
Amazon Kinesis Video Streams WebRTC Developer Guide

Kinesis Video Streams

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Kinesis Video Streams: Amazon Kinesis Video Streams WebRTC
Developer Guide

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Table of Contents

What Is Amazon Kinesis Video Streams with WebRTC .. 1
Region availability .. 2
Kinesis Video Streams with WebRTC Pricing .. 3
Accessing Kinesis Video Streams with WebRTC ... 3

Kinesis Video Streams with WebRTC: How It Works ... 4
Amazon Kinesis Video Streams with WebRTC Concepts .. 4
WebRTC Technology Concepts .. 5
How STUN, TURN and ICE Work Together ... 6
Kinesis Video Streams with WebRTC Components .. 7
WebRTC Websocket APIs .. 8

ConnectAsViewer ... 8
ConnectAsMaster ... 11
SendSdpOffer .. 12
SendSdpAnswer ... 15
SendIceCandidate .. 17
Disconnect .. 19
Asynchronous Message Reception ... 20

Quotas .. 22
Control Plane API Service Quotas .. 22
Signaling API Service Quotas .. 24
TURN Service Quotas .. 25
WebRTC Ingestion Service Quotas ... 26

Getting Started .. 27
Set Up an Amazon Web Services account .. 27

Sign up for an Amazon Web Services account ... 27
Secure IAM users ... 28
Create an AmazonAccount Key .. 28

Create a Signaling Channel .. 28
Create a Signaling Channel Using the Console .. 29

Stream Live Media ... 29
WebRTC SDK in C for Embedded Devices ... 29
WebRTC SDK in JavaScript ... 32
WebRTC SDK for Android ... 37
WebRTC SDK for iOS ... 44

iii

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Client Metrics for the WebRTC C SDK .. 51
Security .. 74

Controlling Access to Kinesis Video Streams with WebRTC Resources Using Amazon Identity
and Access Management .. 75

Policy Syntax .. 75
Actions for Kinesis Video Streams with WebRTC ... 76
Amazon Resource Names (ARNs) for Kinesis Video Streams ... 77
Granting Other IAM Accounts Access to a Kinesis Video Stream .. 77
Example Policies .. 77

Compliance validation ... 79
Resilience .. 80
Infrastructure Security in Kinesis Video Streams with WebRTC ... 80
Security Best Practices for Kinesis Video Streams with WebRTC ... 80

Implement least privilege access ... 81
Use IAM roles ... 81
Use CloudTrail to Monitor API Calls ... 81

Monitoring .. 83
Monitoring Kinesis Video Streams with WebRTC Metrics with CloudWatch 83

Signaling Metrics ... 84
TURN Metrics ... 85

Logging Kinesis Video Streams with WebRTC API Calls with Amazon CloudTrail 85
Amazon Kinesis Video Streams with WebRTC and CloudTrail ... 85
Example: Amazon Kinesis Video Streams with WebRTC Log File Entries 87

Document History .. 89
Amazon Glossary ... 90

iv

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

What Is Amazon Kinesis Video Streams with WebRTC

WebRTC is an open technology specification for enabling real-time communication (RTC) across
browsers and mobile applications via simple APIs. It uses peering techniques for real-time data
exchange between connected peers and provides low latency media streaming required for
human-to-human interaction. The WebRTC specification includes a set of IETF protocols including
Interactive Connectivity Establishment, Traversal Using Relay around NAT (TURN), and Session
Traversal Utilities for NAT (STUN) for establishing peer-to-peer connectivity, in addition to protocol
specifications for reliable and secure real-time media and data streaming.

Amazon Kinesis Video Streams provides a standards-compliant WebRTC implementation as a fully
managed capability. You can use Amazon Kinesis Video Streams with WebRTC to securely live
stream media or perform two-way audio or video interaction between any camera IoT device and
WebRTC-compliant mobile or web players. As a fully managed capability, you don't have to build,
operate, or scale any WebRTC-related cloud infrastructure, such as signaling or media relay servers
to securely stream media across applications and devices.

Using Kinesis Video Streams with WebRTC, you can easily build applications for live peer-to-
peer media streaming, or real-time audio or video interactivity between camera IoT devices, web
browsers, and mobile devices for a variety of use cases. Such applications can help parents keep an
eye on their baby’s room, enable homeowners to use a video doorbell to check who’s at the door,
enable owners of camera-enabled robot vacuums to remotely control the robot by viewing the live
camera stream on a mobile phone, and so on.

If you're a first-time user of Kinesis Video Streams with WebRTC, we recommend that you read the
following sections:

• Kinesis Video Streams with WebRTC: How It Works

• WebRTC SDK in C for Embedded Devices

• Kinesis Video Streams with WebRTC SDK in JavaScript for web applications

• WebRTC SDK for Android

• WebRTC SDK for iOS

• Control plane APIs

• Data plane REST APIs

• Data plane Websocket APIs

1

https://www.ietf.org/rfc/rfc5245.txt
https://tools.ietf.org/html/rfc5766
https://www.ietf.org/rfc/rfc5389.txt
https://www.ietf.org/rfc/rfc5389.txt
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/what-is-kinesis-video.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_Operations_Amazon_Kinesis_Video_Streams.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_Operations_Amazon_Kinesis_Video_Signaling_Channels.html
https://docs.aws.amazon.com/kinesisvideostreams-webrtc-dg/latest/devguide/kvswebrtc-websocket-apis.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Region availability

Amazon Kinesis Video Streams with WebRTC is available in the following regions:

Region Name Amazon Region Code

US East (Ohio) us-east-2

US East (N. Virginia) us-east-1

US West (Oregon) us-west-2

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

Europe (Frankfurt) eu-central-1

Europe (Ireland) eu-west-1

Europe (London) eu-west-2

Europe (Paris) eu-west-3

South America (Sao Paulo) sa-east-1

Region availability 2

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Kinesis Video Streams with WebRTC Pricing

For information about Kinesis Video Streams with WebRTC pricing, see Amazon Kinesis Video
Streams Pricing.

Accessing Kinesis Video Streams with WebRTC

You can work with Kinesis Video Streams with WebRTC in any of the following ways:

Amazon Web Services Management Console

Getting Started with the Amazon Web Services Management Console

The console is a browser-based interface to access and use Amazon services, including Kinesis
Video Streams with WebRTC.

Amazon SDKs

Amazon provides software development kits (SDKs) that consist of libraries and sample code
for various programming languages and platforms (for example, Java, Python, Ruby, .NET,
iOS, Android, and more). The SDKs provide a convenient way to create programmatic access to
Kinesis Video Streams with WebRTC. For information about the Amazon SDKs, including how to
download and install them, see Tools for Amazon Web Services.

Kinesis Video Streams with WebRTC HTTPS API

You can access Kinesis Video Streams with WebRTC and Amazon programmatically by using
the Kinesis Video Streams with WebRTC APIs, which lets you issue API requests directly to the
service. For more information, see the Amazon Kinesis Video Streams API Reference.

Kinesis Video Streams with WebRTC Pricing 3

https://aws.amazon.com/kinesis/video-streams/pricing/
https://aws.amazon.com/kinesis/video-streams/pricing/
https://docs.amazonaws.cn/awsconsolehelpdocs/latest/gsg/getting-started.html
http://www.amazonaws.cn/tools/
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_Reference.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Kinesis Video Streams with WebRTC: How It Works

Topics

• Amazon Kinesis Video Streams with WebRTC Concepts

• WebRTC Technology Concepts

• How STUN, TURN and ICE Work Together

• Kinesis Video Streams with WebRTC Components

• WebRTC Websocket APIs

Amazon Kinesis Video Streams with WebRTC Concepts

The following are key terms and concepts specific to the Amazon Kinesis Video Streams with
WebRTC.

Signaling channel

A resource that enables applications to discover, set up, control, and terminate a peer-to-peer
connection by exchanging signaling messages. Signaling messages are metadata that two
applications exchange with each other to establish peer-to-peer connectivity. This metadata
includes local media information, such as media codecs and codec parameters, and possible
network candidate paths for the two applications to connect with each other for live streaming.

Streaming applications can maintain persistent connectivity with a signaling channel and wait
for other applications to connect to them. Or, they can connect to a signaling channel only
when they need to live stream media. A signaling channel enables applications to connect with
each other in a one-to-few model, using the concept of one master connecting to multiple
viewers. The application that initiates the connection assumes the responsibility of a master
using the ConnectAsMaster API and waits for viewers. Up to 10 applications can then
connect to that signaling channel by assuming the viewer responsibility by invoking the
ConnectAsViewer API. After they're connected to a signaling channel, the master and viewer
applications can send each other signaling messages to establish peer-to-peer connectivity for
live media streaming.

Amazon Kinesis Video Streams with WebRTC Concepts 4

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Peer

Any device or application (for example, a mobile or web application, webcam, home security
camera, baby monitor, etc.) that is configured for real-time, two-way streaming through a
Kinesis Video Streams with WebRTC.

Master

A peer that initiates the connection and is connected to the signaling channel with the ability to
discover and exchange media with any of the signaling channel's connected viewers.

Important

Currently, a signaling channel can only have one master.

Viewer

A peer that is connected to the signaling channel with the ability to discover and exchange
media only with the signaling channel's master. A viewer cannot discover or interact with other
viewers through a given signaling channel. A signaling channel can have up to 10 connected
viewers.

WebRTC Technology Concepts

As you get started with Kinesis Video Streams with WebRTC, you can also benefit from learning
about several interrelated protocols and APIs of which the WebRTC technology consists.

Session Traversal Utilities for NAT (STUN)

A protocol that is used to discover your public address and determine any restrictions in your
router that would prevent a direct connection with a peer.

Traversal Using Relays around NAT (TURN)

A server that is used to bypass the Symmetric NAT restriction by opening a connection with a
TURN server and relaying all information through that server.

WebRTC Technology Concepts 5

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Session Description Protocol (SDP)

A standard for describing the multimedia content of the connection such as resolution,
formats, codecs, encryption, etc. so that both peers can understand each other once the data is
transferring.

SDP Offer

An SDP message sent by an agent which generates a session description in order to create or
modify a session. It describes the aspects of desired media communication.

SDP Answer

An SDP message sent by an answerer in response to an offer received from an offerer. The
answer indicates the aspects that are accepted. For example, if all the audio and video streams
in the offer are accepted.

Interactive Connectivity Establishment (ICE)

A framework that allows your web browser to connect with peers.

ICE Candidate

A method that the sending peer is able to use to communicate.

How STUN, TURN and ICE Work Together

Let's take the scenario of two peers, A and B, who are both using a WebRTC peer to peer two way
media streaming (for example, a video chat application). What happens when A wants to call B?

To connect to B's application, A's application must generate an SDP offer. An SDP offer contains
information about the session A's application wants to establish, including what codecs to use,
whether this is an audio or video session, etc. It also contains a list of ICE candidates, which are the
IP and port pairs that B's application can attempt to use to connect to A.

To build the list of ICE candidates, A's application makes a series of requests to a STUN server.
The server returns the public IP address and port pair that originated the request. A's application
adds each pair to the list of ICE candidates, in other words, it gathers ICE candidates. Once A's
application has finished gathering ICE candidates, it can return an SDP.

Next, A's application must pass the SDP to B's application through a signaling channel over
which these applications communicate. The transport protocol for this exchange is not specified

How STUN, TURN and ICE Work Together 6

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

in the WebRTC standard. It can be performed over HTTPS, secure WebSocket, or any other
communication protocol.

Now, B's application must generate an SDP answer. B's application follows the same steps A used in
the previous step: gathers ICE candidates, etc. B's application then needs to return this SDP answer
to A's application.

After A and B have exchanged SDPs, they then perform a series of connectivity checks. The ICE
algorithm in each application takes a candidate IP/port pair from the list it received in the other
party's SDP, and sends it a STUN request. If a response comes back from the other application, the
originating application considers the check successful and marks that IP/port pair as a valid ICE
candidate.

After connectivity checks are finished on all of the IP/port pairs, the applications negotiate and
decide to use one of the remaining, valid pairs. When a pair is selected, media begins flowing
between the application.

If either of the applications can't find an IP/port pair that passes connectivity checks, they'll make
STUN requests to the TURN server to obtain a media relay address. A relay address is a public IP
address and port that forwards packets received to and from the application to set up the relay
address. This relay address is then added to the candidate list and exchanged via the signaling
channel.

Kinesis Video Streams with WebRTC Components

Kinesis Video Streams with WebRTC includes the following components:

• Control plane

The control plane component is responsible for creating and maintaining the Kinesis Video
Streams with WebRTC signaling channels. For more information, see the Amazon Kinesis Video
Streams API Reference.

• Signaling

The signaling component manages the WebRTC signaling endpoints that allow applications
to securely connect with each other for peer-to-peer live media streaming. The signaling
component includes the Amazon Kinesis Video Signaling REST APIs and a set of Websocket APIs.

• STUN

Kinesis Video Streams with WebRTC Components 7

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_Operations_Amazon_Kinesis_Video_Streams.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_Operations_Amazon_Kinesis_Video_Streams.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_Operations_Amazon_Kinesis_Video_Signaling_Channels.html
https://docs.aws.amazon.com/kinesisvideostreams-webrtc-dg/latest/devguide/kvswebrtc-websocket-apis.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

This component manages STUN endpoints that enable applications to discover their public IP
address when they are located behind a NAT or a firewall.

• TURN

This component manages TURN endpoints that enable media relay via the cloud when
applications can't stream media peer-to-peer.

• Kinesis Video Streams WebRTC SDKs

These are software libraries that you can download, install, and configure on your devices and
application clients to enable your camera IoT devices with WebRTC capabilities to engage in low
latency peer-to-peer media streaming. These SDKs also enable Android, iOS, and web application
clients to integrate Kinesis Video Streams with WebRTC signaling, TURN, and STUN capabilities
with any WebRTC-compliant mobile or web players.

• WebRTC SDK in C for Embedded Devices

• Kinesis Video Streams with WebRTC SDK in JavaScript for web applications

• WebRTC SDK for Android

• WebRTC SDK for iOS

WebRTC Websocket APIs

Topics

• ConnectAsViewer

• ConnectAsMaster

• SendSdpOffer

• SendSdpAnswer

• SendIceCandidate

• Disconnect

• Asynchronous Message Reception

ConnectAsViewer

Connects as a viewer to the signaling channel specified by the endpoint. Any WebSocket-compliant
library can be used to connect to the endpoint obtained from the GetSignalingEndpoint

WebRTC Websocket APIs 8

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

API call. The Amazon Resource Name (ARN) of the signaling channel and the client ID must be
provided as query string parameters. There are separate endpoints for connecting as a master
and as a viewer. If there is an existing connection with the same ClientId as specified in the
request, the new connection takes precedence. The connection metadata is overwritten with the
new information.

Request

"X-Amz-ChannelARN": "string",
"X-Amz-ClientId": "string"

• X-Amz-ChannelARN - ARN of the signaling channel.

• Type: string

• Length constraints: Minimum length of 1. Maximum length of 1024

• Pattern: arn:aws:kinesisvideo:[a-z0-9-]+:[0-9]+:[a-z]+/[a-zA-Z0-9_.-]+/
[0-9]+

• Required: Yes

• X-Amz-ClientId - A unique identifier for the client.

• Type: string

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: ^(?!(?i)AWS_.*)[a-zA-Z0-9_.-]

Note

X-Amz-ClientId can't start with AWS_.

• Required: Yes

Response

200 OK HTTP status code with an empty body.

Errors

• InvalidArgumentException

ConnectAsViewer 9

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

A specified parameter exceeds its restrictions, is not supported, or cannot be used. For more
information, see the returned message.

HTTP Status Code: 400

• AccessDeniedException

The caller is not authorized to access the given channel or the token has expired.

HTTP Status Code: 403

• ResourceNotFoundException

The channel doesn't exist.

HTTP Status Code: 404

• ClientLimitExceededException

When the API is invoked at a rate that is too high or when there are more than the supported
maximum number of viewers connected to the channel. For more information, see Amazon
Kinesis Video Streams with WebRTC Service Quotas and Error Retries and Exponential Backoff in
Amazon.

HTTP Status Code: 400

Limits/Throttling

This API is throttled at an account level if the API is invoked at too high a rate or when there
are more than the supported maximum number of viewers connected to the channel. An error
returned when throttled with ClientLimitExceededException.

Idempotent

If a connection already exists for the specified ClientId and channel, the connection metadata is
updated with the new information.

Retry behavior

This is counted as a new API call.

ConnectAsViewer 10

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Concurrent calls

Concurrent calls are allowed, the connection metadata is updated for each call.

ConnectAsMaster

Connects as a master to the signaling channel specified by the endpoint. Any
WebSocket-complaint library can be used to connect to the endpoint obtained from a
GetSignalingChannelEndpoint API call. The Amazon Resource Name (ARN) of the signaling
channel must be provided as a query string parameter. There are separate endpoints for
connecting as a master and as a viewer. If more than one client connects as master to a specific
channel, then the most recent request takes precedence. Existing connection metadata is
overwritten by the new one.

Request

"X-Amz-ChannelARN": "string"

• X-Amz-ChannelARN - ARN of the signaling channel.

• Type: string

• Length constraints: Minimum length of 1. Maximum length of 1024.

• Pattern: arn:aws:kinesisvideo:[a-z0-9-]+:[0-9]+:[a-z]+/[a-zA-Z0-9_.-]+/
[0-9]+

• Required: Yes

Response

200 OK HTTP status code with an empty body.

Errors

• InvalidArgumentException

A specified parameter exceeds its restrictions, is not supported, or cannot be used. For more
information, see the returned message.

HTTP Status Code: 400

• AccessDeniedException

ConnectAsMaster 11

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

The caller is not authorized to access the given channel or the token has expired.

HTTP Status Code: 403

• ResourceNotFoundException

The channel doesn't exist.

HTTP Status Code: 404

• ClientLimitExceededException

When the API is invoked at a rate that is too high. For more information, see Amazon Kinesis
Video Streams with WebRTC Service Quotas and Error Retries and Exponential Backoff in
Amazon.

HTTP Status Code: 400

Limits/Throttling

This API is throttled at an account level if the API is invoked at too high a rate. An error returned
when throttled with ClientLimitExceededException.

Idempotent

If a connection already exists for the specified clientId and channel, the connection metadata is
updated with the new information.

Retry behavior

This is counted as a new API call.

Concurrent calls

Concurrent calls are allowed, the connection metadata is updated for each call.

SendSdpOffer

Sends the offer to the target recipient. The prerequisite is that the client must be already
connected to the WebSocket endpoint obtained from the GetSignalingChannelEndpoint API.

SendSdpOffer 12

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

If the sender type is a viewer, then it sends the offer to a master. Also, it is not necessary to specify
the RecipientClientId and any specified value for RecipientClientId is ignored. If the
sender type is master, the offer is sent to the target viewer specified by the RecipientClientId.
RecipientClientId is a required input in this case.

A master client app is allowed to send an offer to any viewer, whereas a viewer client app is only
allowed to send an offer to a master client app. If a viewer client app attempts to send an offer to
another viewer client app, the request will NOT be honored. If there is an outstanding offer for the
same client which is not yet delivered, it is overwritten with the new offer.

Request

{
 "action": "SDP_OFFER",
 "recipientClientId": "string",
 "messagePayload": "string",
 "correlationId": "string"
}

• action - Type of the message that is being sent.

• Type: ENUM

• Valid values: SDP_OFFER, SDP_ANSWER, ICE_CANDIDATE

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: Yes

• recipientClientId - The unique identifier for the recipient.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: Yes

• messagePayload - The base-64-encoded message content.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 10K.

• Required: Yes

• correlationId - A unique identifier for the message. This is an optional parameter.

SendSdpOffer 13

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: No

Response

If the message is successfully received by the signaling backend, no response is returned. If the
service encounters an error and if the correlationId is specified in the request, the error details
are returned as a STATUS_RESPONSE message. For more information, see Asynchronous Message
Reception.

Errors

• InvalidArgumentException

A specified parameter exceeds its restrictions, is not supported, or cannot be used. For more
information, see the returned message.

HTTP Status Code: 400

• ClientLimitExceededException

When the API is invoked at a rate that is too high. For more information, see Amazon Kinesis
Video Streams with WebRTC Service Quotas and Error Retries and Exponential Backoff in
Amazon.

HTTP Status Code: 400

Limits/Throttling

This API is throttled at an account level if the API is invoked at too high a rate. An error returned
when throttled with ClientLimitExceededException.

Idempotent

This API is not idempotent.

SendSdpOffer 14

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Retry behavior

This is counted as a new API call.

Concurrent calls

Concurrent calls are allowed. An offer is sent once per each call.

SendSdpAnswer

Sends the answer to the target recipient. The prerequisite is that the client must be already
connected to the WebSocket endpoint obtained from the GetSignalingChannelEndpoint API.

If the sender type is a viewer, then it sends the answer to a master. Also, it is not necessary
to specify the RecipientClientId and any specified value for RecipientClientId is
ignored. If the sender type is master, the answer is sent to the target viewer specified by the
RecipientClientId. RecipientClientId is a required input in this case.

A master client app is allowed to send an answer to any viewer, whereas a viewer client app is only
allowed to send an answer to a master client app. If a viewer client app attempts to send an answer
to another viewer client app, the request will NOT be honored. If there is an outstanding answer for
the same client which is not yet delivered, it is overwritten with the new answer.

Request

{
 "action": "SDP_ANSWER",
 "recipientClientId": "string",
 "messagePayload": "string",
 "correlationId": "string"
}

• action - Type of the message that is being sent.

• Type: ENUM

• Valid values: SDP_OFFER, SDP_ANSWER, ICE_CANDIDATE

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: Yes

• recipientClientId - The unique identifier for the recipient.

SendSdpAnswer 15

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: Yes

• messagePayload - The base-64-encoded message content.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 10K.

• Required: Yes

• correlationId - A unique identifier for the message.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: No

Response

No response is returned if the message is successfully received by the signaling backend. If the
service encounters an error and if the correlationId is specified in the request, the error details
are returned as a STATUS_RESPONSE message. For more information, see Asynchronous Message
Reception.

Errors

• InvalidArgumentException

A specified parameter exceeds its restrictions, is not supported, or cannot be used. For more
information, see the returned message.

HTTP Status Code: 400

• ClientLimitExceededException

Returned when the API is invoked at a rate that is too high. For more information, see Amazon
Kinesis Video Streams with WebRTC Service Quotas and Error Retries and Exponential Backoff in
Amazon.

HTTP Status Code: 400

SendSdpAnswer 16

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Limits/Throttling

This API is throttled at an account level if the API is invoked at too high a rate. An error is returned
when throttled with ClientLimitExceededException.

Idempotent

This API is not idempotent.

Retry behavior

This is counted as a new API call.

Concurrent calls

Concurrent calls are allowed. An offer is sent once per each call.

SendIceCandidate

Sends the ICE candidate to the target recipient. The prerequisite is that the client must be already
connected to the WebSocket endpoint obtained from the GetSignalingChannelEndpoint API.

If the sender type is a viewer, then it sends the ICE candidate to a master. Also, it is not necessary
to specify the RecipientClientId and any specified value for RecipientClientId is
ignored. If the sender type is master, the ICE candidate is sent to the target specified by the
RecipientClientId. RecipientClientId is a required input in this case.

A master client app is allowed to send an ICE candidate to any viewer, whereas a viewer client app
is only allowed to send an ICE candidate to a master client app. If a viewer client app attempts to
send an ICE candidate to another viewer client app, the request will NOT be honored.

Request

{
 "action": "ICE_CANDIDATE",
 "recipientClientId": "string",
 "messagePayload": "string",
 "correlationId": "string"
}

SendIceCandidate 17

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• action - Type of the message that is being sent.

• Type: ENUM

• Valid values: SDP_OFFER, SDP_ANSWER, ICE_CANDIDATE

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: Yes

• recipientClientId - A unique identifier for the recipient.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: No

• messagePayload - The base64-encoded message content.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 10K.

• Required: Yes

• correlationId - A unique identifier for the message.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: No

Response

No response is returned if the message is successfully received by the signaling backend. If the
service encounters an error and if the correlationId is specified in the request, the error details
are returned as a STATUS_RESPONSE message. For more information, see Asynchronous Message
Reception.

Errors

• InvalidArgumentException

A specified parameter exceeds its restrictions, is not supported, or cannot be used. For more
information, see the returned message.

SendIceCandidate 18

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

HTTP Status Code: 400

• ClientLimitExceededException

When the API is invoked at a rate that is too high. For more information, see Amazon Kinesis
Video Streams with WebRTC Service Quotas and Error Retries and Exponential Backoff in
Amazon.

HTTP Status Code: 400

Limits/Throttling

This API is throttled at an account level if the API is invoked at too high a rate. An error returned
when throttled with ClientLimitExceededException.

Idempotent

This API is not idempotent.

Retry behavior

This is counted as a new API call.

Concurrent calls

Concurrent calls are allowed. An offer is sent once per each call.

Disconnect

A client can close a connection at any time. WebSocket-compliant libraries support close
functionality. When the connection is closed, service marks the client as offline for the specific
signaling channel and does not try to deliver any messages. The same behavior also applies in the
event of idle connection timeout.

The service also sends disconnect indications to the client, for example, during deployments or
server maintenance. The following are the defined indication messages:

• GO_AWAY: This message is used to initiate the connection shutdown. It enables a client to
gracefully process previous messages, disconnect, and reconnect to the signaling channel if
needed.

Disconnect 19

https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• RECONNECT_ICE_SERVER: This message is used to initiate the relay connection shutdown and
enables a client to gracefully disconnect, obtain a new ICE server configuration, and reconnect to
the relay servers if needed.

Asynchronous Message Reception

All response messages are asynchronously delivered to the recipient as events (for example, an SDP
offer or SDP answer delivery). The following is the event message structure.

Event

{
 "senderClientId": "string",
 "messageType": "string",
 "messagePayload": "string",
 "statusResponse": {
 "correlationId": "string",
 "errorType": "string",
 "statusCode": "string",
 "description": "string"
 }
}

• senderClientId - A unique identifier for the sender client.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: No

• messageType - Type of the event.

• Type: ENUM

• Valid Types: SDP_OFFER, SDP_ANSWER, ICE_CANDIDATE, GO_AWAY,
RECONNECT_ICE_SERVER, STATUS_RESPONSE

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: Yes

• messagePayload - The base64-encoded message content.

Asynchronous Message Reception 20

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 10K.

• Required: No

• correlationId - An unique identifier of the message for which the status is meant. This is the
same correlationId provided in the client messages (for example, SDP offer, SDP answer, or ICE
candidate).

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: Yes

• errorType - A name to uniquely identify the error.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: No

• statusCode - HTTP status code corresponding to the nature of the response.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 256.

• Pattern: [a-zA-Z0-9_.-]+

• Required: No

• description - A string description explaining the status.

• Type: String

• Length constraints: Minimum length of 1. Maximum length of 1K.

• Required: No

Asynchronous Message Reception 21

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Amazon Kinesis Video Streams with WebRTC Service
Quotas

Kinesis Video Streams with WebRTC has the following service quotas:

Important

The following service quotas are either soft [s], which can be upgraded by submitting
a support ticket, or hard [h], which can't be increased. You will see [s] and [h] next to
individual service quota in the tables below.

Note

TPS stands for transactions per second.

Topics

• Control Plane API Service Quotas

• Signaling API Service Quotas

• TURN Service Quotas

• WebRTC Ingestion Service Quotas

Control Plane API Service Quotas

The following section describes service quotas for the control plane APIs.

API Account
service
quota:
Request

Account
service
quota:
Channels

Channel-l
evel service
quota

Relevant Exceptions and
Notes

CreateSig
nalingCha
nnel

50 TPS [s] us-east-1
 and us-
west-2

Control Plane API Service Quotas 22

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

API Account
service
quota:
Request

Account
service
quota:
Channels

Channel-l
evel service
quota

Relevant Exceptions and
Notes

- 10,000
channels
per account
per region;
all other
supported
Regions
- 5,000
channels per
account per
region

DeleteSig
nalingCha
nnel

50 TPS [h] N/A 5 TPS [h]

DescribeM
ediaStora
geConfigu
ration

50 TPS [h] 5 TPS [h]

DescribeS
ignalingC
hannel

300 TPS [h] N/A 5 TPS [h]

GetSignal
ingChanne
lEndpoint

300 TPS [h] N/A

ListSigna
lingChannels

50 TPS [h] N/A

Control Plane API Service Quotas 23

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

API Account
service
quota:
Request

Account
service
quota:
Channels

Channel-l
evel service
quota

Relevant Exceptions and
Notes

ListTagsF
orResource

50 TPS [h] N/A 5 TPS [h]

TagResource 50 TPS [h] N/A 5 TPS [h]

UntagReso
urce

50 TPS [h] N/A 5 TPS [h]

UpdateMed
iaStorage
Configura
tion

10 TPS [h] 5 TPS [h]

UpdateSig
nalingCha
nnel

50 TPS [h] N/A 5 TPS [h]

Signaling API Service Quotas

The following section describes service quotas for the signaling component in Kinesis Video
Streams with WebRTC. For more information, see Kinesis Video Streams with WebRTC: How It
Works.

• ConnectAsMaster

• API - 3 TPS per channel (h)

• Maximum number of master connections per signaling channel - 1 (h)

• Connection duration limit - 1 hour (h)

• Idle connection timeout - 10 minutes (h)

• When a client receives the GO_AWAY message from the server, connection is terminated after a
grace period of 1 minute (h)

• ConnectAsViewer

Signaling API Service Quotas 24

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• API - 3 TPS per channel (h)

• Maximum number of viewer connections per channel - 10 (s)

• Connection duration limit - 1 hour (h)

• Idle connection timeout - 10 minutes (h)

• Once a client receives the GO_AWAY message from the server, connection is terminated after a
grace period of 1 minute (h)

• Disconnect

• N/A

• GetIceServerConfig

• API - 5 TPS per signaling channel (h)

• SendAlexaOffertoMaster

• API - 5 TPS per signaling channel (h)

• SendICECandidate

• API - 20 TPS per WebSocket connection (h)

• Message payload size limit - 10k (h)

• SendSDPAnswer

• API - 5 TPS per WebSocket connection (h)

• Message payload size limit - 10k (h)

• SendSDPOffer

• API - 5 TPS per WebSocket connection (h)

• Message payload size limit - 10k (h)

TURN Service Quotas

The following section describes service quotas for the Traversal Using Relays around NAT (TURN)
component in Kinesis Video Streams with WebRTC. For more information, see Kinesis Video
Streams with WebRTC: How It Works.

• Bit Rate - 5Mbps (h)

• Credential Lifecycle - 5 minutes (h)

• Number of allocations - 50 per signaling channel (h)
TURN Service Quotas 25

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

WebRTC Ingestion Service Quotas

The following section describes service quotas for the media recording component in Amazon
Kinesis Video Streams WebRTC. For more information, see ???.

JoinStorageSession

• API:

• Per account - 50 TPS (h)

• Per channel - 2 TPS (h)

• Streaming session quotas:

• Bitrate - 1 Mbps (s)

• Session duration - 1 hour (h)

• Idle timeout - 3 minutes (h)

WebRTC Ingestion Service Quotas 26

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Getting Started

This section describes how to perform the following tasks in Amazon Kinesis Video Streams with
WebRTC:

• Set up your Amazon Web Services account and create an administrator.

• Create a Kinesis Video Streams with WebRTC signaling channel.

• Use the Kinesis Video Streams with WebRTC SDKs to configure master and viewer to perform
peer-to-peer video and audio streaming over a signaling channel.

If you are new to Kinesis Video Streams with WebRTC, we recommend that you read Kinesis Video
Streams with WebRTC: How It Works first.

Topics

• Set Up an Amazon Account and Create an Administrator

• Create a Signaling Channel

• Stream Live Media

Set Up an Amazon Account and Create an Administrator

Before you use Kinesis Video Streams with WebRTC for the first time, complete the following tasks:

Topics

• Sign up for an Amazon Web Services account

• Secure IAM users

• Create an AmazonAccount Key

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Set Up an Amazon Web Services account 27

http://www.amazonaws.cn/

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Create an AmazonAccount Key

You need an Amazon Account Key to access Kinesis Video Streams with WebRTC programmatically.

To create an Amazon Account Key, do the following:

1. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

2. Choose Users in the navigation bar, and choose the Administrator user.

3. Choose the Security credentials tab, and choose Create access key.

4. Record the Access key ID. Choose Show under Secret access key, and then record the Secret
access key.

Create a Signaling Channel

You can use the Kinesis Video Streams console, the Amazon APIs (CreateSignalingChannel), or the
Amazon CLI to create your signaling channels.

Secure IAM users 28

http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://console.amazonaws.cn/iam/
https://docs.amazonaws.cn/kinesisvideostreams/latest/dg/API_CreateSignalingChannel.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Create a Signaling Channel Using the Console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Kinesis Video
Streams console.

2. On the Signaling channels page, choose Create signaling channel.

3. On the Create a new signaling channel page, type in the name for the signaling channel.
Leave the default Time-to-live (Ttl) value of 60 seconds unchanged.

4. Choose Create signaling channel.

5. After the signaling channel is created, review its details on the channel's details page.

Stream Live Media

The Kinesis Video Streams with WebRTC includes the following SDKs:

• WebRTC SDK in C for Embedded Devices

• Kinesis Video Streams with WebRTC SDK in JavaScript for web applications

• WebRTC SDK for Android

• WebRTC SDK for iOS

Each SDK includes corresponding samples and step-by-step instructions that can help you build
and run those applications. You can use these samples for low latency, live, two-way audio and
video streaming and data exchange between any combinations of Web/Android/iOS applications
or embedded devices. In other words, you can stream live audio and video from an embedded
camera device to Android or web applications or between two Android applications.

WebRTC SDK in C for Embedded Devices

The following step-by-step instructions describe how to download, build, and run the Kinesis Video
Streams with WebRTC SDK in C for embedded devices and its corresponding samples.

Download the Kinesis Video Streams with WebRTC SDK in C

To download the Kinesis Video Streams with WebRTC SDK in C for embedded devices, run the
following command:

Create a Signaling Channel Using the Console 29

https://console.aws.amazon.com/kinesisvideo/home/
https://console.aws.amazon.com/kinesisvideo/home/

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

$ git clone --recursive https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-
sdk-c.git

Build the Kinesis Video Streams with WebRTC SDK in C

Important

Before you complete these steps on a macOS and depending on the version of the macOS
you have, you must run xcode-select --install to download the package with the
command line tools and header. Then open /Library/Developer/CommandLineTools/
Packages/macOS_SDK_headers_for_macOS_10.14.pkg and follow the intaller to
install the command line tools and header. You only need to do this once and before
invoking cmake. If you already have the command line tools and header installed, you do
not need to run this command again.

Complete the following steps:

1. Install cmake:

• On macOS, run brew install cmake pkg-config srtp

• on Ubuntu, run sudo apt-get install pkg-config cmake libcap2 libcap-dev

2. Obtain the access key and the secret key of the Amazon Web Services account that you want
to use for this demo.

3. Run the following command to create a build directory in your downloaded WebRTC C SDK,
and execute cmake from it:

$ mkdir -p amazon-kinesis-video-streams-webrtc-sdk-c/build; cd amazon-kinesis-
video-streams-webrtc-sdk-c/build; cmake ..

4. Now that you're in the build directory you just created with the step above, run make to build
the WebRTC C SDK and its provided samples.

WebRTC SDK in C for Embedded Devices 30

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Note

The kvsWebrtcClientMasterGstSample will NOT be built if the system doesn't
have gstreamer installed. To make sure it is built (on macOS) you must run: brew
install gstreamer gst-plugins-base gst-plugins-good

Run the Samples for the WebRTC SDK in C

After you complete the procedure above, you end up with the following sample applications in
your build directory:

• kvsWebrtcClientMaster - This application sends sample H264/Opus frames (path: /samples/
h264SampleFrames and /samples/opusSampleFrames) via the signaling channel. It also accepts
incoming audio, if enabled in the browser. When checked in the browser, it prints the metadata
of the received audio packets in your terminal.

• kvsWebrtcClientViewer - This application accepts sample H264/Opus frames and prints
them out.

• kvsWebrtcClientMasterGstSample - This application sends sample H264/Opus frames from
a GStreamer pipeline.

To run any of these samples, complete the following steps:

1. Setup your environment with your Amazon Web Services account credentials:

export AWS_ACCESS_KEY_ID= Your Amazon Web Services account access key
export AWS_SECRET_ACCESS_KEY= Amazon Web Services account secret key
export AWS_KVS_CACERT_PATH= Full path of your cert.pem file. It is typically
 available in the certs directory inside
Kinesis-video-webrtc-native-build/certs/cert.pm

2. Run either of the sample applications by passing to it the name that you want to give to your
signaling channel. The application creates the signaling channel using the name you provide.
For example, to create a signaling channel called myChannel and to start sending sample
H264/Opus frames via this channel, run the following command:

./kvsWebrtcClientMaster myChannel

WebRTC SDK in C for Embedded Devices 31

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

When the command line application prints Connection established, you can proceed to
the next step.

3. Now that your signaling channel is created and the connected master is streaming media to it,
you can view this stream. For example, you can view this live stream in a web application. To
do so, open the WebRTC SDK Test Page using the steps in Use the Kinesis Video Streams with
WebRTC test page and set the following values using the same Amazon credentials and the
same signaling channel that you specified for the master above:

• Access key ID

• Secret access key

• Signaling channel name

• Client ID (optional)

Choose Start viewer to start live video streaming of the sample H264/Opus frames.

Kinesis Video Streams with WebRTC SDK in JavaScript for web
applications

You can find the Kinesis Video Streams with WebRTC SDK in JavaScript for web applications and its
corresponding samples in GitHub.

Topics

• Install the Kinesis Video Streams with WebRTC SDK in JavaScript

• Kinesis Video Streams with WebRTC JavaScript SDK documentation

• Use the Kinesis Video Streams with WebRTC test page

• Edit the Kinesis Video Streams with WebRTC test page

Install the Kinesis Video Streams with WebRTC SDK in JavaScript

Whether and how you install the Kinesis Video Streams with WebRTC SDK in JavaScript depends on
whether the code executes in Node.js modules or browser scripts.

WebRTC SDK in JavaScript 32

https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-js

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

NodeJS module

The preferred way to install the Kinesis Video Streams with WebRTC SDK in JavaScript for
Node.js is to use npm, the Node.js package manager.

The package is hosted at https://www.npmjs.com/package/amazon-kinesis-video-streams-
webrtc.

To install this SDK in your Node.js project, use the terminal to navigate to the the same
directory as your project’s package.json:

Type the following:

npm install amazon-kinesis-video-streams-webrtc

You can import the SDK classes like typical Node.js modules:

// JavaScript
const SignalingClient = require('amazon-kinesis-video-streams-
webrtc').SignalingClient;
// TypeScript
import { SignalingClient } from 'amazon-kinesis-video-streams-webrtc';

Browser

You don't have to install the SDK to use it in browser scripts. You can load the hosted SDK
package directly from Amazon with a script in your HTML pages.

To use the SDK in the browser, add the following script element to your HTML pages:

<script src="https://unpkg.com/amazon-kinesis-video-streams-webrtc/dist/kvs-
webrtc.min.js"></script>

After the SDK loads in your page, the SDK is available from the global variable KVSWebRTC (or
window.KVSWebRTC).

For example, window.KVSWebRTC.SignalingClient.

Kinesis Video Streams with WebRTC JavaScript SDK documentation

The documentation for the SDK methods are on the GitHub readme, under Documentation.

WebRTC SDK in JavaScript 33

https://www.npmjs.com/
https://www.npmjs.com/package/amazon-kinesis-video-streams-webrtc?activeTab=readme
https://www.npmjs.com/package/amazon-kinesis-video-streams-webrtc?activeTab=readme
https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-js?tab=readme-ov-file#documentation

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

In the Usage section, there is additional information for integrating this SDK along with the
Amazon SDK for JavaScript to build a web-based viewer application.

See the examples directory for an example of a complete application, including both a master and
viewer role.

Use the Kinesis Video Streams with WebRTC test page

Kinesis Video Streams with WebRTC also hosts a test page that you can use to either create a new
signaling channel or connect to an existing channel and use it as a master or viewer.

The Kinesis Video Streams with WebRTC test page is located at https://awslabs.github.io/amazon-
kinesis-video-streams-webrtc-sdk-js/examples/index.html.

The code for the test page is in the examples directory.

Topics

• Stream from the test page to the Amazon Web Services Management Console

• Stream from the test page to the test page

Stream from the test page to the Amazon Web Services Management Console

1. Open the Kinesis Video Streams with WebRTC test page and complete the following:

• Amazon Web Services Region. For example, us-west-2.

• The Amazon access key and the secret key for your IAM user or role. Leave the session token
blank if you are using long-term Amazon credentials.

• The name of the signaling channel to which you want to connect.

If you want to connect to a new signaling channel, choose Create Channel to create a
signaling channel with the value provided in the box.

Note

Your signaling channel name must be unique for the current account and region. You
can use letters, numbers, underscores (_), and hyphens (-), but not spaces.

• Whether you want to send audio, video, or both.

WebRTC SDK in JavaScript 34

https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-js?tab=readme-ov-file#usage
https://awslabs.github.io/amazon-kinesis-video-streams-webrtc-sdk-js/examples/index.html
https://awslabs.github.io/amazon-kinesis-video-streams-webrtc-sdk-js/examples/index.html
https://awslabs.github.io/amazon-kinesis-video-streams-webrtc-sdk-js/examples/index.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• ICE candidate generation. Leave STUN/TURN selected and leave Trickle ICE enabled.

2. Choose Start Master to connect to the signaling channel.

Allow access to your camera and/or microphone, if needed.

3. Open the Kinesis Video Streams console in the Amazon Web Services Management Console.

Make sure the correct region is selected.

4. In the left navigation, select signaling channels.

Select the name of the signaling channel above. Use the search bar, if needed.

5. Expand the Media playback viewer section.

6. Choose the play button on the video player. This joins the WebRTC session as a viewer.

The media that is being sent on the demo page should display in the Amazon Web Services
Management Console.

Stream from the test page to the test page

1. Open the Kinesis Video Streams with WebRTC test page and complete the following
information:

• Amazon Web Services Region. For example, us-west-2.

• The Amazon access key and the secret key for your IAM user or role. Leave the session token
blank if you are using long-term Amazon credentials.

• The name of the signaling channel to which you want to connect.

If you want to connect to a new signaling channel, choose Create Channel to create a
signaling channel with the value provided in the box.

Note

Your signaling channel name must be unique for the current account and region. You
can use letters, numbers, underscores (_), and hyphens (-), but not spaces.

• Whether you want to send audio, video, or both.

• ICE candidate generation. Leave STUN/TURN selected and leave Trickle ICE enabled.

2. Choose Start Master to connect to the signaling channel as the master role.

WebRTC SDK in JavaScript 35

https://console.amazonaws.cn/kinesisvideo/home/
https://console.amazonaws.cn/kinesisvideo/home#/signalingChannels/
https://awslabs.github.io/amazon-kinesis-video-streams-webrtc-sdk-js/examples/index.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Allow access to your camera and/or microphone, if needed.

3. Open another browser tab and open the Kinesis Video Streams with WebRTC test page. All of
the information from the previous run should load.

4. Scroll down and choose Start Viewer to connect to the signaling channel as the viewer role.

You should see the media being exchanged between the master and viewer.

Edit the Kinesis Video Streams with WebRTC test page

To edit the SDK and test page for development purposes, follow the instructions below.

Prerequisite

NodeJS version 16+

Note

We recommend downloading the latest long term support (LTS) version from https://
nodejs.org/en/download.

Edit the test page

1. Download the Kinesis Video Streams with WebRTC SDK in JavaScript.

Type the following in the terminal:

git clone https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-js.git

2. Navigate to the directory with the package.json file. The file is located in the repository's root
directory.

Type the following in the terminal:

cd amazon-kinesis-video-streams-webrtc-sdk-js

3. Install dependencies.

Type the following npm CLI command in the terminal:

WebRTC SDK in JavaScript 36

https://awslabs.github.io/amazon-kinesis-video-streams-webrtc-sdk-js/examples/index.html
https://nodejs.org/en/download
https://nodejs.org/en/download
https://docs.npmjs.com/cli/v10/commands

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

npm install

4. Start the web server to start serving web pages.

Type the following npm CLI command in the terminal:

npm run develop

5. In your browser, visit http://localhost:3001/.

You can make edits to the web page by editing the files in the examples directory.

WebRTC SDK for Android

The following step-by-step instructions describe how to download, build, and run the Kinesis Video
Streams with WebRTC SDK for Android and its corresponding samples.

Note

Kinesis Video Streams does not support IPv6 addresses on Android. For more information
and steps about disabling IPv6 on your Android device, see https://support.surfshark.com/
hc/en-us/articles/360011828279-How-to-disable-IPv6-on-Android-.

Download the WebRTC SDK for Android

To download the WebRTC SDK in Android, run the following command:

$ git clone https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-
android.git

Build the WebRTC SDK in Android

To build the WebRTC SDK in Android, complete the following steps:

1. Import the Android WebRTC SDK into the Android Studio integrated development
environment (IDE) by opening amazon-kinesis-video-streams-webrtc-sdk-android/
build.gradle with Open as Project.

WebRTC SDK for Android 37

https://docs.npmjs.com/cli/v10/commands
http://localhost:3001/
https://support.surfshark.com/hc/en-us/articles/360011828279-How-to-disable-IPv6-on-Android-
https://support.surfshark.com/hc/en-us/articles/360011828279-How-to-disable-IPv6-on-Android-

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

2. If you open the project for the first time, it automatically syncs. If not - initiate a sync. When
you see a build error, choose to install any required SDKs by choosing Install missing SDK
package(s), then choose Accept and complete the install.

3. Configure Amazon Cognito (user pool and identity pool) settings. For details steps, see
Configure Amazon Cognito for the Android WebRTC SDK. This generates authentication and
authorization settings required to build the Android WebRTC SDK.

4. In your Android IDE, open awsconfiguration.json (from src/main/res/raw/). The file
looks like the following:

{
 "Version": "1.0",
 "CredentialsProvider": {
 "CognitoIdentity": {
 "Default": {
 "PoolId": "REPLACE_ME",
 "Region": "REPLACE_ME"
 }
 }
 },
 "IdentityManager": {
 "Default": {}
 },
 "CognitoUserPool": {
 "Default": {
 "AppClientSecret": "REPLACE_ME",
 "AppClientId": "REPLACE_ME",
 "PoolId": "REPLACE_ME",
 "Region": "REPLACE_ME"
 }
 }
}

Update awsconfiguration.json with the values generated by running the steps in
Configure Amazon Cognito for the Android WebRTC SDK.

5. Make sure your Android device is connected to the computer where you're running the Android
IDE. In the Android IDE, select the connected device and then build and run the WebRTC
Android SDK.

WebRTC SDK for Android 38

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

This step installs an app called AWSKinesisVideoWebRTCDemoApp on your Android device.
Using this app, you can verify live WebRTC audio/video streaming between mobile, web and
IoT device clients.

Run the Android Sample Application

Complete the following steps:

1. On your Android device, open AWSKinesisVideoWebRTCDemoApp and log in using either a
new (by creating it first) or an existing Amazon Cognito account.

2. In AWSKinesisVideoWebRTCDemoApp, navigate to the Channel Configuration page and
either create a new signaling channel or choose an existing one.

Note

Currently, using the sample application in this SDK, you can only run one signalling
channel in AWSKinesisVideoWebRTCDemoApp.

3. Optional: choose a unique Client Id if you want to connect to this channel as a viewer. Client
ID is required only if multiple viewers are connected to a channel. This helps channel's master
identify respective viewers.

4. Choose the Amazon Web Services Region and whether you want to send audio or video data,
or both.

5. To verify peer-to-peer streaming, do any of the following:

Note

Ensure that you specify the same signaling channel name, Amazon region, viewer ID,
and the Amazon account ID on all clients that you're using in this demo.

• Peer-to-peer streaming between two Android devices: master and viewer

• Using procedures above, download, build, and run the Android WebRTC SDK on two
Android devices.

WebRTC SDK for Android 39

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• Open AWSKinesisVideoWebRTCDemoApp on one Android device in master mode (choose
START MASTER) to start a new session (signaling channel).

Note

Currently, there can only be one master for any given signaling channel.

• Open AWSKinesisVideoWebRTCDemoApp on your second Android device in viewer mode
to connect to the signaling channel (session) started in the step above (choose START
VIEWER).

Verify that the viewer can see master's audio/video data.

• Peer-to-peer streaming between the embedded SDK master and an Android device viewer

• Download, build, and run the WebRTC SDK in C for Embedded Devices in master mode on
a camera device.

• Using procedures above, download, build, and run the Android WebRTC SDK on an
Android device. Open AWSKinesisVideoWebRTCDemoApp on this Android device in
viewer mode and verify that the viewer can see the embedded SDK master's audio/video
data.

• Peer-to-peer streaming between Android device as master and web browser as viewer

• Using procedures above, download, build, and run the Android WebRTC SDK on an
Android device. Open AWSKinesisVideoWebRTCDemoApp on this Android device in
master mode (choose START MASTER) to start a new session (signaling channel).

• Download, build, and run the Kinesis Video Streams with WebRTC SDK in JavaScript for
web applications as viewer and verify that the viewer can see the Android master's audio/
video.

Configure Amazon Cognito for the Android WebRTC SDK

Prerequisites

• We recommend Android Studio for examining, editing, and running the application code. We
recommend using the latest stable version.

• In the sample code, you provide Amazon Cognito credentials.

Follow these procedures to set up an Amazon Cognito user pool and identity pool.

WebRTC SDK for Android 40

https://developer.android.com/studio/index.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Set up a user pool

To set up a user pool

1. Sign in to the Amazon Cognito console and verify the region is correct.

2. In the navigation on the left choose User pools.

3. In the User pools section, choose Create user pool.

4. Complete the following sections:

a. Step 1: Configure sign-in experience - In the Cognito user pool sign-in options section,
select the appropriate options.

Select Next.

b. Step 2: Configure security requirements - Select the appropriate options.

Select Next.

c. Step 3: Configure sign-up experience - Select the appropriate options.

Select Next.

d. Step 4: Configure message delivery - Select the appropriate options.

In the IAM role selection field, select an existing role or create a new role.

Select Next.

e. Step 5: Integrate your app - Select the appropriate options.

In the Initial app client field, choose Confidential client.

Select Next.

f. Step 6: Review and create - Review your selections from the previous sections, then
choose Create user pool.

5. On the User pools page, select the pool that you just created.

Copy the User pool ID and make note of this for later. In the awsconfiguration.json file,
this is CognitoUserPool.Default.PoolId.

6. Select the App integration tab and go to the bottom of the page.

7. In the App client list section, choose the App client name you just created.
WebRTC SDK for Android 41

https://console.amazonaws.cn/cognito/home

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Copy the Client ID and make note of this for later. In the awsconfiguration.json file, this
is CognitoUserPool.Default.AppClientId.

8. Show the Client secret and make note of this for later. In the awsconfiguration.json file,
this is CognitoUserPool.Default.AppClientSecret.

Set up an identity pool

To set up an identity pool

1. Sign in to the Amazon Cognito console and verify the region is correct.

2. In the navigation on the left choose Identity pools.

3. Choose Create identity pool.

4. Configure the identity pool.

a. Step 1: Configure identity pool trust - Complete the following sections:

• User access - Select Authenticated access

• Authenticated identity sources - Select Amazon Cognito user pool

Select Next.

b. Step 2: Configure permissions - In the Authenticated role section, complete the
following fields:

• IAM role - Select Create a new IAM role

• IAM role name - Enter a name and make note of it for a later step.

Select Next.

c. Step 3: Connect identity providers - In the User pool details section complete the
following fields:

• User pool ID - Select the user pool you created earlier.

• App client ID - Select the app client ID you created earlier.

Select Next.

WebRTC SDK for Android 42

https://console.amazonaws.cn/cognito/home

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

d. Step 4: Configure properties - Type a name in the Identity pool name field.

Select Next.

e. Step 5: Review and create - Review your selections in each of the sections, then select
Create identity pool.

5. On the Identity pools page, select your new identity pool.

Copy the Identity pool ID and make note of this for later. In the awsconfiguration.json
file, this is CredentialsProvider.CognitoIdentity.Default.PoolId.

6. Update the permissions for the IAM role.

a. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

b. In the navigation on the left, choose Roles.

c. Find and select the role you created above.

Note

Use the search bar, if needed.

d. Select the attached permissions policy.

Select Edit.

e. Select the JSON tab and replace the policy with the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cognito-identity:*",
 "kinesisvideo:*"
],
 "Resource": [
 "*"
]
 }
]

WebRTC SDK for Android 43

https://console.amazonaws.cn/iam/

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

}

Select Next.

f. Select the box next to Set this new version as the default if it isn't already selected.

Select Save changes.

WebRTC SDK for iOS

The following step-by-step instructions describe how to download, build, and run the Kinesis Video
Streams WebRTC SDK in iOS and its corresponding samples.

Download the WebRTC SDK in iOS

To download the WebRTC SDK in iOS, run the following command:

$ git clone https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-ios.git

Build the WebRTC SDK in iOS

Complete the following steps:

1. Import the iOS WebRTC SDK into the XCode integrated development environment (IDE) on an
iOS computer by opening KinesisVideoWebRTCDemoApp.xcworkspace (path: amazon-
kinesis-video-streams-webrtc-sdk-ios/Swift/AWSKinesisVideoWebRTCDemoApp.xcworkspace).

2. If you open the project for the first time, it automatically builds. If not, initiate a build.

You might see the following error:

error: The sandbox is not in sync with the Podfile.lock. Run 'pod install' or
 update your CocoaPods installation.

If you see this, do the following:

a. Change your current working directory to amazon-kinesis-video-streams-webrtc-
sdk-ios/Swift and run the following in the command line:

pod cache clean --all
pod install

WebRTC SDK for iOS 44

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

b. Change your current working directory to amazon-kinesis-video-streams-webrtc-
sdk-ios and run the following at the command line:

$ git checkout Swift/Pods/AWSCore/AWSCore/Service/AWSService.m

c. Build again.

3. Configure Amazon Cognito (user pool and identity pool) settings. For details steps, see
Configure Amazon Cognito for the iOS WebRTC SDK. This generates authentication and
authorization settings required to build the iOS WebRTC SDK.

4. In your IDE, open the awsconfiguration.json file (from /Swift/KVSiOSApp). The file
looks like the following:

{
 "Version": "1.0",
 "CredentialsProvider": {
 "CognitoIdentity": {
 "Default": {
 "PoolId": "REPLACEME",
 "Region": "REPLACEME"
 }
 }
 },
 "IdentityManager": {
 "Default": {}
 },
 "CognitoUserPool": {
 "Default": {
 "AppClientSecret": "REPLACEME",
 "AppClientId": "REPLACEME",
 "PoolId": "REPLACEME",
 "Region": "REPLACEME"
 }
 }
}

Update awsconfiguration.json with the values generated by running the steps in
Configure Amazon Cognito for the Android WebRTC SDK.

5. In your IDE, open the Constants.swift file (from /Swift/KVSiOSApp). The file looks like
the following:

WebRTC SDK for iOS 45

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

import Foundation
import AWSCognitoIdentityProvider

let CognitoIdentityUserPoolRegion = AWSRegionType.USWest2
let CognitoIdentityUserPoolId = "REPLACEME"
let CognitoIdentityUserPoolAppClientId = "REPLACEME"
let CognitoIdentityUserPoolAppClientSecret = "REPLACEME"

let AWSCognitoUserPoolsSignInProviderKey = "UserPool"
let CognitoIdentityPoolID = "REPLACEME"

let AWSKinesisVideoEndpoint = "https://kinesisvideo.us-west-2.amazonaws.com"
let AWSKinesisVideoKey = "kinesisvideo"

let VideoProtocols = ["WSS", "HTTPS"]

let ConnectAsMaster = "connect-as-master"
let ConnectAsViewer = "connect-as-viewer"

let MasterRole = "MASTER"
let ViewerRole = "VIEWER"

let ClientID = "ConsumerViewer"

Update Constants.swift with the values generated by running the steps in Configure
Amazon Cognito for the Android WebRTC SDK.

6. Make sure your iOS device is connected to the Mac computer where you're running XCode. In
XCode, select the connected device and then build and run the WebRTC iOS SDK.

This step installs an app called AWSKinesisVideoWebRTCDemoApp on your iOS device. Using
this app, you can verify live WebRTC audio/video streaming between mobile, web and IoT
device clients.

Run the iOS Sample Application

Complete the following steps:

1. On your iOS device, open AWSKinesisVideoWebRTCDemoApp and log in using either a new
(by creating it first) or an existing Amazon Cognito account.

WebRTC SDK for iOS 46

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

2. In AWSKinesisVideoWebRTCDemoApp, navigate to the Channel Configuration page and
either create a new signaling channel or choose an existing one.

Note

Currently, using the sample application in this SDK, you can only run one signalling
channel in AWSKinesisVideoWebRTCDemoApp.

3. (Optional) Choose a unique Client Id if you want to connect to this channel as a viewer. Client
Id is required only if multiple viewers are connected to a channel. This helps channel's master
identify respective viewers.

4. Choose the Amazon Web Services Region and whether you want to send audio or video data,
or both.

5. To verify peer-to-peer streaming, do any of the following:

Note

Ensure that you specify the same signaling channel name, Amazon region, viewer ID,
and the Amazon account ID on all clients that you're using in this demo.

• Peer-to-peer streaming between two iOS devices: master and viewer

• Using procedures above, download, build, and run the iOS WebRTC SDK on two iOS
devices.

• Open AWSKinesisVideoWebRTCDemoApp on one iOS device in master mode (choose
START MASTER) to start a new session (signaling channel).

Note

Currently, there can only be one master for any given signaling channel.

• Open AWSKinesisVideoWebRTCDemoApp on your second iOS device in viewer mode
to connect to the signaling channel (session) started in the step above (choose START
VIEWER).

Verify that the viewer can see master's audio/video data.

• Peer-to-peer streaming between the embedded SDK master and an iOS device viewer
WebRTC SDK for iOS 47

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• Download, build, and run the WebRTC SDK in C for Embedded Devices in master mode on
a camera device.

• Using procedures above, download, build, and run the iOS WebRTC SDK on an iOS device.
Open AWSKinesisVideoWebRTCDemoApp on this iOS device in viewer mode and verify
that the iOS viewer can see the embedded SDK master's audio/video data.

• Peer-to-peer streaming between iOS device as master and web browser as viewer

• Using procedures above, download, build, and run the iOS WebRTC SDK on an iOS device.
Open AWSKinesisVideoWebRTCDemoApp on this iOS device in master mode (choose
START MASTER) to start a new session (signaling channel).

• Download, build, and run the Kinesis Video Streams with WebRTC SDK in JavaScript for
web applications as viewer and verify that the JavaScript viewer can see the Android
master's audio/video.

Configure Amazon Cognito for the iOS WebRTC SDK

Prerequisites

• We recommend XCode for examining, editing, and running the application code. We recommend
the latest version.

• In the sample code, you provide Amazon Cognito credentials.

Follow these procedures to set up an Amazon Cognito user pool and identity pool.

Set up a user pool

To set up a user pool

1. Sign in to the Amazon Cognito console and verify the region is correct.

2. In the navigation on the left choose User pools.

3. In the User pools section, choose Create user pool.

4. Complete the following sections:

a. Step 1: Configure sign-in experience - In the Cognito user pool sign-in options section,
select the appropriate options.

Select Next.

WebRTC SDK for iOS 48

https://console.amazonaws.cn/cognito/home

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

b. Step 2: Configure security requirements - Select the appropriate options.

Select Next.

c. Step 3: Configure sign-up experience - Select the appropriate options.

Select Next.

d. Step 4: Configure message delivery - Select the appropriate options.

In the IAM role selection field, select an existing role or create a new role.

Select Next.

e. Step 5: Integrate your app - Select the appropriate options.

In the Initial app client field, choose Confidential client.

Select Next.

f. Step 6: Review and create - Review your selections from the previous sections, then
choose Create user pool.

5. On the User pools page, select the pool that you just created.

Copy the User pool ID and make note of this for later. In the awsconfiguration.json file,
this is CognitoUserPool.Default.PoolId.

6. Select the App integration tab and go to the bottom of the page.

7. In the App client list section, choose the App client name you just created.

Copy the Client ID and make note of this for later. In the awsconfiguration.json file, this
is CognitoUserPool.Default.AppClientId.

8. Show the Client secret and make note of this for later. In the awsconfiguration.json file,
this is CognitoUserPool.Default.AppClientSecret.

Set up an identity pool

To set up an identity pool

1. Sign in to the Amazon Cognito console and verify the region is correct.

2. In the navigation on the left choose Identity pools.

3. Choose Create identity pool.
WebRTC SDK for iOS 49

https://console.amazonaws.cn/cognito/home

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

4. Configure the identity pool.

a. Step 1: Configure identity pool trust - Complete the following sections:

• User access - Select Authenticated access

• Authenticated identity sources - Select Amazon Cognito user pool

Select Next.

b. Step 2: Configure permissions - In the Authenticated role section, complete the
following fields:

• IAM role - Select Create a new IAM role

• IAM role name - Enter a name and make note of it for a later step.

Select Next.

c. Step 3: Connect identity providers - In the User pool details section complete the
following fields:

• User pool ID - Select the user pool you created earlier.

• App client ID - Select the app client ID you created earlier.

Select Next.

d. Step 4: Configure properties - Type a name in the Identity pool name field.

Select Next.

e. Step 5: Review and create - Review your selections in each of the sections, then select
Create identity pool.

5. On the Identity pools page, select your new identity pool.

Copy the Identity pool ID and make note of this for later. In the awsconfiguration.json
file, this is CredentialsProvider.CognitoIdentity.Default.PoolId.

6. Update the permissions for the IAM role.

a. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

b. In the navigation on the left, choose Roles.
WebRTC SDK for iOS 50

https://console.amazonaws.cn/iam/

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

c. Find and select the role you created above.

Note

Use the search bar, if needed.

d. Select the attached permissions policy.

Select Edit.

e. Select the JSON tab and replace the policy with the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cognito-identity:*",
 "kinesisvideo:*"
],
 "Resource": [
 "*"
]
 }
]
}

Select Next.

f. Select the box next to Set this new version as the default if it isn't already selected.

Select Save changes.

Client Metrics for the WebRTC C SDK

Applications built with Amazon Kinesis Video Streams with WebRTC are comprised of various
moving parts, including networking, signaling, candidates exchange, peer connection, and data
exchange. Kinesis Video Streams with WebRTC in C supports various client-side metrics that enable
you to monitor and track the performance and usage of these components in your applications.
The supported metrics fall into two major categories: custom metrics defined specifically for the

Client Metrics for the WebRTC C SDK 51

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Kinesis Video Streams' implementation of signaling and networking, and media and data-related
protocol-specific metrics that are derived from the W3C standard. Note that only a subset of the
W3C standard metrics is currently supported for Kinesis Video Streams with WebRTC in C.

Topics

• Signaling Metrics

• W3C Standard Metrics Supported for WebRTC C SDK

Signaling Metrics

Signaling metrics can be used to understand how the signaling client behaves while
your application is running. You can use the STATUS signalingClientGetMetrics
(SIGNALING_CLIENT_HANDLE, PSignalingClientMetrics) API to obtain these signaling
metrics. Here's an example usage pattern:

SIGNALING_CLIENT_HANDLE signalingClientHandle;
SignalingClientMetrics signalingClientMetrics;
STATUS retStatus = signalingClientGetMetrics(signalingClientHandle,
 &signalingClientMetrics);
printf("Signaling client connection duration: %" PRIu64 " ms",
 (signalingClientMetrics.signalingClientStats.connectionDuration /
 HUNDREDS_OF_NANOS_IN_A_MILLISECOND));

The Definition of signalingClientStats can be found in Stats.h.

The following signaling metrics are currently supported:

Metric Description

cpApiCallLatency Calculate latency for control
plane API calls. Calculati
on is done using Exponenti
al Moving Average (EMA).
The associated calls include:
describeChannel, createCha
nnel, getChannelEndpoint
and deleteChannel.

Client Metrics for the WebRTC C SDK 52

https://www.w3.org/TR/webrtc-stats/
https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-c/blob/master/src/include/com/amazonaws/kinesis/video/webrtcclient/Stats.h

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

dpApiCallLatency Calculate latency for data
plane API calls. Calculati
on is done using Exponenti
al Moving Average (EMA).
The associated calls include:
getIceConfig.

signalingClientUptime This indicates the time for
which the client object exists.
Every time this metric is
invoked, the most recent
uptime value is emitted.

connectionDuration If connection is establish
ed, this emits the duration
for which the connection
is alive. Else, a value of 0 is
emitted. This is different from
signaling client uptime since,
connections come and go,
but signalingClientUptime is
indicative of the client object
itself.

numberOfMessagesSent This value is updated when
the peer sends an offer,
answer, or an ICE candidate.

numberOfMessagesReceived Unlike numberOfMessagesSe
nt, this metric is updated
for any type of signaling
 message. The types of
signaling messages are
available in SIGNALING
_MESSAGE_TYPE .

Client Metrics for the WebRTC C SDK 53

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

iceRefreshCount This is incremented when
getIceConfig is invoked. The
rate at which this is invoked
is based on the TTL as part
of the ICE configuration
received. Each time a fresh
set of ICE configuration is
received, a timer is set to
refresh next time, given the
validity of the credentials in
the configuration minus some
grace period.

numberOfErrors The counter is used to
track the number of errors
generated within the
signaling client. Errors
generated while getting
ICE configuration, getting
signaling state, tracking
signaling metrics, sending
signaling message, and
connecting the signaling
 client to the web socket
in order to send/receive
messages are tracked.

numberOfRuntimeErrors The metric includes errors
that are incurred while the
core of the signaling client
is running. Scenarios like
reconnect failures, message
receive failures, and ICE
configuration refresh errors
are tracked here.

Client Metrics for the WebRTC C SDK 54

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

numberOfReconnects The metric is incremented
on every reconnect. This is a
useful metric to understand
the stability of the network
connection in the set up.

W3C Standard Metrics Supported for WebRTC C SDK

A subset of the W3C standard metrics is currently supported for the applications built with the
WebRTC C SDK. These fall into the following categories:

• Networking:

• Ice Candidate: these metrics provide information about the selected local and remote
candidates for data exchange between the peers. This includes server source of the candidate,
IP address, type of candidate selected for the communication, and candidate priority. These
metrics are useful as a snapshot report.

• Ice Server: these metrics are for gathering operational information about the different ICE
servers supported. This is useful when trying to understand the server that is primarily
being used for communication and connectivity checks. In some instances, it is also useful to
examine these metrics if the gathering of candidates fails.

• Ice Candidate Pair: these metrics are for understanding the number of bytes/packets that are
being exchanged between the peers and also time-related measurements.

• Media and data:

• Remote Inbound RTP: these metrics represent the endpoint perspective of the data stream
sent by the sender.

• Outbound RTP: these metrics provide information about the outgoing RTP stream. They can
also be very useful when analyzing choppy streaming or streaming stops.

• Inbound RTP: these metrics provide information about the incoming media.

• Data channel metrics: these metrics can help you analyze the number of messages and bytes
sent and received over a data channel. The metrics can be pulled by using the channel ID.

Client Metrics for the WebRTC C SDK 55

https://www.w3.org/TR/webrtc-stats/
https://www.w3.org/TR/webrtc-stats/#icecandidate-dict*
https://www.w3.org/TR/webrtc-stats/#ice-server-dict*
https://www.w3.org/TR/webrtc-stats/#candidatepair-dict*
https://www.w3.org/TR/webrtc-stats/#remoteinboundrtpstats-dict*
https://www.w3.org/TR/webrtc-stats/#dom-rtcoutboundrtpstreamstats
https://www.w3.org/TR/webrtc-stats/#dom-rtcinboundrtpstreamstats
https://www.w3.org/TR/webrtc-stats/#dcstats-dict*

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

You can use the STATUS rtcPeerConnectionGetMetrics (PRtcPeerConnection,
PRtcRtpTransceiver, PRtcStats) API to gather metrics related to ICE, RTP and the data
channel. Here's a usage example:

RtcStats rtcStats;
rtcStats.requestedTypeOfStats = RTC_STATS_TYPE_LOCAL_CANDIDATE;
STATUS retStatus = rtcPeerConnectionGetMetrics (pRtcPeerConnection, NULL, &rtcStats);
printf(“Local Candidate address: %s\n”,
 rtcStats.rtcStatsObject.localIceCandidateStats.address);

Here's another example that shows usage pattern to get transceiver related stats:

RtcStats rtcStats;
PRtcRtpTransceiver pVideoRtcRtpTransceiver;
rtcStats.requestedTypeOfStats = RTC_STATS_TYPE_OUTBOUND_RTP;
STATUS retStatus = rtcPeerConnectionGetMetrics (pRtcPeerConnection,
 pVideoRtcRtpTransceiver, &rtcStats);
printf(“Number of packets discarded on send: %s\n”,
 rtcStats.rtcStatsObject.outboundRtpStreamStats.packetsDiscardedOnSend);

In the above example, if the second argument to rtcPeerConnectionGetMetrics() is NULL, data for
the first transceiver in the list is returned.

Definition for rtcStatsObject can be found in Stats.h. and definition for RtcStats can be found in
Include.h.

Sample usages of the APIs and the different metrics can be found in the samples directory in the
WebRTC C SDK repository and in the Kinesis Video Stream demos repository.

The following W3C standard metrics are currently supported for the applications built with the
WebRTC C SDK.

Topics

• Networking

• Media

• Data Channel

Networking

ICE Server Metrics:

Client Metrics for the WebRTC C SDK 56

https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-c/blob/master/src/include/com/amazonaws/kinesis/video/webrtcclient/Stats.h
https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-c/blob/master/src/include/com/amazonaws/kinesis/video/webrtcclient/Include.h
https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-c/tree/master/samples
https://github.com/aws-samples/amazon-kinesis-video-streams-demos/tree/master/canary/webrtc-c/src
https://www.w3.org/TR/webrtc-stats/

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

URL URL of the STUN/TURN
server being tracked

Port Port number used by the
client

Protocol Transport protocol extracted
from ICE Server URI. If the
value is UDP, ICE tries TURN
over UDP, else ICE tried TURN
over TCP/TLS. If the URI does
not contain transport, ICE
tries TURN over UDP and
TCP/TLS. In case of STUN
server, this field is empty.

Total Requests Sent The value is updated for every
srflx candidate request and
while sending binding request
from turn candidates.

Total Responses Received The value is updated every
time a STUN binding response
is received.

Total Round Trip Time The value is updated every
time an equivalent response
is received for a request. The
request packet is tracked in a
hash map with the checksum
as the key.

ICE Candidate Stats: Only the information about the selected candidate (local and remote) is
included.

Client Metrics for the WebRTC C SDK 57

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

address This indicates the IP address
of the local and remote
candidate.

port Port number of the candidate

protocol Protocol used to obtain the
candidate. The valid values
are UDP/TCP.

candidateType Type of candidate selected -
host, srflx or relay.

priority Priority of the selected local
and remote candidate.

url Source of the selected local
candidate. This gives an
indication of if the candidate
selected is received from a
STUN server or TURN server.

relayProtocol If TURN server is used to
obtain the selected local
candidate, this field indicates
what protocol was used to
obtain it. Valid values are
TCP/UDP.

ICE Candidate Pair Stats: Only the information about the selected candidate pairs is included.

Metric Description

localCandidateId The ID of the selected local
candidate in the pair.

Client Metrics for the WebRTC C SDK 58

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

remoteCandidateId The ID of the selected remote
candidate in the pair.

state State of the candidate pair
being inspected.

nominated Set to TRUE since the stats
are being pulled for selected
candidate pair.

packetsSent Number of packets sent. This
is calculated in the . call
in the writeFrame call.
This information can also be
extracted from outgoing RTP
Stats, but since Ice candidate
pair includes a lastPacke
tSent timestamp, it might be
useful to calculate number
of packets sent between two
points in time.

packetsReceived This is updated every time
the incomingDataHandler is
called.

bytesSent This is calculated in the
iceAgentSendPacket()
in the writeFrame() call.
This is useful when calculati
ng a bit rate. Currently, this
also includes the header and
padding since the ICE layer is
oblivious to the RTP packet
format.

Client Metrics for the WebRTC C SDK 59

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

bytesReceived This is updated every time
the incomingDataHandle
r is called. Currently, this
also includes the header and
padding since the ICE layer is
oblivious to the RTP packet
format.

lastPacketSentTimestamp This is updated every time
a packet is sent. This can be
used in conjunction with the
packetsSent and a recorded
start time in application to
current packet transfer rate.

lastPacketReceived
Timestamp

This is updated on receiving
data in incomingD
ataHandler() . This can
be used in conjunction with
packetsReceived to deduce
the current packet receive
rate. The start time has to
be recorded at the applicati
on layer in the transceiv
erOnFrame() callback.

Client Metrics for the WebRTC C SDK 60

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

firstRequestTimestamp Recorded when the very
first STUN binding request
is sent out successfully in
iceAgentSendStunPa
cket() . This can be
used along with lastReque
stTimestamp and requestsS
ent to find average time
between STUN binding
requests.

lastRequestTimestamp Recorded every time a STUN
binding request is sent out
successfully in iceAgentS
endStunPacket() .

lastResponseTimestamp Recorded every time a STUN
binding response is received.

totalRoundTripTime Updated when a binding
response is received for
a request. The request
and response are mapped
in a hash table based on
checksum.

currentRoundTripTime Most recent round trip time
updated when a binding
response is received for a
request on the candidate pair.

requestsReceived A counter that is updated on
every STUN binding request
received.

Client Metrics for the WebRTC C SDK 61

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

requestsSent A counter that is updated on
every STUN binding request
sent out in iceAgentS
endStunPacket() .

responsesSent A counter that is updated
on every STUN binding
response sent out in response
to a binding request in
handleStunPacket() .

responsesReceived A counter that is updated on
every STUN binding response
received in handleStu
nPacket() .

packetsDiscardedOnSend Updated when packet
sending fails. In other
words, this is updated when
iceUtilsSendData()

 fails. This isuseful to
determine percentage of
packets dropped in a specific
duration.

bytesDiscardedOnSend Updated when packet
sending fails. In other
words, this is updated when
iceUtilsSendData()

 fails. This is useful when
determining percentage of
packets dropped in a specific
duration. Note that the
counter also includes the
header of the packets.

Client Metrics for the WebRTC C SDK 62

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Media

Outbound RTP Stats

Metric Description

voiceActivityFlag This is currently part of
RtcEncoderStats defined
in Include.h. The flag is set to
TRUE if the last audio packet
contained voice. The flag
is currently not set in the
samples.

packetsSent This indicates the total
number of RTP packets sent
out for the selected SSRC.
This is a part of https://
www.w3.org/TR/webrtc-stat
s/#sentrtpstats-dict* and is
included as part of outbound
stats. This is incremented
every time writeFrame() is
called.

bytesSent Total number of bytes
excluding RTP header and
padding that is sent. This is
updated on every writeFrame
call.

encoderImplementation This is updated by the
application layer as part of
RtcEncoderStats object.

packetsDiscardedOnSend This field is updated if the
ICE agent fails to send the
encrypted RTP packet for any

Client Metrics for the WebRTC C SDK 63

https://www.w3.org/TR/webrtc-stats/#sentrtpstats-dict*
https://www.w3.org/TR/webrtc-stats/#sentrtpstats-dict*
https://www.w3.org/TR/webrtc-stats/#sentrtpstats-dict*

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

reason in the iceAgentS
endPacket call.

bytesDiscardedOnSend This field is also updated if
the ICE agent fails to send
the encrypted RTP packet for
any reason in the iceAgentS
endPacket call.

framesSent This is incremented only
if media stream tack type
is MEDIA_STREAM_TRACK
_KIND_VIDEO.

hugeFramesSent This counter is updated for
frames that are 2.5 times
the average size of frames.
The size of the frame is
obtained by calculating
the fps (based on the last
known frame count time and
number of frames encoded
in a time interval) and using
the targetBitrate in RtcEncode
rStats set by the application.

framesEncoded This counter is updated only
for video track after successfu
l encoding of the frame. It is
updated on every writeFrame
call.

Client Metrics for the WebRTC C SDK 64

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

keyFramesEncoded This counter is updated
only for video track after
successful encoding of the
key frame. It is updated on
every writeFrame call.

framesDiscardedOnSend This is updated when
frame sending fails due to
iceAgentSendPacket
call failure. A frame comprises
of a group of packets
and currently, framesDis
cardedOnSend fails if any
packet gets discarded on
while sending because of an
error.

frameWidth This ideally represents the
frame width of the last
encoded frame. Currently
, this is set to a value by
the application as part of
RtcEncoderStats* *and is of
not much significance.

frameHeight This ideally represents the
frame height of the last
encoded frame. Currently
, this is set to a value by
the application as part of
RtcEncoderStats and is of not
much significance.

Client Metrics for the WebRTC C SDK 65

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

frameBitDepth This represents the bit depth
per pixel width of the last
encoded frame. Currently,
this is set by the application
as part of RtcEncoderStats
and translated into outbound
stats.

nackCount This value is updated every
time a NACK is received on an
RTP packet and a re-attemp
t to send the packet is made.
The stack supports re-transm
ission of packets on receiving
a NACK.

firCount The value is updated on
receiving a FIR packet
(onRtcpPacket->onRtcpFIRPac
ket). It indicates how often
the stream falls behind and
has to skip frames in order
to catch up. FIR packet is
currently not decoded to
extract the fields, so, even
though the count is set, no
action is taken.

pliCount The value is updated on
receiving a PLI packet
(onRtcpPacket->onRtcpPLIPac
ket). It indicates that some
amount of encoded video
data has been lost for one or
more frames.

Client Metrics for the WebRTC C SDK 66

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

sliCount The value is updated on
receiving a SLI packet
(onRtcpPacket->onRtcpSLIPac
ket). It indicates how often
packet loss affects a single
frame.

qualityLimitationResolution
Changes

Currently, the stack supports
this metric, however, the
frame width and height are
not monitored for every
encoded frame.

lastPacketSentTimestamp The timestamp at which the
last packet was sent. It is
updated on every writeFrame
call.

headerBytesSent Total number of RTP header
and padding bytes sent for
this SSRC excluding the actual
RTP payload.

bytesDiscardedOnSend This is updated when frame
sending fails due to iceAgentS
endPacket call failure.
A frame comprises of a
group of packets, which
in turn comprises of bytes
and currently, bytesDisc
ardedOnSend fails if any
packet gets discarded on
while sending because of an
error.

Client Metrics for the WebRTC C SDK 67

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

retransmittedPacketsSent The number of packets
that are retransmitted on
reception of PLI/SLI/NACK.
Currently, the stack only
counts the packet resent
of NACK since PLI and SLI
based retransmissions are not
supported.

retransmittedBytesSent The number of bytes that are
retransmitted on reception of
PLI/SLI/NACK. Currently, the
stack only counts the bytes
resent of NACK since PLI and
SLI based retransmissions are
not supported.

targetBitrate This is set in the application
level.

totalEncodedBytesTarget This is increased by the target
frame size in bytes every time
a frame is encoded. This is
updated using size parameter
in Frame structure.

framesPerSecond This is calculated based on
the time recorded for the last
known encoded frame and
the number of frames sent
within a second.

totalEncodeTime This is set to an arbitrary
value in the application and is
translated to outbound stats
internally.

Client Metrics for the WebRTC C SDK 68

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

totalPacketSendDelay This is currently set to 0 since
iceAgentSendPacket sends
packet immediately.

Remote inbound RTP Stats:

Metric Description

roundTripTime The value is extracted from
the RTCP receiver report on
receiving an RTCP packet type
201 (receiver report). The
report comprises of details
such as last sender report and
delay since last sender report
to calculate round trip time.
Sender reports are generated
roughly every 200 milliseco
nds comprising of informati
on such as number of packets
sent and bytes sent that are
extracted from outbound
stats.

totalRoundTripTime Sum of round trip times
calculated

fractionLost Represents the fraction of
RTP packets lost for the SSRC
since the previous sender/re
ceiver reporfractionLost was
sent.

Client Metrics for the WebRTC C SDK 69

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

reportsReceived Updated every time a receiver
report type packet is received.

roundTripTimeMeasu
rements

Indicates the total number of
reports received for the SSRC
that contains valid round
trip time. However, currently
this value is incremented
regardless so its meaning is
the same as reportsReceived.

Inbound RTP Stats:

Metric Description

packetsReceived The counter is updated when
a packet is received for a
specific SSRC.

jitter This metric indicates the
packet Jitter measured in
seconds for the specific SSRC.

jitterBufferDelay This metric denotes the sum
of time spent by each packet
in the jitter buffer.

jitterBufferEmittedCount The total number of audio
samples or video frames that
have come out of the jitter
buffer.

packetsDiscarded The counter is updated when
the Jitter buffer is full and
the packet cannot be pushed

Client Metrics for the WebRTC C SDK 70

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

into it. This can be used
to calculate percentage of
packets discarded in a fixed
duration.

framesDropped This value is updated when
the onFrameDroppedFunc
() is invoked.

lastPacketReceived
Timestamp

Represents the timestamp
at which the last packet was
received for this SSRC.

headerBytesReceived The counter is updated on
receiving an RTP packet.

bytesReceived Number of bytes received.
This does not include the
header bytes. This metric
can be used to calculate the
incoming bit rate.

packetsFailedDecryption This is incremented when
the decryption of the SRTP
packet fails.

Data Channel

Data Channel Metrics

Metric Description

label Label is the name of the data
channel being inspected.

Client Metrics for the WebRTC C SDK 71

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

protocol Since our stack uses SCTP, the
protocol is set to a constant
SCTP.

dataChannelIdentifier The even or odd identifier
used to uniquely identify a
data channel. This is updated
to an odd value if the SDK is
the offerer and even value if
SDK is the answerer.

state State of the data channel
when the stats are queried.
Currently, the two states
supported are RTC_DATA_
CHANNEL_STATE_CONN
ECTING (when the channel
is created) and RTC_DATA_
CHANNEL_STATE_OPEN (Set
in the onOpen() event).

messagesSent The counter is updated when
the SDK sends messages over
the data channel.

bytesSent The counter is updated with
the bytes in the message that
is sent out. This can be used
to understand how many
bytes are not sent due to
failure, i.e, to understand the
percentage of bytes that are
sent.

messagesReceived The metric is incremented in
the onMessage() callback.

Client Metrics for the WebRTC C SDK 72

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Metric Description

bytesReceived The metric is generated in the
onMessage() callback.

Client Metrics for the WebRTC C SDK 73

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Security

Cloud security at Amazon is the highest priority. As an Amazon customer, you will benefit from a
data center and network architecture built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. The effectiveness of our security is regularly tested and verified by third-party auditors
as part of the Amazon compliance programs. To learn about the compliance programs that apply
to Kinesis Video Streams, see Amazon Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you
use. You are also responsible for other factors including the sensitivity of your data, your
organization’s requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Kinesis Video Streams with WebRTC. The following topics show you how to configure Kinesis
Video Streams with WebRTC to meet your security and compliance objectives. You'll also learn how
to use other Amazon services that can help you to monitor and secure your Kinesis Video Streams
with WebRTC resources.

Topics

• Controlling Access to Kinesis Video Streams with WebRTC Resources Using Amazon Identity and
Access Management

• Compliance validation for Amazon Kinesis Video Streams with WebRTC

• Resilience in Kinesis Video Streams with WebRTC

• Infrastructure Security in Kinesis Video Streams with WebRTC

• Security Best Practices for Kinesis Video Streams with WebRTC

74

http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Controlling Access to Kinesis Video Streams with WebRTC
Resources Using Amazon Identity and Access Management

By using Amazon Identity and Access Management (IAM) with Amazon Kinesis Video Streams with
WebRTC, you can control whether users in your organization can perform a task using specific
Kinesis Video Streams with WebRTC API operations and whether they can use specific Amazon
resources.

For more information about IAM, see the following:

• Amazon Identity and Access Management (IAM)

• Getting started

• IAM User Guide

Contents

• Policy Syntax

• Actions for Kinesis Video Streams with WebRTC

• Amazon Resource Names (ARNs) for Kinesis Video Streams

• Granting Other IAM Accounts Access to a Kinesis Video Stream

• Example Policies for Kinesis Video Streams with WebRTC

Policy Syntax

An IAM policy is a JSON document that consists of one or more statements. Each statement is
structured as follows:

{
 "Statement":[{
 "Effect":"effect",
 "Action":"action",
 "Resource":"arn",
 "Condition":{
 "condition":{
 "key":"value"
 }
 }

Controlling Access to Kinesis Video Streams with WebRTC Resources Using Amazon Identity and Access
Management

75

http://www.amazonaws.cn/iam/
https://docs.amazonaws.cn/IAM/latest/UserGuide/getting-started.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

 }
]
}

There are various elements that make up a statement:

• Effect: The effect can be Allow or Deny. By default, IAM users don't have permission to use
resources and API actions, so all requests are denied. An explicit allow overrides the default. An
explicit deny overrides any allows.

• Action: The action is the specific API action for which you are granting or denying permission.

• Resource: The resource that's affected by the action. To specify a resource in the statement, you
need to use its Amazon Resource Name (ARN).

• Condition: Conditions are optional. They can be used to control when your policy is in effect.

As you create and manage IAM policies, you might want to use the IAM Policy Generator and the
IAM Policy Simulator.

Actions for Kinesis Video Streams with WebRTC

In an IAM policy statement, you can specify any API action from any service
that supports IAM. For Kinesis Video Streams with WebRTC, use the following
prefix with the name of the API action: kinesisvideo:. For example:
kinesisvideo:CreateSignalingChannel, kinesisvideo:ListSignalingChannels, and
kinesisvideo:DescribeSignalingChannel.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": ["kinesisvideo:action1", "kinesisvideo:action2"]

You can also specify multiple actions using wildcards. For example, you can specify all actions
whose name begins with the word "Get" as follows:

"Action": "kinesisvideo:Get*"

To specify all Kinesis Video Streams operations, use the asterisk (*) wildcard as follows:

"Action": "kinesisvideo:*"

Actions for Kinesis Video Streams with WebRTC 76

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-generator
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_testing-policies.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

For the complete list of Kinesis Video Streams API actions, see the Kinesis Video Streams API
reference.

Amazon Resource Names (ARNs) for Kinesis Video Streams

Each IAM policy statement applies to the resources that you specify using their ARNs.

Use the following ARN resource format for Kinesis Video Streams:

arn:aws:kinesisvideo:region:account-id:channel/channel-name/code

For example:

"Resource": arn:aws:kinesisvideo::*:111122223333:channel/my-channel/0123456789012

You can get the ARN of a channel using DescribeSignalingChannel.

Granting Other IAM Accounts Access to a Kinesis Video Stream

You might need to grant permission to other IAM accounts to perform operations on Kinesis Video
Streams with WebRTC signaling channels. A service role is an IAM role that a service assumes to
perform actions on your behalf. An IAM administrator can create, modify, and delete a service role
from within IAM. For more information, see Creating a role to delegate permissions to an Amazon
Web Service in the IAM User Guide.

Example Policies for Kinesis Video Streams with WebRTC

The following example policies demonstrate how you can control user access to your Kinesis Video
Streams with WebRTC channels.

Example 1: Allow users to get data from any signaling channel

This policy allows a user or group to perform the DescribeSignalingChannel,
GetSignalingChannelEndpoint, ListSignalingChannels, and ListTagsForResource
operations on any signaling channel.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Amazon Resource Names (ARNs) for Kinesis Video Streams 77

https://docs.amazonaws.cn/kinesisvideostreams/latest/dg/API_Reference.html
https://docs.amazonaws.cn/kinesisvideostreams/latest/dg/API_Reference.html
https://docs.amazonaws.cn/kinesisvideostreams/latest/dg/API_DescribeStream.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

 "Action": [
 "kinesisvideo:Describe*",
 "kinesisvideo:Get*",
 "kinesisvideo:List*"
],
 "Resource": "*"
 }
]
}

Example 2: Allow a user to create a signaling channel

This policy allows a user or group to perform the CreateSignalingChannel operation.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesisvideo:CreateSignalingChannel"
],
 "Resource": "*"
 }
]
}

Example 3: Allow a user full access to all Kinesis Video Streams and Kinesis Video Streams with
WebRTC resources

This policy allows a user or group to perform any Kinesis Video Streams operation on any resource.
This policy is appropriate for administrators.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesisvideo:*",
 "Resource": "*"
 }
]
}

Example Policies 78

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Example 4: Allow a user to get data from a specific signaling channel

This policy allows a user or group to get data from a specific signaling channel.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesisvideo:DescribeSignalingChannel",
 "Resource": "arn:aws:kinesisvideo:us-west-2:123456789012:channel/
channel_name/0123456789012"
 }
]
}

Compliance validation for Amazon Kinesis Video Streams with
WebRTC

To learn whether an Amazon Web Service is within the scope of specific compliance programs, see
Amazon Web Services in Scope by Compliance Program and choose the compliance program that
you are interested in. For general information, see Amazon Web Services Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Your compliance responsibility when using Amazon Web Services is determined by the sensitivity
of your data, your company's compliance objectives, and applicable laws and regulations. Amazon
provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on Amazon that are
security and compliance focused.

• Amazon Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the Amazon Config Developer Guide – The Amazon Config
service assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

Compliance validation 79

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• Amazon Security Hub – This Amazon Web Service provides a comprehensive view of your security
state within Amazon. Security Hub uses security controls to evaluate your Amazon resources
and to check your compliance against security industry standards and best practices. For a list of
supported services and controls, see Security Hub controls reference.

Resilience in Kinesis Video Streams with WebRTC

The Amazon global infrastructure is built around Amazon Web Services Regions and Availability
Zones. Amazon Web Services Regions provide multiple physically separated and isolated
Availability Zones, which are connected with low-latency, high-throughput, and highly redundant
networking. You can use Availability Zones to design and operate applications and databases that
automatically fail over between Availability Zones without interruption. Availability Zones are
more highly available, fault tolerant, and scalable than traditional single or multiple data center
infrastructures.

For more information about Amazon Web Services Regions and Availability Zones, see Amazon
Global Infrastructure.

Infrastructure Security in Kinesis Video Streams with WebRTC

As a managed service, Kinesis Video Streams (including its WebRTC capability) is protected by
the Amazon global network security procedures that are described in the Amazon Web Services:
Overview of Security Processes whitepaper.

You use Amazon published API calls to access Kinesis Video Streams through the network. Clients
must support Transport Layer Security (TLS) 1.2 or later. We recommend TLS 1.3 or later. Clients
must also support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-
Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as
Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Security Best Practices for Kinesis Video Streams with WebRTC

Amazon Kinesis Video Streams (including its WebRTC capability) provides a number of security
features to consider as you develop and implement your own security policies. The following best

Resilience 80

https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html
https://docs.amazonaws.cn/securityhub/latest/userguide/securityhub-controls-reference.html
http://www.amazonaws.cn/about-aws/global-infrastructure/
http://www.amazonaws.cn/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

practices are general guidelines and don’t represent a complete security solution. Because these
best practices might not be appropriate or sufficient for your environment, treat them as helpful
considerations rather than prescriptions.

For security best practices for your remote devices, see Security Best Practices for Device Agents.

Implement least privilege access

When granting permissions, you decide who is getting what permissions to which Kinesis Video
Streams resources. You enable specific actions that you want to allow on those resources.
Therefore you should grant only the permissions that are required to perform a task. Implementing
least privilege access is fundamental in reducing security risk and the impact that could result from
errors or malicious intent.

For example, a producer that sends data to Kinesis Video Streams requires only PutMedia,
GetStreamingEndpoint, and DescribeStream. Do not grant producer applications permissions
for all actions (*), or for other actions such as GetMedia.

For more information, see What Is Least Privilege & Why Do You Need It?

Use IAM roles

Producer and client applications must have valid credentials to access Kinesis video streams. You
should not store Amazon credentials directly in a client application or in an Amazon S3 bucket.
These are long-term credentials that are not automatically rotated and could have a significant
business impact if they are compromised.

Instead, you should use an IAM role to manage temporary credentials for your producer and client
applications to access Kinesis video streams. When you use a role, you don't have to use long-term
credentials to access other resources.

For more information, see the following topics in the IAM User Guide:

• IAM Roles

• Common Scenarios for Roles: Users, Applications, and Services

Use CloudTrail to Monitor API Calls

Kinesis Video Streams with WebRTC is integrated with Amazon CloudTrail, a service that provides a
record of actions taken by a user, role, or an Amazon service in Kinesis Video Streams with WebRTC.

Implement least privilege access 81

https://docs.amazonaws.cn/iot/latest/developerguide/device-defender-DetectMetricsMessagesBestPract.html
https://www.beyondtrust.com/blog/entry/what-is-least-privilege
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Using the information collected by CloudTrail, you can determine the request that was made to
Kinesis Video Streams with WebRTC, the IP address from which the request was made, who made
the request, when it was made, and additional details.

For more information, see the section called “Logging Kinesis Video Streams with WebRTC API Calls
with Amazon CloudTrail”.

Use CloudTrail to Monitor API Calls 82

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Monitoring

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Kinesis Video Streams with WebRTC and your Amazon solutions. You should collect
monitoring data from all of the parts of your Amazon solution so that you can more easily debug a
multi-point failure if one occurs. Before you start monitoring Kinesis Video Streams with WebRTC,
however, you should create a monitoring plan that includes answers to the following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

After you have defined your monitoring goals and have created your monitoring plan, the next
step is to establish a baseline for normal Kinesis Video Streams with WebRTC performance in your
environment. You should measure Kinesis Video Streams with WebRTC performance at various
times and under different load conditions. As you monitor Kinesis Video Streams with WebRTC, you
should store a history of monitoring data that you've collected. You can compare current Kinesis
Video Streams with WebRTC performance to this historical data to help you to identify normal
performance patterns and performance anomalies, and devise methods to address issues that may
arise.

Topics

• Monitoring Kinesis Video Streams with WebRTC Metrics with CloudWatch

• Logging Kinesis Video Streams with WebRTC API Calls with Amazon CloudTrail

Monitoring Kinesis Video Streams with WebRTC Metrics with
CloudWatch

You can monitor a Kinesis Video Streams with WebRTC using Amazon CloudWatch, which collects
and processes raw data from Kinesis Video Streams with WebRTC into readable, near real-time

Monitoring Kinesis Video Streams with WebRTC Metrics with CloudWatch 83

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

metrics. These statistics are recorded for a period of 15 months, so that you can access historical
information and gain a better perspective on how your web application or service is performing.

Kinesis Video Streams provides the following metrics:

Topics

• Signaling Metrics

• TURN Metrics

Signaling Metrics

Metric
name

Dimension
s

Unit Description

Failure Operation
, Signaling
ChannelNa
me

Count '0' is emitted if the Operation
mentioned in dimension returns 200
status code response. '1' otherwise.

Latency Operation
, Signaling
ChannelNa
me

Milliseco
nds

The time measured from when the
service receives the request until the
service returns the response.

MessagesT
ransferre
d.Count

Signaling
ChannelNa
me

Count Total number of messages transferred
(sent and received) for a given channel.

The Operation dimension can apply to any of the following APIs:

• ConnectAsMaster

• ConnectAsViewer

• SendSdpOffer

• SendSdpAnswer

• SendCandidate

• SendAlexaOfferToMaster

Signaling Metrics 84

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• GetIceServerConfig

• Disconnect

TURN Metrics

Metric
name

Dimension
s

Unit Description

TURNConne
ctedMinut
es

Signaling
ChannelNa
me

Count '1' is emitted for each TURN allocation
that is used to stream data through in a
minute.

Logging Kinesis Video Streams with WebRTC API Calls with
Amazon CloudTrail

Amazon Kinesis Video Streams with WebRTC is integrated with Amazon CloudTrail, a service that
provides a record of actions taken by a user, role, or an Amazon service in Amazon Kinesis Video
Streams with WebRTC. CloudTrail captures all API calls for Amazon Kinesis Video Streams with
WebRTC as events. The calls captured include calls from the Amazon Kinesis Video Streams console
and code calls to the Amazon Kinesis Video Streams with WebRTC API operations. If you create a
trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including
events for Amazon Kinesis Video Streams with WebRTC. If you don't configure a trail, you can still
view the most recent events in the CloudTrail console in Event history. Using the information
collected by CloudTrail, you can determine the request that was made to Amazon Kinesis Video
Streams with WebRTC, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the Amazon
CloudTrail User Guide.

Amazon Kinesis Video Streams with WebRTC and CloudTrail

CloudTrail is enabled on your Amazon account when you create the account. When supported
event activity occurs in Amazon Kinesis Video Streams with WebRTC, that activity is recorded in a
CloudTrail event along with other Amazon service events in Event history. You can view, search,

TURN Metrics 85

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

and download recent events in your Amazon account. For more information, see Viewing Events
with CloudTrail Event History.

For an ongoing record of events in your Amazon account, including events for Amazon Kinesis
Video Streams with WebRTC, create a trail. A trail enables CloudTrail to deliver log files to an
Amazon S3 bucket. By default, when you create a trail in the console, the trail applies to all
Amazon Web Services Region. The trail logs events from all Regions in the Amazon partition and
delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can configure
other Amazon services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Amazon Kinesis Video Streams with WebRTC supports logging the following actions as events in
CloudTrail log files:

• CreateSignalingChannel

• DeleteSignalingChannel

• DescribeSignalingChannel

• GetSignalingChannelEndpoint

• ListSignalingChannels

• ListTagsForResource

• TagResource

• UntagResource

• UpdateSignalingChannel

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or Amazon Identity and Access Management (IAM) user
credentials.

Amazon Kinesis Video Streams with WebRTC and CloudTrail 86

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_CreateSignalingChannel.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_DeleteSignalingChannel.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_DescribeSignalingChannel.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_GetSignalingChannelEndpoint.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_ListSignalingChannels.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_ListTagsForResource.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_TagResource.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_UntagResource.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_UpdateSignalingChannel.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon service.

For more information, see the CloudTrail userIdentity Element.

Example: Amazon Kinesis Video Streams with WebRTC Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateSignalingChannel
action.

{
 "eventVersion":"1.05",
 "userIdentity":{
 "type":"IAMUser",
 "principalId":"EX_PRINCIPAL_ID",
 "arn":"arn:aws:iam::123456789012:user/Alice",
 "accountId":"123456789012",
 "accessKeyId":"EXAMPLE_KEY_ID",
 "userName":"Alice"
 },
 "eventTime":"2019-11-19T22:49:04Z",
 "eventSource":"kinesisvideo.amazonaws.com",
 "eventName":"CreateSignalingChannel",
 "awsRegion":"us-west-2",
 "sourceIPAddress":"127.0.0.1",
 "userAgent":"aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters":{
 "channelName":"YourChannelName"
 },
 "responseElements":{
 "channelARN":"arn:aws:kinesisvideo:us-west-2:123456789012:channel/
YourChannelName/1574203743620"
 },
 "requestID":"df3c99c4-1d97-49da-8569-7de6c92b4856",
 "eventID":"bb74bac2-964c-49b0-903a-3501c6bde632"

Example: Amazon Kinesis Video Streams with WebRTC Log File Entries 87

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_CreateSignalingChannel.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

}

Example: Amazon Kinesis Video Streams with WebRTC Log File Entries 88

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Document History for the Amazon Kinesis Video Streams
with WebRTC Developer Guide

Change Description Date

Initial publication Initial publication of the
Amazon Kinesis Video
Streams with WebRTC
Developer Guide. Learn more

November 4, 2019

89

https://docs.aws.amazon.com/kinesisvideostreams-webrtc-dg/latest/devguide/what-is-kvswebrtc.html
https://docs.aws.amazon.com/kinesisvideostreams-webrtc-dg/latest/devguide/what-is-kvswebrtc.html

Kinesis Video Streams Amazon Kinesis Video Streams WebRTC Developer Guide

Amazon Glossary

For the latest Amazon terminology, see the Amazon glossary in the Amazon Web Services Glossary
Reference.

90

https://docs.amazonaws.cn/glossary/latest/reference/glos-chap.html

	Kinesis Video Streams
	Table of Contents
	What Is Amazon Kinesis Video Streams with WebRTC
	Region availability
	Kinesis Video Streams with WebRTC Pricing
	Accessing Kinesis Video Streams with WebRTC

	Kinesis Video Streams with WebRTC: How It Works
	Amazon Kinesis Video Streams with WebRTC Concepts
	WebRTC Technology Concepts
	How STUN, TURN and ICE Work Together
	Kinesis Video Streams with WebRTC Components
	WebRTC Websocket APIs
	ConnectAsViewer
	Request
	Response
	Errors
	Limits/Throttling
	Idempotent
	Retry behavior
	Concurrent calls

	ConnectAsMaster
	Request
	Response
	Errors
	Limits/Throttling
	Idempotent
	Retry behavior
	Concurrent calls

	SendSdpOffer
	Request
	Response
	Errors
	Limits/Throttling
	Idempotent
	Retry behavior
	Concurrent calls

	SendSdpAnswer
	Request
	Response
	Errors
	Limits/Throttling
	Idempotent
	Retry behavior
	Concurrent calls

	SendIceCandidate
	Request
	Response
	Errors
	Limits/Throttling
	Idempotent
	Retry behavior
	Concurrent calls

	Disconnect
	Asynchronous Message Reception
	Event

	Amazon Kinesis Video Streams with WebRTC Service Quotas
	Control Plane API Service Quotas
	Signaling API Service Quotas
	TURN Service Quotas
	WebRTC Ingestion Service Quotas

	Getting Started
	Set Up an Amazon Account and Create an Administrator
	Sign up for an Amazon Web Services account
	Secure IAM users
	Create an AmazonAccount Key

	Create a Signaling Channel
	Create a Signaling Channel Using the Console

	Stream Live Media
	WebRTC SDK in C for Embedded Devices
	Download the Kinesis Video Streams with WebRTC SDK in C
	Build the Kinesis Video Streams with WebRTC SDK in C
	Run the Samples for the WebRTC SDK in C

	Kinesis Video Streams with WebRTC SDK in JavaScript for web applications
	Install the Kinesis Video Streams with WebRTC SDK in JavaScript
	Kinesis Video Streams with WebRTC JavaScript SDK documentation
	Use the Kinesis Video Streams with WebRTC test page
	Stream from the test page to the Amazon Web Services Management Console
	Stream from the test page to the test page

	Edit the Kinesis Video Streams with WebRTC test page

	WebRTC SDK for Android
	Download the WebRTC SDK for Android
	Build the WebRTC SDK in Android
	Run the Android Sample Application
	Configure Amazon Cognito for the Android WebRTC SDK
	Prerequisites
	Set up a user pool
	Set up an identity pool

	WebRTC SDK for iOS
	Download the WebRTC SDK in iOS
	Build the WebRTC SDK in iOS
	Run the iOS Sample Application
	Configure Amazon Cognito for the iOS WebRTC SDK
	Prerequisites
	Set up a user pool
	Set up an identity pool

	Client Metrics for the WebRTC C SDK
	Signaling Metrics
	W3C Standard Metrics Supported for WebRTC C SDK
	Networking
	Media
	Data Channel

	Security
	Controlling Access to Kinesis Video Streams with WebRTC Resources Using Amazon Identity and Access Management
	Policy Syntax
	Actions for Kinesis Video Streams with WebRTC
	Amazon Resource Names (ARNs) for Kinesis Video Streams
	Granting Other IAM Accounts Access to a Kinesis Video Stream
	Example Policies for Kinesis Video Streams with WebRTC

	Compliance validation for Amazon Kinesis Video Streams with WebRTC
	Resilience in Kinesis Video Streams with WebRTC
	Infrastructure Security in Kinesis Video Streams with WebRTC
	Security Best Practices for Kinesis Video Streams with WebRTC
	Implement least privilege access
	Use IAM roles
	Use CloudTrail to Monitor API Calls

	Monitoring
	Monitoring Kinesis Video Streams with WebRTC Metrics with CloudWatch
	Signaling Metrics
	TURN Metrics

	Logging Kinesis Video Streams with WebRTC API Calls with Amazon CloudTrail
	Amazon Kinesis Video Streams with WebRTC and CloudTrail
	Example: Amazon Kinesis Video Streams with WebRTC Log File Entries

	Document History for the Amazon Kinesis Video Streams with WebRTC Developer Guide
	Amazon Glossary

