazonaws.cn/general/latest/gr/iot-events.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/expression-usage.html

Amazon loT Events

Developer Guide

Monitoring with alarms

Earlier updates

Alarms help you monitor
your data for changes.
You can create alarms that
send notifications when a
threshold is breached.

June 1, 2020

The following table describes important changes to the Amazon IoT Events Developer Guide before

September 18, 2020.

Change

Added type validation to the

Expressions reference

Added Region warning for
other services

Additions, updates

Added built-in functions for
detector model conditional
expressions

Added detector model
examples

Added new event actions

Description

Added type validation
information to the Expressio
ns reference.

Added a warning regarding
selecting the same region for
Amazon loT Events and other
Amazon services.

« Payload Customization
feature

« New event actions: Amazon
DynamoDB and Amazon
loT SiteWise

Added built-in functions for
detector model conditional
expressions.

Added examples for the
detector model.

Added new event actions for:

Date

August 3, 2020

May 7, 2020

April 27, 2020

September 10, 2019

August 5, 2019

July 19, 2019

Earlier updates

303

https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-alarms.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/expression-reference.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/expression-reference.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-other-aws-services.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-other-aws-services.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-examples.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/iotevents-examples.html

Amazon loT Events

Developer Guide

Change

Additions, corrections

Updated permissions policy

and console debug options

Updates

Additions, updates

Added examples and required
permissions

Added additional security
information

Limited preview release

Description

« Lambda
« Amazon SQS
+ Kinesis Data Firehose

« Amazon loT Events input

» Updated description of
timeout() function.

o Added best practice
regarding account inactivit
y.

» Updated the console
permissions policy.

» Updated console debug
options page image.

Amazon loT Events service
open to general availability.

« Updated security informati
on.

« Added annotated detector
model example.

Added Amazon SNS payload
examples; additions to
required permissions for
CreateDetectorModel

Added information to the
security section.

Limited preview release of the
documentation.

Date

June 11, 2019

June 5, 2019

May 30, 2019

May 22, 2019

May 17, 2019

May 9, 2019

March 28, 2019

Earlier updates

304

https://docs.amazonaws.cn/iotevents/latest/developerguide/security_iam_id-based-policy-examples.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/security.html
https://docs.amazonaws.cn/iotevents/latest/developerguide/security.html

	Amazon IoT Events
	Table of Contents
	
	What is Amazon IoT Events?
	Benefits and features
	Use cases
	Monitor and maintain remote devices
	Manage industrial robots
	Track building automation systems

	Amazon IoT Events end of support
	Considerations when migrating away from Amazon IoT Events
	Migration procedure for detector models in Amazon IoT Events
	Comparing architectures
	Step 1: (Optional) export Amazon IoT Events detector model configurations
	Step 2: Create an IAM role
	Step 3: Create Amazon Kinesis Data Streams
	Step 4: Create or update the MQTT message routing rule
	Step 5: Get the endpoint for the destination MQTT topic
	Step 6: Create an Amazon DynamoDB table
	Step 7: Create an Amazon Lambda function (console)
	Step 8: Add an Amazon Kinesis Data Streams trigger
	Step 9: Test data ingestion and output functionality (Amazon CLI)

	Migration procedure for Amazon IoT SiteWise alarms in Amazon IoT Events
	Comparing architectures
	Step 1: Enable MQTT notifications on the asset property
	Step 2: Create an Amazon Lambda function
	Step 3: Create Amazon IoT Core message routing rule
	Step 4: View CloudWatch metrics
	Step 5: Create CloudWatch alarms
	Step 6: (Optional) import the CloudWatch alarm into Amazon IoT SiteWise

	Setting up Amazon IoT Events
	Setting up an Amazon Web Services account
	Sign up for an Amazon Web Services account
	Secure IAM users

	Setting up permissions for Amazon IoT Events
	Action permissions for Amazon IoT Events
	Securing input data in Amazon IoT Events
	Amazon CloudWatch logging role policy for Amazon IoT Events
	Amazon SNS messaging role policy for Amazon IoT Events

	Getting started with the Amazon IoT Events console
	Prerequisites to get started with Amazon IoT Events
	Create an input for models in Amazon IoT Events
	Create a JSON input file
	Create and configure an input
	Create an input within the Detector Model in Amazon IoT Events

	Create a detector model in Amazon IoT Events
	Send inputs to test the detector model in Amazon IoT Events

	Best practices for Amazon IoT Events
	Enable Amazon CloudWatch logging when developing Amazon IoT Events detector models
	Publish regularly to save your detector model when working in the Amazon IoT Events console

	Tutorials for Amazon IoT Events uses cases
	Using Amazon IoT Events to monitor your IoT devices
	How do you know which states you need in a detector model?
	How do you know if you need one instance of a detector or several?

	Create an Amazon IoT Events detector for two states using CLI
	Create an Amazon IoT Events input to capture device data
	Create a detector model to represent device states in Amazon IoT Events
	Send messages as inputs to a detector in Amazon IoT Events

	Amazon IoT Events detector model restrictions and limitations
	A commented example: HVAC temperature control with Amazon IoT Events
	Input definitions for detector models in Amazon IoT Events
	Create an Amazon IoT Events detector model definition
	Use BatchUpdateDetector to update an Amazon IoT Events detector model
	Use BatchPutMessage for inputs in Amazon IoT Events
	Ingest MQTT messages in Amazon IoT Events
	Generate Amazon SNS messages in Amazon IoT Events
	Configure the DescribeDetector API in Amazon IoT Events
	Use the Amazon IoT Core rules engine for Amazon IoT Events

	Supported actions to receive data and trigger actions in Amazon IoT Events
	Use the Amazon IoT Events built-in timer and variable actions
	Set timer action
	Reset timer action
	Clear timer action
	Set variable action

	Amazon IoT Events working with other Amazon services
	Amazon IoT Core
	Amazon IoT Events
	Amazon IoT SiteWise
	Amazon DynamoDB
	Amazon DynamoDB(v2)
	Amazon Data Firehose
	Amazon Lambda
	Amazon Simple Notification Service
	Amazon Simple Queue Service

	Expressions to filter, transform, and process event data
	Syntax to filter device data and define actions in Amazon IoT Events
	Literals
	Operators
	Functions to use in Amazon IoT Events expressions
	Amazon IoT Events reference for inputs and variables in expressions
	Substitution templates for Amazon IoT Events expressions

	Expression examples and usage for Amazon IoT Events
	Writing Amazon IoT Events expressions

	Amazon IoT Events detector model examples
	Example: Using HVAC temperature control with Amazon IoT Events
	Background story
	Input definitions for an HVAC system in Amazon IoT Events
	Detector model definition for an HVAC system using Amazon IoT Events
	BatchPutMessage examples for an HVAC system in Amazon IoT Events
	BatchUpdateDetector example for an HVAC system in Amazon IoT Events
	The Amazon IoT Core rules engine and Amazon IoT Events

	Example: A crane detecting conditions using Amazon IoT Events
	Send commands in response to detected conditions in Amazon IoT Events
	An Amazon IoT Events detector model for crane monitoring
	Amazon IoT Events inputs for crane monitoring
	Send alarm and operational messages with Amazon IoT Events
	Example: Amazon IoT Events event detection with sensors and applications
	Example: Device HeartBeat to monitor device connections with Amazon IoT Events
	Example: An ISA alarm in Amazon IoT Events
	Example: Build a simple alarm with Amazon IoT Events

	Monitoring with alarms in Amazon IoT Events
	Working with Amazon IoT SiteWise
	Acknowledge flow
	Creating an alarm model in Amazon IoT Events
	Requirements
	Creating an alarm model (console)

	Responding to alarms in Amazon IoT Events
	Managing alarm notifications in Amazon IoT Events
	Creating a Lambda function in Amazon IoT Events
	Requirements
	Deploy a Lambda function for Amazon IoT Events using Amazon CloudFormation
	Creating a custom Lambda function for Amazon IoT Events
	CloudFormation template

	Using the Lambda function provided by Amazon IoT Events
	Manage IAM Identity Center access of alarm recipients in Amazon IoT Events

	Security in Amazon IoT Events
	Identity and access management for Amazon IoT Events
	Audience
	Authenticating with identities
	Amazon Web Services account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Other policy types
	Multiple policy types

	More about identity and access management
	How Amazon IoT Events works with IAM
	Amazon IoT Events identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	Amazon IoT Events resource-based policies
	Authorization based on Amazon IoT Events tags
	Amazon IoT Events IAM roles
	Using temporary credentials with Amazon IoT Events
	Service-linked roles
	Service roles

	Amazon IoT Events identity-based policy examples
	Policy best practices
	Using the Amazon IoT Events console
	Allow users to view their own permissions in Amazon IoT Events
	Access one Amazon IoT Events input
	View Amazon IoT Events inputs based on tags

	Cross-service confused deputy prevention for Amazon IoT Events
	Example: Secure access to an Amazon IoT Events detector model
	Example: Secure access to an Amazon IoT Events alarm model
	Example: Access an Amazon IoT Events resource in a specified region
	Example: Configure logging options for Amazon IoT Events

	Troubleshoot Amazon IoT Events identity and access
	I am not authorized to perform an action in Amazon IoT Events
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my Amazon Web Services account to access my Amazon IoT Events resources

	Monitoring Amazon IoT Events to maintain reliability, availability, and performance
	Available tools to monitor Amazon IoT Events
	Automated monitoring tools
	Manual monitoring tools

	Monitoring Amazon IoT Events with Amazon CloudWatch
	Logging Amazon IoT Events API calls with Amazon CloudTrail
	Amazon IoT Events information in CloudTrail
	Understanding Amazon IoT Events log file entries
	Example: DescribeDetector action for CloudTrail
	Example: CreateDetectorModel action for CloudTrail
	Example: CreateInput action for CloudTrail
	Example: DeleteDetectorModel action for CloudTrail
	Example: DeleteInput action for CloudTrail
	Example: DescribeDetectorModel action for CloudTrail
	Example: DescribeInput action for CloudTrail
	Example: DescribeLoggingOptions action for CloudTrail
	Example: ListDetectorModels action for CloudTrail
	Example: ListDetectorModelVersions action for CloudTrail
	Example: ListDetectors action for CloudTrail
	Example: ListInputs action for CloudTrail
	Example: PutLoggingOptions action for CloudTrail
	Example: UpdateDetectorModel action for CloudTrail
	Example: UpdateInput action for CloudTrail
	Example: BatchPutMessage action for CloudTrail

	Compliance validation for Amazon IoT Events
	Resilience in Amazon IoT Events
	Infrastructure security in Amazon IoT Events

	Amazon service quotas for Amazon IoT Events resources
	Tagging your Amazon IoT Events resources
	Tag basics
	Tag restrictions and limitations

	Using tags with IAM policies

	Troubleshooting Amazon IoT Events
	Common Amazon IoT Events issues and solutions
	Detector model creation errors
	Solution

	Updates from a deleted detector model
	Solution

	Action trigger failure (when meeting a condition)
	Solution

	Action trigger failure (when breeching a threshold)
	Solution

	Incorrect state usage
	Solution

	Connection message
	Solution

	InvalidRequestException message
	Solution

	Amazon CloudWatch Logs action.setTimer errors
	Solution
	Solution
	Solution
	Solution
	Solution

	Amazon CloudWatch payload errors
	Solution
	Solution
	Solution
	Solution

	Incompatible data types
	Solution

	Failed to send message to Amazon IoT Events
	Solution

	Troubleshooting a detector model by running analyses in Amazon IoT Events
	Detector model analysis and diagnostic information for Amazon IoT Events
	Troubleshoot detector model errors in Amazon IoT Events
	Location
	

	supported-actions
	
	

	service-limits
	
	
	
	
	
	
	

	structure
	
	
	
	
	
	
	
	
	
	

	expression-syntax
	
	
	
	
	
	
	
	
	
	

	data-type
	
	
	
	

	referenced-data
	
	
	

	referenced-resource
	
	

	Analyze a detector model for Amazon IoT Events (Console)
	Analyze a detector model in Amazon IoT Events (Amazon CLI)

	Amazon IoT Events commands
	Amazon IoT Events actions
	Amazon IoT Events data

	Document history for Amazon IoT Events
	Earlier updates

