
Developer Guide

Amazon Key Management Service

Amazon Key Management Service Developer Guide

Amazon Key Management Service: Developer Guide

Amazon Key Management Service Developer Guide

Table of Contents

Amazon Key Management Service ... 1
Why use Amazon KMS? ... 1
Amazon KMS in Amazon Web Services Regions .. 2
Amazon KMS pricing .. 2
Amazon KMS service level agreement ... 2

Accessing Amazon Key Management Service .. 3
Amazon Web Services Management Console ... 3

Permissions required to use the Amazon KMS console .. 3
Amazon Command Line Interface .. 3
Amazon KMS REST API ... 4
Amazon SDKs .. 4
Working with Amazon SDKs .. 4
Amazon Encryption SDK ... 5
Amazon KMS eventual consistency .. 5
Hybrid post-quantum TLS .. 6

About post-quantum TLS .. 7
How to use it ... 8
Configure hybrid post-quantum TLS .. 9
Learn more ... 11

Connect to Amazon KMS through a VPC endpoint .. 11
Create a VPC endpoint for Amazon KMS .. 12
Connect to a VPC endpoint .. 13
Use VPC endpoints to control access to Amazon KMS resources ... 14
Logging Amazon KMS requests that use a VPC endpoint .. 17

Dual-stack endpoints ... 19
Features not available over IPv6 ... 19

Concepts ... 20
Introduction ... 20

Design goals ... 21
Amazon KMS keys .. 22

Customer managed keys ... 25
Amazon managed keys .. 26
Amazon owned keys .. 27
Amazon KMS key hierarchy .. 27

iii

Amazon Key Management Service Developer Guide

Key identifiers (KeyId) .. 29
Asymmetric keys ... 32
HMAC keys .. 34
ML-DSA keys .. 36
Multi-Region keys ... 36
Imported key material ... 47
KMS keys in a CloudHSM key store .. 53
KMS keys in external key stores .. 56

Amazon KMS cryptography essentials ... 58
Entropy and random number generation .. 59
Symmetric key operations (encryption only) ... 59
Asymmetric key operations (encryption, digital signing and signature verification) 59
Key derivation functions ... 60
Amazon KMS internal use of digital signatures ... 60
Envelope encryption ... 61
Cryptographic operations .. 62

KMS key access and permissions .. 65
KMS key policies ... 65
KMS key grants ... 66
Key policies .. 66

Creating a key policy ... 67
Default key policy ... 74
View a key policies ... 89
Change a key policy ... 92
Permissions for Amazon services .. 95

IAM policies ... 95
Allowing multiple IAM principals to access a KMS key ... 97
Best practices for IAM policies ... 98
Specifying KMS keys in IAM policy statements .. 100
Examples ... 103

Resource control policies .. 109
Grants ... 111

Grant concepts .. 113
Best practices .. 117
Controlling access to grants ... 119
Creating grants ... 120

iv

Amazon Key Management Service Developer Guide

Viewing grants .. 128
Using a grant token ... 129
Retiring and revoking grants ... 130

Condition keys .. 131
Amazon global condition keys ... 132
Amazon KMS condition keys .. 135
Amazon KMS condition keys for Amazon Nitro Enclaves ... 203

Least-privilege permissions .. 207
Implementing least privileged permissions .. 208

Attribute-based access control (ABAC) .. 211
ABAC condition keys for Amazon KMS .. 212
Tags or aliases? ... 215
Troubleshooting ABAC for Amazon KMS ... 217

Role-based access control (RBAC) .. 221
Cross-account access ... 223

Step 1: Add a key policy statement in the local account ... 225
Step 2: Add IAM policies in the external account .. 229
Allowing use of external KMS keys with Amazon Web Services services 230
Using KMS keys in other accounts .. 230

Control access to multi-Region keys .. 231
Authorization basics for multi-Region keys .. 232
Authorizing multi-Region key administrators and users .. 234

Determining access .. 238
Examining the key policy .. 238
Examining IAM policies ... 241
Examining grants .. 243

Encryption context .. 245
Encryption context rules ... 246
Encryption context in policies ... 246
Encryption context in grants ... 247
Logging encryption context ... 248
Storing encryption context ... 248

Testing your permissions .. 248
What is DryRun? ... 249
Specifying DryRun with the API .. 250

Troubleshooting Amazon KMS permissions ... 250

v

Amazon Key Management Service Developer Guide

Example 1: User is denied access to a KMS key in their Amazon Web Services account 252
Example 2: User assumes role with permission to use a KMS key in a different Amazon
Web Services account .. 254

Glossary .. 257
Authentication ... 258
Authorization ... 258
Authenticating with identities ... 258
Managing access using policies ... 261
Amazon KMS resources ... 263

Create a KMS key .. 265
Permissions for creating KMS keys .. 267
Choosing what type of KMS key to create ... 268
Create a symmetric encryption KMS key .. 270
Create an asymmetric KMS key .. 275
Create an HMAC KMS key .. 281
Create multi-Region primary keys ... 286
Create multi-Region replica keys .. 291

Step 1: Choose replica Regions ... 292
Step 2: Create replica keys ... 292

Create a KMS key with imported key material .. 298
Permissions for importing key material .. 299
Requirements for imported key material .. 300
Step 1: Create an Amazon KMS key without key material .. 303
Step 2: Download the wrapping public key and import token ... 305
Step 3: Encrypt the key material .. 314
Step 4: Import the key material .. 323

Create a KMS key in an Amazon CloudHSM key store ... 329
Create a new KMS key in your CloudHSM key store ... 330

Create a KMS key in external key stores .. 336
Requirements for a KMS key in an external key store .. 337
Create a new KMS key in your external key store ... 338

Identify and view keys .. 346
Find the key ID and key ARN .. 346
Access and list KMS key details .. 348
Identify different key types ... 357

Identify asymmetric KMS keys .. 358

vi

Amazon Key Management Service Developer Guide

Identify HMAC KMS keys .. 359
Identify multi-Region KMS keys .. 359
Identify KMS keys with imported key material .. 360
Identify KMS keys in Amazon CloudHSM key stores ... 361
Identify KMS keys in external key stores .. 362

Customize your console view .. 363
Sort and filter your KMS keys ... 363
Customize your KMS key tables .. 365

Find KMS keys and key material in an Amazon CloudHSM key store ... 367
Find the KMS keys in an Amazon CloudHSM key store .. 368
Find all keys for an Amazon CloudHSM key store ... 370
Find the KMS key for an Amazon CloudHSM key .. 371
Find the Amazon CloudHSM key for a KMS key .. 376

Enable and disable keys .. 380
Rotate keys .. 383

Why rotate KMS keys? .. 385
How key rotation works ... 385
Enable automatic key rotation ... 390
Disable automatic key rotation ... 392
Perform on-demand key rotation .. 394

Initiating on-demand key rotation (console) .. 395
Initiating on-demand key rotation (Amazon KMS API) ... 396

List rotations and key materials ... 397
List rotations and key materials (console) .. 397
List rotations and key materials (Amazon KMS API) ... 398

Rotate keys manually .. 400
Change the primary key in a set of multi-Region keys .. 402

Update the primary Region .. 404
Delete keys ... 407

About the waiting period ... 408
Special considerations ... 408
Control access to key deletion .. 411

Allow key administrators to schedule and cancel key deletion .. 412
Schedule key deletion ... 414

.. 414
Cancel key deletion ... 416

vii

Amazon Key Management Service Developer Guide

Create an alarm .. 417
Determine past usage of a KMS key ... 419

Examine KMS key permissions to determine the scope of potential usage 419
Examine Amazon CloudTrail logs to determine actual usage ... 419

Delete imported key material ... 422
Generate data keys .. 425

Create a data key ... 425
How cryptographic operations with data keys work .. 426

Encrypt data with a data key .. 426
Decrypt data with a data key .. 427

How unusable KMS keys affect data keys .. 428
Generate data key pairs .. 430

Create a data key pair .. 430
How cryptographic operations with data key pairs work .. 431

Encrypt data with a data key pair .. 432
Decrypt data with a data key pair .. 432
Sign messages with a data key pair ... 433
Verify a signature with a data key pair ... 434
Derive a shared secret with data key pairs ... 435

Perform offline operations with public keys ... 436
Special considerations for downloading public keys .. 436
Download public key ... 438
Example offline operations .. 439

Deriving shared secrets offline .. 440
Offline verification with ML-DSA key pairs ... 441
Offline verification with SM2 key pairs (China Regions only) .. 444

Monitor keys .. 449
Monitoring tools ... 450

Automated tools ... 450
Manual tools .. 450

Logging with Amazon CloudTrail ... 451
Finding Amazon KMS log entries in CloudTrail .. 452
Excluding Amazon KMS events from a trail .. 454
Examples of Amazon KMS log entries ... 455

Monitor keys with CloudWatch ... 538
Amazon KMS metrics and dimensions ... 538

viii

Amazon Key Management Service Developer Guide

Create a CloudWatch alarm for expiration of imported key material 547
Create CloudWatch alarms for external key stores ... 548

Monitor keys with Amazon EventBridge ... 552
KMS CMK Rotation ... 553
KMS Imported Key Material Expiration .. 554
KMS CMK Deletion ... 554

Aliases ... 556
How aliases work ... 556
Controlling access to aliases .. 560

kms:CreateAlias ... 560
kms:ListAliases ... 561
kms:UpdateAlias .. 562
kms:DeleteAlias ... 563
Limiting alias permissions .. 564

Create aliases .. 565
Find the alias name and alias ARN .. 568
Update aliases .. 573
Delete an alias .. 574
Use aliases to control access to KMS keys ... 575

kms:RequestAlias .. 577
kms:ResourceAliases ... 578

Learn how to use aliases in your applications ... 579
Find aliases in Amazon CloudTrail logs ... 581

Tags .. 583
Controlling access to tags .. 584

Tag permissions in policies ... 585
Limiting tag permissions ... 587

Add tags ... 588
Add tags while creating a KMS key .. 589
Add tags to existing KMS keys .. 590

Edit tags ... 591
Remove tags ... 593
View tags ... 594
Use tags to control access to KMS keys .. 595

Key stores ... 600
Amazon KMS standard key store ... 600

ix

Amazon Key Management Service Developer Guide

Amazon KMS standard key store with imported key material ... 600
Amazon KMS custom key stores .. 602

Amazon CloudHSM key store .. 602
External key store ... 603

Amazon CloudHSM key stores .. 603
Amazon CloudHSM key store concepts ... 606
Control access to your Amazon CloudHSM key store ... 609
Create an Amazon CloudHSM key store .. 611
View an Amazon CloudHSM key store ... 617
Edit Amazon CloudHSM key store settings ... 620
Connect an Amazon CloudHSM key store ... 624
Disconnect an Amazon CloudHSM key store .. 628
Delete an Amazon CloudHSM key store .. 631
Troubleshooting a custom key store .. 634

External key stores .. 649
External key store concepts ... 654
How external key stores work ... 662
Control access to your external key store ... 664
Choose a proxy connectivity option ... 669
Create an external key store .. 681
Edit external key store properties .. 693
View external key stores ... 700
Monitor external key stores ... 705
Connect and disconnect external key stores .. 718
Delete an external key store .. 728
Troubleshooting external key stores .. 730

Security .. 755
Data protection .. 755

Protecting key material ... 756
Data encryption .. 757
Internetwork privacy .. 759

Identity and access management ... 760
Amazon managed policies .. 760
Service-linked roles .. 764

Logging and monitoring .. 770
Compliance validation .. 771

x

Amazon Key Management Service Developer Guide

Compliance and security documents ... 772
Learn more ... 772

Resilience ... 773
Regional isolation ... 773
Multi-tenant design .. 774
Resilience best practices in Amazon KMS ... 774

Infrastructure security ... 775
Isolation of Physical Hosts ... 776

Quotas .. 777
Resource quotas ... 777

Amazon KMS keys: 100,000 ... 778
Aliases per KMS key: 50 .. 778
Grants per KMS key: 50,000 .. 779
Custom key stores resource quota: 10 ... 779
On-demand rotation: 10 ... 779

Request quotas ... 780
Request quotas for each Amazon KMS API operation .. 781
Applying request quotas ... 787
Shared quotas for cryptographic operations .. 788
API requests made on your behalf ... 790
Cross-account requests .. 790
Custom key store request quotas ... 790

Throttling requests .. 792
Code examples ... 794

Basics .. 798
Hello Amazon KMS .. 799
Learn the basics .. 802
Actions .. 876

Scenarios .. 1026
Work with table encryption ... 1026

Cryptographic attestation for Amazon Nitro Enclaves ... 1029
How to call Amazon KMS APIs for a Nitro enclave .. 1030
Monitoring requests for Nitro enclaves .. 1031

Decrypt (for an enclave) ... 1032
GenerateDataKey (for an enclave) .. 1033
GenerateDataKeyPair (for an enclave) ... 1034

xi

Amazon Key Management Service Developer Guide

GenerateRandom (for an enclave) .. 1035
Encrypting Amazon services ... 1037

Amazon Elastic Block Store (Amazon EBS) .. 1038
Amazon EBS encryption ... 1038
Using KMS keys and data keys .. 1039
Amazon EBS encryption context .. 1039
Detecting Amazon EBS failures ... 1040
Using Amazon CloudFormation to create encrypted Amazon EBS volumes 1041

Amazon EMR .. 1041
Encrypting data on the EMR file system (EMRFS) ... 1041
Encrypting data on the storage volumes of cluster nodes .. 1044
Encryption context ... 1045

Amazon Redshift ... 1046
Amazon Redshift encryption ... 1046
Encryption context ... 1047

Reference .. 1049
Key state reference ... 1050

Key states and KMS key types .. 1050
Key state table .. 1051

Key type reference .. 1058
Key type table ... 1059
Special features table .. 1065

Key spec reference .. 1074
SYMMETRIC_DEFAULT key spec .. 1076
RSA key specs ... 1077
Elliptic curve key specs ... 1081
Key specs for HMAC KMS keys .. 1083
ML-DSA key specs .. 1083
SM2 key spec (China Regions only) .. 1084

Permissions reference ... 1084
Column descriptions .. 1131

Amazon KMS internal operations .. 1133
Domains and domain state .. 1134
Internal communication security .. 1137
Replication process for multi-Region keys .. 1140
Durability protection ... 1141

xii

Amazon Key Management Service Developer Guide

Document history .. 1143
Recent updates .. 1143
Earlier updates ... 1149

xiii

Amazon Key Management Service Developer Guide

Amazon Key Management Service

Amazon Key Management Service (Amazon KMS) is an Amazon managed service that makes it easy
for you to create and control the encryption keys that are used to encrypt your data. The Amazon
KMS keys that you create in Amazon KMS are protected by FIPS 140-3 Security Level 3 validated
hardware security modules (HSM). They never leave Amazon KMS unencrypted. To use or manage
your KMS keys, you interact with Amazon KMS.

Why use Amazon KMS?

When you encrypt data, you need to protect your encryption key. If you encrypt your key, you need
to protect its encryption key. Eventually, you must protect the highest level encryption key (known
as a root key) in the hierarchy that protects your data. That's where Amazon KMS comes in.

Amazon KMS protects your root keys. KMS keys are created, managed, used, and deleted entirely
within Amazon KMS. They never leave the service unencrypted. To use or manage your KMS keys,
you call Amazon KMS.

Why use Amazon KMS? 1

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884

Amazon Key Management Service Developer Guide

Additionally, you can create and manage key policies in Amazon KMS, ensuring that only trusted
users have access to KMS keys.

Amazon KMS in Amazon Web Services Regions

The Amazon Web Services Regions in which Amazon KMS is supported are listed in Amazon Key
Management Service Endpoints and Quotas. If an Amazon KMS feature is not supported in an
Amazon Web Services Region that Amazon KMS supports, the regional difference is described in
the topic about the feature.

Amazon KMS pricing

As with other Amazon products, using Amazon KMS does not require contracts or minimum
purchases. For more information about Amazon KMS pricing, see Amazon Key Management Service
Pricing.

Amazon KMS service level agreement

Amazon Key Management Service is backed by a service level agreement that defines our service
availability policy.

Amazon KMS in Amazon Web Services Regions 2

https://docs.amazonaws.cn/kms/latest/developerguide/key-policies.html
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/kms.html
http://www.amazonaws.cn/kms/pricing/
http://www.amazonaws.cn/kms/pricing/
http://www.amazonaws.cn/kms/sla/

Amazon Key Management Service Developer Guide

Accessing Amazon Key Management Service

You can work with Amazon KMS in the following ways:

Amazon Web Services Management Console

The console is a web-based user interface for managing Amazon KMS and Amazon resources. If
you've signed up for an Amazon Web Services account, you can access the Amazon KMS console by
signing into the Amazon Web Services Management Console and choosing Amazon KMS from the
Amazon Web Services Management Console home page.

Permissions required to use the Amazon KMS console

To work with the Amazon KMS console, users must have a minimum set of permissions that allow
them to work with the Amazon KMS resources in their Amazon Web Services account. In addition
to these Amazon KMS permissions, users must also have permissions to list IAM users and IAM
roles. If you create an IAM policy that is more restrictive than the minimum required permissions,
the Amazon KMS console won't function as intended for users with that IAM policy.

For the minimum permissions required to allow a user read-only access to the Amazon KMS
console, see Allow a user to view KMS keys in the Amazon KMS console.

To allow users to work with the Amazon KMS console to create and manage KMS keys, attach the
AWSKeyManagementServicePowerUser managed policy to the user, as described in Amazon
managed policies for Amazon Key Management Service.

You don't need to allow minimum console permissions for users that are working with the Amazon
KMS API through the Amazon SDKs, Amazon Command Line Interface, or Amazon Tools for
PowerShell. However, you do need to grant these users permission to use the API. For more
information, see Permissions reference.

Amazon Command Line Interface

You can use the Amazon CLI tools to issue commands or build scripts at your system's command
line to perform Amazon (including Amazon KMS) tasks.

For more information about using Amazon KMS through the Amazon CLI, see the Amazon CLI
Command Reference

Amazon Web Services Management Console 3

http://www.amazonaws.cn/tools/#sdk
https://docs.amazonaws.cn/cli/latest/userguide/
https://docs.amazonaws.cn/powershell/latest/userguide/
https://docs.amazonaws.cn/powershell/latest/userguide/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/index.html

Amazon Key Management Service Developer Guide

Amazon KMS REST API

The architecture of Amazon KMS is designed to be programming language-neutral. The REST API is
an HTTP interface to Amazon KMS. With the REST API, you use standard HTTP requests to create,
fetch, and delete keys.

For more information on using the Amazon KMS REST API, see the Amazon Key Management
Service API Reference

Amazon SDKs

Amazon provides SDKs (software development kits) that consist of libraries and sample code
for common programming languages and platforms (Java, JavaScript, C, Python, and so on).
The Amazon SDKs provide a convenient way to create programmatic access to Amazon KMS and
Amazon. Amazon KMS is a REST service. You can send requests to Amazon KMS using the Amazon
SDK libraries, which wrap the underlying Amazon KMS REST API and simplify your programming
tasks. For information about the Amazon SDKs, including how to download and install them, see
Tools to Build on Amazon.

The Code examples for Amazon KMS using Amazon SDKs provides a good starting point for using
Amazon KMS through the Amazon SDKs.

Using this service with an Amazon SDK

Amazon software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation

Amazon CLI

Amazon SDK for Java

Amazon SDK for JavaScript

Amazon SDK for .NET

Amazon KMS REST API 4

https://docs.amazonaws.cn/kms/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/kms/latest/APIReference/Welcome.html
https://www.amazonaws.cn/developer/tools
https://docs.amazonaws.cn/cli
https://docs.amazonaws.cn/sdk-for-java
https://docs.amazonaws.cn/sdk-for-javascript
https://docs.amazonaws.cn/sdk-for-net

Amazon Key Management Service Developer Guide

SDK documentation

Amazon SDK for PHP

Amazon Tools for PowerShell

Amazon SDK for Python (Boto3)

Amazon SDK for Ruby

Amazon SDK for SAP ABAP

Amazon Encryption SDK

The Amazon Encryption SDK is a tool for implementing client-side encryption in your application.
It does not provide full access to KMS, but instead it integrates with Amazon KMS, or can be used
as a stand-alone SDK without referencing KMS keys. Libraries are available for Java, JavaScript, C,
Python, and other programming languages.

For more information, see the Amazon Encryption SDK Developer Guide.

Amazon KMS key policies and IAM policies

Amazon KMS eventual consistency

The Amazon KMS API follows an eventual consistency model due to the distributed nature of the
system. As a result, changes to Amazon KMS resources might not be immediately visible to the
subsequent commands you run.

When you perform Amazon KMS API calls, there might be a brief delay before the change is
available throughout Amazon KMS. It typically takes less than a few seconds for the change
to propagate throughout the system, but in some cases it can take several minutes. You might
get unexpected errors, such as a NotFoundException or an InvalidStateException,
during this time. For example, Amazon KMS might return a NotFoundException if you call
GetParametersForImport immediately after calling CreateKey.

We recommend that you configure a retry strategy on your Amazon KMS clients to automatically
retry operations after a brief waiting period. For more information, see Retry behavior in the
Amazon SDKs and Tools Reference Guide.

Amazon Encryption SDK 5

https://docs.amazonaws.cn/sdk-for-php
https://docs.amazonaws.cn/powershell
https://docs.amazonaws.cn/pythonsdk
https://docs.amazonaws.cn/sdk-for-ruby
https://docs.amazonaws.cn/sdk-for-sapabap
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/introduction.html
https://en.wikipedia.org/wiki/Eventual_consistency
https://docs.amazonaws.cn/sdkref/latest/guide/feature-retry-behavior.html

Amazon Key Management Service Developer Guide

For grant related API calls, you can use a grant token to avoid any potential delay and use the
permissions in a grant immediately. For more information, see Eventual consistency (for grants).

Using hybrid post-quantum TLS with Amazon KMS

Amazon Key Management Service (Amazon KMS) supports a hybrid post-quantum key exchange
option for the Transport Layer Security (TLS) network encryption protocol. You can use this TLS
option when you connect to Amazon KMS API endpoints. These optional hybrid post-quantum
key exchange features are at least as secure as the TLS encryption we use today and are likely
to provide additional long-term security benefits. However, they affect latency and throughput
compared to the classic key exchange protocols in use today.

The data that you send to Amazon Key Management Service (Amazon KMS) is protected in transit
by the encryption provided by a Transport Layer Security (TLS) connection. The classic cipher
suites that Amazon KMS supports for TLS sessions make brute force attacks on the key exchange
mechanisms infeasible with current technology. However, if large-scale quantum computing
becomes practical in the future, the classic cipher suites used in TLS key exchange mechanisms
will be susceptible to these attacks. If you’re developing applications that rely on the long-term
confidentiality of data passed over a TLS connection, you should consider a plan to migrate to
post-quantum cryptography before large-scale quantum computers become available for use.
Amazon is working to prepare for this future, and we want you to be well-prepared, too.

To protect data encrypted today against potential future attacks, Amazon is participating with the
cryptographic community in the development of quantum-resistant or post-quantum algorithms.
We've implemented hybrid post-quantum key exchange cipher suites in Amazon KMS that combine
classic and post-quantum elements to ensure that your TLS connection is at least as strong as it
would be with classic cipher suites.

These hybrid cipher suites are available for use on your production workloads in most Amazon
Web Services Regions. However, because the performance characteristics and bandwidth
requirements of hybrid cipher suites are different from those of classic key exchange mechanisms,
we recommend that you test them on your Amazon KMS API calls under different conditions.

Feedback

As always, we welcome your feedback and participation in our open-source repositories. We’d
especially like to hear how your infrastructure interacts with this new variant of TLS traffic.

• To provide feedback on this topic, use the Feedback link in the upper right corner of this page.

Hybrid post-quantum TLS 6

Amazon Key Management Service Developer Guide

• We're developing these hybrid cipher suites in open source in the s2n-tls repository on GitHub.
To provide feedback on the usability of the cipher suites, or share novel test conditions or results,
create an issue in the s2n-tls repository.

• We're writing code samples for using hybrid post-quantum TLS with Amazon KMS in the aws-
kms-pq-tls-example GitHub repository. To ask questions or share ideas about configuring your
HTTP client or Amazon KMS client to use the hybrid cipher suites, create an issue in the aws-kms-
pq-tls-example repository.

Supported Amazon Web Services Regions

Post-quantum TLS for Amazon KMS is available in all Amazon Web Services Regions that Amazon
KMS supports except for China (Beijing) and China (Ningxia).

Note

Amazon KMS does not support hybrid post-quantum TLS for FIPS endpoints in Amazon
GovCloud (US).

For a list of Amazon KMS endpoints for each Amazon Web Services Region, see Amazon Key
Management Service endpoints and quotas in the Amazon Web Services General Reference.
For information about FIPS endpoints, see FIPS endpoints in the Amazon Web Services General
Reference.

About hybrid post-quantum key exchange in TLS

Amazon KMS supports hybrid post-quantum key exchange cipher suites. You can use the Amazon
SDK for Java 2.x and Amazon Common Runtime on Linux systems to configure an HTTP client that
uses these cipher suites. Then, whenever you connect to an Amazon KMS endpoint with your HTTP
client, the hybrid cipher suites are used.

This HTTP client uses s2n-tls, which is an open source implementation of the TLS protocol. The
hybrid cipher suites that s2n-tls uses are implemented only for key exchange, not for direct data
encryption. During key exchange, the client and server calculate the key they will use to encrypt
and decrypt the data on the wire.

The algorithms that s2n-tls uses are a hybrid that combines Elliptic Curve Diffie-Hellman (ECDH),
a classic key exchange algorithm used today in TLS, with Module-Lattice-Based Key-Encapsulation
Mechanism (ML-KEM), a public-key encryption and key-establishment algorithm that the National

About post-quantum TLS 7

https://github.com/aws/s2n-tls
https://github.com/aws/s2n-tls/issues
https://github.com/aws-samples/aws-kms-pq-tls-example
https://github.com/aws-samples/aws-kms-pq-tls-example
https://github.com/aws-samples/aws-kms-pq-tls-example/issues
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/rande.html#FIPS-endpoints
https://github.com/aws/s2n-tls
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://csrc.nist.gov/pubs/fips/203/final
https://csrc.nist.gov/pubs/fips/203/final

Amazon Key Management Service Developer Guide

Institute for Standards and Technology (NIST) has designated as its first standard post-quantum
key-agreement algorithm. This hybrid uses each of the algorithms independently to generate a key.
Then it combines the two keys cryptographically. With s2n-tls, you can configure an HTTP client to
prefer post-quantum TLS, which places ECDH with ML-KEM first in the preference list. Classic key
exchange algorithms are included in the preference list to ensure compatibility, but they are lower
in the preference order.

Using hybrid post-quantum TLS with Amazon KMS

You can use hybrid post-quantum TLS for your calls to Amazon KMS. When setting up your HTTP
client test environment, be aware of the following information:

Encryption in Transit

The hybrid cipher suites in s2n-tls are used only for encryption in transit. They protect your data
while it is traveling from your client to the Amazon KMS endpoint. Amazon KMS does not use these
cipher suites to encrypt data under Amazon KMS keys.

Instead, when Amazon KMS encrypts your data under KMS keys, it uses symmetric cryptography
with 256-bit keys and the Advanced Encryption Standard in Galois Counter Mode (AES-GCM)
algorithm, which is already quantum resistant. Theoretical future, large-scale quantum computing
attacks on ciphertexts created under 256-bit AES-GCM keys reduce the effective security of the key
to 128 bits. This security level is sufficient to make brute force attacks on Amazon KMS ciphertexts
infeasible.

Supported Systems

Use of the hybrid cipher suites in s2n-tls is currently supported only on Linux systems. In addition,
these cipher suites are supported only in SDKs that support the Amazon Common Runtime, such as
the Amazon SDK for Java 2.x. For an example, see Configure hybrid post-quantum TLS.

Amazon KMS Endpoints

When using the hybrid cipher suites, use the standard Amazon KMS endpoint. Amazon KMS does
not support hybrid post-quantum TLS for FIPS 140-3 validated endpoints.

When you configure a HTTP client to prefer post-quantum TLS connections with s2n-tls, the post-
quantum ciphers are first in the cipher preference list. However, the preference list includes the
classic, non-hybrid ciphers lower in the preference order for compatibility. When you configure an
HTTP client to prefer post-quantum TLS with an Amazon KMS FIPS 140-3 validated endpoint, s2n-
tls negotiates a classic, non-hybrid key exchange cipher.

How to use it 8

https://csrc.nist.gov/pubs/fips/203/final
https://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf
https://docs.amazonaws.cn/general/latest/gr/kms.html

Amazon Key Management Service Developer Guide

For a list of Amazon KMS endpoints for each Amazon Web Services Region, see Amazon Key
Management Service endpoints and quotas in the Amazon Web Services General Reference.
For information about FIPS endpoints, see FIPS endpoints in the Amazon Web Services General
Reference.

Expected Performance

Our early benchmark testing shows that the hybrid cipher suites in s2n-tls are slower than classic
TLS cipher suites. The effect varies based on the network profile, CPU speed, the number of cores,
and your call rate. For more information, see Amazon post-quantum cryptography migration plan.

Configure hybrid post-quantum TLS

In this procedure, add a Maven dependency for the Amazon Common Runtime HTTP Client. Next,
configure an HTTP client that prefers post-quantum TLS. Then, create an Amazon KMS client that
uses the HTTP client.

To see a complete working examples of configuring and using hybrid post-quantum TLS with
Amazon KMS, see the aws-kms-pq-tls-example repository.

Note

The Amazon Common Runtime HTTP Client, which has been available as a preview,
became generally available in February 2023. In that release, the tlsCipherPreference
class and the tlsCipherPreference() method parameter are replaced by the
postQuantumTlsEnabled() method parameter. If you were using this example during
the preview, you need to update your code.

1. Add the Amazon Common Runtime client to your Maven dependencies. We recommend using
the latest available version.

For example, this statement adds version 2.30.22 of the Amazon Common Runtime client to
your Maven dependencies.

<dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>aws-crt-client</artifactId>
 <version>2.30.22</version>
</dependency>

Configure hybrid post-quantum TLS 9

https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/rande.html#FIPS-endpoints
https://amazonaws-china.com/blogs/security/aws-post-quantum-cryptography-migration-plan/
https://github.com/aws-samples/aws-kms-pq-tls-example

Amazon Key Management Service Developer Guide

2. To enable the hybrid post-quantum cipher suites, add the Amazon SDK for Java 2.x to your
project and initialize it. Then enable the hybrid post-quantum cipher suites on your HTTP
client as shown in the following example.

This code uses the postQuantumTlsEnabled() method parameter to configure an Amazon
common runtime HTTP client that prefers the recommended hybrid post-quantum cipher
suite, ECDH with ML-KEM. Then it uses the configured HTTP client to build an instance of the
Amazon KMS asynchronous client, KmsAsyncClient. After this code completes, all Amazon
KMS API requests on the KmsAsyncClient instance use hybrid post-quantum TLS.

// Configure HTTP client
SdkAsyncHttpClient awsCrtHttpClient = AwsCrtAsyncHttpClient.builder()
 .postQuantumTlsEnabled(true)
 .build();

// Create the Amazon KMS async client
KmsAsyncClient kmsAsync = KmsAsyncClient.builder()
 .httpClient(awsCrtHttpClient)
 .build();

3. Test your Amazon KMS calls with hybrid post-quantum TLS.

When you call Amazon KMS API operations on the configured Amazon KMS client, your calls
are transmitted to the Amazon KMS endpoint using hybrid post-quantum TLS. To test your
configuration, call an Amazon KMS API, such as ListKeys.

ListKeysReponse keys = kmsAsync.listKeys().get();

Test your hybrid post-quantum TLS configuration

Consider running the following tests with hybrid cipher suites on your applications that call
Amazon KMS.

• Run load tests and benchmarks. The hybrid cipher suites perform differently than traditional key
exchange algorithms. You might need to adjust your connection timeouts to allow for the longer
handshake times. If you’re running inside an Amazon Lambda function, extend the execution
timeout setting.

• Try connecting from different locations. Depending on the network path your request takes,
you might discover that intermediate hosts, proxies, or firewalls with deep packet inspection

Configure hybrid post-quantum TLS 10

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-crt.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-crt.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html

Amazon Key Management Service Developer Guide

(DPI) block the request. This might result from using the new cipher suites in the ClientHello
part of the TLS handshake, or from the larger key exchange messages. If you have trouble
resolving these issues, work with your security team or IT administrators to update the relevant
configuration and unblock the new TLS cipher suites.

Learn more about post-quantum TLS in Amazon KMS

For more information about using hybrid post-quantum TLS in Amazon KMS, see the following
resources.

• To learn about post-quantum cryptography at Amazon, including links to blog posts and
research papers, see Post-Quantum Cryptography.

• For information about s2n-tls, see Introducing s2n-tls, a New Open Source TLS Implementation
and Using s2n-tls.

• For information about the Amazon Common Runtime HTTP Client, see Configuring the Amazon
CRT-based HTTP client in the Amazon SDK for Java 2.x Developer Guide.

• For information about the post-quantum cryptography project at the National Institute for
Standards and Technology (NIST), see Post-Quantum Cryptography.

• For information about NIST post-quantum cryptography standardization, see Post-Quantum
Cryptography Standardization.

Connect to Amazon KMS through a VPC endpoint

You can connect directly to Amazon KMS through a private interface endpoint in your virtual
private cloud (VPC). When you use an interface VPC endpoint, communication between your VPC
and Amazon KMS is conducted entirely within the Amazon network.

Amazon KMS supports Amazon Virtual Private Cloud (Amazon VPC) endpoints powered by Amazon
PrivateLink. Each VPC endpoint is represented by one or more Elastic Network Interfaces (ENIs)
with private IP addresses in your VPC subnets.

The interface VPC endpoint connects your VPC directly to Amazon KMS without an internet
gateway, NAT device, VPN connection, or Amazon Direct Connect connection. The instances in your
VPC do not need public IP addresses to communicate with Amazon KMS.

Learn more 11

https://tools.ietf.org/html/rfc5246#section-7.4.1.2
https://aws.amazon.com/security/post-quantum-cryptography/
https://amazonaws-china.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://github.com/aws/s2n-tls/tree/main/docs/usage-guide
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-crt.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-crt.html
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://docs.amazonaws.cn/vpc/latest/privatelink/
https://docs.amazonaws.cn/vpc/latest/privatelink/
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-eni.html

Amazon Key Management Service Developer Guide

Regions

Amazon KMS supports VPC endpoints and VPC endpoint policies in all Amazon Web Services
Regions in which Amazon KMS is supported.

Considerations for Amazon KMS VPC endpoints

Before you set up an interface VPC endpoint for Amazon KMS, review the Interface endpoint
properties and limitations topic in the Amazon PrivateLink Guide.

Amazon KMS support for a VPC endpoint includes the following.

• You can use your VPC endpoint to call all Amazon KMS API operations from your VPC.

• You can create an interface VPC endpoint that connects to an Amazon KMS region endpoint
or an Amazon KMS FIPS endpoint.

• You can use Amazon CloudTrail logs to audit your use of KMS keys through the VPC endpoint.
For details, see Logging Amazon KMS requests that use a VPC endpoint.

Topics

• Create a VPC endpoint for Amazon KMS

• Connect to an Amazon KMS VPC endpoint

• Use VPC endpoints to control access to Amazon KMS resources

• Logging Amazon KMS requests that use a VPC endpoint

Create a VPC endpoint for Amazon KMS

You can create a VPC endpoint for Amazon KMS by using the Amazon VPC console or the Amazon
VPC API. Follow the procedures to Create an interface endpoint using one of the following values.

• To create a VPC endpoint for Amazon KMS, use the following service name:

com.amazonaws.region.kms

For example, in the US West (Oregon) Region (us-west-2), the service name would be:

com.amazonaws.us-west-2.kms

• To create a VPC endpoint that connects to an Amazon KMS FIPS endpoint, use the following
service name:

Create a VPC endpoint for Amazon KMS 12

https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.amazonaws.cn/kms/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/general/latest/gr/kms.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/general/latest/gr/kms.html

Amazon Key Management Service Developer Guide

com.amazonaws.region.kms-fips

For example, in the US West (Oregon) Region (us-west-2), the service name would be:

com.amazonaws.us-west-2.kms-fips

To make it easier to use the VPC endpoint, you can enable a private DNS name for your VPC
endpoint. If you select the Enable DNS Name option, the standard Amazon KMS DNS hostname
resolves to your VPC endpoint. For example, https://kms.us-west-2.amazonaws.com would
resolve to a VPC endpoint connected to service name com.amazonaws.us-west-2.kms.

This option makes it easier to use the VPC endpoint. The Amazon SDKs and Amazon CLI use the
standard Amazon KMS DNS hostname by default, so you do not need to specify the VPC endpoint
URL in applications and commands.

For more information, see Accessing a service through an interface endpoint in the Amazon
PrivateLink Guide.

Connect to an Amazon KMS VPC endpoint

You can connect to Amazon KMS through the VPC endpoint by using an Amazon SDK, the Amazon
CLI, or Amazon Tools for PowerShell. To specify the VPC endpoint, use its DNS name.

For example, this list-keys command uses the endpoint-url parameter to specify the VPC
endpoint. To use a command like this, replace the example VPC endpoint ID with one in your
account.

$ aws kms list-keys --endpoint-url https://vpce-1234abcdf5678c90a-09p7654s-us-
east-1a.ec2.us-east-1.vpce.amazonaws.com

Required permissions

For an Amazon KMS request that uses a VPC endpoint to be successful, the principal requires
permissions from two sources:

• A key policy, IAM policy, or grant must give principal permission to call the operation on the
resource (KMS key or alias).

Connect to a VPC endpoint 13

https://docs.amazonaws.cn/vpc/latest/privatelink/verify-domains.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.amazonaws.cn/cli/latest/reference/kms/list-keys.html

Amazon Key Management Service Developer Guide

• A VPC endpoint policy must give the principal permission to use the endpoint to make the
request.

For example, a key policy might give a principal permission to call Decrypt on a particular KMS
key. However, the VPC endpoint policy might not allow that principal to call Decrypt on that
KMS key by using the endpoint.

Or a VPC endpoint policy might allow a principal to use the endpoint to call DisableKey on
certain KMS keys. But if the principal doesn't have those permissions from a key policy, IAM
policy, or grant, the request fails.

You can create a VPC endpoint policy when you create your endpoint, and you can change the
VPC endpoint policy at any time. Use the VPC management console, or the CreateVpcEndpoint
or ModifyVpcEndpoint operations. You can also create and change a VPC endpoint policy by
using an Amazon CloudFormation template. For help using the VPC management console, see
Create an interface endpoint and Modifying an interface endpoint in the Amazon PrivateLink
Guide.

Private hostnames

If you enabled private hostnames when you created your VPC endpoint, you do not need to
specify the VPC endpoint URL in your CLI commands or application configuration. The standard
Amazon KMS DNS hostname resolves to your VPC endpoint. The Amazon CLI and SDKs use this
hostname by default, so you can begin using the VPC endpoint to connect to an Amazon KMS
regional endpoint without changing anything in your scripts and applications.

To use private hostnames, the enableDnsHostnames and enableDnsSupport attributes of
your VPC must be set to true. To set these attributes, use the ModifyVpcAttribute operation.
For details, see View and update DNS attributes for your VPC in the Amazon VPC User Guide.

Use VPC endpoints to control access to Amazon KMS resources

You can control access to Amazon KMS resources and operations when the request comes from
VPC or uses a VPC endpoint. To do so, use one of the following global condition keys in a key policy
or IAM policy.

• Use the aws:sourceVpce condition key to grant or restrict access based on the VPC endpoint.

• Use the aws:sourceVpc condition key to grant or restrict access based on the VPC that hosts
the private endpoint.

Use VPC endpoints to control access to Amazon KMS resources 14

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateVpcEndpoint.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_ModifyVpcEndpoint.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#create-interface-endpoint
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#modify-interface-endpoint
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_ModifyVpcAttribute.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys

Amazon Key Management Service Developer Guide

Note

Use caution when creating key policies and IAM policies based on your VPC endpoint. If
a policy statement requires that requests come from a particular VPC or VPC endpoint,
requests from integrated Amazon services that use an Amazon KMS resource on your
behalf might fail. For help, see Using VPC endpoint conditions in policies with Amazon KMS
permissions.
Also, the aws:sourceIP condition key is not effective when the request comes from an
Amazon VPC endpoint. To restrict requests to a VPC endpoint, use the aws:sourceVpce
or aws:sourceVpc condition keys. For more information, see Identity and access
management for VPC endpoints and VPC endpoint services in the Amazon PrivateLink
Guide.

You can use these global condition keys to control access to Amazon KMS keys (KMS keys), aliases,
and to operations like CreateKey that don't depend on any particular resource.

For example, the following sample key policy allows a user to perform some cryptographic
operations with a KMS key only when the request uses the specified VPC endpoint. When a
user makes a request to Amazon KMS, the VPC endpoint ID in the request is compared to the
aws:sourceVpce condition key value in the policy. If they do not match, the request is denied.

To use a policy like this one, replace the placeholder Amazon Web Services account ID and VPC
endpoint IDs with valid values for your account.

{
 "Id": "example-key-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable IAM policies",
 "Effect": "Allow",
 "Principal": {"AWS":["111122223333"]},
 "Action": ["kms:*"],
 "Resource": "*"
 },
 {
 "Sid": "Restrict usage to my VPC endpoint",
 "Effect": "Deny",
 "Principal": "*",

Use VPC endpoints to control access to Amazon KMS resources 15

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "vpce-1234abcdf5678c90a"
 }
 }
 }

]
}

You can also use the aws:sourceVpc condition key to restrict access to your KMS keys based on
the VPC in which VPC endpoint resides.

The following sample key policy allows commands that manage the KMS key only when they come
from vpc-12345678. In addition, it allows commands that use the KMS key for cryptographic
operations only when they come from vpc-2b2b2b2b. You might use a policy like this one if an
application is running in one VPC, but you use a second, isolated VPC for management functions.

To use a policy like this one, replace the placeholder Amazon Web Services account ID and VPC
endpoint IDs with valid values for your account.

{
 "Id": "example-key-2",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow administrative actions from vpc-12345678",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": [
 "kms:Create*","kms:Enable*","kms:Put*","kms:Update*",
 "kms:Revoke*","kms:Disable*","kms:Delete*",
 "kms:TagResource", "kms:UntagResource"
],
 "Resource": "*",

Use VPC endpoints to control access to Amazon KMS resources 16

Amazon Key Management Service Developer Guide

 "Condition": {
 "StringEquals": {
 "aws:sourceVpc": "vpc-12345678"
 }
 }
 },
 {
 "Sid": "Allow key usage from vpc-2b2b2b2b",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": [
 "kms:Encrypt","kms:Decrypt","kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:sourceVpc": "vpc-2b2b2b2b"
 }
 }
 },
 {
 "Sid": "Allow read actions from everywhere",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": [
 "kms:Describe*","kms:List*","kms:Get*"
],
 "Resource": "*",
 }
]
}

Logging Amazon KMS requests that use a VPC endpoint

Amazon CloudTrail logs all operations that use the VPC endpoint. When a request to Amazon KMS
uses a VPC endpoint, the VPC endpoint ID appears in the Amazon CloudTrail log entry that records
the request. You can use the endpoint ID to audit the use of your Amazon KMS VPC endpoint.

However, your CloudTrail logs don't include operations requested by principals in other accounts
or requests for Amazon KMS operations on KMS keys and aliases in other accounts. Also, to protect
your VPC, requests that are denied by a VPC endpoint policy, but otherwise would have been
allowed, are not recorded in Amazon CloudTrail.

Logging Amazon KMS requests that use a VPC endpoint 17

Amazon Key Management Service Developer Guide

For example, this sample log entry records a GenerateDataKey request that used the VPC endpoint.
The vpcEndpointId field appears at the end of the log entry.

{
 "eventVersion":"1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "accountId": "111122223333",
 "userName": "Alice"
 },
 "eventTime":"2018-01-16T05:46:57Z",
 "eventSource":"kms.amazonaws.com",
 "eventName":"GenerateDataKey",
 "awsRegion":"eu-west-1",
 "sourceIPAddress":"172.01.01.001",
 "userAgent":"aws-cli/1.14.23 Python/2.7.12 Linux/4.9.75-25.55.amzn1.x86_64
 botocore/1.8.27",
 "requestParameters":{
 "keyId":"1234abcd-12ab-34cd-56ef-1234567890ab",
 "numberOfBytes":128
 },
 "responseElements":null,
 "requestID":"a9fff0bf-fa80-11e7-a13c-afcabff2f04c",
 "eventID":"77274901-88bc-4e3f-9bb6-acf1c16f6a7c",
 "readOnly":true,
 "resources":[{
 "ARN":"arn:aws:kms:eu-
west-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId":"111122223333",
 "type":"AWS::KMS::Key"
 }],
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333",
 "vpcEndpointId": "vpce-1234abcdf5678c90a"
}

Logging Amazon KMS requests that use a VPC endpoint 18

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

Dual-stack endpoint support

Amazon KMS provides a dual-stack public endpoint that supports both IPv4 and IPv6 clients. A
dual-stack endpoint enables clients to communicate with Amazon KMS using either IPv4 or IPv6
addresses. For more information on the Amazon KMS endpoints, see Amazon Key Management
Service endpoints and quotas.

The Amazon KMS dual-stack public endpoint at https://kms.your-region.api.aws supports
both IPv4 and IPv6 clients. Amazon KMS is also privately accessible over IPv4 and IPv6 from your
virtual private cloud (VPC) using Amazon PrivateLink. For more information about creating private
interface VPC endpoints for Amazon KMS, see Connect to Amazon KMS through a VPC endpoint.

For more information about IPv6 addressing for your VPCs, see How Amazon VPC works in the
Amazon Virtual Private Cloud User Guide. For more information about how to configure your VPC
for dual-stack mode, see IP addressing for your VPCs and subnets in the Amazon Virtual Private
Cloud User Guide.

Features not available over IPv6

Amazon KMS cannot communicate over IPv6 with Amazon CloudHSM key stores or External key
stores. This limitation does not prevent you from calling Amazon KMS APIs over IPv6.

Dual-stack endpoints 19

https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/vpc/latest/userguide/how-it-works.html#vpc-ip-addressing
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-ip-addressing.html#vpc-ipv6

Amazon Key Management Service Developer Guide

Amazon KMS concepts

Learn the basic terms and concepts used in Amazon Key Management Service (Amazon KMS) and
how they work together to help protect your data.

Introduction to Amazon KMS

Amazon Key Management Service (Amazon KMS) provides a web interface to generate and manage
cryptographic keys and operates as a cryptographic service provider for protecting data. Amazon
KMS offers traditional key management services integrated with Amazon services to provide a
consistent view of customers’ keys across Amazon, with centralized management and auditing.

Amazon KMS includes a web interface through the Amazon Web Services Management Console,
command line interface, and RESTful API operations to request cryptographic operations of a
distributed fleet of FIPS 140-3 validated hardware security modules (HSMs). The Amazon KMS
HSM is a multichip standalone hardware cryptographic appliance designed to provide dedicated
cryptographic functions to meet the security and scalability requirements of Amazon KMS. You
can establish your own HSM-based cryptographic hierarchy under keys that you manage as
Amazon KMS keys. These keys are made available only on the HSMs and only in memory for the
necessary time needed to process your cryptographic request. You can create multiple KMS keys,
each represented by its key ID. Only under Amazon IAM roles and accounts administered by each
customer can customer managed KMS keys be created, deleted, or used to encrypt, decrypt, sign,
or verify data. You can define access controls on who can manage and/or use KMS keys by creating
a policy that is attached to the key. Such policies allow you to define application-specific uses for
your keys for each API operation.

In addition, most Amazon services support encryption of data at rest using KMS keys. This
capability allows customers to control how and when Amazon services can access encrypted data
by controlling how and when KMS keys can be accessed.

Introduction 20

Amazon Key Management Service Developer Guide

Amazon KMS is a tiered service consisting of web-facing Amazon KMS hosts and a tier of HSMs.
The grouping of these tiered hosts forms the Amazon KMS stack. All requests to Amazon KMS
must be made over the Transport Layer Security protocol (TLS) and terminate on an Amazon KMS
host. Amazon KMS hosts only allow TLS with a ciphersuite that provides perfect forward secrecy.
Amazon KMS authenticates and authorizes your requests using the same credential and policy
mechanisms of Amazon Identity and Access Management (IAM) that are available for all other
Amazon API operations.

Amazon KMS design goals

Amazon KMS is designed to meet the following requirements.

Durability

The durability of cryptographic keys is designed to equal that of the highest durability services
in Amazon. A single cryptographic key can encrypt large volumes of your data that has
accumulated over a long time.

Trustworthy

Use of keys is protected by access control policies that you define and manage. There is no
mechanism to export plaintext KMS keys. The confidentiality of your cryptographic keys is
crucial. Multiple Amazon employees with role-specific access to quorum-based access controls
are required to perform administrative actions on the HSMs.

Design goals 21

http://dx.doi.org/10.6028/NIST.SP.800-52r2

Amazon Key Management Service Developer Guide

Low-latency and high throughput

Amazon KMS provides cryptographic operations at latency and throughput levels suitable for
use by other services in Amazon.

Independent Regions

Amazon provides independent Regions for customers who need to restrict data access in
different Regions. Key usage can be isolated within an Amazon Web Services Region.

Secure source of random numbers

Because strong cryptography depends on truly unpredictable random number generation,
Amazon KMS provides a high-quality and validated source of random numbers.

Audit

Amazon KMS records the use and management of cryptographic keys in Amazon CloudTrail
logs. You can use Amazon CloudTrail logs to inspect use of your cryptographic keys, including
the use of keys by Amazon services on your behalf.

To achieve these goals, the Amazon KMS system includes a set of Amazon KMS operators
and service host operators (collectively, “operators”) that administer “domains.” A domain is a
Regionally defined set of Amazon KMS servers, HSMs, and operators. Each Amazon KMS operator
has a hardware token that contains a private and public key pair that is used to authenticate its
actions. The HSMs have an additional private and public key pair to establish encryption keys that
protect HSM state synchronization.

Amazon KMS keys

The KMS keys that you create and manage for use in your own cryptographic applications are of a
type known as customer managed keys. Customer managed keys can also be used in conjunction
with Amazon services that use KMS keys to encrypt the data the service stores on your behalf.
Customer managed keys are recommended for customers who want full control over the lifecycle
and usage of their keys. There is a monthly cost to have a customer managed key in your account.
In addition, requests use and/or manage the key incur a usage cost. See Amazon Key Management
Service Pricing for more details.

There are cases where a customer might want an Amazon service to encrypt their data, but they
don’t want the overhead of managing keys and don’t want to pay for a key. An Amazon managed

Amazon KMS keys 22

http://www.amazonaws.cn/kms/pricing/
http://www.amazonaws.cn/kms/pricing/

Amazon Key Management Service Developer Guide

key is a KMS key that exists in your account, but can only be used under certain circumstances.
Specifically, it can only be used in the context of the Amazon service you’re operating in and it can
only be used by principals within the account that the key exists. You cannot manage anything
about the lifecycle or permissions of these keys. As you use encryption features in Amazon
services, you may see Amazon managed keys; they use an alias of the form “aws<service code>”.
For example, an aws/ebs key can only be used to encrypt EBS volumes and only for volumes
used by IAM principals in the same account as the key. Think of an Amazon managed key that
is scoped down for use only by users in your account for resources in your account. You cannot
share resources encrypted under an Amazon managed key with other accounts. While an Amazon
managed key is free to exist in your account, you are charged for any use of this key type by the
Amazon service that is assigned to the key.

Amazon managed keys are a legacy key type that is no longer being created for new Amazon
services as of 2021. Instead, new (and legacy) Amazon services are using what’s known as an
Amazon owned key to encrypt customer data by default. An Amazon owned key is a KMS key
that is in an account managed by the Amazon service, so the service operators have the ability to
manage its lifecycle and usage permissions. By using Amazon owned keys, Amazon services can
transparently encrypt your data and allow for easy cross-account or cross-region sharing of data
without you needing to worry about key permissions. Use Amazon owned keys for encryption-by-
default workloads that provide easier, more automated data protection. Because these keys are
owned and managed by Amazon, you are not charged for their existence or their usage, you cannot
change their policies, you cannot audit activities on these keys, and you cannot delete them. Use
customer managed keys when control is important, but use Amazon owned keys when convenience
is most important.

 Customer managed
keys

Amazon managed
keys

Amazon owned keys

Key policy Exclusively controlled
by the customer

Controlled by service;
viewable by customer

Exclusively controlled
and only viewable by
the Amazon service
that encrypts your
data

Logging CloudTrail customer
trail or event data
store

CloudTrail customer
trail or event data
store

Not viewable by the
customer

Amazon KMS keys 23

Amazon Key Management Service Developer Guide

Lifecycle
management

Customer manages
rotation, deletion and
Regional location

Amazon KMS
manages rotation
(annual), deletion,
and Regional location

Amazon Web Services
service manages
rotation, deletion,
and Regional location

Pricing Monthly fee for
existence of keys
(pro-rated hourly).
Also charged for key
usage

No monthly fee; but
the caller is charged
for API usage on
these keys

No charges to
customer

The KMS keys that you create are customer managed keys. Amazon Web Services services that use
KMS keys to encrypt your service resources often create keys for you. KMS keys that Amazon Web
Services services create in your Amazon account are Amazon managed keys. KMS keys that Amazon
Web Services services create in a service account are Amazon owned keys.

Type of KMS
key

Can view
KMS key
metadata

Can manage
KMS key

Used only
for my
Amazon Web
Services
account

Automatic
rotation

Pricing

Customer
managed key

Yes Yes Yes Optional. Monthly fee
(pro-rated
hourly)

Per-use fee

Amazon
managed key

Yes No Yes Required.
Every year
(approxim
ately 365
days).

No monthly
fee

Per-use
fee (some
Amazon
Web Services
services pay

Amazon KMS keys 24

http://www.amazonaws.cn/kms/pricing/

Amazon Key Management Service Developer Guide

Type of KMS
key

Can view
KMS key
metadata

Can manage
KMS key

Used only
for my
Amazon Web
Services
account

Automatic
rotation

Pricing

this fee for
you)

Amazon
owned key

No No No The Amazon
Web Services
service
manages
the rotation
strategy.

No fees

Amazon services that integrate with Amazon KMS differ in their support for KMS keys. Some
Amazon services encrypt your data by default with an Amazon owned key or an Amazon managed
key. Some Amazon services support customer managed keys. Other Amazon services support all
types of KMS keys to allow you the ease of an Amazon owned key, the visibility of an Amazon
managed key, or the control of a customer managed key. For detailed information about the
encryption options that an Amazon service offers, see the Encryption at Rest topic in the user guide
or the developer guide for the service.

Customer managed keys

The KMS keys that you create are customer managed keys. Customer managed keys are KMS keys in
your Amazon Web Services account that you create, own, and manage. You have full control over
these KMS keys, including establishing and maintaining their key policies, IAM policies, and grants,
enabling and disabling them, rotating their cryptographic material, adding tags, creating aliases
that refer to the KMS keys, and scheduling the KMS keys for deletion.

Customer managed keys appear on the Customer managed keys page of the Amazon Web
Services Management Console for Amazon KMS. To definitively identify a customer managed key,
use the DescribeKey operation. For customer managed keys, the value of the KeyManager field of
the DescribeKey response is CUSTOMER.

Customer managed keys 25

http://www.amazonaws.cn/kms/pricing/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

You can use your customer managed key in cryptographic operations and audit usage in Amazon
CloudTrail logs. In addition, many Amazon services that integrate with Amazon KMS let you specify
a customer managed key to protect the data stored and managed for you.

Customer managed keys incur a monthly fee and a fee for use in excess of the free tier. They
are counted against the Amazon KMS quotas for your account. For details, see Amazon Key
Management Service Pricing and Quotas.

Amazon managed keys

Amazon managed keys are KMS keys in your account that are created, managed, and used on your
behalf by an Amazon service integrated with Amazon KMS.

Some Amazon services let you choose an Amazon managed key or a customer managed key to
protect your resources in that service. In general, unless you are required to control the encryption
key that protects your resources, an Amazon managed key is a good choice. You don't have
to create or maintain the key or its key policy, and there's never a monthly fee for an Amazon
managed key.

You have permission to view the Amazon managed keys in your account, view their key policies,
and audit their use in Amazon CloudTrail logs. However, you cannot change any properties of
Amazon managed keys, rotate them, change their key policies, or schedule them for deletion. And,
you cannot use Amazon managed keys in cryptographic operations directly; the service that creates
them uses them on your behalf.

Resource control policies in your organization do not apply to Amazon managed keys.

Amazon managed keys appear on the Amazon managed keys page of the Amazon Web Services
Management Console for Amazon KMS. You can also identify Amazon managed keys by their
aliases, which have the format aws/service-name, such as aws/redshift. To definitively
identify an Amazon managed keys, use the DescribeKey operation. For Amazon managed keys, the
value of the KeyManager field of the DescribeKey response is Amazon.

All Amazon managed keys are automatically rotated every year. You cannot change this rotation
schedule.

Note

In May 2022, Amazon KMS changed the rotation schedule for Amazon managed keys from
every three years (approximately 1,095 days) to every year (approximately 365 days).

Amazon managed keys 26

http://www.amazonaws.cn/kms/pricing/
http://www.amazonaws.cn/kms/pricing/
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

There is no monthly fee for Amazon managed keys. They can be subject to fees for use in excess
of the free tier, but some Amazon services cover these costs for you. For details, see the Encryption
at Rest topic in the user guide or developer guide for the service. For details, see Amazon Key
Management Service Pricing.

Amazon managed keys do not count against resource quotas on the number of KMS keys in each
Region of your account. But when used on behalf of a principal in your account, the KMS keys count
against request quotas. For details, see Quotas.

Amazon owned keys

Amazon owned keys are a collection of KMS keys that an Amazon service owns and manages for use
in multiple Amazon Web Services accounts. Although Amazon owned keys are not in your Amazon
Web Services account, an Amazon service can use an Amazon owned key to protect the resources in
your account.

Some Amazon services let you choose an Amazon owned key or a customer managed key. In
general, unless you are required to audit or control the encryption key that protects your resources,
an Amazon owned key is a good choice. Amazon owned keys are completely free of charge (no
monthly fees or usage fees), they do not count against the Amazon KMS quotas for your account,
and they're easy to use. You don't need to create or maintain the key or its key policy.

The rotation of Amazon owned keys varies across services. For information about the rotation of a
particular Amazon owned key, see the Encryption at Rest topic in the user guide or developer guide
for the service.

Amazon KMS key hierarchy

Your key hierarchy starts with a top-level logical key, an Amazon KMS key. A KMS key represents a
container for top-level key material and is uniquely defined within the Amazon service namespace
with an Amazon Resource Name (ARN). The ARN includes a uniquely generated key identifier, a key
ID. A KMS key is created based on a user-initiated request through Amazon KMS. Upon reception,
Amazon KMS requests the creation of an initial HSM backing key (HBK) to be placed into the
KMS key container. The HBK is generated on an HSM in the domain and is designed never to be
exported from the HSM in plaintext. Instead, the HBK is exported encrypted under HSM-managed
domain keys. These exported HBKs are referred to as exported key tokens (EKTs).

The EKT is exported to a highly durable, low-latency storage. For example, suppose you receive an
ARN to the logical KMS key. This represents the top of a key hierarchy, or cryptographic context, for

Amazon owned keys 27

http://www.amazonaws.cn/kms/pricing/
http://www.amazonaws.cn/kms/pricing/

Amazon Key Management Service Developer Guide

you. You can create multiple KMS keys within your account and set policies on your KMS keys like
any other Amazon named resource.

Within the hierarchy of a specific KMS key, the HBK can be thought of as a version of the KMS key.
When you want to rotate the KMS key through Amazon KMS, a new HBK is created and associated
with the KMS key as the active HBK for the KMS key. The older HBKs are preserved and can be used
to decrypt and verify previously protected data. But only the active cryptographic key can be used
to protect new information.

You can make requests through Amazon KMS to use your KMS keys to directly protect information
or request additional HSM-generated keys that are protected under your KMS key. These keys are
called customer data keys, or CDKs. CDKs can be returned encrypted as ciphertext (CT), in plaintext,
or both. All objects encrypted under a KMS key (either customer-supplied data or HSM-generated
keys) can be decrypted only on an HSM via a call through Amazon KMS.

The returned ciphertext, or the decrypted payload, is never stored within Amazon KMS. The
information is returned to you over your TLS connection to Amazon KMS. This also applies to calls
made by Amazon services on your behalf.

The key hierarchy and the specific key properties appear in the following table.

Key Description Lifecycle

Domain key A 256-bit AES-GCM key only in
memory of an HSM used to wrap

Rotated daily1

Amazon KMS key hierarchy 28

Amazon Key Management Service Developer Guide

Key Description Lifecycle

versions of the KMS keys, the HSM
backing keys.

HSM backing key A 256-bit symmetric key or RSA
or elliptic curve private key, used
to protect customer data and keys
and stored encrypted under domain
keys. One or more HSM backing keys
comprise the KMS key, represented
by the keyId.

Rotated yearly2

(optional
config.)

Derived encryption key A 256-bit AES-GCM key only in
memory of an HSM used to encrypt
customer data and keys. Derived
from an HBK for each encryption.

Used once per
encrypt and
regenerated on
decrypt

Customer data key User-defined symmetric or
asymmetric key exported from HSM
in plaintext and ciphertext.

Encrypted under an HSM backing
key and returned to authorized users
over TLS channel.

Rotation and use
controlled by
application

1 Amazon KMS might from time to time relax domain key rotation to at most weekly to account for
domain administration and configuration tasks.

2 Default Amazon managed keys created and managed by Amazon KMS on your behalf are
automatically rotated annually.

Key identifiers (KeyId)

Key identifiers act like names for your KMS keys. They help you to recognize your KMS keys in the
console. You use them to indicate which KMS keys you want to use in Amazon KMS API operations,
key policies, IAM policies, and grants. The key identifier values are completely unrelated to the key
material associated with the KMS key.

Key identifiers (KeyId) 29

Amazon Key Management Service Developer Guide

Amazon KMS defines several key identifiers. When you create a KMS key, Amazon KMS generates a
key ARN and key ID, which are properties of the KMS key. When you create an alias, Amazon KMS
generates an alias ARN based on the alias name that you define. You can view the key and alias
identifiers in the Amazon Web Services Management Console and in the Amazon KMS API.

In the Amazon KMS console, you can view and filter KMS keys by their key ARN, key ID, or alias
name, and sort by key ID and alias name. For help finding the key identifiers in the console, see the
section called “Find the key ID and key ARN”.

In the Amazon KMS API, the parameters you use to identify a KMS key are named KeyId or a
variation, such as TargetKeyId or DestinationKeyId. However, the values of those parameters
are not limited to key IDs. Some can take any valid key identifier. For information about the values
for each parameter, see the parameter description in the Amazon Key Management Service API
Reference.

Note

When using the Amazon KMS API, be careful about the key identifier that you use. Different
APIs require different key identifiers. In general, use the most complete and practical key
identifier for your task.

Amazon KMS supports the following key identifiers.

Key ARN

The key ARN is the Amazon Resource Name (ARN) of a KMS key. It is a unique, fully qualified
identifier for the KMS key. A key ARN includes the Amazon Web Services account, Region, and
the key ID. For help finding the key ARN of a KMS key, see the section called “Find the key ID
and key ARN”.

The format of a key ARN is as follows:

arn:<partition>:kms:<region>:<account-id>:key/<key-id>

The following is an example key ARN for a single-Region KMS key.

arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Key identifiers (KeyId) 30

Amazon Key Management Service Developer Guide

The key-id element of the key ARNs of multi-Region keys begin with the mrk- prefix. The
following is an example key ARN for a multi-Region key.

arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab

Key ID

The key ID uniquely identifies a KMS key within an account and Region. For help finding the key
ID of a KMS key, see the section called “Find the key ID and key ARN”.

The following is an example key ID for a single-Region KMS key.

1234abcd-12ab-34cd-56ef-1234567890ab

The key IDs of multi-Region keys begin with the mrk- prefix. The following is an example key ID
for a multi-Region key.

mrk-1234abcd12ab34cd56ef1234567890ab

Alias ARN

The alias ARN is the Amazon Resource Name (ARN) of an Amazon KMS alias. It is a unique, fully
qualified identifier for the alias, and for the KMS key it represents. An alias ARN includes the
Amazon Web Services account, Region, and the alias name.

At any given time, an alias ARN identifies one particular KMS key. However, because you can
change the KMS key associated with the alias, the alias ARN can identify different KMS keys at
different times. For help finding the alias ARN of a KMS key, see Find the alias name and alias
ARN for a KMS key.

The format of an alias ARN is as follows:

arn:<partition>:kms:<region>:<account-id>:alias/<alias-name>

The following is the alias ARN for a fictitious ExampleAlias.

arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

Key identifiers (KeyId) 31

Amazon Key Management Service Developer Guide

Alias name

The alias name is a string of up to 256 characters. It uniquely identifies an associated KMS key
within an account and Region. In the Amazon KMS API, alias names always begin with alias/.
For help finding the alias name of a KMS key, see Find the alias name and alias ARN for a KMS
key.

The format of an alias name is as follows:

alias/<alias-name>

For example:

alias/ExampleAlias

The aws/ prefix for an alias name is reserved for Amazon managed keys. You cannot create
an alias with this prefix. For example, the alias name of the Amazon managed key for Amazon
Simple Storage Service (Amazon S3) is the following.

alias/aws/s3

Asymmetric keys in Amazon KMS

An asymmetric KMS key represents a mathematically related public key and private key pair. You
can give the public key to anyone, even if they're not trusted, but the private key must be kept
secret.

In an asymmetric KMS key, the private key is created in Amazon KMS and never leaves Amazon
KMS unencrypted. To use the private key, you must call Amazon KMS. You can use the public key
within Amazon KMS by calling the Amazon KMS API operations. Or, you can download the public
key and use it outside of Amazon KMS.

If your use case requires encryption outside of Amazon by users who cannot call Amazon KMS,
asymmetric KMS keys are a good choice. However, if you are creating a KMS key to encrypt the
data that you store or manage in an Amazon service, use a symmetric encryption KMS key. Amazon
services that are integrated with Amazon KMS use only symmetric encryption KMS keys to encrypt
your data. These services do not support encryption with asymmetric KMS keys.

Amazon KMS supports three types of asymmetric KMS keys.

Asymmetric keys 32

http://www.amazonaws.cn/kms/features/#AWS_Service_Integration
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

RSA KMS keys

A KMS key with an RSA key pair for encryption and decryption or signing and verification (but
not both). Amazon KMS supports several key lengths for different security requirements.

For technical details about the encryption and signing algorithms that Amazon KMS supports
for RSA KMS keys, see RSA key specs.

Elliptic Curve (ECC) KMS keys

A KMS key with an elliptic curve key pair for signing and verification or deriving shared secrets
(but not both). Amazon KMS supports several commonly-used curves.

For technical details about the signing algorithms that Amazon KMS supports for ECC KMS keys,
see Elliptic curve key specs.

ML-DSA KMS keys

A KMS key with an ML-DSA key pair for signing and verification. ML-DSA is a post-quantum
cryptography standard developed by the US National Institute of Standards and Technology
(NIST) to protect against the security threats posed by quantum computing. ML-DSA is the
recommended digital signature algorithm for organizations transitioning from RSA or Elliptic
Curve digital signature algorithms to post-quantum safe cryptography.

Amazon KMS supports several key lengths for different security requirements. For technical
details about the signing algorithms that Amazon KMS supports for ML-DSA KMS keys, see ML-
DSA key spec.

SM2 KMS keys (China Regions only)

A KMS key with an SM2 key pair for encryption and decryption, signing and verification, or
deriving shared secrets (you must choose one key usage type).

For technical details about the encryption and signing algorithms that Amazon KMS supports
for SM2 KMS keys (China Regions only), see SM2 key spec.

For help choosing your asymmetric key configuration, see Choosing what type of KMS key to
create.

Regions

Asymmetric KMS keys and asymmetric data key pairs are supported in all Amazon Web Services
Regions that Amazon KMS supports.

Asymmetric keys 33

Amazon Key Management Service Developer Guide

Learn more

• To create asymmetric KMS keys, see Create an asymmetric KMS key.

• To create multi-Region asymmetric KMS keys, see Create multi-Region primary keys.

• To learn how to sign messages and verify signatures with asymmetric KMS keys, see Digital
signing with the new asymmetric keys feature of Amazon KMS in the Amazon Security Blog.

• To learn about special considerations for deleting asymmetric KMS keys, see Deleting asymmetric
KMS keys.

• To identify and view asymmetric KMS keys, see Identify asymmetric KMS keys.

HMAC keys in Amazon KMS

Hash-Based Message Authentication Code (HMAC) KMS keys are symmetric keys that you use to
generate and verify HMACs within Amazon KMS. The unique key material associated with each
HMAC KMS key provides the secret key that HMAC algorithms require. You can use an HMAC KMS
key with the GenerateMac and VerifyMac operations to verify the integrity and authenticity of
data within Amazon KMS.

HMAC algorithms combine a cryptographic hash function and a shared secret key. They take a
message and a secret key, such as the key material in an HMAC KMS key, and return a unique, fixed-
size code or tag. If even one character of the message changes, or if the secret key is not identical,
the resulting tag is entirely different. By requiring a secret key, HMAC also provides authenticity;
it is impossible to generate an identical HMAC tag without the secret key. HMACs are sometimes
called symmetric signatures, because they work like digital signatures, but use a single key for both
signing and verification.

HMAC KMS keys and the HMAC algorithms that Amazon KMS uses conform to industry standards
defined in RFC 2104. The Amazon KMS GenerateMac operation generates standard HMAC tags.
HMAC KMS keys are generated in Amazon KMS hardware security modules that are certified under
the FIPS 140-3 Cryptographic Module Validation Program (except in China (Beijing) and China
(Ningxia) Regions) and never leave Amazon KMS unencrypted. To use an HMAC KMS key, you must
call Amazon KMS.

You can use HMAC KMS keys to determine the authenticity of a message, such as a JSON Web
Token (JWT), tokenized credit card information, or a submitted password. They can also be used as
secure Key Derivation Functions (KDFs), especially in applications that require deterministic keys.

HMAC keys 34

https://amazonaws-china.com/blogs/security/digital-signing-asymmetric-keys-aws-kms/
https://amazonaws-china.com/blogs/security/digital-signing-asymmetric-keys-aws-kms/
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html
https://datatracker.ietf.org/doc/html/rfc2104
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884

Amazon Key Management Service Developer Guide

HMAC KMS keys provide an advantage over HMACs from application software because the key
material is generated and used entirely within Amazon KMS, subject to the access controls that you
set on the key.

Tip

Best practices recommend that you limit the time during which any signing mechanism,
including an HMAC, is effective. This deters an attack where the actor uses a signed
message to establish validity repeatedly or long after the message is superseded. HMAC
tags do not include a timestamp, but you can include a timestamp in the token or message
to help you detect when its time to refresh the HMAC.

Supported cryptographic operations

HMAC KMS keys support only the GenerateMac and VerifyMac cryptographic operations. You
cannot use HMAC KMS keys to encrypt data or sign messages, or use any other type of KMS key
in HMAC operations. When you use the GenerateMac operation, you supply a message of up
to 4,096 bytes, an HMAC KMS key, and the MAC algorithm that is compatible with the HMAC
key spec, and GenerateMac computes the HMAC tag. To verify an HMAC tag, you must supply
the HMAC tag, and the same message, HMAC KMS key, and MAC algorithm that GenerateMac
used to compute the original HMAC tag. The VerifyMac operation computes the HMAC tag
and verifies that it is identical to the supplied HMAC tag. If the input and computed HMAC tags
are not identical, verification fails.

HMAC KMS keys do not support automatic key rotation and you cannot create an HMAC KMS
key in a custom key store.

If you are creating a KMS key to encrypt data in an Amazon service, use a symmetric encryption
key. You cannot use an HMAC KMS key.

Regions

HMAC KMS keys are supported in all Amazon Web Services Regions that Amazon KMS supports.

Learn more

• To create HMAC KMS keys, see Create an HMAC KMS key.

• To create multi-Region HMAC KMS keys, see Multi-Region keys in Amazon KMS.

HMAC keys 35

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html

Amazon Key Management Service Developer Guide

• To examine the difference in the default key policy that the Amazon KMS console sets for
HMAC KMS keys, see the section called “Allows key users to use a KMS key for cryptographic
operations”.

• To identify and view HMAC KMS keys, see Identify HMAC KMS keys.

• To learn about using HMACs to create JSON web tokens, see How to protect HMACs inside
Amazon KMS in the Amazon Security Blog.

• Listen to a podcast: Introducing HMACs for Amazon Key Management Service on The Official
Amazon Podcast.

ML-DSA keys in Amazon KMS

Amazon Key Management Service (Amazon KMS) supports Module-Lattice Digital Signature
Algorithm (ML-DSA) for post-quantum cryptographic signatures. This implementation follows
the Federal Information Processing Standards (FIPS) 204 standard to help protect against future
quantum computing threats. Amazon KMS creates and protects all ML-DSA keys and signature
operations in FIPS 140-3 Security Level 3 validated hardware security modules. To help balance
security with performance, ML-DSA in Amazon KMS offers three distinct security levels through
different key specifications, ML_DSA_44, ML_DSA_65, and ML_DSA_87.

Amazon KMS supports asymmetric key signatures for messages up to 4 KB using the RAW message
type. For larger messages, you must externally compute the 64-byte message representation μ
used in ML-DSA signing as defined in NIST FIPS 204 section 6.2. Use the EXTERNAL_MU message
type in the Amazon KMS Sign operation to specify this pre-processed 64-byte message. The
signatures produced by the externally computed μ are the same as the RAW ones when using the
same message and private key. Note that this signing is different from the "pre-hash" ML-DSA or
HashML-DSA from section 5.4 of NIST FIPS 204.

For more information about using ML-DSA and the EXTERNAL_MU message type, see ML-DSA key
specs.

For an example of using ML-DSA and the EXTERNAL_MU message type, see Offline verification
with ML-DSA key pairs.

Multi-Region keys in Amazon KMS

Amazon KMS supports multi-Region keys, which are Amazon KMS keys in different Amazon Web
Services Regions that can be used interchangeably – as though you had the same key in multiple

ML-DSA keys 36

https://amazonaws-china.com/blogs/security/how-to-protect-hmacs-inside-aws-kms/
https://amazonaws-china.com/blogs/security/how-to-protect-hmacs-inside-aws-kms/
introducing-hmacs-apis-in-aws-key-management-service
https://csrc.nist.gov/pubs/fips/204/final
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html

Amazon Key Management Service Developer Guide

Regions. Each set of related multi-Region keys has the same key material and key ID, so you can
encrypt data in one Amazon Web Services Region and decrypt it in a different Amazon Web
Services Region without re-encrypting or making a cross-Region call to Amazon KMS.

Like all KMS keys, multi-Region keys never leave Amazon KMS unencrypted. You can create
symmetric or asymmetric multi-Region keys for encryption or signing, create HMAC multi-Region
keys for generating and verifying HMAC tags, and create multi-Region keys with imported key
material or key material that Amazon KMS generates. You must manage each multi-Region key
independently, including creating aliases and tags, setting their key policies and grants, and
enabling and disabling them selectively. You can use multi-Region keys in all cryptographic
operations that you can do with single-Region keys.

Multi-Region keys are a flexible and powerful solution for many common data security scenarios.

Disaster recovery

In a backup and recovery architecture, multi-Region keys let you process encrypted data
without interruption even in the event of an Amazon Web Services Region outage. Data
maintained in backup Regions can be decrypted in the backup Region, and data newly
encrypted in the backup Region can be decrypted in the primary Region when that Region is
restored.

Global data management

Businesses that operate globally need globally distributed data that is available consistently
across Amazon Web Services Regions. You can create multi-Region keys in all Regions where
your data resides, then use the keys as though they were a single-Region key without the
latency of a cross-Region call or the cost of re-encrypting data under a different key in each
Region.

Distributed signing applications

Applications that require cross-Region signature capabilities can use multi-Region asymmetric
signing keys to generate identical digital signatures consistently and repeatedly in different
Amazon Web Services Regions.

If you use certificate chaining with a single global trust store (for a single root certificate
authority (CA), and Regional intermediate CAs signed by the root CA, you don't need multi-
Region keys. However, if your system doesn't support intermediate CAs, such as application
signing, you can use multi-Region keys to bring consistency to Regional certifications.

Multi-Region keys 37

Amazon Key Management Service Developer Guide

Active-active applications that span multiple Regions

Some workloads and applications can span multiple Regions in active-active architectures. For
these applications, multi-Region keys can reduce complexity by providing the same key material
for concurrent encrypt and decrypt operations on data that might be moving across Region
boundaries.

You can use multi-Region keys with client-side encryption libraries, such as the Amazon Encryption
SDK, the Amazon Database Encryption SDK, and Amazon S3 client-side encryption.

Amazon services that integrate with Amazon KMS for encryption at rest or digital signatures
currently treat multi-Region keys as though they were single-Region keys. They might re-wrap
or re-encrypt data moved between Regions. For example, Amazon S3 cross-region replication
decrypts and re-encrypts data under a KMS key in the destination Region, even when replicating
objects protected by a multi-Region key.

Multi-Region keys are not global. You create a multi-Region primary key and then replicate it
into Regions that you select within an Amazon partition. Then you manage the multi-Region key
in each Region independently. Neither Amazon nor Amazon KMS ever automatically creates or
replicates multi-Region keys into any Region on your behalf. Amazon managed keys, the KMS keys
that Amazon services create in your account for you, are always single-Region keys.

In China Regions, you can use the multi-Region key feature to replicate KMS keys within the China
Regions partition (aws-cn). For example, you can replicate a key from the China (Beijing) Region to
the China (Ningxia) Region, or the reverse. By replicating a key from one China region to another,
you agree to use the Amazon Key Management Service of the destination region and comply with
all applicable terms of agreement for the destination region. You cannot replicate a key from
the Beijing and Ningxia Regions into an Amazon Region outside of the China Regions partition.
Similarly, you cannot replicate a key from a region outside of the China Regions partition into the
Beijing and Ningxia Regions.

You cannot convert an existing single-Region key to a multi-Region key. This design ensures that
all data protected with existing single-Region keys maintain the same data residency and data
sovereignty properties.

For most data security needs, the Regional isolation and fault tolerance of Regional resources make
standard Amazon KMS single-Region keys a best-fit solution. However, when you need to encrypt
or sign data in client-side applications across multiple Regions, multi-Region keys might be the
solution.

Multi-Region keys 38

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/
https://docs.amazonaws.cn/dynamodb-encryption-client/latest/devguide/
https://docs.amazonaws.cn/AmazonS3/latest/userguide/UsingClientSideEncryption.html
http://www.amazonaws.cn/kms/features/
https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html

Amazon Key Management Service Developer Guide

Regions

Multi-Region keys are supported in all Amazon Web Services Regions that Amazon KMS supports.

Pricing and quotas

Every key in a set of related multi-Region keys counts as one KMS key for pricing and quotas.
Amazon KMS quotas are calculated separately for each Region of an account. Use and
management of the multi-Region keys in each Region count toward the quotas for that Region.

Supported KMS key types

You can create the following types of multi-Region KMS keys:

• Symmetric encryption KMS keys

• Asymmetric KMS keys

• HMAC KMS keys

• KMS keys with imported key material

You cannot create multi-Region keys in a custom key store.

Learn more

• To learn how to control access to multi-Region KMS keys, see Control access to multi-Region
keys.

• To create multi-Region primary KMS keys of any type, see Create multi-Region primary keys.

• To create multi-Region replica KMS keys, see Create multi-Region replica keys.

• To update the primary Region, see Change the primary key in a set of multi-Region keys.

• To identify and view multi-Region KMS keys, see Identify HMAC KMS keys.

• To learn about special considerations for deleting multi-Region KMS keys, see Deleting multi-
Region keys.

Terminology and concepts

The following terms and concepts are used with multi-Region keys.

Multi-Region keys 39

Amazon Key Management Service Developer Guide

Multi-Region key

A multi-Region key is one of a set of KMS keys with the same key ID and key material (and
other shared properties) in different Amazon Web Services Regions. Each multi-Region key is a
fully functioning KMS key that can be used entirely independently of its related multi-Region
keys. Because all related multi-Region keys have the same key ID and key material, they are
interoperable, that is, any related multi-Region key in any Amazon Web Services Region can decrypt
ciphertext encrypted by any other related multi-Region key.

You set the multi-Region property of a KMS key when you create it. You cannot change the multi-
Region property on an existing key. You cannot convert a single-Region key to multi-Region key or
a convert a multi-Region key to a single-Region key. To move existing workloads into multi-Region
scenarios, you must re-encrypt your data or create new signatures with new multi-Region keys.

A multi-Region key can be symmetric or asymmetric and it can use Amazon KMS key material or
imported key material. You cannot create multi-Region keys in a custom key store.

In a set of related multi-Region keys, there is exactly one primary key at any time. You can create
replica keys of that primary key in other Amazon Web Services Regions. You can also update the
primary region, which changes the primary key to a replica key and changes a specified replica key
to the primary key. However, you can maintain only one primary key or replica key in each Amazon
Web Services Region. All of the Regions must be in the same Amazon partition.

You can have multiple sets of related multi-Region keys in the same or different Amazon Web
Services Regions. Although related multi-Region keys are interoperable, unrelated multi-Region
keys are not interoperable.

Primary key

A multi-Region primary key is a KMS key that can be replicated into other Amazon Web Services
Regions in the same partition. Each set of multi-Region keys has just one primary key.

A primary key differs from a replica key in the following ways:

• Only a primary key can be replicated.

• The primary key is the source for shared properties of its replica keys, including the key material
and key ID.

• You can enable and disable automatic key rotation only on a primary key.

• You can schedule the deletion of a primary key at any time. But Amazon KMS will not delete a
primary key until all of its replica keys are deleted.

Multi-Region keys 40

https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html

Amazon Key Management Service Developer Guide

However, primary and replica keys don't differ in any cryptographic properties. You can use a
primary key and its replica keys interchangeably.

You are not required to replicate a primary key. You can use it just as you would any KMS key and
replicate it if and when it is useful. However, because multi-Region keys have different security
properties than single-Region keys, we recommend that you create a multi-Region key only when
you plan to replicate it.

Replica key

A multi-Region replica key is a KMS key that has the same key ID and key material as its primary key
and related replica keys, but exists in a different Amazon Web Services Region.

A replica key is a fully functional KMS key with it own key policy, grants, alias, tags, and other
properties. It is not a copy of or pointer to the primary key or any other key. You can use a replica
key even if its primary key and all related replica keys are disabled. You can also convert a replica
key to a primary key and a primary key to a replica key. Once it is created, a replica key relies on its
primary key only for key rotation and updating the primary Region.

Primary and replica keys don't differ in any cryptographic properties. You can use a primary key
and its replica keys interchangeably. Data encrypted by a primary or replica key can be decrypted
by the same key, or by any related primary or replica key.

Replicate

You can replicate a multi-Region primary key into a different Amazon Web Services Region in the
same partition. When you do, Amazon KMS creates a multi-Region replica key in the specified
Region with the same key ID and other shared properties as its primary key. Then it securely
transports the key material across the Region boundary and associates it with the new replica key,
all within Amazon KMS.

Shared properties

Shared properties are properties of a multi-Region primary key that are shared with its replica keys.
Amazon KMS creates the replica keys with the same shared property values as those of the primary
key. Then, it periodically synchronizes the shared property values of the primary key to its replica
keys. You cannot set these properties on a replica key.

The following are the shared properties of multi-Region keys.

• Key ID — (The Region element of the key ARN differs.)

Multi-Region keys 41

Amazon Key Management Service Developer Guide

• Key material

• Key material origin

• Key spec and encryption algorithms

• Key usage

• Automatic key rotation — You can enable and disable automatic key rotation only on the
primary key. New replica keys are created with all versions of the shared key material. For details,
see Rotating multi-Region keys.

• On-demand rotation — You can perform on-demand rotation only on the primary key. New
replica keys are created with all versions of the shared key material. For details, see Rotating
multi-Region keys.

You can also think of the primary and replica designations of related multi-Region keys as
shared properties. When you create new replica keys or update the primary key, Amazon KMS
synchronizes the change to all related multi-Region keys. When these changes are complete, all
related multi-Region keys list their primary key and replica keys accurately.

All other properties of multi-Region keys are independent properties, including the description, key
policy, grants, enabled and disabled key states, aliases, and tags. You can set the same values for
these properties on all related multi-Region keys, but if you change the value of an independent
property, Amazon KMS does not synchronize it.

You can track the synchronization of the shared properties of your multi-Region keys. In your
Amazon CloudTrail log, look for the SynchronizeMultiRegionKey event.

Security considerations for multi-Region keys

Use an Amazon KMS multi-Region key only when you need one. Multi-Region keys provide a
flexible and scalable solution for workloads that move encrypted data between Amazon Web
Services Regions or need cross-Region access. Consider a multi-Region key if you must share,
move, or back up protected data across Regions or need to create identical digital signatures of
applications operating in different Regions.

However, the process of creating a multi-Region key moves your key material across Amazon Web
Services Region boundaries within Amazon KMS. The ciphertext generated by a multi-Region key
can potentially be decrypted by multiple related keys in multiple geographic locations. There are
also significant benefits to Regionally-isolated services and resources. Each Amazon Web Services

Multi-Region keys 42

Amazon Key Management Service Developer Guide

Region is isolated and independent of the other Regions. Regions provide fault tolerance, stability,
and resilience, and can also reduce latency. They enable you to create redundant resources that
remain available and unaffected by an outage in another Region. In Amazon KMS, they also ensure
that every ciphertext can be decrypted by only one key.

Multi-Region keys also raise new security considerations:

• Controlling access and enforcing data security policy is more complex with multi-Region keys.
You need to ensure that policy is audited consistently on key across multiple, isolated regions.
And you need to use policy to enforce boundaries, instead of relying on separate keys.

For example, you need to set policy conditions on data to prevent payroll teams in one Region
from being able to read payroll data for a different Region. Also, you must use access control
to prevent a scenario where a multi-Region key in one Region protects one tenant's data and a
related multi-Region key in another Region protects a different tenant's data.

• Auditing keys across Regions is also more complex. With multi-Region keys, you need to examine
and reconcile audit activities across multiple Regions to gain a complete understanding of key
activities on protected data.

• Compliance with data residency mandates can be more complex. With isolated Regions, you
can ensure data residency and data sovereignty compliance. KMS keys in a given Region can
decrypt sensitive data only in that Region. Data encrypted in one Region can remain completely
protected and inaccessible in any other Region.

To verify data residency and data sovereignty with multi-Region keys, you need to implement
access policies and compile Amazon CloudTrail events across multiple Regions.

To make it easier for you to manage access control on multi-Region keys, the permission to
replicate a multi-Region key (kms:ReplicateKey) is separate from the standard permission to create
keys (kms:CreateKey). Also, Amazon KMS supports several policy conditions for multi-Region keys,
including kms:MultiRegion, which allows or denies permission to create, use, or manage multi-
Region keys and kms:ReplicaRegion, which restricts the Regions into which a multi-Region key
can be replicated. For details, see Control access to multi-Region keys.

How multi-Region keys work

You begin by creating a symmetric or asymmetric multi-Region primary key in an Amazon Web
Services Region that Amazon KMS supports, such as US East (N. Virginia). You decide whether a
key is single-Region or multi-Region only when you create it; you can't change this property later.

Multi-Region keys 43

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

As with any KMS key, you set a key policy for the multi-Region key, and you can create grants,
and add aliases and tags for categorization and authorization. (These are independent properties
that aren't shared or synchronized with other keys.) You can use your multi-Region primary key in
cryptographic operations for encryption or signing.

You can create a multi-Region primary key in the Amazon KMS console or by using the CreateKey
API with the MultiRegion parameter set to true. Notice that multi-Region keys have a distinctive
key ID that begins with mrk-. You can use the mrk- prefix to identify MRKs programmatically.

If you choose, you can replicate the multi-Region primary key into one or more different Amazon
Web Services Regions in the same Amazon partition, such as Europe (Ireland). When you do,
Amazon KMS creates a replica key in the specified Region with the same key ID and other shared
properties as the primary key. Then it securely transports the key material across the Region
boundary and associates it with the new KMS key in the destination Region, all within Amazon
KMS. The result is two related multi-Region keys — a primary key and a replica key — that can be
used interchangeably.

You can create a multi-Region replica key in the Amazon KMS console or by using the ReplicateKey
API.

The resulting multi-Region replica key is a fully-functional KMS key with the same shared
properties as the primary key. In all other respects, it is an independent KMS key with its own

Multi-Region keys 44

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html

Amazon Key Management Service Developer Guide

description, key policy, grants, aliases, and tags. Enabling or disabling a multi-Region key has no
effect on related multi-Region keys. You can use the primary and replica keys independently in
cryptographic operations or coordinate their use. For example, you can encrypt data with the
primary key in the US East (N. Virginia) Region, move the data to the Europe (Ireland) Region and
use the replica key to decrypt the data.

Related multi-Region keys have the same key ID. Their key ARNs (Amazon Resource Names) differ
only in the Region field. For example, the multi-Region primary key and replica keys might have the
following example key ARNs. The key ID – the last element in the key ARN – is identical. Both keys
have the distinctive key ID of multi-Region keys, which begins with mrk-.

Primary key: arn:aws:kms:us-
east-1:111122223333:key/mrk-1234abcd12ab34cd56ef12345678990ab
Replica key: arn:aws:kms:eu-
west-1:111122223333:key/mrk-1234abcd12ab34cd56ef12345678990ab

Having the same key ID is required for interoperability. When encrypting, Amazon KMS binds the
key ID of the KMS key to the ciphertext so the ciphertext can be decrypted only with that KMS
key or a KMS key with the same key ID. This feature also makes related multi-Region keys easy to
recognize, and it makes it easier to use them interchangeably. For example, when using them in an
application, you can refer to related multi-Region keys by their shared key ID. Then, if necessary,
specify the Region or ARN to distinguish them.

As your data needs change, you can replicate the primary key to other Amazon Web Services
Regions in the same partition, such as US West (Oregon) and Asia Pacific (Sydney). The result is
four related multi-Region keys with the same key material and key IDs, as shown in the following
diagram. You manage the keys independently. You can use them independently or in a coordinated
fashion. For example, you can encrypt data with the replica key in Asia Pacific (Sydney), move the
data to US West (Oregon), and decrypt it with the replica key in US West (Oregon).

Multi-Region keys 45

Amazon Key Management Service Developer Guide

Other considerations for multi-Region keys include the following.

Synchronizing shared properties — If a shared property of the multi-Region keys changes,
Amazon KMS automatically synchronizes the change from the primary key to all of its replica
keys. You cannot request or force a synchronization of shared properties. Amazon KMS detects
and synchronizes all changes for you. However, you can audit synchronization by using the
SynchronizeMultiRegionKey event in CloudTrail logs.

For example, if you enable automatic key rotation on a symmetric multi-Region primary key,
Amazon KMS copies that setting to all of its replica keys. When the key material is rotated, the
rotation is synchronized among all of the related multi-Region keys, so they continue to have the
same current key material, and access to all older versions of the key material. If you create a new
replica key, it has the same current key material of all related multi-Region keys and access to all
previous versions of the key material. For details, see Rotating multi-Region keys.

Changing the primary key — Every set of multi-Region keys must have exactly one primary key. The
primary key is the only key that can be replicated. It's also the source of the shared properties of

Multi-Region keys 46

Amazon Key Management Service Developer Guide

its replica keys. But you can change the primary key to a replica and promote one of the replica
keys to primary. You might do this so you can delete a multi-Region primary key from a particular
Region, or locate the primary key in a Region closer to project administrators. For details, see
Change the primary key in a set of multi-Region keys.

Deleting multi-Region keys — Like all KMS keys, you must schedule the deletion of multi-Region
keys before Amazon KMS deletes them. While the key is pending deletion, you cannot use it in any
cryptographic operations. However, Amazon KMS will not delete a multi-Region primary key until
all of its replica keys are deleted. For details, see Deleting multi-Region keys.

Importing key material for Amazon KMS keys

You can create an Amazon KMS keys (KMS key) with key material that you supply.

A KMS key is a logical representation of a data key. The metadata for a KMS key includes the ID of
the key material used to perform cryptographic operations. When you create a KMS key, by default,
Amazon KMS generates the key material for that KMS key. But you can create a KMS key without
key material and then import your own key material into that KMS key, a feature often known as
"bring your own key" (BYOK).

Note

Amazon KMS does not support decrypting any Amazon KMS ciphertext encrypted by
a symmetric encryption KMS key outside of Amazon KMS, even if the ciphertext was
encrypted under a KMS key with imported key material. Amazon KMS does not publish the
ciphertext format this task requires, and the format might change without notice.

When you use imported key material, you remain responsible for the key material while allowing
Amazon KMS to use a copy of it. You might choose to do this for one or more of the following
reasons:

Imported key material 47

Amazon Key Management Service Developer Guide

• To prove the key material was generated using a source of entropy that meets your
requirements.

• To use key material from your own infrastructure with Amazon services, and to use Amazon KMS
to manage the lifecycle of that key material within Amazon.

• To use existing, well-established keys in Amazon KMS, such as keys for code signing, PKI
certificate signing, and certificate pinned applications

• To set an expiration time for the key material in Amazon and to manually delete it, but to also
make it available again in the future. In contrast, scheduling key deletion requires a waiting
period of 7 to 30 days, after which you cannot recover the deleted KMS key.

• To own the original copy of the key material, and to keep it outside of Amazon for additional
durability and disaster recovery during the complete lifecycle of the key material.

• For asymmetric keys and HMAC keys, importing creates compatible and interoperable keys that
operate within and outside of Amazon.

Supported KMS key types

Amazon KMS supports imported key material for the following types of KMS keys. You cannot
import key material into KMS keys in custom key stores.

• Symmetric encryption KMS keys

• Asymmetric KMS keys (except ML-DSA keys)

• HMAC KMS keys

• Multi-Region keys of all supported types.

Regions

Imported key material is supported in all Amazon Web Services Regions that Amazon KMS
supports.

In China Regions, the key material requirements for symmetric encryption KMS keys differ from
other Regions. For details, see Step 3: Encrypt the key material.

Learn more

• To create KMS keys with imported key material, see Create a KMS key with imported key
material.

Imported key material 48

Amazon Key Management Service Developer Guide

• To create an alarm that notifies you when the imported key material in a KMS key is approaching
its expiration time, see Create a CloudWatch alarm for expiration of imported key material.

• To reimport key material into a KMS key, see Reimport key material.

• To import new key material into a KMS key for on-demand rotation, see Import new key material
and Perform on-demand key rotation.

• To identify and view KMS keys with imported key material, see Identify KMS keys with imported
key material.

• To learn about special considerations for deleting KMS keys with imported key material, see
Deleting KMS keys with imported key material.

Special considerations for imported key material

Before you decide to import key material into Amazon KMS, you should understand the following
characteristics of imported key material.

You generate the key material

You are responsible for generating the key material using a source of randomness that meets
your security requirements.

You're responsible for availability and durability

Amazon KMS is designed to keep imported key material highly available. But Amazon KMS
does not maintain the durability of imported key material at the same level as key material that
Amazon KMS generates. For details, see Protecting imported key material.

You can delete the key material

You can delete imported key material from a KMS key, immediately rendering the KMS key
unusable. Also, when you import key material into a KMS key, you can determine whether the
key expires and set its expiration time. When the expiration time arrives, Amazon KMS deletes
the key material. Without key material, the KMS key cannot be used in any cryptographic
operation. To restore the key, you must reimport the same key material into the key.

You cannot change the key material for asymmetric, HMAC, and multi-Region keys

When you import key material into a KMS key, the KMS key is permanently associated with
that key material. You can reimport the same key material, but you cannot import different
key material into that KMS key. Also, you cannot enable automatic key rotation for a KMS key

Imported key material 49

Amazon Key Management Service Developer Guide

with imported key material. However, you can manually rotate a KMS key with imported key
material.

You can perform on-demand rotation on single-Region, symmetric encryption keys

Single-Region symmetric encryption keys with imported key material support on-demand
rotation. You can import multiple key materials into these keys and use on-demand rotation
to update the current key material. The current key material is used for both encryption and
decryption but other (non-current) key materials can only be used for decryption.

You cannot change the key material origin

KMS keys designed for imported key material have an origin value of EXTERNAL that cannot
be changed. You cannot convert a KMS key for imported key material to use key material from
any other source, including Amazon KMS. Similarly, you cannot convert a KMS key with Amazon
KMS key material into one designed for imported key material.

You cannot export key material

You cannot export any key material that you imported. Amazon KMS cannot return the
imported key material to you in any form. You must maintain a copy of your imported key
material outside of Amazon, preferably in a key manager, such as a hardware security module
(HSM), so you can reimport the key material if you delete it or it expires.

You can create multi-Region keys with imported key material

Multi-Region with imported key material have the features of KMS keys with imported key
material, and can interoperate between Amazon Web Services Regions. To create a multi-
Region key with imported key material, you must import the same key material into the primary
KMS key and into each replica key. Multi-Region symmetric encryption keys do not support on-
demand rotation.

Asymmetric keys and HMAC keys are portable and interoperable

You can use your asymmetric key material and HMAC key material outside of Amazon to
interoperate with Amazon KMS keys with the same imported key material.

Unlike the Amazon KMS symmetric ciphertext, which is inextricably bound to the KMS key used
in the algorithm, Amazon KMS uses standard HMAC and asymmetric formats for encryption,
signing, and MAC generation. As a result, the keys are portable and support traditional escrow
key scenarios.

When your KMS key has imported key material, you can use the imported key material outside
of Amazon to perform the following operations.

Imported key material 50

Amazon Key Management Service Developer Guide

• HMAC keys — You can verify a HMAC tag that was generated by the HMAC KMS key with
imported key material. You can also use the HMAC KMS key with the imported key material to
verify an HMAC tag that was generated by the key material outside of Amazon.

• Asymmetric encryption keys — You can use your private asymmetric encryption key outside
of Amazon to decrypt a ciphertext encrypted by the KMS key with the corresponding public
key. You can also use your asymmetric KMS key to decrypt an asymmetric ciphertext that was
generated outside of Amazon.

• Asymmetric signing keys — You can use your asymmetric signing KMS key with imported key
material to verify digital signatures generated by your private signing key outside of Amazon.
You can also use your asymmetric public signing key outside of Amazon to verify signatures
generated by your asymmetric KMS key.

• Asymmetric key agreement keys — You can use your asymmetric key agreement KMS key
with imported key material to derive shared secrets with a peer outside of Amazon.

If you import the same key material into different KMS keys in the same Amazon Web Services
Region, those keys are also interoperable. To create interoperable KMS keys in different Amazon
Web Services Regions, create a multi-Region key with imported key material.

Symmetric encryption keys are not portable or interoperable

The symmetric ciphertexts that Amazon KMS produces are not portable or interoperable.
Amazon KMS does not publish the symmetric ciphertext format that portability requires, and
the format might change without notice.

• Amazon KMS cannot decrypt symmetric ciphertexts that you encrypt outside of Amazon,
even if you use key material that you have imported.

• Amazon KMS does not support decrypting any Amazon KMS symmetric ciphertext outside
of Amazon KMS, even if the ciphertext was encrypted under a KMS key with imported key
material.

• KMS keys with the same imported key material are not interoperable. The symmetric
ciphertext that Amazon KMS generates ciphertext that is specific to each KMS key. This
ciphertext format guarantees that only the KMS key that encrypted data can decrypt it.

Also, you cannot use any Amazon tools, such as the Amazon Encryption SDK or Amazon S3
client-side encryption, to decrypt Amazon KMS symmetric ciphertexts.

As a result, you cannot use keys with imported key material to support key escrow
arrangements where an authorized third party with conditional access to key material can

Imported key material 51

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/
https://docs.amazonaws.cn/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/UsingClientSideEncryption.html

Amazon Key Management Service Developer Guide

decrypt certain ciphertexts outside of Amazon KMS. To support key escrow, use the Amazon
Encryption SDK to encrypt your message under a key that is independent of Amazon KMS.

Protecting imported key material

The key material that you import is protected in transit and at rest. Before importing the key
material, you encrypt (or "wrap") the key material with the public key of an RSA key pair generated
in Amazon KMS hardware security modules (HSMs) validated under the FIPS 140-3 Cryptographic
Module Validation Program. You can encrypt the key material directly with the wrapping public
key, or encrypt the key material with an AES symmetric key, and then encrypt the AES symmetric
key with the RSA public key.

Upon receipt, Amazon KMS decrypts the key material with the corresponding private key in a
Amazon KMS HSM and re-encrypts it under an AES symmetric key that exists only in the volatile
memory of the HSM. Your key material never leaves the HSM in plain text. It is decrypted only
while it is in use and only within Amazon KMS HSMs.

Use of your KMS key with imported key material is determined solely by the access control policies
that you set on the KMS key. In addition, you can use aliases and tags to identify and control access
to the KMS key. You can enable and disable the key, view, and monitor it using services like Amazon
CloudTrail.

However, you maintain the only failsafe copy of your key material. In return for this extra measure
of control, you are responsible for durability and overall availability of the imported key material.
Amazon KMS is designed to keep imported key material highly available. But Amazon KMS does
not maintain the durability of imported key material at the same level as key material that Amazon
KMS generates.

This difference in durability is meaningful in the following cases:

• When you set an expiration time for your imported key material, Amazon KMS deletes the key
material after it expires. Amazon KMS does not delete the KMS key or its metadata. You can
create a Amazon CloudWatch alarm that notifies you when imported key material is approaching
its expiration date.

You cannot delete key material that Amazon KMS generates for a KMS key and you cannot set
Amazon KMS key material to expire.

• When you manually delete imported key material, Amazon KMS deletes the key material but
does not delete the KMS key or its metadata. In contrast, scheduling key deletion requires a

Imported key material 52

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/java-example-code.html#java-example-multiple-providers
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/java-example-code.html#java-example-multiple-providers
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884

Amazon Key Management Service Developer Guide

waiting period of 7 to 30 days, after which Amazon KMS permanently deletes the KMS key, its
metadata, and its key material.

• In the unlikely event of certain region-wide failures that affect Amazon KMS (such as a total
loss of power), Amazon KMS cannot automatically restore your imported key material. However,
Amazon KMS can restore the KMS key and its metadata.

You must retain a copy of the imported key material outside of Amazon in a system that you
control. We recommend that you store an exportable copy of the imported key material in a key
management system, such as an HSM. As a best practice, you should store a reference to the KMS
key ARN and the key material ID generated by Amazon KMS alongside the exportable copy of the
key material. If your imported key material is deleted or expires, its associated KMS key becomes
unusable until you reimport the same key material. If your imported key material is permanently
lost, any ciphertext encrypted under the KMS key is unrecoverable.

Important

Single-Region, symmetric encryption keys can have multiple key materials associated with
them. The entire KMS key becomes unusable as soon as you delete any one of those key
materials or if any one of those key materials expires (unless the deleted or expiring key
material is PENDING_ROTATION). You must reimport any expired or deleted key materials
associated with such a key before the key becomes usable for cryptographic operations.

KMS keys in a CloudHSM key store

You can create, view, manage, use, and schedule deletion of the Amazon KMS keys in an Amazon
CloudHSM key store. The procedures that you use are very similar to those you use for other KMS
keys. The only difference is that you specify an Amazon CloudHSM key store when you create the
KMS key. Then, Amazon KMS creates non-extractable key material for the KMS key in the Amazon
CloudHSM cluster that is associated with the Amazon CloudHSM key store. When you use a KMS
key in an Amazon CloudHSM key store, the cryptographic operations are performed in the HSMs in
the cluster.

Supported features

In addition to the procedures discussed in this section, you can do the following with KMS keys
in an Amazon CloudHSM key store:

KMS keys in a CloudHSM key store 53

Amazon Key Management Service Developer Guide

• Use key policies, IAM policies, and grants to authorize access to the KMS keys.

• Enable and disable the KMS keys.

• Assign tags and create aliases, and use attribute-based access control (ABAC) to authorize
access to the KMS keys.

• Use the KMS keys to perform the following cryptographic operations:

• Encrypt

• Decrypt

• GenerateDataKey

• GenerateDataKeyWithoutPlaintext

• ReEncrypt

The operations that generate asymmetric data key pairs, GenerateDataKeyPair and
GenerateDataKeyPairWithoutPlaintext, are not supported in custom key stores.

• Use the KMS keys with Amazon services that integrate with Amazon KMS and support
customer managed keys.

• Track use of your KMS keys in Amazon CloudTrail logs and Amazon CloudWatch monitoring
tools.

Unsupported features

• Amazon CloudHSM key stores support only symmetric encryption KMS keys. You cannot
create HMAC KMS keys, asymmetric KMS keys, or asymmetric data key pairs in an Amazon
CloudHSM key store.

• You cannot import key material into a KMS key in an Amazon CloudHSM key store. Amazon
KMS generates the key material for the KMS key in the Amazon CloudHSM cluster.

• You cannot enable or disable automatic rotation of the key material for a KMS key in an
Amazon CloudHSM key store.

Using KMS keys in an Amazon CloudHSM key store

When you use your KMS key in a request, identify the KMS key by its ID or alias; you do not need
to specify the Amazon CloudHSM key store or Amazon CloudHSM cluster. The response includes
the same fields that are returned for any symmetric encryption KMS key.

However, when you use a KMS key in an Amazon CloudHSM key store, the cryptographic
operation is performed entirely within the Amazon CloudHSM cluster that is associated with
the Amazon CloudHSM key store. The operation uses the key material in the cluster that is
associated with the KMS key that you chose.

KMS keys in a CloudHSM key store 54

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

Amazon Key Management Service Developer Guide

To make this possible, the following conditions are required.

• The key state of the KMS key must be Enabled. To find the key state, use the Status field in
the Amazon KMS console or the KeyState field in the DescribeKey response.

• The Amazon CloudHSM key store must be connected to its Amazon CloudHSM cluster. Its
Status in the Amazon KMS console or ConnectionState in the DescribeCustomKeyStores
response must be CONNECTED.

• The Amazon CloudHSM cluster that is associated with the custom key store must contain at
least one active HSM. To find the number of active HSMs in the cluster, use the Amazon KMS
console, the Amazon CloudHSM console, or the DescribeClusters operation.

• The Amazon CloudHSM cluster must contain the key material for the KMS key. If the key
material was deleted from the cluster, or an HSM was created from a backup that did not
include the key material, the cryptographic operation will fail.

If these conditions are not met, the cryptographic operation fails, and Amazon KMS returns a
KMSInvalidStateException exception. Typically, you just need to reconnect the Amazon
CloudHSM key store. For additional help, see How to fix a failing KMS key.

When using the KMS keys in an Amazon CloudHSM key store, be aware that the KMS keys in
each Amazon CloudHSM key store share a custom key store request quota for cryptographic
operations. If you exceed the quota, Amazon KMS returns a ThrottlingException. If the
Amazon CloudHSM cluster that is associated with the Amazon CloudHSM key store is processing
numerous commands, including those unrelated to the Amazon CloudHSM key store, you might
get a ThrottlingException at an even lower rate. If you get a ThrottlingException for
any request, lower your request rate and try the commands again. For details about the custom
key store request quota, see Custom key store request quotas.

Learn more

• To learn more about Amazon CloudHSM key stores, see Amazon CloudHSM key stores.

• To create KMS keys in an Amazon CloudHSM key store, see Create a KMS key in an Amazon
CloudHSM key store.

• To identify and view KMS keys in an Amazon CloudHSM key store, see Identify KMS keys in
Amazon CloudHSM key stores.

• To find KMS keys and key material in an Amazon CloudHSM key store, see Find KMS keys and
key material in an Amazon CloudHSM key store.

• To learn about special considerations for deleting KMS keys in an Amazon CloudHSM key
store, see Deleting KMS keys from an Amazon CloudHSM key store.

KMS keys in a CloudHSM key store 55

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html

Amazon Key Management Service Developer Guide

KMS keys in external key stores

To create, view, manage, use, and schedule deletion of the KMS keys in an external key store,
you use procedures that are very similar to those you use for other KMS keys. However, when
you create a KMS key in an external key store, you specify an external key store and an external
key. When you use a KMS key in an external key store, encryption and decryption operations are
performed by your external key manager using the specified external key.

Amazon KMS cannot create, view, update, or delete any cryptographic keys in your external key
manager. Amazon KMS never directly accesses your external key manager or any external key. All
requests for cryptographic operations are mediated by your external key store proxy. To use a KMS
key in an external key store, the external key store that hosts the KMS key must be connected to its
external key store proxy.

Supported features

In addition to the procedures discussed in this section, you can do the following with KMS keys
in an external key store:

• Use key policies, IAM policies, and grants to control access to the KMS keys.

• Enable and disable the KMS keys. These actions do not affect the external key in your external
key manager.

• Assign tags and create aliases, and use attribute-based access control (ABAC) to authorize
access to the KMS keys.

• Use the KMS keys to perform the following cryptographic operations:

• Encrypt

• Decrypt

• GenerateDataKey

• GenerateDataKeyWithoutPlaintext

• ReEncrypt

The operations that generate asymmetric data key pairs, GenerateDataKeyPair and
GenerateDataKeyPairWithoutPlaintext, are not supported in custom key stores.

• Use the KMS keys with Amazon Web Services services that integrate with Amazon KMS and
support customer managed keys.

KMS keys in external key stores 56

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

Unsupported features

• External key stores support only symmetric encryption KMS keys. You cannot create HMAC
KMS keys or asymmetric KMS keys in an external key store.

• GenerateDataKeyPair and GenerateDataKeyPairWithoutPlaintext are not supported on KMS
keys in an external key store.

• You cannot use an AWS::KMS::Key Amazon CloudFormation template to create an external
key store or a KMS key in an external key store.

• Multi-Region keys are not supported in an external key store.

• KMS keys with imported key material are not supported in an external key store.

• Automatic key rotation is not supported for KMS keys in an external key store.

Using KMS keys in an external key store

When you use your KMS key in a request, identify the KMS key by its key ID, key ARN, alias, or
alias ARN. You do not need to specify the external key store. The response includes the same
fields that are returned for any symmetric encryption KMS key. However, when you use a KMS
key in an external key store, encryption and decryption operations are performed by your
external key manager using the external key that is associated with the KMS key.

To ensure that ciphertext encrypted by a KMS key in an external key store is at least as secure
as any ciphertext encrypted by a standard KMS key, Amazon KMS uses double encryption. Data
is first encrypted in Amazon KMS using Amazon KMS key material. Then it is encrypted by your
external key manager using the external key for the KMS key. To decrypt double-encrypted
ciphertext, the ciphertext is first decrypted by your external key manager using the external key
for the KMS key. Then it is decrypted in Amazon KMS using the Amazon KMS key material for
the KMS key.

To make this possible, the following conditions are required.

• The key state of the KMS key must be Enabled. To find the key state, see the Status field for
customer managed keys the Amazon KMS console or the KeyState field in the DescribeKey
response.

• The external key store that hosts the KMS key must be connected to its external key store
proxy, that is, the connection state of the external key store must be CONNECTED.

You can view the connection state on the External key stores page in the Amazon KMS
console or in the DescribeCustomKeyStores response. The connection state of the external
key store is also displayed on the detail page for the KMS key in the Amazon KMS console. On

KMS keys in external key stores 57

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kms-key.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

the detail page, choose the Cryptographic configuration tab and see the Connection state
field in the Custom key store section.

If the connection state is DISCONNECTED, you must first connect it. If the connection state is
FAILED, you must resolve the problem, disconnect the external key store, and then connect
it. For instructions, see Connect and disconnect external key stores.

• The external key store proxy must be able to find the external key.

• The external key must be enabled and it must perform encryption and decryption.

The status of the external key is independent of and not affected by changes in the key state
of the KMS key, including enabling and disabling the KMS key. Similarly, disabling or deleting
the external key doesn't change the key state of the KMS key, but cryptographic operations
using the associated KMS key will fail.

If these conditions are not met, the cryptographic operation fails, and Amazon KMS returns a
KMSInvalidStateException exception. You might need to reconnect the external key store
or use your external key manager tools to reconfigure or repair your external key. For additional
help, see the section called “Troubleshooting external key stores”.

When using the KMS keys in an external key store, be aware that the KMS keys in each external
key store share a custom key store request quota for cryptographic operations. If you exceed
the quota, Amazon KMS returns a ThrottlingException. For details about the custom key
store request quota, see Custom key store request quotas.

Learn more

• To learn more about external key stores, see External key stores.

• To learn more about key material in external key stores, see External key.

• To create KMS keys in an external key store, see Create a KMS key in external key stores.

• To identify and view KMS keys in an external key store, see Identify KMS keys in external key
stores.

• To learn about special considerations for deleting KMS keys in an external key store, see
Deleting KMS keys from an external key store.

Amazon KMS cryptography essentials

Amazon KMS uses configurable cryptographic algorithms so that the system can quickly migrate
from one approved algorithm, or mode, to another. The initial default set of cryptographic

Amazon KMS cryptography essentials 58

Amazon Key Management Service Developer Guide

algorithms has been selected from Federal Information Processing Standard (FIPS-approved)
algorithms for their security properties and performance.

Entropy and random number generation

Amazon KMS key generation is performed in the Amazon KMS HSMs. The HSMs implement
a hybrid random number generator that uses the NIST SP800-90A Deterministic Random Bit
Generator (DRBG) CTR_DRBG using AES-256. It is seeded with a nondeterministic random bit
generator with 384-bits of entropy and updated with additional entropy to provide prediction
resistance on every call for cryptographic material.

Symmetric key operations (encryption only)

All symmetric key encrypt commands used within HSMs use the Advanced Encryption Standards
(AES), in Galois Counter Mode (GCM) using 256-bit keys. The analogous calls to decrypt use the
inverse function.

AES-GCM is an authenticated encryption scheme. In addition to encrypting plaintext to produce
ciphertext, it computes an authentication tag over the ciphertext and any additional data for which
authentication is required (additionally authenticated data, or AAD). The authentication tag helps
ensure that the data is from the purported source and that the ciphertext and AAD have not been
modified.

Frequently, Amazon omits the inclusion of the AAD in our descriptions, especially when referring
to the encryption of data keys. It is implied by surrounding text in these cases that the structure
to be encrypted is partitioned between the plaintext to be encrypted and the cleartext AAD to be
protected.

Amazon KMS provides an option for you to import key material into an Amazon KMS key instead of
relying on Amazon KMS to generate the key material. This imported key material can be encrypted
using RSAES-OAEP to protect the key during transport to the Amazon KMS HSM. The RSA key pairs
are generated on Amazon KMS HSMs. The imported key material is decrypted on an Amazon KMS
HSM and re-encrypted under AES-GCM before being stored by the service.

Asymmetric key operations (encryption, digital signing and signature
verification)

Amazon KMS supports the use of asymmetric key operations for both encryption, digital signature,
and key agreement operations. Asymmetric key operations rely on a mathematically related public

Entropy and random number generation 59

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://datatracker.ietf.org/doc/html/rfc8017#section-7.1

Amazon Key Management Service Developer Guide

key and private key pair that you can use for encryption and decryption, signing and signature
verification, or deriving shared secrets. The private key never leaves Amazon KMS unencrypted.
You can use the public key within Amazon KMS by calling the Amazon KMS API operations, or
download the public key and use it outside of Amazon KMS.

Amazon KMS supports the following asymmetric ciphers.

• RSA-OAEP (for encryption) & RSA-PSS and RSA-PKCS-#1-v1_5 (for signing and verification) –
Supports RSA key lengths (in bits): 2048, 3072, and 4096 for different security requirements.

• Elliptic Curve (ECC) – Used for signing and verification or deriving shared secrets, but not both.
Supports ECC curves: NIST P256, P384, P521, SECP 256k1.

• ML-DSA – Used for signing and verification. Supported ML-DSA key specs are: ML_DSA_44,
ML_DSA_65, and ML_DSA_87.

• SM2 (China Regions only) – Used for encryption and decryption, signing and verification, or
deriving shared secrets, but you must choose one key usage. Supports SM2PKE for encryption
and SM2DSA for signing.

Key derivation functions

A key derivation function is used to derive additional keys from an initial secret or key. Amazon
KMS uses an key derivation function (KDF) to derive per-call keys for every encryption under an
Amazon KMS key. All KDF operations use the KDF in counter mode using HMAC [FIPS197] with
SHA256 [FIPS180]. The 256-bit derived key is used with AES-GCM to encrypt or decrypt customer
data and keys.

Amazon KMS internal use of digital signatures

Digital signatures are also used to authenticate commands and communications between Amazon
KMS entities. All service entities have an elliptic curve digital signature algorithm (ECDSA) key
pair. They perform ECDSA as defined in Use of Elliptic Curve Cryptography (ECC) Algorithms in
Cryptographic Message Syntax (CMS) and X9.62-2005: Public Key Cryptography for the Financial
Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA). The entities use the secure
hash algorithm defined in Federal Information Processing Standards Publications, FIPS PUB 180-4,
known as SHA384. The keys are generated on the curve secp384r1 (NIST-P384).

Key derivation functions 60

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-108.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://datatracker.ietf.org/doc/html/rfc5753/
https://datatracker.ietf.org/doc/html/rfc5753/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Amazon Key Management Service Developer Guide

Envelope encryption

When you encrypt your data, your data is protected, but you have to protect your encryption key.
One strategy is to encrypt it. Envelope encryption is the practice of encrypting plaintext data with a
data key, and then encrypting the data key under another key.

You can even encrypt the data encryption key under another encryption key, and encrypt that
encryption key under another encryption key. But, eventually, one key must remain in plaintext so
you can decrypt the keys and your data. This top-level plaintext key encryption key is known as the
root key.

Amazon KMS helps you to protect your encryption keys by storing and managing them securely.
Root key stored in Amazon KMS, known as Amazon KMS keys, never leave the Amazon KMS FIPS
140-3 Security Level 3 validated hardware security modules unencrypted. To use a KMS key, you
must call Amazon KMS.

A basic construction used within many cryptographic systems is envelope encryption. Envelope
encryption uses two or more cryptographic keys to secure a message. Typically, one key is
derived from a longer-term static key k, and another key is a per-message key, msgKey, which is
generated to encrypt the message. The envelope is formed by encrypting the message: ciphertext
= Encrypt(msgKey, message) . Then the message key is encrypted with the long-term static key:
encKey = Encrypt(k, msgKey) . Finally, the two values (encKey, ciphertext) are packaged into a single
structure, or envelope encrypted message.

The recipient, with access to k, can open the enveloped message by first decrypting the encrypted
key and then decrypting the message.

Amazon KMS provides the ability to manage these longer-term static keys and automate the
process of envelope encryption of your data.

Envelope encryption 61

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884

Amazon Key Management Service Developer Guide

In addition to the encryption capabilities provided within the Amazon KMS service, the Amazon
Encryption SDK provides client-side envelope encryption libraries. You can use these libraries to
protect your data and the encryption keys that are used to encrypt that data.

Envelope encryption offers several benefits:

• Protecting data keys

When you encrypt a data key, you don't have to worry about storing the encrypted data key,
because the data key is inherently protected by encryption. You can safely store the encrypted
data key alongside the encrypted data.

• Encrypting the same data under multiple keys

Encryption operations can be time consuming, particularly when the data being encrypted are
large objects. Instead of re-encrypting raw data multiple times with different keys, you can re-
encrypt only the data keys that protect the raw data.

• Combining the strengths of multiple algorithms

In general, symmetric key algorithms are faster and produce smaller ciphertexts than public
key algorithms. But public key algorithms provide inherent separation of roles and easier key
management. Envelope encryption lets you combine the strengths of each strategy.

Cryptographic operations

In Amazon KMS, cryptographic operations are API operations that use KMS keys to protect data.
Because KMS keys remain within Amazon KMS, you must call Amazon KMS to use a KMS key in a
cryptographic operation.

Cryptographic operations 62

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/introduction.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/introduction.html

Amazon Key Management Service Developer Guide

To perform cryptographic operations with KMS keys, use the Amazon SDKs, Amazon Command
Line Interface (Amazon CLI), or the Amazon Tools for PowerShell. You cannot perform
cryptographic operations in the Amazon KMS console. For examples of calling the cryptographic
operations in several programming languages, see Code examples for Amazon KMS using Amazon
SDKs.

The following table lists the Amazon KMS cryptographic operations. It also shows the key type and
key usage requirements for KMS keys used in the operation.

Operation Key type Key usage

Decrypt Symmetric or
asymmetric

ENCRYPT_DECRYPT

DeriveSharedSecret Asymmetric KEY_AGREEMENT

Encrypt Symmetric or
asymmetric

ENCRYPT_DECRYPT

GenerateDataKey Symmetric ENCRYPT_DECRYPT

GenerateDataKeyPair Symmetric [1]

Not supported on
KMS keys in custom
key stores.

ENCRYPT_DECRYPT

GenerateDataKeyPairWithoutPlaintext Symmetric [1]

Not supported on
KMS keys in custom
key stores.

ENCRYPT_DECRYPT

GenerateDataKeyWithoutPlaintext Symmetric ENCRYPT_DECRYPT

GenerateMac HMAC GENERATE_
VERIFY_MAC

Cryptographic operations 63

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html

Amazon Key Management Service Developer Guide

Operation Key type Key usage

GenerateRandom N/A. This operation
doesn't use a KMS
key.

N/A

ReEncrypt Symmetric or
asymmetric

ENCRYPT_DECRYPT

Sign Asymmetric SIGN_VERIFY

Verify Asymmetric SIGN_VERIFY

VerifyMac HMAC GENERATE_
VERIFY_MAC

[1] Generates an asymmetric data key pair that is protected by a symmetric encryption KMS key.

For information about the permissions for cryptographic operations, see the the section called
“Permissions reference”.

To make Amazon KMS responsive and highly functional for all users, Amazon KMS establishes
quotas on number of cryptographic operations called in each second. For details, see the section
called “Shared quotas for cryptographic operations”.

Cryptographic operations 64

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html

Amazon Key Management Service Developer Guide

KMS key access and permissions

To use Amazon KMS, you must have credentials that Amazon can use to authenticate your
requests. The credentials must include permissions to access Amazon resources: Amazon KMS
keys and aliases. No Amazon principal has any permissions to a KMS key unless that permission
is provided explicitly and never denied. There are no implicit or automatic permission to use or
manage a KMS key.

To control access to your KMS keys, you can use the following policy mechanisms.

• Key policy – Every KMS key has a key policy. It is the primary mechanism for controlling access
to a KMS key. You can use the key policy alone to control access, which means the full scope of
access to the KMS key is defined in a single document (the key policy). For more information
about using key policies, see Key policies.

• IAM policies – You can use IAM policies in combination with the key policy and grants to control
access to a KMS key. Controlling access this way enables you to manage all of the permissions for
your IAM identities in IAM. To use an IAM policy to allow access to a KMS key, the key policy must
explicitly allow it. For more information about using IAM policies, see IAM policies.

• Grants – You can use grants in combination with the key policy and IAM policies to allow access
to a KMS key. Controlling access this way enables you to allow access to the KMS key in the key
policy, and to allow identities to delegate their access to others. For more information about
using grants, see Grants in Amazon KMS.

KMS key policies

The primary way to manage access to your Amazon KMS resources is with policies. Policies are
documents that describe which principals can access which resources. Policies attached to an IAM
identity are called identity-based policies (or IAM policies), and policies attached to other kinds of
resources are called resource policies. Amazon KMS resource policies for KMS keys are called key
policies.

All KMS keys have a key policy. If you don't provide one, Amazon KMS creates one for you. The
default key policy that Amazon KMS uses differs depending on whether you create the key in the
Amazon KMS console or you use the Amazon KMS API. We recommend that you edit the default
key policy to align with your organization’s requirements for least-privilege permissions.

KMS key policies 65

Amazon Key Management Service Developer Guide

You can use the key policy alone to control access if the key and the IAM principal are in the
same Amazon account, which means the full scope of access to the KMS key is defined in a single
document (the key policy). However, when a caller in one account must access a key in a different
account, you cannot use key policy alone to grant access. In the cross-account scenario, an IAM
policy must be attached to the caller's user or role that explicitly allows the caller to make the API
call.

You can also use IAM policies in combination with key policies and grants to control access to a
KMS key. To use an IAM policy to control access to a KMS key, the key policy must give the account
permission to use IAM policies. You can either specify a key policy statement that enables IAM
policies, or you can explicitly specify allowed principals in the key policy.

When writing policies, ensure that you have strong controls restricting who can perform the
following actions:

• Update, create, and delete IAM and KMS key policies

• Attach and detach IAM policies from users, roles, and groups

• Attach and detach KMS key polices from your KMS keys

KMS key grants

In addition to IAM and key policies, Amazon KMS supports grants. Grants provide a flexible and
powerful way to delegate permissions. You can use grants to issue time-bound KMS key access
to IAM principals in your Amazon account, or in other Amazon accounts. We recommend issuing
time-bound access if you don't know the names of the principals at the time that the policies are
created, or if the principals that require access frequently change. The grantee principal can be
in the same account as the KMS key or a different account. If the principal and KMS key are in
different accounts, then you must specify an IAM policy in addition to the grant. Grants require
additional management because you must call an API to create the grant and to retire or revoke
the grant when it is no longer needed.

Key policies in Amazon KMS

A key policy is a resource policy for an Amazon KMS key. Key policies are the primary way to control
access to KMS keys. Every KMS key must have exactly one key policy. The statements in the key
policy determine who has permission to use the KMS key and how they can use it. You can also use
IAM policies and grants to control access to the KMS key, but every KMS key must have a key policy.

KMS key grants 66

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#Principal_specifying

Amazon Key Management Service Developer Guide

No Amazon principal, including the account root user or key creator, has any permissions to a KMS
key unless they are explicitly allowed, and never denied, in a key policy, IAM policy, or grant.

Unless the key policy explicitly allows it, you cannot use IAM policies to allow access to a KMS key.
Without permission from the key policy, IAM policies that allow permissions have no effect. (You
can use an IAM policy to deny a permission to a KMS key without permission from a key policy.)
The default key policy enables IAM policies. To enable IAM policies in your key policy, add the
policy statement described in Allows access to the Amazon Web Services account and enables IAM
policies.

Unlike IAM policies, which are global, key policies are Regional. A key policy controls access only to
a KMS key in the same Region. It has no effect on KMS keys in other Regions.

Topics

• Creating a key policy

• Default key policy

• View a key policies

• Change a key policy

• Permissions for Amazon services in key policies

Creating a key policy

You can create and manage key policies in the Amazon KMS console or by using Amazon KMS API
operations, such as CreateKey, ReplicateKey, and PutKeyPolicy.

When you create a KMS key in the Amazon KMS console, the console walks you through the
steps of creating a key policy based on the default key policy for the console. When you use the
CreateKey or ReplicateKey APIs, if you don't specify a key policy, these APIs apply the default
key policy for keys created programmatically. When you use the PutKeyPolicy API, you are
required to specify a key policy.

Each policy document can have one or more policy statements. The following example shows a
valid key policy document with one policy statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Creating a key policy 67

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html

Amazon Key Management Service Developer Guide

 "Sid": "Describe the policy statement",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/Alice"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:KeySpec": "SYMMETRIC_DEFAULT"
 }
 }
 }
]
}

Topics

• Key policy format

• Elements in a key policy

• Example key policy

Key policy format

A key policy document must conform to the following rules:

• Up to 32 kilobytes (32,768 bytes)

• The Sid element in a key policy statement can include spaces. (Spaces are prohibited in the Sid
element of an IAM policy document.)

A key policy document can include only the following characters:

• Printable ASCII characters

• Printable characters in the Basic Latin and Latin-1 Supplement character set

• The tab (\u0009), line feed (\u000A), and carriage return (\u000D) special characters

Elements in a key policy

A key policy document must have the following elements:

Creating a key policy 68

Amazon Key Management Service Developer Guide

Version

Specifies the key policy document version. Set the version to 2012-10-17 (the latest version).

Statement

Encloses the policy statements. A key policy document must have at least one statement.

Each key policy statement consists of up to six elements. The Effect, Principal, Action,
and Resource elements are required.

Sid

(Optional) The statement identifier (Sid) an arbitrary string you can use to describe the
statement. The Sid in a key policy can include spaces. (You can't include spaces in an IAM
policy Sid element.)

Effect

(Required) Determines whether to allow or deny the permissions in the policy statement.
Valid values are Allow or Deny. If you don't explicitly allow access to a KMS key, access
is implicitly denied. You can also explicitly deny access to a KMS key. You might do this to
make sure that a user cannot access it, even when a different policy allows access.

Principal

(Required) The principal is the identity that gets the permissions specified in the policy
statement. You can specify Amazon Web Services accounts, IAM users, IAM roles, and some
Amazon services as principals in a key policy. IAM user groups are not a valid principal in any
policy type.

An asterisk value, such as "AWS": "*" represents all Amazon identities in all accounts.

Important

Do not set the Principal to an asterisk (*) in any key policy statement that allows
permissions unless you use conditions to limit the key policy. An asterisk gives
every identity in every Amazon Web Services account permission to use the KMS
key, unless another policy statement explicitly denies it. Users in other Amazon
Web Services accounts can use your KMS key whenever they have corresponding
permissions in their own account.

Creating a key policy 69

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#Principal_specifying
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

Amazon Key Management Service Developer Guide

Note

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details,
see Security best practices in IAM in the IAM User Guide.

When the principal in a key policy statement is an Amazon Web Services account principal
expressed as arn:aws:iam::111122223333:root", the policy statement doesn't
give permission to any IAM principal. Instead, it gives the Amazon Web Services account
permission to use IAM policies to delegate the permissions specified in the key policy. (A
principal in arn:aws:iam::111122223333:root" format does not represent the Amazon
account root user, despite the use of "root" in the account identifier. However, the account
principal represents the account and its administrators, including the account root user.)

When the principal is another Amazon Web Services account or its principals, the
permissions are effective only when the account is enabled in the Region with the KMS
key and key policy. For information about Regions that are not enabled by default ("opt-in
Regions"), see Managing Amazon Web Services Regions in the Amazon Web Services General
Reference.

To allow a different Amazon Web Services account or its principals to use a KMS key, you
must provide permission in a key policy and in an IAM policy in the other account. For
details, see Allowing users in other accounts to use a KMS key.

Action

(Required) Specify the API operations to allow or deny. For example, the kms:Encrypt
action corresponds to the Amazon KMS Encrypt operation. You can list more than one action
in a policy statement. For more information, see Permissions reference.

Note

If the required Action element is missing from a key policy statement, the policy
statement has no effect. A key policy statement without an Action element doesn't
apply to any KMS key.
When a key policy statement is missing its Action element, the Amazon KMS
console correctly reports an error, but the CreateKey and PutKeyPolicy APIs succeed,
even though the policy statement is ineffective.

Creating a key policy 70

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-accounts
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html
https://docs.amazonaws.cn/general/latest/gr/rande-manage.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html

Amazon Key Management Service Developer Guide

Resource

(Required) In a key policy, the value of the Resource element is "*", which means "this KMS
key." The asterisk ("*") identifies the KMS key to which the key policy is attached.

Note

If the required Resource element is missing from a key policy statement, the policy
statement has no effect. A key policy statement without a Resource element
doesn't apply to any KMS key.
When a key policy statement is missing its Resource element, the Amazon KMS
console correctly reports an error, but the CreateKey and PutKeyPolicy APIs succeed,
even though the policy statement is ineffective.

Condition

(Optional) Conditions specify requirements that must be met for a key policy to take effect.
With conditions, Amazon can evaluate the context of an API request to determine whether
or not the policy statement applies.

To specify conditions, you use predefined condition keys. Amazon KMS supports Amazon
global condition keys and Amazon KMS condition keys. To support attribute-based access
control (ABAC), Amazon KMS provides condition keys that control access to a KMS key based
on tags and aliases. For details, see ABAC for Amazon KMS.

The format for a condition is:

"Condition": {"condition operator": {"condition key": "condition value"}}

such as:

"Condition": {"StringEquals": {"kms:CallerAccount": "111122223333"}}

For more information about Amazon policy syntax, see Amazon IAM Policy Reference in the IAM
User Guide.

Creating a key policy 71

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html

Amazon Key Management Service Developer Guide

Example key policy

The following example shows a complete key policy for a symmetric encryption KMS key. You
can use it for reference as you read about the key policy concepts in this chapter. This key policy
combines the example policy statements from the preceding default key policy section into a
single key policy that accomplishes the following:

• Allows the example Amazon Web Services account, 111122223333, full access to the KMS key. It
allows the account and its administrators, including the account root user (for emergencies), to
use IAM policies in the account to allow access to the KMS key.

• Allows the ExampleAdminRole IAM role to administer the KMS key.

• Allows the ExampleUserRole IAM role to use the KMS key.

{
 "Id": "key-consolepolicy",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable IAM user Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleAdminRole"
 },
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",

Creating a key policy 72

Amazon Key Management Service Developer Guide

 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion",
 "kms:RotateKeyOnDemand"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleUserRole"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleUserRole"
 },
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:GrantIsForAWSResource": "true"
 }
 }
 }
]

Creating a key policy 73

Amazon Key Management Service Developer Guide

}

Default key policy

When you create a KMS key, you can specify the key policy for the new KMS key. If you don't
provide one, Amazon KMS creates one for you. The default key policy that Amazon KMS uses
differs depending on whether you create the key in the Amazon KMS console or you use the
Amazon KMS API.

Default key policy when you create a KMS key programmatically

When you create a KMS key programmatically with the Amazon KMS API (including by using
the Amazon SDKs, Amazon Command Line Interface or Amazon Tools for PowerShell), and you
don't specify a key policy, Amazon KMS applies a very simple default key policy. This default
key policy has one policy statement that gives the Amazon Web Services account that owns the
KMS key permission to use IAM policies to allow access to all Amazon KMS operations on the
KMS key. For more information about this policy statement, see Allows access to the Amazon
Web Services account and enables IAM policies.

Default key policy when you create a KMS key with the Amazon Web Services Management
Console

When you create a KMS key with the Amazon Web Services Management Console, the key
policy begins with the policy statement that allows access to the Amazon Web Services account
and enables IAM policies. The console then adds a key administrators statement, a key users
statement, and (for most key types) a statement that allows principals to use the KMS key with
other Amazon services. You can use the features of the Amazon KMS console to specify the IAM
users, IAM roles, and Amazon Web Services accounts who are key administrators and those who
are key users (or both).

Permissions

• Allows access to the Amazon Web Services account and enables IAM policies

• Allows key administrators to administer the KMS key

• Allows key users to use the KMS key

• Allows key users to use a KMS key for cryptographic operations

• Allows key users to use the KMS key with Amazon services

Default key policy 74

https://docs.amazonaws.cn/kms/latest/APIReference/
http://www.amazonaws.cn/tools/#sdk
https://docs.amazonaws.cn/cli/latest/userguide/
https://docs.amazonaws.cn/powershell/latest/userguide/

Amazon Key Management Service Developer Guide

Allows access to the Amazon Web Services account and enables IAM policies

The following default key policy statement is critical.

• It gives the Amazon Web Services account that owns the KMS key full access to the KMS key.

Unlike other Amazon resource policies, an Amazon KMS key policy does not automatically give
permission to the account or any of its identities. To give permission to account administrators,
the key policy must include an explicit statement that provides this permission, like this one.

• It allows the account to use IAM policies to allow access to the KMS key, in addition to the key
policy.

Without this permission, IAM policies that allow access to the key are ineffective, although IAM
policies that deny access to the key are still effective.

• It reduces the risk of the key becoming unmanageable by giving access control permission to the
account administrators, including the account root user, which cannot be deleted.

The following key policy statement is the entire default key policy for KMS keys created
programmatically. It's the first policy statement in the default key policy for KMS keys created in
the Amazon KMS console.

{
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "kms:*",
 "Resource": "*"
}

Allows IAM policies to allow access to the KMS key.

The key policy statement shown above gives the Amazon Web Services account that owns the
key permission to use IAM policies, as well as key policies, to allow all actions (kms:*) on the
KMS key.

Default key policy 75

Amazon Key Management Service Developer Guide

The principal in this key policy statement is the account principal, which is represented by an
ARN in this format: arn:aws:iam::account-id:root. The account principal represents the
Amazon account and its administrators.

When the principal in a key policy statement is the account principal, the policy statement
doesn't give any IAM principal permission to use the KMS key. Instead, it allows the account to
use IAM policies to delegate the permissions specified in the policy statement. This default key
policy statement allows the account to use IAM policies to delegate permission for all actions
(kms:*) on the KMS key.

 Reduces the risk of the KMS key becoming unmanageable.

Unlike other Amazon resource policies, an Amazon KMS key policy does not automatically give
permission to the account or any of its principals. To give permission to any principal, including
the account principal, you must use a key policy statement that provides the permission
explicitly. You are not required to give the account principal, or any principal, access to the KMS
key. However, giving access to the account principal helps you prevent the key from becoming
unmanageable.

For example, suppose you create a key policy that gives only one user access to the KMS key.
If you then delete that user, the key becomes unmanageable and you must contact Amazon
Support to regain access to the KMS key.

The key policy statement shown above gives permission to control the key to the account
principal, which represents the Amazon Web Services account and its administrators, including
the account root user. The account root user is the only principal that cannot be deleted unless
you delete the Amazon Web Services account. IAM best practices discourage acting on behalf of
the account root user, except in an emergency. However, you might need to act as the account
root user if you delete all other users and roles with access to the KMS key.

Allows key administrators to administer the KMS key

The default key policy created by the console allows you to choose IAM users and roles in the
account and make them key administrators. This statement is called the key administrators
statement. Key administrators have permissions to manage the KMS key, but do not have
permissions to use the KMS key in cryptographic operations. You can add IAM users and roles to
the list of key administrators when you create the KMS key in the default view or the policy view.

Default key policy 76

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-accounts
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-accounts
https://console.amazonaws.cn/support/home#/case/create
https://console.amazonaws.cn/support/home#/case/create
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-accounts
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-accounts
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html

Amazon Key Management Service Developer Guide

Warning

Because key administrators have permission to change the key policy and create grants,
they can give themselves and others Amazon KMS permissions not specified in this policy.
Principals who have permission to manage tags and aliases can also control access to a KMS
key. For details, see ABAC for Amazon KMS.

Note

IAM best practices discourage the use of IAM users with long-term credentials. Whenever
possible, use IAM roles, which provide temporary credentials. For details, see Security best
practices in IAM in the IAM User Guide.

The following example shows the key administrators statement in the default view of the Amazon
KMS console.

Default key policy 77

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

The following is an example key administrators statement in the policy view of the Amazon KMS
console. This key administrators statement is for a single-Region symmetric encryption KMS key.

Note

The Amazon KMS console adds key administrators to the key policy under the statement
identifier "Allow access for Key Administrators". Modifying this statement
identifier might impact how the console displays updates that you make to the statement.

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {"AWS":"arn:aws:iam::111122223333:role/ExampleAdminRole"},
 "Action": [
 "kms:Create*",

Default key policy 78

Amazon Key Management Service Developer Guide

 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion",
 "kms:RotateKeyOnDemand"
],
 "Resource": "*"
}

The default key administrators statement for the most common KMS key, a single-Region
symmetric encryption KMS key, allows the following permissions. For detailed information about
each permission, see the Amazon KMS permissions.

When you use the Amazon KMS console to create a KMS key, the console adds the users and roles
you specify to the Principal element in the key administrators statement.

Many of these permissions contain the wildcard character (*), which allows all permissions that
begin with the specified verb. As a result, when Amazon KMS adds new API operations, key
administrators are automatically allowed to use them. You don't have to update your key policies
to include the new operations. If you prefer to limit your key administrators to a fixed set of API
operations, you can change your key policy.

kms:Create*

Allows kms:CreateAlias and kms:CreateGrant. (The kms:CreateKey permission is valid
only in an IAM policy.)

kms:Describe*

Allows kms:DescribeKey. The kms:DescribeKey permission is required to view the key
details page for a KMS key in the Amazon Web Services Management Console.

Default key policy 79

Amazon Key Management Service Developer Guide

kms:Enable*

Allows kms:EnableKey. For symmetric encryption KMS keys, it also allows
kms:EnableKeyRotation.

kms:List*

Allows kms:ListGrants, kms:ListKeyPolicies, and kms:ListResourceTags. (The
kms:ListAliases and kms:ListKeys permissions, which are required to view KMS keys in
the Amazon Web Services Management Console, are valid only in IAM policies.)

kms:Put*

Allows kms:PutKeyPolicy. This permission allows key administrators to change the key policy
for this KMS key.

kms:Update*

Allows kms:UpdateAlias and kms:UpdateKeyDescription. For multi-Region keys, it
allows kms:UpdatePrimaryRegion on this KMS key.

kms:Revoke*

Allows kms:RevokeGrant, which allows key administrators to delete a grant even if they are
not a retiring principal in the grant.

kms:Disable*

Allows kms:DisableKey. For symmetric encryption KMS keys, it also allows
kms:DisableKeyRotation.

kms:Get*

Allows kms:GetKeyPolicy and kms:GetKeyRotationStatus. For KMS keys with imported
key material, it allows kms:GetParametersForImport. For asymmetric KMS keys, it allows
kms:GetPublicKey. The kms:GetKeyPolicy permission is required to view the key policy of
a KMS key in the Amazon Web Services Management Console.

kms:Delete*

Allows kms:DeleteAlias. For keys with imported key material, it allows
kms:DeleteImportedKeyMaterial. The kms:Delete* permission does not allow key
administrators to delete the KMS key (ScheduleKeyDeletion).

Default key policy 80

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyPolicies.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html

Amazon Key Management Service Developer Guide

kms:TagResource

Allows kms:TagResource, which allows key administrators to add tags to the KMS key.
Because tags can also be used to control access to the KMS key, this permission can allow
administrators to allow or deny access to the KMS key. For details, see ABAC for Amazon KMS.

kms:UntagResource

Allows kms:UntagResource, which allows key administrators to delete tags from the KMS key.
Because tags can be used to control access to the key, this permission can allow administrators
to allow or deny access to the KMS key. For details, see ABAC for Amazon KMS.

kms:ScheduleKeyDeletion

Allows kms:ScheduleKeyDeletion, which allows key administrators to delete this KMS key.
To delete this permission, clear the Allow key administrators to delete this key option.

kms:CancelKeyDeletion

Allows kms:CancelKeyDeletion, which allows key administrators to cancel deletion of this
KMS key. To delete this permission, clear the Allow key administrators to delete this key
option.

kms:RotateKeyOnDemand

Allows kms:RotateKeyOnDemand, which allows key administrators to perform on-demand
rotation of the key material in this KMS key.

Amazon KMS adds the following permissions to the default key administrators statement when
you create special-purpose keys.

kms:ImportKeyMaterial

The kms:ImportKeyMaterial permission allows key administrators to import key material
into the KMS key. This permission is included in the key policy only when you create a KMS key
with no key material.

kms:ReplicateKey

The kms:ReplicateKey permission allows key administrators to create a replica of a multi-
Region primary key in a different Amazon Region. This permission is included in the key policy
only when you create a multi-Region primary or replica key.

Default key policy 81

https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CancelKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html

Amazon Key Management Service Developer Guide

kms:UpdatePrimaryRegion

The kms:UpdatePrimaryRegion permission allows key administrators to change a multi-
Region replica key to a multi-Region primary key. This permission is included in the key policy
only when you create a multi-Region primary or replica key.

Allows key users to use the KMS key

The default key policy that the console creates for KMS keys allows you to choose IAM users and
IAM roles in the account, and external Amazon Web Services accounts, and make them key users.

The console adds two policy statements to the key policy for key users.

• Use the KMS key directly — The first key policy statement gives key users permission to use the
KMS key directly for all supported cryptographic operations for that type of KMS key.

• Use the KMS key with Amazon services — The second policy statement gives key users
permission to allow Amazon services that are integrated with Amazon KMS to use the KMS key
on their behalf to protect resources, such as Amazon S3 buckets and Amazon DynamoDB tables.

You can add IAM users, IAM roles, and other Amazon Web Services accounts to the list of key users
when you create the KMS key. You can also edit the list with the console's default view for key
policies, as shown in the following image. The default view for key policies is on the key details
page. For more information about allowing users in other Amazon Web Services accounts to use
the KMS key, see Allowing users in other accounts to use a KMS key.

Note

IAM best practices discourage the use of IAM users with long-term credentials. Whenever
possible, use IAM roles, which provide temporary credentials. For details, see Security best
practices in IAM in the IAM User Guide.

Default key policy 82

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

The default key users statements for a single-Region symmetric allows the following permissions.
For detailed information about each permission, see the Amazon KMS permissions.

When you use the Amazon KMS console to create a KMS key, the console adds the users and roles
you specify to the Principal element in each key users statement.

Note

The Amazon KMS console adds key users to the key policy under the statement identifiers
"Allow use of the key" and "Allow attachment of persistent resources".
Modifying these statement identifiers might impact how the console displays updates that
you make to the statement.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",

Default key policy 83

Amazon Key Management Service Developer Guide

 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:role/ExampleRole",
 "arn:aws:iam::444455556666:root"
]},
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
},
{
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:role/ExampleRole",
 "arn:aws:iam::444455556666:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
}

Allows key users to use a KMS key for cryptographic operations

Key users have permission to use the KMS key directly in all cryptographic operations supported on
the KMS key. They can also use the DescribeKey operation to get detailed information about the
KMS key in the Amazon KMS console or by using the Amazon KMS API operations.

By default, the Amazon KMS console adds key users statements like those in the following
examples to the default key policy. Because they support different API operations, the actions
in the policy statements for symmetric encryption KMS keys, HMAC KMS keys, asymmetric KMS
keys for public key encryption, and asymmetric KMS keys for signing and verification are slightly
different.

Default key policy 84

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

Symmetric encryption KMS keys

The console adds the following statement to the key policy for symmetric encryption KMS keys.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/ExampleKeyUserRole"},
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:ReEncrypt*"
],
 "Resource": "*"
}

HMAC KMS keys

The console adds the following statement to the key policy for HMAC KMS keys.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/ExampleKeyUserRole"},
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateMac",
 "kms:VerifyMac"
],
 "Resource": "*"
}

Asymmetric KMS keys for public key encryption

The console adds the following statement to the key policy for asymmetric KMS keys with a key
usage of Encrypt and decrypt.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {

Default key policy 85

Amazon Key Management Service Developer Guide

 "AWS": "arn:aws:iam::111122223333:role/ExampleKeyUserRole"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:DescribeKey",
 "kms:GetPublicKey"
],
 "Resource": "*"
}

Asymmetric KMS keys for signing and verification

The console adds the following statement to the key policy for asymmetric KMS keys with a key
usage of Sign and verify.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/ExampleKeyUserRole"},
 "Action": [
 "kms:DescribeKey",
 "kms:GetPublicKey",
 "kms:Sign",
 "kms:Verify"
],
 "Resource": "*"
}

Asymmetric KMS keys for deriving shared secrets

The console adds the following statement to the key policy for asymmetric KMS keys with a key
usage of Key agreement.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/ExampleKeyUserRole"},
 "Action": [
 "kms:DescribeKey",
 "kms:GetPublicKey",
 "kms:DeriveSharedSecret"

Default key policy 86

Amazon Key Management Service Developer Guide

],
 "Resource": "*"
}

The actions in these statements give the key users the following permissions.

kms:Encrypt

Allows key users to encrypt data with this KMS key.

kms:Decrypt

Allows key users to decrypt data with this KMS key.

kms:DeriveSharedSecret

Allows key users to derive shared secrets with this KMS key.

kms:DescribeKey

Allows key users to get detailed information about this KMS key including its identifiers,
creation date, and key state. It also allows the key users to display details about the KMS key in
the Amazon KMS console.

kms:GenerateDataKey*

Allows key users to request a symmetric data key or an asymmetric data key pair for client-side
cryptographic operations. The console uses the * wildcard character to represent permission
for the following API operations: GenerateDataKey, GenerateDataKeyWithoutPlaintext,
GenerateDataKeyPair, and GenerateDataKeyPairWithoutPlaintext. These permissions are valid
only on the symmetric KMS keys that encrypt the data keys.

kms:GenerateMac

Allows key users to use an HMAC KMS key to generate an HMAC tag.

kms:GetPublicKey

Allows key users to download the public key of the asymmetric KMS key. Parties with whom you
share this public key can encrypt data outside of Amazon KMS. However, those ciphertexts can
be decrypted only by calling the Decrypt operation in Amazon KMS.

kms:ReEncrypt*

Allows key users to re-encrypt data that was originally encrypted with this KMS key, or to
use this KMS key to re-encrypt previously encrypted data. The ReEncrypt operation requires

Default key policy 87

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html

Amazon Key Management Service Developer Guide

access to both source and destination KMS keys. To accomplish this, you can allow the
kms:ReEncryptFrom permission on the source KMS key and kms:ReEncryptTo permission
on the destination KMS key. However, for simplicity, the console allows kms:ReEncrypt* (with
the * wildcard character) on both KMS keys.

kms:Sign

Allows key users to sign messages with this KMS key.

kms:Verify

Allows key users to verify signatures with this KMS key.

kms:VerifyMac

Allows key users to use an HMAC KMS key to verify an HMAC tag.

Allows key users to use the KMS key with Amazon services

The default key policy in the console also gives key users the grant permissions they need to
protect their data in Amazon services that use grants. Amazon services often use grants to get
specific and limited permission to use a KMS key.

This key policy statement allows the key user to create, view, and revoke grants on the KMS key,
but only when the grant operation request comes from an Amazon service integrated with Amazon
KMS. The kms:GrantIsForAWSResource policy condition doesn't allow the user to call these grant
operations directly. When the key user allows it, an Amazon service can create a grant on the user's
behalf that allows the service to use the KMS key to protect the user's data.

Key users require these grant permissions to use their KMS key with integrated services, but these
permissions are not sufficient. Key users also need permission to use the integrated services. For
details about giving users access to an Amazon service that integrates with Amazon KMS, consult
the documentation for the integrated service.

{
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/ExampleKeyUserRole"},
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],

Default key policy 88

https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
}

For example, key users can use these permissions on the KMS key in the following ways.

• Use this KMS key with Amazon Elastic Block Store (Amazon EBS) and Amazon Elastic Compute
Cloud (Amazon EC2) to attach an encrypted EBS volume to an EC2 instance. The key user
implicitly gives Amazon EC2 permission to use the KMS key to attach the encrypted volume to
the instance. For more information, see How Amazon Elastic Block Store (Amazon EBS) uses
Amazon KMS.

• Use this KMS key with Amazon Redshift to launch an encrypted cluster. The key user implicitly
gives Amazon Redshift permission to use the KMS key to launch the encrypted cluster and create
encrypted snapshots. For more information, see How Amazon Redshift uses Amazon KMS.

• Use this KMS key with other Amazon services integrated with Amazon KMS that use grants to
create, manage, or use encrypted resources with those services.

The default key policy allows key users to delegate their grant permission to all integrated services
that use grants. However, you can create a custom key policy that restricts the permission to
specified Amazon services. For more information, see the kms:ViaService condition key.

View a key policies

You can view the key policy for an Amazon KMS customer managed key or an Amazon managed
key in your account by using the Amazon KMS console or the GetKeyPolicy operation in the
Amazon KMS API. You cannot use these techniques to view the key policy of a KMS key in a
different Amazon Web Services account.

To learn more about Amazon KMS key policies, see Key policies in Amazon KMS. To learn how to
determine which users and roles have access to a KMS key, see the section called “Determining
access”.

Using the Amazon KMS console

Authorized users can view the key policy for an Amazon managed key or a customer managed key
on the Key policy tab of the Amazon Web Services Management Console.

To view the key policy for a KMS key in the Amazon Web Services Management Console, you must
have kms:ListAliases, kms:DescribeKey, and kms:GetKeyPolicy permissions.

View a key policies 89

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html

Amazon Key Management Service Developer Guide

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3.
To view the keys in your account that Amazon creates and manages for you, in the navigation
pane, choose Amazon managed keys. To view the keys in your account that you create and
manage, in the navigation pane choose Customer managed keys.

4. In the list of KMS keys, choose the alias or key ID of the KMS key that you want to examine.

5. Choose the Key policy tab.

On the Key policy tab, you might see the key policy document. This is policy view. In the key
policy statements, you can see the principals who have been given access to the KMS key by
the key policy, and you can see the actions they can perform.

The following example shows the policy view for the default key policy.

Or, if you created the KMS key in the Amazon Web Services Management Console, you will see
the default view with sections for Key administrators, Key deletion, and Key Users. To see the
key policy document, choose Switch to policy view.

View a key policies 90

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

The following example shows the default view for the default key policy.

Using the Amazon KMS API

To get the key policy for a KMS key in your Amazon Web Services account, use the GetKeyPolicy
operation in the Amazon KMS API. You cannot use this operation to view a key policy in a different
account.

View a key policies 91

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html

Amazon Key Management Service Developer Guide

The following example uses the get-key-policy command in the Amazon Command Line Interface
(Amazon CLI), but you can use any Amazon SDK to make this request.

Note that the PolicyName parameter is required even though default is its only valid value.
Also, this command requests the output in text, rather than JSON, to make it easier to view.

Before running this command, replace the example key ID with a valid one from your account.

$ aws kms get-key-policy --key-id 1234abcd-12ab-34cd-56ef-1234567890ab --policy-name
 default --output text

The response should be similar to the following one, which returns the default key policy.

{
 "Version" : "2012-10-17",
 "Id" : "key-consolepolicy-3",
 "Statement" : [{
 "Sid" : "Enable IAM User Permissions",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : "kms:*",
 "Resource" : "*"
 }]
}

Change a key policy

You can change the key policy for a KMS key in your Amazon Web Services account by using the
Amazon Web Services Management Console or the PutKeyPolicy operation. You cannot use these
techniques to change the key policy of a KMS key in a different Amazon Web Services account.

When changing a key policy, keep in mind the following rules:

• You can view the key policy for an Amazon managed key or a customer managed key, but you
can only change the key policy for a customer managed key. The policies of Amazon managed
keys are created and managed by the Amazon service that created the KMS key in your account.
You cannot view or change the key policy for an Amazon owned key.

Change a key policy 92

https://docs.amazonaws.cn/cli/latest/reference/kms/get-key-policy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html

Amazon Key Management Service Developer Guide

• You can add or remove IAM users, IAM roles, and Amazon Web Services accounts in the key
policy, and change the actions that are allowed or denied for those principals. For more
information about the ways to specify principals and permissions in a key policy, see Key policies.

• You cannot add IAM groups to a key policy, but you can add multiple IAM users and IAM roles.
For more information, see Allowing multiple IAM principals to access a KMS key.

• If you add external Amazon Web Services accounts to a key policy, you must also use IAM policies
in the external accounts to give permissions to IAM users, groups, or roles in those accounts. For
more information, see Allowing users in other accounts to use a KMS key.

• The resulting key policy document cannot exceed 32 KB (32,768 bytes).

How to change a key policy

You can change a key policy in three different ways as explained in the following sections.

Topics

• Using the Amazon Web Services Management Console default view

• Using the Amazon Web Services Management Console policy view

• Using the Amazon KMS API

Using the Amazon Web Services Management Console default view

You can use the console to change a key policy with a graphical interface called the default view.

If the following steps don't match what you see in the console, it might mean that this key policy
was not created by the console. Or it might mean that the key policy has been modified in a
way that the console's default view does not support. In that case, follow the steps at Using the
Amazon Web Services Management Console policy view or Using the Amazon KMS API.

1. View the key policy for a customer managed key as described in Using the Amazon KMS
console. (You cannot change the key policies of Amazon managed keys.)

2. Decide what to change.

• To add or remove key administrators, and to allow or prevent key administrators from
deleting the KMS key, use the controls in the Key administrators section of the page. Key
administrators manage the KMS key, including enabling and disabling it, setting key policy,
and enabling key rotation.

Change a key policy 93

Amazon Key Management Service Developer Guide

• To add or remove key users, and to allow or disallow external Amazon Web Services
accounts to use the KMS key, use the controls in the Key users section of the page. Key
users can use the KMS key in cryptographic operations, such as encrypting, decrypting, re-
encrypting, and generating data keys.

Using the Amazon Web Services Management Console policy view

You can use the console to change a key policy document with the console's policy view.

1. View the key policy for a customer managed key as described in Using the Amazon KMS
console. (You cannot change the key policies of Amazon managed keys.)

2. In the Key Policy section, choose Switch to policy view.

3. Choose Edit.

4. Decide what to change.

• To add a new statement, choose Add new statement. Then, you can select the actions,
principals, and conditions for your new key policy statement from the options listed in the
statement builder panel, or manually enter the policy statement elements.

• To remove a statement from your key policy, select the statement and then choose Remove.
Review the selected policy statement and confirm that you want to remove it. If you decide
that you do not want to proceed with removing the statement, choose Cancel.

• To edit an existing key policy statement, select the statement. Then, you can use the
statement builder panel to choose specific elements that you want to modify, or manually
edit the statement.

5. Choose Save changes.

Using the Amazon KMS API

You can use the PutKeyPolicy operation to change the key policy of a KMS key in your Amazon
Web Services account. You cannot use this API on a KMS key in a different Amazon Web Services
account.

1. Use the GetKeyPolicy operation to get the existing key policy document, and then save the
key policy document to a file. For sample code in multiple programming languages, see Use
GetKeyPolicy with an Amazon SDK or CLI.

Change a key policy 94

https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html

Amazon Key Management Service Developer Guide

2. Open the key policy document in your preferred text editor, edit the key policy document, and
then save the file.

3. Use the PutKeyPolicy operation to apply the updated key policy document to the KMS key. For
sample code in multiple programming languages, see Use PutKeyPolicy with an Amazon
SDK or CLI.

For an example of copying a key policy from one KMS key to another, see the GetKeyPolicy
example in the Amazon CLI Command Reference.

Permissions for Amazon services in key policies

Many Amazon services use Amazon KMS keys to protect the resources they manage. When a
service uses Amazon owned keys or Amazon managed keys, the service establishes and maintains
the key policies for these KMS keys.

However, when you use a customer managed key with an Amazon service, you set and maintain
the key policy. That key policy must allow the service the minimum permissions that it requires to
protect the resource on your behalf. We recommend that you follow the principle of least privilege:
give the service only the permissions that it requires. You can do this effectively by learning which
permissions the service needs and using Amazon global condition keys and Amazon KMS condition
keys to refine the permissions.

To find the permissions that the service requires on a customer managed key, see the encryption
documentation for the service. For example, for the permissions that Amazon Elastic Block Store
(Amazon EBS) requires, see Permissions for IAM users in the Amazon EC2 User Guide and Amazon
EC2 User Guide. For the permissions that Secrets Manager requires, see Authorizing use of the KMS
key in the Amazon Secrets Manager User Guide.

Using IAM policies with Amazon KMS

You can use IAM policies, along with key policies, grants, and VPC endpoint policies, to control
access to your Amazon KMS keys in Amazon KMS.

Note

To use an IAM policy to control access to a KMS key, the key policy for the KMS key must
give the account permission to use IAM policies. Specifically, the key policy must include the
policy statement that enables IAM policies.

Permissions for Amazon services 95

https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/cli/latest/reference/kms/get-key-policy.html#examples
https://docs.amazonaws.cn/cli/latest/reference/kms/get-key-policy.html#examples
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html#ebs-encryption-permissions
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/EBSEncryption.html#ebs-encryption-permissions
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/EBSEncryption.html#ebs-encryption-permissions
https://docs.amazonaws.cn/secretsmanager/latest/userguide/security-encryption.html#security-encryption-authz
https://docs.amazonaws.cn/secretsmanager/latest/userguide/security-encryption.html#security-encryption-authz
https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#edit-vpc-endpoint-policy

Amazon Key Management Service Developer Guide

This section explains how to use IAM policies to control access to Amazon KMS operations.
For more general information about IAM, see the IAM User Guide.

All KMS keys must have a key policy. IAM policies are optional. To use an IAM policy to control
access to a KMS key, the key policy for the KMS key must give the account permission to use IAM
policies. Specifically, the key policy must include the policy statement that enables IAM policies.

IAM policies can control access to any Amazon KMS operation. Unlike key policies, IAM policies can
control access to multiple KMS keys and provide permissions for the operations of several related
Amazon services. But IAM policies are particularly useful for controlling access to operations, such
as CreateKey, that can't be controlled by a key policy because they don't involve any particular KMS
key.

If you access Amazon KMS through an Amazon Virtual Private Cloud (Amazon VPC) endpoint,
you can also use a VPC endpoint policy to limit access to your Amazon KMS resources when using
the endpoint. For example, when using the VPC endpoint, you might only allow the principals in
your Amazon Web Services account to access your customer managed keys. For details, see VPC
endpoint policies.

For help writing and formatting a JSON policy document, see the IAM JSON Policy Reference in the
IAM User Guide.

You can use IAM policies in the following ways:

• Attach a permissions policy to a role for federation or cross-account permissions – You
can attach an IAM policy to an IAM role to enable identity federation, allow cross-account
permissions, or give permissions to applications running on EC2 instances. For more information
about the various use cases for IAM roles, see IAM Roles in the IAM User Guide.

• Attach a permissions policy to a user or a group – You can attach a policy that allows a user or
group of users to call Amazon KMS operations. However, IAM best practices recommend that you
use identities with temporary credentials, such as IAM roles, whenever possible.

The following example shows an IAM policy with Amazon KMS permissions. This policy allows the
IAM identities to which it is attached to list all KMS keys and aliases.

{
 "Version": "2012-10-17",

IAM policies 96

https://docs.amazonaws.cn/IAM/latest/UserGuide/
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#edit-vpc-endpoint-policy
https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#edit-vpc-endpoint-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html

Amazon Key Management Service Developer Guide

 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:ListKeys",
 "kms:ListAliases"
],
 "Resource": "*"
 }
}

Like all IAM policies, this policy doesn't have a Principal element. When you attach an IAM policy
to an IAM identity, that identity gets the permissions specified in the policy.

For a table showing all of the Amazon KMS API actions and the resources that they apply to, see
the Permissions reference.

Allowing multiple IAM principals to access a KMS key

IAM groups are not valid principals in a key policy. To allow multiple users and roles to access a
KMS key, do one of the following:

• Use an IAM role as the principal in the key policy. Multiple authorized users can assume the role
as needed. For details, see IAM roles in the IAM User Guide.

While you can list multiple IAM users in a key policy, this practice is not recommended because
it requires that you update the key policy every time the list of authorized users changes. Also,
IAM best practices discourage the use of IAM users with long-term credentials. For details, see
Security best practices in IAM in the IAM User Guide.

• Use an IAM policy to give permission to an IAM group. To do this, ensure that the key policy
includes the statement that enables IAM policies to allow access to the KMS key, create an
IAM policy that allows access to the KMS key, and then attach that policy to an IAM group that
contains the authorized IAM users. Using this approach, you don't need to change any policies
when the list of authorized users changes. Instead, you only need to add or remove those users
from the appropriate IAM group. For details, see IAM user groups in the IAM User Guide

For more information about how Amazon KMS key policies and IAM policies work together, see
Troubleshooting Amazon KMS permissions.

Allowing multiple IAM principals to access a KMS key 97

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-using.html#create-managed-policy-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-using.html#create-managed-policy-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html

Amazon Key Management Service Developer Guide

Best practices for IAM policies

Securing access to Amazon KMS keys is critical to the security of all of your Amazon resources.
KMS keys are used to protect many of the most sensitive resources in your Amazon Web Services
account. Take the time to design the key policies, IAM policies, grants, and VPC endpoint policies
that control access to your KMS keys.

In IAM policy statements that control access to KMS keys, use the least privileged principle. Give
IAM principals only the permissions they need on only the KMS keys they must use or manage.

The following best practices apply to IAM policies that control access to Amazon KMS keys and
aliases. For general IAM policy best practice guidance, see Security best practices in IAM in the IAM
User Guide.

Use key policies

Whenever possible, provide permissions in key policies that affect one KMS key, rather than in
an IAM policy that can apply to many KMS keys, including those in other Amazon Web Services
accounts. This is particularly important for sensitive permissions like kms:PutKeyPolicy and
kms:ScheduleKeyDeletion but also for cryptographic operations that determine how your data
is protected.

Limit CreateKey permission

Give permission to create keys (kms:CreateKey) only to principals who need it. Principals who
create a KMS key also set its key policy, so they can give themselves and others permission to
use and manage the KMS keys they create. When you allow this permission, consider limiting
it by using policy conditions. For example, you can use the kms:KeySpec condition to limit the
permission to symmetric encryption KMS keys.

Specify KMS keys in an IAM policy

As a best practice, specify the key ARN of each KMS key to which the permission applies in the
Resource element of the policy statement. This practice restricts the permission to the KMS
keys that principal requires. For example, this Resource element lists only the KMS keys the
principal needs to use.

"Resource": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

Best practices for IAM policies 98

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

]

When specifying KMS keys is impractical, use a Resource value that limits access
to KMS keys in a trusted Amazon Web Services account and Region, such as
arn:aws:kms:region:account:key/*. Or limit access to KMS keys in all Regions (*) of a
trusted Amazon Web Services account, such as arn:aws:kms:*:account:key/*.

You cannot use a key ID, alias name, or alias ARN to represent a KMS key in the Resource field
of an IAM policy. If you specify an alias ARN, the policy applies to the alias, not to the KMS key.
For information about IAM policies for aliases, see Controlling access to aliases

Avoid "Resource": "*" in an IAM policy

Use wildcard characters (*) judiciously. In a key policy, the wildcard character in the Resource
element represents the KMS key to which the key policy is attached. But in an IAM policy,
a wildcard character alone in the Resource element ("Resource": "*") applies the
permissions to all KMS keys in all Amazon Web Services accounts that the principal's account
has permission to use. This might include KMS keys in other Amazon Web Services accounts, as
well as KMS keys in the principal's account.

For example, to use a KMS key in another Amazon Web Services account, a principal needs
permission from the key policy of the KMS key in the external account, and from an IAM policy
in their own account. Suppose that an arbitrary account gave your Amazon Web Services
account kms:Decrypt permission on their KMS keys. If so, an IAM policy in your account that
gives a role kms:Decrypt permission on all KMS keys ("Resource": "*") would satisfy the
IAM part of the requirement. As a result, principals who can assume that role can now decrypt
ciphertexts using the KMS key in the untrusted account. Entries for their operations appear in
the CloudTrail logs of both accounts.

In particular, avoid using "Resource": "*" in a policy statement that allows the following
API operations. These operations can be called on KMS keys in other Amazon Web Services
accounts.

• DescribeKey

• GetKeyRotationStatus

• Cryptographic operations (Encrypt, Decrypt, GenerateDataKey, GenerateDataKeyPair,
GenerateDataKeyWithoutPlaintext, GenerateDataKeyPairWithoutPlaintext, GetPublicKey,
ReEncrypt, Sign, Verify)

• CreateGrant, ListGrants, ListRetirableGrants, RetireGrant, RevokeGrant

Best practices for IAM policies 99

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListRetirableGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html

Amazon Key Management Service Developer Guide

When to use "Resource": "*"

In an IAM policy, use a wildcard character in the Resource element only for permissions that
require it. Only the following permissions require the "Resource": "*" element.

• kms:CreateKey

• kms:GenerateRandom

• kms:ListAliases

• kms:ListKeys

• Permissions for custom key stores, such as kms:CreateCustomKeyStore and
kms:ConnectCustomKeyStore.

Note

Permissions for alias operations (kms:CreateAlias, kms:UpdateAlias, kms:DeleteAlias)
must be attached to the alias and the KMS key. You can use "Resource": "*" in an
IAM policy to represent the aliases and the KMS keys, or specify the aliases and KMS
keys in the Resource element. For examples, see Controlling access to aliases.

The examples in this topic provide more information and guidance for designing IAM policies for
KMS keys. For IAM best practices for all Amazon resources, see Security best practices in IAM in the
IAM User Guide.

Specifying KMS keys in IAM policy statements

You can use an IAM policy to allow a principal to use or manage KMS keys. KMS keys are specified
in the Resource element of the policy statement.

• To specify a KMS key in an IAM policy statement, you must use its key ARN. You cannot use a key
id, alias name, or alias ARN to identify a KMS key in an IAM policy statement.

For example: "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

To control access to a KMS key based on its aliases, use the kms:RequestAlias or
kms:ResourceAliases condition keys. For details, see ABAC for Amazon KMS.

Specifying KMS keys in IAM policy statements 100

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

Use an alias ARN as the resource only in a policy statement that controls access to alias
operations, such as CreateAlias, UpdateAlias, or DeleteAlias. For details, see Controlling access to
aliases.

• To specify multiple KMS keys in the account and Region, use wildcard characters (*) in the Region
or resource ID positions of the key ARN.

For example, to specify all KMS keys in the US West (Oregon) Region of an account, use
"Resource": "arn:aws:kms:us-west-2:111122223333:key/*". To specify all KMS keys in
all Regions of the account, use "Resource": "arn:aws:kms:*:111122223333:key/*".

• To represent all KMS keys, use a wildcard character alone ("*"). Use this format for operations
that don't use any particular KMS key, namely CreateKey, GenerateRandom, ListAliases, and
ListKeys.

When writing your policy statements, it's a best practice to specify only the KMS keys that the
principal needs to use, rather than giving them access to all KMS keys.

For example, the following IAM policy statement allows the principal to call the DescribeKey,
GenerateDataKey, Decrypt operations only on the KMS keys listed in the Resource element of
the policy statement. Specifying KMS keys by key ARN, which is a best practice, ensures that the
permissions are limited only to the specified KMS keys.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
]
 }
}

Specifying KMS keys in IAM policy statements 101

https://docs.amazonaws.cn/kms/latest/APIReference/CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/DeleteAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

To apply the permission to all KMS keys in a particular trusted Amazon Web Services account,
you can use wildcard characters (*) in the Region and key ID positions. For example, the following
policy statement allows the principal to call the specified operations on all KMS keys in two trusted
example accounts.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyPair"
],
 "Resource": [
 "arn:aws:kms:*:111122223333:key/*",
 "arn:aws:kms:*:444455556666:key/*"
]
 }
}

You can also use a wildcard character ("*") alone in the Resource element. Because it allows
access to all KMS keys the account has permission to use, it's recommended primarily for
operations without a particular KMS key and for Deny statements. You can also use it in policy
statements that allow only less sensitive read-only operations. To determine whether an Amazon
KMS operation involves a particular KMS key, look for the KMS key value in the Resources column
of the table in the section called “Permissions reference”.

For example, the following policy statement uses a Deny effect to prohibit the principals from
using the specified operations on any KMS key. It uses a wildcard character in the Resource
element to represent all KMS keys.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": [
 "kms:CreateKey",
 "kms:PutKeyPolicy",
 "kms:CreateGrant",
 "kms:ScheduleKeyDeletion"

Specifying KMS keys in IAM policy statements 102

Amazon Key Management Service Developer Guide

],
 "Resource": "*"
 }
}

The following policy statement uses a wildcard character alone to represent all KMS keys. But it
allows only less sensitive read-only operations and operations that don't apply to any particular
KMS key.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:CreateKey",
 "kms:ListKeys",
 "kms:ListAliases",
 "kms:ListResourceTags"
],
 "Resource": "*"
 }
}

IAM policy examples

In this section, you can find example IAM policies that allow permissions for various Amazon KMS
actions.

Important

Some of the permissions in the following policies are allowed only when the KMS key's key
policy also allows them. For more information, see Permissions reference.

For help writing and formatting a JSON policy document, see the IAM JSON Policy Reference in the
IAM User Guide.

Examples

• Allow a user to view KMS keys in the Amazon KMS console

• Allow a user to create KMS keys

Examples 103

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html

Amazon Key Management Service Developer Guide

• Allow a user to encrypt and decrypt with any KMS key in a specific Amazon Web Services account

• Allow a user to encrypt and decrypt with any KMS key in a specific Amazon Web Services account
and Region

• Allow a user to encrypt and decrypt with specific KMS keys

• Prevent a user from disabling or deleting any KMS keys

Allow a user to view KMS keys in the Amazon KMS console

The following IAM policy allows users read-only access to the Amazon KMS console. Users with
these permissions can view all KMS keys in their Amazon Web Services account, but they cannot
create or change any KMS keys.

To view KMS keys on the Amazon managed keys and Customer managed keys pages, principals
require kms:ListKeys, kms:ListAliases, and tag:GetResources permissions, even if the keys do not
have tags or aliases. The remaining permissions, particularly kms:DescribeKey, are required to
view optional KMS key table columns and data on the KMS key detail pages. The iam:ListUsers
and iam:ListRoles permissions are required to display the key policy in default view without error.
To view data on the Custom key stores page and details about KMS keys in custom key stores,
principals also need kms:DescribeCustomKeyStores permission.

If you limit a user's console access to particular KMS keys, the console displays an error for each
KMS key that is not visible.

This policy includes of two policy statements. The Resource element in the first policy statement
allows the specified permissions on all KMS keys in all Regions of the example Amazon Web
Services account. Console viewers don't need additional access because the Amazon KMS console
displays only KMS keys in the principal's account. This is true even if they have permission to
view KMS keys in other Amazon Web Services accounts. The remaining Amazon KMS and IAM
permissions require a "Resource": "*" element because they don't apply to any particular KMS
key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadOnlyAccessForAllKMSKeysInAccount",
 "Effect": "Allow",
 "Action": [
 "kms:GetPublicKey",

Examples 104

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/resourcegroupstagging/latest/APIReference/API_GetResources.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListUsers.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListRoles.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

 "kms:GetKeyRotationStatus",
 "kms:GetKeyPolicy",
 "kms:DescribeKey",
 "kms:ListKeyPolicies",
 "kms:ListResourceTags",
 "tag:GetResources"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*"
 },
 {
 "Sid": "ReadOnlyAccessForOperationsWithNoKMSKey",
 "Effect": "Allow",
 "Action": [
 "kms:ListKeys",
 "kms:ListAliases",
 "iam:ListRoles",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Allow a user to create KMS keys

The following IAM policy allows a user to create all types of KMS keys. The value of the Resource
element is * because the CreateKey operation does not use any particular Amazon KMS resources
(KMS keys or aliases).

To restrict the user to particular types of KMS keys, use the kms:KeySpec, kms:KeyUsage, and
kms:KeyOrigin condition keys.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "kms:CreateKey",
 "Resource": "*"
 }
}

Principals who create keys might need some related permissions.

Examples 105

Amazon Key Management Service Developer Guide

• kms:PutKeyPolicy — Principals who have kms:CreateKey permission can set the initial
key policy for the KMS key. However, the CreateKey caller must have kms:PutKeyPolicy
permission, which lets them change the KMS key policy, or they must specify the
BypassPolicyLockoutSafetyCheck parameter of CreateKey, which is not recommended.
The CreateKey caller can get kms:PutKeyPolicy permission for the KMS key from an IAM
policy or they can include this permission in the key policy of the KMS key that they're creating.

• kms:TagResource — To add tags to the KMS key during the CreateKey operation, the
CreateKey caller must have kms:TagResource permission in an IAM policy. Including this
permission in the key policy of the new KMS key isn't sufficient. However, if the CreateKey
caller includes kms:TagResource in the initial key policy, they can add tags in a separate call
after the KMS key is created.

• kms:CreateAlias — Principals who create a KMS key in the Amazon KMS console must have
kms:CreateAlias permission on the KMS key and on the alias. (The console makes two calls; one
to CreateKey and one to CreateAlias). You must provide the alias permission in an IAM
policy. You can provide the KMS key permission in a key policy or IAM policy. For details, see
Controlling access to aliases.

In addition to kms:CreateKey, the following IAM policy provides kms:TagResource permission
on all KMS keys in the Amazon Web Services account and kms:CreateAlias permission on all
aliases that the account. It also includes some useful read-only permissions that can be provided
only in an IAM policy.

This IAM policy does not include kms:PutKeyPolicy permission or any other permissions that
can be set in a key policy. It's a best practice to set these permissions in the key policy where they
apply exclusively to one KMS key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMPermissionsForParticularKMSKeys",
 "Effect": "Allow",
 "Action": "kms:TagResource",
 "Resource": "arn:aws:kms:*:111122223333:key/*"
 },
 {
 "Sid": "IAMPermissionsForParticularAliases",
 "Effect": "Allow",

Examples 106

https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html

Amazon Key Management Service Developer Guide

 "Action": "kms:CreateAlias",
 "Resource": "arn:aws:kms:*:111122223333:alias/*"
 },
 {
 "Sid": "IAMPermissionsForAllKMSKeys",
 "Effect": "Allow",
 "Action": [
 "kms:CreateKey",
 "kms:ListKeys",
 "kms:ListAliases"
],
 "Resource": "*"
 }
]
}

Allow a user to encrypt and decrypt with any KMS key in a specific Amazon Web
Services account

The following IAM policy allows a user to encrypt and decrypt data with any KMS key in Amazon
Web Services account 111122223333.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*"
 }
}

Allow a user to encrypt and decrypt with any KMS key in a specific Amazon Web
Services account and Region

The following IAM policy allows a user to encrypt and decrypt data with any KMS key in Amazon
Web Services account 111122223333 in the US West (Oregon) Region.

{

Examples 107

Amazon Key Management Service Developer Guide

 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:us-west-2:111122223333:key/*"
]
 }
}

Allow a user to encrypt and decrypt with specific KMS keys

The following IAM policy allows a user to encrypt and decrypt data with the two KMS keys
specified in the Resource element. When specifying a KMS key in an IAM policy statement, you
must use the key ARN of the KMS key.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
]
 }
}

Prevent a user from disabling or deleting any KMS keys

The following IAM policy prevents a user from disabling or deleting any KMS keys, even when
another IAM policy or a key policy allows these permissions. A policy that explicitly denies
permissions overrides all other policies, even those that explicitly allow the same permissions. For
more information, see Troubleshooting Amazon KMS permissions.

{

Examples 108

Amazon Key Management Service Developer Guide

 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": [
 "kms:DisableKey",
 "kms:ScheduleKeyDeletion"
],
 "Resource": "*"
 }
}

Resource control policies in Amazon KMS

Resource control policies (RCPs) are a type of organization policy that you can use to enforce
preventive controls on Amazon resources in your organization. RCPs help you to centrally restrict
external access to your Amazon resources at scale. RCPs complement service control policies (SCPs).
While, SCPs can be used to centrally set the maximum permissions on the IAM roles and users
in your organization, RCPs can be used to centrally set the maximum permissions on Amazon
resources in your organization.

You can use RCPs to manage permissions to the customer managed KMS keys in your organization.
RCPs alone are not sufficient in granting permissions to your customer managed keys. No
permissions are granted by an RCP. An RCP defines a permissions guardrail, or sets limits, on the
actions that identities can take on resources in the affected accounts. The administrator must still
attach identity-based policies to IAM roles or users, or key policies to actually grant permissions.

Note

Resource control policies in your organization do not apply to Amazon managed keys.
Amazon managed keys are created, managed, and used on your behalf by an Amazon
service, you cannot change or manage their permissions.

Learn more

• For more general information on RCPs, see Resource control policies in the Amazon
Organizations User Guide.

• For details on how to define RCPs, including examples, see RCP syntax in the Amazon
Organizations User Guide.

Resource control policies 109

https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps_syntax.html

Amazon Key Management Service Developer Guide

The following example demonstrates how to use an RCP to prevent external principals from
accessing customer managed keys in your organization. This policy is just a sample, and you
should tailor it to meet your unique business and security needs. For example, you might want
to customize your policy to allow access by your business partners. For more details, see the data
perimeter policy examples repository.

Note

The kms:RetireGrant permission is not effective in an RCP, even if the Action element
specifies an asterisk (*) as a wildcard.
For more information on how permission to kms:RetireGrant is determined, see Retiring
and revoking grants.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RCPEnforceIdentityPerimeter",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "kms:*",
 "Resource": "*",
 "Condition": {
 "StringNotEqualsIfExists": {
 "aws:PrincipalOrgID": "my-org-id"
 },
 "Bool": {
 "aws:PrincipalIsAWSService": "false"
 }
 }
 }
]
}

The following example RCP requires that Amazon service principals can only access your
customer managed KMS keys when the request originates from your organization. This policy
applies the control only on requests that have aws:SourceAccount present. This ensures
that service integrations that don't require the use of aws:SourceAccount aren't affected. If

Resource control policies 110

https://github.com/aws-samples/data-perimeter-policy-examples/tree/main/resource_control_policies
https://github.com/aws-samples/data-perimeter-policy-examples/tree/main/resource_control_policies

Amazon Key Management Service Developer Guide

aws:SourceAccount is present in the request context, the Null condition evaluates to true,
causing the aws:SourceOrgID key to be enforced.

For more information about the confused deputy problem, see The confused deputy problem in
the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RCPEnforceConfusedDeputyProtection",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "kms:*",
 "Resource": "*",
 "Condition": {
 "StringNotEqualsIfExists": {
 "aws:SourceOrgID": "my-org-id"
 },
 "Bool": {
 "aws:PrincipalIsAWSService": "true"
 },
 "Null": {
 "aws:SourceAccount": "false"
 }
 }
 }
]
}

Grants in Amazon KMS

A grant is a policy instrument that allows Amazon principals to use KMS keys in cryptographic
operations. It also can let them view a KMS key (DescribeKey) and create and manage grants.
When authorizing access to a KMS key, grants are considered along with key policies and IAM
policies. Grants are often used for temporary permissions because you can create one, use its
permissions, and delete it without changing your key policies or IAM policies.

Grants are commonly used by Amazon services that integrate with Amazon KMS to encrypt your
data at rest. The service creates a grant on behalf of a user in the account, uses its permissions, and

Grants 111

https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/intro-structure.html#intro-structure-principal

Amazon Key Management Service Developer Guide

retires the grant as soon as its task is complete. For details about how Amazon services, use grants,
see the Encryption at rest topic in the service's user guide or developer guide.

Grants are a very flexible and useful access control mechanism. When you create a grant for a KMS
key, the grant allows the grantee principal to call the specified grant operations on the KMS key
provided that all conditions specified in the grant are met.

• Each grant allows access to exactly one KMS key. You can create a grant for a KMS key in a
different Amazon Web Services account.

• A grant can allow access to a KMS key, but not deny access.

• Each grant has one grantee principal. The grantee principal can represent one or more identities
in the same Amazon Web Services account as the KMS key or in a different account.

• A grant can only allow grant operations. The grant operations must be supported by the KMS
key in the grant. If you specify an unsupported operation, the CreateGrant request fails with a
ValidationError exception.

• The grantee principal can use the permissions that the grant gives them without specifying
the grant, just as they would if the permissions came from a key policy or IAM policy. However,
because the Amazon KMS API follows an eventual consistency model, when you create, retire, or
revoke a grant, there might be a brief delay, before the change is available throughout Amazon
KMS. To use the permissions in a grant immediately, use a grant token.

• An authorized principal can delete the grant (retire or revoke it). Deleting a grant eliminates
all permissions that the grant allowed. You do not have to figure out which policies to add or
remove to undo the grant.

• Amazon KMS limits the number of grants on each KMS key. For details, see Grants per KMS key:
50,000.

Be cautious when creating grants and when giving others permission to create grants. Permission
to create grants has security implications, much like allowing the kms:PutKeyPolicy permission to
set policies.

• Users with permission to create grants for a KMS key (kms:CreateGrant) can use a grant
to allow users and roles, including Amazon services, to use the KMS key. The principals can
be identities in your own Amazon Web Services account or identities in a different account or
organization.

• Grants can allow only a subset of Amazon KMS operations. You can use grants to allow principals
to view the KMS key, use it in cryptographic operations, and create and retire grants. For details,

Grants 112

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html

Amazon Key Management Service Developer Guide

see Grant operations. You can also use grant constraints to limit the permissions in a grant for a
symmetric encryption key.

• Principals can get permission to create grants from a key policy or IAM policy. Principals who get
kms:CreateGrant permission from a policy can create grants for any grant operation on the
KMS key. These principals are not required to have the permission that they are granting on the
key. When you allow kms:CreateGrant permission in a policy, you can use policy conditions to
limit this permission.

• Principals can also get permission to create grants from a grant. These principals can only
delegate the permissions that they were granted, even if they have other permissions from a
policy. For details, see Granting CreateGrant permission.

Grant concepts

To use grants effectively, you'll need to understand the terms and concepts that Amazon KMS uses.

Grant constraint

A condition that limits the permissions in the grant. Currently, Amazon KMS supports grant
constraints based on the encryption context in the request for a cryptographic operation. For
details, see Using grant constraints.

Grant ID

The unique identifier of a grant for a KMS key. You can use a grant ID, along with a key
identifier, to identify a grant in a RetireGrant or RevokeGrant request.

Grant operations

The Amazon KMS operations that you can allow in a grant. If you specify other operations, the
CreateGrant request fails with a ValidationError exception. These are also the operations
that accept a grant token. For detailed information about these permissions, see the Amazon
KMS permissions.

These grant operations actually represent permission to use the operation. Therefore, for the
ReEncrypt operation, you can specify ReEncryptFrom, ReEncryptTo, or both ReEncrypt*.

The grant operations are:

• Cryptographic operations

• Decrypt

Grant concepts 113

https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

• DeriveSharedSecret

• Encrypt

• GenerateDataKey

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutPlaintext

• GenerateDataKeyWithoutPlaintext

• GenerateMac

• ReEncryptFrom

• ReEncryptTo

• Sign

• Verify

• VerifyMac

• Other operations

• CreateGrant

• DescribeKey

• GetPublicKey

• RetireGrant

The grant operations that you allow must be supported by the KMS key in the grant. If you
specify an unsupported operation, the CreateGrant request fails with a ValidationError
exception. For example, grants for symmetric encryption KMS keys cannot allow the Sign,
Verify, GenerateMac or VerifyMac operations. Grants for asymmetric KMS keys cannot allow
any operations that generate data keys or data key pairs.

Grant token

The Amazon KMS API follows an eventual consistency model. When you create a grant, there
might be a brief delay before the change is available throughout Amazon KMS. It typically takes
less than a few seconds for the change to propagate throughout the system, but in some cases
it can take several minutes. If you try to use a grant before it fully propagates through the
system, you might get an access denied error. A grant token lets you refer to the grant and use
the grant permissions immediately.

Grant concepts 114

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html

Amazon Key Management Service Developer Guide

A grant token is a unique, nonsecret, variable-length, base64-encoded string that represents
a grant. You can use the grant token to identify the grant in any grant operation. However,
because the token value is a hash digest, it doesn't reveal any details about the grant.

A grant token is designed to be used only until the grant has fully propagated throughout
Amazon KMS. After that, the grantee principal can use the permission in the grant without
providing a grant token or any other evidence of the grant. You can use a grant token at any
time, but once the grant is eventually consistent, Amazon KMS uses the grant to determine
permissions, not the grant token.

For example, the following command calls the GenerateDataKey operation. It uses a grant
token to represent the grant that gives the caller (the grantee principal) permission to call
GenerateDataKey on the specified KMS key.

$ aws kms generate-data-key \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --key-spec AES_256 \
 --grant-token $token

You can also use a grant token to identify a grant in operations that manage grants. For
example, the retiring principal can use a grant token in a call to the RetireGrant operation.

$ aws kms retire-grant \
 --grant-token $token

CreateGrant is the only operation that returns a grant token. You cannot get a grant token
from any other Amazon KMS operation or from the CloudTrail log event for the CreateGrant
operation. The ListGrants and ListRetirableGrants operations return the grant ID, but not a
grant token.

For details, see Using a grant token.

Grantee principal

The identities that get the permissions specified in the grant. Each grant has one grantee
principal, but the grantee principal can represent multiple identities.

The grantee principal can be any Amazon principal, including an Amazon Web Services account
(root), an IAM user, an IAM role, a federated role or user, or an assumed role user. The grantee
principal can be in the same account as the KMS key or a different account. However, the
grantee principal cannot be a service principal, an IAM group, or an Amazon organization.

Grant concepts 115

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListRetirableGrants.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_providers.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/organizations/latest/userguide/

Amazon Key Management Service Developer Guide

Note

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.

Retire (a grant)

Terminates a grant. You retire a grant when you finish using the permissions.

Revoking and retiring a grant both delete the grant. But retiring is done by a principal specified
in the grant. Revoking is typically done by a key administrator. For details, see Retiring and
revoking grants.

Retiring principal

A principal who can retire a grant. You can specify a retiring principal in a grant, but it is not
required. The retiring principal can be any Amazon principal, including Amazon Web Services
accounts, IAM users, IAM roles, federated users, and assumed role users. The retiring principal
can be in the same account as the KMS key or a different account.

Note

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.

In addition to retiring principal specified in the grant, a grant can be retired by the Amazon
Web Services account in which the grant was created. If the grant allows the RetireGrant
operation, the grantee principal can retire the grant. Also, the Amazon Web Services account
or an Amazon Web Services account that is the retiring principal can delegate the permission
to retire a grant to an IAM principal in the same Amazon Web Services account. For details, see
Retiring and revoking grants.

Revoke (a grant)

Terminates a grant. You revoke a grant to actively deny the permissions that the grant allows.

Grant concepts 116

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

Revoking and retiring a grant both delete the grant. But retiring is done by a principal specified
in the grant. Revoking is typically done by a key administrator. For details, see Retiring and
revoking grants.

Eventual consistency (for grants)

The Amazon KMS API follows an eventual consistency model. When you create, retire, or revoke
a grant, there might be a brief delay before the change is available throughout Amazon KMS. It
typically takes less than a few seconds for the change to propagate throughout the system, but
in some cases it can take several minutes.

You might become aware of this brief delay if you get unexpected errors. For example, If you
try to manage a new grant or use the permissions in a new grant before the grant is known
throughout Amazon KMS, you might get an access denied error. If you retire or revoke a grant,
the grantee principal might still be able to use its permissions for a brief period until the grant
is fully deleted. The typical strategy is to retry the request, and some Amazon SDKs include
automatic backoff and retry logic.

Amazon KMS has features to mitigate this brief delay.

• To use the permissions in a new grant immediately, use a grant token. You can use a grant
token to refer to a grant in any grant operation. For instructions, see Using a grant token.

• The CreateGrant operation has a Name parameter that prevents retry operations from
creating duplicate grants.

Note

Grant tokens supersede the validity of the grant until all endpoints in the service have
been updated with the new grant state. In most cases, eventual consistency will be
achieved within five minutes.

For more information, see Amazon KMS eventual consistency.

Best practices for Amazon KMS grants

Amazon KMS recommends the following best practices when creating, using, and managing grants.

• Limit the permissions in the grant to those that the grantee principal requires. Use the principle
of least privileged access.

Best practices 117

https://en.wikipedia.org/wiki/Eventual_consistency
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon Key Management Service Developer Guide

• Use a specific grantee principal, such as an IAM role, and give the grantee principal permission to
use only the API operations that they require.

• Use the encryption context grant constraints to ensure that callers are using the KMS key for
the intended purpose. For details about how to use the encryption context in a request to
secure your data, see How to Protect the Integrity of Your Encrypted Data by Using Amazon Key
Management Service and EncryptionContext in the Amazon Security Blog.

Tip

Use the EncryptionContextEqual grant constraint whenever possible. The
EncryptionContextSubset grant constraint is more difficult to use correctly. If you need
to use it, read the documentation carefully and test the grant constraint to make sure it
works as intended.

• Delete duplicate grants. Duplicate grants have the same key ARN, API actions, grantee principal,
encryption context, and name. If you retire or revoke the original grant but leave the duplicates,
the leftover duplicate grants constitute unintended escalations of privilege. To avoid duplicating
grants when retrying a CreateGrant request, use the Name parameter. To detect duplicate
grants, use the ListGrants operation. If you accidentally create a duplicate grant, retire or revoke
it as soon as possible.

Note

Grants for Amazon managed keys might look like duplicates but have different grantee
principals.
The GranteePrincipal field in the ListGrants response usually contains the grantee
principal of the grant. However, when the grantee principal in the grant is an Amazon
service, the GranteePrincipal field contains the service principal, which might
represent several different grantee principals.

• Remember that grants do not automatically expire. Retire or revoke the grant as soon as the
permission is no longer needed. Grants that are not deleted might create a security risk for
encrypted resources.

Best practices 118

https://amazonaws-china.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://amazonaws-china.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services

Amazon Key Management Service Developer Guide

Controlling access to grants

You can control access to the operations that create and manage grants in key policies, IAM
policies, and in grants. Principals who get CreateGrant permission from a grant have more
limited grant permissions.

API operation Key policy or IAM policy Grant

CreateGrant ✓ ✓

ListGrants ✓ -

ListRetirableGrants ✓ -

Retire Grants (Limited. See Retiring and
revoking grants)

✓

RevokeGrant ✓ -

When you use a key policy or IAM policy to control access to operations that create and manage
grants, you can use one or more of the following policy conditions to limit the permission. Amazon
KMS supports all of the following grant-related condition keys. For detailed information and
examples, see Amazon KMS condition keys.

kms:GrantConstraintType

Allows principals to create a grant only when the grant includes the specified grant constraint.

kms:GrantIsForAWSResource

Allows principals to call CreateGrant, ListGrants, or RevokeGrant only when an Amazon
service that is integrated with Amazon KMS sends the request on the principal's behalf.

kms:GrantOperations

Allows principals to create a grant, but limits the grant to the specified operations.

kms:GranteePrincipal

Allows principals to create a grant only for the specified grantee principal.

Controlling access to grants 119

http://www.amazonaws.cn/kms/features/#AWS_Service_Integration
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

kms:RetiringPrincipal

Allows principals to create a grant only when the grant specifies a particular retiring principal.

Creating grants

Before creating a grant, learn about the options for customizing your grant. You can use grant
constraints to limit the permissions in the grant. Also, learn about granting CreateGrant
permission. Principals who get permission to create grants from a grant are limited in the grants
that they can create.

Topics

• Creating a grant

• Granting CreateGrant permission

Creating a grant

To create a grant, call the CreateGrant operation. Specify a KMS key, a grantee principal, and a list
of allowed grant operations. You can also designate an optional retiring principal. To customize the
grant, use optional Constraints parameters to define grant constraints.

When you create, retire, or revoke a grant, there might be a brief delay, usually less than five
minutes, before the change is available throughout Amazon KMS. For more information, see
Eventual consistency (for grants).

For example, the following CreateGrant command creates a grant that allows users who are
authorized to assume the keyUserRole role to call the Decrypt operation on the specified
symmetric KMS key. The grant uses the RetiringPrincipal parameter to designate a principal
that can retire the grant. It also includes a grant constraint that allows the permission only when
the encryption context in the request includes "Department": "IT".

$ aws kms create-grant \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --grantee-principal arn:aws:iam::111122223333:role/keyUserRole \
 --operations Decrypt \
 --retiring-principal arn:aws:iam::111122223333:role/adminRole \
 --constraints EncryptionContextSubset={Department=IT}

Creating grants 120

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GrantConstraints.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

If your code retries the CreateGrant operation, or uses an Amazon SDK that automatically
retries requests, use the optional Name parameter to prevent the creation of duplicate grants. If
Amazon KMS gets a CreateGrant request for a grant with the same properties as an existing
grant, including the name, it recognizes the request as a retry, and does not create a new grant.
You cannot use the Name value to identify the grant in any Amazon KMS operations.

Important

Do not include confidential or sensitive information in the grant name. It may appear in
plain text in CloudTrail logs and other output.

$ aws kms create-grant \
 --name IT-1234abcd-keyUserRole-decrypt \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --grantee-principal arn:aws:iam::111122223333:role/keyUserRole \
 --operations Decrypt \
 --retiring-principal arn:aws:iam::111122223333:role/adminRole \
 --constraints EncryptionContextSubset={Department=IT}

For code examples that demonstrate how to create grants in several programming languages, see
Use CreateGrant with an Amazon SDK or CLI.

Using grant constraints

Grant constraints set conditions on the permissions that the grant gives to the grantee principal.
Grant constraints take the place of condition keys in a key policy or IAM policy. Each grant
constraint value can include up to 8 encryption context pairs. The encryption context value in each
grant constraint cannot exceed 384 characters.

Important

Do not include confidential or sensitive information in this field. This field may be displayed
in plaintext in CloudTrail logs and other output.

Amazon KMS supports two grant constraints, EncryptionContextEquals and
EncryptionContextSubset, both of which establish requirements for the encryption context in
a request for a cryptographic operation.

Creating grants 121

https://docs.amazonaws.cn/general/latest/gr/api-retries.html
https://docs.amazonaws.cn/general/latest/gr/api-retries.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html#KMS-CreateGrant-request-Name
https://docs.amazonaws.cn/kms/latest/APIReference/API_GrantConstraints.html

Amazon Key Management Service Developer Guide

The encryption context grant constraints are designed to be used with grant operations that have
an encryption context parameter.

• Encryption context constraints are valid only in a grant for a symmetric encryption KMS key.
Cryptographic operations with other KMS keys don't support an encryption context.

• The encryption context constraint is ignored for DescribeKey and RetireGrant operations.
DescribeKey and RetireGrant don't have an encryption context parameter, but you can
include these operations in a grant that has an encryption context constraint.

• You can use an encryption context constraint in a grant for the CreateGrant operation.
The encryption context constraint requires that any grants created with the CreateGrant
permission have an equally strict or stricter encryption context constraint.

Amazon KMS supports the following encryption context grant constraints.

EncryptionContextEquals

Use EncryptionContextEquals to specify the exact encryption context for permitted
requests.

EncryptionContextEquals requires that the encryption context pairs in the request are an
exact, case-sensitive match for the encryption context pairs in the grant constraint. The pairs
can appear in any order, but the keys and values in each pair cannot vary.

For example, if the EncryptionContextEquals grant constraint requires the
"Department": "IT" encryption context pair, the grant allows requests of the specified type
only when the encryption context in the request is exactly "Department": "IT".

EncryptionContextSubset

Use EncryptionContextSubset to require that requests include particular encryption
context pairs.

EncryptionContextSubset requires that the request include all encryption context pairs in
the grant constraint (an exact, case-sensitive match), but the request can also have additional
encryption context pairs. The pairs can appear in any order, but the keys and values in each pair
cannot vary.

For example, if the EncryptionContextSubset grant constraint requires the
Department=IT encryption context pair, the grant allows requests of the specified type when
the encryption context in the request is "Department": "IT", or includes "Department":

Creating grants 122

Amazon Key Management Service Developer Guide

"IT" along with other encryption context pairs, such as "Department": "IT","Purpose":
"Test".

To specify an encryption context constraint in a grant for a symmetric encryption KMS key, use
the Constraints parameter in the CreateGrant operation. The grant that this command creates
gives users who are authorized to assume the keyUserRole role permission to call the Decrypt
operation. But that permission is effective only when the encryption context in the Decrypt
request is a "Department": "IT" encryption context pair.

$ aws kms create-grant \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --grantee-principal arn:aws:iam::111122223333:role/keyUserRole \
 --operations Decrypt \
 --retiring-principal arn:aws:iam::111122223333:role/adminRole \
 --constraints EncryptionContextEquals={Department=IT}

The resulting grant looks like the following one. Notice that the permission granted to the
keyUserRole role is effective only when the Decrypt request uses the same encryption context
pair specified in the grant constraint. To find the grants on a KMS key, use the ListGrants operation.

$ aws kms list-grants --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "Grants": [
 {
 "Name": "",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "GrantId":
 "abcde1237f76e4ba7987489ac329fbfba6ad343d6f7075dbd1ef191f0120514a",
 "Operations": [
 "Decrypt"
],
 "GranteePrincipal": "arn:aws:iam::111122223333:role/keyUserRole",
 "Constraints": {
 "EncryptionContextEquals": {
 "Department": "IT"
 }
 },
 "CreationDate": 1568565290.0,
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "RetiringPrincipal": "arn:aws:iam::111122223333:role/adminRole"

Creating grants 123

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html

Amazon Key Management Service Developer Guide

 }
]
}

To satisfy the EncryptionContextEquals grant constraint, the encryption context in the
request for the Decrypt operation must be a "Department": "IT" pair. A request like the
following from the grantee principal would satisfy the EncryptionContextEquals grant
constraint.

$ aws kms decrypt \
 --key-id arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab\
 --ciphertext-blob fileb://encrypted_msg \
 --encryption-context Department=IT

When the grant constraint is EncryptionContextSubset, the encryption context pairs in the
request must include the encryption context pairs in the grant constraint, but the request can
also include other encryption context pairs. The following grant constraint requires that one of
encryption context pairs in the request is "Deparment": "IT".

"Constraints": {
 "EncryptionContextSubset": {
 "Department": "IT"
 }
}

The following request from the grantee principal would satisfy both of the
EncryptionContextEqual and EncryptionContextSubset grant constraints in this example.

$ aws kms decrypt \
 --key-id arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
 --ciphertext-blob fileb://encrypted_msg \
 --encryption-context Department=IT

However, a request like the following from the grantee principal would satisfy the
EncryptionContextSubset grant constraint, but it would fail the EncryptionContextEquals
grant constraint.

$ aws kms decrypt \

Creating grants 124

Amazon Key Management Service Developer Guide

 --key-id arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
 --ciphertext-blob fileb://encrypted_msg \
 --encryption-context Department=IT,Purpose=Test

Amazon services often use encryption context constraints in the grants that give them permission
to use KMS keys in your Amazon Web Services account. For example, Amazon DynamoDB uses a
grant like the following one to get permission to use the Amazon managed key for DynamoDB
in your account. The EncryptionContextSubset grant constraint in this grant makes the
permissions in the grant effective only when the encryption context in the request includes
"subscriberID": "111122223333" and "tableName": "Services" pairs. This grant
constraint means that the grant allows DynamoDB to use the specified KMS key only for a
particular table in your Amazon Web Services account.

To get this output, run the ListGrants operation on the Amazon managed key for DynamoDB in
your account.

$ aws kms list-grants --key-id 0987dcba-09fe-87dc-65ba-ab0987654321

{
 "Grants": [
 {
 "Operations": [
 "Decrypt",
 "Encrypt",
 "GenerateDataKey",
 "ReEncryptFrom",
 "ReEncryptTo",
 "RetireGrant",
 "DescribeKey"
],
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "Constraints": {
 "EncryptionContextSubset": {
 "aws:dynamodb:tableName": "Services",
 "aws:dynamodb:subscriberId": "111122223333"
 }
 },
 "CreationDate": 1518567315.0,
 "KeyId": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "GranteePrincipal": "dynamodb.us-west-2.amazonaws.com",

Creating grants 125

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html

Amazon Key Management Service Developer Guide

 "RetiringPrincipal": "dynamodb.us-west-2.amazonaws.com",
 "Name": "8276b9a6-6cf0-46f1-b2f0-7993a7f8c89a",
 "GrantId":
 "1667b97d27cf748cf05b487217dd4179526c949d14fb3903858e25193253fe59"
 }
]
}

Granting CreateGrant permission

A grant can include permission to call the CreateGrant operation. But when a grantee principal
gets permission to call CreateGrant from a grant, rather than from a policy, that permission is
limited.

• The grantee principal can only create grants that allow some or all of the operations in the
parent grant.

• The grant constraints in the grants they create must be at least as strict as those in the parent
grant.

These limitations don't apply to principals who get CreateGrant permission from a policy,
although their permissions can be limited by policy conditions.

For example, consider a grant that allows the grantee principal to call the GenerateDataKey,
Decrypt, and CreateGrant operations. We call a grant that allow CreateGrant permission a
parent grant.

The original grant in a ListGrants response.
{
 "Grants": [
 {
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1572216195.0,
 "GrantId":
 "abcde1237f76e4ba7987489ac329fbfba6ad343d6f7075dbd1ef191f0120514a",
 "Operations": [
 "GenerateDataKey",
 "Decrypt",
 "CreateGrant
]
 "RetiringPrincipal": "arn:aws:iam::111122223333:role/adminRole",

Creating grants 126

Amazon Key Management Service Developer Guide

 "Name": "",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "GranteePrincipal": "arn:aws:iam::111122223333:role/keyUserRole",
 "Constraints": {
 "EncryptionContextSubset": {
 "Department": "IT"
 }
 },
 }
]
}

The grantee principal, exampleUser, can use this permission to create a grant that includes any
subset of the operations specified in the original grant, such as CreateGrant and Decrypt. The
child grant cannot include other operations, such as ScheduleKeyDeletion or ReEncrypt.

Also, the grant constraints in child grants must be as restrictive or more restrictive than those in
the parent grant. For example, the child grant can add pairs to an EncryptionContextSubset
constraint in the parent grant, but it cannot remove them. The child grant can change an
EncryptionContextSubset constraint to an EncryptionContextEquals constraint, but not
the reverse.

IAM best practices discourage the use of IAM users with long-term credentials. Whenever possible,
use IAM roles, which provide temporary credentials. For details, see Security best practices in IAM in
the IAM User Guide.

For example, the grantee principal can use the CreateGrant permission that it got from the
parent grant to create the following child grant. The operations in the child grant are a subset of
the operations in the parent grant and the grant constraints are more restrictive.

The child grant in a ListGrants response.
{
 "Grants": [
 {
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1572249600.0,
 "GrantId":
 "fedcba9999c1e2e9876abcde6e9d6c9b6a1987650000abcee009abcdef40183f",
 "Operations": [
 "CreateGrant"
 "Decrypt"

Creating grants 127

https://docs.amazonaws.cn/kms/latest/APIReference/API_GrantConstraints.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

]
 "RetiringPrincipal": "arn:aws:iam::111122223333:user/exampleUser",
 "Name": "",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "GranteePrincipal": "arn:aws:iam::111122223333:user/anotherUser",
 "Constraints": {
 "EncryptionContextEquals": {
 "Department": "IT"
 }
 },
 }
]
}

The grantee principal in the child grant, anotherUser, can use their CreateGrant permission to
create grants. However, the grants that anotherUser creates must include the operations in its
parent grant or a subset, and the grant constraints must be the same or stricter.

Viewing grants

To view the grant, use the ListGrants operation. You must specify the KMS key to which the grants
apply. You can also filter the grant list by grant ID or grantee principal. For more examples, see Use
ListGrants with an Amazon SDK or CLI.

To view all grants in the Amazon Web Services account and Region with a particular retiring
principal, use ListRetirableGrants. The responses include details about each grant.

Note

The GranteePrincipal field in the ListGrants response usually contains the grantee
principal of the grant. However, when the grantee principal in the grant is an Amazon
service, the GranteePrincipal field contains the service principal, which might represent
several different grantee principals.

For example, the following command lists all of the grants for a KMS key.

$ aws kms list-grants --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "Grants": [

Viewing grants 128

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListRetirableGrants.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services

Amazon Key Management Service Developer Guide

 {
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1572216195.0,
 "GrantId":
 "abcde1237f76e4ba7987489ac329fbfba6ad343d6f7075dbd1ef191f0120514a",
 "Constraints": {
 "EncryptionContextSubset": {
 "Department": "IT"
 }
 },
 "RetiringPrincipal": "arn:aws:iam::111122223333:role/adminRole",
 "Name": "",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "GranteePrincipal": "arn:aws:iam::111122223333:user/exampleUser",
 "Operations": [
 "Decrypt"
]
 }
]
}

Using a grant token

The Amazon KMS API follows an eventual consistency model. When you create a grant, the
grant might not be effective immediately. There might be a brief delay before the change is
available throughout Amazon KMS. It typically takes less than a few seconds for the change to
propagate throughout the system, but in some cases it can take several minutes. Once the change
has fully propagated throughout the system, the grantee principal can use the permissions in
the grant without specifying the grant token or any evidence of the grant. However, if a grant
that is so new that it is not yet known to all of Amazon KMS, the request might fail with an
AccessDeniedException error.

To use the permissions in a new grant immediately, use the grant token for the grant. Save the
grant token that the CreateGrant operation returns. Then submit the grant token in the request for
the Amazon KMS operation. You can submit a grant token to any Amazon KMS grant operation and
you can submit multiple grant tokens in the same request.

The following example uses the CreateGrant operation to create a grant that allows the
GenerateDataKey and Decrypt operations. It saves the grant token that CreateGrant returns in

Using a grant token 129

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

the token variable. Then, in a call to the GenerateDataKey operation, it uses the grant token in
the token variable.

Create a grant; save the grant token
$ token=$(aws kms create-grant \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --grantee-principal arn:aws:iam::111122223333:user/appUser \
 --retiring-principal arn:aws:iam::111122223333:user/acctAdmin \
 --operations GenerateDataKey Decrypt \
 --query GrantToken \
 --output text)

Use the grant token in a request
$ aws kms generate-data-key \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 –-key-spec AES_256 \
 --grant-tokens $token

Principals with permission can also use a grant token to retire a new grant even before the grant
is available throughout Amazon KMS. (The RevokeGrant operation doesn't accept a grant token.)
For details, see Retiring and revoking grants.

Retire the grant
$ aws kms retire-grant --grant-token $token

Retiring and revoking grants

To delete a grant, retire or revoke it.

The RetireGrant and RevokeGrant operations are very similar to each other. Both operations delete
a grant, which eliminates the permissions the grant allows. The primary difference between these
operations is how they are authorized.

RevokeGrant

Like most Amazon KMS operations, access to the RevokeGrant operation is controlled
through key policies and IAM policies. The RevokeGrant API can be called by any principal with
kms:RevokeGrant permission. This permission is included in the standard permissions given
to key administrators. Typically, administrators revoke a grant to deny permissions the grant
allows.

Retiring and revoking grants 130

https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html

Amazon Key Management Service Developer Guide

RetireGrant

The grant determines who can retire it. This design allows you to control the lifecycle of a grant
without changing key policies or IAM policies. Typically, you retire a grant when you are done
using its permissions.

A grant can be retired by an optional retiring principal specified in the grant. The grantee
principal can also retire the grant, but only if they are also a retiring principal or the grant
includes the RetireGrant operation. As a backup, the Amazon Web Services account in which
the grant was created can retire the grant.

There is a kms:RetireGrant permission that can be used in IAM policies, but it has limited
utility. Principals specified in the grant can retire a grant without the kms:RetireGrant
permission. The kms:RetireGrant permission alone does not allow principals to retire a
grant. The kms:RetireGrant permission is not effective in a key policy or resource control
policy.

• To deny permission to retire a grant, you can use a Deny action with the kms:RetireGrant
permission in your IAM policies.

• The Amazon Web Services account that owns the KMS key can delegate the
kms:RetireGrant permission to an IAM principal in the account.

• If the retiring principal is a different Amazon Web Services account, administrators in the
other account can use kms:RetireGrant to delegate permission to retire the grant to an
IAM principal in that account.

The Amazon KMS API follows an eventual consistency model. When you create, retire, or revoke
a grant, there might be a brief delay before the change is available throughout Amazon KMS. It
typically takes less than a few seconds for the change to propagate throughout the system, but in
some cases it can take several minutes. If you need to delete a new grant immediately, before it is
available throughout Amazon KMS, use a grant token to retire the grant. You cannot use a grant
token to revoke a grant.

Condition keys for Amazon KMS

You can specify conditions in the key policies and IAM policies that control access to Amazon KMS
resources. The policy statement is effective only when the conditions are true. For example, you
might want a policy statement to take effect only after a specific date. Or, you might want a policy
statement to control access only when a specific value appears in an API request.

Condition keys 131

Amazon Key Management Service Developer Guide

To specify conditions, you use condition keys in the Condition element of a policy statement with
IAM condition operators. Some condition keys apply generally to Amazon; others are specific to
Amazon KMS.

Condition key values must adhere to the character and encoding rules for Amazon KMS key policies
and IAM policies. For details about key policy document rules, see Key policy format. For details
about IAM policy document rules, see IAM name requirements in the IAM User Guide..

Topics

• Amazon global condition keys

• Amazon KMS condition keys

• Amazon KMS condition keys for Amazon Nitro Enclaves

Amazon global condition keys

Amazon defines global condition keys, a set of policy conditions keys for all Amazon services that
use IAM for access control. Amazon KMS supports all global condition keys. You can use them in
Amazon KMS key policies and IAM policies.

For example, you can use the aws:PrincipalArn global condition key to allow access to an Amazon
KMS key (KMS key) only when the principal in the request is represented by the Amazon Resource
Name (ARN) in the condition key value. To support attribute-based access control (ABAC) in
Amazon KMS, you can use the aws:ResourceTag/tag-key global condition key in an IAM policy to
allow access to KMS keys with a particular tag.

To help prevent an Amazon service from being used as a confused deputy in a policy where the
principal is an Amazon service principal, you can use the aws:SourceArn or aws:SourceAccount
global condition keys. For details, see Using aws:SourceArn or aws:SourceAccount condition
keys.

For information about Amazon global condition keys, including the types of requests in which they
are available, see Amazon Global Condition Context Keys in the IAM User Guide. For examples of
using global condition keys in IAM policies, see Controlling Access to Requests and Controlling Tag
Keys in the IAM User Guide.

The following topics provide special guidance for using condition keys based on IP addresses and
VPC endpoints.

Amazon global condition keys 132

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-names
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalarn
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html#access_tags_control-requests
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys

Amazon Key Management Service Developer Guide

Topics

• Using the IP address condition in policies with Amazon KMS permissions

• Using VPC endpoint conditions in policies with Amazon KMS permissions

• Using IPv6 addresses in IAM and Amazon KMS key policies

Using the IP address condition in policies with Amazon KMS permissions

You can use Amazon KMS to protect your data in an integrated Amazon service. But use caution
when specifying the IP address condition operators or the aws:SourceIp condition key in the
same policy statement that allows or denies access to Amazon KMS. For example, the policy in
Amazon: Denies Access to Amazon Based on the Source IP restricts Amazon actions to requests
from the specified IP range.

Consider this scenario:

1. You attach a policy like the one shown at Amazon: Denies Access to Amazon Based on the
Source IP to an IAM identity. You set the value of the aws:SourceIp condition key to the range
of IP addresses for the user's company. This IAM identity has other policies attached that allow it
to use Amazon EBS, Amazon EC2, and Amazon KMS.

2. The identity attempts to attach an encrypted EBS volume to an EC2 instance. This action fails
with an authorization error even though the user has permission to use all the relevant services.

Step 2 fails because the request to Amazon KMS to decrypt the volume's encrypted data key comes
from an IP address that is associated with the Amazon EC2 infrastructure. To succeed, the request
must come from the IP address of the originating user. Because the policy in step 1 explicitly denies
all requests from IP addresses other than those specified, Amazon EC2 is denied permission to
decrypt the EBS volume's encrypted data key.

Also, the aws:SourceIP condition key is not effective when the request comes from an Amazon
VPC endpoint. To restrict requests to a VPC endpoint, including an Amazon KMS VPC endpoint,
use the aws:SourceVpce or aws:SourceVpc condition keys. For more information, see VPC
Endpoints - Controlling the Use of Endpoints in the Amazon VPC User Guide.

Using VPC endpoint conditions in policies with Amazon KMS permissions

Amazon KMS supports Amazon Virtual Private Cloud (Amazon VPC) endpoints that are powered
by Amazon PrivateLink. You can use the following global condition keys in key policies and IAM

Amazon global condition keys 133

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_IPAddress
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html#vpc-endpoints-iam-access
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html#vpc-endpoints-iam-access
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Introduction.html#what-is-privatelink
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys

Amazon Key Management Service Developer Guide

policies to control access to Amazon KMS resources when the request comes from a VPC or uses a
VPC endpoint. For details, see Use VPC endpoints to control access to Amazon KMS resources.

• aws:SourceVpc limits access to requests from the specified VPC.

• aws:SourceVpce limits access to requests from the specified VPC endpoint.

If you use these condition keys to control access to KMS keys, you might inadvertently deny access
to Amazon services that use Amazon KMS on your behalf.

Take care to avoid a situation like the IP address condition keys example. If you restrict requests
for a KMS key to a VPC or VPC endpoint, calls to Amazon KMS from an integrated service, such
as Amazon S3 or Amazon EBS, might fail. This can happen even if the source request ultimately
originates in the VPC or from the VPC endpoint.

Using IPv6 addresses in IAM and Amazon KMS key policies

Before trying to access Amazon KMS over IPv6, ensure any key and IAM policies containing IP
address restrictions are updated to include IPv6 address ranges. IP based policies that are not
updated to handle IPv6 addresses may result in clients incorrectly losing or gaining access when
they start using IPv6. For general guidance on KMS access controls, see KMS key access and
permissions. To learn about KMS and dual stack support, see Dual-stack endpoint support.

Important

These statements do not allow any actions. Use these statements in combination with
other statements that allow specific actions.

The following statement explicitly denies access to all KMS permissions for requests originating
from the 192.0.2.* range of IPv4 addresses. Any IP addresses outside of this range are not
explicitly denied KMS permissions. Since all IPv6 addresses are outside of the denied range, this
statement does not explicitly deny KMS permissions for any IPv6 addresses.

{
 "Sid": "DenyKMSPermissions",
 "Effect": "Deny",
 "Action": [
 "kms:*"
],

Amazon global condition keys 134

Amazon Key Management Service Developer Guide

 "Resource": "*",
 "Condition": {
 "NotIpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24"
]
 }
 }
}

You can modify the Condition element to deny both IPv4 (192.0.2.0/24) and IPv6
(2001:db8:1234::/32) address ranges as shown in the following example.

{
 "Sid": "DenyKMSPermissions",
 "Effect": "Deny",
 "Action": [
 "kms:*"
],
 "Resource": "*",
 "Condition": {
 "NotIpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "2001:db8:1234::/32"
]
 }
 }
}

Amazon KMS condition keys

Amazon KMS provides a set of condition keys that you can use in key policies and IAM
policies. These condition keys are specific to Amazon KMS. For example, you can use the
kms:EncryptionContext:context-key condition key to require a particular encryption
context when controlling access to a symmetric encryption KMS key.

Conditions for an API operation request

Many Amazon KMS condition keys control access to a KMS key based on the value of a parameter
in the request for an Amazon KMS operation. For example, you can use the kms:KeySpec condition

Amazon KMS condition keys 135

Amazon Key Management Service Developer Guide

key in an IAM policy to allow use of the CreateKey operation only when the value of the KeySpec
parameter in the CreateKey request is RSA_4096.

This type of condition works even when the parameter doesn't appear in the request, such as when
you use the parameter's default value. For example you can use the kms:KeySpec condition key
to allow users to use the CreateKey operation only when the value of the KeySpec parameter
is SYMMETRIC_DEFAULT, which is the default value. This condition allows requests that have the
KeySpec parameter with the SYMMETRIC_DEFAULT value and requests that have no KeySpec
parameter.

Conditions for KMS keys used in API operations

Some Amazon KMS condition keys can control access to operations based on a property of the
KMS key that is used in the operation. For example, you can use the kms:KeyOrigin condition to
allow principals to call GenerateDataKey on a KMS key only when the Origin of the KMS key is
AWS_KMS. To find out if a condition key can be used in this way, see the description of the condition
key.

The operation must be a KMS key resource operation, that is, an operation that is authorized for
a particular KMS key. To identify the KMS key resource operations, in the Actions and Resources
Table, look for a value of KMS key in the Resources column for the operation. If you use this type
of condition key with an operation that is not authorized for a particular KMS key resource, like
ListKeys, the permission is not effective because the condition can never be satisfied. There is no
KMS key resource involved in authorizing the ListKeys operation and no KeySpec property.

The following topics describe each Amazon KMS condition key and include example policy
statements that demonstrate policy syntax.

Using set operators with condition keys

When a policy condition compares two set of values, such as the set of tags in a request and the set
of tags in a policy, you need tell Amazon how to compare the sets. IAM defines two set operators,
ForAnyValue and ForAllValues, for this purpose. Use set operators only with multi-valued
condition keys, which require them. Do not use set operators with single-valued condition keys. As
always, test your policy statements thoroughly before using them in a production environment.

Condition keys are single-valued or multi-valued. To determine whether an Amazon KMS condition
key is single-valued or multi-valued, see the Value type column in the condition key description.

Amazon KMS condition keys 136

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html

Amazon Key Management Service Developer Guide

• Single-valued condition keys have at most one value in the authorization context (the request or
resource). For example, because each API call can originate from only one Amazon Web Services
account, kms:CallerAccount is a single valued condition key. Do not use a set operator with a
single-valued condition key.

• Multi-valued condition keys have multiple values in the authorization context (the request or
resource). For example, because each KMS key can have multiple aliases, kms:ResourceAliases can
have multiple values. Multi-valued condition keys require a set operator.

Note that the difference between single-valued and multi-valued condition keys depends on the
number of values in the authorization context; not the number of values in the policy condition.

Warning

Using a set operator with a single-valued condition key can create a policy statement
that is overly permissive (or overly restrictive). Use set operators only with multi-valued
condition keys.
If you create or update a policy that includes a ForAllValues set operator with the
kms:EncryptionContext:context-key or aws:RequestTag/tag-key condition keys,
Amazon KMS returns the following error message:
OverlyPermissiveCondition: Using the ForAllValues set operator with
a single-valued condition key matches requests without the specified
[encryption context or tag] or with an unspecified [encryption
context or tag]. To fix, remove ForAllValues.

For detailed information about the ForAnyValue and ForAllValues set operators, see Using
multiple keys and values in the IAM User Guide. For information about the risk of using the
ForAllValues set operator with a single-valued condition, see Security Warning – ForAllValues
with single valued key in the IAM User Guide.

Topics

• kms:BypassPolicyLockoutSafetyCheck

• kms:CallerAccount

• kms:CustomerMasterKeySpec (deprecated)

• kms:CustomerMasterKeyUsage (deprecated)

• kms:DataKeyPairSpec

Amazon KMS condition keys 137

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multi-key-or-value-conditions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multi-key-or-value-conditions
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-forallvalues-with-single-valued-key
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-forallvalues-with-single-valued-key

Amazon Key Management Service Developer Guide

• kms:EncryptionAlgorithm

• kms:EncryptionContext:context-key

• kms:EncryptionContextKeys

• kms:ExpirationModel

• kms:GrantConstraintType

• kms:GrantIsForAWSResource

• kms:GrantOperations

• kms:GranteePrincipal

• kms:KeyAgreementAlgorithm

• kms:KeyOrigin

• kms:KeySpec

• kms:KeyUsage

• kms:MacAlgorithm

• kms:MessageType

• kms:MultiRegion

• kms:MultiRegionKeyType

• kms:PrimaryRegion

• kms:ReEncryptOnSameKey

• kms:RequestAlias

• kms:ResourceAliases

• kms:ReplicaRegion

• kms:RetiringPrincipal

• kms:RotationPeriodInDays

• kms:ScheduleKeyDeletionPendingWindowInDays

• kms:SigningAlgorithm

• kms:ValidTo

• kms:ViaService

• kms:WrappingAlgorithm

• kms:WrappingKeySpec

Amazon KMS condition keys 138

Amazon Key Management Service Developer Guide

kms:BypassPolicyLockoutSafetyCheck

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Bypas
sPolicyLo
ckoutSafe
tyCheck

Boolean Single-valued CreateKey

PutKeyPol
icy

IAM policies only

Key policies and
IAM policies

The kms:BypassPolicyLockoutSafetyCheck condition key controls access to the CreateKey
and PutKeyPolicy operations based on the value of the BypassPolicyLockoutSafetyCheck
parameter in the request.

The following example IAM policy statement prevents users from bypassing the policy
lockout safety check by denying them permission to create KMS keys when the value of the
BypassPolicyLockoutSafetyCheck parameter in the CreateKey request is true.

{
 "Effect": "Deny",
 "Action": [
 "kms:CreateKey",
 "kms:PutKeyPolicy"
],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:BypassPolicyLockoutSafetyCheck": true
 }
 }
}

You can also use the kms:BypassPolicyLockoutSafetyCheck condition key in an IAM policy
or key policy to control access to the PutKeyPolicy operation. The following example policy
statement from a key policy prevents users from bypassing the policy lockout safety check when
changing the policy of a KMS key.

Instead of using an explicit Deny, this policy statement uses Allow with the Null
condition operator to allow access only when the request does not include the

Amazon KMS condition keys 139

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Null
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Null

Amazon Key Management Service Developer Guide

BypassPolicyLockoutSafetyCheck parameter. When the parameter is not used, the default
value is false. This slightly weaker policy statement can be overridden in the rare case that a
bypass is necessary.

{
 "Effect": "Allow",
 "Action": "kms:PutKeyPolicy",
 "Resource": "*",
 "Condition": {
 "Null": {
 "kms:BypassPolicyLockoutSafetyCheck": true
 }
 }
}

See also

• kms:KeySpec

• kms:KeyOrigin

• kms:KeyUsage

kms:CallerAccount

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Calle
rAccount

String Single-valued KMS key
resource
operations

Custom key
store operations

Key policies and
IAM policies

You can use this condition key to allow or deny access to all identities (users and roles) in an
Amazon Web Services account. In key policies, you use the Principal element to specify the
identities to which the policy statement applies. The syntax for the Principal element does not
provide a way to specify all identities in an Amazon Web Services account. But you can achieve

Amazon KMS condition keys 140

Amazon Key Management Service Developer Guide

this effect by combining this condition key with a Principal element that specifies all Amazon
identities.

You can use it to control access to any KMS key resource operation, that is, any Amazon KMS
operation that uses a particular KMS key. To identify the KMS key resource operations, in the
Actions and Resources Table, look for a value of KMS key in the Resources column for the
operation. It is also valid for operations that manage custom key stores.

For example, the following key policy statement demonstrates how to use the
kms:CallerAccount condition key. This policy statement is in the key policy for the Amazon
managed key for Amazon EBS. It combines a Principal element that specifies all Amazon
identities with the kms:CallerAccount condition key to effectively allow access to all identities
in Amazon Web Services account 111122223333. It contains an additional Amazon KMS condition
key (kms:ViaService) to further limit the permissions by only allowing requests that come
through Amazon EBS. For more information, see kms:ViaService.

{
 "Sid": "Allow access through EBS for all principals in the account that are
 authorized to use EBS",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Condition": {
 "StringEquals": {
 "kms:CallerAccount": "111122223333",
 "kms:ViaService": "ec2.us-west-2.amazonaws.com"
 }
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "*"
}

Amazon KMS condition keys 141

Amazon Key Management Service Developer Guide

kms:CustomerMasterKeySpec (deprecated)

The kms:CustomerMasterKeySpec condition key is deprecated. Instead, use the kms:KeySpec
condition key.

The kms:CustomerMasterKeySpec and kms:KeySpec condition keys work the same way. Only
the names differ. We recommend that you use kms:KeySpec. However, to avoid breaking changes,
Amazon KMS supports both condition keys.

kms:CustomerMasterKeyUsage (deprecated)

The kms:CustomerMasterKeyUsage condition key is deprecated. Instead, use the kms:KeyUsage
condition key.

The kms:CustomerMasterKeyUsage and kms:KeyUsage condition keys work the same way.
Only the names differ. We recommend that you use kms:KeyUsage. However, to avoid breaking
changes, Amazon KMS supports both condition keys.

kms:DataKeyPairSpec

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:DataK
eyPairSpec

String Single-valued GenerateD
ataKeyPair

GenerateD
ataKeyPai
rWithoutP
laintext

Key policies and
IAM policies

You can use this condition key to control access to the GenerateDataKeyPair and
GenerateDataKeyPairWithoutPlaintext operations based on the value of the KeyPairSpec
parameter in the request. For example, you can allow users to generate only particular types of
data key pairs.

The following example key policy statement uses the kms:DataKeyPairSpec condition key to
allow users to use the KMS key to generate only RSA data key pairs.

Amazon KMS condition keys 142

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

Amazon Key Management Service Developer Guide

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": [
 "kms:GenerateDataKeyPair",
 "kms:GenerateDataKeyPairWithoutPlaintext"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:DataKeyPairSpec": "RSA*"
 }
 }
}

See also

• kms:KeySpec

• the section called “kms:EncryptionAlgorithm”

• the section called “kms:EncryptionContext:context-key”

• the section called “kms:EncryptionContextKeys”

kms:EncryptionAlgorithm

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Encry
ptionAlgo
rithm

String Single-valued Decrypt

Encrypt

GenerateD
ataKey

GenerateD
ataKeyPair

Key policies and
IAM policies

Amazon KMS condition keys 143

Amazon Key Management Service Developer Guide

Amazon KMS
condition keys

Condition type Value type API operations Policy type

GenerateD
ataKeyPai
rWithoutP
laintext

GenerateD
ataKeyWit
houtPlain
text

ReEncrypt

You can use the kms:EncryptionAlgorithm condition key to control access to cryptographic
operations based on the encryption algorithm that is used in the operation. For the
Encrypt, Decrypt, and ReEncrypt operations, it controls access based on the value of the
EncryptionAlgorithm parameter in the request. For operations that generate data keys and data
key pairs, it controls access based on the encryption algorithm that is used to encrypt the data key.

This condition key has no effect on operations performed outside of Amazon KMS, such as
encrypting with the public key in an asymmetric KMS key pair outside of Amazon KMS.

EncryptionAlgorithm parameter in a request

To allow users to use only a particular encryption algorithm with a KMS key, use a policy statement
with a Deny effect and a StringNotEquals condition operator. For example, the following
example key policy statement prohibits principals who can assume the ExampleRole role from
using this KMS key in the specified cryptographic operations unless the encryption algorithm in the
request is RSAES_OAEP_SHA_256, an asymmetric encryption algorithm used with RSA KMS keys.

Unlike a policy statement that allows a user to use a particular encryption algorithm, a policy
statement with a double-negative like this one prevents other policies and grants for this KMS key
from allowing this role to use other encryption algorithms. The Deny in this key policy statement
takes precedence over any key policy or IAM policy with an Allow effect, and it takes precedence
over all grants for this KMS key and its principals.

{

Amazon KMS condition keys 144

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-EncryptionAlgorithm

Amazon Key Management Service Developer Guide

 "Sid": "Allow only one encryption algorithm with this asymmetric KMS key",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "kms:EncryptionAlgorithm": "RSAES_OAEP_SHA_256"
 }
 }
}

Encryption algorithm used for the operation

You can also use the kms:EncryptionAlgorithm condition key to control access to operations
based on the encryption algorithm used in the operation, even when the algorithm isn't specified
in the request. This allows you to require or forbid the SYMMETRIC_DEFAULT algorithm, which
might not be specified in a request because it's the default value.

This feature lets you use the kms:EncryptionAlgorithm condition key to control access to
the operations that generate data keys and data key pairs. These operations use only symmetric
encryption KMS keys and the SYMMETRIC_DEFAULT algorithm.

For example, this IAM policy limits its principals to symmetric encryption. It denies access
to any KMS key in the example account for cryptographic operations unless the encryption
algorithm specified in the request or used in the operation is SYMMETRIC_DEFAULT.
Including GenerateDataKey* adds GenerateDataKey, GenerateDataKeyWithoutPlaintext,
GenerateDataKeyPair, and GenerateDataKeyPairWithoutPlaintext to the permissions. The condition
has no effect on these operations because they always use a symmetric encryption algorithm.

{
 "Sid": "AllowOnlySymmetricAlgorithm",
 "Effect": "Deny",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",

Amazon KMS condition keys 145

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

Amazon Key Management Service Developer Guide

 "kms:ReEncrypt*",
 "kms:GenerateDataKey*"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:key/*",
 "Condition": {
 "StringNotEquals": {
 "kms:EncryptionAlgorithm": "SYMMETRIC_DEFAULT"
 }
 }
}

See also

• the section called “kms:MacAlgorithm”

• kms:SigningAlgorithm

kms:EncryptionContext:context-key

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Encry
ptionCont
ext: context-
key

String Single-valued CreateGrant

Encrypt

Decrypt

GenerateD
ataKey

GenerateD
ataKeyPair

GenerateD
ataKeyPai
rWithoutP
laintext

GenerateD
ataKeyWit

Key policies and
IAM policies

Amazon KMS condition keys 146

Amazon Key Management Service Developer Guide

Amazon KMS
condition keys

Condition type Value type API operations Policy type

houtPlain
text

ReEncrypt

RetireGrant

You can use the kms:EncryptionContext:context-key condition key to control access to a
symmetric encryption KMS key based on the encryption context in a request for a cryptographic
operation. Use this condition key to evaluate both the key and the value in the encryption context
pair. To evaluate only the encryption context keys or require an encryption context regardless of
keys or values, use the kms:EncryptionContextKeys condition key.

Note

Condition key values must conform to the character rules for key policies and IAM policies.
Some characters that are valid in an encryption context are not valid in policies. You might
not be able to use this condition key to express all valid encryption context values. For
details about key policy document rules, see Key policy format. For details about IAM policy
document rules, see IAM name requirements in the IAM User Guide.

You cannot specify an encryption context in a cryptographic operation with an asymmetric
KMS key or an HMAC KMS key. Asymmetric algorithms and MAC algorithms do not support an
encryption context.

To use the kms:EncryptionContext:context-key condition key, replace the context-key
placeholder with the encryption context key. Replace the context-value placeholder with the
encryption context value.

"kms:EncryptionContext:context-key": "context-value"

For example, the following condition key specifies an encryption context in which the key is
AppName and the value is ExampleApp (AppName = ExampleApp).

Amazon KMS condition keys 147

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-names

Amazon Key Management Service Developer Guide

"kms:EncryptionContext:AppName": "ExampleApp"

This is a single-valued condition key. The key in the condition key specifies a particular encryption
context key (context-key). Although you can include multiple encryption context pairs in each API
request, the encryption context pair with the specified context-key can have only one value. For
example, the kms:EncryptionContext:Department condition key applies only to encryption
context pairs with a Department key, and any given encryption context pair with the Department
key can have only one value.

Do not use a set operator with the kms:EncryptionContext:context-key condition key. If
you create a policy statement with an Allow action, the kms:EncryptionContext:context-
key condition key, and the ForAllValues set operator, the condition allows requests with no
encryption context and requests with encryption context pairs that are not specified in the policy
condition.

Warning

Do not use a ForAnyValue or ForAllValues set operator with this single-valued
condition key. These set operators can create a policy condition that does not require
values you intend to require and allows values you intend to forbid.
If you create or update a policy that includes a ForAllValues set operator with the
kms:EncryptionContext:context-key, Amazon KMS returns the following error message:
OverlyPermissiveCondition:EncryptionContext: Using the ForAllValues
set operator with a single-valued condition key matches requests
without the specified encryption context or with an unspecified
encryption context. To fix, remove ForAllValues.

To require a particular encryption context pair, use the kms:EncryptionContext:context-key
condition key with the StringEquals operator .

The following example key policy statement allows principals who can assume the role to use the
KMS key in a GenerateDataKey request only when the encryption context in the request includes
the AppName:ExampleApp pair. Other encryption context pairs are permitted.

The key name is not case sensitive. The case sensitivity of the value is determined by the condition
operator, such as StringEquals. For details, see Case sensitivity of the encryption context
condition.

Amazon KMS condition keys 148

Amazon Key Management Service Developer Guide

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:AppName": "ExampleApp"
 }
 }
}

To require an encryption context pair and forbid all other encryption context pairs, use both
kms:EncryptionContext:context-key and kms:EncryptionContextKeys in the policy statement.
The following key policy statement uses the kms:EncryptionContext:AppName condition
to require the AppName=ExampleApp encryption context pair in the request. It also uses a
kms:EncryptionContextKeys condition key with the ForAllValues set operator to allow only
the AppName encryption context key.

The ForAllValues set operator limits encryption context keys in the request to AppName. If the
kms:EncryptionContextKeys condition with the ForAllValues set operator was used alone
in a policy statement, this set operator would allow requests with no encryption context. However,
if the request had no encryption context, the kms:EncryptionContext:AppName condition
would fail. For details about the ForAllValues set operator, see Using multiple keys and values in
the IAM User Guide.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/KeyUsers"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:AppName": "ExampleApp"
 },
 "ForAllValues:StringEquals": {
 "kms:EncryptionContextKeys": [

Amazon KMS condition keys 149

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multi-key-or-value-conditions

Amazon Key Management Service Developer Guide

 "AppName"
]
 }
 }
}

You can also use this condition key to deny access to a KMS key for a particular operation. The
following example key policy statement uses a Deny effect to forbid the principal from using
the KMS key if the encryption context in the request includes a Stage=Restricted encryption
context pair. This condition allows a request with other encryption context pairs, including
encryption context pairs with the Stage key and other values, such as Stage=Test.

{
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:Stage": "Restricted"
 }
 }
}

Using multiple encryption context pairs

You can require or forbid multiple encryption context pairs. You can also require one of several
encryption context pairs. For details about the logic used to interpret these conditions, see Creating
a condition with multiple keys or values in the IAM User Guide.

Note

Earlier versions of this topic displayed policy statements that used the ForAnyValue and
ForAllValues set operators with the kms:EncryptionContext:context-key condition key.
Using a set operator with a single-valued condition key can result in policies that allow
requests with no encryption context and unspecified encryption context pairs.
For example, a policy condition with the Allow effect, the ForAllValues set operator,
and the "kms:EncryptionContext:Department": "IT" condition key does not

Amazon KMS condition keys 150

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html

Amazon Key Management Service Developer Guide

limit the encryption context to the "Department=IT" pair. It allows requests with no
encryption context and requests with unspecified encryption context pairs, such as
Stage=Restricted.
Please review your policies and eliminate the set operator from any condition with
kms:EncryptionContext:context-key. Attempts to create or update a policy with this format
fail with an OverlyPermissiveCondition exception. To resolve the error, delete the set
operator.

To require multiple encryption context pairs, list the pairs in the same condition.
The following example key policy statement requires two encryption context pairs,
Department=IT and Project=Alpha. Because the conditions have different keys
(kms:EncryptionContext:Department and kms:EncryptionContext:Project), they are
implicitly connected by an AND operator. Other encryption context pairs are permitted, but not
required.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:Department": "IT",
 "kms:EncryptionContext:Project": "Alpha"
 }
 }
}

To require one encryption context pair OR another pair, place each condition key in a separate
policy statement. The following example key policy requires Department=IT or Project=Alpha
pairs, or both. Other encryption context pairs are permitted, but not required.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },

Amazon KMS condition keys 151

Amazon Key Management Service Developer Guide

 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:Department": "IT"
 }
 }
},
{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:Project": "Alpha"
 }
 }
}

To require particular encryption pairs and exclude all other encryption context pairs, use both
kms:EncryptionContext:context-key and kms:EncryptionContextKeys in the policy statement.
The following key policy statement uses the kms:EncryptionContext:context-key condition to
require an encryption context with both Department=IT and Project=Alpha pairs. It uses a
kms:EncryptionContextKeys condition key with the ForAllValues set operator to allow only
the Department and Project encryption context keys.

The ForAllValues set operator limits encryption context keys in the request to Department
and Project. If it were used alone in a condition, this set operator would allow requests with
no encryption context, but in this configuration, the kms:EncryptionContext:context-key in this
condition would fail.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {

Amazon KMS condition keys 152

Amazon Key Management Service Developer Guide

 "StringEquals": {
 "kms:EncryptionContext:Department": "IT",
 "kms:EncryptionContext:Project": "Alpha"
 },
 "ForAllValues:StringEquals": {
 "kms:EncryptionContextKeys": [
 "Department",
 "Project"
]
 }
 }
}

You can also forbid multiple encryption context pairs. The following example key policy statement
uses a Deny effect to forbid the principal from using the KMS keys if the encryption context in the
request includes a Stage=Restricted or Stage=Production.pair.

Multiple values (Restricted and Production) for the same key
(kms:EncryptionContext:Stage) are implicitly connected by a OR. For details, see Evaluation
logic for conditions with multiple keys or values in the IAM User Guide.

{
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:Stage": [
 "Restricted",
 "Production"
]
 }
 }
}

Amazon KMS condition keys 153

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multiple-conditions-eval
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multiple-conditions-eval

Amazon Key Management Service Developer Guide

Case sensitivity of the encryption context condition

The encryption context that is specified in a decryption operation must be an exact, case-sensitive
match for the encryption context that is specified in the encryption operation. Only the order of
pairs in an encryption context with multiple pair can vary.

However, in policy conditions, the condition key is not case sensitive. The case sensitivity
of the condition value is determined by the policy condition operator that you use, such as
StringEquals or StringEqualsIgnoreCase.

As such, the condition key, which consists of the kms:EncryptionContext: prefix and the
context-key replacement, is not case sensitive. A policy that uses this condition does not check
the case of either element of the condition key. The case sensitivity of the value, that is, the
context-value replacement, is determined by the policy condition operator.

For example, the following policy statement allows the operation when the encryption context
includes an Appname key, regardless of its capitalization. The StringEquals condition requires
that ExampleApp be capitalized as it is specified.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:Appname": "ExampleApp"
 }
 }
}

To require a case-sensitive encryption context key, use the kms:EncryptionContextKeys policy
condition with a case-sensitive condition operator, such as StringEquals. In this policy condition,
because the encryption context key is the value in this policy condition, its case sensitivity is
determined by the condition operator.

{
 "Effect": "Allow",

Amazon KMS condition keys 154

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon Key Management Service Developer Guide

 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "AppName"
 }
 }
}

To require a case-sensitive evaluation of both the encryption context key and value, use the
kms:EncryptionContextKeys and kms:EncryptionContext:context-key policy conditions
together in the same policy statement. The case-sensitive condition operator (such as
StringEquals) always applies to the value of the condition. The encryption context key (such as
AppName) is the value of the kms:EncryptionContextKeys condition. The encryption context
value (such as ExampleApp) is the value of the kms:EncryptionContext:context-key condition.

For example, in the following example key policy statement, because the StringEquals operator
is case sensitive, both the encryption context key and the encryption context value are case
sensitive.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "AppName"
 },
 "StringEquals": {
 "kms:EncryptionContext:AppName": "ExampleApp"
 }
 }
}

Amazon KMS condition keys 155

Amazon Key Management Service Developer Guide

Using variables in an encryption context condition

The key and value in an encryption context pair must be simple literal strings. They cannot be
integers or objects, or any type that is not fully resolved. If you use a different type, such as an
integer or float, Amazon KMS interprets it as a literal string.

"encryptionContext": {
 "department": "10103.0"
}

However, the value of the kms:EncryptionContext:context-key condition key can be an IAM
policy variable. These policy variables are resolved at runtime based on values in the request. For
example, aws:CurrentTime resolves to the time of the request and aws:username resolves to
the friendly name of the caller.

You can use these policy variables to create a policy statement with a condition that requires very
specific information in an encryption context, such as the caller's user name. Because it contains a
variable, you can use the same policy statement for all users who can assume the role. You don't
have to write a separate policy statement for each user.

Consider a situation where you want to all users who can assume a role to use the same KMS key
to encrypt and decrypt their data. However, you want to allow them to decrypt only the data
that they encrypted. Start by requiring that every request to Amazon KMS include an encryption
context where the key is user and the value is the caller's Amazon user name, such as the
following one.

"encryptionContext": {
 "user": "bob"
}

Then, to enforce this requirement, you can use a policy statement like the one in the following
example. This policy statement gives the TestTeam role permission to encrypt and decrypt data
with the KMS key. However, the permission is valid only when the encryption context in the request
includes a "user": "<username>" pair. To represent the user name, the condition uses the
aws:username policy variable.

When the request is evaluated, the caller's user name replaces the variable in the condition. As
such, the condition requires an encryption context of "user": "bob" for "bob" and "user":
"alice" for "alice."

Amazon KMS condition keys 156

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html#policy-vars-infotouse

Amazon Key Management Service Developer Guide

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/TestTeam"
 },
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:user": "${aws:username}"
 }
 }
}

You can use an IAM policy variable only in the value of the kms:EncryptionContext:context-
key condition key. You cannot use a variable in the key.

You can also use provider-specific context keys in variables. These context keys uniquely identify
users who logged into Amazon by using web identity federation.

Like all variables, these variables can be used only in the kms:EncryptionContext:context-
key policy condition, not in the actual encryption context. And they can be used only in the value
of the condition, not in the key.

For example, the following key policy statement is similar to the previous one. However, the
condition requires an encryption context where the key is sub and the value uniquely identifies
a user logged into an Amazon Cognito user pool. For details about identifying users and roles in
Amazon Cognito, see IAM Roles in the Amazon Cognito Developer Guide.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/TestTeam"
 },
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt"
],

Amazon KMS condition keys 157

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_providers_oidc_user-id.html
https://docs.amazonaws.cn/cognito/latest/developerguide/iam-roles.html
https://docs.amazonaws.cn/cognito/latest/developerguide/

Amazon Key Management Service Developer Guide

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:sub": "${cognito-identity.amazonaws.com:sub}"
 }
 }
}

See also

• the section called “kms:EncryptionContextKeys”

• the section called “kms:GrantConstraintType”

kms:EncryptionContextKeys

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Encry
ptionCont
extKeys

String (list) Multi-valued CreateGrant

Decrypt

Encrypt

GenerateD
ataKey

GenerateD
ataKeyPair

GenerateD
ataKeyPai
rWithoutP
laintext

GenerateD
ataKeyWit
houtPlain
text

Key policies and
IAM policies

Amazon KMS condition keys 158

Amazon Key Management Service Developer Guide

Amazon KMS
condition keys

Condition type Value type API operations Policy type

ReEncrypt

RetireGrant

You can use the kms:EncryptionContextKeys condition key to control access to a symmetric
encryption KMS key based on the encryption context in a request for a cryptographic operation.
Use this condition key to evaluate only the key in each encryption context pair. To evaluate both
the key and the value in the encryption context, use the kms:EncryptionContext:context-
key condition key.

You cannot specify an encryption context in a cryptographic operation with an asymmetric
KMS key or an HMAC KMS key. Asymmetric algorithms and MAC algorithms do not support an
encryption context.

Note

Condition key values, including an encryption context key, must conform to the character
and encoding rules for Amazon KMS key policies. You might not be able to use this
condition key to express all valid encryption context keys. For details about key policy
document rules, see Key policy format. For details about IAM policy document rules, see
IAM name requirements in the IAM User Guide.

This is a multi-valued condition key. You can specify multiple encryption context pairs in each API
request. kms:EncryptionContextKeys compares the encryption context keys in the request to
the set of encryption context keys in the policy. To determine how these sets are compared, you
must provide a ForAnyValue or ForAllValues set operator in the policy condition. For details
about the set operators, see Using multiple keys and values in the IAM User Guide.

• ForAnyValue: At least one encryption context key in the request must match an encryption
context key in the policy condition. Other encryption context keys are permitted. If the request
has no encryption context, the condition is not satisfied.

• ForAllValues: Every encryption context key in the request must match an encryption context
key in the policy condition. This set operator limits the encryption context keys to those in

Amazon KMS condition keys 159

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-names
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multi-key-or-value-conditions

Amazon Key Management Service Developer Guide

the policy condition. It doesn't require any encryption context keys, but it forbids unspecified
encryption context keys.

The following example key policy statement uses the kms:EncryptionContextKeys condition
key with the ForAnyValue set operator. This policy statement allows use of a KMS key for the
specified operations, but only when at least one of the encryption context pairs in the request
includes the AppName key, regardless of its value.

For example, this key policy statement allows a GenerateDataKey request with two encryption
context pairs, AppName=Helper and Project=Alpha, because the first encryption context pair
satisfies the condition. A request with only Project=Alpha or with no encryption context would
fail.

Because the StringEquals condition operation is case sensitive, this policy statement requires the
spelling and case of the encryption context key. But you can use a condition operator that ignores
the case of the key, such as StringEqualsIgnoreCase.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "AppName"
 }
 }
}

You can also use the kms:EncryptionContextKeys condition key to require an encryption
context (any encryption context) in cryptographic operations that use the KMS key;.

The following example key policy statement uses the kms:EncryptionContextKeys condition
key with the Null condition operator to allow access to a KMS key only when encryption context

Amazon KMS condition keys 160

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Null

Amazon Key Management Service Developer Guide

in the API request is not null. This condition does not check the keys or values of the encryption
context. It only verifies that the encryption context exists.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "kms:EncryptionContextKeys": false
 }
 }
}

See also

• kms:EncryptionContext:context-key

• kms:GrantConstraintType

kms:ExpirationModel

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Expir
ationModel

String Single-valued ImportKey
Material

Key policies and
IAM policies

The kms:ExpirationModel condition key controls access to the ImportKeyMaterial operation
based on the value of the ExpirationModel parameter in the request.

ExpirationModel is an optional parameter that determines whether the imported key material
expires. Valid values are KEY_MATERIAL_EXPIRES and KEY_MATERIAL_DOES_NOT_EXPIRE.
KEY_MATERIAL_EXPIRES is the default value.

Amazon KMS condition keys 161

https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html#KMS-ImportKeyMaterial-request-ExpirationModel

Amazon Key Management Service Developer Guide

The expiration date and time is determined by the value of the ValidTo parameter. The
ValidTo parameter is required unless the value of the ExpirationModel parameter is
KEY_MATERIAL_DOES_NOT_EXPIRE. You can also use the kms:ValidTo condition key to require a
particular expiration date as a condition for access.

The following example policy statement uses the kms:ExpirationModel condition key
to allow users to import key material into a KMS key only when the request includes the
ExpirationModel parameter and its value is KEY_MATERIAL_DOES_NOT_EXPIRE.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:ImportKeyMaterial",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ExpirationModel": "KEY_MATERIAL_DOES_NOT_EXPIRE"
 }
 }
}

You can also use the kms:ExpirationModel condition key to allow users to import key material
only when the key material expires. The following example key policy statement uses the
kms:ExpirationModel condition key with the Null condition operator to allow users to import
key material only when the request does not have an ExpirationModel parameter. The default
value for ExpirationModel is KEY_MATERIAL_EXPIRES.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:ImportKeyMaterial",
 "Resource": "*",
 "Condition": {
 "Null": {
 "kms:ExpirationModel": true
 }
 }

Amazon KMS condition keys 162

https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html#KMS-ImportKeyMaterial-request-ValidTo
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Null

Amazon Key Management Service Developer Guide

}

See also

• kms:ValidTo

• kms:WrappingAlgorithm

• kms:WrappingKeySpec

kms:GrantConstraintType

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Grant
Constrain
tType

String Single-valued CreateGrant

RetireGrant

Key policies and
IAM policies

You can use this condition key to control access to the CreateGrant operation based on the type of
grant constraint in the request.

When you create a grant, you can optionally specify a grant constraint to allow the operations that
the grant permit only when a particular encryption context is present. The grant constraint can be
one of two types: EncryptionContextEquals or EncryptionContextSubset. You can use this
condition key to check that the request contains one type or the other.

Important

Do not include confidential or sensitive information in this field. This field may be displayed
in plaintext in CloudTrail logs and other output.

The following example key policy statement uses the kms:GrantConstraintType condition key
to allow users to create grants only when the request includes an EncryptionContextEquals
grant constraint. The example shows a policy statement in a key policy.

{

Amazon KMS condition keys 163

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html

Amazon Key Management Service Developer Guide

 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:GrantConstraintType": "EncryptionContextEquals"
 }
 }
}

See also

• kms:EncryptionContext:context-key

• kms:EncryptionContextKeys

• kms:GrantIsForAWSResource

• kms:GrantOperations

• kms:GranteePrincipal

• kms:RetiringPrincipal

kms:GrantIsForAWSResource

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Grant
IsForAWSR
esource

Boolean Single-valued CreateGrant

ListGrants

RevokeGrant

Key policies and
IAM policies

Allows or denies permission for the CreateGrant, ListGrants, or RevokeGrant operations only when
an Amazon service integrated with Amazon KMS calls the operation on the user's behalf. This
policy condition doesn't allow the user to call these grant operations directly.

Amazon KMS condition keys 164

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

The following example key policy statement uses the kms:GrantIsForAWSResource condition
key. It allows Amazon services that are integrated with Amazon KMS, such as Amazon EBS, to
create grants on this KMS key on behalf of the specified principal.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:GrantIsForAWSResource": true
 }
 }
}

See also

• kms:GrantConstraintType

• kms:GrantOperations

• kms:GranteePrincipal

• kms:RetiringPrincipal

kms:GrantOperations

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Grant
Operations

String Multi-valued CreateGrant Key policies and
IAM policies

You can use this condition key to control access to the CreateGrant operation based on the
grant operations in the request. For example, you can allow users to create grants that delegate
permission to encrypt but not decrypt. For more information about grants, see Using grants.

Amazon KMS condition keys 165

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html

Amazon Key Management Service Developer Guide

This is a multi-valued condition key. kms:GrantOperations compares the set of grant operations
in the CreateGrant request to the set of grant operations in the policy. To determine how these
sets are compared, you must provide a ForAnyValue or ForAllValues set operator in the policy
condition. For details about the set operators, see Using multiple keys and values in the IAM User
Guide.

• ForAnyValue: At least one grant operation in the request must match one of the grant
operations in the policy condition. Other grant operations are permitted.

• ForAllValues: Every grant operation in the request must match a grant operation in the policy
condition. This set operator limits the grant operations to those specified in the policy condition.
It doesn't require any grant operations, but it forbids unspecified grant operations.

ForAllValues also returns true when there are no grant operations in the request, but
CreateGrant doesn't permit it. If the Operations parameter is missing or has a null value, the
CreateGrant request fails.

The following example key policy statement uses the kms:GrantOperations condition key to to
create grants only when the grant operations are Encrypt, ReEncryptTo, or both. If the grant
includes any other operations, the CreateGrant request fails.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "kms:GrantOperations": [
 "Encrypt",
 "ReEncryptTo"
]
 }
 }
}

Amazon KMS condition keys 166

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multi-key-or-value-conditions

Amazon Key Management Service Developer Guide

If you change the set operator in the policy condition to ForAnyValue, the policy statement
would require that at least one of the grant operations in the grant is Encrypt or ReEncryptTo,
but it would allow other grant operations, such as Decrypt or ReEncryptFrom.

See also

• kms:GrantConstraintType

• kms:GrantIsForAWSResource

• kms:GranteePrincipal

• kms:RetiringPrincipal

kms:GranteePrincipal

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Grant
eePrincip
al

String Single-valued CreateGrant IAM and key
policies

You can use this condition key to control access to the CreateGrant operation based on the value of
the GranteePrincipal parameter in the request. For example, you can to create grants to use a KMS
key only when the grantee principal in the CreateGrant request matches the principal specified
in the condition statement.

To specify the grantee principal, use the Amazon Resource Name (ARN) of an Amazon principal.
Valid principals include Amazon Web Services accounts, IAM users, IAM roles, federated users, and
assumed role users. For help with the ARN syntax for a principal, see IAM ARNs in the IAM User
Guide.

The following example key policy statement uses the kms:GranteePrincipal condition
key to to create grants for a KMS key only when the grantee principal in the grant is the
LimitedAdminRole.

{
 "Effect": "Allow",

Amazon KMS condition keys 167

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html#KMS-CreateGrant-request-GranteePrincipal
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns

Amazon Key Management Service Developer Guide

 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:GranteePrincipal": "arn:aws:iam::111122223333:role/LimitedAdminRole"
 }
 }
}

See also

• kms:GrantConstraintType

• kms:GrantIsForAWSResource

• kms:GrantOperations

• kms:RetiringPrincipal

kms:KeyAgreementAlgorithm

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:KeyAg
reementAl
gorithm

String Single-valued DeriveSha
redSecret

Key policies and
IAM policies

You can use the kms:KeyAgreementAlgorithm condition key to control access to the
DeriveSharedSecret operation based on the value of the KeyAgreementAlgorithm parameter in
the request. The only valid value for KeyAgreementAlgorithm is ECDH.

For example, the following key policy statement uses the kms:KeyAgreementAlgorithm
condition key to deny all access to DeriveSharedSecret unless the KeyAgreementAlgorithm is
ECDH.

Amazon KMS condition keys 168

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html

Amazon Key Management Service Developer Guide

{
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:DeriveSharedSecret",
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "kms:KeyAgreementAlgorithm": "ECDH"
 }
 }
}

See also

• the section called “kms:KeyUsage”

kms:KeyOrigin

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:KeyOr
igin

String Single-valued CreateKey

KMS key
resource
operations

IAM policies

Key policies and
IAM policies

The kms:KeyOrigin condition key controls access to operations based on the value of the
Origin property of the KMS key that is created by or used in the operation. It works as a resource
condition or a request condition.

You can use this condition key to control access to the CreateKey operation based on the value of
the Origin parameter in the request. Valid values for Origin are AWS_KMS, AWS_CLOUDHSM, and
EXTERNAL.

For example, you can to create a KMS key only when the key material is generated in Amazon
KMS (AWS_KMS), only when the key material is generated in an Amazon CloudHSM cluster that is

Amazon KMS condition keys 169

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html#KMS-CreateKey-request-Origin

Amazon Key Management Service Developer Guide

associated with a custom key store (AWS_CLOUDHSM), or only when the key material is imported
from an external source (EXTERNAL).

The following example key policy statement uses the kms:KeyOrigin condition key to to create a
KMS key only when Amazon KMS creates the key material.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:CreateKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:KeyOrigin": "AWS_KMS"
 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:GenerateDataKeyPair",
 "kms:GenerateDataKeyPairWithoutPlaintext",
 "kms:ReEncrypt*"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "kms:KeyOrigin": "AWS_CLOUDHSM"
 }
 }
 }

Amazon KMS condition keys 170

Amazon Key Management Service Developer Guide

]
}

You can also use the kms:KeyOrigin condition key to control access to operations that use or
manage a KMS key based on the Origin property of the KMS key used for the operation. The
operation must be a KMS key resource operation, that is, an operation that is authorized for a
particular KMS key. To identify the KMS key resource operations, in the Actions and Resources
Table, look for a value of KMS key in the Resources column for the operation.

For example, the following IAM policy allows principals to perform the specified KMS key resource
operations, but only with KMS keys in the account that were created in a custom key store.

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:GenerateDataKeyPair",
 "kms:GenerateDataKeyPairWithoutPlaintext",
 "kms:ReEncrypt*"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "kms:KeyOrigin": "AWS_CLOUDHSM"
 }
 }
}

See also

• kms:BypassPolicyLockoutSafetyCheck

• kms:KeySpec

• kms:KeyUsage

Amazon KMS condition keys 171

Amazon Key Management Service Developer Guide

kms:KeySpec

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:KeySpec String Single-valued CreateKey

KMS key
resource
operations

IAM policies

Key policies and
IAM policies

The kms:KeySpec condition key controls access to operations based on the value of the KeySpec
property of the KMS key that is created by or used in the operation.

You can use this condition key in an IAM policy to control access to the CreateKey operation based
on the value of the KeySpec parameter in a CreateKey request. For example, you can use this
condition to allow users to create only symmetric encryption KMS keys or only HMAC KMS keys.

The following example IAM policy statement uses the kms:KeySpec condition key to allow the
principals to create only RSA asymmetric KMS keys. The permission is valid only when the KeySpec
in the request begins with RSA_.

{
 "Effect": "Allow",
 "Action": "kms:CreateKey",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:KeySpec": "RSA_*"
 }
 }
}

You can also use the kms:KeySpec condition key to control access to operations that use or
manage a KMS key based on the KeySpec property of the KMS key used for the operation. The
operation must be a KMS key resource operation, that is, an operation that is authorized for a
particular KMS key. To identify the KMS key resource operations, in the Actions and Resources
Table, look for a value of KMS key in the Resources column for the operation.

Amazon KMS condition keys 172

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html#KMS-CreateKey-request-KeySpec

Amazon Key Management Service Developer Guide

For example, the following IAM policy allows principals to perform the specified KMS key resource
operations, but only with symmetric encryption KMS keys in the account.

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "kms:KeySpec": "SYMMETRIC_DEFAULT"
 }
 }
}

See also

• kms:BypassPolicyLockoutSafetyCheck

• kms:CustomerMasterKeySpec (deprecated)

• kms:DataKeyPairSpec

• kms:KeyOrigin

• kms:KeyUsage

kms:KeyUsage

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:KeyUs
age

String Single-valued CreateKey

KMS key
resource
operations

IAM policies

Key policies and
IAM policies

Amazon KMS condition keys 173

Amazon Key Management Service Developer Guide

The kms:KeyUsage condition key controls access to operations based on the value of the
KeyUsage property of the KMS key that is created by or used in the operation.

You can use this condition key to control access to the CreateKey operation based on the value
of the KeyUsage parameter in the request. Valid values for KeyUsage are ENCRYPT_DECRYPT,
SIGN_VERIFY, GENERATE_VERIFY_MAC, and KEY_AGREEMENT.

For example, you can to create a KMS key only when the KeyUsage is ENCRYPT_DECRYPT or deny
a user permission when the KeyUsage is SIGN_VERIFY.

The following example IAM policy statement uses the kms:KeyUsage condition key to to create a
KMS key only when the KeyUsage is ENCRYPT_DECRYPT.

{
 "Effect": "Allow",
 "Action": "kms:CreateKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:KeyUsage": "ENCRYPT_DECRYPT"
 }
 }
}

You can also use the kms:KeyUsage condition key to control access to operations that use
or manage a KMS key based on the KeyUsage property of the KMS key in the operation. The
operation must be a KMS key resource operation, that is, an operation that is authorized for a
particular KMS key. To identify the KMS key resource operations, in the Actions and Resources
Table, look for a value of KMS key in the Resources column for the operation.

For example, the following IAM policy allows principals to perform the specified KMS key resource
operations, but only with KMS keys in the account that are used for signing and verification.

{
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:GetPublicKey",
 "kms:ScheduleKeyDeletion"

Amazon KMS condition keys 174

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html#KMS-CreateKey-request-KeyUsage

Amazon Key Management Service Developer Guide

],
 "Resource": "arn:aws:kms:us-west-2:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "kms:KeyUsage": "SIGN_VERIFY"
 }
 }
}

See also

• kms:BypassPolicyLockoutSafetyCheck

• kms:CustomerMasterKeyUsage (deprecated)

• kms:KeyOrigin

• kms:KeySpec

kms:MacAlgorithm

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:MacAl
gorithm

String Single-valued GenerateMac

VerifyMac

Key policies and
IAM policies

You can use the kms:MacAlgorithm condition key to control access to the GenerateMac and
VerifyMac operations based on the value of the MacAlgorithm parameter in the request.

The following example key policy allows users who can assume the testers role to use the
HMAC KMS key to generate and verify HMAC tags only when the MAC algorithm in the request is
HMAC_SHA_384 or HMAC_SHA_512. This policy uses two separate policy statements each with its
own condition. If you specify more than one MAC algorithm in a single condition statement, the
condition requires both algorithms, instead of one or the other.

{
 "Version": "2012-10-17",
 "Statement": [

Amazon KMS condition keys 175

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html

Amazon Key Management Service Developer Guide

 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/testers"
 },
 "Action": [
 "kms:GenerateMac",
 "kms:VerifyMac"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:MacAlgorithm": "HMAC_SHA_384"
 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/testers"
 },
 "Action": [
 "kms:GenerateMac",
 "kms:VerifyMac"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:MacAlgorithm": "HMAC_SHA_512"
 }
 }
 }
]
}

See also

• the section called “kms:EncryptionAlgorithm”

• kms:SigningAlgorithm

Amazon KMS condition keys 176

Amazon Key Management Service Developer Guide

kms:MessageType

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Messa
geType

String Single-valued Sign

Verify

Key policies and
IAM policies

The kms:MessageType condition key controls access to the Sign and Verify operations based on
the value of the MessageType parameter in the request. Valid values for MessageType are RAW
and DIGEST.

For example, the following key policy statement uses the kms:MessageType condition key to to
use an asymmetric KMS key to sign a message, but not a message digest.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:Sign",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:MessageType": "RAW"
 }
 }
}

See also

• the section called “kms:SigningAlgorithm”

Amazon KMS condition keys 177

https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html

Amazon Key Management Service Developer Guide

kms:MultiRegion

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Multi
Region

Boolean Single-valued CreateKey

KMS key
resource
operations

Key policies and
IAM policies

You can use this condition key to allow operations only on single-Region keys or only on multi-
Region keys. The kms:MultiRegion condition key controls access to Amazon KMS operations on
KMS keys and to the CreateKey operation based on the value of the MultiRegion property of
the KMS key. Valid values are true (multi-Region), and false (single-Region). All KMS keys have a
MultiRegion property.

For example, the following IAM policy statement uses the kms:MultiRegion condition key to
allow principals to create only single-Region keys.

{
 "Effect": "Allow",
 "Action": "kms:CreateKey",
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:MultiRegion": false
 }
 }
}

Amazon KMS condition keys 178

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

kms:MultiRegionKeyType

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Multi
RegionKey
Type

String Single-valued CreateKey

KMS key
resource
operations

Key policies and
IAM policies

You can use this condition key to allow operations only on multi-Region primary keys or
only on multi-Region replica keys. The kms:MultiRegionKeyType condition key controls
access to Amazon KMS operations on KMS keys and the CreateKey operation based on the
MultiRegionKeyType property of the KMS key. The valid values are PRIMARY and REPLICA.
Only multi-Region keys have a MultiRegionKeyType property.

Typically, you use the kms:MultiRegionKeyType condition key in an IAM policy to control access
to multiple KMS keys. However, because a given multi-Region key can change to primary or replica,
you might want to use this condition in a key policy to allow an operation only when the particular
multi-Region key is a primary or replica key.

For example, the following IAM policy statement uses the kms:MultiRegionKeyType condition
key to allow principals to schedule and cancel key deletion only on multi-Region replica keys in the
specified Amazon Web Services account.

{
 "Effect": "Allow",
 "Action": [
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "kms:MultiRegionKeyType": "REPLICA"
 }
 }
}

Amazon KMS condition keys 179

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

To allow or deny access to all multi-Region keys, you can use both values or a null value with
kms:MultiRegionKeyType. However, the kms:MultiRegion condition key is recommended for
that purpose.

kms:PrimaryRegion

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Prima
ryRegion

String (list) Single-valued UpdatePri
maryRegion

Key policies and
IAM policies

You can use this condition key to limit the destination Regions in an UpdatePrimaryRegion
operation. These are Amazon Web Services Regions that can host your multi-Region primary keys.

The kms:PrimaryRegion condition key controls access to the UpdatePrimaryRegion operation
based on the value of the PrimaryRegion parameter. The PrimaryRegion parameter specifies
the Amazon Web Services Region of the multi-Region replica key that is being promoted to
primary. The value of the condition is one or more Amazon Web Services Region names, such as
us-east-1 or ap-southeast-2, or Region name patterns, such as eu-*

For example, the following key policy statement uses the kms:PrimaryRegion condition key to
allow principals to update the primary region of a multi-Region key to one of the four specified
Regions.

{
 "Effect": "Allow",
 "Action": "kms:UpdatePrimaryRegion",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/Developer"
 },
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:PrimaryRegion": [
 "us-east-1",
 "us-west-2",
 "eu-west-3",
 "ap-southeast-2"

Amazon KMS condition keys 180

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html

Amazon Key Management Service Developer Guide

]
 }
 }
}

kms:ReEncryptOnSameKey

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:ReEnc
ryptOnSam
eKey

Boolean Single-valued ReEncrypt Key policies and
IAM policies

You can use this condition key to control access to the ReEncrypt operation based on whether the
request specifies a destination KMS key that is the same one used for the original encryption.

For example, the following key policy statement uses the kms:ReEncryptOnSameKey condition
key to to reencrypt only when the destination KMS key is the same one used for the original
encryption.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:ReEncrypt*",
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:ReEncryptOnSameKey": true
 }
 }
}

Amazon KMS condition keys 181

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html

Amazon Key Management Service Developer Guide

kms:RequestAlias

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Reque
stAlias

String (list) Single-valued Cryptographic
operations

DescribeKey

GetPublicKey

Key policies and
IAM policies

You can use this condition key to allow an operation only when the request uses a particular alias
to identify the KMS key. The kms:RequestAlias condition key controls access to a KMS key used
in a cryptographic operation, GetPublicKey, or DescribeKey based on the alias that identifies
that KMS key in the request. (This policy condition has no effect on the GenerateRandom operation
because the operation doesn't use a KMS key or alias.)

This condition supports attribute-based access control (ABAC) in Amazon KMS, which lets you
control access to KMS keys based on the tags and aliases of a KMS key. You can use tags and aliases
to allow or deny access to a KMS key without changing policies or grants. For details, see ABAC for
Amazon KMS.

To specify the alias in this policy condition, use an alias name, such as alias/project-alpha, or
an alias name pattern, such as alias/*test*. You cannot specify an alias ARN in the value of this
condition key.

To satisfy this condition, the value of the KeyId parameter in the request must be a matching alias
name or alias ARN. If the request uses a different key identifier, it does not satisfy the condition,
even if identifies the same KMS key.

For example, the following key policy statement allows the principal to call the GenerateDataKey
operation on the KMS key. However this is permitted only when the value of the KeyId
parameter in the request is alias/finance-key or an alias ARN with that alias name, such as
arn:aws:kms:us-west-2:111122223333:alias/finance-key.

{
 "Sid": "Key policy using a request alias condition",

Amazon KMS condition keys 182

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/developer"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:RequestAlias": "alias/finance-key"
 }
 }
}

You cannot use this condition key to control access to alias operations, such as CreateAlias or
DeleteAlias. For information about controlling access to alias operations, see Controlling access to
aliases.

kms:ResourceAliases

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Resou
rceAliases

String (list) Multi-valued KMS key
resource
operations

IAM policies only

Use this condition key to control access to a KMS key based on the aliases that are associated with
the KMS key. The operation must be a KMS key resource operation, that is, an operation that is
authorized for a particular KMS key. To identify the KMS key resource operations, in the Actions
and Resources Table, look for a value of KMS key in the Resources column for the operation.

This condition supports attribute-based access control (ABAC) in Amazon KMS. With ABAC, you can
control access to KMS keys based on the tags that are assigned to a KMS key and the aliases that
are associated with a KMS key. You can use tags and aliases to allow or deny access to a KMS key
without changing policies or grants. For details, see ABAC for Amazon KMS.

An alias must be unique in an Amazon Web Services account and Region, but this condition lets
you control access to multiple KMS keys in the same Region (using the StringLike comparison
operator) or to multiple KMS keys in different Amazon Web Services Regions of each account.

Amazon KMS condition keys 183

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html

Amazon Key Management Service Developer Guide

Note

The kms:ResourceAliases condition is effective only when the KMS key conforms to the
aliases per KMS key quota. If a KMS key exceeds this quota, principals who are authorized
to use the KMS key by the kms:ResourceAliases condition are denied access to the KMS
key.

To specify the alias in this policy condition, use an alias name, such as alias/project-alpha, or
an alias name pattern, such as alias/*test*. You cannot specify an alias ARN in the value of this
condition key. To satisfy the condition, the KMS key used in the operation must have the specified
alias. It does not matter whether or how the KMS key is identified in the request for the operation.

This is a multivalued condition key that compares the set of aliases associated with a KMS key to
the set of aliases in the policy. To determine how these sets are compared, you must provide a
ForAnyValue or ForAllValues set operator in the policy condition. For details about the set
operators, see Using multiple keys and values in the IAM User Guide.

• ForAnyValue: At least one alias associated with the KMS key must match an alias in the policy
condition. Other aliases are permitted. If the KMS key has no aliases, the condition is not
satisfied.

• ForAllValues: Every alias associated with the KMS key must match an alias in the policy. This set
operator limits the aliases associated with the KMS key to those in the policy condition. It doesn't
require any aliases, but it forbids unspecified aliases.

For example, the following IAM policy statement allows the principal to call the GenerateDataKey
operation on any KMS key in the specified Amazon Web Services account that is associated with
the finance-key alias. (The key policies of the affected KMS keys must also allow the principal's
account to use them for this operation.) To indicate that the condition is satisfied when one of the
many aliases that might be associated with the KMS key is alias/finance-key, the condition
uses the ForAnyValue set operator.

Because the kms:ResourceAliases condition is based on the resource, not the request, a call to
GenerateDataKey succeeds for any KMS key associated with the finance-key alias, even if the
request uses a key ID or key ARN to identify the KMS key.

{

Amazon KMS condition keys 184

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multi-key-or-value-conditions
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

 "Sid": "AliasBasedIAMPolicy",
 "Effect": "Allow",
 "Action": "kms:GenerateDataKey",
 "Resource": [
 "arn:aws:kms:*:111122223333:key/*",
 "arn:aws:kms:*:444455556666:key/*"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:ResourceAliases": "alias/finance-key"
 }
 }
}

The following example IAM policy statement allows the principal to enable and disable KMS
keys but only when all aliases of the KMS keys include "Test." This policy statement uses two
conditions. The condition with the ForAllValues set operator requires that all aliases associated
with the KMS key include "Test". The condition with the ForAnyValue set operator requires that
the KMS key have at least one alias with "Test." Without the ForAnyValue condition, this policy
statement would have allowed the principal to use KMS keys that had no aliases.

{
 "Sid": "AliasBasedIAMPolicy",
 "Effect": "Allow",
 "Action": [
 "kms:EnableKey",
 "kms:DisableKey"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "ForAllValues:StringLike": {
 "kms:ResourceAliases": [
 "alias/*Test*"
]
 },
 "ForAnyValue:StringLike": {
 "kms:ResourceAliases": [
 "alias/*Test*"
]
 }
 }
}

Amazon KMS condition keys 185

Amazon Key Management Service Developer Guide

kms:ReplicaRegion

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Repli
caRegion

String (list) Single-valued Replicate
Key

Key policies and
IAM policies

You can use this condition key to limit the Amazon Web Services Regions in which a principal
can replicate a multi-Region key. The kms:ReplicaRegion condition key controls access to the
ReplicateKey operation based on the value of the ReplicaRegion parameter in the request. This
parameter specifies the Amazon Web Services Region for the new replica key.

The value of the condition is one or more Amazon Web Services Region names, such as us-east-1
or ap-southeast-2, or name patterns, such as eu-*. For a list of the names of Amazon Web
Services Regions that Amazon KMS supports, see Amazon Key Management Service endpoints and
quotas in the Amazon Web Services General Reference.

For example, the following key policy statement uses the kms:ReplicaRegion condition key to
allow principals to call the ReplicateKey operation only when the value of the ReplicaRegion
parameter is one of the specified Regions.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/Administrator"
 },
 "Action": "kms:ReplicateKey"
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ReplicaRegion": [
 "us-east-1",
 "eu-west-3",
 "ap-southeast-2"
]
 }
 }
}

Amazon KMS condition keys 186

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html#KMS-CreateGrant-request-RetiringPrincipal
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html

Amazon Key Management Service Developer Guide

This condition key controls access only to the ReplicateKey operation. To control access to the
UpdatePrimaryRegion operation, use the kms:PrimaryRegion condition key.

kms:RetiringPrincipal

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Retir
ingPrinci
pal

String (list) Single-valued CreateGrant Key policies and
IAM policies

You can use this condition key to control access to the CreateGrant operation based on the value
of the RetiringPrincipal parameter in the request. For example, you can to create grants to use
a KMS key only when the RetiringPrincipal in the CreateGrant request matches the
RetiringPrincipal in the condition statement.

To specify the retiring principal, use the Amazon Resource Name (ARN) of an Amazon principal.
Valid principals include Amazon Web Services accounts, IAM users, IAM roles, federated users, and
assumed role users. For help with the ARN syntax for a principal, see IAM ARNs in the IAM User
Guide.

The following example key policy statement allows a user to create grants for the KMS key. The
kms:RetiringPrincipal condition key restricts the permission to CreateGrant requests where
the retiring principal in the grant is the LimitedAdminRole.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:RetiringPrincipal": "arn:aws:iam::111122223333:role/LimitedAdminRole"
 }
 }
}

Amazon KMS condition keys 187

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html#KMS-CreateGrant-request-RetiringPrincipal
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns

Amazon Key Management Service Developer Guide

See also

• kms:GrantConstraintType

• kms:GrantIsForAWSResource

• kms:GrantOperations

• kms:GranteePrincipal

kms:RotationPeriodInDays

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Rotat
ionPeriod
InDays

Numeric Single-valued EnableKey
Rotation

Key policies and
IAM policies

You can use this condition key to limit the values that principals can specify in the
RotationPeriodInDays parameter of a EnableKeyRotation request.

The RotationPeriodInDays specifies the number of days between each automatic key rotation
date. Amazon KMS allows you to specify a rotation period between 90 and 2560 days, but you can
use the kms:RotationPeriodInDays condition key to further constrain the rotation period, such
as enforcing a minimum rotation period within the valid range.

For example, the following key policy statement uses the kms:RotationPeriodInDays condition
key to prevent principals from enabling key rotation if the rotation period is less than or equal to
180 days.

{
 "Effect": "Deny",
 "Action": "kms:EnableKeyRotation",
 "Principal": "*",
 "Resource": "*",
 "Condition" : {
 "NumericLessThanEquals" : {
 "kms:RotationPeriodInDays" : "180"
 }

Amazon KMS condition keys 188

https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKeyRotation.html

Amazon Key Management Service Developer Guide

 }
}

kms:ScheduleKeyDeletionPendingWindowInDays

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Sched
uleKeyDel
etionPend
ingWindow
InDays

Numeric Single-valued ScheduleK
eyDeletion

Key policies and
IAM policies

You can use this condition key to limit the values that principals can specify in the
PendingWindowInDays parameter of a ScheduleKeyDeletion request.

The PendingWindowInDays specifies the number of days that Amazon KMS will wait before
deleting a key. Amazon KMS allows you to specify a waiting period between 7 and 30 days, but
you can use the kms:ScheduleKeyDeletionPendingWindowInDays condition key to further
constrain the waiting period, such as enforcing a minimum waiting period within the valid range.

For example, the following key policy statement uses the
kms:ScheduleKeyDeletionPendingWindowInDays condition key to prevent principals from
scheduling key deletion if the waiting period is less than or equal to 21 days.

{
 "Effect": "Deny",
 "Action": "kms:ScheduleKeyDeletion",
 "Principal": "*",
 "Resource": "*",
 "Condition" : {
 "NumericLessThanEquals" : {
 "kms:ScheduleKeyDeletionPendingWindowInDays" : "21"
 }
 }
}

Amazon KMS condition keys 189

https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html

Amazon Key Management Service Developer Guide

kms:SigningAlgorithm

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Signi
ngAlgorit
hm

String Single-valued Sign

Verify

Key policies and
IAM policies

You can use the kms:SigningAlgorithm condition key to control access to the Sign and Verify
operations based on the value of the SigningAlgorithm parameter in the request. This condition
key has no effect on operations performed outside of Amazon KMS, such as verifying signatures
with the public key in an asymmetric KMS key pair outside of Amazon KMS.

The following example key policy allows users who can assume the testers role to use the KMS
key to sign messages only when the signing algorithm used for the request is an RSASSA_PSS
algorithm, such as RSASSA_PSS_SHA512.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/testers"
 },
 "Action": "kms:Sign",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:SigningAlgorithm": "RSASSA_PSS*"
 }
 }
}

See also

• kms:EncryptionAlgorithm

• the section called “kms:MacAlgorithm”

• the section called “kms:MessageType”

Amazon KMS condition keys 190

https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html#KMS-Sign-request-SigningAlgorithm

Amazon Key Management Service Developer Guide

kms:ValidTo

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:ValidTo Timestamp Single-valued ImportKey
Material

Key policies and
IAM policies

The kms:ValidTo condition key controls access to the ImportKeyMaterial operation based on the
value of the ValidTo parameter in the request, which determines when the imported key material
expires. The value is expressed in Unix time.

By default, the ValidTo parameter is required in an ImportKeyMaterial request. However, if
the value of the ExpirationModel parameter is KEY_MATERIAL_DOES_NOT_EXPIRE, the ValidTo
parameter is invalid. You can also use the kms:ExpirationModel condition key to require the
ExpirationModel parameter or a specific parameter value.

The following example policy statement allows a user to import key material into a KMS key. The
kms:ValidTo condition key limits the permission to ImportKeyMaterial requests where the
ValidTo value is less than or equal to 1546257599.0 (December 31, 2018 11:59:59 PM).

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:ImportKeyMaterial",
 "Resource": "*",
 "Condition": {
 "NumericLessThanEquals": {
 "kms:ValidTo": "1546257599.0"
 }
 }
}

See also

• kms:ExpirationModel

• kms:WrappingAlgorithm

Amazon KMS condition keys 191

https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html#KMS-ImportKeyMaterial-request-ValidTo
https://en.wikipedia.org/wiki/Unix_time
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html#KMS-ImportKeyMaterial-request-ExpirationModel

Amazon Key Management Service Developer Guide

• kms:WrappingKeySpec

kms:ViaService

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:ViaSe
rvice

String Single-valued KMS key
resource
operations

Key policies and
IAM policies

The kms:ViaService condition key limits use of an KMS key to requests from specified Amazon
Web Services services. This condition key only applies for Forward access sessions. You can specify
one or more services in each kms:ViaService condition key. The operation must be a KMS key
resource operation, that is, an operation that is authorized for a particular KMS key. To identify the
KMS key resource operations, in the Actions and Resources Table, look for a value of KMS key in
the Resources column for the operation.

For example, the following key policy statement uses the kms:ViaService condition key to allow
a customer managed key to be used for the specified actions only when the request comes from
Amazon EC2 or Amazon RDS in the US West (Oregon) region on behalf of ExampleRole.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {

Amazon KMS condition keys 192

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html

Amazon Key Management Service Developer Guide

 "kms:ViaService": [
 "ec2.us-west-2.amazonaws.com",
 "rds.us-west-2.amazonaws.com"
]
 }
 }
}

You can also use a kms:ViaService condition key to deny permission to use a KMS key when
the request comes from particular services. For example, the following policy statement from
a key policy uses a kms:ViaService condition key to prevent a customer managed key from
being used for Encrypt operations when the request comes from Amazon Lambda on behalf of
ExampleRole.

{
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": [
 "kms:Encrypt"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": [
 "lambda.us-west-2.amazonaws.com"
]
 }
 }
}

Important

When you use the kms:ViaService condition key, the service makes the request on
behalf of a principal in the Amazon Web Services account. These principals must have the
following permissions:

• Permission to use the KMS key. The principal needs to grant these permissions to the
integrated service so the service can use the customer managed key on behalf of the

Amazon KMS condition keys 193

Amazon Key Management Service Developer Guide

principal. For more information, see Using Amazon KMS encryption with Amazon
services.

• Permission to use the integrated service. For details about giving users access to an
Amazon service that integrates with Amazon KMS, consult the documentation for the
integrated service.

All Amazon managed keys use a kms:ViaService condition key in their key policy document. This
condition allows the KMS key to be used only for requests that come from the service that created
the KMS key. To see the key policy for an Amazon managed key, use the GetKeyPolicy operation.

The kms:ViaService condition key is valid in IAM and key policy statements. The services that
you specify must be integrated with Amazon KMS and support the kms:ViaService condition
key.

Services that support the kms:ViaService condition key

The following table lists Amazon services that are integrated with Amazon KMS and support
the use of the kms:ViaService condition key in customer managed keys The services in this
table might not be available in all regions. Use the .amazonaws.com suffix of the Amazon KMS
ViaService name in all Amazon partitions.

Note

You might need to scroll horizontally or vertically to see all of the data in this table.

Service name Amazon KMS ViaService name

Amazon AI Operations aiops.AWS_region .amazonaws.com

Amazon App Runner apprunner. AWS_region .amazonaw
s.com

Amazon AppFabric appfabric. AWS_region .amazonaw
s.com

Amazon AppFlow appflow.AWS_region .amazonaws.com

Amazon KMS condition keys 194

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

Service name Amazon KMS ViaService name

Amazon Application Migration Service mgn.AWS_region .amazonaws.com

Amazon Athena athena.AWS_region .amazonaws.com

Amazon Audit Manager auditmanager. AWS_region .amazonaw
s.com

Amazon Aurora rds.AWS_region .amazonaws.com

Amazon Backup backup.AWS_region .amazonaws.com

Amazon Backup Gateway backup-gateway. AWS_regio
n .amazonaws.com

Amazon Bedrock Model Copy bedrock.AWS_region .amazonaws.com

Amazon Chime SDK chimevoiceconnector. AWS_regio
n .amazonaws.com

Amazon Clean Rooms ML cleanrooms-ml. AWS_region .amazonaw
s.com

Amazon CodeArtifact codeartifact. AWS_region .amazonaw
s.com

Amazon CodeGuru Reviewer codeguru-reviewer. AWS_regio
n .amazonaws.com

Amazon Comprehend comprehend. AWS_region .amazonaw
s.com

Amazon Connect connect.AWS_region .amazonaws.com

Amazon Connect Customer Profiles profile.AWS_region .amazonaws.com

Amazon Q in Connect wisdom.AWS_region .amazonaws.com

Amazon KMS condition keys 195

Amazon Key Management Service Developer Guide

Service name Amazon KMS ViaService name

Amazon Database Migration Service (Amazon
DMS)

dms.AWS_region .amazonaws.com

Amazon DeepRacer deepracer. AWS_region .amazonaw
s.com

Amazon Directory Service directoryservice. AWS_regio
n .amazonaws.com

Amazon DocumentDB docdb-elastic. AWS_region .amazonaw
s.com

Amazon DynamoDB dynamodb. AWS_region .amazonaw
s.com

Amazon EC2 Systems Manager (SSM) ssm.AWS_region .amazonaws.com

Amazon Elastic Block Store (Amazon EBS) ec2.AWS_region .amazonaws.com (EBS
only)

Amazon Elastic Container Registry (Amazon
ECR)

ecr.AWS_region .amazonaws.com

Amazon Elastic File System (Amazon EFS) elasticfilesystem. AWS_regio
n .amazonaws.com

Amazon ElastiCache Include both ViaService names in the
condition key value:

• elasticache. AWS_region .amazonaw
s.com

• dax.AWS_region .amazonaws.com

AWS Elemental MediaTailor mediatailor. AWS_region .amazonaw
s.com

Amazon KMS condition keys 196

Amazon Key Management Service Developer Guide

Service name Amazon KMS ViaService name

Amazon Entity Resolution entityresolution. AWS_regio
n .amazonaws.com

Amazon EventBridge events.AWS_region .amazonaws.com

Amazon FinSpace finspace. AWS_region .amazonaw
s.com

Amazon Forecast forecast. AWS_region .amazonaw
s.com

Amazon FSx fsx.AWS_region .amazonaws.com

Amazon Glue glue.AWS_region .amazonaws.com

Amazon Ground Station groundstation. AWS_region .amazonaw
s.com

Amazon GuardDuty malware-protection. AWS_regio
n .amazonaws.com

Amazon HealthLake healthlake. AWS_region .amazonaw
s.com

Amazon IoT SiteWise iotsitewise. AWS_region .amazonaw
s.com

Amazon Kendra kendra.AWS_region .amazonaws.com

Amazon Keyspaces (for Apache Cassandra) cassandra. AWS_region .amazonaw
s.com

Amazon Kinesis kinesis.AWS_region .amazonaws.com

Amazon Data Firehose firehose. AWS_region .amazonaw
s.com

Amazon KMS condition keys 197

Amazon Key Management Service Developer Guide

Service name Amazon KMS ViaService name

Amazon Kinesis Video Streams kinesisvideo. AWS_region .amazonaw
s.com

Amazon Lambda lambda.AWS_region .amazonaws.com

Amazon Lex lex.AWS_region .amazonaws.com

Amazon License Manager license-manager. AWS_regio
n .amazonaws.com

Amazon Location Service geo.AWS_region .amazonaws.com

Amazon Lookout for Equipment lookoutequipment. AWS_regio
n .amazonaws.com

Amazon Lookout for Metrics lookoutmetrics. AWS_regio
n .amazonaws.com

Amazon Lookout for Vision lookoutvision. AWS_region .amazonaw
s.com

Amazon Macie macie.AWS_region .amazonaws.com

Amazon Mainframe Modernization m2.AWS_region .amazonaws.com

Amazon Mainframe Modernization Application
Testing

apptest.AWS_region .amazonaws.com

Amazon Managed Blockchain managedblockchain. AWS_regio
n .amazonaws.com

Amazon Managed Streaming for Apache Kafka
(Amazon MSK)

kafka.AWS_region .amazonaws.com

Amazon Managed Workflows for Apache
Airflow (MWAA)

airflow.AWS_region .amazonaws.com

Amazon KMS condition keys 198

Amazon Key Management Service Developer Guide

Service name Amazon KMS ViaService name

Amazon MemoryDB memorydb. AWS_region .amazonaw
s.com

Amazon Monitron monitron. AWS_region .amazonaw
s.com

Amazon MQ mq.AWS_region .amazonaws.com

Amazon Neptune rds.AWS_region .amazonaws.com

Amazon Nimble Studio nimble.AWS_region .amazonaws.com

Amazon HealthOmics omics.AWS_region .amazonaws.com

Amazon OpenSearch Service es.AWS_region .amazonaws.com ,
aoss.AWS_region .amazonaws.com

Amazon OpenSearch Custom Packages custom-packages. AWS_regio
n .amazonaws.com

Amazon Proton proton.AWS_region .amazonaws.com

Amazon Quantum Ledger Database (Amazon
QLDB)

qldb.AWS_region .amazonaws.com

Amazon RDS Performance Insights rds.AWS_region .amazonaws.com

Amazon Redshift redshift. AWS_region .amazonaw
s.com

Amazon Redshift query editor V2 sqlworkbench. AWS_region .amazonaw
s.com

Amazon Redshift Serverless redshift-serverless. AWS_regio
n .amazonaws.com

Amazon Rekognition rekognition. AWS_region .amazonaw
s.com

Amazon KMS condition keys 199

Amazon Key Management Service Developer Guide

Service name Amazon KMS ViaService name

Amazon Relational Database Service (Amazon
RDS)

rds.AWS_region .amazonaws.com

Amazon Replicated Data Store ards.AWS_region .amazonaws.com

Amazon SageMaker AI sagemaker. AWS_region .amazonaw
s.com

Amazon Secrets Manager secretsmanager. AWS_regio
n .amazonaws.com

Amazon Security Lake securitylake. AWS_region .amazonaw
s.com

Amazon Simple Email Service (Amazon SES) ses.AWS_region .amazonaws.com

Amazon Simple Notification Service (Amazon
SNS)

sns.AWS_region .amazonaws.com

Amazon Simple Queue Service (Amazon SQS) sqs.AWS_region .amazonaws.com

Amazon Simple Storage Service (Amazon S3) s3.AWS_region .amazonaws.com

Amazon S3 Tables s3tables. AWS_region .amazonaw
s.com

Amazon Snowball Edge importexport. AWS_region .amazonaw
s.com

Amazon Step Functions states.AWS_region .amazonaws.com

Amazon Storage Gateway storagegateway. AWS_regio
n .amazonaws.com

Amazon Systems Manager Incident Manager ssm-incidents. AWS_region .amazonaw
s.com

Amazon KMS condition keys 200

Amazon Key Management Service Developer Guide

Service name Amazon KMS ViaService name

Amazon Systems Manager Incident Manager
Contacts

ssm-contacts. AWS_region .amazonaw
s.com

Amazon Timestream timestream. AWS_region .amazonaw
s.com

Amazon Translate translate. AWS_region .amazonaw
s.com

Amazon Verified Access verified-access. AWS_regio
n .amazonaws.com

Amazon WorkMail workmail. AWS_region .amazonaw
s.com

Amazon WorkSpaces workspaces. AWS_region .amazonaw
s.com

Amazon WorkSpaces Thin Client thinclient. AWS_region .amazonaw
s.com

Amazon WorkSpaces Web workspaces-web. AWS_regio
n .amazonaws.com

Amazon X-Ray xray.AWS_region .amazonaws.com

kms:WrappingAlgorithm

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Wrapp
ingAlgori
thm

String Single-valued GetParame
tersForIm
port

Key policies and
IAM policies

Amazon KMS condition keys 201

Amazon Key Management Service Developer Guide

This condition key controls access to the GetParametersForImport operation based on the value of
the WrappingAlgorithm parameter in the request. You can use this condition to require principals
to use a particular algorithm to encrypt key material during the import process. Requests for the
required public key and import token fail when they specify a different wrapping algorithm.

The following example key policy statement uses the kms:WrappingAlgorithm condition key to
give the example user permission to call the GetParametersForImport operation, but prevents
them from using the RSAES_OAEP_SHA_1 wrapping algorithm. When the WrappingAlgorithm in
the GetParametersForImport request is RSAES_OAEP_SHA_1, the operation fails.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:GetParametersForImport",
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "kms:WrappingAlgorithm": "RSAES_OAEP_SHA_1"
 }
 }
}

See also

• kms:ExpirationModel

• kms:ValidTo

• kms:WrappingKeySpec

kms:WrappingKeySpec

Amazon KMS
condition keys

Condition type Value type API operations Policy type

kms:Wrapp
ingKeySpec

String Single-valued GetParame
tersForIm
port

Key policies and
IAM policies

Amazon KMS condition keys 202

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html#KMS-GetParametersForImport-request-WrappingAlgorithm

Amazon Key Management Service Developer Guide

This condition key controls access to the GetParametersForImport operation based on the value of
the WrappingKeySpec parameter in the request. You can use this condition to require principals to
use a particular type of public key during the import process. If the request specifies a different key
type, it fails.

Because the only valid value for the WrappingKeySpec parameter value is RSA_2048, preventing
users from using this value effectively prevents them from using the GetParametersForImport
operation.

The following example policy statement uses the kms:WrappingAlgorithm condition key to
require that the WrappingKeySpec in the request is RSA_4096.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": "kms:GetParametersForImport",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:WrappingKeySpec": "RSA_4096"
 }
 }
}

See also

• kms:ExpirationModel

• kms:ValidTo

• kms:WrappingAlgorithm

Amazon KMS condition keys for Amazon Nitro Enclaves

Amazon Nitro Enclaves is an Amazon EC2 capability that lets you create isolated compute
environments called enclaves to protect and process highly sensitive data. Amazon KMS provides
condition keys to support Amazon Nitro Enclaves. These conditions keys are effective only for
requests to Amazon KMS for a Nitro Enclave.

Amazon KMS condition keys for Amazon Nitro Enclaves 203

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html#KMS-GetParametersForImport-request-WrappingKeySpec
https://docs.amazonaws.cn/enclaves/latest/user/
https://docs.amazonaws.cn/enclaves/latest/user/nitro-enclave-concepts.html#term-enclave

Amazon Key Management Service Developer Guide

When you call the Decrypt, DeriveSharedSecret, GenerateDataKey, GenerateDataKeyPair, or
GenerateRandom API operations with the signed attestation document from an enclave, these APIs
encrypt the plaintext in the response under the public key from the attestation document, and
return ciphertext instead of plaintext. This ciphertext can be decrypted only by using the private
key in the enclave. For more information, see Cryptographic attestation for Amazon Nitro Enclaves.

The following condition keys let you limit the permissions for these operations based on the
contents of the signed attestation document. Before allowing an operation, Amazon KMS
compares the attestation document from the enclave to the values in these Amazon KMS condition
keys.

kms:RecipientAttestation:ImageSha384

Amazon KMS
Condition Keys

Condition Type Value type API Operations Policy Type

kms:Recip
ientAttes
tation:Im
ageSha384

String Single-valued Decrypt

DeriveSha
redSecret

GenerateD
ataKey

GenerateD
ataKeyPair

GenerateR
andom

Key policies and
IAM policies

The kms:RecipientAttestation:ImageSha384 condition key controls access to Decrypt,
DeriveSharedSecret, GenerateDataKey, GenerateDataKeyPair, and GenerateRandom
with a KMS key when the image digest from the signed attestation document in the request
matches the value in the condition key. The ImageSha384 value corresponds to PCR0 in the
attestation document. This condition key is effective only when the Recipient parameter in the
request specifies a signed attestation document for an Amazon Nitro enclave.

This value is also included in CloudTrail events for requests to Amazon KMS for Nitro enclaves.

Amazon KMS condition keys for Amazon Nitro Enclaves 204

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom.html
https://docs.amazonaws.cn/enclaves/latest/user/nitro-enclave-concepts.html#term-attestdoc

Amazon Key Management Service Developer Guide

For example, the following key policy statement allows the data-processing role to use
the KMS key for Decrypt, DeriveSharedSecret, GenerateDataKey, GenerateDataKeyPair, and
GenerateRandom operations. The kms:RecipientAttestation:ImageSha384 condition key
allows the operations only when the image digest value (PCR0) of the attestation document in the
request matches the image digest value in the condition. This condition key is effective only when
the Recipient parameter in the request specifies a signed attestation document for an Amazon
Nitro enclave.

If the request does not include a valid attestation document from an Amazon Nitro enclave,
permission is denied because this condition is not satisfied.

{
 "Sid" : "Enable enclave data processing",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:role/data-processing"
 },
 "Action": [
 "kms:Decrypt",
 "kms:DeriveSharedSecret",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyPair",
 "kms:GenerateRandom"
],
 "Resource" : "*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "kms:RecipientAttestation:ImageSha384":
 "9fedcba8abcdef7abcdef6abcdef5abcdef4abcdef3abcdef2abcdef1abcdef1abcdef0abcdef1abcdef2abcdef3abcdef4abcdef5abcdef6abcdef7abcdef99"
 }
 }
}

kms:RecipientAttestation:PCR<PCR_ID>

Amazon KMS
Condition Keys

Condition Type Value type API Operations Policy Type

kms:Recip
ientAttes

String Single-valued Decrypt Key policies and
IAM policies

Amazon KMS condition keys for Amazon Nitro Enclaves 205

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom.html

Amazon Key Management Service Developer Guide

Amazon KMS
Condition Keys

Condition Type Value type API Operations Policy Type

tation:PC
R<PCR_ID>

DeriveSha
redSecret

GenerateD
ataKey

GenerateD
ataKeyPair

GenerateR
andom

The kms:RecipientAttestation:PCR<PCR_ID> condition key controls access to Decrypt,
DeriveSharedSecret, GenerateDataKey, GenerateDataKeyPair, and GenerateRandom
with a KMS key only when the platform configuration registers (PCRs) from the signed attestation
document in the request match the PCRs in the condition key. This condition key is effective only
when the Recipient parameter in the request specifies a signed attestation document from an
Amazon Nitro enclave.

This value is also included in CloudTrail events that represent requests to Amazon KMS for Nitro
enclaves.

To specify a PCR value, use the following format. Concatenate the PCR ID to the condition key
name. You can specify a PCR ID that identifies one of the six enclave measurements or a custom
PCR ID that you defined for a specific use case. The PCR value must be a lower-case hexadecimal
string of up to 96 bytes.

"kms:RecipientAttestation:PCRPCR_ID": "PCR_value"

For example, the following condition key specifies a particular value for PCR1, which corresponds
to the hash of the kernel used for the enclave and the bootstrap process.

kms:RecipientAttestation:PCR1:
 "0x1abcdef2abcdef3abcdef4abcdef5abcdef6abcdef7abcdef8abcdef9abcdef8abcdef7abcdef6abcdef5abcdef4abcdef3abcdef2abcdef1abcdef0abcde"

Amazon KMS condition keys for Amazon Nitro Enclaves 206

https://docs.amazonaws.cn/enclaves/latest/user/set-up-attestation.html#where

Amazon Key Management Service Developer Guide

The following example key policy statement allows the data-processing role to use the KMS
key for the Decrypt operation.

The kms:RecipientAttestation:PCR condition key in this statement allows the operation
only when the PCR1 value in the signed attestation document in the request matches
kms:RecipientAttestation:PCR1 value in the condition. Use the StringEqualsIgnoreCase
policy operator to require a case-insensitive comparison of the PCR values.

If the request does not include an attestation document, permission is denied because this
condition is not satisfied.

{
 "Sid" : "Enable enclave data processing",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:role/data-processing"
 },
 "Action": "kms:Decrypt",
 "Resource" : "*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "kms:RecipientAttestation:PCR1":
 "0x1de4f2dcf774f6e3b679f62e5f120065b2e408dcea327bd1c9dddaea6664e7af7935581474844767453082c6f1586116376cede396a30a39a611b9aad7966c87"
 }
 }
}

Least-privilege permissions

Since your KMS keys protect sensitive information, we recommend following the principle of least-
privileged access. Delegate the minimum permissions required to perform a task when you define
your key policies. Only allow all actions (kms:*) on a KMS key policy if you plan to further restrict
permissions with additional IAM policies. If you plan to manage permissions with IAM policies,
limit who has the ability to create and attach IAM policies to IAM principals and monitor for policy
changes.

If you allow all actions (kms:*) in both the key policy and the IAM policy, the principal has both
administrative and usage permissions to the KMS key. As a security best practice, we recommend
only delegating these permissions to specific principals. You can do this by explicitly naming the
principal in the key policy or by limiting which principals the IAM policy is attached to. You can also

Least-privilege permissions 207

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html#cloudwatch-alarms-for-cloudtrail-iam-policy-changes
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html#cloudwatch-alarms-for-cloudtrail-iam-policy-changes

Amazon Key Management Service Developer Guide

use condition keys to restrict permissions. For example, you can use the aws:PrincipalTag to
allow all actions if the principal making the API call has the tag specified in the condition rule.

For help understanding how policy statements are evaluated in Amazon, see Policy evaluation logic
in the IAM User Guide. We recommend reviewing this topic before writing policies to reduce the
chance that your policy has unintended effects, such as providing access to principals that should
not have access.

Tip

When testing an application in a non-production envrionment, use IAM Access Analyzer to
help you apply least-privileges to your IAM policies.

If you use IAM users instead of IAM roles, we strongly recommend enabling Amazon multi-factor
authentication (MFA) to mitigate the vulnerability of long-term credentials. You can use MFA to do
the following:

• Require that users validate their credentials with MFA before performing privileged actions, such
as scheduling key deletion.

• Split ownership of an administrator account password and MFA device between individuals to
implement split authorization.

Learn more

• Amazon managed policies for job functions

• Techniques for writing least privilege IAM policies

Implementing least privileged permissions

When you give an Amazon service permission to use a KMS key, ensure that the permission is valid
only for the resources that the service must access on your behalf. This least privilege strategy
helps to prevent unauthorized use of a KMS key when requests are passed between Amazon
services.

To implement a least privilege strategy, use we recommend using Amazon KMS encryption context
condition keys and the global source ARN or source account condition keys.

Implementing least privileged permissions 208

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principaltag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://www.amazonaws.cn/iam/features/analyze-access/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://www.amazonaws.cn/blogs/security/techniques-for-writing-least-privilege-iam-policies/

Amazon Key Management Service Developer Guide

Using encryption context condition keys

The most effective way to implement least privileged permissions when using Amazon KMS
resources is to include the kms:EncryptionContext:context-key or kms:EncryptionContextKeys
condition keys in the policy that allows principals to call Amazon KMS cryptographic operations.
These condition keys are particularly effective because they associate the permission with the
encryption context that is bound to the ciphertext when the resource is encrypted.

Use encryption context conditions keys only when the action in the policy statement is CreateGrant
or an Amazon KMS symmetric cryptographic operation that takes an EncryptionContext
parameter, such as the operations like GenerateDataKey or Decrypt. (For a list of supported
operations, see kms:EncryptionContext:context-key or kms:EncryptionContextKeys.) If you use
these condition keys to allow other operations, such as DescribeKey, permission will be denied.

Set the value to the encryption context that the service uses when it encrypts the resource.
This information is typically available in the Security chapter of the service documentation. For
example, the encryption context for Amazon Proton identifies the Amazon Proton resource and its
associated template. The Amazon Secrets Manager encryption context identifies the secret and its
version. The encryption context for Amazon Location identifies the tracker or collection.

The following example key policy statement allows Amazon Location Service to create grants on
behalf of authorized users. This policy statement limits the permission by using the kms:ViaService,
kms:CallerAccount, and kms:EncryptionContext:context-key condition keys to tie the
permission to a particular tracker resource.

{
 "Sid": "Allow Amazon Location to create grants on behalf of authorized users",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/LocationTeam"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "geo.us-west-2.amazonaws.com",
 "kms:CallerAccount": "111122223333",
 "kms:EncryptionContext:aws:geo:arn": "arn:aws:geo:us-west-2:111122223333:tracker/
SAMPLE-Tracker"
 }
 }

Implementing least privileged permissions 209

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/proton/latest/adminguide/data-protection.html#encryption-context
https://docs.amazonaws.cn/secretsmanager/latest/userguide/security-encryption.html#security-encryption-encryption-context
https://docs.amazonaws.cn/location/latest/developerguide/encryption-at-rest.html#location-encryption-context

Amazon Key Management Service Developer Guide

}

Using aws:SourceArn or aws:SourceAccount condition keys

When the principal in a key policy statement is an Amazon service principal, we strongly
recommend that you use the aws:SourceArn or aws:SourceAccount global condition keys, in
addition to the kms:EncryptionContext:context-key condition key. The ARN and account
values are included in the authorization context only when a request comes to Amazon KMS from
another Amazon service. This combination of conditions implements least privileged permissions
and avoids a potential confused deputy scenario. Service principals are not typically used as
principals in a key policy, but some Amazon services, such as Amazon CloudTrail, require it.

To use the aws:SourceArn or aws:SourceAccount global condition keys, set the value to the
Amazon Resource Name (ARN) or account of the resource that is being encrypted. For example, in
a key policy statement that gives Amazon CloudTrail permission to encrypt a trail, set the value of
aws:SourceArn to the ARN of the trail. Whenever possible, use aws:SourceArn, which is more
specific. Set the value to the ARN or an ARN pattern with wildcard characters. If you don't know the
ARN of the resource, use aws:SourceAccount instead.

Note

If a resource ARN includes characters that are not permitted in an Amazon KMS key
policy, you cannot use that resource ARN in the value of the aws:SourceArn condition
key. Instead, use the aws:SourceAccount condition key. For details about key policy
document rules, see Key policy format.

In the following example key policy, the principal who gets the permissions is the Amazon
CloudTrail service principal, cloudtrail.amazonaws.com. To implement least privilege, this
policy uses the aws:SourceArn and kms:EncryptionContext:context-key condition keys.
The policy statement allows CloudTrail to use the KMS key to generate the data key that it uses to
encrypt a trail. The aws:SourceArn and kms:EncryptionContext:context-key conditions
are evaluated independently. Any request to use the KMS key for the specified operation must
satisfy both conditions.

To restrict the service's permission to the finance trail in the example account (111122223333)
and us-west-2 Region, this policy statement sets the aws:SourceArn condition key to the
ARN of a particular trail. The condition statement uses the ArnEquals operator to ensure that

Implementing least privileged permissions 210

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_ARN

Amazon Key Management Service Developer Guide

every element in the ARN is evaluated independently when matching. The example also uses the
kms:EncryptionContext:context-key condition key to limit the permission to trails in a
particular account and Region.

Before using this key policy, replace the example account ID, Region, and trail name with valid
values from your account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow CloudTrail to encrypt logs",
 "Effect": "Allow",
 "Principal": {
 "Service": "cloudtrail.amazonaws.com"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "aws:SourceArn": [
 "arn:aws:cloudtrail:us-west-2:111122223333:trail/finance"
]
 },
 "StringLike": {
 "kms:EncryptionContext:aws:cloudtrail:arn": [
 "arn:aws:cloudtrail:*:111122223333:trail/*"
]
 }
 }
 }
]
}

ABAC for Amazon KMS

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. Amazon KMS supports ABAC by allowing you to control access to your customer
managed keys based on the tags and aliases associated with the KMS keys. The tag and alias
condition keys that enable ABAC in Amazon KMS provide a powerful and flexible way to authorize

Attribute-based access control (ABAC) 211

Amazon Key Management Service Developer Guide

principals to use KMS keys without editing policies or managing grants. But you should use these
feature with care so principals aren't inadvertently allowed or denied access.

If you use ABAC, be aware that permission to manage tags and aliases is now an access control
permission. Be sure that you know the existing tags and aliases on all KMS keys before you deploy
a policy that depends on tags or aliases. Take reasonable precautions when adding, deleting, and
updating aliases, and when tagging and untagging keys. Give permissions to manage tags and
aliases only to principals who need them, and limit the tags and aliases they can manage.

Notes

When using ABAC for Amazon KMS, be cautious about giving principals permission to
manage tags and aliases. Changing a tag or alias might allow or deny permission to a KMS
key. Key administrators who don't have permission to change key policies or create grants
can control access to KMS keys if they have permission to manage tags or aliases.
It might take up to five minutes for tag and alias changes to affect KMS key authorization.
Recent changes might be visible in API operations before they affect authorization.
To control access to a KMS key based on its alias, you must use a condition key. You cannot
use an alias to represent a KMS key in the Resource element of a policy statement. When
an alias appears in the Resource element, the policy statement applies to the alias, not to
the associated KMS key.

Learn more

• For details about Amazon KMS support for ABAC, including examples, see Use aliases to control
access to KMS keys and Use tags to control access to KMS keys.

• For more general information about using tags to control access to Amazon resources, see What
is ABAC for Amazon? and Controlling Access to Amazon Resources Using Resource Tags in the
IAM User Guide.

ABAC condition keys for Amazon KMS

To authorize access to KMS keys based on their tags and aliases, use the following condition keys in
a key policy or IAM policy.

ABAC condition keys for Amazon KMS 212

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html

Amazon Key Management Service Developer Guide

ABAC condition key Description Policy type Amazon KMS
operations

aws:ResourceTag Tag (key and value)
on the KMS key
matches the tag (key
and value) or tag
pattern in the policy

IAM policy only KMS key resource
operations 2

aws:RequestTag/tag-
key

Tag (key and value) in
the request matches
the tag (key and
value) or tag pattern
in the policy

Key policy and IAM
policies1

TagResource,
UntagResource

aws:TagKeys Tag keys in the
request match the
tag keys in the policy

Key policy and IAM
policies1

TagResource,
UntagResource

kms:ResourceAliases Aliases associated
with the KMS key
match the aliases or
alias patterns in the
policy

IAM policy only KMS key resource
operations 2

kms:RequestAlias Alias that represent
s the KMS key in the
request matches the
alias or alias patterns
in the policy.

Key policy and IAM
policies1

Cryptographic
operations, DescribeK
ey, GetPublicKey

1Any condition key that can be used in a key policy can also be used in an IAM policy, but only if the
key policy allows it.

2A KMS key resource operation is an operation authorized for a particular KMS key. To identify the
KMS key resource operations, in the Amazon KMS permissions table, look for a value of KMS key in
the Resources column for the operation.

ABAC condition keys for Amazon KMS 213

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html

Amazon Key Management Service Developer Guide

For example, you can use these condition keys to create the following policies.

• An IAM policy with kms:ResourceAliases that allows permission to use KMS keys with a
particular alias or alias pattern. This is a bit different from policies that rely on tags: Although
you can use alias patterns in a policy, each alias must be unique in an Amazon Web Services
account and Region. This allows you to apply a policy to a select set of KMS keys without listing
the key ARNs of the KMS keys in the policy statement. To add or remove KMS keys from the set,
change the alias of the KMS key.

• A key policy with kms:RequestAlias that allows principals to use a KMS key in a Encrypt
operation, but only when the Encrypt request uses that alias to identify the KMS key.

• An IAM policy with aws:ResourceTag/tag-key that denies permission to use KMS keys with a
particular tag key and tag value. This lets you apply a policy to a select set of KMS keys without
listing the key ARNs of the KMS keys in the policy statement. To add or remove KMS keys from
the set, tag or untag the KMS key.

• An IAM policy with aws:RequestTag/tag-key that allows principals to delete only
"Purpose"="Test" KMS key tags.

• An IAM policy with aws:TagKeys that denies permission to tag or untag a KMS key with a
Restricted tag key.

ABAC makes access management flexible and scalable. For example, you can use the
aws:ResourceTag/tag-key condition key to create an IAM policy that allows principals to use
a KMS key for specified operations only when the KMS key has a Purpose=Test tag. The policy
applies to all KMS keys in all Regions of the Amazon Web Services account.

When attached to a user or role, the following IAM policy allows principals to use all existing KMS
keys with a Purpose=Test tag for the specified operations. To provide this access to new or
existing KMS keys, you don't need to change the policy. Just attach the Purpose=Test tag to the
KMS keys. Similarly, to remove this access from KMS keys with a Purpose=Test tag, edit or delete
the tag.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AliasBasedIAMPolicy",
 "Effect": "Allow",
 "Action": [

ABAC condition keys for Amazon KMS 214

Amazon Key Management Service Developer Guide

 "kms:Decrypt",
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Purpose": "Test"
 }
 }
 }
]
}

However, if you use this feature, be careful when managing tags and aliases. Adding, changing, or
deleting a tag or alias can inadvertently allow or deny access to a KMS key. Key administrators who
don't have permission to change key policies or create grants can control access to KMS keys if they
have permission to manage tags and aliases. To mitigate this risk, consider limiting permissions to
manage tags and aliases. For example, you might want to allow only select principals to manage
Purpose=Test tags. For details, see Use aliases to control access to KMS keys and Use tags to
control access to KMS keys.

Tags or aliases?

Amazon KMS supports ABAC with tags and aliases. Both options provide a flexible, scalable access
control strategy, but they're slightly different from each other.

You might decide to use tags or use aliases based on your particular Amazon use patterns. For
example, if you have already given tagging permissions to most administrators, it might be easier
to control an authorization strategy based on aliases. Or, if you are close to the quota for aliases
per KMS key, you might prefer an authorization strategy based on tags.

The following benefits are of general interest.

Benefits of tag-based access control

• Same authorization mechanism for different types of Amazon resources.

You can use the same tag or tag key to control access to multiple resource types, such as an
Amazon Relational Database Service (Amazon RDS) cluster, an Amazon Elastic Block Store

Tags or aliases? 215

Amazon Key Management Service Developer Guide

(Amazon EBS) volume, and a KMS key. This feature enables several different authorization
models that are more flexible than traditional role-based access control.

• Authorize access to a group of KMS keys.

You can use tags to manage access to a group of KMS keys in the same Amazon Web Services
account and Region. Assign the same tag or tag key to the KMS keys that you choose. Then
create a simple, easy-to-maintain policy statement that is based on the tag or tag key. To add or
remove a KMS key from your authorization group, add or remove the tag; you don't need to edit
the policy.

Benefits of alias-based access control

• Authorize access to cryptographic operations based on aliases.

Most request-based policy conditions for attributes, including aws:RequestTag/tag-key, affect
only operations that add, edit, or delete the attribute. But the kms:RequestAlias condition key
controls access to cryptographic operations based on the alias used to identify the KMS key in
the request. For example, you can give a principal permission to use a KMS key in a Encrypt
operation but only when the value of the KeyId parameter is alias/restricted-key-1. To
satisfy this condition requires all of the following:

• The KMS key must be associated with that alias.

• The request must use the alias to identify the KMS key.

• The principal must have permission to use the KMS key subject to the kms:RequestAlias
condition.

This is particularly useful if your applications commonly use alias names or alias ARNs to refer to
KMS keys.

• Provide very limited permissions.

An alias must be unique in an Amazon Web Services account and Region. As a result, giving
principals access to a KMS key based on an alias can be much more restrictive than giving them
access based on a tag. Unlike aliases, tags can be assigned to multiple KMS keys in the same
account and Region. If you choose, you can use an alias pattern, such as alias/test*, to give
principals access to a group of KMS keys in the same account and Region. However, allowing or
denying access to a particular alias allows very strict control on KMS keys.

Tags or aliases? 216

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag

Amazon Key Management Service Developer Guide

Troubleshooting ABAC for Amazon KMS

Controlling access to KMS keys based on their tags and aliases is convenient and powerful.
However, it's prone to a few predictable errors that you'll want to prevent.

Access changed due to tag change

If a tag is deleted or its value is changed, principals who have access to a KMS key based only on
that tag will be denied access to the KMS key. This can also happen when a tag that is included in
a deny policy statement is added to a KMS key. Adding a policy-related tag to a KMS key can allow
access to principals who should be denied access to a KMS key.

For example, suppose that a principal has access to a KMS key based on the Project=Alpha tag,
such as the permission provided by the following example IAM policy statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMPolicyWithResourceTag",
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:ap-southeast-1:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Project": "Alpha"
 }
 }
 }
]
}

If the tag is deleted from that KMS key or the tag value is changed, the principal no longer has
permission to use the KMS key for the specified operations. This might become evident when the
principal tries to read or write data in an Amazon service that uses a customer managed key To
trace the tag change, review your CloudTrail logs for TagResource or UntagResource entries.

To restore access without updating the policy, change the tags on the KMS key. This action has
minimal impact other than a brief period while it is taking effect throughout Amazon KMS. To

Troubleshooting ABAC for Amazon KMS 217

Amazon Key Management Service Developer Guide

prevent an error like this one, give tagging and untagging permissions only to principals who need
it and limit their tagging permissions to tags they need to manage. Before changing a tag, search
policies to detect access that depends on the tag, and get KMS keys in all Regions that have the
tag. You might consider creating an Amazon CloudWatch alarm when particular tags are changed.

Access change due to alias change

If an alias is deleted or associated with a different KMS key, principals who have access to the KMS
key based only on that alias will be denied access to the KMS key. This can also happen when an
alias that is associated with a KMS key is included in a deny policy statement. Adding a policy-
related alias to a KMS key can also allow access to principals who should be denied access to a KMS
key.

For example, the following IAM policy statement uses the kms:ResourceAliases condition key to
allow access to KMS keys in different Regions of the account with any of the specified aliases.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AliasBasedIAMPolicy",
 "Effect": "Allow",
 "Action": [
 "kms:List*",
 "kms:Describe*",
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:ResourceAliases": [
 "alias/ProjectAlpha",
 "alias/ProjectAlpha_Test",
 "alias/ProjectAlpha_Dev"
]
 }
 }
 }
]
}

Troubleshooting ABAC for Amazon KMS 218

Amazon Key Management Service Developer Guide

To trace the alias change, review your CloudTrail logs for CreateAlias, UpdateAlias, and DeleteAlias
entries.

To restore access without updating the policy, change the alias associated with the KMS key.
Because each alias can be associated with only one KMS key in an account and Region, managing
aliases is a bit more difficult than managing tags. Restoring access to some principals on one KMS
key can deny the same or other principals access to a different KMS key.

To prevent this error, give alias management permissions only to principals who need it and limit
their alias-management permissions to aliases they need to manage. Before updating or deleting
an alias, search policies to detect access that depends on the alias, and find KMS keys in all Regions
that are associated with the alias.

Access denied due to alias quota

Users who are authorized to use a KMS key by an kms:ResourceAliases condition will get an
AccessDenied exception if the KMS key exceeds the default aliases per KMS key quota for that
account and Region.

To restore access, delete aliases that are associated with the KMS key so it complies with the quota.
Or use an alternate mechanism to give users access to the KMS key.

Delayed authorization change

Changes that you make to tags and aliases might take up to five minutes to affect the
authorization of KMS keys. As a result, a tag or alias change might be reflected in the responses
from API operations before they affect authorization. This delay is likely to be longer than the brief
eventual consistency delay that affects most Amazon KMS operations.

For example, you might have an IAM policy that allows certain principals to use any KMS key with
a "Purpose"="Test" tag. Then you add the "Purpose"="Test" tag to a KMS key. Although the
TagResource operation completes and ListResourceTags response confirms that the tag is assigned
to the KMS key, the principals might not have access to the KMS key for up to five minutes.

To prevent errors, build this expected delay into your code.

Failed requests due to alias updates

When you update an alias, you associate an existing alias with a different KMS key.

Troubleshooting ABAC for Amazon KMS 219

https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html

Amazon Key Management Service Developer Guide

Decrypt and ReEncrypt requests that specify the alias name or alias ARN might fail because the
alias is now associated with a KMS key that didn't encrypt the ciphertext. This situation typically
returns an IncorrectKeyException or NotFoundException. Or if the request has no KeyId or
DestinationKeyId parameter, the operation might fail with AccessDenied exception because
the caller no longer has access to the KMS key that encrypted the ciphertext.

You can trace the change by looking at CloudTrail logs for CreateAlias, UpdateAlias, and
DeleteAlias log entries. You can also use the value of the LastUpdatedDate field in the ListAliases
response to detect a change.

For example, the following ListAliases example response shows that the ProjectAlpha_Test
alias in the kms:ResourceAliases condition was updated. As a result, the principals who have
access based on the alias lose access to the previously associated KMS key. Instead, they have
access to the newly associated KMS key.

$ aws kms list-aliases --query 'Aliases[?starts_with(AliasName, `alias/ProjectAlpha`)]'

{
 "Aliases": [
 {
 "AliasName": "alias/ProjectAlpha_Test",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/ProjectAlpha_Test",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": 1566518783.394,
 "LastUpdatedDate": 1605308931.903
 },
 {
 "AliasName": "alias/ProjectAlpha_Restricted",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/
ProjectAlpha_Restricted",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1553410800.010,
 "LastUpdatedDate": 1553410800.010
 }
]
}

The remedy for this change isn't simple. You can update the alias again to associate it with the
original KMS key. However, before you act, you need to consider the effect of that change on the
currently associated KMS key. If principals used the latter KMS key in cryptographic operations,

Troubleshooting ABAC for Amazon KMS 220

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html

Amazon Key Management Service Developer Guide

they might need continued access to it. In this case, you might want to update the policy to ensure
that principals have permission to use both of the KMS keys.

You can prevent an error like this one: Before updating an alias, search policies to detect access
that depends on the alias. Then get KMS keys in all Regions that are associated with the alias. Give
alias management permissions only to principals who need it and limit their alias-management
permissions to aliases they need to manage.

RBAC for Amazon KMS

Role-based access control (RBAC) is an authorization strategy that only provides users with the
permissions required to perform their job duties, and nothing more. Amazon KMS supports RBAC
by allowing you to control access to your keys by specifying granular permissions on key usage
within key policies. Key policies specify a resource, action, effect, principal, and optional conditions
to grant access to keys.

To implement RBAC in Amazon KMS, we recommend separating the permissions for key users and
key administrators.

Key users

The following key policy example allows the ExampleUserRole IAM role to use the KMS key.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {
 "Amazon": "arn:aws-cn:iam::111122223333:role/ExampleUserRole"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 }

Role-based access control (RBAC) 221

Amazon Key Management Service Developer Guide

Your key users might need fewer permissions than the user in this example. Only assign
the permissions that the user needs. Use the following questions to help you further refine
permissions.

• Which IAM principals (roles or users) need access to the key?

• Which actions does each principal need to perform with the key? For example, does the
principal only need Encrypt and Sign permissions?

• Is the user a human or an Amazon service? If it's an Amazon service, you can use the condition
key to restrict key usage to a specific Amazon service.

Key administrators

The following key policy example allows the ExampleAdminRole IAM role to administer the
KMS key.

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {
 "Amazon": "arn:aws-cn:iam::111122223333:role/ExampleAdminRole"
 },
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
 }

Role-based access control (RBAC) 222

Amazon Key Management Service Developer Guide

Your key administrators might need fewer permissions than the administrator in this example.
Only assign the permissions that your key administrators need.

Only give users the permissions they need to fulfill their roles. A user's permissions might vary
depending on whether the key is used in test or production environments. If you use less restrictive
permissions in certain non-production environments, implement a process to test the policies
before they're released to production.

Learn more

• IAM identities (users, user groups, and roles)

• Types of access control

Allowing users in other accounts to use a KMS key

You can allow users or roles in a different Amazon Web Services account to use a KMS key in your
account. Cross-account access requires permission in the key policy of the KMS key and in an IAM
policy in the external user's account.

Cross-account permission is effective only for the following operations:

• Cryptographic operations

• CreateGrant

• DescribeKey

• GetKeyRotationStatus

• GetPublicKey

• ListGrants

• RetireGrant

• RevokeGrant

If you give a user in a different account permission for other operations, those permissions have no
effect. For example, if you give a principal in a different account kms:ListKeys permission in an IAM
policy, or kms:ScheduleKeyDeletion permission on a KMS key in a key policy, the user's attempts to
call those operations on your resources still fail.

Cross-account access 223

https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/saas-multitenant-api-access-authorization/access-control-types.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html

Amazon Key Management Service Developer Guide

For details about using KMS keys in different accounts for Amazon KMS operations, see the Cross-
account use column in the Amazon KMS permissions and Using KMS keys in other accounts. There
is also a Cross-account use section in each API description in the Amazon Key Management Service
API Reference.

Warning

Be cautious about giving principals permissions to use your KMS keys. Whenever possible,
follow the least privilege principle. Give users access only to the KMS keys they need for
only the operations they require.
Also, be cautious about using any unfamiliar KMS key, especially a KMS key in a different
account. Malicious users might give you permissions to use their KMS key to get
information about you or your account.
For information about using policies to protect the resources in your account, see Best
practices for IAM policies.

To give permission to use a KMS key to users and roles in another account, you must use two
different types of policies:

• The key policy for the KMS key must give the external account (or users and roles in the external
account) permission to use the KMS key. The key policy is in the account that owns the KMS key.

• IAM policies in the external account must delegate the key policy permissions to its users and
roles. These policies are set in the external account and give permissions to users and roles in
that account.

The key policy determines who can have access to the KMS key. The IAM policy determines who
does have access to the KMS key. Neither the key policy nor the IAM policy alone is sufficient—you
must change both.

To edit the key policy, you can use the Policy View in the Amazon Web Services Management
Console or use the CreateKey or PutKeyPolicy operations.

For help with editing IAM policies, see Using IAM policies with Amazon KMS.

For an example that shows how the key policy and IAM policies work together to allow use of a
KMS key in a different account, see Example 2: User assumes role with permission to use a KMS key
in a different Amazon Web Services account.

Cross-account access 224

https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html

Amazon Key Management Service Developer Guide

You can view the resulting cross-account Amazon KMS operations on the KMS key in your Amazon
CloudTrail logs. Operations that use KMS keys in other accounts are logged in both the caller's
account and the KMS key owner account.

Topics

• Step 1: Add a key policy statement in the local account

• Step 2: Add IAM policies in the external account

• Allowing use of external KMS keys with Amazon Web Services services

• Using KMS keys in other accounts

Note

The examples in this topic show how to use a key policy and IAM policy together to provide
and limit access to a KMS key. These generic examples are not intended to represent the
permissions that any particular Amazon Web Services service requires on a KMS key. For
information about the permissions that an Amazon Web Services service requires, see the
encryption topic in the service documentation.

Step 1: Add a key policy statement in the local account

The key policy for a KMS key is the primary determinant of who can access the KMS key and which
operations they can perform. The key policy is always in the account that owns the KMS key. Unlike
IAM policies, key policies do not specify a resource. The resource is the KMS key that is associated
with the key policy. When providing cross-account permission, the key policy for the KMS key must
give the external account (or users and roles in the external account) permission to use the KMS
key.

To give an external account permission to use the KMS key, add a statement to the key policy that
specifies the external account. In the Principal element of the key policy, enter the Amazon
Resource Name (ARN) of the external account.

When you specify an external account in a key policy, IAM administrators in the external account
can use IAM policies to delegate those permissions to any users and roles in the external account.
They can also decide which of the actions specified in the key policy the users and roles can
perform.

Step 1: Add a key policy statement in the local account 225

Amazon Key Management Service Developer Guide

Permissions given to the external account and its principals are effective only if the external
account is enabled in the Region that hosts the KMS key and its key policy. For information about
Regions that are not enabled by default ("opt-in Regions"), see Managing Amazon Web Services
Regions in the Amazon Web Services General Reference.

For example, suppose you want to allow account 444455556666 to use a symmetric encryption
KMS key in account 111122223333. To do that, add a policy statement like the one in the
following example to the key policy for the KMS key in account 111122223333. This policy
statement gives the external account, 444455556666, permission to use the KMS key in
cryptographic operations for symmetric encryption KMS keys.

Note

The following example represents a sample key policy for sharing a KMS key with another
account. Replace the example Sid, Principal, and Action values with valid values for
the intended use of your KMS key.

{
 "Sid": "Allow an external account to use this KMS key",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::444455556666:root"
]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
}

Instead of giving permission to the external account, you can specify particular external users
and roles in the key policy . However, those users and roles cannot use the KMS key until IAM
administrators in the external account attach the proper IAM policies to their identities. The IAM

Step 1: Add a key policy statement in the local account 226

https://docs.amazonaws.cn/general/latest/gr/rande-manage.html
https://docs.amazonaws.cn/general/latest/gr/rande-manage.html

Amazon Key Management Service Developer Guide

policies can give permission to all or a subset of the external users and roles that are specified in
the key policy. And they can allow all or a subset of the actions specified in the key policy.

Specifying identities in a key policy restricts the permissions that IAM administrators in the external
account can provide. However, it makes policy management with two accounts more complex. For
example, assume that you need to add a user or role. You must add that identity to the key policy
in the account that owns the KMS key and create IAM policies in the identity's account.

To specify particular external users or roles in a key policy, in the Principal element, enter the
Amazon Resource Name (ARN) of a user or role in the external account.

For example, the following example key policy statement allows ExampleRole in account
444455556666 to use a KMS key in account 111122223333. This key policy statement gives the
external account, 444455556666, permission to use the KMS key in cryptographic operations for
symmetric encryption KMS keys.

Note

The following example represents a sample key policy for sharing a KMS key with another
account. Replace the example Sid, Principal, and Action values with valid values for
the intended use of your KMS key.

{
 "Sid": "Allow an external account to use this KMS key",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:role/ExampleRole"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
}

Step 1: Add a key policy statement in the local account 227

Amazon Key Management Service Developer Guide

Note

Do not set the Principal to an asterisk (*) in any key policy statement that allows
permissions unless you use conditions to limit the key policy. An asterisk gives every
identity in every Amazon Web Services account permission to use the KMS key, unless
another policy statement explicitly denies it. Users in other Amazon Web Services accounts
can use your KMS key whenever they have corresponding permissions in their own account.

You also need to decide which permissions you want to give to the external account. For example,
you might want to give users permission to decrypt but not encrypt, or permission to view the KMS
key but not use it. For a list of permissions on KMS keys, see Amazon KMS permissions.

Setting the key policy when you create a KMS key

When you use the CreateKey operation to create a KMS key, you can use its Policy parameter
to specify a key policy that gives an external account, or external users and roles, permission to
use the KMS key.

When you create a KMS key in the Amazon Web Services Management Console, you also create
its key policy. When you select identities in the Key Administrators and Key Users sections,
Amazon KMS adds policy statements for those identities to the KMS key's key policy. The Key
Users section also lets you add external accounts as key users.

When you enter the account ID of an external account, Amazon KMS adds two statements to
the key policy. This action only affects the key policy. Users and roles in the external account
cannot use the KMS key until you attach IAM policies to give them some or all of these
permissions.

The first key policy statement gives the external account permission to use the KMS key in
cryptographic operations. The second key policy statement allows the external account to
create, view, and revoke grants on the KMS key, but only when the request comes from an
Amazon service that is integrated with Amazon KMS. These permissions allow other Amazon
services that encrypt user data to use the KMS key. These permissions are designed for KMS
keys that encrypt user data in Amazon services

Step 1: Add a key policy statement in the local account 228

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

Step 2: Add IAM policies in the external account

The key policy in the account that owns the KMS key sets the valid range for permissions. But,
users and roles in the external account cannot use the KMS key until you attach IAM policies that
delegate those permissions, or use grants to manage access to the KMS key. The IAM policies are
set in the external account.

If the key policy gives permission to the external account, you can attach IAM policies to any user or
role in the account. But if the key policy gives permission to specified users or roles, the IAM policy
can only give those permissions to all or a subset of the specified users and roles. If an IAM policy
gives KMS key access to other external users or roles, it has no effect.

The key policy also limits the actions in the IAM policy. The IAM policy can delegate all or a subset
of the actions specified in the key policy. If the IAM policy lists actions that are not specified in the
key policy, those permissions are not effective.

The following example IAM policy allows the principal to use the KMS key in account
111122223333 for cryptographic operations. To give this permission to users and roles in account
444455556666, attach the policy to the users or roles in account 444455556666.

Note

The following example represents a sample IAM policy for sharing a KMS key with another
account. Replace the example Sid, Resource, and Action values with valid values for the
intended use of your KMS key.

{
 "Sid": "AllowUseOfKeyInAccount111122223333",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
}

Step 2: Add IAM policies in the external account 229

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console

Amazon Key Management Service Developer Guide

Note the following details about this policy:

• Unlike key policies, IAM policy statements do not contain the Principal element. In IAM
policies, the principal is the identity to which the policy is attached.

• The Resource element in the IAM policy identifies the KMS key that the principal can use. To
specify a KMS key, add its key ARN to the Resource element.

• You can specify more than one KMS key in the Resource element. But if you don't specify
particular KMS keys in the Resource element, you might inadvertently give access to more KMS
keys than you intend.

• To allow the external user to use the KMS key with Amazon services that integrate with Amazon
KMS, you might need to add permissions to the key policy or the IAM policy. For details, see
Allowing use of external KMS keys with Amazon Web Services services.

For more information about working with IAM policies, see IAM policies.

Allowing use of external KMS keys with Amazon Web Services services

You can give a user in a different account permission to use your KMS key with a service that is
integrated with Amazon KMS. For example, a user in an external account can use your KMS key to
encrypt the objects in an Amazon S3 bucket or to encrypt the secrets they store in Amazon Secrets
Manager.

The key policy must give the external user or the external user's account permission to use the KMS
key. In addition, you need to attach IAM policies to the identity that gives the user permission to
use the Amazon Web Services service. The service might also require that users have additional
permissions in the key policy or IAM policy. For a list of permissions that the Amazon Web Services
service requires on a customer managed key, see the Data Protection topic in the Security chapter
of the user guide or developer guide for the service.

Using KMS keys in other accounts

If you have permission to use a KMS key in a different Amazon Web Services account, you can use
the KMS key in the Amazon Web Services Management Console, Amazon SDKs, Amazon CLI, and
Amazon Tools for PowerShell.

To identify a KMS key in a different account in a shell command or API request, use the following
key identifiers.

Allowing use of external KMS keys with Amazon Web Services services 230

http://www.amazonaws.cn/kms/features/#AWS_Service_Integration
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

• For cryptographic operations, DescribeKey, and GetPublicKey, use the key ARN or alias ARN of
the KMS key.

• For CreateGrant, GetKeyRotationStatus, ListGrants, and RevokeGrant, use the key ARN of the
KMS key.

If you enter only a key ID or alias name, Amazon assumes the KMS key is in your account.

The Amazon KMS console does not display KMS keys in other accounts, even if you have permission
to use them. Also, the lists of KMS keys displayed in the consoles of other Amazon services do not
include KMS keys in other accounts.

To specify a KMS key in a different account in the console of an Amazon service, you must enter
the key ARN or alias ARN of the KMS key. The required key identifier varies with the service,
and might differ between the service console and its API operations. For details, see the service
documentation.

Control access to multi-Region keys

You can use multi-Region keys in compliance, disaster recovery, and backup scenarios that would
be more complex with single-Region keys. However, because the security properties of multi-
Region keys are significantly different from those of single-Region keys, we recommend using
caution when authorizing the creation, management, and use of multi-Region keys.

Note

Existing IAM policy statements with wildcard characters in the Resource field now apply
to both single-Region and multi-Region keys. To restrict them to single-Region KMS keys or
multi-Region keys, use the kms:MultiRegion condition key.

Use your authorization tools to prevent creation and use of multi-Region keys in any scenario
where a single-Region will suffice. Allow principals to replicate a multi-Region key only into
Amazon Web Services Regions that require them. Give permission for multi-Region keys only to
principals who need them and only for tasks that require them.

You can use key policies, IAM policies, and grants to allow IAM principals to manage and use multi-
Region keys in your Amazon Web Services account. Each multi-Region key is an independent

Control access to multi-Region keys 231

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html
https://docs.amazonaws.cn/kms/latest/APIReference/ListGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/RevokeGrant.html

Amazon Key Management Service Developer Guide

resource with a unique key ARN and key policy. You need to establish and maintain a key policy for
each key and make sure that new and existing IAM policies implement your authorization strategy.

To support multi-Region keys, Amazon KMS uses an IAM service linked role. This role gives
Amazon KMS the permissions it needs to synchronize shared properties. For more information, see
Authorizing Amazon KMS to synchronize multi-Region keys.

Topics

• Authorization basics for multi-Region keys

• Authorizing multi-Region key administrators and users

Authorization basics for multi-Region keys

When designing key policies and IAM policies for multi-Region keys, consider the following
principles.

• Key policy — Each multi-Region key is an independent KMS key resource with its own key policy.
You can apply the same or a different key policy to each key in the set of related multi-Region
keys. Key policies are not shared properties of multi-Region keys. Amazon KMS does not copy or
synchronize key policies among related multi-Region keys.

When you create a replica key in the Amazon KMS console, the console displays the current
key policy of the primary key as a convenience. You can use this key policy, edit it, or delete
and replace it. But even if you accept the primary key policy unchanged, Amazon KMS doesn't
synchronize the policies. For example, if you change the key policy of the primary key, the key
policy of the replica key remains the same.

• Default key policy — When you create multi-Region keys by using the CreateKey and
ReplicateKey operations, the default key policy is applied unless you specify a key policy in
the request. This is the same default key policy that is applied to single-Region keys.

• IAM policies — As with all KMS keys, you can use IAM policies to control access to multi-
Region keys only when the key policy allows it. IAM policies apply to all Amazon Web Services
Regions by default. However, you can use condition keys, such as aws:RequestedRegion, to limit
permissions to a particular Region.

To create primary and replica keys, principals must have kms:CreateKey permission in an IAM
policy that applies to the Region where the key is created.

Authorization basics for multi-Region keys 232

https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requestedregion

Amazon Key Management Service Developer Guide

• Grants — Amazon KMS grants are Regional. Each grant allows permissions to one KMS key. You
can use grants to allow permissions to a multi-Region primary key or replica key. But you cannot
use a single grant to allow permissions to multiple KMS keys, even if they are related multi-
Region keys.

• Key ARN — Each multi-Region key has a unique key ARN. The key ARNs of related multi-Region
keys have the same partition, account, and key ID, but different Regions.

To apply an IAM policy statement to a particular multi-Region key, use its key ARN or a key ARN
pattern that includes the Region. To apply an IAM policy statement to all related multi-Region
keys, use a wildcard character (*) in the Region element of the ARN, as shown in the following
example.

{
 "Effect": "Allow",
 "Action": [
 "kms:Describe*",
 "kms:List*"
],
 "Resource": {
 "arn:aws:kms:*::111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab"
 }
}

To apply a policy statement to all multi-Region keys in your Amazon Web Services account, you
can use the kms:MultiRegion policy condition or a key ID pattern that includes the distinctive
mrk- prefix.

• Service-linked role — Principals who create multi-Region primary keys must have
iam:CreateServiceLinkedRole permission.

To synchronize the shared properties of related multi-Region keys, Amazon KMS assumes an
IAM service-linked role. Amazon KMS creates the service-linked role in the Amazon Web Services
account whenever you create a multi-Region primary key. (If the role exists, Amazon KMS
recreates it, which has no harmful effect.) The role is valid in all Regions. To allow Amazon KMS
to create (or recreate) the service-linked role, principals who create multi-Region primary keys
must have iam:CreateServiceLinkedRole permission.

Authorization basics for multi-Region keys 233

https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateServiceLinkedRole.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

Amazon Key Management Service Developer Guide

Authorizing multi-Region key administrators and users

Principals who create and manage multi-Region keys need the following permissions in the
primary and replica Regions:

• kms:CreateKey

• kms:ReplicateKey

• kms:UpdatePrimaryRegion

• iam:CreateServiceLinkedRole

Creating a primary key

To create a multi-Region primary key, the principal needs kms:CreateKey and
iam:CreateServiceLinkedRole permissions in an IAM policy that is effective in the primary key's
Region. Principals who have these permissions can create single-Region and multi-Region keys
unless you restrict their permissions.

The iam:CreateServiceLinkedRole permission allows Amazon KMS to create the
AWSServiceRoleForKeyManagementServiceMultiRegionKeys role to synchronize the shared
properties of related multi-Region keys.

For example, this IAM policy allows a principal to create any type of KMS key.

{
 "Version": "2012-10-17",
 "Statement":{
 "Action": [
 "kms:CreateKey",
 "iam:CreateServiceLinkedRole"
],
 "Effect":"Allow",
 "Resource":"*"
 }
}

To allow or deny permission to create multi-Region primary keys, use the kms:MultiRegion
condition key. Valid values are true (multi-Region key) or false (single-Region key). For example,
the following IAM policy statement uses a Deny action with the kms:MultiRegion condition key
to prevent principals from creating multi-Region keys.

Authorizing multi-Region key administrators and users 234

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

Amazon Key Management Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement":{
 "Action":"kms:CreateKey",
 "Effect":"Deny",
 "Resource":"*",
 "Condition": {
 "Bool": "kms:MultiRegion": true
 }
 }
}

Replicating keys

To create a multi-Region replica key, the principal needs the following permissions:

• kms:ReplicateKey permission in the key policy of the primary key.

• kms:CreateKey permission in an IAM policy that is effective in the replica key Region.

Use caution when allowing these permissions. They allow principals to create KMS keys and the key
policies that authorize their use. The kms:ReplicateKey permission also authorizes the transfer
of key material across Region boundaries within Amazon KMS.

To restrict the Amazon Web Services Regions in which a multi-Region key can be replicated, use the
kms:ReplicaRegion condition key. It limits only the kms:ReplicateKey permission. Otherwise, it
has no effect. For example, the following key policy allows the principal to replicate this primary
key, but only in the specified Regions.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/Administrator"
 },
 "Action": "kms:ReplicateKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ReplicaRegion": [
 "us-east-1",
 "eu-west-3",
 "ap-southeast-2"

Authorizing multi-Region key administrators and users 235

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

]
 }
 }
}

Updating the primary Region

Authorized principals can convert a replica key to a primary key, which changes the former primary
key into a replica. This action is known as updating the primary Region. To update the primary
Region, the principal needs kms:UpdatePrimaryRegion permission in both Regions. You can provide
these permissions in a key policy or IAM policy.

• kms:UpdatePrimaryRegion on the primary key. This permission must be effective in the
primary key Region.

• kms:UpdatePrimaryRegion on the replica key. This permission must be effective in the replica
key Region.

For example, the following key policy gives users who can assume the Administrator role
permission to update the primary Region of the KMS key. This KMS key can be the primary key or a
replica key in this operation.

{
 "Effect": "Allow",
 "Resource": "*",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/Administrator"
 },
 "Action": "kms:UpdatePrimaryRegion"
}

To restrict the Amazon Web Services Regions that can host a primary key, use the
kms:PrimaryRegion condition key. For example, the following IAM policy statement allows the
principals to update the primary Region of the multi-Region keys in the Amazon Web Services
account, but only when the new primary Region is one of the specified Regions.

{
 "Effect": "Allow",
 "Action": "kms:UpdatePrimaryRegion",
 "Resource": {

Authorizing multi-Region key administrators and users 236

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html

Amazon Key Management Service Developer Guide

 "arn:aws:kms:*:111122223333:key/*"
 },
 "Condition": {
 "StringEquals": {
 "kms:PrimaryRegion": [
 "us-west-2",
 "sa-east-1",
 "ap-southeast-1"
]
 }
 }
}

Using and managing multi-Region keys

By default, principals who have permission to use and manage KMS keys in an Amazon Web
Services account and Region also have permission to use and manage multi-Region keys. However,
you can use the kms:MultiRegion condition key to allow only single-Region keys or only multi-
Region keys. Or use the kms:MultiRegionKeyType condition key to allow only multi-Region primary
keys or only replica keys. Both condition keys controls access to the CreateKey operation and to any
operation that uses an existing KMS key, such as Encrypt or EnableKey.

The following example IAM policy statement uses the kms:MultiRegion condition key to prevent
the principals from using or managing any multi-Region key.

{
 "Effect": "Deny",
 "Action": "kms:*",
 "Resource": "*",
 "Condition": {
 "Bool": "kms:MultiRegion": true
 }
}

This example IAM policy statement uses the kms:MultiRegionKeyType condition to allow
principals to schedule and cancel key deletion, but only on multi-Region replica keys.

{
 "Effect": "Allow",
 "Action": [
 "kms:ScheduleKeyDeletion",

Authorizing multi-Region key administrators and users 237

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKey.html

Amazon Key Management Service Developer Guide

 "kms:CancelKeyDeletion"
],
 "Resource": {
 "arn:aws:kms:us-west-2:111122223333:key/*"
 },
 "Condition": {
 "StringEquals": "kms:MultiRegionKeyType": "REPLICA"
 }
}

Determining access to Amazon KMS keys

To determine the full extent of who or what currently has access to an Amazon KMS key, you must
examine the key policy of the KMS key, all grants that apply to the KMS key, and potentially all
Amazon Identity and Access Management (IAM) policies. You might do this to determine the scope
of potential usage of a KMS key, or to help you meet compliance or auditing requirements. The
following topics can help you generate a complete list of the Amazon principals (identities) that
currently have access to a KMS key.

Topics

• Examining the key policy

• Examining IAM policies

• Examining grants

Examining the key policy

Key policies are the primary way to control access to KMS keys. Every KMS key has exactly one key
policy.

When a key policy consists of or includes the default key policy, the key policy allows IAM
administrators in the account to use IAM policies to control access to the KMS key. Also, if the
key policy gives another Amazon Web Services account permission to use the KMS key, the IAM
administrators in the external account can use IAM policies to delegate those permissions. To
determine the complete list of principals that can access the KMS key, examine the IAM policies.

To view the key policy of an Amazon KMS customer managed key or Amazon managed key in your
account, use the Amazon Web Services Management Console or the GetKeyPolicy operation in the
Amazon KMS API. To view the key policy, you must have kms:GetKeyPolicy permissions for the

Determining access 238

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html

Amazon Key Management Service Developer Guide

KMS key. For instructions for viewing the key policy for a KMS key, see the section called “View a
key policies”.

Examine the key policy document and take note of all principals specified in each policy
statement's Principal element. In a policy statement with an Allow effect, the IAM users, IAM
roles, and Amazon Web Services accounts in the Principal element have access to this KMS key.

Note

Do not set the Principal to an asterisk (*) in any key policy statement that allows
permissions unless you use conditions to limit the key policy. An asterisk gives every
identity in every Amazon Web Services account permission to use the KMS key, unless
another policy statement explicitly denies it. Users in other Amazon Web Services accounts
can use your KMS key whenever they have corresponding permissions in their own account.

The following examples use the policy statements found in the default key policy to demonstrate
how to do this.

Example Policy statement 1

{
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:root"},
 "Action": "kms:*",
 "Resource": "*"
}

In policy statement 1, arn:aws:iam::111122223333:root is an Amazon account principal that
refers to the Amazon Web Services account 111122223333. (It is not the account root user.) By
default, a policy statement like this one is included in the key policy document when you create
a new KMS key with the Amazon Web Services Management Console, or create a new KMS key
programmatically but do not provide a key policy.

A key policy document with a statement that allows access to the Amazon Web Services account
enables IAM policies in the account to allow access to the KMS key. This means that users and roles
in the account might have access to the KMS key even if they are not explicitly listed as principals
in the key policy document. Take care to examine all IAM policies in all Amazon Web Services
accounts listed as principals to determine whether they allow access to this KMS key.

Examining the key policy 239

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-accounts

Amazon Key Management Service Developer Guide

Example Policy statement 2

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/KMSKeyAdmins"},
 "Action": [
 "kms:Describe*",
 "kms:Put*",
 "kms:Create*",
 "kms:Update*",
 "kms:Enable*",
 "kms:Revoke*",
 "kms:List*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
}

In policy statement 2, arn:aws:iam::111122223333:role/KMSKeyAdmins refers to the
IAM role named KMSKeyAdmins in Amazon Web Services account 111122223333. Users who are
authorized to assume this role are allowed to perform the actions listed in the policy statement,
which are the administrative actions for managing a KMS key.

Example Policy statement 3

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/EncryptionApp"},
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey*",
 "kms:Encrypt",
 "kms:ReEncrypt*",
 "kms:Decrypt"
],
 "Resource": "*"

Examining the key policy 240

Amazon Key Management Service Developer Guide

}

In policy statement 3, arn:aws:iam::111122223333:role/EncryptionApp refers to the IAM
role named EncryptionApp in Amazon Web Services account 111122223333. Principals who are
authorized to assume this role are allowed to perform the actions listed in the policy statement,
which include the cryptographic operations for a symmetric encryption KMS key.

Example Policy statement 4

{
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/EncryptionApp"},
 "Action": [
 "kms:ListGrants",
 "kms:CreateGrant",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
}

In policy statement 4, arn:aws:iam::111122223333:role/EncryptionApp refers to the
IAM role named EncryptionApp in Amazon Web Services account 111122223333. Principals who
are authorized assume this role are allowed to perform the actions listed in the policy statement.
These actions, when combined with the actions allowed in Example policy statement 3, are
those necessary to delegate use of the KMS key to most Amazon services that integrate with
Amazon KMS, specifically the services that use grants. The kms:GrantIsForAWSResource value
in the Condition element ensures that the delegation is allowed only when the delegate is an
Amazon service that integrates with Amazon KMS and uses grants for authorization.

To learn all the different ways you can specify a principal in a key policy document, see Specifying a
Principal in the IAM User Guide.

To learn more about Amazon KMS key policies, see Key policies in Amazon KMS.

Examining IAM policies

In addition to the key policy and grants, you can also use IAM policies to allow access to a KMS key.
For more information about how IAM policies and key policies work together, see Troubleshooting
Amazon KMS permissions.

Examining IAM policies 241

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html#Principal_specifying
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html#Principal_specifying

Amazon Key Management Service Developer Guide

To determine which principals currently have access to a KMS key through IAM policies, you can use
the browser-based IAM Policy Simulator tool, or you can make requests to the IAM API.

Ways to examine IAM policies

• Examining IAM policies with the IAM policy simulator

• Examining IAM policies with the IAM API

Examining IAM policies with the IAM policy simulator

The IAM Policy Simulator can help you learn which principals have access to a KMS key through an
IAM policy.

To use the IAM policy simulator to determine access to a KMS key

1. Sign in to the Amazon Web Services Management Console and then open the IAM Policy
Simulator at https://policysim.aws.amazon.com/.

2. In the Users, Groups, and Roles pane, choose the user, group, or role whose policies you want
to simulate.

3. (Optional) Clear the check box next to any policies that you want to omit from the simulation.
To simulate all policies, leave all policies selected.

4. In the Policy Simulator pane, do the following:

a. For Select service, choose Key Management Service.

b. To simulate specific Amazon KMS actions, for Select actions, choose the actions to
simulate. To simulate all Amazon KMS actions, choose Select All.

5. (Optional) The Policy Simulator simulates access to all KMS keys by default. To simulate access
to a specific KMS key, choose Simulation Settingsand then type the Amazon Resource Name
(ARN) of the KMS key to simulate.

6. Choose Run Simulation.

You can view the results of the simulation in the Results section. Repeat steps 2 through 6 for
every user, group, and role in the Amazon Web Services account.

Examining IAM policies with the IAM API

You can use the IAM API to examine IAM policies programmatically. The following steps provide a
general overview of how to do this:

Examining IAM policies 242

https://policysim.aws.amazon.com/
https://policysim.aws.amazon.com/

Amazon Key Management Service Developer Guide

1. For each Amazon Web Services account listed as a principal in the key policy (that is,
each Amazon account principal specified in this format: "Principal": {"AWS":
"arn:aws:iam::111122223333:root"}), use the ListUsers and ListRoles operations in the
IAM API to get all users and roles in the account.

2. For each user and role in the list, use the SimulatePrincipalPolicy operation in the IAM API,
passing in the following parameters:

• For PolicySourceArn, specify the Amazon Resource Name (ARN) of a user or role from your
list. You can specify only one PolicySourceArn for each SimulatePrincipalPolicy
request, so you must call this operation multiple times, once for each user and role in your list.

• For the ActionNames list, specify every Amazon KMS API action to simulate. To simulate all
Amazon KMS API actions, use kms:*. To test individual Amazon KMS API actions, precede
each API action with "kms:", for example "kms:ListKeys". For a complete list of Amazon
KMS API actions, see Actions in the Amazon Key Management Service API Reference.

• (Optional) To determine whether the users or roles have access to specific KMS keys, use the
ResourceArns parameter to specify a list of the Amazon Resource Names (ARNs) of the
KMS keys. To determine whether the users or roles have access to any KMS key, omit the
ResourceArns parameter.

IAM responds to each SimulatePrincipalPolicy request with an evaluation decision:
allowed, explicitDeny, or implicitDeny. For each response that contains an evaluation
decision of allowed, the response includes the name of the specific Amazon KMS API operation
that is allowed. It also includes the ARN of the KMS key that was used in the evaluation, if any.

Examining grants

Grants are advanced mechanisms for specifying permissions that you or an Amazon service
integrated with Amazon KMS can use to specify how and when a KMS key can be used. Grants are
attached to a KMS key, and each grant contains the principal who receives permission to use the
KMS key and a list of operations that are allowed. Grants are an alternative to the key policy, and
are useful for specific use cases. For more information, see Grants in Amazon KMS.

To get a list of grants for a KMS key, use the Amazon KMS ListGrants operation. You can examine
the grants for a KMS key to determine who or what currently has access to use the KMS key via
those grants. For example, the following is a JSON representation of a grant that was obtained
from the list-grants command in the Amazon CLI.

{"Grants": [{

Examining grants 243

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-accounts
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListUsers.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_ListRoles.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_SimulatePrincipalPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Operations.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/cli/latest/reference/kms/list-grants.html

Amazon Key Management Service Developer Guide

 "Operations": ["Decrypt"],
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Name": "0d8aa621-43ef-4657-b29c-3752c41dc132",
 "RetiringPrincipal": "arn:aws:iam::123456789012:root",
 "GranteePrincipal": "arn:aws:sts::111122223333:assumed-role/aws:ec2-infrastructure/
i-5d476fab",
 "GrantId": "dc716f53c93acacf291b1540de3e5a232b76256c83b2ecb22cdefa26576a2d3e",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "CreationDate": 1.444151834E9,
 "Constraints": {"EncryptionContextSubset": {"aws:ebs:id": "vol-5cccfb4e"}}
}]}

To find out who or what has access to use the KMS key, look for the "GranteePrincipal"
element. In the preceding example, the grantee principal is an assumed role user that is associated
with the EC2 instance i-5d476fab. The EC2 infrastructure uses this role to attach the encrypted
EBS volume vol-5cccfb4e to the instance. In this case, the EC2 infrastructure role has permission to
use the KMS key because you previously created an encrypted EBS volume that is protected by this
KMS key. You then attached the volume to an EC2 instance.

The following is another example of a JSON representation of a grant that was obtained from the
list-grants command in the Amazon CLI. In the following example, the grantee principal is another
Amazon Web Services account.

{"Grants": [{
 "Operations": ["Encrypt"],
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Name": "",
 "GranteePrincipal": "arn:aws:iam::444455556666:root",
 "GrantId": "f271e8328717f8bde5d03f4981f06a6b3fc18bcae2da12ac38bd9186e7925d11",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "CreationDate": 1.444151269E9
}]}

Examining grants 244

https://docs.amazonaws.cn/cli/latest/reference/kms/list-grants.html

Amazon Key Management Service Developer Guide

Encryption context

Note

You cannot specify an encryption context in a cryptographic operation with an asymmetric
KMS key or an HMAC KMS key. Asymmetric algorithms and MAC algorithms do not support
an encryption context.

All Amazon KMS cryptographic operations with symmetric encryption KMS keys accept an
encryption context, an optional set of non-secret key–value pairs that can contain additional
contextual information about the data. You can insert encryption context in Encrypt operations
in Amazon KMS to enhance the authorization and auditability of your Amazon KMS API decryption
calls. Amazon KMS uses the encryption context as additional authenticated data (AAD) to support
authenticated encryption. The encryption context is cryptographically bound to the ciphertext so
that the same encryption context is required to decrypt the data.

The encryption context is not secret and not encrypted. It appears in plaintext in Amazon
CloudTrail Logs so you can use it to identify and categorize your cryptographic operations. Your
encryption context should not include sensitive information. We recommend that your encryption
context describe the data being encrypted or decrypted. For example, when you encrypt a file, you
might use part of the file path as encryption context.

"encryptionContext": {
 "department": "10103.0"
}

For example, when encrypting volumes and snapshots created with the Amazon Elastic Block Store
(Amazon EBS) CreateSnapshot operation, Amazon EBS uses the volume ID as encryption context
value.

"encryptionContext": {
 "aws:ebs:id": "vol-abcde12345abc1234"
}

You can also use the encryption context to refine or limit access to Amazon KMS keys in your
account. You can use the encryption context as a constraint in grants and as a condition in policy
statements.

Encryption context 245

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateSnapshot.html

Amazon Key Management Service Developer Guide

To learn how to use encryption context to protect the integrity of encrypted data, see the post
How to Protect the Integrity of Your Encrypted Data by Using Amazon Key Management Service
and EncryptionContext on the Amazon Security Blog.

Encryption context rules

Amazon KMS enforces the following rules for encryption context keys and values.

• The key and value in an encryption context pair must be simple literal strings. If you use a
different type, such as an integer or float, Amazon KMS interprets it as a string.

• The keys and values in an encryption context can include Unicode characters. If an
encryption context includes characters that are not permitted in key policies or IAM policies,
you won't be able to specify the encryption context in policy condition keys, such as
kms:EncryptionContext:context-key and kms:EncryptionContextKeys. For details
about key policy document rules, see Key policy format. For details about IAM policy document
rules, see IAM name requirements in the IAM User Guide.

Encryption context in policies

The encryption context is used primarily to verify integrity and authenticity. But you can also use
the encryption context to control access to symmetric encryption Amazon KMS keys in key policies
and IAM policies.

The kms:EncryptionContext: and kms:EncryptionContextKeys condition keys allow (or deny) a
permission only when the request includes particular encryption context keys or key–value pairs.

For example, the following key policy statement allows the RoleForExampleApp role to use
the KMS key in Decrypt operations. It uses the kms:EncryptionContext:context-key
condition key to allow this permission only when the encryption context in the request includes an
AppName:ExampleApp encryption context pair.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {

Encryption context rules 246

http://www.amazonaws.cn/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
http://www.amazonaws.cn/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-names

Amazon Key Management Service Developer Guide

 "StringEquals": {
 "kms:EncryptionContext:AppName": "ExampleApp"
 }
 }
}

For more information about these encryption context condition keys, see Condition keys for
Amazon KMS.

Encryption context in grants

When you create a grant, you can include grant constraints that establish conditions for the grant
permissions. Amazon KMS supports two grant constraints, EncryptionContextEquals and
EncryptionContextSubset, both of which involve the encryption context in a request for a
cryptographic operation. When you use these grant constraints, the permissions in the grant are
effective only when the encryption context in the request for the cryptographic operation satisfies
the requirements of the grant constraints.

For example, you can add an EncryptionContextEquals grant constraint to a grant that allows
the GenerateDataKey operation. With this constraint, the grant allows the operation only when the
encryption context in the request is a case-sensitive match for the encryption context in the grant
constraint.

$ aws kms create-grant \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --grantee-principal arn:aws:iam::111122223333:user/exampleUser \
 --retiring-principal arn:aws:iam::111122223333:role/adminRole \
 --operations GenerateDataKey \
 --constraints EncryptionContextEquals={Purpose=Test}

A request like the following from the grantee principal would satisfy the
EncryptionContextEquals constraint.

$ aws kms generate-data-key \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --key-spec AES_256 \
 --encryption-context Purpose=Test

For details about the grant constraints, see Using grant constraints. For detailed information about
grants, see the section called “Grants”.

Encryption context in grants 247

https://docs.amazonaws.cn/kms/latest/APIReference/API_GrantConstraints.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

Logging encryption context

Amazon KMS uses Amazon CloudTrail to log the encryption context so you can determine which
KMS keys and data have been accessed. The log entry shows exactly which KMS keys was used to
encrypt or decrypt specific data referenced by the encryption context in the log entry.

Important

Because the encryption context is logged, it must not contain sensitive information.

Storing encryption context

To simplify use of any encryption context when you call the Decrypt or ReEncrypt operations,
you can store the encryption context alongside the encrypted data. We recommend that you store
only enough of the encryption context to help you create the full encryption context when you
need it for encryption or decryption.

For example, if the encryption context is the fully qualified path to a file, store only part of
that path with the encrypted file contents. Then, when you need the full encryption context,
reconstruct it from the stored fragment. If someone tampers with the file, such as renaming it or
moving it to a different location, the encryption context value changes and the decryption request
fails.

Testing your permissions

To use Amazon KMS, you must have credentials that Amazon can use to authenticate your
API requests. The credentials must include the permission to access KMS keys and aliases. The
permissions are determined by key policies, IAM policies, grants, and cross-account access controls.
In addition to controlling access to KMS keys, you can control access to your CloudHSM, and to your
custom key stores.

You can specify the DryRun API parameter to verify that you have the necessary permissions to
use Amazon KMS keys. You can also use DryRun to verify that the request parameters in a Amazon
KMS API call are correctly specified.

Topics

• What is the DryRun parameter?

Logging encryption context 248

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html

Amazon Key Management Service Developer Guide

• Specifying DryRun with the API

What is the DryRun parameter?

DryRun is an optional API parameter that you specify to verify that Amazon KMS API calls will
succeed. Use DryRun to test your API call, before actually making the call to Amazon KMS. You can
verify the following.

• That you have the necessary permissions to use Amazon KMS keys.

• That you have specified the parameters in the call correctly.

Amazon KMS supports using the DryRun parameter in certain API actions:

• CreateGrant

• Decrypt

• DeriveSharedSecret

• Encrypt

• GenerateDataKey

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutPlaintext

• GenerateDataKeyWithoutPlaintext

• GenerateMac

• ReEncrypt

• RetireGrant

• RevokeGrant

• Sign

• Verify

• VerifyMac

Using the DryRun parameter will incur charges and will be billed as a standard API request. For
more information about Amazon KMS pricing, see Amazon Key Management Service Pricing.

All API requests using the DryRun parameter apply to the request quota of the API and can
result in a throttling exception if you exceed an API request quota. For example, calling Decrypt

What is DryRun? 249

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html
http://www.amazonaws.cn/kms/pricing/
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

with DryRun or without DryRun counts against the same cryptographic operations quota. See
Throttling Amazon KMS requests to learn more.

Every call to an Amazon KMS API operation is captured as an event and recorded in an Amazon
CloudTrail log. The output of any operations that specify the DryRun parameter appear in your
CloudTrail log. For more information, see Logging Amazon KMS API calls with Amazon CloudTrail.

Specifying DryRun with the API

To use DryRun, specify the —dry-run parameter in Amazon CLI commands and Amazon KMS
API calls that support the parameter. When you do, Amazon KMS will verify whether your call will
succeed. Amazon KMS calls that use DryRun will always fail and return a message with information
about reason why the call failed. The message can include the following exceptions:

• DryRunOperationException ‐ The request would succeed if DryRun wasn’t specified.

• ValidationException ‐ The request failed from specifying an incorrect API parameter.

• AccessDeniedException ‐ You do not have permissions to perform the specified API action
on the KMS resource.

For example, the following command uses the CreateGrant operation and creates a grant that
allows users who are authorized to assume the keyUserRole role to call the Decrypt operation on
a specified symmetric KMS key. The DryRun parameter is specified.

$ aws kms create-grant \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --grantee-principal arn:aws:iam::111122223333:role/keyUserRole \
 --operations Decrypt \
 --dry-run

Troubleshooting Amazon KMS permissions

When authorizing access to a KMS key, Amazon KMS evaluates the following:

• The key policy that is attached to the KMS key. The key policy is always defined in the Amazon
Web Services account and Region that owns the KMS key.

• All IAM policies that are attached to the user or role making the request. IAM policies that govern
a principal's use of a KMS key are always defined in the principal's Amazon Web Services account.

• All grants that apply to the KMS key.

Specifying DryRun with the API 250

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

• Other types of policies that might apply to the request to use the KMS key, such as Amazon
Organizations service control policies and VPC endpoint policies. These policies are optional
and allow all actions by default, but you can use them to restrict permissions otherwise given to
principals.

Amazon KMS evaluates these policy mechanisms together to determine whether access to the
KMS key is allowed or denied. To do this, Amazon KMS uses a process similar to the one depicted
in the following flowchart. The following flowchart provides a visual representation of the policy
evaluation process.

This flowchart is divided into two parts. The parts appear to be sequential, but they are typically
evaluated at the same time.

• Use authorization determines whether you are permitted to use a KMS key based on its key
policy, IAM policies, grants, and other applicable policies.

• Key trust determines whether you should trust a KMS key that you are permitted to use. In
general, you trust the resources in your Amazon Web Services account. But, you can also feel

Troubleshooting Amazon KMS permissions 251

https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_type-auth.html#orgs_manage_policies_scp
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_type-auth.html#orgs_manage_policies_scp
https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#edit-vpc-endpoint-policy

Amazon Key Management Service Developer Guide

confident about using KMS keys in a different Amazon Web Services account if a grant or IAM
policy in your account allows you to use the KMS key.

You can use this flowchart to discover why a caller was allowed or denied permission to use a KMS
key. You can also use it to evaluate your policies and grants. For example, the flowchart shows that
a caller can be denied access by an explicit DENY statement, or by the absence of an explicit ALLOW
statement, in the key policy, IAM policy, or grant.

The flowchart can explain some common permission scenarios.

Permission Examples

• Example 1: User is denied access to a KMS key in their Amazon Web Services account

• Example 2: User assumes role with permission to use a KMS key in a different Amazon Web
Services account

Example 1: User is denied access to a KMS key in their Amazon Web
Services account

Alice is an IAM user in the 111122223333 Amazon Web Services account. She was denied access to
a KMS key in same Amazon Web Services account. Why can't Alice use the KMS key?

In this case, Alice is denied access to the KMS key because there is no key policy, IAM policy, or
grant that gives her the required permissions. The key policy of the KMS key allows the Amazon
Web Services account to use IAM policies to control access to the KMS key, but no IAM policy gives
Alice permission to use the KMS key.

Example 1: User is denied access to a KMS key in their Amazon Web Services account 252

Amazon Key Management Service Developer Guide

Consider the relevant policies for this example.

• The KMS key that Alice wants to use has the default key policy. This policy allows the Amazon
Web Services account that owns the KMS key to use IAM policies to control access to the KMS
key. This key policy satisfies the Does the key policy ALLOW the callers account to use IAM policies
to control access to the key? condition in the flowchart.

{
 "Version" : "2012-10-17",
 "Id" : "key-test-1",
 "Statement" : [{
 "Sid" : "Delegate to IAM policies",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : "kms:*",
 "Resource" : "*"
 }]
}

• However, no key policy, IAM policy, or grant gives Alice permission to use the KMS key. Therefore,
Alice is denied permission to use the KMS key.

Example 1: User is denied access to a KMS key in their Amazon Web Services account 253

Amazon Key Management Service Developer Guide

Example 2: User assumes role with permission to use a KMS key in a
different Amazon Web Services account

Bob is a user in account 1 (111122223333). He is allowed to use a KMS key in account 2
(444455556666) in cryptographic operations. How is this possible?

Tip

When evaluating cross-account permissions, remember that the key policy is specified in
the KMS key's account. The IAM policy is specified in the caller's account, even when the
caller is in a different account. For details about providing cross-account access to KMS
keys, see Allowing users in other accounts to use a KMS key.

• The key policy for the KMS key in account 2 allows account 2 to use IAM policies to control access
to the KMS key.

• The key policy for the KMS key in account 2 allows account 1 to use the KMS key in cryptographic
operations. However, account 1 must use IAM policies to give its principals access to the KMS key.

• An IAM policy in account 1 allows the Engineering role to use the KMS key in account 2 for
cryptographic operations.

• Bob, a user in account 1, has permission to assume the Engineering role.

• Bob can trust this KMS key, because even though it is not in his account, an IAM policy in his
account gives him explicit permission to use this KMS key.

Example 2: User assumes role with permission to use a KMS key in a different Amazon Web Services
account

254

Amazon Key Management Service Developer Guide

Consider the policies that let Bob, a user in account 1, use the KMS key in account 2.

• The key policy for the KMS key allows account 2 (444455556666, the account that owns the
KMS key) to use IAM policies to control access to the KMS key. This key policy also allows account
1 (111122223333) to use the KMS key in cryptographic operations (specified in the Action
element of the policy statement). However, no one in account 1 can use the KMS key in account 2
until account 1 defines IAM policies that give the principals access to the KMS key.

In the flowchart, this key policy in account 2 satisfies the Does the key policy ALLOW the caller's
account to use IAM policies to control access to the key? condition.

{
 "Id": "key-policy-acct-2",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Permission to use IAM policies",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {

Example 2: User assumes role with permission to use a KMS key in a different Amazon Web Services
account

255

Amazon Key Management Service Developer Guide

 "Sid": "Allow account 1 to use this KMS key",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncryptFrom",
 "kms:ReEncryptTo",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:DescribeKey"
],
 "Resource": "*"
 }
]
}

• An IAM policy in the caller's Amazon Web Services account (account 1, 111122223333) gives
the principal permission to perform cryptographic operations using the KMS key in account 2
(444455556666). The Action element delegates to the principal the same permissions that the
key policy in account 2 gave to account 1. To give these permission to the Engineering role in
account 1, this inline policy is embedded in the Engineering role.

Cross-account IAM policies like this one are effective only when the key policy for the KMS key
in account 2 gives account 1 permission to use the KMS key. Also, account 1 can only give its
principals permission to perform the actions that the key policy gave to the account.

In the flowchart, this satisfies the Does an IAM policy allow the caller to perform this action?
condition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncryptFrom",
 "kms:ReEncryptTo",

Example 2: User assumes role with permission to use a KMS key in a different Amazon Web Services
account

256

https://docs.amazonaws.cn/IAM/latest/APIReference/API_PutRolePolicy.html

Amazon Key Management Service Developer Guide

 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:DescribeKey"
],
 "Resource": [
 "arn:aws:kms:us-
west-2:444455556666:key/1234abcd-12ab-34cd-56ef-1234567890ab"
]
 }
]
}

• The last required element is the definition of the Engineering role in account 1. The
AssumeRolePolicyDocument in the role allows Bob to assume the Engineering role.

{
 "Role": {
 "Arn": "arn:aws:iam::111122223333:role/Engineering",
 "CreateDate": "2019-05-16T00:09:25Z",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": {
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/bob"
 },
 "Effect": "Allow",
 "Action": "sts:AssumeRole"
 }
 },
 "Path": "/",
 "RoleName": "Engineering",
 "RoleId": "AROA4KJY2TU23Y7NK62MV"
 }
}

Amazon KMS access control glossary

The following topic describes important terms and concepts in Amazon KMS access control.

Glossary 257

Amazon Key Management Service Developer Guide

Authentication

Authentication is the process of verifying your identity. To send a request to Amazon KMS, you
must sign into Amazon using your Amazon credentials.

Authorization

Authorization provides the permission to send requests to create, manage, or use Amazon KMS
resources. For example, you must be authorized to use a KMS key in a cryptographic operation.

To control access to your Amazon KMS resources, use key policies, IAM policies, and grants. Every
KMS key must have a key policy. If the key policy allows it, you can also use IAM policies and grants
to give principals access to the KMS key. To refine your authorization, you can use condition keys
that allow or deny access only when a request or resource meets the conditions you specify. You
can also allow access to principals you trust in other Amazon Web Services accounts.

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be
authenticated (signed in to Amazon) as the Amazon Web Services account root user, as an IAM user,
or by assuming an IAM role.

If you access Amazon programmatically, Amazon provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use Amazon tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Amazon Signature Version 4 for API requests
in the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide
additional security information. For example, Amazon recommends that you use multi-factor
authentication (MFA) to increase the security of your account. To learn more, see Amazon Multi-
factor authentication in IAM in the IAM User Guide.

Amazon Web Services account root user

When you create an Amazon Web Services account, you begin with one sign-in identity that has
complete access to all Amazon Web Services services and resources in the account. This identity
is called the Amazon Web Services account root user and is accessed by signing in with the email
address and password that you used to create the account. We strongly recommend that you don't

Authentication 258

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Key Management Service Developer Guide

use the root user for your everyday tasks. Safeguard your root user credentials and use them to
perform the tasks that only the root user can perform. For the complete list of tasks that require
you to sign in as the root user, see Tasks that require root user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access Amazon Web Services services by using temporary
credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the
Amazon Directory Service, or any user that accesses Amazon Web Services services by using
credentials provided through an identity source. When federated identities access Amazon Web
Services accounts, they assume roles, and the roles provide temporary credentials.

IAM users and groups

An IAM user is an identity within your Amazon Web Services account that has specific permissions
for a single person or application. Where possible, we recommend relying on temporary credentials
instead of creating IAM users who have long-term credentials such as passwords and access keys.
However, if you have specific use cases that require long-term credentials with IAM users, we
recommend that you rotate access keys. For more information, see Rotate access keys regularly for
use cases that require long-term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your Amazon Web Services account that has specific permissions.
It is similar to an IAM user, but is not associated with a specific person. To temporarily assume an
IAM role in the Amazon Web Services Management Console, you can switch from a user to an IAM
role (console). You can assume a role by calling an Amazon CLI or Amazon API operation or by

Authenticating with identities 259

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

Amazon Key Management Service Developer Guide

using a custom URL. For more information about methods for using roles, see Methods to assume a
role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some Amazon Web Services services, you can attach a policy
directly to a resource (instead of using a role as a proxy). To learn the difference between roles
and resource-based policies for cross-account access, see Cross account resource access in IAM in
the IAM User Guide.

• Cross-service access – Some Amazon Web Services services use features in other Amazon Web
Services services. For example, when you make a call in a service, it's common for that service to
run applications in Amazon EC2 or store objects in Amazon S3. A service might do this using the
calling principal's permissions, using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
Amazon, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an Amazon Web Services service, combined with the requesting Amazon Web
Services service to make requests to downstream services. FAS requests are only made when a
service receives a request that requires interactions with other Amazon Web Services services
or resources to complete. In this case, you must have permissions to perform both actions. For
policy details when making FAS requests, see Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM.
For more information, see Create a role to delegate permissions to an Amazon Web Services
service in the IAM User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an Amazon
Web Services service. The service can assume the role to perform an action on your behalf.

Authenticating with identities 260

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Key Management Service Developer Guide

Service-linked roles appear in your Amazon Web Services account and are owned by the
service. An IAM administrator can view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making Amazon CLI or
Amazon API requests. This is preferable to storing access keys within the EC2 instance. To assign
an Amazon role to an EC2 instance and make it available to all of its applications, you create
an instance profile that is attached to the instance. An instance profile contains the role and
enables programs that are running on the EC2 instance to get temporary credentials. For more
information, see Use an IAM role to grant permissions to applications running on Amazon EC2
instances in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or
resources. A policy is an object in Amazon that, when associated with an identity or resource,
defines their permissions. Amazon evaluates these policies when a principal (user, root user, or role
session) makes a request. Permissions in the policies determine whether the request is allowed or
denied. Most policies are stored in Amazon as JSON documents. For more information about the
structure and contents of JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform
the operation. For example, suppose that you have a policy that allows the iam:GetRole action.
A user with that policy can get role information from the Amazon Web Services Management
Console, the Amazon CLI, or the Amazon API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can

Managing access using policies 261

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Key Management Service Developer Guide

perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your Amazon Web Services
account. Managed policies include Amazon managed policies and customer managed policies. To
learn how to choose between a managed policy or an inline policy, see Choose between managed
policies and inline policies in the IAM User Guide.

Resource-based policies

An Amazon KMS key policy is a resource-based policy that controls access to a KMS key. Every KMS
key must have a key policy. You can use other authorization mechanism to allow access to the KMS
key, but only if the key policy allows it. (You can use an IAM policy to deny access to a KMS key even
if the key policy doesn't explicitly permit it.)

Resource-based policies are JSON policy documents that you attach to a resource, such as a KMS
key, to control access to the specific resource. The resource-based policy defines the actions that a
specified principal can perform on that resource and under what conditions. You don't specify the
resource in a resource-based policy, but you must specify a principal, such as accounts, users, roles,
federated users, or Amazon Web Services services. Resource-based policies are inline policies that
are located in that service that manages the resource. You can't use Amazon managed policies from
IAM, such as the AWSKeyManagementServicePowerUser managed policy, in a resource-based
policy.

Other policy types

Amazon supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

Managing access using policies 262

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html

Amazon Key Management Service Developer Guide

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in Amazon Organizations. Amazon Organizations
is a service for grouping and centrally managing multiple Amazon Web Services accounts that
your business owns. If you enable all features in an organization, then you can apply service
control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in
member accounts, including each Amazon Web Services account root user. For more information
about Organizations and SCPs, see Service control policies in the Amazon Organizations User
Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts and
can impact the effective permissions for identities, including the Amazon Web Services account
root user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of Amazon Web Services services that support RCPs, see
Resource control policies (RCPs) in the Amazon Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how Amazon determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Amazon KMS resources

In Amazon KMS, the primary resource is an Amazon KMS key. Amazon KMS also supports an
alias, an independent resource that provides a friendly name for a KMS key. Some Amazon KMS
operations allow you to use an alias to identify a KMS key.

Each instance of a KMS key or alias has a unique Amazon Resource Name (ARN) with a standard
format. In Amazon KMS resources, the Amazon service name is kms.

• Amazon KMS key

Amazon KMS resources 263

https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

Amazon Key Management Service Developer Guide

ARN format:

arn:Amazon partition name:Amazon service name:Amazon Web Services
Region:Amazon Web Services account ID:key/key ID

Example ARN:

arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

• Alias

ARN format:

arn:Amazon partition name:Amazon service name:Amazon Web Services
Region:Amazon Web Services account ID:alias/alias name

Example ARN:

arn:aws:kms:us-west-2:111122223333:alias/example-alias

Amazon KMS provides a set of API operations to work with your Amazon KMS resources. For more
information about identifying KMS keys in the Amazon Web Services Management Console and
Amazon KMS API operations, see Key identifiers (KeyId). For a list of Amazon KMS operations, see
the Amazon Key Management Service API Reference.

Amazon KMS resources 264

https://docs.amazonaws.cn/kms/latest/APIReference/

Amazon Key Management Service Developer Guide

Create a KMS key

You can create Amazon KMS keys in the Amazon Web Services Management Console, or by using
the CreateKey operation or the AWS::KMS::Key Amazon CloudFormation resource. During this
process, you set the key policy for the KMS key, which you can change at any time. You also select
the following values that define the type of KMS key that you create. You cannot change these
properties after the KMS key is created.

KMS key type

Key type is a property that determines what type of cryptographic key is created. Amazon KMS
offers three key types to protect data:

• Advanced Encryption Standard (AES) symmetric keys

256-bit keys that are used under the Galois Counter Mode (GCM) mode of AES to provide
authenticated encryption/decryption of data under 4KB in size. This is the most common
type of key and is used to protect other data encryption keys used in your applications and by
Amazon Web Services services that encrypt your data on your behalf.

• RSA, elliptic curve, or SM2 (China Regions only) asymmetric keys

These keys are available in various sizes and support many algorithms. They can be used for
encryption and decryption, sign and verify, or derive shared secrets operations depending on
the algorithm choice.

• Symmetric keys for performing hash-based message authentication codes (HMAC) operations

These keys are 256-bit keys used for sign and verify operations.

KMS keys cannot be exported from the service in plaintext. They are generated by and can
only be used within the hardware security modules (HSMs) used by the service. This is the
foundational security property of Amazon KMS to ensure that keys are not compromised.

Key usage

Key usage is a property that determines the cryptographic operations the key supports. KMS
keys can have a key usage of ENCRYPT_DECRYPT, SIGN_VERIFY, GENERATE_VERIFY_MAC, or
KEY_AGREEMENT. Each KMS key can have only one key usage. Using a KMS key for more than
one type of operation makes the product of both operations more vulnerable to attack.

265

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kms-key.html

Amazon Key Management Service Developer Guide

Key spec

Key spec is a property that represents the cryptographic configuration of a key. The meaning of
the key spec differs with the key type.

For KMS keys, the key spec determines whether the KMS key is symmetric or asymmetric. It also
determines the type of its key material, and the algorithms it supports.

The default key spec, SYMMETRIC_DEFAULT, represents a 256-bit symmetric encryption key. For
a detailed description of all supported key specs, see Key spec reference.

Key material origin

Key material origin is a KMS key property that identifies the source of the key material in the
KMS key. You choose the key material origin when you create the KMS key, and you cannot
change it. The source of the key material affects the security, durability, availability, latency, and
throughput characteristics of the KMS key.

Each KMS key includes a reference to its key material in its metadata. The key material origin of
symmetric encryption KMS keys can vary. You can use key material that Amazon KMS generates,
key material that is generated in a custom key store, or import your own key material.

By default, each KMS key has unique key material. However, you can create a set of multi-
Region keys with the same key material.

KMS keys can have one of the following key material origin values: AWS_KMS, EXTERNAL
(imported key material), AWS_CLOUDHSM (KMS key in a Amazon CloudHSM key store), or
EXTERNAL_KEY_STORE (KMS key in an external key store).

Topics

• Permissions for creating KMS keys

• Choosing what type of KMS key to create

• Create a symmetric encryption KMS key

• Create an asymmetric KMS key

• Create an HMAC KMS key

• Create multi-Region primary keys

• Create multi-Region replica keys

• Create a KMS key with imported key material

266

Amazon Key Management Service Developer Guide

• Create a KMS key in an Amazon CloudHSM key store

• Create a KMS key in external key stores

Permissions for creating KMS keys

To create a KMS key in the console or by using the APIs, you must have the following permission in
an IAM policy. Whenever possible, use condition keys to limit the permissions. For example, you can
use the kms:KeySpec condition key in an IAM policy to allow principals to create only symmetric
encryption keys.

For an example of an IAM policy for principals who create keys, see Allow a user to create KMS
keys.

Note

Be cautious when giving principals permission to manage tags and aliases. Changing a tag
or alias can allow or deny permission to the customer managed key. For details, see ABAC
for Amazon KMS.

• kms:CreateKey is required.

• kms:CreateAlias is required to create a KMS key in the console where an alias is required for every
new KMS key.

• kms:TagResource is required to add tags while creating the KMS key.

• iam:CreateServiceLinkedRole is required to create multi-Region primary keys. For details, see
Control access to multi-Region keys.

The kms:PutKeyPolicy permission is not required to create the KMS key. The kms:CreateKey
permission includes permission to set the initial key policy. But you must add this permission to the
key policy while creating the KMS key to ensure that you can control access to the KMS key. The
alternative is using the BypassLockoutSafetyCheck parameter, which is not recommended.

KMS keys belong to the Amazon account in which they were created. The IAM user who creates
a KMS key is not considered to be the key owner and they don't automatically have permission
to use or manage the KMS key that they created. Like any other principal, the key creator needs
to get permission through a key policy, IAM policy, or grant. However, principals who have the

Permissions for creating KMS keys 267

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateServiceLinkedRole.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html#KMS-CreateKey-request-BypassPolicyLockoutSafetyCheck

Amazon Key Management Service Developer Guide

kms:CreateKey permission can set the initial key policy and give themselves permission to use or
manage the key.

Choosing what type of KMS key to create

The type of KMS key that you create depends largely on how you plan to use the KMS key, your
security requirements, and your authorization requirements. The key type and key usage of a KMS
key determine what cryptographic operations the key can perform. Each KMS key has only one key
usage. Using a KMS key for more than one type of operation makes the product of all operations
more vulnerable to attack.

To allow principals to create KMS keys only for a particular key usage, use the kms:KeyUsage
condition key. You can also use the kms:KeyUsage condition key to allow principals to call API
operations for a KMS key based on its key usage. For example, you can allow permission to disable
a KMS key only if its key usage is SIGN_VERIFY.

Use the following guidance to determine which type of KMS key you need based on your use case.

Encrypt and decrypt data

Use a symmetric KMS key for most use cases that require encrypting and decrypting data.
The symmetric encryption algorithm that Amazon KMS uses is fast, efficient, and assures the
confidentiality and authenticity of data. It supports authenticated encryption with additional
authenticated data (AAD), defined as an encryption context. This type of KMS key requires both
the sender and recipient of encrypted data to have valid Amazon credentials to call Amazon
KMS.

If your use case requires encryption outside of Amazon by users who cannot call Amazon KMS,
asymmetric KMS keys are a good choice. You can distribute the public key of the asymmetric
KMS key to allow these users to encrypt data. And your applications that need to decrypt that
data can use the private key of the asymmetric KMS key within Amazon KMS.

Sign messages and verify signatures

To sign messages and verify signatures, you must use an asymmetric KMS key. You can use a
KMS key with a key spec that represents an RSA key pair, an elliptic curve (ECC) key pair, an ML-
DSA key pair, or an SM2 key pair (China Regions only). The key spec you choose is determined
by the signing algorithm that you want to use. The ECDSA signing algorithms that ECC key
pairs support are recommended over the RSA signing algorithms. Use an ML-DSA key pair
when migrating from RSA or ECC keys to post-quantum keys. However, you might need to use

Choosing what type of KMS key to create 268

Amazon Key Management Service Developer Guide

a particular key spec and signing algorithm to support users who verify signatures outside of
Amazon.

Encrypt with asymmetric key pairs

To encrypt data with an asymmetric key pair, you must use an asymmetric KMS key with an RSA
key spec or an SM2 key spec (China Regions only). To encrypt data in Amazon KMS with the
public key of a KMS key pair, use the Encrypt operation. You can also download the public key
and share it with the parties that need to encrypt data outside of Amazon KMS.

When you download the public key of an asymmetric KMS key, you can use it outside of
Amazon KMS. But it is no longer subject to the security controls that protect the KMS key in
Amazon KMS. For example, you cannot use Amazon KMS key policies or grants to control use of
the public key. Nor can you control whether the key is used only for encryption and decryption
using the encryption algorithms that Amazon KMS supports. For more details, see Special
Considerations for Downloading Public Keys.

To decrypt data that was encrypted with the public key outside of Amazon KMS, call the
Decrypt operation. The Decrypt operation fails if the data was encrypted under a public key
from a KMS key with a key usage of SIGN_VERIFY. It will also fail if it was encrypted by using
an algorithm that Amazon KMS does not support for the key spec you selected. For more
information on key specs and supported algorithms, see Key spec reference.

To avoid these errors, anyone using a public key outside of Amazon KMS must store the
key configuration. The Amazon KMS console and the GetPublicKey response provide the
information that you must include when you share the public key.

Derive shared secrets

To derive shared secrets, use a KMS key with NIST-recommended elliptic curve or SM2 (China
Regions only) key material. Amazon KMS uses the Elliptic Curve Cryptography Cofactor Diffie-
Hellman Primitive (ECDH) to establish a key agreement between two peers by deriving a shared
secret from their elliptic curve public-private key pairs. You can use the raw shared secret that
the DeriveSharedSecret operation returns to derive a symmetric key that can encrypt and
decrypt data that is sent between two parties, or generate and verify HMACs. Amazon KMS
recommends that you follow NIST recommendations for key derivation when using the raw
shared secret to derive a symmetric key.

Generate and verify HMAC codes

To generate and verify hash-based message authentication codes, use an HMAC KMS key. When
you create an HMAC key in Amazon KMS, Amazon KMS creates and protects your key material

Choosing what type of KMS key to create 269

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf#page=60
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf#page=60
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf

Amazon Key Management Service Developer Guide

and ensures that you use the correct MAC algorithms for your key. HMAC codes can also be used
as pseudo-random numbers, and in certain scenarios for symmetric signing and tokenizing.

HMAC KMS keys are symmetric keys. When creating an HMAC KMS key in the Amazon KMS
console, choose the Symmetric key type.

Use with Amazon services

To create a KMS key for use with an Amazon service that is integrated with Amazon KMS,
consult the documentation for the service. Amazon services that encrypt your data require a
symmetric encryption KMS key.

In addition to these considerations, cryptographic operations on KMS keys with different key specs
have different prices and different request quotas. For information about Amazon KMS pricing,
see Amazon Key Management Service Pricing. For information about request quotas, see Request
quotas.

Create a symmetric encryption KMS key

This topic explains how to create the basic KMS key, a symmetric encryption KMS key for a single
Region with key material from Amazon KMS. You can use this KMS key to protect your resources in
an Amazon Web Services service.

You can create symmetric encryption KMS keys in the Amazon KMS console, by using the CreateKey
API, or by using the AWS::KMS::Key Amazon CloudFormation template.

The default key spec, SYMMETRIC_DEFAULT, is the key spec for symmetric encryption KMS keys.
When you select the Symmetric key type and the Encrypt and decrypt key usage in the Amazon
KMS console, it selects the SYMMETRIC_DEFAULT key spec. In the CreateKey operation, if you don't
specify a KeySpec value, SYMMETRIC_DEFAULT is selected. If you don't have a reason to use a
different key spec, SYMMETRIC_DEFAULT is a good choice.

For information about quotas that apply to KMS keys, see Quotas.

Using the Amazon KMS console

You can use the Amazon Web Services Management Console to create Amazon KMS keys (KMS
keys).

Create a symmetric encryption KMS key 270

http://www.amazonaws.cn/kms/pricing/
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kms-key.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

Important

Do not include confidential or sensitive information in the alias, description, or tags. These
fields may appear in plain text in CloudTrail logs and other output.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose Create key.

5. To create a symmetric encryption KMS key, for Key type choose Symmetric.

6. In Key usage, the Encrypt and decrypt option is selected for you.

7. Choose Next.

8. Type an alias for the KMS key. The alias name cannot begin with aws/. The aws/ prefix is
reserved by Amazon Web Services to represent Amazon managed keys in your account.

Note

Adding, deleting, or updating an alias can allow or deny permission to the KMS key. For
details, see ABAC for Amazon KMS and Use aliases to control access to KMS keys.

An alias is a display name that you can use to identify the KMS key. We recommend that you
choose an alias that indicates the type of data you plan to protect or the application you plan
to use with the KMS key.

Aliases are required when you create a KMS key in the Amazon Web Services Management
Console. They are optional when you use the CreateKey operation.

9. (Optional) Type a description for the KMS key.

You can add a description now or update it any time unless the key state is Pending
Deletion or Pending Replica Deletion. To add, change, or delete the description of an

Create a symmetric encryption KMS key 271

https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

existing customer managed key, edit the description on the details page for the KMS key in the
Amazon Web Services Management Console or use the UpdateKeyDescription operation.

10. (Optional) Type a tag key and an optional tag value. To add more than one tag to the KMS key,
choose Add tag.

Note

Tagging or untagging a KMS key can allow or deny permission to the KMS key. For
details, see ABAC for Amazon KMS and Use tags to control access to KMS keys.

When you add tags to your Amazon resources, Amazon generates a cost allocation report with
usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For
information about tagging KMS keys, see Tags in Amazon KMS and ABAC for Amazon KMS.

11. Choose Next.

12. Select the IAM users and roles that can administer the KMS key.

Notes

This key policy gives the Amazon Web Services account full control of this KMS key. It
allows account administrators to use IAM policies to give other principals permission to
manage the KMS key. For details, see the section called “Default key policy”.
IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.
The Amazon KMS console adds key administrators to the key policy under the
statement identifier "Allow access for Key Administrators". Modifying this
statement identifier might impact how the console displays updates that you make to
the statement.

13. (Optional) To prevent the selected IAM users and roles from deleting this KMS key, in the Key
deletion section at the bottom of the page, clear the Allow key administrators to delete this
key check box.

14. Choose Next.

15. Select the IAM users and roles that can use the key in cryptographic operations

Create a symmetric encryption KMS key 272

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

Notes

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.
The Amazon KMS console adds key users to the key policy under the statement
identifiers "Allow use of the key" and "Allow attachment of persistent
resources". Modifying these statement identifiers might impact how the console
displays updates that you make to the statement.

16. (Optional) You can allow other Amazon Web Services accounts to use this KMS key for
cryptographic operations. To do so, in the Other Amazon Web Services accounts section at
the bottom of the page, choose Add another Amazon Web Services account and enter the
Amazon Web Services account identification number of an external account. To add multiple
external accounts, repeat this step.

Note

To allow principals in the external accounts to use the KMS key, Administrators of the
external account must create IAM policies that provide these permissions. For more
information, see Allowing users in other accounts to use a KMS key.

17. Choose Next.

18. Review the key policy statements for the key. To make changes to the key policy, select Edit.

19. Choose Next.

20. Review the key settings that you chose. You can still go back and change all settings.

21. Choose Finish to create the KMS key.

Using the Amazon KMS API

You can use the CreateKey operation to create Amazon KMS keys of all types. These examples
use the Amazon Command Line Interface (Amazon CLI). For examples in multiple programming
languages, see Use CreateKey with an Amazon SDK or CLI.

Create a symmetric encryption KMS key 273

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

Important

Do not include confidential or sensitive information in the Description or Tags fields.
These fields may appear in plain text in CloudTrail logs and other output.

The following operation creates a symmetric encryption key in a single Region backed by key
material generated by Amazon KMS. This operation has no required parameters. However, you
might also want to use the Policy parameter to specify a key policy. You can change the key
policy (PutKeyPolicy) and add optional elements, such as a description and tags at any time. You
can also create asymmetric keys, multi-Region keys, keys with imported key material, and keys
in custom key stores. To create data keys for client-side encryption, use the GenerateDataKey
operation.

The CreateKey operation doesn't let you specify an alias, but you can use the CreateAlias
operation to create an alias for your new KMS key.

The following is an example of a call to the CreateKey operation with no parameters. This
command uses all of the default values. It creates a symmetric encryption KMS key with key
material generated by Amazon KMS.

$ aws kms create-key
{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "Enabled": true,
 "KeySpec": "SYMMETRIC_DEFAULT",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1502910355.475,
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "MultiRegion": false
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],

Create a symmetric encryption KMS key 274

https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html

Amazon Key Management Service Developer Guide

 }
}

If you do not specify a key policy for your new KMS key, the default key policy that CreateKey
applies differs from the default key policy that the console applies when you use it to create a new
KMS key.

For example, this call to the GetKeyPolicy operation returns the key policy that CreateKey applies.
It gives the Amazon Web Services account access to the KMS key and allows it to create Amazon
Identity and Access Management (IAM) policies for the KMS key. For detailed information about
IAM policies and key policies for KMS keys, see KMS key access and permissions

$ aws kms get-key-policy --key-id 1234abcd-12ab-34cd-56ef-1234567890ab --policy-name
 default --output text
{
 "Version" : "2012-10-17",
 "Id" : "key-default-1",
 "Statement" : [{
 "Sid" : "Enable IAM User Permissions",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : "kms:*",
 "Resource" : "*"
 }]
}

Create an asymmetric KMS key

You can create asymmetric KMS keys in the Amazon KMS console, by using the CreateKey API, or by
using the AWS::KMS::Key Amazon CloudFormation template. An asymmetric KMS key represents a
public and private key pair that can be used for encryption, signing, or deriving shared secrets. The
private key remains within Amazon KMS. To download the public key for use outside of Amazon
KMS, see Download public key.

When you create an asymmetric KMS key, you must select a key spec. Often the key spec that you
select is determined by regulatory, security, or business requirements. It might also be influenced
by the size of messages that you need to encrypt or sign. In general, longer encryption keys are

Create an asymmetric KMS key 275

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kms-key.html

Amazon Key Management Service Developer Guide

more resistant to brute-force attacks. For a detailed description of all supported key specs, see Key
spec reference.

Amazon services that integrate with Amazon KMS do not support asymmetric KMS keys. If you
want to create a KMS key that encrypts data that you store or manage in an Amazon service, create
a symmetric encryption KMS key.

For information about the permissions required to create KMS keys, see Permissions for creating
KMS keys.

Using the Amazon KMS console

You can use the Amazon Web Services Management Console to create asymmetric Amazon KMS
keys (KMS keys). Each asymmetric KMS key represents a public and private key pair.

Important

Do not include confidential or sensitive information in the alias, description, or tags. These
fields may appear in plain text in CloudTrail logs and other output.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose Create key.

5. To create an asymmetric KMS key, in Key type, choose Asymmetric.

6. To create an asymmetric KMS key for public key encryption, in Key usage, choose Encrypt and
decrypt.

To create an asymmetric KMS key for signing messages and verifying signatures, in Key usage,
choose Sign and verify.

To create an asymmetric KMS key for deriving shared secrets, in Key usage, choose Key
agreement.

For help choosing a key usage value, see Choosing what type of KMS key to create.

Create an asymmetric KMS key 276

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

7. Select a specification (Key spec) for your asymmetric KMS key.

8. Choose Next.

9. Type an alias for the KMS key. The alias name cannot begin with aws/. The aws/ prefix is
reserved by Amazon Web Services to represent Amazon managed keys in your account.

An alias is a friendly name that you can use to identify the KMS key in the console and in some
Amazon KMS APIs. We recommend that you choose an alias that indicates the type of data you
plan to protect or the application you plan to use with the KMS key.

Aliases are required when you create a KMS key in the Amazon Web Services Management
Console. You cannot specify an alias when you use the CreateKey operation, but you can use
the console or the CreateAlias operation to create an alias for an existing KMS key. For details,
see Aliases in Amazon KMS.

10. (Optional) Type a description for the KMS key.

Enter a description that explains the type of data you plan to protect or the application you
plan to use with the KMS key.

You can add a description now or update it any time unless the key state is Pending
Deletion or Pending Replica Deletion. To add, change, or delete the description of an
existing customer managed key, edit the description on the details page for the KMS key in the
Amazon Web Services Management Console or use the UpdateKeyDescription operation.

11. (Optional) Type a tag key and an optional tag value. To add more than one tag to the KMS key,
choose Add tag.

When you add tags to your Amazon resources, Amazon generates a cost allocation report with
usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For
information about tagging KMS keys, see Tags in Amazon KMS and ABAC for Amazon KMS.

12. Choose Next.

13. Select the IAM users and roles that can administer the KMS key.

Notes

This key policy gives the Amazon Web Services account full control of this KMS key. It
allows account administrators to use IAM policies to give other principals permission to
manage the KMS key. For details, see the section called “Default key policy”.

Create an asymmetric KMS key 277

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateKeyDescription.html

Amazon Key Management Service Developer Guide

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.
The Amazon KMS console adds key administrators to the key policy under the
statement identifier "Allow access for Key Administrators". Modifying this
statement identifier might impact how the console displays updates that you make to
the statement.

14. (Optional) To prevent the selected IAM users and roles from deleting this KMS key, in the Key
deletion section at the bottom of the page, clear the Allow key administrators to delete this
key check box.

15. Choose Next.

16. Select the IAM users and roles that can use the KMS key for cryptographic operations.

Notes

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.
The Amazon KMS console adds key users to the key policy under the statement
identifiers "Allow use of the key" and "Allow attachment of persistent
resources". Modifying these statement identifiers might impact how the console
displays updates that you make to the statement.

17. (Optional) You can allow other Amazon Web Services accounts to use this KMS key for
cryptographic operations. To do so, in the Other Amazon Web Services accounts section at
the bottom of the page, choose Add another Amazon Web Services account and enter the
Amazon Web Services account identification number of an external account. To add multiple
external accounts, repeat this step.

Note

To allow principals in the external accounts to use the KMS key, administrators of the
external account must create IAM policies that provide these permissions. For more
information, see Allowing users in other accounts to use a KMS key.

18. Choose Next.

Create an asymmetric KMS key 278

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

19. Review the key policy statements for the key. To make changes to the key policy, select Edit.

20. Choose Next.

21. Review the key settings that you chose. You can still go back and change all settings.

22. Choose Finish to create the KMS key.

Using the Amazon KMS API

You can use the CreateKey operation to create an asymmetric Amazon KMS key. These examples
use the Amazon Command Line Interface (Amazon CLI), but you can use any supported
programming language.

When you create an asymmetric KMS key, you must specify the KeySpec parameter,
which determines the type of keys you create. Also, you must specify a KeyUsage value of
ENCRYPT_DECRYPT, SIGN_VERIFY, or KEY_AGREEMENT. You cannot change these properties after
the KMS key is created.

The CreateKey operation doesn't let you specify an alias, but you can use the CreateAlias
operation to create an alias for your new KMS key.

Important

Do not include confidential or sensitive information in the Description or Tags fields.
These fields may appear in plain text in CloudTrail logs and other output.

Create an asymmetric KMS key pair for public encryption

The following example uses the CreateKey operation to create an asymmetric KMS key of 4096-
bit RSA keys designed for public key encryption.

$ aws kms create-key --key-spec RSA_4096 --key-usage ENCRYPT_DECRYPT
{
 "KeyMetadata": {
 "KeyState": "Enabled",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "Description": "",
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

Create an asymmetric KMS key 279

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html

Amazon Key Management Service Developer Guide

 "CreationDate": 1569973196.214,
 "MultiRegion": false,
 "KeySpec": "RSA_4096",
 "CustomerMasterKeySpec": "RSA_4096",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "EncryptionAlgorithms": [
 "RSAES_OAEP_SHA_1",
 "RSAES_OAEP_SHA_256"
],
 "AWSAccountId": "111122223333",
 "Origin": "AWS_KMS",
 "Enabled": true
 }
}

Create an asymmetric KMS key pair for signing and verification

The following example command creates an asymmetric KMS key that represents a pair of ECC keys
used for signing and verification. You cannot create an elliptic curve key pair for encryption and
decryption.

$ aws kms create-key --key-spec ECC_NIST_P521 --key-usage SIGN_VERIFY
{
 "KeyMetadata": {
 "KeyState": "Enabled",
 "KeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": 1570824817.837,
 "Origin": "AWS_KMS",
 "SigningAlgorithms": [
 "ECDSA_SHA_512"
],
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "AWSAccountId": "111122223333",
 "KeySpec": "ECC_NIST_P521",
 "CustomerMasterKeySpec": "ECC_NIST_P521",
 "KeyManager": "CUSTOMER",
 "Description": "",
 "Enabled": true,
 "MultiRegion": false,
 "KeyUsage": "SIGN_VERIFY"
 }
}

Create an asymmetric KMS key 280

Amazon Key Management Service Developer Guide

Create an asymmetric KMS key pair for deriving shared secrets

The following example command creates an asymmetric KMS key that represents a pair of ECDH
keys used for deriving shared secrets. You cannot create an elliptic curve key pair for encryption
and decryption.

$ aws kms create-key --key-spec ECC_NIST_P256 --key-usage KEY_AGREEMENT
{
 "KeyMetadata": {
 "AWSAccountId": "111122223333",
 "KeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "CreationDate": "2023-12-27T19:10:15.063000+00:00",
 "Enabled": true,
 "Description": "",
 "KeyUsage": "KEY_AGREEMENT",
 "KeyState": "Enabled",
 "Origin": "AWS_KMS",
 "KeyManager": "CUSTOMER",
 "CustomerMasterKeySpec": "ECC_NIST_P256",
 "KeySpec": "ECC_NIST_P256",
 "KeyAgreementAlgorithms": [
 "ECDH"
],
 "MultiRegion": false
 }
}

Create an HMAC KMS key

You can create HMAC KMS keys in the Amazon KMS console, by using the CreateKey API, or by
using the AWS::KMS::Key Amazon CloudFormation template.

When you create an HMAC KMS key, you must select a key spec. Amazon KMS supports multiple
key specs for HMAC KMS keys. The key spec that you select might be determined by regulatory,
security, or business requirements. In general, longer keys are more resistant to brute-force attacks.

For information about the permissions required to create KMS keys, see Permissions for creating
KMS keys.

Create an HMAC KMS key 281

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kms-key.html

Amazon Key Management Service Developer Guide

Using the Amazon KMS console

You can use the Amazon Web Services Management Console to create HMAC KMS keys. HMAC KMS
keys are symmetric keys with a key usage of Generate and verify MAC. You can also create multi-
Region HMAC keys.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose Create key.

5. For Key type, choose Symmetric.

HMAC KMS keys are symmetric. You use the same key to generate and verify HMAC tags.

6. For Key usage, choose Generate and verify MAC.

Generate and verify MAC is the only valid key usage for HMAC KMS keys.

Note

Key usage is displayed for symmetric keys only when HMAC KMS keys are supported in
your selected Region.

7. Select a specification (Key spec) for your HMAC KMS key.

The key spec that you select can be determined by regulatory, security, or business
requirements. In general, longer keys are more secure.

8. To create a multi-Region primary HMAC key, in Advanced options, choose Multi-Region key.
The shared properties that you define for this KMS key, such as its key type and key usage, will
be shared with its replica keys.

You cannot use this procedure to create a replica key. To create a multi-Region replica HMAC
key, follow the instructions for creating a replica key.

9. Choose Next.

10. Enter an alias for the KMS key. The alias name cannot begin with aws/. The aws/ prefix is
reserved by Amazon Web Services to represent Amazon managed keys in your account.

Create an HMAC KMS key 282

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

We recommend that you use an alias that identifies the KMS key as an HMAC key, such as
HMAC/test-key. This will make it easier for you to identify your HMAC keys in the Amazon
KMS console where you can sort and filter keys by tags and aliases, but not by key spec or key
usage.

Aliases are required when you create a KMS key in the Amazon Web Services Management
Console. You cannot specify an alias when you use the CreateKey operation, but you can use
the console or the CreateAlias operation to create an alias for an existing KMS key. For details,
see Aliases in Amazon KMS.

11. (Optional) Enter a description for the KMS key.

Enter a description that explains the type of data you plan to protect or the application you
plan to use with the KMS key.

You can add a description now or update it any time unless the key state is Pending
Deletion or Pending Replica Deletion. To add, change, or delete the description of an
existing customer managed key, edit the description on the details page for the KMS key in
the Amazon Web Services Management Console in the Amazon Web Services Management
Console or use the UpdateKeyDescription operation.

12. (Optional) Enter a tag key and an optional tag value. To add more than one tag to the KMS
key, choose Add tag.

Consider adding a tag that identifies the key as an HMAC key, such as Type=HMAC. This will
make it easier for you to identify your HMAC keys in the Amazon KMS console where you can
sort and filter keys by tags and aliases, but not by key spec or key usage.

When you add tags to your Amazon resources, Amazon generates a cost allocation report with
usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For
information about tagging KMS keys, see Tags in Amazon KMS and ABAC for Amazon KMS.

13. Choose Next.

14. Select the IAM users and roles that can administer the KMS key.

Notes

This key policy gives the Amazon Web Services account full control of this KMS key. It
allows account administrators to use IAM policies to give other principals permission to
manage the KMS key. For details, see the section called “Default key policy”.

Create an HMAC KMS key 283

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateKeyDescription.html

Amazon Key Management Service Developer Guide

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.
The Amazon KMS console adds key administrators to the key policy under the
statement identifier "Allow access for Key Administrators". Modifying this
statement identifier might impact how the console displays updates that you make to
the statement.

15. (Optional) To prevent the selected IAM users and roles from deleting this KMS key, in the Key
deletion section at the bottom of the page, clear the Allow key administrators to delete this
key check box.

16. Choose Next.

17. Select the IAM users and roles that can use the KMS key for cryptographic operations.

Notes

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.
The Amazon KMS console adds key users to the key policy under the statement
identifiers "Allow use of the key" and "Allow attachment of persistent
resources". Modifying these statement identifiers might impact how the console
displays updates that you make to the statement.

18. (Optional) You can allow other Amazon Web Services accounts to use this KMS key for
cryptographic operations. To do so, in the Other Amazon Web Services accounts section at
the bottom of the page, choose Add another Amazon Web Services account and enter the
Amazon Web Services account identification number of an external account. To add multiple
external accounts, repeat this step.

Note

To allow principals in the external accounts to use the KMS key, Administrators of the
external account must create IAM policies that provide these permissions. For more
information, see Allowing users in other accounts to use a KMS key.

19. Choose Next.

Create an HMAC KMS key 284

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

20. Review the key policy statements for the key. To make changes to the key policy, select Edit.

21. Choose Next.

22. Review the key settings that you chose. You can still go back and change all settings.

23. Choose Finish to create the HMAC KMS key.

Using the Amazon KMS API

You can use the CreateKey operation to create an HMAC KMS key. These examples use the Amazon
Command Line Interface (Amazon CLI), but you can use any supported programming language.

When you create an HMAC KMS key, you must specify the KeySpec parameter, which determines
the type of the KMS key. Also, you must specify a KeyUsage value of GENERATE_VERIFY_MAC,
even though it's the only valid key usage value for HMAC keys. To create a multi-Region HMAC KMS
key, add the MultiRegion parameter with a value of true. You cannot change these properties
after the KMS key is created.

The CreateKey operation doesn't let you specify an alias, but you can use the CreateAlias
operation to create an alias for your new KMS key. We recommend that you use an alias that
identifies the KMS key as an HMAC key, such as HMAC/test-key. This will make it easier for you
to identify your HMAC keys in the Amazon KMS console where you can sort and filter keys by alias,
but not by key spec or key usage.

If you try to create an HMAC KMS key in an Amazon Web Services Region in which HMAC keys are
not supported, the CreateKey operation returns an UnsupportedOperationException

The following example uses the CreateKey operation to create a 512-bit HMAC KMS key.

$ aws kms create-key --key-spec HMAC_512 --key-usage GENERATE_VERIFY_MAC
{
 "KeyMetadata": {
 "KeyState": "Enabled",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "Description": "",
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1669973196.214,
 "MultiRegion": false,
 "KeySpec": "HMAC_512",

Create an HMAC KMS key 285

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
http://www.amazonaws.cn/cli/
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html

Amazon Key Management Service Developer Guide

 "CustomerMasterKeySpec": "HMAC_512",
 "KeyUsage": "GENERATE_VERIFY_MAC",
 "MacAlgorithms": [
 "HMAC_SHA_512"
],
 "AWSAccountId": "111122223333",
 "Origin": "AWS_KMS",
 "Enabled": true
 }
}

Create multi-Region primary keys

You can create a multi-Region primary key in the Amazon KMS console or by using the Amazon
KMS API. You can create the primary key in any Amazon Web Services Region where Amazon KMS
supports multi-Region keys.

To create a multi-Region primary key, the principal needs the same permissions that they need to
create any KMS key, including the kms:CreateKey permission in an IAM policy. The principal also
needs the iam:CreateServiceLinkedRole permission. You can use the kms:MultiRegionKeyType
condition key to allow or deny permission to create multi-Region primary keys.

Note

When creating your multi-Region primary key, carefully consider the IAM users and roles
that you select to administer and use the key. IAM policies can give other IAM users and
roles permission to manage the KMS key.
IAM best practices discourage the use of IAM users with long-term credentials. Whenever
possible, use IAM roles, which provide temporary credentials. For details, see Security best
practices in IAM in the IAM User Guide.

Using the Amazon KMS console

To create a multi-Region primary key in the Amazon KMS console, use the same process that
you would use to create any KMS key.. You select a multi-Region key in Advanced options. For
complete instructions, see Create a KMS key.

Create multi-Region primary keys 286

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

Important

Do not include confidential or sensitive information in the alias, description, or tags. These
fields may appear in plain text in CloudTrail logs and other output.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose Create key.

5. Select a symmetric or asymmetric key type. Symmetric keys are the default.

You can create multi-Region symmetric and asymmetric keys, including multi-Region HMAC
KMS keys, which are symmetric.

6. Select your key usage. Encrypt and decrypt is the default.

For help, see Create a KMS key, the section called “Create an asymmetric KMS key”, or the
section called “Create an HMAC KMS key”.

7. Expand Advanced options.

8. Under Key material origin, to have Amazon KMS generate the key material that your primary
and replica keys will share, choose KMS. If you are importing key material into the primary and
replica keys, choose External (Import key material).

9. Under Regionality, choose Multi-Region key.

You can't change this setting after you create the KMS key.

10. Type an alias for the primary key.

Aliases are not a shared property of multi-Region keys. You can give your multi-Region primary
key and its replicas the same alias or different aliases. Amazon KMS does not synchronize the
aliases of multi-Region keys.

Create multi-Region primary keys 287

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

Note

Adding, deleting, or updating an alias can allow or deny permission to the KMS key. For
details, see ABAC for Amazon KMS and Use aliases to control access to KMS keys.

11. (Optional) Type a description of the primary key.

Descriptions are not a shared property of multi-Region keys. You can give your multi-Region
primary key and its replicas the same description or different descriptions. Amazon KMS does
not synchronize the key descriptions of multi-Region keys.

12. (Optional) Type a tag key and an optional tag value. To assign more than one tag to the
primary key, choose Add tag.

Tags are not a shared property of multi-Region keys. You can give your multi-Region primary
key and its replicas the same tags or different tags. Amazon KMS does not synchronize the
tags of multi-Region keys. You can change the tags on KMS keys at any time.

Note

Tagging or untagging a KMS key can allow or deny permission to the KMS key. For
details, see ABAC for Amazon KMS and Use tags to control access to KMS keys.

13. Select the IAM users and roles that can administer the primary key.

Notes

• This step starts the process of creating a key policy for the primary key. Key policies
are not a shared property of multi-Region keys. You can give your multi-Region
primary key and its replicas the same key policy or different key policies. Amazon
KMS does not synchronize the key policies of multi-Region keys. You can change the
key policy of a KMS key at any time.

• When creating a multi-Region primary key, consider using the default key policy
generated by the console. If you modify this policy, the console won't provide steps
to select key administrators and users when creating replica keys, nor will it add the
corresponding policy statements. As a result, you'll need to add these manually.

Create multi-Region primary keys 288

Amazon Key Management Service Developer Guide

• The Amazon KMS console adds key administrators to the key policy under the
statement identifier "Allow access for Key Administrators". Modifying
this statement identifier might impact how the console displays updates that you
make to the statement.

14. (Optional) To prevent the selected IAM users and roles from deleting this KMS key, in the Key
deletion section at the bottom of the page, clear the Allow key administrators to delete this
key check box.

15. Choose Next.

16. Select the IAM users and roles that can use the KMS key for cryptographic operations.

Notes

The Amazon KMS console adds key users to the key policy under the statement
identifiers "Allow use of the key" and "Allow attachment of persistent
resources". Modifying these statement identifiers might impact how the console
displays updates that you make to the statement.

17. (Optional) You can allow other Amazon Web Services accounts to use this KMS key for
cryptographic operations. To do so, in the Other Amazon Web Services accounts section at
the bottom of the page, choose Add another Amazon Web Services account and enter the
Amazon Web Services account identification number of an external account. To add multiple
external accounts, repeat this step.

Note

To allow principals in the external accounts to use the KMS key, Administrators of the
external account must create IAM policies that provide these permissions. For more
information, see Allowing users in other accounts to use a KMS key.

18. Choose Next.

19. Review the key policy statements for the key. To make changes to the key policy, select Edit.

20. Choose Next.

21. Review the key settings that you chose. You can still go back and change all settings.

22. Choose Finish to create the multi-Region primary key.

Create multi-Region primary keys 289

Amazon Key Management Service Developer Guide

Using the Amazon KMS API

To create a multi-Region primary key, use the CreateKey operation. Use the MultiRegion
parameter with a value of True.

For example, the following command creates a multi-Region primary key in the caller's Amazon
Web Services Region (us-east-1). It accepts default values for all other properties, including the key
policy. The default values for multi-Region primary keys are the same as the default values for all
other KMS keys, including the default key policy. This procedure creates a symmetric encryption
key, the default KMS key.

The response includes the MultiRegion element and the MultiRegionConfiguration element
with typical sub-elements and values for a multi-Region primary key with no replica keys. The key
ID of a multi-Region key always begins with mrk-.

Important

Do not include confidential or sensitive information in the Description or Tags fields.
These fields may appear in plain text in CloudTrail logs and other output.

$ aws kms create-key --multi-region
{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "mrk-1234abcd12ab34cd56ef1234567890ab",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "Enabled": true,
 "KeySpec": "SYMMETRIC_DEFAULT",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1606329032.475,
 "Arn": "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "AWSAccountId": "111122223333",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "MultiRegion": true,

Create multi-Region primary keys 290

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

 "MultiRegionConfiguration": {
 "MultiRegionKeyType": "PRIMARY",
 "PrimaryKey": {
 "Arn": "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "us-east-1"
 },
 "ReplicaKeys": []
 }
 }
}

Create multi-Region replica keys

You can create a multi-Region replica key in the Amazon KMS console, by using the ReplicateKey
operation, or by using a AWS::KMS::ReplicaKey Amazon CloudFormation template. You cannot use
the CreateKey operation to create a replica key.

You can use these procedures to replicate any multi-Region primary key, including a symmetric
encryption KMS key, an asymmetric KMS key, or an HMAC KMS key.

When this operation completes, the new replica key has a transient key state of Creating.
This key state changes to Enabled (or PendingImport if you create a multi-Region key with
imported key material) after a few seconds when the process of creating the new replica key is
complete. While the key state is Creating, you can manage key, but you cannot yet use it in
cryptographic operations. If you are creating and using the replica key programmatically, retry on
KMSInvalidStateException or call DescribeKey to check its KeyState value before using it.

If you mistakenly delete a replica key, you can use this procedure to recreate it. If you replicate the
same primary key in the same Region, the new replica key you create will have the same shared
properties as the original replica key.

Important

Do not include confidential or sensitive information in the alias, description, or tags. These
fields may appear in plain text in CloudTrail logs and other output.

To use a Amazon CloudFormation template to create a replica key, see AWS::KMS::ReplicaKey in the
Amazon CloudFormation User Guide.

Create multi-Region replica keys 291

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kms-replicakey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kms-replicakey.html

Amazon Key Management Service Developer Guide

Step 1: Choose replica Regions

You typically choose to replicate a multi-Region key into an Amazon Web Services Region based
on your business model and regulatory requirements. For example, you might replicate a key into
Regions where you keep your resources. Or, to comply with a disaster recovery requirement, you
might replicate a key into geographically distant Regions.

The following are the Amazon KMS requirements for replica Regions. If the Region that you choose
doesn't comply with these requirements, attempts to replicate a key fail.

• One related multi-Region key per Region — You can't create a replica key in the same Region as
its primary key, or in the same Region as another replica of the primary key.

If you try to replicate a primary key in a Region that already has a replica of that primary key, the
attempt fails. If the current replica key in the Region is in the PendingDeletion key state, you
can cancel the replica key deletion or wait until the replica key is deleted.

• Multiple unrelated multi-Region keys in the same Region — You can have multiple unrelated
multi-Region keys in the same Region. For example, you can have two multi-Region primary keys
in the us-east-1 Region. Each of the primary keys can have a replica key in us-west-2 Region.

• Regions in the same partition — The replica key Region must be in the same Amazon partition
as the primary key Region.

• Region must be enabled — If a Region is disabled by default, you cannot create any resources in
that Region until it is enabled for your Amazon Web Services account.

Step 2: Create replica keys

Note

When creating replica keys, carefully consider the IAM users and roles that you select
to administer and use the replica key. IAM policies can give other IAM users and roles
permission to manage the KMS key.
IAM best practices discourage the use of IAM users with long-term credentials. Whenever
possible, use IAM roles, which provide temporary credentials. For details, see Security best
practices in IAM in the IAM User Guide.

Step 1: Choose replica Regions 292

https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html
https://docs.amazonaws.cn/general/latest/gr/rande-manage.html#rande-manage-enable
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

Using the Amazon KMS console

In the Amazon KMS console, you can create one or many replicas of a multi-Region primary key in
the same operation.

This procedure is similar to creating a standard single-Region KMS key in the console. However,
because a replica key is based on the primary key, you do not select values for shared properties,
such as the key spec (symmetric or asymmetric), key usage, or key origin.

You do specify properties that are not shared, including an alias, tags, a description, and a key
policy. As a convenience, the console displays the current property values of the primary key, but
you can change them. Even if you keep the primary key values, Amazon KMS does not keep these
values synchronized.

Important

Do not include confidential or sensitive information in the alias, description, or tags. These
fields may appear in plain text in CloudTrail logs and other output.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Select the key ID or alias of a multi-Region primary key. This opens the key details page for the
KMS key.

To identify a multi-Region primary key, use the tool icon in the upper right corner to add the
Regionality column to the table.

5. Choose the Regionality tab.

6. In the Related multi-Region keys section, choose Create new replica keys.

The Related multi-Region keys section displays the Region of the primary key and its replica
keys. You can use this display to help you choose the Region for your new replica key.

7. Choose one or more Amazon Web Services Regions. This procedure creates a replica key in
each of the Regions you select.

Step 2: Create replica keys 293

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

The menu includes only Regions in the same Amazon partition as the primary key. Regions
that already have a related multi-Region key are displayed, but not selectable. You might not
have permission to replicate a key into all of the Regions on the menu.

When you are finished choosing Regions, close the menu. The Regions you chose are displayed.
To cancel replication into a Region, choose the X beside the Region name.

8. Type an alias for the replica key.

The console displays one of the current aliases of the primary key, but you can change it. You
can give your multi-Region primary key and its replicas the same alias or different aliases.
Aliases are not a shared property of multi-Region keys. Amazon KMS does not synchronize the
aliases of multi-Region keys.

Adding, deleting, or updating an alias can allow or deny permission to the KMS key. For details,
see ABAC for Amazon KMS and Use aliases to control access to KMS keys.

9. (Optional) Type a description of the replica key.

The console displays the current description of the primary key, but you can change it.
Descriptions are not a shared property of multi-Region keys. You can give your multi-Region
primary key and its replicas the same description or different descriptions. Amazon KMS does
not synchronize the key descriptions of multi-Region keys.

10. (Optional) Type a tag key and an optional tag value. To assign more than one tag to the replica
key, choose Add tag.

The console displays the tags currently attached to the primary key, but you can change them.
Tags are not a shared property of multi-Region keys. You can give your multi-Region primary
key and its replicas the same tags or different tags. Amazon KMS does not synchronize the
tags of multi-Region keys.

Tagging or untagging a KMS key can allow or deny permission to the KMS key. For details, see
ABAC for Amazon KMS and Use tags to control access to KMS keys.

11. Select the IAM users and roles that can administer the replica key.

Notes

• If you modified the default key policy when creating your multi-Region primary key,
the console won't prompt you to select key administrators or key users (steps 11-15)

Step 2: Create replica keys 294

Amazon Key Management Service Developer Guide

during replica key creation. In this case, you'll need to manually add the necessary
permissions for key administrators and users to the key policy by selecting Edit in
the Edit key policy step (Step 17).

• This step begins the process of creating a key policy for the replica key. The console
displays the current key policy of the primary key, but you can change it. Key policies
are not a shared property of multi-Region keys. You can give your multi-Region
primary key and its replicas the same key policy or different key policies. Amazon
KMS does not synchronize key policies. You can change the key policy of any KMS
key at any time.

• The Amazon KMS console adds key administrators to the key policy under the
statement identifier "Allow access for Key Administrators". Modifying
this statement identifier might impact how the console displays updates that you
make to the statement.

12. (Optional) To prevent the selected IAM users and roles from deleting this KMS key, in the Key
deletion section at the bottom of the page, clear the Allow key administrators to delete this
key check box.

13. Choose Next.

14. Select the IAM users and roles that can use the KMS key for cryptographic operations.

Note

The Amazon KMS console adds key users to the key policy under the statement
identifiers "Allow use of the key" and "Allow attachment of persistent
resources". Modifying these statement identifiers might impact how the console
displays updates that you make to the statement.

15. (Optional) You can allow other Amazon Web Services accounts to use this KMS key for
cryptographic operations. To do so, in the Other Amazon Web Services accounts section at
the bottom of the page, choose Add another Amazon Web Services account and enter the
Amazon Web Services account identification number of an external account. To add multiple
external accounts, repeat this step.

Step 2: Create replica keys 295

Amazon Key Management Service Developer Guide

Note

To allow principals in the external accounts to use the KMS key, Administrators of the
external account must create IAM policies that provide these permissions. For more
information, see Allowing users in other accounts to use a KMS key.

16. Choose Next.

17. Review the key policy statements for the key. To make changes to the key policy, select Edit.

18. Choose Next.

19. Review the key settings that you chose. You can still go back and change all settings.

20. Choose Finish to create the multi-Region replica key.

Using the Amazon KMS API

To create a multi-Region replica key, use the ReplicateKey operation. You cannot use the CreateKey
operation to create a replica key. This operation creates one replica key at a time. The Region that
you specify must comply with the Region requirements for replica keys.

When you use the ReplicateKey operation, you don't specify values for any shared properties of
multi-Region keys. Shared property values are copied from the primary key and kept synchronized.
However, you can specify values for properties that are not shared. Otherwise, Amazon KMS
applies the standard default values for KMS keys, not the values of the primary key.

Note

If you don't specify values for the Description, KeyPolicy, or Tags parameters,
Amazon KMS creates the replica key with an empty string description, the default key
policy, and no tags.
Do not include confidential or sensitive information in the Description or Tags fields.
These fields may appear in plain text in CloudTrail logs and other output.

For example, the following command creates a multi-Region replica key in the Asia Pacific (Sydney)
Region (ap-southeast-2). This replica key is modeled on the primary key in the US East (N. Virginia)
Region (us-east-1), which is identified by the value of the KeyId parameter. This example accepts
default values for all other properties, including the key policy.

Step 2: Create replica keys 296

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

The response describes the new replica key. It includes fields for shared properties, such as the
KeyId, KeySpec, KeyUsage, and key material origin (Origin). It also includes properties that are
independent of the primary key, such as the Description, key policy (ReplicaKeyPolicy), and
tags (ReplicaTags).

The response also includes the key ARN and region of the primary key and all of its replica
keys, including the one that was just created in the ap-southeast-2 Region. In this example, the
ReplicaKey element shows that this primary key was already replicated in the Europe (Ireland)
Region (eu-west-1).

$ aws kms replicate-key \
 --key-id arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab \
 --replica-region ap-southeast-2
{
 "ReplicaKeyMetadata": {
 "MultiRegion": true,
 "MultiRegionConfiguration": {
 "MultiRegionKeyType": "REPLICA",
 "PrimaryKey": {
 "Arn": "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "us-east-1"
 },
 "ReplicaKeys": [
 {
 "Arn": "arn:aws:kms:ap-southeast-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "ap-southeast-2"
 },
 {
 "Arn": "arn:aws:kms:eu-west-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "eu-west-1"
 }
]
 },
 "AWSAccountId": "111122223333",
 "Arn": "arn:aws:kms:ap-southeast-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "CreationDate": 1607472987.918,
 "Description": "",

Step 2: Create replica keys 297

Amazon Key Management Service Developer Guide

 "Enabled": true,
 "KeyId": "mrk-1234abcd12ab34cd56ef1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "Origin": "AWS_KMS",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 },
 "ReplicaKeyPolicy": "{\n \"Version\" : \"2012-10-17\",\n \"Id\" : \"key-
default-1\",...,
 "ReplicaTags": []
}

Create a KMS key with imported key material

Imported key material lets you protect your Amazon resources under cryptographic keys that you
generate. The following overview explains how to import your key material into Amazon KMS. For
more details about each step in the process, see the corresponding topics.

1. Create a KMS key with no key material – The origin must be EXTERNAL. A key origin of
EXTERNAL indicates that the key is designed for imported key material and prevents Amazon
KMS from generating key material for the KMS key. In a later step you will import your own key
material into this KMS key.

The key material that you import must be compatible with the key spec of the associated
Amazon KMS key. For more information about compatibility, see the section called
“Requirements for imported key material”.

2. Download the wrapping public key and import token – After completing step 1, download
a wrapping public key and an import token. These items protect your key material while it's
imported to Amazon KMS.

In this step, you choose the type ("key spec") of the RSA wrapping key and the wrapping
algorithm that you'll use to encrypt your data in transit to Amazon KMS. You can choose a
different wrapping key spec and wrapping key algorithm each time you import or reimport the
same key material.

Create a KMS key with imported key material 298

Amazon Key Management Service Developer Guide

3. Encrypt the key material – Use the wrapping public key that you downloaded in step 2 to
encrypt the key material that you created on your own system.

4. Import the key material – Upload the encrypted key material that you created in step 3 and the
import token that you downloaded in step 2.

At this stage, you can set an optional expiration time. When imported key material expires,
Amazon KMS deletes it, and the KMS key becomes unusable. To continue to use the KMS key,
you must reimport the same key material.

When the import operation completes successfully, the key state of the KMS key changes from
PendingImport to Enabled. You can now use the KMS key in cryptographic operations.

Amazon KMS records an entry in your Amazon CloudTrail log when you create the KMS key,
download the wrapping public key and import token, and import the key material. Amazon KMS
also records an entry when you delete imported key material or when Amazon KMS deletes expired
key material.

Permissions for importing key material

To create and manage KMS keys with imported key material, the user needs permission
for the operations in this process. You can provide the kms:GetParametersForImport,
kms:ImportKeyMaterial, and kms:DeleteImportedKeyMaterial permissions in the key
policy when you create the KMS key. In the Amazon KMS console, these permissions are added
automatically for key administrators when you create a key with an External key material origin.

To create KMS keys with imported key material, the principal needs the following permissions.

• kms:CreateKey (IAM policy)

• To limit this permission to KMS keys with imported key material, use the kms:KeyOrigin policy
condition with a value of EXTERNAL.

{
 "Sid": "CreateKMSKeysWithoutKeyMaterial",
 "Effect": "Allow",
 "Resource": "*",
 "Action": "kms:CreateKey",
 "Condition": {
 "StringEquals": {
 "kms:KeyOrigin": "EXTERNAL"

Permissions for importing key material 299

Amazon Key Management Service Developer Guide

 }
 }
}

• kms:GetParametersForImport (Key policy or IAM policy)

• To limit this permission to requests that use a particular wrapping algorithm and wrapping key
spec, use the kms:WrappingAlgorithm and kms:WrappingKeySpec policy conditions.

• kms:ImportKeyMaterial (Key policy or IAM policy)

• To allow or prohibit key material that expires and control the expiration date, use the
kms:ExpirationModel and kms:ValidTo policy conditions.

To reimport imported key material, the principal needs the kms:GetParametersForImport and
kms:ImportKeyMaterial permissions.

To delete imported key material, the principal needs kms:DeleteImportedKeyMaterial permission.

For example, to give the example KMSAdminRole permission to manage all aspects of a KMS key
with imported key material, include a key policy statement like the following one in the key policy
of the KMS key.

{
 "Sid": "Manage KMS keys with imported key material",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/KMSAdminRole"
 },
 "Action": [
 "kms:GetParametersForImport",
 "kms:ImportKeyMaterial",
 "kms:DeleteImportedKeyMaterial"
]
}

Requirements for imported key material

The key material that you import must be compatible with the key spec of the associated KMS key.
For asymmetric key pairs, import only the private key of the pair. Amazon KMS derives the public
key from the private key.

Requirements for imported key material 300

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html

Amazon Key Management Service Developer Guide

Amazon KMS supports the following key specs for KMS keys with imported key material.

KMS key key spec Key material requirements

Symmetric encryption keys
SYMMETRIC_DEFAULT

256-bits (32 bytes) of binary data

In China Regions, it must be a 128-bits (16
bytes) of binary data.

HMAC keys

HMAC_224

HMAC_256

HMAC_384

HMAC_512

HMAC key material must conform to RFC
2104.

The key length must be at least the same
length specified by the key spec. The
maximum key length is 1024-bits.

RSA asymmetric private key

RSA_2048

RSA_3072

RSA_4096

The RSA asymmetric private key that you
import must be part of a key pair that
conforms to RFC 3447.

Modulus: 2048 bits, 3072 bits or 4096 bits

Number of primes: 2 (multi-prime RSA keys
are not supported)

Asymmetric key material must be BER-encod
ed or DER-encoded in Public-Key Cryptogra
phy Standards (PKCS) #8 format that complies
with RFC 5208.

Elliptic curve asymmetric private key

ECC_NIST_P256 (secp256r1)

ECC_NIST_P384 (secp384r1)

ECC_NIST_P521 (secp521r1)

ECC_SECG_P256K1 (secp256k1)

The ECC asymmetric private key that you
import must be part of a key pair that
conforms to RFC 5915.

Curve: NIST P-256, NIST P-384, NIST P-521, or
Secp256k1

Requirements for imported key material 301

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3447/
https://datatracker.ietf.org/doc/html/rfc5208
https://datatracker.ietf.org/doc/html/rfc5208
https://datatracker.ietf.org/doc/html/rfc5915/

Amazon Key Management Service Developer Guide

KMS key key spec Key material requirements

Parameters: Named curves only (ECC keys
with explicit parameters are rejected)

Public point coordinates: May be compressed,
uncompressed, or projective

Asymmetric key material must be BER-encod
ed or DER-encoded in Public-Key Cryptogra
phy Standards (PKCS) #8 format that complies
with RFC 5208.

ML-DSA key

ML_DSA_44

ML_DSA_65

ML_DSA_87

Importing ML-DSA keys is not supported.

SM2 asymmetric private key (China Regions
only)

The SM2 asymmetric private key that you
import must be part of a key pair that
conforms to GM/T 0003.

Curve: SM2

Parameters: Named curve only (SM2 keys with
explicit parameters are rejected)

Public point coordinates: May be compressed,
uncompressed, or projective

Asymmetric key material must be BER-encod
ed or DER-encoded in Public-Key Cryptogra
phy Standards (PKCS) #8 format that complies
with RFC 5208.

Requirements for imported key material 302

https://datatracker.ietf.org/doc/html/rfc5208
https://datatracker.ietf.org/doc/html/rfc5208
https://datatracker.ietf.org/doc/html/rfc5208
https://datatracker.ietf.org/doc/html/rfc5208

Amazon Key Management Service Developer Guide

Step 1: Create an Amazon KMS key without key material

By default, Amazon KMS creates key material for you when you create a KMS key. To import your
own key material instead, start by creating a KMS key with no key material. Then import the key
material. To create a KMS key with no key material, use Amazon KMS console or the CreateKey
operation.

To create a key with no key material, specify an origin of EXTERNAL. The origin property of a KMS
key is immutable. Once you create it, you cannot convert a KMS key designed for imported key
material into a KMS key with key material from Amazon KMS or any other source.

The key state of a KMS key with an EXTERNAL origin and no key material is PendingImport. A
KMS key can remain in PendingImport state indefinitely. However, you cannot use a KMS key in
PendingImport state in cryptographic operations. When you import key material, the key state of
the KMS key changes to Enabled, and you can use it in cryptographic operations.

Amazon KMS records an event in your Amazon CloudTrail log when you create the KMS key,
download the public key and import token, and import the key material. Amazon KMS also records
a CloudTrail event when you delete imported key material or when Amazon KMS deletes expired
key material.

Topics

• Creating a KMS key with no key material (console)

• Creating a KMS key with no key material (Amazon KMS API)

Creating a KMS key with no key material (console)

You only need to create a KMS key for the imported key material once. You can import and
reimport the same key material into the existing KMS key as often as you need to, but you cannot
import different key material into a KMS key. For details, see Step 2: Download the wrapping public
key and import token.

To find existing KMS keys with imported key material in your Customer managed keys table, use
the gear icon in the upper right corner to show the Origin column in the list of KMS keys. Imported
keys have an Origin value of External (Import Key material).

To create a KMS key with imported key material, begin by following the instructions for creating a
KMS key of your preferred key type, with the following exception.

Step 1: Create an Amazon KMS key without key material 303

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

After choosing the key usage, do the following:

1. Expand Advanced options.

2. For Key material origin, choose External (Import key material).

3. Choose the check box next to I understand the security and durability implications of using an
imported key to indicate that you understand the implications of using imported key material.
To read about these implications, see Protecting imported key material.

4. Optional: To create a multi-Region KMS key with imported key material, under Regionality
select Multi-Region key.

5. Return to the basic instructions. The remaining steps of the basic procedure are the same for all
KMS keys of that type.

When you choose Finish, you have created a KMS key with no key material and a status (key state)
of Pending import.

However. instead of returning to the Customer managed keys table, the console displays a page
where you can download the public key and import token that you need to import your key
material. You can continue with the download step now, or choose Cancel to stop at this point. You
can return to this download step at any time.

Next: Step 2: Download the wrapping public key and import token.

Creating a KMS key with no key material (Amazon KMS API)

To use the Amazon KMS API to create a symmetric encryption KMS key with no key material, send
a CreateKey request with the Origin parameter set to EXTERNAL. The following example shows
how to do this with the Amazon Command Line Interface (Amazon CLI).

$ aws kms create-key --origin EXTERNAL

When the command is successful, you see output similar to the following. The Amazon KMS key's
Origin is EXTERNAL and its KeyState is PendingImport.

Tip

If the command does not succeed, you might see a KMSInvalidStateException or a
NotFoundException. You can retry the request.

Step 1: Create an Amazon KMS key without key material 304

https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

{
 "KeyMetadata": {
 "Origin": "EXTERNAL",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "Enabled": false,
 "MultiRegion": false,
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "PendingImport",
 "CreationDate": 1568289600.0,
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "KeyManager": "CUSTOMER",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

Copy the KeyId value from your command output to use in later steps, and then proceed to Step
2: Download the wrapping public key and import token.

Note

This command creates a symmetric encryption KMS key with a KeySpec of
SYMMETRIC_DEFAULT and KeyUsage of ENCRYPT_DECRYPT. You can use the optional
parameters --key-spec and --key-usage to create an asymmetric or HMAC KMS key.
For more information, see the CreateKey operation.

Step 2: Download the wrapping public key and import token

After you create a Amazon KMS key with no key material, download a wrapping public key and an
import token for that KMS key by using the Amazon KMS console or the GetParametersForImport
API. The wrapping public key and import token are an indivisible set that must be used together.

You will use the wrapping public key to encrypt your key material for transport. Before
downloading an RSA wrapping key pair, you select the length (key spec) of the RSA wrapping

Step 2: Download the wrapping public key and import token 305

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html

Amazon Key Management Service Developer Guide

key pair and the wrapping algorithm that you will use to encrypt your imported key material for
transport in step 3. Amazon KMS also supports the SM2 wrapping key spec (China Regions only).

Each wrapping public key and import token set is valid for 24 hours. If you don't use them to
import key material within 24 hours of downloading them, you must download a new set. You can
download new wrapping public key and import token sets at any time. This lets you change your
RSA wrapping key length ("key spec") or replace a lost set.

You can also download a wrapping public key and import token set to reimport the same key
material into a KMS key. You might do this to set or change the expiration time for the key
material, or to restore expired or deleted key material. You must download and re-encrypt your key
material every time you import it to Amazon KMS.

Use of the wrapping public key

The download includes a public key that is unique to your Amazon Web Services account, also
called a wrapping public key.

Before you import key material, you encrypt the key material with the public wrapping key,
and then upload the encrypted key material to Amazon KMS. When Amazon KMS receives your
encrypted key material, it decrypts the key material with the corresponding private key, then
reencrypts the key material under an AES symmetric key, all within an Amazon KMS hardware
security module (HSM).

Use of the import token

The download includes an import token with metadata that ensures that your key material is
imported correctly. When you upload your encrypted key material to Amazon KMS, you must
upload the same import token that you downloaded in this step.

Select a wrapping public key spec

To protect your key material during import, you encrypt it using wrapping public key that you
download from Amazon KMS, and a supported wrapping algorithm. You select a key spec before
you download your wrapping public key and import token. All wrapping key pairs are generated
in Amazon KMS hardware security modules (HSMs). The private key never leaves the HSM in plain
text.

Step 2: Download the wrapping public key and import token 306

Amazon Key Management Service Developer Guide

RSA wrapping key specs

The key spec of the wrapping public key determines the length of the keys in the RSA key pair
that protects your key material during its transport to Amazon KMS. In general, we recommend
using the longest wrapping public key that is practical. We offer several wrapping public key
specs to support a variety of HSMs and key managers.

Amazon KMS supports the following key specs for the RSA wrapping keys used to import key
material of all types, except as noted.

• RSA_4096 (preferred)

• RSA_3072

• RSA_2048

Note

The following combination is NOT supported: ECC_NIST_P521 key material,
the RSA_2048 public wrapping key spec, and an RSAES_OAEP_SHA_* wrapping
algorithm.
You cannot directly wrap ECC_NIST_P521 key material with a RSA_2048 public
wrapping key. Use a larger wrapping key or an RSA_AES_KEY_WRAP_SHA_* wrapping
algorithm.

SM2 wrapping key spec (China Regions only)

Amazon KMS supports the following key spec for the SM2 wrapping keys used to import
asymmetric key material.

• SM2

Select a wrapping algorithm

To protect your key material during import, you encrypt it using the downloaded wrapping public
key and a supported wrapping algorithm.

Amazon KMS supports several standard RSA wrapping algorithms and a two-step hybrid wrapping
algorithm. In general, we recommend using the most secure wrapping algorithm that is compatible
with your imported key material and wrapping key spec. Typically, you choose an algorithm that is
supported by the hardware security module (HSM) or key management system that protects your
key material.

Step 2: Download the wrapping public key and import token 307

Amazon Key Management Service Developer Guide

The following table shows the wrapping algorithms that are supported for each type of key
material and KMS key. The algorithms are listed in preference order.

Key material Supported wrapping algorithm and spec

Symmetric encryption key

256-bit AES key

128-bit SM4 key (China Regions only)

Wrapping algorithms:

RSAES_OAEP_SHA_256

RSAES_OAEP_SHA_1

Deprecated wrapping algorithms:

RSAES_PKCS1_V1

Note

As of October 10, 2023, Amazon
KMS does not support the
RSAES_PKCS1_V1_5 wrapping
algorithm.

Wrapping key specs:

RSA_2048

RSA_3072

RSA_4096

Asymmetric RSA private key Wrapping algorithms:

RSA_AES_KEY_WRAP_SHA_256

RSA_AES_KEY_WRAP_SHA_1

SM2PKE (China Regions only)

Wrapping key specs:

RSA_2048

Step 2: Download the wrapping public key and import token 308

Amazon Key Management Service Developer Guide

Key material Supported wrapping algorithm and spec

RSA_3072

RSA_4096

SM2 (China Regions only)

Asymmetric elliptic curve (ECC) private key

You cannot use the RSAES_OAEP_SHA_*
wrapping algorithms with the RSA_2048
wrapping key spec to wrap ECC_NIST_P521
key material.

Wrapping algorithms:

RSA_AES_KEY_WRAP_SHA_256

RSA_AES_KEY_WRAP_SHA_1

RSAES_OAEP_SHA_256

RSAES_OAEP_SHA_1

SM2PKE (China Regions only)

Wrapping key specs:

RSA_2048

RSA_3072

RSA_4096

SM2 (China Regions only)

Step 2: Download the wrapping public key and import token 309

Amazon Key Management Service Developer Guide

Key material Supported wrapping algorithm and spec

Asymmetric SM2 private key (China Regions
only)

Wrapping algorithms:

RSAES_OAEP_SHA_256

RSAES_OAEP_SHA_1

SM2PKE (China Regions only)

Wrapping key specs:

RSA_2048

RSA_3072

RSA_4096

SM2 (China Regions only)

HMAC key Wrapping algorithms:

RSAES_OAEP_SHA_256

RSAES_OAEP_SHA_1

Wrapping key specs:

RSA_2048

RSA_3072

RSA_4096

Note

The RSA_AES_KEY_WRAP_SHA_256 and RSA_AES_KEY_WRAP_SHA_1 wrapping algorithms
are not supported in China Regions.

• RSA_AES_KEY_WRAP_SHA_256 – A two-step hybrid wrapping algorithm that combines
encrypting your key material with an AES symmetric key that you generate, and then

Step 2: Download the wrapping public key and import token 310

Amazon Key Management Service Developer Guide

encrypting the AES symmetric key with the downloaded RSA public wrapping key and the
RSAES_OAEP_SHA_256 wrapping algorithm.

An RSA_AES_KEY_WRAP_SHA_* wrapping algorithm is required for wrapping RSA private key
material, except in China Regions, where you must use the SM2PKE wrapping algorithm.

• RSA_AES_KEY_WRAP_SHA_1 – A two-step hybrid wrapping algorithm that combines encrypting
your key material with an AES symmetric key that you generate, and then encrypting the AES
symmetric key with the downloaded RSA wrapping public key and the RSAES_OAEP_SHA_1
wrapping algorithm.

An RSA_AES_KEY_WRAP_SHA_* wrapping algorithm is required for wrapping RSA private key
material, except in China Regions, where you must use the SM2PKE wrapping algorithm.

• RSAES_OAEP_SHA_256 – The RSA encryption algorithm with Optimal Asymmetric Encryption
Padding (OAEP) with the SHA-256 hash function.

• RSAES_OAEP_SHA_1 – The RSA encryption algorithm with Optimal Asymmetric Encryption
Padding (OAEP) with the SHA-1 hash function.

• RSAES_PKCS1_V1_5 (Deprecated; as of October 10, 2023, Amazon KMS does not support the
RSAES_PKCS1_V1_5 wrapping algorithm) – The RSA encryption algorithm with the padding
format defined in PKCS #1 Version 1.5.

• SM2PKE (China Regions only) – An elliptic curve based encryption algorithm defined by OSCCA in
GM/T 0003.4-2012.

Topics

• Downloading the wrapping public key and import token (console)

• Downloading the wrapping public key and import token (Amazon KMS API)

Downloading the wrapping public key and import token (console)

You can use the Amazon KMS console to download the wrapping public key and import token.

1. If you just completed the steps to create a KMS key with no key material and you are on the
Download wrapping key and import token page, skip to Step 9.

2. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

Step 2: Download the wrapping public key and import token 311

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

3. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

4. In the navigation pane, choose Customer managed keys.

Tip

You can import key material only into an KMS key with an Origin
of External (Import key material). This indicates that the KMS key
was created with no key material. To add the Origin column to your
table, in the upper-right corner of the page, choose the settings icon

().
Turn on Origin, and then choose Confirm.

5. Choose the alias or key ID of the KMS key that is pending import.

6. Choose the Cryptographic configuration tab and view its values. The tabs are below the
General configuration section.

You can only import key material into KMS keys an Origin of External (Import Key material).
For information about creating KMS keys with imported key material, see, Importing key
material for Amazon KMS keys.

7. Choose the Key material tab and then choose Import key material.

The Key material tab appears only for KMS keys that have an Origin value of External
(Import Key material).

8. For Select wrapping key spec, choose the configuration for your KMS key. After you create this
key, you can't change the key spec.

9. For Select wrapping algorithm, choose the option that you will use to encrypt your key
material. For more information about the options, see Select a Wrapping Algorithm.

10. Choose Download wrapping public key and import token, and then save the file.

If you have a Next option, to continue the process now, choose Next. To continue later, choose
Cancel.

11. Decompress the .zip file that you saved in the previous step
(Import_Parameters_<key_id>_<timestamp>).

The folder contains the following files:

Step 2: Download the wrapping public key and import token 312

Amazon Key Management Service Developer Guide

• A wrapping public key in a file named WrappingPublicKey.bin.

• An import token in a file named ImportToken.bin.

• A text file named README.txt. This file contains information about the wrapping public key,
the wrapping algorithm to use to encrypt your key material, and the date and time when the
wrapping public key and import token expire.

12. To continue the process, see encrypt your key material.

Downloading the wrapping public key and import token (Amazon KMS API)

To download the public key and import token, use the GetParametersForImport API. Specify the
KMS key that will be associated with the imported key material. This KMS key must have an Origin
value of EXTERNAL.

Note

You can't import key material for ML-DSA KMS keys.

This example specifies the RSA_AES_KEY_WRAP_SHA_256 wrapping algorithm, the RSA_3072
wrapping public key spec, and an example key ID. Replace these example values with valid values
for your download. For the key ID, you can use a key ID or key ARN, but you cannot use an alias
name or alias ARN in this operation.

$ aws kms get-parameters-for-import \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --wrapping-algorithm RSA_AES_KEY_WRAP_SHA_256 \
 --wrapping-key-spec RSA_3072

When the command is successful, you see output similar to the following:

{
 "ParametersValidTo": 1568290320.0,
 "PublicKey": "public key (base64 encoded)",
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "ImportToken": "import token (base64 encoded)"
}

Step 2: Download the wrapping public key and import token 313

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html

Amazon Key Management Service Developer Guide

To prepare the data for the next step, base64 decode the public key and import token and save the
decoded values in files.

To base64 decode the public key and import token:

1. Copy the base64 encoded public key (represented by public key (base64 encoded) in
the example output), paste it into a new file, and then save the file. Give the file a descriptive
name, such as PublicKey.b64.

2. Use OpenSSL to base64 decode the file's contents and save the decoded data to a new
file. The following example decodes the data in the file that you saved in the previous step
(PublicKey.b64) and saves the output to a new file named WrappingPublicKey.bin.

$ openssl enc -d -base64 -A -in PublicKey.b64 -out WrappingPublicKey.bin

3. Copy the base64 encoded import token (represented by import token (base64 encoded)
in the example output), paste it into a new file, and then save the file. Give the file a
descriptive name, for example importtoken.b64.

4. Use OpenSSL to base64 decode the file's contents and save the decoded data to a new
file. The following example decodes the data in the file that you saved in the previous step
(ImportToken.b64) and saves the output to a new file named ImportToken.bin.

$ openssl enc -d -base64 -A -in importtoken.b64 -out ImportToken.bin

Proceed to Step 3: Encrypt the key material.

Step 3: Encrypt the key material

After you download the public key and import token, encrypt your key material using the public
key that you downloaded and the wrapping algorithm that you specified. If you need to replace
the public key or import token, or change the wrapping algorithm, you must download a new
public key and import token. For information about the public keys and wrapping algorithms that
Amazon KMS supports, see Select a wrapping public key spec and Select a wrapping algorithm.

The key material must be in binary format. For detailed information, see Requirements for
imported key material.

Step 3: Encrypt the key material 314

https://openssl.org/
https://openssl.org/

Amazon Key Management Service Developer Guide

Note

For asymmetric key pairs, encrypt and import only the private key. Amazon KMS derives the
public key from the private key.
The following combination is NOT supported: ECC_NIST_P521 key material, the RSA_2048
public wrapping key spec, and an RSAES_OAEP_SHA_* wrapping algorithm.
You cannot directly wrap ECC_NIST_P521 key material with a RSA_2048 public wrapping
key. Use a larger wrapping key or an RSA_AES_KEY_WRAP_SHA_* wrapping algorithm.
The RSA_AES_KEY_WRAP_SHA_256 and RSA_AES_KEY_WRAP_SHA_1 wrapping algorithms
are not supported in China Regions.

Typically, you encrypt your key material when you export it from your hardware security module
(HSM) or key management system. For information about how to export key material in binary
format, see the documentation for your HSM or key management system. You can also refer to the
following section that provides a proof of concept demonstration using OpenSSL.

When you encrypt your key material, use the same wrapping algorithm that you specified when
you downloaded the public key and import token. To find the wrapping algorithm that you
specified, see the CloudTrail log event for the associated GetParametersForImport request.

Generate key material for testing

The following OpenSSL commands generate key material of each supported type for testing.
These examples are provided only for testing and proof-of-concept demonstrations. For production
systems, use a more secure method to generate your key material, such as a hardware security
module or key management system.

To convert the private keys of asymmetric key pairs into DER-encoded format, pipe the key
material generation command to the following openssl pkcs8 command. The topk8 parameter
directs OpenSSL to take a private key as input and return a PKCS#8 formatted key. (The default
behavior is the opposite.)

openssl pkcs8 -topk8 -outform der -nocrypt

The following commands generate test key material for each of the supported key types.

• Symmetric encryption key (32 bytes)

Step 3: Encrypt the key material 315

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html

Amazon Key Management Service Developer Guide

This command generates a 256-bit symmetric key (32-byte random string) and saves it in the
PlaintextKeyMaterial.bin file. You do not need to encode this key material.

openssl rand -out PlaintextKeyMaterial.bin 32

In China Regions only, you must generate a 128-bit symmetric key (16-byte random string).

openssl rand -out PlaintextKeyMaterial.bin 16

• HMAC keys

This command generates a random byte string of the specified size. You do not need to encode
this key material.

The length of your HMAC key must match the length defined by the key spec of the KMS key. For
example, if the KMS key is HMAC_384, you must import a 384-bit (48-byte) key.

openssl rand -out HMAC_224_PlaintextKey.bin 28

openssl rand -out HMAC_256_PlaintextKey.bin 32

openssl rand -out HMAC_384_PlaintextKey.bin 48

openssl rand -out HMAC_512_PlaintextKey.bin 64

• RSA private keys

openssl genpkey -algorithm rsa -pkeyopt rsa_keygen_bits:2048 | openssl pkcs8 -topk8 -
outform der -nocrypt > RSA_2048_PrivateKey.der

openssl genpkey -algorithm rsa -pkeyopt rsa_keygen_bits:3072 | openssl pkcs8 -topk8 -
outform der -nocrypt > RSA_3072_PrivateKey.der

openssl genpkey -algorithm rsa -pkeyopt rsa_keygen_bits:4096 | openssl pkcs8 -topk8 -
outform der -nocrypt > RSA_4096_PrivateKey.der

• ECC private keys

openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:P-256 | openssl pkcs8 -topk8
 -outform der -nocrypt > ECC_NIST_P256_PrivateKey.der

Step 3: Encrypt the key material 316

Amazon Key Management Service Developer Guide

openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:P-384 | openssl pkcs8 -topk8
 -outform der -nocrypt > ECC_NIST_P384_PrivateKey.der

openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:P-521 | openssl pkcs8 -topk8
 -outform der -nocrypt > ECC_NIST_P521_PrivateKey.der

openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:secp256k1 | openssl pkcs8 -
topk8 -outform der -nocrypt > ECC_SECG_P256K1_PrivateKey.der

• SM2 private keys (China Regions only)

openssl genpkey -algorithm ec -pkeyopt ec_paramgen_curve:sm2 | openssl pkcs8 -topk8 -
outform der -nocrypt > SM2_PrivateKey.der

Examples of encrypting key material with OpenSSL

The following examples show how to use OpenSSL to encrypt your key material with the public key
that you downloaded. To encrypt your key material using an SM2 public key (China Regions only),
use the SM2OfflineOperationHelper class. For more information on the key material types
that each wrapping algorithm supports, see the section called “Select a wrapping algorithm”.

Important

These examples are a proof of concept demonstration only. For production systems, use a
more secure method (such as a commercial HSM or key management system) to generate
and store your key material.
The following combination is NOT supported: ECC_NIST_P521 key material, the RSA_2048
public wrapping key spec, and an RSAES_OAEP_SHA_* wrapping algorithm.
You cannot directly wrap ECC_NIST_P521 key material with a RSA_2048 public wrapping
key. Use a larger wrapping key or an RSA_AES_KEY_WRAP_SHA_* wrapping algorithm.

RSAES_OAEP_SHA_1

Amazon KMS supports the RSAES_OAEP_SHA_1 for symmetric encryption keys
(SYMMETRIC_DEFAULT), elliptic curve (ECC) private keys, SM2 private keys, and HMAC keys.

RSAES_OAEP_SHA_1 is not supported for RSA private keys. Also, you cannot use an
RSA_2048 public wrapping key with any RSAES_OAEP_SHA_* wrapping algorithm to wrap

Step 3: Encrypt the key material 317

https://openssl.org/

Amazon Key Management Service Developer Guide

an ECC_NIST_P521 (secp521r1) private key. You must use a larger public wrapping key or an
RSA_AES_KEY_WRAP wrapping algorithm.

The following example encrypts your key material with the public key that you
downloaded and the RSAES_OAEP_SHA_1 wrapping algorithm, and saves it in the
EncryptedKeyMaterial.bin file.

In this example:

• WrappingPublicKey.bin is the file that contains the downloaded wrapping public key.

• PlaintextKeyMaterial.bin is the file that contains the key material that you are
encrypting, such as PlaintextKeyMaterial.bin, HMAC_384_PlaintextKey.bin or
ECC_NIST_P521_PrivateKey.der.

$ openssl pkeyutl \
 -encrypt \
 -in PlaintextKeyMaterial.bin \
 -out EncryptedKeyMaterial.bin \
 -inkey WrappingPublicKey.bin \
 -keyform DER \
 -pubin \
 -pkeyopt rsa_padding_mode:oaep \
 -pkeyopt rsa_oaep_md:sha1

RSAES_OAEP_SHA_256

Amazon KMS supports the RSAES_OAEP_SHA_256 for symmetric encryption keys
(SYMMETRIC_DEFAULT), elliptic curve (ECC) private keys, SM2 private keys, and HMAC keys.

RSAES_OAEP_SHA_256 is not supported for RSA private keys. Also, you cannot use an
RSA_2048 public wrapping key with any RSAES_OAEP_SHA_* wrapping algorithm to
wrap an ECC_NIST_P521 (secp521r1) private key. You must use a larger public key or an
RSA_AES_KEY_WRAP wrapping algorithm.

The following example encrypts key material with the public key that you downloaded and the
RSAES_OAEP_SHA_256 wrapping algorithm, and saves it in the EncryptedKeyMaterial.bin
file.

In this example:

Step 3: Encrypt the key material 318

Amazon Key Management Service Developer Guide

• WrappingPublicKey.bin is the file that contains the downloaded public wrapping key.
If you downloaded the public key from the console, this file is named wrappingKey_KMS
key_key_ID_timestamp (for example, wrappingKey_f44c4e20-f83c-48f4-adc6-
a1ef38829760_0809092909).

• PlaintextKeyMaterial.bin is the file that contains the key material that you are
encrypting, such as PlaintextKeyMaterial.bin, HMAC_384_PlaintextKey.bin, or
ECC_NIST_P521_PrivateKey.der.

$ openssl pkeyutl \
 -encrypt \
 -in PlaintextKeyMaterial.bin \
 -out EncryptedKeyMaterial.bin \
 -inkey WrappingPublicKey.bin \
 -keyform DER \
 -pubin \
 -pkeyopt rsa_padding_mode:oaep \
 -pkeyopt rsa_oaep_md:sha256 \
 -pkeyopt rsa_mgf1_md:sha256

RSA_AES_KEY_WRAP_SHA_1

The RSA_AES_KEY_WRAP_SHA_1 wrapping algorithm involves two encryption operations.

1. Encrypt your key material with an AES symmetric key that you generate and an AES
symmetric encryption algorithm.

2. Encrypt the AES symmetric key that you used with the public key that you downloaded and
the RSAES_OAEP_SHA_1 wrapping algorithm.

The RSA_AES_KEY_WRAP_SHA_1 wrapping algorithm requires OpenSSL version 3.x or later.

1. Generate a 256-bit AES symmetric encryption key

This command generates an AES symmetric encryption key consisting of 256 random bits,
and saves it in the aes-key.bin file

Generate a 32-byte AES symmetric encryption key
$ openssl rand -out aes-key.bin 32

Step 3: Encrypt the key material 319

Amazon Key Management Service Developer Guide

2. Encrypt your key material with the AES symmetric encryption key

This command encrypts your key material with the AES symmetric encryption key and
saves the encrypted key material in the key-material-wrapped.bin file.

In this example command:

• PlaintextKeyMaterial.bin is the file that contains the key material that you are
importing, such as PlaintextKeyMaterial.bin, HMAC_384_PlaintextKey.bin,
RSA_3072_PrivateKey.der, or ECC_NIST_P521_PrivateKey.der.

• aes-key.bin is the file that contains 256-bit AES symmetric encryption key that you
generated in the previous command.

Encrypt your key material with the AES symmetric encryption key
$ openssl enc -id-aes256-wrap-pad \
 -K "$(xxd -p < aes-key.bin | tr -d '\n')" \
 -iv A65959A6 \
 -in PlaintextKeyMaterial.bin\
 -out key-material-wrapped.bin

3. Encrypt your AES symmetric encryption key with the public key

This command encrypts your AES symmetric encryption key with the public key that you
downloaded and the RSAES_OAEP_SHA_1 wrapping algorithm, DER-encodes it, and save it
in the aes-key-wrapped.bin file.

In this example command:

• WrappingPublicKey.bin is the file that contains the downloaded public wrapping key.
If you downloaded the public key from the console, this file is named wrappingKey_KMS
key_key_ID_timestamp (for example, wrappingKey_f44c4e20-f83c-48f4-adc6-
a1ef38829760_0809092909

• aes-key.bin is the file that contains 256-bit AES symmetric encryption key that you
generated in the first command in this example sequence.

Encrypt your AES symmetric encryption key with the downloaded public key
$ openssl pkeyutl \
 -encrypt \

Step 3: Encrypt the key material 320

Amazon Key Management Service Developer Guide

 -in aes-key.bin \
 -out aes-key-wrapped.bin \
 -inkey WrappingPublicKey.bin \
 -keyform DER \
 -pubin \
 -pkeyopt rsa_padding_mode:oaep \
 -pkeyopt rsa_oaep_md:sha1 \
 -pkeyopt rsa_mgf1_md:sha1

4. Generate the file to import

Concatenate the file with the encrypted key material and the file with the encrypted AES
key. Save them in the EncryptedKeyMaterial.bin file, which is the file that you'll
import in the Step 4: Import the key material.

In this example command:

• key-material-wrapped.bin is the file that contains your encrypted key material.

• aes-key-wrapped.bin is the file that contains the encrypted AES encryption key.

Combine the encrypted AES key and encrypted key material in a file
$ cat aes-key-wrapped.bin key-material-wrapped.bin > EncryptedKeyMaterial.bin

RSA_AES_KEY_WRAP_SHA_256

The RSA_AES_KEY_WRAP_SHA_256 wrapping algorithm involves two encryption operations.

1. Encrypt your key material with an AES symmetric key that you generate and an AES
symmetric encryption algorithm.

2. Encrypt the AES symmetric key that you used with the public key that you downloaded and
the RSAES_OAEP_SHA_256 wrapping algorithm.

The RSA_AES_KEY_WRAP_SHA_256 wrapping algorithm requires OpenSSL version 3.x or later.

1. Generate a 256-bit AES symmetric encryption key

This command generates an AES symmetric encryption key consisting of 256 random bits,
and saves it in the aes-key.bin file

Step 3: Encrypt the key material 321

Amazon Key Management Service Developer Guide

Generate a 32-byte AES symmetric encryption key
$ openssl rand -out aes-key.bin 32

2. Encrypt your key material with the AES symmetric encryption key

This command encrypts your key material with the AES symmetric encryption key and
saves the encrypted key material in the key-material-wrapped.bin file.

In this example command:

• PlaintextKeyMaterial.bin is the file that contains the key material that you are
importing, such as PlaintextKeyMaterial.bin, HMAC_384_PlaintextKey.bin,
RSA_3072_PrivateKey.der, or ECC_NIST_P521_PrivateKey.der.

• aes-key.bin is the file that contains 256-bit AES symmetric encryption key that you
generated in the previous command.

Encrypt your key material with the AES symmetric encryption key
$ openssl enc -id-aes256-wrap-pad \
 -K "$(xxd -p < aes-key.bin | tr -d '\n')" \
 -iv A65959A6 \
 -in PlaintextKeyMaterial.bin\
 -out key-material-wrapped.bin

3. Encrypt your AES symmetric encryption key with the public key

This command encrypts your AES symmetric encryption key with the public key that you
downloaded and the RSAES_OAEP_SHA_256 wrapping algorithm, DER-encodes it, and save
it in the aes-key-wrapped.bin file.

In this example command:

• WrappingPublicKey.bin is the file that contains the downloaded public wrapping key.
If you downloaded the public key from the console, this file is named wrappingKey_KMS
key_key_ID_timestamp (for example, wrappingKey_f44c4e20-f83c-48f4-adc6-
a1ef38829760_0809092909

• aes-key.bin is the file that contains 256-bit AES symmetric encryption key that you
generated in the first command in this example sequence.

Step 3: Encrypt the key material 322

Amazon Key Management Service Developer Guide

Encrypt your AES symmetric encryption key with the downloaded public key
$ openssl pkeyutl \
 -encrypt \
 -in aes-key.bin \
 -out aes-key-wrapped.bin \
 -inkey WrappingPublicKey.bin \
 -keyform DER \
 -pubin \
 -pkeyopt rsa_padding_mode:oaep \
 -pkeyopt rsa_oaep_md:sha256 \
 -pkeyopt rsa_mgf1_md:sha256

4. Generate the file to import

Concatenate the file with the encrypted key material and the file with the encrypted AES
key. Save them in the EncryptedKeyMaterial.bin file, which is the file that you'll
import in the Step 4: Import the key material.

In this example command:

• key-material-wrapped.bin is the file that contains your encrypted key material.

• aes-key-wrapped.bin is the file that contains the encrypted AES encryption key.

Combine the encrypted AES key and encrypted key material in a file
$ cat aes-key-wrapped.bin key-material-wrapped.bin > EncryptedKeyMaterial.bin

Proceed to Step 4: Import the key material.

Step 4: Import the key material

After you encrypt your key material, you can import the key material to use with an Amazon KMS
key. To import key material, you upload the encrypted key material from Step 3: Encrypt the key
material and the import token that you downloaded at Step 2: Download the wrapping public key
and import token. You must import key material into the same KMS key that you specified when
you downloaded the public key and import token. When key material is successfully imported,
the key state of the KMS key changes to Enabled, and you can use the KMS key in cryptographic
operations.

Step 4: Import the key material 323

Amazon Key Management Service Developer Guide

When you import key material, you can set an optional expiration time for the key material.
When the key material expires, Amazon KMS deletes the key material and the KMS key becomes
unusable. After you import your key material, you cannot set, change, or cancel the expiration date
for the current import. To change these values, you must reimport the same key material.

For all KMS keys with EXTERNAL origin, the first key material imported into it becomes current and
permanently associated with it. Single-Region, symmetric encryption keys with EXTERNAL origin
support on-demand rotation. You can associate multiple key materials with imported keys that
support on-demand rotation. You must set the importType parameter to NEW_KEY_MATERIAL
with the ImportKeyMaterial action to associate new key material with a KMS key. This key
material is not permanently associated with the key until you perform the RotateKeyOnDemand
action. Until then, this key material is in PENDING_ROTATION state. The default value of the
optional ImportType parameter is EXISTING_KEY_MATERIAL. When you omit the ImportType
parameter or specify it as EXISTING_KEY_MATERIAL, you must import a key material that is
previously associated with the KMS key.

For asymmetric, HMAC or multi-Region KMS keys with EXTERNAL origin, only one key material can
ever be associated with the key. Amazon KMS will reject ImportKeyMaterial API requests with the
ImportType parameter.

When all key materials permanently associated with a KMS key are imported, the KMS key is
available for use in cryptographic operations. If any one of these key materials is deleted or
allowed to expire, the KMS key state changes to PendingImport and the key is unusable for
cryptographic operations.

To import key material, you can use the Amazon KMS console or the ImportKeyMaterial API. You
can use the API directly by making HTTP requests, or by using an Amazon SDKs, Amazon Command
Line Interface or Amazon Tools for PowerShell.

When you import the key material, an ImportKeyMaterial entry is added to your Amazon CloudTrail
log to record the ImportKeyMaterial operation. The CloudTrail entry is the same whether you
use the Amazon KMS console or the Amazon KMS API.

Setting an expiration time (optional)

When you import the key material for your KMS key, you can set an optional expiration date
and time for the key material of up to 365 days from the import date. When imported key
material expires, Amazon KMS deletes it. This action changes the key state of the KMS key to

Step 4: Import the key material 324

https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
http://www.amazonaws.cn/tools/#sdk
https://docs.amazonaws.cn/cli/latest/userguide/
https://docs.amazonaws.cn/cli/latest/userguide/
https://docs.amazonaws.cn/powershell/latest/userguide/

Amazon Key Management Service Developer Guide

PendingImport, which prevents it from being used in any cryptographic operation. To use the
KMS key, you must reimport a copy of the original key material.

Ensuring that imported key material expires frequently can help you to satisfy regulatory
requirements, but it introduces an additional a risk to data encrypted under the KMS key. Until you
reimport a copy of the original key material, a KMS key with expired key material is unusable, and
any data encrypted under the KMS key is inaccessible. If you fail to reimport the key material for
any reason, including losing your copy of the original key material, the KMS key is permanently
unusable, and data encrypted under the KMS key is unrecoverable.

To mitigate this risk, make sure that your copy of the imported key material is accessible, and
design a system to delete and reimport the key material before it expires and interrupts your
Amazon workload. We recommend that you set an alarm for the expiration of your imported key
material that gives you plenty of time to reimport the key material before it expires. You can also
use your CloudTrail logs to audit operations that import (and reimport) key material and delete
imported key material, and the Amazon KMS operation to delete expired key material.

Amazon KMS cannot restore, recover, or reproduce the deleted key material. Instead of setting
an expiration time, you can programmatically delete and reimport the imported key material
periodically, but the requirements for retaining a copy of the original key material are the same.

You determine whether and when imported key material expires when you import the key material.
However you can turn expiration on and off, or set a new expiration time by reimporting the key
material. Use the ExpirationModel parameter of ImportKeyMaterial to turn expiration on
(KEY_MATERIAL_EXPIRES) and off (KEY_MATERIAL_DOES_NOT_EXPIRE) and the ValidTo
parameter to set the expiration time. The maximum time is 365 days from the import data; there is
no minimum, but the time must be in the future.

Set key material description

Single-Region, symmetric encryption keys with EXTERNAL origin can have multiple key materials
associated with them. You can specify an optional key material description when importing key
material into such keys. The description can be used to keep track of where the corresponding key
material is durably maintained outside Amazon KMS.

Reimport key material

If you manage a KMS key with imported key material, you might need to reimport the key material.
You might reimport key material to replace expiring or deleted key material, or to change the
expiration model or expiration date of the key material.

Step 4: Import the key material 325

https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html

Amazon Key Management Service Developer Guide

You can reimport key material at any time, on any schedule that meets your security requirements.
You do not have to wait until the key material is at or close to its expiration time.

The procedure to reimport key material is the same procedure that you use to import the key
material the first time, with the following exceptions.

• Use an existing KMS key, instead of creating a new KMS key. You can skip Step 1 of the import
procedure.

• When you reimport key material, you can change the expiration model and expiration date.

Each time you import key material to a KMS key, you need to download and use a new wrapping
key and import token for the KMS key. The wrapping procedure does not affect the content of the
key material, so you can use different wrapping public keys and different wrapping algorithms to
import the same key material.

Import new key material

To perform on-demand rotation on a symmetric encryption KMS key with imported key material,
you'll first need to import new key material, not previously associated with the key. Use the
ImportKeyMaterial operation with the ImportType parameter set to NEW_KEY_MATERIAL
to accomplish this task. Key material imported in this manner will be in PENDING_ROTATION
state until you perform the RotateKeyOnDemand operation or rotate the key in the Amazon
Web Services Management Console. A KMS key can have at most one key material in
PENDING_ROTATION state at any time.

Import key material (console)

You can use the Amazon Web Services Management Console to import key material.

1. If you are on the Upload your wrapped key material page, skip to Step 8.

2. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

3. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

4. In the navigation pane, choose Customer managed keys.

5. Choose the key ID or alias of the KMS key for which you downloaded the public key and import
token.

Step 4: Import the key material 326

https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

6. Choose the Cryptographic configuration tab and view its values. The tabs are on the detail
page for a KMS key below the General configuration section.

You can only import key material into KMS keys with an Origin of External (Import key
material). For information about creating KMS keys with imported key material, see Importing
key material for Amazon KMS keys.

7. For asymmetric, HMAC and multi-Region keys, choose the Key material tab and then choose
Import key material. For single-Region, symmetric encryption keys, choose the Key material
and rotations tab. Then, choose either Import initial key material or Import new key
material or Reimport key material. The Reimport key material option is available in the
Actions menu in the key materials table.

If you downloaded the key material, import token, and encrypted the key material, choose
Next.

8. In the Encrypted key material and import token section, do the following.

a. Under Wrapped key material, choose Choose file. Then upload the file that contains your
wrapped (encrypted) key material.

b. Under Import token, choose Choose file. Upload the file that contains the import token
that you downloaded.

9. In the Expiration option section, you determine whether the key material expires. To set an
expiration date and time, choose Key material expires, and use the calendar to select a date
and time. You can specify a date up to 365 days from the current date and time.

10. For symmetric encryption keys, you can optionally specify a description for the key material
being imported.

11. Choose Import key material.

Import key material (Amazon KMS API)

To import key material, use the ImportKeyMaterial operation. The following example uses the
Amazon CLI, but you can use any supported programming language.

To use this example:

1. Replace 1234abcd-12ab-34cd-56ef-1234567890ab with a key ID of the KMS key that you
specified when you downloaded the public key and import token. To identify the KMS key, use
its key ID or key ARN. You cannot use an alias name or alias ARN for this operation.

Step 4: Import the key material 327

https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

2. Replace EncryptedKeyMaterial.bin with the name of the file that contains the encrypted
key material.

3. Replace ImportToken.bin with the name of the file that contains the import token.

4. If you want the imported key material to expire, set the value of the expiration-model
parameter to its default value, KEY_MATERIAL_EXPIRES, or omit the expiration-model
parameter. Then, replace the value of the valid-to parameter with the date and time that you
want the key material to expire. The date and time can be up to 365 days from the time of the
request.

$ aws kms import-key-material --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --encrypted-key-material fileb://EncryptedKeyMaterial.bin \
 --import-token fileb://ImportToken.bin \
 --expiration-model KEY_MATERIAL_EXPIRES \
 --valid-to 2023-06-17T12:00:00-08:00

If you do not want the imported key material to expire, set the value of the expiration-
model parameter to KEY_MATERIAL_DOES_NOT_EXPIRE and omit the valid-to parameter
from the command.

$ aws kms import-key-material --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --encrypted-key-material fileb://EncryptedKeyMaterial.bin \
 --import-token fileb://ImportToken.bin \
 --expiration-model KEY_MATERIAL_DOES_NOT_EXPIRE

5. If you want to import new key material, not previously associated with the KMS key, set
the ImportType parameter to NEW_KEY_MATERIAL. This option can only be used with
single-Region symmetric encryption keys. For these keys, you can also use the optional
KeyMaterialDescription parameter to set a description for the imported key material in the
following command line example:

$ aws kms import-key-material --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --encrypted-key-material fileb://EncryptedKeyMaterial.bin \
 --import-token fileb://ImportToken.bin \
 --expiration-model KEY_MATERIAL_EXPIRES \
 --valid-to 2023-06-17T12:00:00-08:00 \
 --import-type NEW_KEY_MATERIAL \
 --key-material-description "Q2 2025 Rotation"

Step 4: Import the key material 328

Amazon Key Management Service Developer Guide

Tip

If the command does not succeed, you might see a KMSInvalidStateException or a
NotFoundException. You can retry the request.

Create a KMS key in an Amazon CloudHSM key store

After you have created an Amazon CloudHSM key store, you can create Amazon KMS keys in your
key store. They must be symmetric encryption KMS keys with key material that Amazon KMS
generates. You cannot create asymmetric KMS keys, HMAC KMS keys or KMS keys with imported
key material in a custom key store. Also, you cannot use symmetric encryption KMS keys in a
custom key store to generate asymmetric data key pairs. KMS cannot communicate over IPv6 with
Amazon CloudHSM key stores.

To create a KMS key in an Amazon CloudHSM key store, the Amazon CloudHSM key store must be
connected to the associated Amazon CloudHSM cluster and the cluster must contain at least two
active HSMs in different Availability Zones. To find the connection state and number of HSMs, view
the Amazon CloudHSM key stores page in the Amazon Web Services Management Console. When
using the API operations, use the DescribeCustomKeyStores operation to verify that the Amazon
CloudHSM key store is connected. To verify the number of active HSMs in the cluster and their
Availability Zones, use the Amazon CloudHSM DescribeClusters operation.

When you create a KMS key in your Amazon CloudHSM key store, Amazon KMS creates the KMS
key in Amazon KMS. But, it creates the key material for the KMS key in the associated Amazon
CloudHSM cluster. Specifically, Amazon KMS signs into the cluster as the kmsuser CU that you
created. Then it creates a persistent, non-extractable, 256-bit Advanced Encryption Standard (AES)
symmetric key in the cluster. Amazon KMS sets the value of the key label attribute, which is visible
only in the cluster, to Amazon Resource Name (ARN) of the KMS key.

When the command succeeds, the key state of the new KMS key is Enabled and its origin is
AWS_CLOUDHSM. You cannot change the origin of any KMS key after you create it. When you
view a KMS key in an Amazon CloudHSM key store in the Amazon KMS console or by using the
DescribeKey operation, you can see typical properties, like its key ID, key state, and creation date.
But you can also see the custom key store ID and (optionally) the Amazon CloudHSM cluster ID.

If your attempt to create a KMS key in your Amazon CloudHSM key store fails, use the error
message to help you determine the cause. It might indicate that the Amazon CloudHSM key

Create a KMS key in an Amazon CloudHSM key store 329

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-attributes.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

store is not connected (CustomKeyStoreInvalidStateException) or the associated
Amazon CloudHSM cluster doesn't have the two active HSMs that are required for this operation
(CloudHsmClusterInvalidConfigurationException). For help see Troubleshooting a
custom key store.

For an example of the Amazon CloudTrail log of the operation that creates a KMS key in an
Amazon CloudHSM key store, see CreateKey.

Create a new KMS key in your CloudHSM key store

You can create a symmetric encryption KMS key in your Amazon CloudHSM key store in the
Amazon KMS console or by using the CreateKey operation.

Using the Amazon KMS console

Use the following procedure to create a symmetric encryption KMS key in an Amazon CloudHSM
key store.

Note

Do not include confidential or sensitive information in the alias, description, or tags. These
fields may appear in plain text in CloudTrail logs and other output.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose Create key.

5. Choose Symmetric.

6. In Key usage, the Encrypt and decrypt option is selected for you. Do not change it.

7. Choose Advanced options.

8. For Key material origin, choose Amazon CloudHSM key store.

You cannot create a multi-Region key in an Amazon CloudHSM key store.

Create a new KMS key in your CloudHSM key store 330

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

9. Choose Next.

10. Select an Amazon CloudHSM key store for your new KMS key. To create a new Amazon
CloudHSM key store, choose Create custom key store.

The Amazon CloudHSM key store that you select must have a status of Connected. Its
associated Amazon CloudHSM cluster must be active and contain at least two active HSMs in
different Availability Zones.

For help with connecting an Amazon CloudHSM key store, see Disconnect an Amazon
CloudHSM key store. For help with adding HSMs, see Adding an HSM in the Amazon CloudHSM
User Guide.

11. Choose Next.

12. Type an alias and an optional description for the KMS key.

13. (Optional). On the Add Tags page, add tags that identify or categorize your KMS key.

When you add tags to your Amazon resources, Amazon generates a cost allocation report with
usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For
information about tagging KMS keys, see Tags in Amazon KMS and ABAC for Amazon KMS.

14. Choose Next.

15. In the Key Administrators section, select the IAM users and roles who can manage the KMS
key. For more information, see Allows key administrators to administer the KMS key.

Notes

IAM policies can give other IAM users and roles permission to use the KMS key.
IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.
The Amazon KMS console adds key administrators to the key policy under the
statement identifier "Allow access for Key Administrators". Modifying this
statement identifier might impact how the console displays updates that you make to
the statement.

16. (Optional) To prevent these key administrators from deleting this KMS key, clear the box at the
bottom of the page for Allow key administrators to delete this key.

17. Choose Next.

Create a new KMS key in your CloudHSM key store 331

https://docs.amazonaws.cn/cloudhsm/latest/userguide/add-remove-hsm.html#add-hsm
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

18. In the This account section, select the IAM users and roles in this Amazon Web Services
account that can use the KMS key in cryptographic operations. For more information, see
Allows key users to use the KMS key.

Notes

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.
The Amazon KMS console adds key users to the key policy under the statement
identifiers "Allow use of the key" and "Allow attachment of persistent
resources". Modifying these statement identifiers might impact how the console
displays updates that you make to the statement.

19. (Optional) You can allow other Amazon Web Services accounts to use this KMS key for
cryptographic operations. To do so, in the Other Amazon Web Services accounts section at
the bottom of the page, choose Add another Amazon Web Services account and enter the
Amazon Web Services account ID of an external account. To add multiple external accounts,
repeat this step.

Note

Administrators of the other Amazon Web Services accounts must also allow access
to the KMS key by creating IAM policies for their users. For more information, see
Allowing users in other accounts to use a KMS key.

20. Choose Next.

21. Review the key policy statements for the key. To make changes to the key policy, select Edit.

22. Choose Next.

23. Review the key settings that you chose. You can still go back and change all settings.

24. When you're done, choose Finish to create the key.

When the procedure succeeds, the display shows the new KMS key in the Amazon CloudHSM key
store that you chose. When you choose the name or alias of the new KMS key, the Cryptographic
configuration tab on its detail page displays the origin of the KMS key (Amazon CloudHSM), the

Create a new KMS key in your CloudHSM key store 332

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

name, ID, and type of the custom key store, and the ID of the Amazon CloudHSM cluster. If the
procedure fails, an error message appears that describes the failure.

Tip

To make it easier to identify KMS keys in a custom key store, on the Customer managed
keys page, add the Custom key store ID column to the display. Click the gear icon in the
upper-right and select Custom key store ID. For details, see Customize your console view.

Using the Amazon KMS API

To create a new Amazon KMS key (KMS key) in your Amazon CloudHSM key store, use the
CreateKey operation. Use the CustomKeyStoreId parameter to identify your custom key store
and specify an Origin value of AWS_CLOUDHSM.

You might also want to use the Policy parameter to specify a key policy. You can change the key
policy (PutKeyPolicy) and add optional elements, such as a description and tags at any time.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

The following example begins with a call to the DescribeCustomKeyStores operation to verify
that the Amazon CloudHSM key store is connected to its associated Amazon CloudHSM cluster. By
default, this operation returns all custom keys stores in your account and Region. To describe only
a particular Amazon CloudHSM key store, use its CustomKeyStoreId or CustomKeyStoreName
parameter (but not both).

Before running this command, replace the example custom key store ID with a valid ID.

Note

Do not include confidential or sensitive information in the Description or Tags fields.
These fields may appear in plain text in CloudTrail logs and other output.

$ aws kms describe-custom-key-stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CustomKeyStoreId": "cks-1234567890abcdef0",

Create a new KMS key in your CloudHSM key store 333

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

 "CustomKeyStoreName": "ExampleKeyStore",
 "CustomKeyStoreType": "Amazon CloudHSM key store",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "CONNECTED"
],
}

The next example command uses the DescribeClusters operation to verify that the Amazon
CloudHSM cluster that is associated with the ExampleKeyStore (cluster-1a23b4cdefg) has at
least two active HSMs. If the cluster has fewer than two HSMs, the CreateKey operation fails.

$ aws cloudhsmv2 describe-clusters
{
 "Clusters": [
 {
 "SubnetMapping": {
 ...
 },
 "CreateTimestamp": 1507133412.351,
 "ClusterId": "cluster-1a23b4cdefg",
 "SecurityGroup": "sg-865af2fb",
 "HsmType": "hsm1.medium",
 "VpcId": "vpc-1a2b3c4d",
 "BackupPolicy": "DEFAULT",
 "Certificates": {
 "ClusterCertificate": "-----BEGIN CERTIFICATE-----\...\n-----END
 CERTIFICATE-----\n"
 },
 "Hsms": [
 {
 "AvailabilityZone": "us-west-2a",
 "EniIp": "10.0.1.11",
 "ClusterId": "cluster-1a23b4cdefg",
 "EniId": "eni-ea8647e1",
 "StateMessage": "HSM created.",
 "SubnetId": "subnet-a6b10bd1",
 "HsmId": "hsm-abcdefghijk",
 "State": "ACTIVE"
 },
 {
 "AvailabilityZone": "us-west-2b",

Create a new KMS key in your CloudHSM key store 334

https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html

Amazon Key Management Service Developer Guide

 "EniIp": "10.0.0.2",
 "ClusterId": "cluster-1a23b4cdefg",
 "EniId": "eni-ea8647e1",
 "StateMessage": "HSM created.",
 "SubnetId": "subnet-b6b10bd2",
 "HsmId": "hsm-zyxwvutsrqp",
 "State": "ACTIVE"
 },
],
 "State": "ACTIVE"
 }
]
}

This example command uses the CreateKey operation to create a KMS key in an Amazon CloudHSM
key store. To create a KMS key in an Amazon CloudHSM key store, you must provide the custom key
store ID of the Amazon CloudHSM key store and specify an Origin value of AWS_CLOUDHSM.

The response includes the IDs of the custom key store and the Amazon CloudHSM cluster.

Before running this command, replace the example custom key store ID with a valid ID.

$ aws kms create-key --origin AWS_CLOUDHSM --custom-key-store-id cks-1234567890abcdef0
{
 "KeyMetadata": {
 "AWSAccountId": "111122223333",
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1.499288695918E9,
 "Description": "Example key",
 "Enabled": true,
 "MultiRegion": false,
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "Origin": "AWS_CLOUDHSM"
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "CustomKeyStoreId": "cks-1234567890abcdef0"
 "KeySpec": "SYMMETRIC_DEFAULT",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"

Create a new KMS key in your CloudHSM key store 335

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

]
 }
}

Create a KMS key in external key stores

After you have created and connected your external key store, you can create Amazon KMS keys in
your key store. They must be symmetric encryption KMS keys with an origin value of External key
store (EXTERNAL_KEY_STORE). You cannot create asymmetric KMS keys, HMAC KMS keys or KMS
keys with imported key material in a custom key store. Also, you cannot use symmetric encryption
KMS keys in a custom key store to generate asymmetric data key pairs.

A KMS key in an external key store might have poorer latency, durability and availability than a
standard KMS key because it depends on components located outside of Amazon. Before creating
or using a KMS key in an external key store, verify that you require a key with external key store
properties.

Note

Some external key managers provide a simpler method for creating KMS keys in an external
key store. For details, see your external key manager documentation.

To create a KMS key in your external key store, you specify the following:

• The ID of your external key store.

• A key material origin of External key store (EXTERNAL_KEY_STORE).

• The ID of an existing external key in the external key manager associated with your external key
store. This external key serves as key material for the KMS key. You cannot change the external
key ID after you create the KMS key.

Amazon KMS provides the external key ID to your external key store proxy in requests for
encryption and decryption operations. Amazon KMS cannot directly access your external key
manager or any of its cryptographic keys.

In addition to the external key, a KMS key in an external key store also has Amazon KMS key
material. All data encrypted under the KMS key is first encrypted in Amazon KMS using the key's
Amazon KMS key material and then by your external key manager using your external key. This

Create a KMS key in external key stores 336

Amazon Key Management Service Developer Guide

double encryption process ensures that ciphertext protected by a KMS key in an external key store
is at least as strong as ciphertext protected only by Amazon KMS. For details, see How external key
stores work.

When the CreateKey operation succeeds, the key state of the new KMS key is Enabled. When
you view a KMS key in an external key store you can see typical properties, like its key ID, key spec,
key usage, key state, and creation date. But you can also see the ID and connection state of the
external key store and the ID of the external key.

If your attempt to create a KMS key in your external key store fails, use the error message
to identify the cause. It might indicate that the external key store is not connected
(CustomKeyStoreInvalidStateException), that your external key store proxy cannot
find an external key with the specified external key ID (XksKeyNotFoundException), or
that the external key is already associated with a KMS key in the same external key store
XksKeyAlreadyInUseException.

For an example of the Amazon CloudTrail log of the operation that creates a KMS key in an
external key store, see CreateKey.

Topics

• Requirements for a KMS key in an external key store

• Create a new KMS key in your external key store

Requirements for a KMS key in an external key store

To create a KMS key in an external key store, the following properties are required of the external
key store, the KMS key, and the external key that serves as the external cryptographic key material
for the KMS key.

External key store requirements

• Must be connected to its external key store proxy.

To view the connection state of your external key store, see View external key stores. To connect
your external key store, see Connect and disconnect external key stores.

KMS key requirements

You cannot change these properties after you create the KMS key.

Requirements for a KMS key in an external key store 337

Amazon Key Management Service Developer Guide

• Key spec: SYMMETRIC_DEFAULT

• Key usage: ENCRYPT_DECRYPT

• Key material origin: EXTERNAL_KEY_STORE

• Multi-Region: FALSE

External key requirements

• 256-bit AES cryptographic key (256 random bits). The KeySpec of the external key must be
AES_256.

• Enabled and available for use. The Status of the external key must be ENABLED.

• Configured for encryption and decryption. The KeyUsage of the external key must include
ENCRYPT and DECRYPT.

• Used only with this KMS key. Each KMS key in an external key store must be associated with a
different external key.

Amazon KMS also recommends that the external key be used exclusively for the external key
store. This restriction makes it easier to identify and resolve problems with the key.

• Accessible by the external key store proxy for the external key store.

If the external key store proxy can't find the key using the specified external key ID, the
CreateKey operation fails.

• Can handle the anticipated traffic that your use of Amazon Web Services services generates.
Amazon KMS recommends that external keys be prepared to handle up to 1800 requests per
second.

Create a new KMS key in your external key store

You can create a new KMS key in your external key store in the Amazon KMS console or by using
the CreateKey operation.

Using the Amazon KMS console

There are two ways to create a KMS key in an external key store.

• Method 1 (recommended): Choose an external key store, then create a KMS key in that external
key store.

Create a new KMS key in your external key store 338

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

• Method 2: Create a KMS key, then indicate that it's in an external key store.

If you use Method 1, where you choose your external key store before you create your key, Amazon
KMS chooses all required KMS key properties for you and fills in the ID of your external key store.
This method avoids errors you might make when creating your KMS key.

Note

Do not include confidential or sensitive information in the alias, description, or tags. These
fields may appear in plain text in CloudTrail logs and other output.

Method 1 (recommended): Start in your external key store

To use this method, choose your external key store, then create a KMS key. The Amazon KMS
console chooses all required properties for you and fills in the ID of your external key store. This
method avoids many errors you might make when creating your KMS key.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, External key stores.

4. Choose the name of your external key store.

5. In the top right corner, choose Create a KMS key in this key store.

If the external key store is not connected, you will be prompted to connect it. If the connection
attempt fails, you need to resolve the problem and connect the external key store before you
can create a new KMS key in it.

If the external key store is connected, you are redirected to the Customer managed keys page
for creating a key. The required Key configuration values are already chosen for you. Also, the
custom key store ID of your external key store is filled in, although you can change it.

6. Enter the key ID of an external key in your external key manager. This external key must fulfill
the requirements for use with a KMS key. You cannot change this value after the key is created.

If the external key has multiple IDs, enter the key ID that the external key store proxy uses to
identify the external key.

Create a new KMS key in your external key store 339

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

7. Confirm that you intend to create a KMS key in the specified external key store.

8. Choose Next.

The remainder of this procedure is the same as creating a standard KMS key.

9. Type an alias (required) and a description (optional) for the KMS key.

10. (Optional). On the Add Tags page, add tags that identify or categorize your KMS key.

When you add tags to your Amazon resources, Amazon generates a cost allocation report with
usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For
information about tagging KMS keys, see Tags in Amazon KMS and ABAC for Amazon KMS.

11. Choose Next.

12. In the Key Administrators section, select the IAM users and roles who can manage the KMS
key. For more information, see Allows key administrators to administer the KMS key.

Note

IAM policies can give other IAM users and roles permission to use the KMS key.
IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.

13. (Optional) To prevent these key administrators from deleting this KMS key, clear Allow key
administrators to delete this key check box.

Deleting a KMS key is a destructive and irreversible operation that can render ciphertext
unrecoverable. You cannot recreate a symmetric KMS key in an external key store, even if you
have the external key material. However, deleting a KMS key has no effect on its associated
external key. For information about deleting a KMS key from an external key store, see Special
considerations for deleting keys.

14. Choose Next.

15. In the This account section, select the IAM users and roles in this Amazon Web Services
account that can use the KMS key in cryptographic operations. For more information, see
Allows key users to use the KMS key.

Note

IAM policies can give other IAM users and roles permission to use the KMS key.

Create a new KMS key in your external key store 340

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Key Management Service Developer Guide

IAM best practices discourage the use of IAM users with long-term credentials.
Whenever possible, use IAM roles, which provide temporary credentials. For details, see
Security best practices in IAM in the IAM User Guide.

16. (Optional) You can allow other Amazon Web Services accounts to use this KMS key for
cryptographic operations. To do so, in the Other Amazon Web Services accounts section at
the bottom of the page, choose Add another Amazon Web Services account and enter the
Amazon Web Services account ID of an external account. To add multiple external accounts,
repeat this step.

Note

Administrators of the other Amazon Web Services accounts must also allow access
to the KMS key by creating IAM policies for their users. For more information, see
Allowing users in other accounts to use a KMS key.

17. Choose Next.

18. Review the key settings that you chose. You can still go back and change all settings.

19. When you're done, choose Finish to create the key.

Method 2: Start in Customer managed keys

This procedure is the same as the procedure to create a symmetric encryption key with Amazon
KMS key material. But, in this procedure, you specify the custom key store ID of the external key
store and the key ID of the external key. You must also specify the required property values for a
KMS key in an external key store, such as the key spec and key usage.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose Create key.

5. Choose Symmetric.

6. In Key usage, the Encrypt and decrypt option is selected for you. Do not change it.

7. Choose Advanced options.

Create a new KMS key in your external key store 341

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

8. For Key material origin, choose External key store.

9. Confirm that you intend to create a KMS key in the specified external key store.

10. Choose Next.

11. Choose the row that represents the external key store for your new KMS key.

You cannot choose a disconnected external key store. To connect a key store that is
disconnected, choose the key store name, and then, from Key store actions, choose, Connect.
For details, see Using the Amazon KMS console.

12. Enter the key ID of an external key in your external key manager. This external key must fulfill
the requirements for use with a KMS key. You cannot change this value after the key is created.

If the external key has multiple IDs, enter the key ID that the external key store proxy uses to
identify the external key.

13. Choose Next.

The remainder of this procedure is the same as creating a standard KMS key.

14. Type an alias and an optional description for the KMS key.

15. (Optional). On the Add Tags page, add tags that identify or categorize your KMS key.

When you add tags to your Amazon resources, Amazon generates a cost allocation report with
usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For
information about tagging KMS keys, see Tags in Amazon KMS and ABAC for Amazon KMS.

16. Choose Next.

17. In the Key Administrators section, select the IAM users and roles who can manage the KMS
key. For more information, see Allows key administrators to administer the KMS key.

Note

IAM policies can give other IAM users and roles permission to use the KMS key.

18. (Optional) To prevent these key administrators from deleting this KMS key, clear Allow key
administrators to delete this key check box.

Deleting a KMS key is a destructive and irreversible operation that can render ciphertext
unrecoverable. You cannot recreate a symmetric KMS key in an external key store, even if you
have the external key material. However, deleting a KMS key has no effect on its associated

Create a new KMS key in your external key store 342

Amazon Key Management Service Developer Guide

external key. For information about deleting a KMS key from an external key store, see Delete
an Amazon KMS key.

19. Choose Next.

20. In the This account section, select the IAM users and roles in this Amazon Web Services
account that can use the KMS key in cryptographic operations. For more information, see
Allows key users to use the KMS key.

Note

IAM policies can give other IAM users and roles permission to use the KMS key.

21. (Optional) You can allow other Amazon Web Services accounts to use this KMS key for
cryptographic operations. To do so, in the Other Amazon Web Services accounts section at
the bottom of the page, choose Add another Amazon Web Services account and enter the
Amazon Web Services account ID of an external account. To add multiple external accounts,
repeat this step.

Note

Administrators of the other Amazon Web Services accounts must also allow access
to the KMS key by creating IAM policies for their users. For more information, see
Allowing users in other accounts to use a KMS key.

22. Choose Next.

23. Review the key settings that you chose. You can still go back and change all settings.

24. When you're done, choose Finish to create the key.

When the procedure succeeds, the display shows the new KMS key in the external key store
that you chose. When you choose the name or alias of the new KMS key, the Cryptographic
configuration tab on its detail page displays the origin of the KMS key (External key store), the
name, ID, and type of the custom key store, and the ID, key usage, and status of the external key. If
the procedure fails, an error message appears that describes the failure. For , see Troubleshooting
external key stores.

Create a new KMS key in your external key store 343

Amazon Key Management Service Developer Guide

Tip

To make it easier to identify KMS keys in a custom key store, on the Customer managed
keys page, add the Origin and Custom key store ID column to the display. To change the
table fields, choose the gear icon in the upper right corner of the page. For details, see
Customize your console view.

Using the Amazon KMS API

To create a new KMS key in an external key store, use the CreateKey operation. The following
parameters are required:

• The Origin value must be EXTERNAL_KEY_STORE.

• The CustomKeyStoreId parameter identifies your external key store. The ConnectionState
of the specified external key store must be CONNECTED. To find the CustomKeyStoreId and
ConnectionState, use the DescribeCustomKeyStores operation.

• The XksKeyId parameter identifies the external key. This external key must fulfills the
requirements for association with a KMS key.

You can also use any of the optional parameters of the CreateKey operation, such as using the
Policy or Tags parameters.

Note

Do not include confidential or sensitive information in the Description or Tags fields.
These fields may appear in plain text in CloudTrail logs and other output.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

This example command uses the CreateKey operation to create a KMS key in an external key store.
The response includes the properties of the KMS keys, the ID of the external key store, and the ID,
usage, and status of the external key.

Before running this command, replace the example custom key store ID with a valid ID.

Create a new KMS key in your external key store 344

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

$ aws kms create-key --origin EXTERNAL_KEY_STORE --custom-key-store-
id cks-1234567890abcdef0 --xks-key-id bb8562717f809024
{
 "KeyMetadata": {
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "CreationDate": "2022-12-02T07:48:55-07:00",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "Description": "",
 "Enabled": true,
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "MultiRegion": false,
 "Origin": "EXTERNAL_KEY_STORE",
 "XksKeyConfiguration": {
 "Id": "bb8562717f809024"
 }
 }
}

Create a new KMS key in your external key store 345

Amazon Key Management Service Developer Guide

Identify and view keys

You can use Amazon Web Services Management Console or the Amazon Key Management Service
(Amazon KMS) API to view Amazon KMS keys in each account and Region, including KMS keys that
you manage and KMS keys that are managed by Amazon.

Topics

• Find the key ID and key ARN

• Access and list KMS key details

• Identify different key types

• Customize your console view

• Find KMS keys and key material in an Amazon CloudHSM key store

Find the key ID and key ARN

To identify an Amazon KMS key, you can use the key ID or the Amazon Resource Name (key ARN).
In cryptographic operations, you can also use the alias name or alias ARN.

You can use the Amazon KMS console or the ListKeys operation to identify the key ID and key ARN
of each KMS key in your account and Region.

For detailed information about the KMS key identifiers supported by Amazon KMS, see Key
identifiers (KeyId). For help finding an alias name and alias ARN, see Find the alias name and alias
ARN for a KMS key.

Using the Amazon KMS console

1. Open the Amazon KMS console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. To view the keys in your account that you create and manage, in the navigation pane choose
Customer managed keys. To view the keys in your account that Amazon creates and manages
for you, in the navigation pane, choose Amazon managed keys.

4. To find the key ID for a KMS key, see the row that begins with the KMS key alias.

Find the key ID and key ARN 346

https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/kms/latest/APIReference/
https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

The Key ID column appears in the tables by default. If the Key ID column doesn't appear in
your table, use the procedure described in the section called “Customize your console view” to
restore it. You can also view the key ID of a KMS key on its details page.

5. To find the Amazon Resource Name (ARN) of the KMS key, choose the key ID or alias. The key
ARN appears in the General Configuration section.

Using the Amazon KMS API

To find the key ID and key ARN of an Amazon KMS key, use the ListKeys operation.

The ListKeys operation returns the key ID and Amazon Resource Name (ARN) of all KMS keys in
the caller's account and Region.

For example, this call to the ListKeys operation returns the ID and ARN of each KMS key in this
fictitious account. For examples in multiple programming languages, see Use ListKeys with an
Amazon SDK or CLI.

$ aws kms list-keys
{
 "Keys": [
 {
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",

Find the key ID and key ARN 347

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html

Amazon Key Management Service Developer Guide

 "KeyArn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {
 "KeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "KeyArn": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
 }
]
}

Access and list KMS key details

You can use the Amazon KMS console or the DescribeKey operation to access and list detailed
information about the KMS keys in the account and Region.

The following procedures demonstrate how to access KMS key details, such as the key ID, key spec,
key usage, and more.

Using the Amazon KMS console

The details page for each KMS key displays the properties of the KMS key. It differs slightly for the
different types of KMS keys.

To display detailed information about a KMS key, on the Amazon managed keys or Customer
managed keys page, choose the alias or key ID of the KMS key.

The details page for a KMS key includes a General Configuration section that displays the basic
properties of the KMS key. It also includes tabs on which you can view and edit properties of the
KMS key, such as Key policy, Cryptographic configuration, Tags, Key material and rotations (for
KMS keys that support automatic or on-demand rotation), Regionality (for multi-Region keys), and
Public key (for asymmetric KMS keys).

Note

The Amazon KMS console displays the KMS keys that you have permission to view in your
account and Region. KMS keys in other Amazon Web Services accounts do not appear in the
console, even if you have permission to view, manage, and use them. To view KMS keys in
other accounts, use the DescribeKey operation.

Access and list KMS key details 348

https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

To navigate to the key details page for a KMS key.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. To view the keys in your account that you create and manage, in the navigation pane choose
Customer managed keys. To view the keys in your account that Amazon creates and manages
for you, in the navigation pane, choose Amazon managed keys.

4. To open the key details page, in the key table, choose the key ID or alias of the KMS key.

If the KMS key has multiple aliases, an alias summary (+n more) appears beside the name of
the one of the aliases. Choosing the alias summary takes you directly to the Aliases tab on the
key details page.

The following list describes the fields in the detailed display, including field in the tabs. Some of
these fields are also available as columns in the table display.

Aliases

Where: Aliases tab

Access and list KMS key details 349

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

A friendly name for the KMS key. You can use an alias to identify the KMS key in the console
and in some Amazon KMS APIs. For details, see Aliases in Amazon KMS.

The Aliases tab displays all aliases associated with the KMS key in the Amazon Web Services
account and Region.

ARN

Where: General configuration section

The Amazon Resource Name (ARN) of the KMS key. This value uniquely identifies the KMS key.
You can use it to identify the KMS key in Amazon KMS API operations.

Connection state

Indicates whether a custom key store is connected to its backing key store. This field appears
only when the KMS key is created in a custom key store.

For information about the values in this field, see ConnectionState in the Amazon KMS API
Reference.

Creation date

Where: General configuration section

The date and time that the KMS key was created. This value is displayed in local time for the
device. The time zone does not depend on the Region.

Unlike Expiration, the creation refers only to the KMS key, not its key material.

CloudHSM cluster ID

Where: Cryptographic configuration tab

The cluster ID of the Amazon CloudHSM cluster that contains the key material for the KMS key.
This field appears only when the KMS key is created in a custom key store.

If you choose the CloudHSM cluster ID, it opens the Clusters page in the Amazon CloudHSM
console.

Current key material

Where: General configuration section

Symmetric encryption keys with AWS_KMS origin support both automatic and on-demand
rotation. Single-Region, symmetric encryption keys with EXTERNAL origin support on-demand
rotation. These keys can have multiple key materials associated with the key. The most recently

Access and list KMS key details 350

https://docs.amazonaws.cn/kms/latest/APIReference/API_CustomKeyStoresListEntry.html#KMS-Type-CustomKeyStoresListEntry-ConnectionState

Amazon Key Management Service Developer Guide

rotated key material can be used for both encryption and decryption. This key material is
identified as the current key material. Other key materials can only be used for decryption.
Automatic or on-demand key rotation of a KMS key changes its current key material.

Custom key store ID

Where: Cryptographic configuration tab

The ID of the custom key store that contains the KMS key. This field appears only when the KMS
key is created in a custom key store.

If you choose the custom key store ID, it opens the Custom key stores page in the Amazon KMS
console.

Custom key store name

Where: Cryptographic configuration tab

The name of the custom key store that contains the KMS key. This field appears only when the
KMS key is created in a custom key store.

Custom key store type

Where: Cryptographic configuration tab

Indicates whether the custom key store is an Amazon CloudHSM key store or an external key
store. This field appears only when the KMS key is created in a custom key store.

Description

Where: General configuration section

A brief, optional description of the KMS key that you can write and edit. To add or update the
description of a customer managed key, above General Configuration, choose Edit.

Encryption algorithms

Where: Cryptographic configuration tab

Lists the encryption algorithms that can be used with the KMS key in Amazon KMS. This
field appears only when the Key type is Asymmetric and the Key usage is Encrypt and
decrypt. For information about the encryption algorithms that Amazon KMS supports, see
SYMMETRIC_DEFAULT key spec and RSA key specs for encryption and decryption.

Expiration date

Where: Key material tab

Access and list KMS key details 351

Amazon Key Management Service Developer Guide

The date and time when the key material for the KMS key expires. This field appears only for
KMS keys with imported key material, that is, when the Origin is External and the KMS key
has key material that expires. Single-Region, symmetric encryption keys can have multiple key
materials associated with them. For such keys, this field indicates the earliest date and time
when one of the associated key materials expires.

External key ID

Where: Cryptographic configuration tab

The ID of the external key that is associated with a KMS key in an external key store. This field
appears only for KMS keys in an external key store.

External key status

Where: Cryptographic configuration tab

The most recent status that the external key store proxy reported for the external key
associated with the KMS key. This field appears only for KMS keys in an external key store.

External key usage

Where: Cryptographic configuration tab

The cryptographic operations that are enabled on the external key associated with the KMS key.
This field appears only for KMS keys in an external key store.

Key policy

Where: Key policy tab

Controls access to the KMS key along with IAM policies and grants. Every KMS key has one key
policy. It is the only mandatory authorization element. To change the key policy of a customer
managed key, on the Key policy tab, choose Edit. For details, see the section called “Key
policies”.

Key material and rotations

Where: Key material and rotations tab

This tab only appears for symmetric encryption keys with AWS_KMS origin (which support both
automatic and on-demand rotation) as well as single-Region, symmetric encryption keys with
EXTERNAL origin (which support on-demand rotation).

The tab has three panels:

Access and list KMS key details 352

Amazon Key Management Service Developer Guide

Automatic rotation: Enables and disables automatic rotation of the key material in a customer
managed KMS key. To change the key rotation status of a customer managed key, use the
check box. You can't enable or disable rotation of the key material in an Amazon managed key.
Amazon managed keys are automatically rotated every year.

On-demand rotation: Initiate an on-demand rotation of the key material in a customer
managed key. For imported keys, there must already be an imported key material in
PENDING_ROTATION state for the Rotate now option to be available.

Key materials: Lists all of the key materials associated with the KMS key. Each key material has a
unique identifier and its row displays additional information about the key material such as the
rotation date when the key material became available to use in KMS. For imported keys, each
row also has an Actions menu that can be used to delete a specific key material or reimport it
into the KMS key.

Key spec

Where: Cryptographic configuration tab

The type of key material in the KMS key. Amazon KMS supports symmetric encryption KMS
keys (SYMMETRIC_DEFAULT), HMAC KMS keys of different lengths, KMS keys for RSA keys of
different lengths, and elliptic curve keys with different curves. For details, see Key spec.

Key type

Where: Cryptographic configuration tab

Indicates whether the KMS key is Symmetric or Asymmetric.

Key usage

Where: Cryptographic configuration tab

Indicates whether a KMS key can be used for Encrypt and decrypt, Sign and verify or Generate
and verify MAC. For details, see Key usage.

Origin

Where: Cryptographic configuration tab

The source of the key material for the KMS key. Valid values are:

• Amazon KMS for key material that Amazon KMS generates

• Amazon CloudHSM for KMS keys in Amazon CloudHSM key store

Access and list KMS key details 353

Amazon Key Management Service Developer Guide

• External for imported key material (BYOK)

• External key store for KMS keys in an external key store

MAC algorithms

Where: Cryptographic configuration tab

Lists the MAC algorithms that can be used with an HMAC KMS key in Amazon KMS. This field
appears only when the Key spec is an HMAC key spec (HMAC_*). For information about the MAC
algorithms that Amazon KMS supports, see Key specs for HMAC KMS keys.

Primary key

Where: Regionality tab

Indicates that this KMS key is a multi-Region primary key. Authorized users can use this section
to change the primary key to a different related multi-Region key. This field appears only when
the KMS key is a multi-Region primary key.

Public key

Where: Public key tab

Displays the public key of an asymmetric KMS key. Authorized users can use this tab to copy and
download the public key.

Regionality

Where: General configuration section and Regionality tabs

Indicates whether a KMS key is a single-Region key, a multi-Region primary key, or a multi-
Region replica key. This field appears only when the KMS key is a multi-Region key.

Related multi-Region keys

Where: Regionality tab

Displays all related multi-Region primary and replica keys, except for the current KMS key. This
field appears only when the KMS key is a multi-Region key.

In the Related multi-Region keys section of a primary key, authorized users can create new
replica keys.

Replica key

Where: Regionality tab

Access and list KMS key details 354

Amazon Key Management Service Developer Guide

Indicates that this KMS key is a multi-Region replica key. This field appears only when the KMS
key is a multi-Region replica key.

Signing algorithms

Where: Cryptographic configuration tab

Lists the signing algorithms that can be used with the KMS key in Amazon KMS. This field
appears only when the Key type is Asymmetric and the Key usage is Sign and verify. For
information about the signing algorithms that Amazon KMS supports, see RSA key specs for
signing and verification and Elliptic curve key specs.

Status

Where: General configuration section

The key state of the KMS key. You can use the KMS key in cryptographic operations only when
the status is Enabled. For a detailed description of each KMS key status and its effect on the
operations that you can run on the KMS key, see Key states of Amazon KMS keys.

Tags

Where: Tags tab

Optional key-value pairs that describe the KMS key. To add or change the tags for a KMS key, on
the Tags tab, choose Edit.

When you add tags to your Amazon resources, Amazon generates a cost allocation report with
usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For
information about tagging KMS keys, see Tags in Amazon KMS and ABAC for Amazon KMS.

Using the Amazon KMS API

The DescribeKey operation returns details about the specified KMS key. To identify the KMS key,
use the key ID, key ARN, alias name, or alias ARN.

Unlike the ListKeys operation, which displays only KMS keys in the caller's account and Region,
authorized users can use the DescribeKey operation to get details about KMS keys in other
accounts.

Access and list KMS key details 355

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html

Amazon Key Management Service Developer Guide

Note

The DescribeKey response includes both KeySpec and CustomerMasterKeySpec
members with the same values. The CustomerMasterKeySpec member is deprecated.

For example, this call to DescribeKey returns information about a symmetric encryption KMS
key. The fields in the response vary with the Amazon KMS key spec, key state, and the key material
origin. For examples in multiple programming languages, see Use DescribeKey with an Amazon
SDK or CLI.

$ aws kms describe-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "Enabled": true,
 "KeySpec": "SYMMETRIC_DEFAULT",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1499988169.234,
 "MultiRegion": false,
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "CurrentKeyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 }
}

This example calls DescribeKey operation on an asymmetric KMS key used for signing and
verification. The response includes the signing algorithms that Amazon KMS supports for this KMS
key.

Access and list KMS key details 356

Amazon Key Management Service Developer Guide

$ aws kms describe-key --key-id 0987dcba-09fe-87dc-65ba-ab0987654321

{
 "KeyMetadata": {
 "KeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "Origin": "AWS_KMS",
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "KeyState": "Enabled",
 "KeyUsage": "SIGN_VERIFY",
 "CreationDate": 1569973196.214,
 "Description": "",
 "KeySpec": "ECC_NIST_P521",
 "CustomerMasterKeySpec": "ECC_NIST_P521",
 "AWSAccountId": "111122223333",
 "Enabled": true,
 "MultiRegion": false,
 "KeyManager": "CUSTOMER",
 "SigningAlgorithms": [
 "ECDSA_SHA_512"
]
 }
}

Identify different key types

The following topics explain how to identify different key types in the Amazon KMS console and
DescribeKey responses.

For help navigating to the Cryptographic configuration tab on the details page for a KMS key, see
the section called “Access and list KMS key details”.

Topics

• Identify asymmetric KMS keys

• Identify HMAC KMS keys

• Identify multi-Region KMS keys

• Identify KMS keys with imported key material

• Identify KMS keys in Amazon CloudHSM key stores

• Identify KMS keys in external key stores

Identify different key types 357

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

Identify asymmetric KMS keys

In the Amazon KMS console

The Key type column of the Customer managed keys table shows whether each KMS key
is symmetric or asymmetric. You can filter the table by the Key type value to display only
asymmetric KMS keys. For more information see the section called “Sort and filter your KMS
keys”.

The Cryptographic configuration tab on the details page for a KMS key displays the Key Type,
which indicates whether the key is symmetric or asymmetric. It also displays the Key Usage,
which indicates whether your asymmetric KMS key is used for encryption and decryption,
signing and verification, or deriving shared secrets.

In DescribeKey responses

When you call the DescribeKey operation on an asymmetric KMS key the response includes
the KeySpec and KeyUsage values, which can be used to determine if a KMS key is symmetric
or asymmetric.

If the KeySpec value is SYMMETRIC_DEFAULT, the key is a symmetric encryption KMS key. For
details on asymmetric key specs, see Key spec reference.

If the KeyUsage value is SIGN_VERIFY or KEY_AGREEMENT, the key is an asymmetric KMS key.

The DescribeKey operation also returns the following details for asymmetric KMS keys.

• For asymmetric KMS keys with a KeyUsage value of ENCRYPT_DECRYPT, the operation
returns the EncryptionAlgorithms, which lists the valid encryption algorithms for the key.

• For asymmetric KMS keys with a KeyUsage value of SIGN_VERIFY, the operation returns the
SigningAlgorithms, which lists the valid signing algorithms for the key.

• For asymmetric KMS keys with a KeyUsage value of KEY_AGREEMENT, the operation returns
the KeyAgreementAlgorithms, which lists the valid key agreement algorithms for the key.

For more information on asymmetric KMS keys, see the section called “Asymmetric keys”.

Identify asymmetric KMS keys 358

Amazon Key Management Service Developer Guide

Identify HMAC KMS keys

In the Amazon KMS console

HMAC KMS keys are included in the Customer managed keys table, but you cannot sort or filter
this table by the key spec or key usage values that identify HMAC keys. To make it easier to find
your HMAC keys, assign them a distinctive alias or tag. Then you can sort or filter by the alias or
tag.

The Cryptographic configuration tab on the details page for a KMS key displays the Key Type,
which indicates whether the key is symmetric or asymmetric. HMAC KMS keys are symmetric.
The Cryptographic configuration tab also displays the Key Usage. For HMAC KMS keys the key
usage value is always Generate and verify MAC.

In DescribeKey responses

When you call the DescribeKey operation on an HMAC KMS key the response includes
the KeySpec and KeyUsage values. For HMAC KMS keys the key usage value is always
GENERATE_VERIFY_MAC and the key spec value always starts with HMAC_.

For more information on HMAC KMS keys, see the section called “HMAC keys”.

Identify multi-Region KMS keys

In the Amazon KMS console

The Customer managed keys table only displays KMS keys in the selected Region. You can view
multi-Region primary and replica keys in the selected Region. To change the Amazon Region,
use the Region selector in the upper-right corner of the console.

To make it easier to identify multi-Region keys in the Customer managed keys table, add the
Regionality column to your table. For help, see the section called “Customize your KMS key
tables”.

The detail page for multi-Region KMS keys includes a Regionality tab. The Regionality tab
for a primary key includes Change primary Region and Create new replica keys buttons. (The
Regionality tab for a replica key has neither button.) The Related multi-Region keys section
lists all multi-Region keys related to the current one. If the current key is a replica key, this list
includes the primary key.

Identify HMAC KMS keys 359

Amazon Key Management Service Developer Guide

If you choose a related multi-Region key from the Related multi-Region keys table, the
Amazon KMS console changes to the Region of the selected key and it opens the detail page for
the key. For example, if you choose the replica key in the sa-east-1 Region from the example
Related multi-Region keys section below, the Amazon KMS console changes to the sa-east-1
Region to display the detail page for that replica key. You might do this to view the alias or key
policy for the replica key. To change the Region again, use the Region selector at the top right
corner of the page.

In DescribeKey responses

By default, Amazon KMS API operations are Regional and only return the resources in the
current or specified Region. But, when you call the DescribeKey operation on a multi-Region
KMS key, the response includes all related multi-Region keys in other Amazon Regions in the
MultiRegionConfiguration element.

For more information on multi-Region KMS keys, see the section called “Multi-Region keys”.

Identify KMS keys with imported key material

In the Amazon KMS console

To make it easier to identify KMS keys with imported key material in the Customer managed
keys table, add the Origin column to your table. The Origin column makes it easy to identify
KMS keys with an External (Import Key material) origin property value. For help, see the
section called “Customize your KMS key tables”.

The Cryptographic configuration tab on the details page for a KMS key displays the Origin,
which identifies the source of the key material for the KMS key. For KMS keys with imported
key material, the origin value is always External (Import Key material). The details page
also includes a Key material tab that provides detailed information about the imported key
material. Single-Region, symmetric encryption keys with EXTERNAL origin support on-demand
rotations and can have multiple key materials associated with them. For such keys, the tab is
labeled Key material and rotations.

In DescribeKey responses

When you call the DescribeKey operation on a KMS key with imported key material the
response includes the Origin, ExpirationModel, and ValidTo values. For KMS keys with
imported key material the origin value is always EXTERNAL. The ExpirationModel value

Identify KMS keys with imported key material 360

Amazon Key Management Service Developer Guide

indicates whether or not the key material is set to expire, and the ValidTo value indicates
when the key material will expire. When multiple key materials are associated with a key, the
ValidTo value indicates the earliest expiry time across all key materials (except for the one
pending rotation) and ExpirationModel is set to DOES_NOT_EXPIRE only if none of these
key materials are set to expire. For more information, see Setting an expiration time (optional).

For more information on KMS keys with imported key material, see the section called “Imported
key material”.

Identify KMS keys in Amazon CloudHSM key stores

In the Amazon KMS console

To make it easier to identify KMS keys in Amazon CloudHSM key stores in the Customer
managed keys table, add the Origin column to your table. The Origin column makes it easy to
identify KMS keys with an Amazon CloudHSM origin property value. For help, see the section
called “Customize your KMS key tables”.

The Cryptographic configuration tab on the details page for a KMS key displays the Origin,
which identifies the source of the key material for the KMS key. For KMS keys in Amazon
CloudHSM key stores, the origin value is always Amazon CloudHSM.

For a KMS key in an Amazon CloudHSM key store, the Cryptographic configuration tab
includes an additional section, Custom key store, that provides information about the Amazon
CloudHSM key store and Amazon CloudHSM cluster associated with the KMS key.

In DescribeKey responses

When you call the DescribeKey operation on a KMS key in an Amazon CloudHSM key store
the response includes the Origin, which identifies the source of the key material. For KMS keys
in an Amazon CloudHSM key store the origin value is always AWS_CLOUDHSM. The operation
also returns the following special fields for KMS keys in Amazon CloudHSM key stores:

• CloudHsmClusterId

• CustomKeyStoreId

For more information on Amazon CloudHSM key stores, see the section called “Amazon CloudHSM
key stores”.

Identify KMS keys in Amazon CloudHSM key stores 361

Amazon Key Management Service Developer Guide

Identify KMS keys in external key stores

In the Amazon KMS console

To make it easier to identify KMS keys in external key stores in the Customer managed keys
table, add the Origin column to your table. The Origin column makes it easy to identify
KMS keys with an External key store origin property value. For help, see the section called
“Customize your KMS key tables”.

The Cryptographic configuration tab on the details page for a KMS key displays the Origin,
which identifies the source of the key material for the KMS key. For KMS keys in external key
stores, the origin value is always External key store.

For a KMS key in an external key store, the Cryptographic configuration tab includes
two additional sections, Custom key store and External key. The Custom key store table
provides information about the external key store associated with the KMS key. The External
key table appears in the Amazon KMS console only for KMS keys in external key stores. It
provides information about the external key associated with the KMS key. The external key is
a cryptographic key outside of Amazon that serves as the key material for the KMS key in the
external key store. When you encrypt or decrypt with the KMS key, the operation is performed
by your external key manager using the specified external key.

The following values appear in the External key section.

External key ID

The identifier for the external key in its external key manager. This is the value that the
external key store proxy uses to identify the external key. You specify the ID of the external
key when you create the KMS key and you cannot change it. If the external key ID value that
you used to create the KMS key changes or becomes invalid, you must schedule the KMS key
for deletion and create a new KMS key with the correct external key ID value.

In DescribeKey responses

When you call the DescribeKey operation on a KMS key in an external key store the
response includes the Origin, which identifies the source of the key material. For KMS keys
in an Amazon CloudHSM key store the origin value is always EXTERNAL_KEY_STORE. The
operation also returns the CustomKeyStoreId element, which identifies the external key store
associated with the KMS keys.

Identify KMS keys in external key stores 362

Amazon Key Management Service Developer Guide

For more information on external key stores, see the section called “External key stores”.

Customize your console view

You can customize the view of the Amazon KMS console to make it easier to find your KMS keys.
Customize the tables that appear on the Amazon managed keys and Customer managed keys
pages to display the information that you need the most, or sort and filter the KMS keys returned
in the tables.

Topics

• Sort and filter your KMS keys

• Customize your KMS key tables

Sort and filter your KMS keys

To make it easier to find your KMS keys in the console, you can sort and filter the key tables.

Sort

You can sort KMS keys in ascending or descending order by their column values. This feature
sorts all KMS keys in the table, even if they don't appear on the current table page.

Sortable columns are indicated by an arrow beside the column name. On the Amazon managed
keys page, you can sort by Aliases or Key ID. On the Customer managed keys page, you can
sort by Aliases, Key ID, or Key type.

To sort in ascending order, choose the column heading until the arrow points upward. To sort in
descending order, choose the column heading until the arrow points downward. You can sort by
only one column at a time.

For example, you can sort KMS keys in ascending order by key ID, instead of aliases, which is the
default.

Customize your console view 363

Amazon Key Management Service Developer Guide

When you sort KMS keys on the Customer managed keys page in ascending order by Key type,
all asymmetric keys are displayed before all symmetric keys.

Filter

You can filter KMS keys by their property values or tags. The filter applies to all KMS keys in the
table, even if they don't appear on the current table page. The filter is not case-sensitive.

Filterable properties are listed in the filter box. On the Amazon managed keys page, you can
filter by alias and key ID. On the Customer managed keys page, you can filter by the alias, key
ID, and key type properties, and by tags.

• On the Amazon managed keys page, you can filter by alias and key ID.

• On the Customer managed keys page, you can filter by tags, or by the alias, key ID, key type,
or regionality properties.

To filter by a property value, choose the filter, choose the property name, and then choose from
the list of actual property values. To filter by a tag, choose the tag key, and then choose from
the list of actual tag values. After choosing a property or tag key, you can also type all or part of
the property value or tag value. You'll see a preview of the results before you make your choice.

For example, to display KMS keys with an alias name that contains aws/e, choose the filter box,
choose Alias, type aws/e, and then press Enter or Return to add the filter.

Sort and filter your KMS keys 364

Amazon Key Management Service Developer Guide

Suggested KMS key table filters

Filter for asymmetric KMS keys

To display only asymmetric KMS keys on the Customer managed keys page, click the filter box,
choose Key type and then choose Key type: Asymmetric. The Asymmetric option appears only
when you have asymmetric KMS keys in the table.

Filter for multi-Region keys

To display only multi-Region keys, on the Customer managed keys page, choose the filter box,
choose Regionality and then choose Regionality: Multi-Region. The Multi-Region option
appears only when you have multi-Region keys in the table.

Filter for tags

To display only KMS keys with a particular tag, choose the filter box, choose the tag key, and
then choose from among the actual tag values. You can also type all or part of the tag value.

The resulting table displays all KMS keys with the chosen tag. However, it doesn't display the
tag. To see the tag, choose the key ID or alias of the KMS key and on its detail page, choose the
Tags tab. The tabs appear below the General configuration section.

This filter requires both the tag key and tag value. It won't find KMS keys by typing only
the tag key or only its value. To filter tags by all or part of the tag key or value, use the
ListResourceTags operation to get tagged KMS keys, then use the filtering features of your
programming language.

Filter by text

To search for text, in the filter box, type all or part of an alias, key ID, key type, or tag key. (After
you select the tag key, you can search for a tag value). You'll see a preview of the results before
you make your choice.

For example, to display KMS keys with test in its tag keys or filterable properties, type test
in the filter box. The preview shows the KMS keys that the filter will select. In this case, test
appears only in the Alias property.

Customize your KMS key tables

You can customize the tables that appear on the Amazon managed keys and Customer managed
keys pages in the Amazon Web Services Management Console to suit your needs. You can choose

Customize your KMS key tables 365

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html

Amazon Key Management Service Developer Guide

the table columns, the number of Amazon KMS keys on each page (Page size), and the text wrap.
The configuration you choose is saved when you confirm it and reapplied whenever you open the
pages.

To customize your KMS key tables

1. On the Amazon managed keys or Customer managed keys page, choose the settings icon

()
in the upper-right corner of the page.

2. On the Preferences page, choose your preferred settings, and then choose Confirm.

Consider using the Page size setting to increase the number of KMS keys displayed on each page,
especially if you typically use a device that's easy to scroll.

The data columns that you display might vary depending on the table, your job role, and the types
of KMS keys in the account and Region. The following table offers some suggested configurations.
For descriptions of the columns, see Using the Amazon KMS console.

Suggested KMS key table configurations

You can customize the columns that appear in your KMS key table to display the information you
need about your KMS keys.

Amazon managed keys

By default, the Amazon managed key table displays the Aliases, Key ID, and Status columns.
These columns are ideal for most use cases.

Symmetric encryption KMS keys

If you use only symmetric encryption KMS keys with key material generated by Amazon KMS,
the Aliases, Key ID, Status, and Creation date columns are likely to be the most useful.

Asymmetric KMS keys

If you use asymmetric KMS keys, in addition to the Aliases, Key ID, and Status columns,
consider adding the Key type, Key spec, and Key usage columns. These columns will show you
whether a KMS key is symmetric or asymmetric, the type of key material, and whether the KMS
key can be used for encryption or signing.

Customize your KMS key tables 366

Amazon Key Management Service Developer Guide

HMAC KMS keys

If you use HMAC KMS keys, in addition to the Aliases, Key ID, and Status columns, consider
adding the Key spec and Key usage columns. These columns will show you whether a KMS key
is an HMAC key. Because you can't sort KMS keys by key spec or key usage, use aliases and tags
to identify your HMAC keys and then use the filter features of the Amazon KMS console to filter
by aliases or tags.

Imported key material

If you have KMS keys with imported key material, consider adding the Origin and Expiration
date columns. These columns will show you whether the key material in a KMS key is imported
or generated by Amazon KMS and when the key material expires, if at all. The Creation date
field displays the date that the KMS key was created (without key material). It doesn't reflect
any characteristic of the key material.

Keys in custom key stores

If you have KMS keys in custom key stores, consider adding the Origin and Custom key store ID
columns. These columns show that the KMS key is in a custom key store, display the custom key
store type, and identify the custom key store.

Multi-Region keys

If you have multi-Region keys, consider adding the Regionality column. This shows whether a
KMS key is a single-Region key, a multi-Region primary key or a multi-Region replica key.

Find KMS keys and key material in an Amazon CloudHSM key
store

If you manage an Amazon CloudHSM key store, you might need to identify the KMS keys in each
Amazon CloudHSM key store. For example, you might need to do some of the following tasks.

• Track the KMS keys in Amazon CloudHSM key store in Amazon CloudTrail logs.

• Predict the effect on KMS keys of disconnecting an Amazon CloudHSM key store.

• Schedule deletion of KMS keys before you delete an Amazon CloudHSM key store.

In addition, you might want to identify the keys in your Amazon CloudHSM cluster that serve
as key material for your KMS keys. Although Amazon KMS manages the KMS keys and the key

Find KMS keys and key material in an Amazon CloudHSM key store 367

Amazon Key Management Service Developer Guide

material, you still retain control of and responsibility for the management of your Amazon
CloudHSM cluster, as well as the HSMs and backups and the keys in the HSMs. You might need to
identify the keys in order to audit the key material, protect it from accidental deletion, or delete it
from HSMs and cluster backups after deleting the KMS key.

All key material for the KMS keys in your Amazon CloudHSM key store is owned by the kmsuser
crypto user (CU). Amazon KMS sets the key label attribute, which is viewable only in Amazon
CloudHSM, to the Amazon Resource Name (ARN) of the KMS key.

To find KMS keys and key material, use any of the following techniques.

• Find the KMS keys in an Amazon CloudHSM key store — How to identify the KMS keys in one or
all of your Amazon CloudHSM key stores.

• Find all keys for an Amazon CloudHSM key store — How to find all keys in your cluster that serve
as key material for the KMS keys in your Amazon CloudHSM key store.

• Find the Amazon CloudHSM key for a KMS key — How to find the key in your cluster that serves
as key material for a particular KMS key in your Amazon CloudHSM key store.

• Find the KMS key for an Amazon CloudHSM key — How to find the KMS key for a particular key
in your cluster.

Find the KMS keys in an Amazon CloudHSM key store

If you manage an Amazon CloudHSM key store, you might need to identify the KMS keys in each
Amazon CloudHSM key store. You can use this information to track the KMS key operations in
Amazon CloudTrail logs, predict the effect of disconnecting a custom key store on KMS keys, or
schedule deletion of KMS keys before you delete an Amazon CloudHSM key store.

To find the KMS keys in an Amazon CloudHSM key store (console)

To find the KMS keys in a particular Amazon CloudHSM key store, on the Customer managed keys
page, view the values in the Custom Key Store Name or Custom Key Store ID fields. To identify
KMS keys in any Amazon CloudHSM key store, look for KMS keys with an Origin value of Amazon
CloudHSM. To add optional columns to the display, choose the gear icon in the upper right corner
of the page.

Find the KMS keys in an Amazon CloudHSM key store 368

Amazon Key Management Service Developer Guide

To find the KMS keys in an Amazon CloudHSM key store (API)

To find the KMS keys in an Amazon CloudHSM key store, use the ListKeys and DescribeKey
operations and then filter by CustomKeyStoreId value. Before running the following examples,
replace the fictitious custom key store ID values with a valid value.

Bash

To find KMS keys in a particular Amazon CloudHSM key store, get all of your KMS keys in the
account and Region. Then filter by the custom key store ID.

for key in $(aws kms list-keys --query 'Keys[*].KeyId' --output text) ;
do aws kms describe-key --key-id $key |
grep '"CustomKeyStoreId": "cks-1234567890abcdef0"' --context 100; done

To get KMS keys in any Amazon CloudHSM key store in the account and Region, search for
CustomKeyStoreType with a value of AWS_CloudHSM.

for key in $(aws kms list-keys --query 'Keys[*].KeyId' --output text) ;
do aws kms describe-key --key-id $key |
grep '"CustomKeyStoreType": "AWS_CloudHSM"' --context 100; done

PowerShell

To find KMS keys in a particular Amazon CloudHSM key store, use the Get-KmsKeyList and
Get-KmsKey cmdlets to get all of your KMS keys in the account and Region. Then filter by the
custom key store ID.

PS C:\> Get-KMSKeyList | Get-KMSKey | where CustomKeyStoreId -eq
 'cks-1234567890abcdef0'

To get KMS keys in any Amazon CloudHSM key store in the account and Region, filter for the
CustomKeyStoreType value of AWS_CLOUDHSM.

PS C:\> Get-KMSKeyList | Get-KMSKey | where CustomKeyStoreType -eq 'AWS_CLOUDHSM'

Find the KMS keys in an Amazon CloudHSM key store 369

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/powershell/latest/reference/items/Get-KMSKeyList.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-KMSKey.html

Amazon Key Management Service Developer Guide

Find all keys for an Amazon CloudHSM key store

You can identify the keys in your Amazon CloudHSM cluster that serve as key material for your
Amazon CloudHSM key store. To do that, use the key list command in CloudHSM CLI.

You can also use the key list command to find the Amazon KMS for an Amazon CloudHSM key.
When Amazon KMS creates the key material for a KMS key in your Amazon CloudHSM cluster, it
writes the Amazon Resource Name (ARN) of the KMS key in the key label. The key list command
returns the key-reference and the label.

Notes

The following procedures use the Amazon CloudHSM Client SDK 5 command line tool,
CloudHSM CLI. The CloudHSM CLI replaces key-handle with key-reference.
On January 1, 2025, Amazon CloudHSM will end support for the Client SDK 3 command
line tools, the CloudHSM Management Utility (CMU) and the Key Management Utility
(KMU). For more information on the differences between the Client SDK 3 command line
tools and the Client SDK 5 command line tool, see Migrate from Client SDK 3 CMU and
KMU to Client SDK 5 CloudHSM CLI in the Amazon CloudHSM User Guide.

To run this procedure you need to disconnect the Amazon CloudHSM key store temporarily so you
can log in as the kmsuser CU.

1. Disconnect the Amazon CloudHSM key store, if it is not already disconnected, then log in as
kmsuser, as explained in How to disconnect and log in.

Note

While a custom key store is disconnected, all attempts to create KMS keys in the
custom key store or to use existing KMS keys in cryptographic operations will fail. This
action can prevent users from storing and accessing sensitive data.

2. Use the key list command in CloudHSM CLI to find all keys for the current user present in your
Amazon CloudHSM cluster.

By default, only 10 keys of the currently logged in user are displayed, and only the key-
reference and label are displayed as output. For more options, see key list in the Amazon
CloudHSM User Guide.

Find all keys for an Amazon CloudHSM key store 370

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html#chsm-cli-key-list-syntax

Amazon Key Management Service Developer Guide

aws-cloudhsm > key list
{
 "error_code": 0,
 "data": {
 "matched_keys": [
 {
 "key-reference": "0x0000000000000123",
 "attributes": {
 "label": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
 },
 {
 "key-reference": "0x0000000000000456",
 "attributes": {
 "label": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
 }
 },.
 ...8 keys later...
],
 "total_key_count": 56,
 "returned_key_count": 10,
 "next_token": "10"
 }
}

3. Log out and reconnect the Amazon CloudHSM key store as described in How to log out and
reconnect.

Find the KMS key for an Amazon CloudHSM key

If you know the key reference or ID of a key that the kmsuser owns in the cluster, you can use that
value to identify the associated KMS key in your Amazon CloudHSM key store.

When Amazon KMS creates the key material for a KMS key in your Amazon CloudHSM cluster,
it writes the Amazon Resource Name (ARN) of the KMS key in the key label. Unless you have
changed the label value, you can use the key list command in CloudHSM CLI to identify the KMS
key associated with the Amazon CloudHSM key.

Find the KMS key for an Amazon CloudHSM key 371

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html

Amazon Key Management Service Developer Guide

Notes

The following procedures use the Amazon CloudHSM Client SDK 5 command line tool,
CloudHSM CLI. The CloudHSM CLI replaces key-handle with key-reference.
On January 1, 2025, Amazon CloudHSM will end support for the Client SDK 3 command
line tools, the CloudHSM Management Utility (CMU) and the Key Management Utility
(KMU). For more information on the differences between the Client SDK 3 command line
tools and the Client SDK 5 command line tool, see Migrate from Client SDK 3 CMU and
KMU to Client SDK 5 CloudHSM CLI in the Amazon CloudHSM User Guide.

To run these procedures you need to disconnect the Amazon CloudHSM key store temporarily so
you can log in as the kmsuser CU.

Note

While a custom key store is disconnected, all attempts to create KMS keys in the custom
key store or to use existing KMS keys in cryptographic operations will fail. This action can
prevent users from storing and accessing sensitive data.

Topics

• Identify the KMS key associated with a key reference

• Identify the KMS key associated with a backing key ID

Identify the KMS key associated with a key reference

The following procedures demonstrate how to use the key list command in CloudHSM CLI with
the key-reference attribute filter to find the key in your cluster that serves as key material for a
particular KMS key in your Amazon CloudHSM key store.

1. Disconnect the Amazon CloudHSM key store, if it is not already disconnected, then log in as
kmsuser, as explained in How to disconnect and log in.

2. Use the key list command in CloudHSM CLI to filter by the key-reference attribute. Specify
the verbose argument to include all attributes and key information for the matched key. If
you don't specify the verbose argument, the key list operation only returns the matched
key's key-reference and label attribute.

Find the KMS key for an Amazon CloudHSM key 372

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html

Amazon Key Management Service Developer Guide

Before running this command, replace the example key-reference with a valid one from
your account.

aws-cloudhsm > key list --filter attr.key-reference="0x0000000000120034" --verbose
{
 "error_code": 0,
 "data": {
 "matched_keys": [
 {
 "key-reference": "0x0000000000120034",
 "key-info": {
 "key-owners": [
 {
 "username": "kmsuser",
 "key-coverage": "full"
 }
],
 "shared-users": [],
 "cluster-coverage": "full"
 },
 "attributes": {
 "key-type": "aes",
 "label": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "id": "0xbacking-key-id",
 "check-value": "0x29bbd1",
 "class": "my_test_key",
 "encrypt": true,
 "decrypt": true,
 "token": true,
 "always-sensitive": true,
 "derive": false,
 "destroyable": true,
 "extractable": false,
 "local": true,
 "modifiable": true,
 "never-extractable": false,
 "private": true,
 "sensitive": true,
 "sign": false,
 "trusted": false,
 "unwrap": true,

Find the KMS key for an Amazon CloudHSM key 373

Amazon Key Management Service Developer Guide

 "verify": false,
 "wrap": true,
 "wrap-with-trusted": false,
 "key-length-bytes": 32
 }
 }
],
 "total_key_count": 1,
 "returned_key_count": 1
 }
}

3. Log out and reconnect the Amazon CloudHSM key store as described in How to log out and
reconnect.

Identify the KMS key associated with a backing key ID

All CloudTrail log entries for cryptographic operations with a KMS key in an Amazon CloudHSM key
store include an additionalEventData field with the customKeyStoreId and backingKeyId.
The value returned in the backingKeyId field correlates to the CloudHSM key id attribute. You
can filter the key list operation by the id attribute to identify the KMS key associated with a
specific backingKeyId.

1. Disconnect the Amazon CloudHSM key store, if it is not already disconnected, then log in as
kmsuser, as explained in How to disconnect and log in.

2. Use the key list command in CloudHSM CLI with the attribute filter to find the key in your
cluster that serves as key material for a particular KMS key in your Amazon CloudHSM key
store.

The following example demonstrates how to filter by the id attribute. Amazon CloudHSM
recognizes the id value as a hexadecimal value. To filter the key list operation by the
id attribute, you must first convert the backingKeyId value that you identified in your
CloudTrail log entry into a format that Amazon CloudHSM recognizes.

a. Use the following Linux command to convert the backingKeyId into a hexadecimal
representation.

echo backingKeyId | tr -d '\n' | xxd -p

Find the KMS key for an Amazon CloudHSM key 374

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html

Amazon Key Management Service Developer Guide

The following example demonstrates how to convert the backingKeyId byte array into a
hexadecimal representation.

echo 5890723622dc15f699aa9ab2387a9f744b2b884c18b2186ee8ada4f556a2eb9d | tr -d
 '\n' | xxd -p
35383930373233363232646331356636393961613961623233383761396637343462326238383463313862323138366565386164613466353536613265623964

b. Prepend the hexadecimal representation of the backingKeyId with 0x.

0x35383930373233363232646331356636393961613961623233383761396637343462326238383463313862323138366565386164613466353536613265623964

c. Use the converted backingKeyId value to filter by the id attribute. Specify the verbose
argument to include all attributes and key information for the matched key. If you don't
specify the verbose argument, the key list operation only returns the matched key's key-
reference and label attribute.

aws-cloudhsm > key list --filter
 attr.id="0x35383930373233363232646331356636393961613961623233383761396637343462326238383463313862323138366565386164613466353536613265623964"
 --verbose
{
 "error_code": 0,
 "data": {
 "matched_keys": [
 {
 "key-reference": "0x0000000000120034",
 "key-info": {
 "key-owners": [
 {
 "username": "kmsuser",
 "key-coverage": "full"
 }
],
 "shared-users": [],
 "cluster-coverage": "full"
 },
 "attributes": {
 "key-type": "aes",
 "label": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "id":
 "0x35383930373233363232646331356636393961613961623233383761396637343462326238383463313862323138366565386164613466353536613265623964",

Find the KMS key for an Amazon CloudHSM key 375

Amazon Key Management Service Developer Guide

 "check-value": "0x29bbd1",
 "class": "my_test_key",
 "encrypt": true,
 "decrypt": true,
 "token": true,
 "always-sensitive": true,
 "derive": false,
 "destroyable": true,
 "extractable": false,
 "local": true,
 "modifiable": true,
 "never-extractable": false,
 "private": true,
 "sensitive": true,
 "sign": false,
 "trusted": false,
 "unwrap": true,
 "verify": false,
 "wrap": true,
 "wrap-with-trusted": false,
 "key-length-bytes": 32
 }
 }
],
 "total_key_count": 1,
 "returned_key_count": 1
 }
}

3. Log out and reconnect the Amazon CloudHSM key store as described in How to log out and
reconnect.

Find the Amazon CloudHSM key for a KMS key

You can use the KMS key ID of a KMS key in an Amazon CloudHSM key store to identify the key in
your Amazon CloudHSM cluster that serves as its key material.

When Amazon KMS creates the key material for a KMS key in your Amazon CloudHSM cluster, it
writes the Amazon Resource Name (ARN) of the KMS key in the key label. Unless you have changed
the label value, you can use the key list command in CloudHSM CLI to find the key-resource and id
of the key material for the KMS key.

Find the Amazon CloudHSM key for a KMS key 376

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html

Amazon Key Management Service Developer Guide

All CloudTrail log entries for cryptographic operation with a KMS key in an Amazon CloudHSM key
store include an additionalEventData field with the customKeyStoreId and backingKeyId.
The value returned in the backingKeyId field is the id Amazon CloudHSM key attribute. You can
filter the key list Amazon CloudHSM CLI operation by KMS key ARN to identify the CloudHSM key
id attribute associated with a specific KMS key.

To run this procedure, you need to disconnect the Amazon CloudHSM key store temporarily so you
can log in as the kmsuser CU.

Notes

The following procedures use the Amazon CloudHSM Client SDK 5 command line tool,
CloudHSM CLI. The CloudHSM CLI replaces key-handle with key-reference.
On January 1, 2025, Amazon CloudHSM will end support for the Client SDK 3 command
line tools, the CloudHSM Management Utility (CMU) and the Key Management Utility
(KMU). For more information on the differences between the Client SDK 3 command line
tools and the Client SDK 5 command line tool, see Migrate from Client SDK 3 CMU and
KMU to Client SDK 5 CloudHSM CLI in the Amazon CloudHSM User Guide.

1. Disconnect the Amazon CloudHSM key store, if it is not already disconnected, then log in as
kmsuser, as explained in How to disconnect and log in.

Note

While a custom key store is disconnected, all attempts to create KMS keys in the
custom key store or to use existing KMS keys in cryptographic operations will fail. This
action can prevent users from storing and accessing sensitive data.

2. Use the key list command in CloudHSM CLI and filter by label to find the KMS key for a
particular key in your Amazon CloudHSM cluster. Specify the verbose argument to include
all attributes and key information for the matched key. If you don't specify the verbose
argument, the key list operation only returns the matched key's key-reference and label
attributes.

The following example demonstrates how to filter by the label attribute that stores the KMS
key ARN. Before running this command, replace the example KMS key ARN with a valid one
from your account.

Find the Amazon CloudHSM key for a KMS key 377

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-list.html

Amazon Key Management Service Developer Guide

aws-cloudhsm > key list --filter attr.label="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" --verbose
{
 "error_code": 0,
 "data": {
 "matched_keys": [
 {
 "key-reference": "0x0000000000120034",
 "key-info": {
 "key-owners": [
 {
 "username": "kmsuser",
 "key-coverage": "full"
 }
],
 "shared-users": [],
 "cluster-coverage": "full"
 },
 "attributes": {
 "key-type": "aes",
 "label": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "id": "0xbacking-key-id",
 "check-value": "0x29bbd1",
 "class": "my_test_key",
 "encrypt": true,
 "decrypt": true,
 "token": true,
 "always-sensitive": true,
 "derive": false,
 "destroyable": true,
 "extractable": false,
 "local": true,
 "modifiable": true,
 "never-extractable": false,
 "private": true,
 "sensitive": true,
 "sign": false,
 "trusted": false,
 "unwrap": true,
 "verify": false,
 "wrap": true,
 "wrap-with-trusted": false,

Find the Amazon CloudHSM key for a KMS key 378

Amazon Key Management Service Developer Guide

 "key-length-bytes": 32
 }
 }
],
 "total_key_count": 1,
 "returned_key_count": 1
 }
}

3. Log out and reconnect the Amazon CloudHSM key store as described in How to log out and
reconnect.

Find the Amazon CloudHSM key for a KMS key 379

Amazon Key Management Service Developer Guide

Enable and disable keys

You can disable and re-enable customer managed keys. When you create a KMS key, it is enabled
by default. If you disable a KMS key, it cannot be used in any cryptographic operation until you re-
enable it.

Because it's temporary and easily undone, disabling a KMS key is a safe alternative to deleting a
KMS key, an action that is destructive and irreversible. If you are considering deleting a KMS key,
disable it first and set a CloudWatch alarm or similar mechanism to be certain that you'll never
need to use the key to decrypt encrypted data.

When you disable a KMS key, it becomes unusable right away (subject to eventual consistency).
However, resources encrypted with data keys protected by the KMS key are not affected until the
the KMS key is used again, such as to decrypt the data key. This issue affects Amazon Web Services
services, many of which use data keys to protect your resources. For details, see How unusable KMS
keys affect data keys.

You cannot enable or disable Amazon managed keys or Amazon owned keys. Amazon managed
keys are permanently enabled for use by services that use Amazon KMS. Amazon owned keys are
managed solely by the service that owns them.

Note

Amazon KMS does not rotate the key material of customer managed keys while they are
disabled. For more information, see How key rotation works.

Using the Amazon KMS console

You can use the Amazon KMS console to enable and disable customer managed keys.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose the check box for the KMS keys that you want to enable or disable.

Using the Amazon KMS console 380

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

5. To enable a KMS key, choose Key actions, Enable. To disable a KMS key, choose Key actions,
Disable.

Using the Amazon KMS API

The EnableKey operation enables a disabled Amazon KMS key. These examples use the Amazon
Command Line Interface (Amazon CLI), but you can use any supported programming language. The
key-id parameter is required.

This operation does not return any output. To see the key status, use the DescribeKey operation.

$ aws kms enable-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

The DisableKey operation disables an enabled KMS key. The key-id parameter is required.

$ aws kms disable-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

This operation does not return any output. To see the key status, use the DescribeKey operation,
and see the Enabled field.

$ aws kms describe-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "MultiRegion": false,
 "Enabled": false,
 "KeyState": "Disabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "CreationDate": 1502910355.475,
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333"
 "KeySpec": "SYMMETRIC_DEFAULT",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]

Using the Amazon KMS API 381

https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKey.html
http://www.amazonaws.cn/cli/
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

 }
}

Using the Amazon KMS API 382

Amazon Key Management Service Developer Guide

Rotate Amazon KMS keys

To create new cryptographic material for your customer managed keys, you can create new KMS
keys, and then change your applications or aliases to use the new KMS keys. Or, you can rotate the
key material associated with an existing KMS key by enabling automatic key rotation or performing
on-demand rotation.

By default, when you enable automatic key rotation for a KMS key, Amazon KMS generates new
cryptographic material for the KMS key every year. You can also specify a custom rotation-period
to define the number of days after you enable automatic key rotation that Amazon KMS will rotate
your key material, and the number of days between each automatic rotation thereafter. If you need
to immediately initiate key material rotation, you can perform on-demand rotation, regardless of
whether or not automatic key rotation is enabled. On-demand rotations do not change existing
automatic rotation schedules.

You can track the rotation of key material for your KMS keys in Amazon CloudWatch,
Amazon CloudTrail, and the Amazon Key Management Service console. You can also use
GetKeyRotationStatus operation to verify whether automatic rotation is enabled for a KMS key and
identify any in progress on-demand rotations. You can use ListKeyRotations operation to view the
details of completed rotations.

Key rotation changes only the current key material, which is the cryptographic secret that is used in
encryption operations. When you use the rotated KMS key to decrypt ciphertext, Amazon KMS uses
the key material that was used to encrypt it. You cannot select a particular key material for decrypt
operations, Amazon KMS automatically chooses the correct key material. Because Amazon KMS
transparently decrypts with the appropriate key material, you can safely use a rotated KMS key in
applications and Amazon Web Services services without code changes.

The KMS key is the same logical resource, regardless of whether or how many times its key material
changes. The properties of the KMS key do not change, as shown in the following image.

383

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html

Amazon Key Management Service Developer Guide

You might decide to create a new KMS key and use it in place of the original KMS key. This has the
same effect as rotating the key material in an existing KMS key, so it's often thought of as manually
rotating the key. Manual rotation is a good choice when you want to rotate KMS keys that are not
eligible for automatic or on-demand key rotation, including asymmetric KMS keys, HMAC KMS
keys, KMS keys in custom key stores, and multi-Region KMS keys with imported key material.

Note

Key rotation has no effect on the data that the KMS key protects. It does not rotate the
data keys that the KMS key generated or re-encrypt any data protected by the KMS key.
Key rotation will not mitigate the effect of a compromised data key.

Key rotation and pricing

Amazon KMS charges a monthly fee for first and second rotation of key material maintained for
your KMS key. This price increase is capped at the second rotation, and any subsequent rotations
will not be billed. For details, see Amazon Key Management Service Pricing.

Note

You can use the Amazon Cost Explorer Service to view a breakdown of your key storage
charges. For example, you can filter your view to see the total charges for keys billed as
current and rotated KMS keys by specifying $REGION-KMS-Keys for the Usage Type and
grouping the data by API Operation.
You might still see instances of the legacy Unknown API operation for historical dates.

Key rotation and quotas

Each KMS key counts as one key when calculating key resource quotas, regardless of the number of
rotated key material versions.

For detailed information about key material and rotation, see Amazon Key Management Service
Cryptographic Details.

Topics

• Why rotate KMS keys?

384

http://www.amazonaws.cn/kms/pricing/
https://docs.amazonaws.cn/cost-management/latest/userguide/ce-what-is.html
https://docs.amazonaws.cn/kms/latest/cryptographic-details/
https://docs.amazonaws.cn/kms/latest/cryptographic-details/

Amazon Key Management Service Developer Guide

• How key rotation works

• Enable automatic key rotation

• Disable automatic key rotation

• Perform on-demand key rotation

• List rotations and key materials

• Rotate keys manually

• Change the primary key in a set of multi-Region keys

Why rotate KMS keys?

Cryptographic best practices discourage extensive reuse of keys that encrypt data directly, such as
the data keys that Amazon KMS generates. When 256-bit data keys encrypt millions of messages
they can become exhausted and begin to produce ciphertext with subtle patterns that clever actors
can exploit to discover the bits in the key. It's best to use data keys once, or just a few times, to
mitigate this key exhaustion.

However, KMS keys are most often used as wrapping keys, also known as key-encryption keys.
Instead of encrypting data, wrapping keys encrypt the data keys that encrypt your data. As
such, they are used far less often than data keys, and are almost never reused enough to risk key
exhaustion.

Despite this very low exhaustion risk, you might be required to rotate your KMS keys due to
business or contract rules or government regulations. When you are compelled to rotate KMS keys,
we recommend that you use automatic key rotation where it is supported, use on-demand rotation
if automatic rotation is not supported, and manual key rotation when neither automatic nor on-
demand key rotation is supported.

You might consider performing on-demand rotations to demonstrate key material rotation
capabilities or to validate automation scripts. We recommend using on-demand rotations for
unplanned rotations, and using automatic key rotation with a custom rotation period whenever
possible.

How key rotation works

Amazon KMS key rotation is designed to be transparent and easy to use. Amazon KMS supports
optional automatic and on-demand key rotation only for customer managed keys.

Why rotate KMS keys? 385

Amazon Key Management Service Developer Guide

Automatic key rotation

Amazon KMS rotates the KMS key automatically on the next rotation date defined by your
rotation period. You don't need to remember or schedule the update.

Automatic key rotation is supported only on symmetric encryption KMS keys with key material
that Amazon KMS generates (AWS_KMS origin).

Automatic rotation is optional for customer managed KMS keys. Amazon KMS always rotates
the key material for Amazon managed KMS keys every year. Rotation of Amazon owned KMS
keys is managed by the Amazon Web Services service that owns the key.

On-demand rotation

Immediately initiate rotation of the key material associated with your KMS key, regardless of
whether or not automatic key rotation is enabled.

On-demand key rotation is supported on symmetric encryption KMS keys with key material that
Amazon KMS generates (AWS_KMS origin) and single-Region, symmetric encryption KMS keys
with imported key material (EXTERNAL origin).

Manual rotation

Neither automatic nor on-demand key rotation is supported for the following types of KMS
keys, but you can rotate these KMS keys manually.

• Asymmetric KMS keys

• HMAC KMS keys

• KMS keys in custom key stores

• Multi-Region KMS keys with imported key material

Managing key material

Amazon KMS retains all key material for a KMS key with AWS_KMS origin, even if key rotation is
disabled. Amazon KMS deletes key material only when you delete the KMS key.

You manage the key materials for symmetric encryption keys with EXTERNAL origin. You can
delete any key material using the DeleteImportedKeyMaterial operation or set an expiration
time when importing the material. The KMS key becomes unusable as soon as any of its
materials expires or is deleted.

How key rotation works 386

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html

Amazon Key Management Service Developer Guide

Using key material

When you use a rotated KMS key to encrypt data, Amazon KMS uses the current key material.
When you use the rotated KMS key to decrypt ciphertext, Amazon KMS uses the same version
of the key material that was used to encrypt it. You cannot select a particular version of the key
material for decrypt operations, Amazon KMS automatically chooses the correct version.

Rotation period

Rotation period defines the number of days after you enable automatic key rotation that
Amazon KMS will rotate your key material, and the number of days between each automatic
key rotation thereafter. If you do not specify a value for RotationPeriodInDays when you
enable automatic key rotation, the default value is 365 days.

You can use the kms:RotationPeriodInDays condition key to further constrain the values that
principals can specify in the RotationPeriodInDays parameter.

Rotation date

Rotation date reflects the date when the current key material for a KMS key was updated either
as a result of automatic (scheduled) rotation or an on-demand key rotation.

Rotation date

Amazon KMS automatically rotates the KMS key on the rotation date defined by your rotation
period. The default rotation period is 365 days.

Customer managed keys

Because automatic key rotation is optional on customer managed keys and can be enabled
and disabled at any time, the rotation date depends on the date that rotation was most
recently enabled. The date can change if you modify the rotation period for a key that you
previously enabled automatic key rotation on. The rotation date can change many times
over the life of the key.

For example, if you create a customer managed key on January 1, 2022, and enable
automatic key rotation with the default rotation period of 365 days on March 15, 2022,
Amazon KMS rotates the key material on March 15, 2023, March 15, 2024, and every 365
days thereafter.

The following examples assume that automatic key rotation was enabled with the default
rotation period of 365 days. These examples demonstrate special cases that might impact a
key's rotation period.

How key rotation works 387

Amazon Key Management Service Developer Guide

• Disable key rotation — If you disable automatic key rotation at any point, the KMS key
continues to use the version of the key material it was using when rotation was disabled. If
you enable automatic key rotation again, Amazon KMS rotates the key material based on
the new rotation-enable date.

• Disabled KMS keys — While a KMS key is disabled, Amazon KMS does not rotate it.
However, the key rotation status does not change, and you cannot change it while the
KMS key is disabled. When the KMS key is re-enabled, if the key material is past its last
scheduled rotation date , Amazon KMS rotates it immediately. If the key material has not
missed its last scheduled rotation date, Amazon KMS resumes the original key rotation
schedule.

• KMS keys pending deletion — While a KMS key is pending deletion, Amazon KMS does not
rotate it. The key rotation status is set to false and you cannot change it while deletion
is pending. If deletion is canceled, the previous key rotation status is restored. If the key
material is past its last scheduled rotation date, Amazon KMS rotates it immediately. If the
key material has not missed its last scheduled rotation date, Amazon KMS resumes the
original key rotation schedule.

Amazon managed keys

Amazon KMS automatically rotates Amazon managed keys every year (approximately 365
days). You cannot enable or disable key rotation for Amazon managed keys.

The key material for an Amazon managed key is first rotated one year after its creation date,
and every year (approximately 365 days from the last rotation) thereafter.

Note

In May 2022, Amazon KMS changed the rotation schedule for Amazon managed keys
from every three years (approximately 1,095 days) to every year (approximately 365
days).

Amazon owned keys

You cannot enable or disable key rotation for Amazon owned keys. The key rotation strategy
for an Amazon owned key is determined by the Amazon service that creates and manages
the key. For details, see the Encryption at Rest topic in the user guide or developer guide for
the service.

How key rotation works 388

Amazon Key Management Service Developer Guide

Rotating multi-Region keys

You can enable and disable automatic rotation and perform on-demand rotation of the key
material in symmetric encryption multi-Region keys with AWS_KMS origin. Key rotation is a
shared property of multi-Region keys.

You enable and disable automatic key rotation only on the primary key. You initiate on-demand
rotation only on the primary key.

• When Amazon KMS synchronizes the multi-Region keys, it copies the key rotation property
setting from the primary key to all of its related replica keys.

• When Amazon KMS rotates the key material, it creates new key material for the primary key
and then copies the new key material across Region boundaries to all related replica keys.
The key material never leaves Amazon KMS unencrypted. This step is carefully controlled
to ensure that key material is fully synchronized before any key is used in a cryptographic
operation.

• Amazon KMS does not encrypt any data with the new key material until that key material is
available in the primary key and every one of its replica keys.

• When you replicate a primary key that has been rotated, the new replica key has the current
key material and all previous versions of the key material for its related multi-Region keys.

This pattern ensures that related multi-Region keys are fully interoperable. Any multi-Region
key can decrypt any ciphertext encrypted by a related multi-Region key, even if the ciphertext
was encrypted before the key was created.

Amazon services

You can enable automatic key rotation on the customer managed keys that you use for server-
side encryption in Amazon services. The annual rotation is transparent and compatible with
Amazon services.

Monitoring key rotation

When Amazon KMS rotates the key material for an Amazon managed key or customer managed
key, it writes a KMS CMK Rotation event to Amazon EventBridge and a RotateKey event to
your Amazon CloudTrail log. You can use these records to verify that the KMS key was rotated.

You can use the Amazon Key Management Service console to view the number of remaining on-
demand rotations and a list of all completed key material rotations for a KMS key.

You can use ListKeyRotations operation to view the details of completed rotations.

How key rotation works 389

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html

Amazon Key Management Service Developer Guide

Eventual consistency

Key rotation is subject to the same eventual consistency effects as other Amazon KMS
management operations. There might be a slight delay before the new key material is available
throughout Amazon KMS. However, rotating key material does not cause any interruption or
delay in cryptographic operations. The current key material is used in cryptographic operations
until the new key material is available throughout Amazon KMS. When key material for a multi-
Region key is automatically rotated, Amazon KMS uses the current key material until the new
key material is available in all Regions with a related multi-Region key.

Enable automatic key rotation

By default, when you enable automatic key rotation for a KMS key, Amazon KMS generates new
cryptographic material for the KMS key every year. You can also specify a custom rotation-period
to define the number of days after you enable automatic key rotation that Amazon KMS will rotate
your key material, and the number of days between each automatic rotation thereafter.

Automatic key rotation has the following benefits:

• The properties of the KMS key, including its key ID, key ARN, region, policies, and permissions, do
not change when the key is rotated.

• You do not need to change applications or aliases that refer to the key ID or key ARN of the KMS
key.

• Rotating key material does not affect the use of the KMS key in any Amazon Web Services
service.

• After you enable key rotation, Amazon KMS rotates the KMS key automatically on the next
rotation date defined by your rotation period. You don't need to remember or schedule the
update.

You can enable automatic key rotation in the Amazon KMS console or by using
the EnableKeyRotation operation. To enable automatic key rotation, you need
kms:EnableKeyRotation permissions. For more information about Amazon KMS permissions,
see the Permissions reference.

Enable automatic key rotation 390

https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKeyRotation.html

Amazon Key Management Service Developer Guide

Using the Amazon KMS console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot enable or disable
rotation of Amazon managed keys. They are automatically rotated every year.)

4. Choose the alias or key ID of a KMS key.

5. Choose the Key rotation tab.

The Key rotation tab appears only on the detail page of symmetric encryption KMS keys with
key material that Amazon KMS generated (the Origin is AWS_KMS), including multi-Region
symmetric encryption KMS keys.

You cannot automatically rotate asymmetric KMS keys, HMAC KMS keys, KMS keys with
imported key material, or KMS keys in custom key stores. However, you can rotate them
manually.

6. In the Automatic key rotation section, choose Edit.

7. For Key rotation, select Enable.

Note

If a KMS key is disabled or pending deletion, Amazon KMS does not rotate the
key material and you cannot update the automatic key rotation status or rotation
period. Enable the KMS key or cancel deletion to update the automatic key rotation
configuration. For details, see How key rotation works and Key states of Amazon KMS
keys.

8. (Optional) Type a rotation period between 90 and 2560 days. The default value is 365 days. If
you do not specify a custom rotation period, Amazon KMS will rotate the key material every
year.

You can use the kms:RotationPeriodInDays condition key to limit the values that principals can
specify for the rotation period.

9. Choose Save.

Enable automatic key rotation 391

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

Using the Amazon KMS API

You can use the Amazon Key Management Service (Amazon KMS) API to enable automatic key
rotation and view the current rotation status of any customer managed key. These examples use
the Amazon Command Line Interface (Amazon CLI), but you can use any supported programming
language.

The EnableKeyRotation operation enables automatic key rotation for the specified KMS key. To
identify the KMS key in this operation, use its key ID or key ARN. By default, key rotation is disabled
for customer managed keys.

You can use the kms:RotationPeriodInDays condition key to limit the values that principals can
specify for the RotationPeriodInDays parameter of an EnableKeyRotation request.

The following example enables key rotation with a rotation period of 180 days on the specified
symmetric encryption KMS key and uses the GetKeyRotationStatus operation to see the result.

$ aws kms enable-key-rotation \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --rotation-period-in-days 180

$ aws kms get-key-rotation-status --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyRotationEnabled": true,
 "RotationPeriodInDays": 180,
 "NextRotationDate": "2024-02-14T18:14:33.587000+00:00"
}

Disable automatic key rotation

After enabling automatic key rotation on a customer managed key, you can choose to disable it at
any time.

If you disable automatic key rotation, the KMS key continues to use the version of the key material
it was using when rotation was disabled. If you enable automatic key rotation again, Amazon KMS
rotates the key material based on the new rotation-enable date.

Disabling automatic rotation does not impact your ability to perform on-demand rotations, nor
does it cancel any in progress on-demand rotations.

Disable automatic key rotation 392

https://docs.amazonaws.cn/kms/latest/APIReference/
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKeyRotation.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html

Amazon Key Management Service Developer Guide

You can disable automatic key rotation in the Amazon KMS console or by using
the DisableKeyRotation operation. To disable automatic key rotation, you need
kms:DisableKeyRotation permissions. For more information about Amazon KMS permissions,
see the Permissions reference.

Using the Amazon KMS console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot enable or disable
rotation of Amazon managed keys. They are automatically rotated every year.)

4. Choose the alias or key ID of a KMS key.

5. Choose the Key rotation tab.

The Key rotation tab appears only on the detail page of symmetric encryption KMS keys with
key material that Amazon KMS generated (the Origin is AWS_KMS), including multi-Region
symmetric encryption KMS keys.

You cannot automatically rotate asymmetric KMS keys, HMAC KMS keys, KMS keys with
imported key material, or KMS keys in custom key stores. However, you can rotate them
manually.

6. In the Automatic key rotation section, choose Edit.

7. For Key rotation, select Disable.

Note

If a KMS key is disabled or pending deletion, Amazon KMS does not rotate the
key material and you cannot update the automatic key rotation status or rotation
period. Enable the KMS key or cancel deletion to update the automatic key rotation
configuration. For details, see How key rotation works and Key states of Amazon KMS
keys.

8. Choose Save.

Disable automatic key rotation 393

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKeyRotation.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

Using the Amazon KMS API

You can use the Amazon Key Management Service (Amazon KMS) API to disable automatic key
rotation and view the current rotation status of any customer managed key. This example uses
the Amazon Command Line Interface (Amazon CLI), but you can use any supported programming
language.

The DisableKeyRotation operation disables automatic key rotation. To identify the KMS key in this
operation, use its key ID or key ARN. By default, key rotation is disabled for customer managed
keys.

The following example disables automatic key rotation on the specified symmetric encryption KMS
key and uses the GetKeyRotationStatus operation to see the result.

$ aws kms disable-key-rotation --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

$ aws kms get-key-rotation-status --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyRotationEnabled": false
}

Perform on-demand key rotation

You can perform on-demand rotation of the key material in customer managed KMS keys,
regardless of whether or not automatic key rotation is enabled. Disabling automatic rotation
(DisableKeyRotation) does not impact your ability to perform on-demand rotations, nor does
it cancel any in progress on-demand rotations. On-demand rotations do not change existing
automatic rotation schedules. For example, consider a KMS key that has automatic key rotation
enabled with a rotation period of 730 days. If the key is scheduled to automatically rotate on April
14, 2024, and you perform an on-demand rotation on April 10, 2024, the key will automatically
rotate, as scheduled, on April 14, 2024 and every 730 days thereafter.

You can perform on-demand key rotation a maximum of 10 times per KMS key. You can use the
Amazon KMS console to view the number of remaining on-demand rotations available for a KMS
key.

On-demand key rotation is supported only on symmetric encryption KMS keys. You cannot
perform on-demand rotation of asymmetric KMS keys, HMAC KMS keys, multi-Region KMS keys

Perform on-demand key rotation 394

https://docs.amazonaws.cn/kms/latest/APIReference/
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKeyRotation.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKeyRotation.html

Amazon Key Management Service Developer Guide

with imported key material, or KMS keys in a custom key store. To perform on-demand rotation of
a set of related multi-Region keys, invoke the on-demand rotation on the primary key.

Authorized users with kms:RotateKeyOnDemand and kms:GetKeyRotationStatus permissions
can use the Amazon KMS console and the Amazon KMS API to initiate on-demand key rotation and
view the key rotation status. Use ListKeyRotations to view completed rotations for a KMS key.

Topics

• Initiating on-demand key rotation (console)

• Initiating on-demand key rotation (Amazon KMS API)

Initiating on-demand key rotation (console)

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot perform on-demand
rotation of Amazon managed keys. They are automatically rotated every year.)

4. Choose the alias or key ID of a KMS key.

5. Choose the Key material and rotations tab.

The Key material and rotations tab appears only on the detail page of symmetric encryption
KMS keys that support automatic or on-demand rotation. This includes KMS keys with key
material that Amazon KMS generated (AWS_KMS origin) and single-Region KMS keys with
imported key material (EXTERNAL origin).

You cannot perform on-demand rotation of asymmetric KMS keys, HMAC KMS keys, multi-
Region KMS keys with imported key material, or KMS keys in custom key stores. However, you
can rotate them manually.

6. Choose Rotate now. For single-Region, symmetric encryption keys with imported key material,
the Rotate now option is available only if you have previously imported new key material and
it is in Pending rotation state.

7. Read and consider the warning and the information about the number of remaining on-
demand rotations for the key. You will also see information such as the ID, description, and

Initiating on-demand key rotation (console) 395

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

expiration time of the key material that will become current after rotation. If you decide that
you do not want to proceed with the on-demand rotation, choose Cancel.

8. Choose Rotate key to confirm on-demand rotation.

Note

On-demand rotation is subject to the same eventual consistency effects as other
Amazon KMS management operations. There might be a slight delay before the
new key material is available throughout Amazon KMS. The banner at the top of the
console notifies you when the on-demand rotation is complete.

Initiating on-demand key rotation (Amazon KMS API)

You can use the Amazon Key Management Service (Amazon KMS) API to initiate on-demand key
rotation, and view the current rotation status of any customer managed key. This example uses
the Amazon Command Line Interface (Amazon CLI), but you can use any supported programming
language.

The RotateKeyOnDemand operation immediately initiates on-demand key rotation for the
specified KMS key. To identify the KMS key in these operations, use its key ID or key ARN.

The following example initiates on-demand key rotation on the specified symmetric encryption
KMS key and uses the GetKeyRotationStatus operation to verify that the on-demand rotation is in
progress. The OnDemandRotationStartDate in the kms:GetKeyRotationStatus response
identifies the date and time that an in progress on-demand rotation was initiated. In this example,
the KMS key also has automatic rotation enabled with a period of 365 days.

$ aws kms rotate-key-on-demand --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
}

$ aws kms get-key-rotation-status --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyRotationEnabled": true,
 "NextRotationDate": "2024-03-14T18:14:33.587000+00:00",
 "OnDemandRotationStartDate": "2024-02-24T18:44:48.587000+00:00"
 "RotationPeriodInDays": 365

Initiating on-demand key rotation (Amazon KMS API) 396

https://docs.amazonaws.cn/kms/latest/APIReference/
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html

Amazon Key Management Service Developer Guide

}

If the KMS key does not support automatic rotation or does not have automatic rotation enabled,
the kms:GetKeyRotationStatus response would have fewer fields as shown in the following
example:

$ aws kms rotate-key-on-demand --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
}

$ aws kms get-key-rotation-status --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyRotationEnabled": false,
 "OnDemandRotationStartDate": "2024-02-24T18:44:48.587000+00:00"
}

List rotations and key materials

KMS keys that support automatic or on-demand key rotation can have multiple key materials
associated with them. These keys have an initial key material and one additional key material for
each automatic or on-demand rotation.

Authorized users with kms:ListKeyRotations permission can use the Amazon KMS console and
the ListKeyRotations API to list all key materials associated with a KMS key, including those from
completed automatic and on-demand rotations.

Topics

• List rotations and key materials (console)

• List rotations and key materials (Amazon KMS API)

List rotations and key materials (console)

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

List rotations and key materials 397

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

3. In the navigation pane, choose Customer managed keys.

4. Choose the alias or key ID of a KMS key.

5. Choose the Key material and rotations tab.

• The Key material and rotations tab appears only on the detail page of symmetric
encryption KMS keys that support automatic or on-demand rotation. This includes KMS keys
with key material that Amazon KMS generated (AWS_KMS origin) and single-Region KMS
keys with imported key material (EXTERNAL origin).

• The Key materials table in the Key material and rotations tab lists all the key materials
associated with the KMS key. For each key material, the corresponding entry displays its
unique identifier assigned by Amazon KMS, the rotation date, and key material state.
The rotation date identifies when the key material became current after an automatic or
on-demand key rotation. There is no rotation date associated with the first or Pending
rotation key material. The key material state determines how Amazon KMS uses the key
material. Current key material is used for both encryption and decryption. Non-current key
material is only used for decryption. A key material state of Pending rotation indicates
the key material is staged for rotation. This key material is not used for any cryptographic
operation until an on-demand key rotation makes it the current key material. Additional
information displayed for the key material depends on type of KMS key.

• For symmetric encryption KMS keys with AWS_KMS origin, each row also displays the rotation
type — On-demand or Automatic.

• Single-Region, symmetric encryption KMS keys with imported key material (EXTERNAL
origin) only support On-demand rotation, so there is no rotation type column. Instead, each
row displays an import state, a user-specified description, expiration information, and an
Actions menu. The import state is either Imported indicating the key material is available
inside Amazon KMS or Pending import indicating the key material is not available inside
Amazon KMS. The Actions menu can be used to delete imported key material or reimport
key material. The Delete key material action is disabled if the import state of the key
material is Pending import. The Reimport key material action is always available. You do
not need to wait for a key material to expire or be deleted before reimporting it.

List rotations and key materials (Amazon KMS API)

You can use the Amazon Key Management Service (Amazon KMS) API to initiate on-demand key
rotation and view the current rotation status of any customer managed key. This example uses

List rotations and key materials (Amazon KMS API) 398

https://docs.amazonaws.cn/kms/latest/APIReference/

Amazon Key Management Service Developer Guide

the Amazon Command Line Interface (Amazon CLI), but you can use any supported programming
language.

The ListKeyRotations operation lists all rotations and key materials for the specified KMS key. To
identify the KMS key in these operations, use its key ID or key ARN.

This operation supports an optional IncludeKeyMaterial parameter. The default value of this
parameter is ROTATIONS_ONLY. If you omit this parameter, Amazon KMS returns information on
the key materials created by automatic or on-demand key rotation. When you specify a value of
ALL_KEY_MATERIAL, Amazon KMS adds the first key material and any imported key material
pending rotation to the response. This parameter can only be used with KMS keys that support
automatic or on-demand key rotation.

$ aws kms list-key-rotations --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --inlcude-key-material ALL_KEY_MATERIAL
{
 "Rotations": [
 {
 "KeyId": 1234abcd-12ab-34cd-56ef-1234567890ab,
 "KeyMaterialId":
 123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0,
 "KeyMaterialDescription": "KeyMaterialA",
 "ImportState": "PENDING_IMPORT",
 "KeyMaterialState": "NON_CURRENT"
 },
 {
 "KeyId": 1234abcd-12ab-34cd-56ef-1234567890ab,
 "KeyMaterialId":
 96083e4fb6dbc41d77578a213a6b6669c044dd4c143e96755396d2bf11fd6068,
 "ImportState": "IMPORTED",
 "KeyMaterialState": "CURRENT",
 "ExpirationModel": "KEY_MATERIAL_DOES_NOT_EXPIRE",
 "RotationDate": "2025-05-01T15:50:51.045000-07:00",
 "RotationType": "ON_DEMAND"
 }
],
 "Truncated": false
}

List rotations and key materials (Amazon KMS API) 399

http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html

Amazon Key Management Service Developer Guide

Rotate keys manually

You might want to create a new KMS key and use it in place of a current KMS key instead of using
automatic or on-demand key rotation. When the new KMS key has different cryptographic material
than the current KMS key, using the new KMS key has the same effect as changing the key material
in an existing KMS key. The process of replacing one KMS key with another is known as manual key
rotation.

Manual rotation is a good choice when you want to rotate KMS keys that are not eligible for
automatic or on-demand key rotation, such as asymmetric KMS keys, HMAC KMS keys, KMS keys in
custom key stores, and multi-Region KMS keys with imported key material.

Note

When you begin using the new KMS key, be sure to keep the original KMS key enabled so
that Amazon KMS can decrypt data that the original KMS key encrypted.

When you rotate KMS keys manually, you also need to update references to the KMS key ID or key
ARN in your applications. Aliases, which associate a friendly name with a KMS key, can make this
process easier. Use an alias to refer to a KMS key in your applications. Then, when you want to
change the KMS key that the application uses, instead of editing your application code, change the
target KMS key of the alias. For details, see Learn how to use aliases in your applications.

Note

Aliases that point to the latest version of a manually rotated KMS key are a good solution
for DescribeKey, GetPublicKey and cryptographic operations like DeriveSharedSecret,

Rotate keys manually 400

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html

Amazon Key Management Service Developer Guide

Encrypt, GenerateDataKey, GenerateDataKeyPair, GenerateMac, VerifyMac, Sign and Verify.
Aliases are not permitted in operations that manage KMS keys, such as DisableKey or
ScheduleKeyDeletion.
When calling the Decrypt operation on manually rotated symmetric encryption KMS keys,
omit the KeyId parameter from the command. Amazon KMS automatically uses the KMS
key that encrypted the ciphertext.
The KeyId parameter is required when calling Decrypt or Verify with an asymmetric KMS
key, or calling VerifyMac with an HMAC KMS key. These requests fail when the value of
the KeyId parameter is an alias that no longer points to the KMS key that performed the
cryptographic operation, such as when a key is manually rotated. To avoid this error, you
must track and specify the correct KMS key for each operation.

To change the target KMS key of an alias, use UpdateAlias operation in the Amazon KMS API. For
example, this command updates the alias/TestKey alias to point to a new KMS key. Because
the operation does not return any output, the example uses the ListAliases operation to show that
the alias is now associated with a different KMS key and the LastUpdatedDate field is updated.
The ListAliases commands use the query parameter in the Amazon CLI to get only the alias/
TestKey alias.

$ aws kms list-aliases --query 'Aliases[?AliasName==`alias/TestKey`]'
{
 "Aliases": [
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/TestKey",
 "AliasName": "alias/TestKey",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1521097200.123,
 "LastUpdatedDate": 1521097200.123
 },
]
}

$ aws kms update-alias --alias-name alias/TestKey --target-key-id
 0987dcba-09fe-87dc-65ba-ab0987654321

$ aws kms list-aliases --query 'Aliases[?AliasName==`alias/TestKey`]'
{
 "Aliases": [

Rotate keys manually 401

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-filter.html#cli-usage-filter-client-side-specific-values

Amazon Key Management Service Developer Guide

 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/TestKey",
 "AliasName": "alias/TestKey",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": 1521097200.123,
 "LastUpdatedDate": 1604958290.722
 },
]
}

Change the primary key in a set of multi-Region keys

Every set of related multi-Region keys must have a primary key. But you can change the primary
key. This action, known as updating the primary Region, converts the current primary key to a
replica key and converts one of the related replica keys to the primary key. You might do this if you
need to delete the current primary key while maintaining the replica keys, or to locate the primary
key in the same Region as your key administrators.

You can select any related replica key to be the new primary key. Both the primary key and the
replica key must be in the Enabled key state when the operation starts.

The Updating key state

Even after the UpdatePrimaryRegion operation completes, the process of updating the
primary Region might still be in progress for a few more seconds. During this time, the old and
new primary keys have a transient key state of Updating. While the key state is Updating, you
can use the keys in cryptographic operations, but you cannot replicate the new primary key or
perform certain management operations, such as enabling or disabling these keys. Operations
such as DescribeKey might display both the old and new primary keys as replicas. The Enabled
key state is restored when the update is complete.

For information about the effect of the Updating key state, see Key states of Amazon KMS
keys.

How it works

Suppose you have a primary key in US East (N. Virginia) (us-east-1) and a replica key in Europe
(Ireland) (eu-west-1). You can use the update feature to change the primary key in US East (N.
Virginia) (us-east-1) to a replica key and change the replica key in Europe (Ireland) (eu-west-1)
to the primary key.

Change the primary key in a set of multi-Region keys 402

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

When the update process completes, the multi-Region key in the Europe (Ireland) (eu-west-1)
Region is a multi-Region primary key and the key in the US East (N. Virginia) (us-east-1) Region
is its replica key. If there are other related replica keys, they become replicas of the new primary
key. The next time that Amazon KMS synchronizes the shared properties of the multi-Region
keys, it will get the shared properties from the new primary key and copy them to its replica
keys, including the former primary key.

The update operation has no effect on the key ARN of any multi-Region key. It also has no
effect on shared properties, such as the key material, or on independent properties, such as
the key policy. However, you might want to update the key policy of the new primary key. For
example, you might want to add kms:ReplicateKey permission for trusted principals to the new
primary key and remove it from the new replica key.

Change the primary key in a set of multi-Region keys 403

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html

Amazon Key Management Service Developer Guide

Update the primary Region

You can convert a replica key to a primary key, which changes the former primary key into a replica.
To update the primary Region, you need kms:UpdatePrimaryRegion permission in both Regions.

You can update the primary Region in the Amazon KMS console or by using the
UpdatePrimaryRegion operation.

Using the Amazon KMS console

You can update the primary key in the Amazon KMS console. Start on the key details page for the
current primary key.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Select the key ID or alias of the multi-Region primary key. This opens the key details page for
the primary key.

To identify a multi-Region primary key, use the tool icon in the upper right corner to add the
Regionality column to the table.

5. Choose the Regionality tab.

6. In the Primary key section, choose Change primary Region.

7. Choose the Region of the new primary key. You can choose only one Region from the menu.

The Change primary Regions menu includes only Regions that have a related multi-Region
key. You might not have permission to update the primary Region in all of the Regions on the
menu.

8. Choose Change primary Region.

Using the Amazon KMS API

To change the primary key in a set of related multi-Region keys, use the UpdatePrimaryRegion
operation.

Update the primary Region 404

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html
https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html

Amazon Key Management Service Developer Guide

Use the KeyId parameter to identify the current primary key. Use the PrimaryRegion parameter
to indicate the Amazon Web Services Region of the new primary key. If the primary key doesn't
already have a replica in the new primary Region, the operation fails.

The following example changes the primary key from the multi-Region key in the us-west-2
Region to its replica in the eu-west-1 Region. The KeyId parameter identifies the current primary
key in the us-west-2 Region. The PrimaryRegion parameter specifies the Amazon Web Services
Region of the new primary key, eu-west-1.

$ aws kms update-primary-region \
 --key-id arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab \
 --primary-region eu-west-1

When successful, this operation doesn't return any output; just the HTTP status code. To see the
effect, call the DescribeKey operation on either of the multi-Region keys. You might want to wait
until the key state returns to Enabled. While the key state is Updating, the values for the key
might still be in flux.

For example, the following DescribeKey call gets the details about the multi-Region key in the
eu-west-1 Region. The output shows that the multi-Region key in the eu-west-1 Region is now
the primary key. The related multi-Region key (same key ID) in the us-west-2 Region is now a
replica key.

$ aws kms describe-key \
 --key-id arn:aws:kms:eu-west-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab \

{
 "KeyMetadata": {
 "AWSAccountId": "111122223333",
 "KeyId": "mrk-1234abcd12ab34cd56ef1234567890ab",
 "Arn": "arn:aws:kms:eu-west-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "CreationDate": 1609193147.831,
 "Enabled": true,
 "Description": "multi-region-key",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "Origin": "AWS_KMS",

Update the primary Region 405

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

 "KeyManager": "CUSTOMER",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "MultiRegion": true,
 "MultiRegionConfiguration": {
 "MultiRegionKeyType": "PRIMARY",
 "PrimaryKey": {
 "Arn": "arn:aws:kms:eu-west-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "eu-west-1"
 },
 "ReplicaKeys": [
 {
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "us-west-2"
 }
]
 }
 }
}

Update the primary Region 406

Amazon Key Management Service Developer Guide

Delete an Amazon KMS key

Deleting an Amazon KMS key is destructive and potentially dangerous. It deletes the key material
and all metadata associated with the KMS key and is irreversible. After a KMS key is deleted, you
can no longer decrypt the data that was encrypted under that KMS key, which means that data
becomes unrecoverable. (The only exceptions are multi-Region replica keys and asymmetric and
HMAC KMS keys with imported key material.) This risk is significant for asymmetric KMS keys used
for encryption where, without warning or error, users can continue to generate ciphertexts with the
public key that cannot be decrypted after the private key is deleted from Amazon KMS.

You should delete a KMS key only when you are sure that you don't need to use it anymore. If you
are not sure, consider disabling the KMS key instead of deleting it. You can re-enable a disabled
KMS key and cancel the scheduled deletion of a KMS key, but you cannot recover a deleted KMS
key.

You can only schedule the deletion of a customer managed key. You cannot delete Amazon
managed keys or Amazon owned keys.

Before deleting a KMS key, you might want to know how many ciphertexts were encrypted
under that KMS key. Amazon KMS does not store this information and does not store any of the
ciphertexts. To get this information, you must determine past usage of a KMS key. For help, go to
Determine past usage of a KMS key.

Amazon KMS never deletes your KMS keys unless you explicitly schedule them for deletion and the
mandatory waiting period expires.

However, you might choose to delete a KMS key for one or more of the following reasons:

• To complete the key lifecycle for KMS keys that you no longer need

• To avoid the management overhead and costs associated with maintaining unused KMS keys

• To reduce the number of KMS keys that count against your KMS key resource quota

Note

If you close your Amazon Web Services account, your KMS keys become inaccessible and
you are no longer billed for them.

407

http://www.amazonaws.cn/kms/pricing/
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/close-account.html

Amazon Key Management Service Developer Guide

Amazon KMS records an entry in your Amazon CloudTrail log when you schedule deletion of the
KMS key and when the KMS key is actually deleted.

About the waiting period

Because it is destructive and potentially dangerous to delete a KMS key, Amazon KMS requires you
to set a waiting period of 7 – 30 days. The default waiting period is 30 days.

However, the actual waiting period might be up to 24 hours longer than the one you scheduled. To
get the actual date and time when the KMS key will be deleted, use the DescribeKey operation. Or
in the Amazon KMS console, on detail page for the KMS key, in the General configuration section,
see the Scheduled deletion date. Be sure to note the time zone.

During the waiting period, the KMS key status and key state is Pending deletion.

• A KMS key pending deletion cannot be used in any cryptographic operations.

• Amazon KMS does not rotate the key material of KMS keys that are pending deletion.

After the waiting period ends, Amazon KMS deletes the KMS key, its aliases, and all related Amazon
KMS metadata.

Scheduling the deletion of a KMS key might not immediately affect data keys encrypted by the
KMS key. For details, see How unusable KMS keys affect data keys.

Use the waiting period to ensure that you don't need the KMS key now or in the future. You can
configure an Amazon CloudWatch alarm to warn you if a person or application attempts to use the
KMS key during the waiting period. To recover the KMS key, you can cancel key deletion before the
waiting period ends. After the waiting period ends you cannot cancel key deletion, and Amazon
KMS deletes the KMS key.

Special considerations

Before you schedule your keys for deletion, review the following special considerations for deleting
special purpose KMS keys.

Deleting asymmetric KMS keys

Users who are authorized can delete symmetric or asymmetric KMS keys. The procedure to
schedule the deletion of these KMS keys is the same for both types of keys. However, because

About the waiting period 408

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

the public key of an asymmetric KMS key can be downloaded and used outside of Amazon KMS,
the operation poses significant additional risks, especially for asymmetric KMS keys used for
encryption (the key usage is ENCRYPT_DECRYPT).

• When you schedule the deletion of a KMS key, the key state of KMS key changes to Pending
deletion, and the KMS key cannot be used in cryptographic operations. However, scheduling
deletion has no effect on public keys outside of Amazon KMS. Users who have the public key
can continue to use them to encrypt messages. They do not receive any notification that the
key state is changed. Unless the deletion is canceled, ciphertext created with the public key
cannot be decrypted.

• Alarms, logs, and other strategies that detect attempted use of KMS key that is pending
deletion cannot detect use of the public key outside of Amazon KMS.

• When the KMS key is deleted, all Amazon KMS actions involving that KMS key fail. However,
users who have the public key can continue to use them to encrypt messages. These
ciphertexts cannot be decrypted.

If you must delete an asymmetric KMS key with a key usage of ENCRYPT_DECRYPT, use your
CloudTrail Log entries to determine whether the public key has been downloaded and shared.
If it has, verify that the public key is not being used outside of Amazon KMS. Then, consider
disabling the KMS key instead of deleting it.

The risk posed by deleting an asymmetric KMS key is mitigated for asymmetric KMS keys with
imported key material. For details, see Deleting KMS keys with imported key material.

Deleting multi-Region keys

To delete a primary key, you must schedule the deletion all of its replica keys, and then wait for
the replica keys to be deleted. The required waiting period for deleting a primary key begins
when the last of its replica keys is deleted. If you must delete a primary key from a particular
Region without deleting its replica keys, change the primary key to a replica key by updating the
primary Region.

You can delete a replica key at any time. It doesn't depend on the key state of any other KMS
key. If you mistakenly delete a replica key, you can recreate it by replicating the same primary
key in the same Region. The new replica key you create will have the same shared properties as
the original replica key.

Deleting KMS keys with imported key material

Deleting the key material of a KMS key with imported key material is temporary and reversible.
To restore the key, reimport its key material.

Special considerations 409

Amazon Key Management Service Developer Guide

In contrast, deleting a KMS key is irreversible. If you schedule key deletion and the required
waiting period expires, Amazon KMS permanently and irreversibly deletes the KMS key, its key
material, and all metadata associated with the KMS key.

However, the risk and consequence of deleting a KMS key with imported key material depends
on the type ("key spec") of the KMS key.

• Symmetric encryption keys — If you delete a symmetric encryption KMS key, all remaining
ciphertexts encrypted by that key are unrecoverable. You cannot create a new symmetric
encryption KMS key that can decrypt the ciphertexts of a deleted symmetric encryption
KMS key, even if you have the same key material. Metadata unique to each KMS key is
cryptographically bound to each symmetric ciphertext. This security feature guarantees that
only the KMS key that encrypted the symmetric ciphertext can decrypt it, but it prevents you
from recreating an equivalent KMS key.

• Asymmetric and HMAC keys — If you have the original key material, you can create a new
KMS key with the same cryptographic properties as an asymmetric or HMAC KMS key
that was deleted. Amazon KMS generates standard RSA ciphertexts and signatures, ECC
signatures, and HMAC tags, which do not include any unique security features. Also, you can
use an HMAC key or the private key of an asymmetric key pair outside of Amazon.

A new KMS key that you create with the same asymmetric or HMAC key material will have
a different key identifier. You will have to create a new key policy, recreate any aliases, and
update existing IAM policies and grants to refer to the new key.

Deleting KMS keys from an Amazon CloudHSM key stores

When you schedule deletion of a KMS key from an Amazon CloudHSM key store, its key state
changes to Pending deletion. The KMS key remains in the Pending deletion state throughout
the waiting period, even if the KMS key becomes unavailable because you have disconnected
the custom key store. This allows you to cancel the deletion of the KMS key at any time during
the waiting period.

When the waiting period expires, Amazon KMS deletes the KMS key from Amazon KMS. Then
Amazon KMS makes a best effort to delete the key material from the associated Amazon
CloudHSM cluster. If Amazon KMS cannot delete the key material, such as when the key store is
disconnected from Amazon KMS, you might need to manually delete the orphaned key material
from the cluster.

Amazon KMS does not delete the key material from cluster backups. Even if you delete the
KMS key from Amazon KMS and delete its key material from your Amazon CloudHSM cluster,

Special considerations 410

Amazon Key Management Service Developer Guide

clusters created from backups might contain the deleted key material. To permanently delete
the key material, use the DescribeKey operation to identify the creation date of the KMS key.
Then delete all cluster backups that might contain the key material.

When you schedule the deletion of a KMS key from an Amazon CloudHSM key store, the
KMS key becomes unusable right away (subject to eventual consistency). However, resources
encrypted with data keys protected by the KMS key are not affected until the KMS key is used
again, such to decrypt the data key. This issue affects Amazon Web Services services, many of
which use data keys to protect your resources. For details, see How unusable KMS keys affect
data keys.

Deleting KMS keys from an external key store

Deleting a KMS key from an external key store has no effect on the external key that served as
its key material.

When you schedule deletion of a KMS key from an external key store, its key state changes to
Pending deletion. The KMS key remains in the Pending deletion state throughout the waiting
period, even if the KMS key becomes unavailable because you have disconnected the external
key store. This allows you to cancel the deletion of the KMS key at any time during the waiting
period. When the waiting period expires, Amazon KMS deletes the KMS key from Amazon KMS.

When you schedule the deletion of a KMS key from an external key store, the KMS key becomes
unusable right away (subject to eventual consistency). However, resources encrypted with data
keys protected by the KMS key are not affected until the KMS key is used again, such to decrypt
the data key. This issue affects Amazon Web Services services, many of which use data keys to
protect your resources. For details, see How unusable KMS keys affect data keys.

Control access to key deletion

If you use IAM policies to allow Amazon KMS permissions, IAM identities that have Amazon
administrator access ("Action": "*") or Amazon KMS full access ("Action": "kms:*") are
already allowed to schedule and cancel key the deletion of KMS keys. To allow key administrators
to schedule and cancel key deletion in the key policy, use the Amazon KMS console or the Amazon
KMS API.

Typically, only key administrators have permission to schedule or cancel key deletion. However, you
can give these permissions to other IAM identities by adding the kms:ScheduleKeyDeletion
and kms:CancelKeyDeletion permission to the key policy or an IAM policy. You can also

Control access to key deletion 411

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/delete-restore-backup.html

Amazon Key Management Service Developer Guide

use the kms:ScheduleKeyDeletionPendingWindowInDays condition key to further
constrain the values that principals can specify in the PendingWindowInDays parameter of a
ScheduleKeyDeletion request.

Allow key administrators to schedule and cancel key deletion

Using the Amazon KMS console

To give key administrators permission to schedule and cancel key deletion.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose the alias or key ID of the KMS key whose permissions you want to change.

5. Choose the key policy tab.

6. The next step differs for the default view and policy view of your key policy. Default view is
available only if you are using the default console key policy. Otherwise, only policy view is
available.

When default view is available, a Switch to policy view or Switch to default view button
appears on the Key policy tab.

• In default view:

• Under Key deletion, choose Allow key administrators to delete this key.

• In policy view:

a. Choose Edit.

b. In the policy statement for key administrators, add the kms:ScheduleKeyDeletion
and kms:CancelKeyDeletion permissions to the Action element.

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/KMSKeyAdmin"},
 "Action": [
 "kms:Create*",

Allow key administrators to schedule and cancel key deletion 412

https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
}

c. Choose Save changes.

Using the Amazon KMS API

You can use the Amazon Command Line Interface to add permissions for scheduling and canceling
key deletion.

To add permission to schedule and cancel key deletion

1. Use the aws kms get-key-policy command to retrieve the existing key policy, and then
save the policy document to a file.

2. Open the policy document in your preferred text editor. In the policy statement for key
administrators, add the kms:ScheduleKeyDeletion and kms:CancelKeyDeletion
permissions. The following example shows a policy statement with these two permissions:

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/KMSKeyAdmin"},
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",

Allow key administrators to schedule and cancel key deletion 413

https://docs.amazonaws.cn/cli/latest/reference/kms/get-key-policy.html

Amazon Key Management Service Developer Guide

 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
}

3. Use the aws kms put-key-policy command to apply the key policy to the KMS key.

Schedule key deletion

The following procedures describe how to schedule key deletion and cancel key deletion of
Amazon KMS keys (KMS keys) in Amazon KMS using the Amazon Web Services Management
Console and the Amazon KMS API.

Warning

Deleting a KMS key is destructive and potentially dangerous. You should proceed only when
you are sure that you don't need to use the KMS key anymore and won't need to use it in
the future. If you are not sure, you should disable the KMS key instead of deleting it.

Before you can delete a KMS key, you must have permission to do so. For information about giving
these permissions to key administrators, see Control access to key deletion. You can also use the
kms:ScheduleKeyDeletionPendingWindowInDays condition key to further constrain the
waiting period, such as enforcing a minimum waiting period.

Amazon KMS records an entry in your Amazon CloudTrail log when you schedule deletion of the
KMS key and when the KMS key is actually deleted.

Using the Amazon KMS console

In the Amazon Web Services Management Console, you can schedule and cancel the deletion of
multiple KMS keys at one time.

Schedule key deletion 414

https://docs.amazonaws.cn/cli/latest/reference/kms/put-key-policy.html

Amazon Key Management Service Developer Guide

To schedule key deletion

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

You cannot schedule the deletion of Amazon managed keys or Amazon owned keys.

4. Choose the checkbox next to the KMS key that you want to delete.

5. Choose Key actions, Schedule key deletion.

6. Read and consider the warning, and the information about canceling the deletion during the
waiting period. If you decide to cancel the deletion, at the bottom of the page, choose Cancel.

7. For Waiting period (in days), enter a number of days between 7 and 30.

8. Review the KMS keys that you are deleting.

9. Choose the check box next to Confirm you want to schedule this key for deletion in <number
of days> days..

10. Choose Schedule deletion.

The KMS key status changes to Pending deletion.

Using the Amazon KMS API

Use the aws kms schedule-key-deletion command to schedule key deletion of a customer
managed key, as shown in the following example.

You cannot schedule the deletion of an Amazon managed key or Amazon owned key.

$ aws kms schedule-key-deletion --key-id 1234abcd-12ab-34cd-56ef-1234567890ab --
pending-window-in-days 10

When used successfully, the Amazon CLI returns output like the output shown in the following
example:

{
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

Schedule key deletion 415

https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/cli/latest/reference/kms/schedule-key-deletion.html

Amazon Key Management Service Developer Guide

 "DeletionDate": 1598304792.0,
 "KeyState": "PendingDeletion",
 "PendingWindowInDays": 10
}

Cancel key deletion

After you schedule a KMS key for deletion, you can cancel the key deletion while it is still in the
pending deletion state. You can cancel key deletion in the Amazon KMS console or by using the
CancelKeyDeletion operation. After you cancel the pending deletion of a KMS key, the key state of
the KMS key is Disabled. For more information on enabling the KMS key, see Enable and disable
keys.

Using the Amazon KMS console

To cancel key deletion

1. Open the Amazon KMS console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose the check box next to the KMS key that you want to recover.

5. Choose Key actions, Cancel key deletion.

The KMS key status changes from Pending deletion to Disabled. To use the KMS key, you must
enable it.

Using the Amazon KMS API

Use the aws kms cancel-key-deletion command to cancel key deletion from the Amazon CLI
as shown in the following example.

$ aws kms cancel-key-deletion --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

When used successfully, the Amazon CLI returns output like the output shown in the following
example:

{

Cancel key deletion 416

https://docs.amazonaws.cn/kms/latest/APIReference/API_CancelKeyDeletion.html
https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/cli/latest/reference/kms/cancel-key-deletion.html

Amazon Key Management Service Developer Guide

 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
}

The status of the KMS key changes from Pending Deletion to Disabled. To use the KMS key, you
must enable it.

Create an alarm that detects use of a KMS key pending deletion

You can combine the features of Amazon CloudTrail, Amazon CloudWatch Logs, and Amazon
Simple Notification Service (Amazon SNS) to create an Amazon CloudWatch alarm that notifies
you when someone in your account tries to use a KMS key that is pending deletion. If you receive
this notification, you might want to cancel deletion of the KMS key and reconsider your decision to
delete it.

The following procedures create an alarm that notifies you whenever the "Key ARN is pending
deletion" error message is written to your CloudTrail log files. This error message indicates
that a person or application tried to use the KMS key in a cryptographic operation. Because the
notification is linked to the error message, it is not triggered when you use API operations that are
permitted on KMS keys that are pending deletion, such as ListKeys, CancelKeyDeletion, and
PutKeyPolicy. To see a list of the Amazon KMS API operations that return this error message, see
Key states of Amazon KMS keys.

The notification email that you receive does not list the KMS key or the cryptographic operation.
You can find that information in your CloudTrail log. Instead, the email reports that the alarm state
changed from OK to Alarm. For more information about CloudWatch alarms and state changes,
see Using Amazon CloudWatch alarms in the Amazon CloudWatch User Guide.

Warning

This Amazon CloudWatch alarm cannot detect use of the public key of an asymmetric KMS
key outside of Amazon KMS. For details about the special risks of deleting asymmetric
KMS keys used for public key cryptography, including creating ciphertexts that cannot be
decrypted, see Deleting asymmetric KMS keys.

In this procedure, you create a CloudWatch log group metric filter that finds instances of the
pending deletion exception. Then, you create a CloudWatch alarm based on the log group metric.

Create an alarm 417

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Key Management Service Developer Guide

For information about log group metric filters, see Creating metrics from log events using filters in
the Amazon CloudWatch Logs User Guide.

1. Create a CloudWatch metric filter that parses CloudTrail logs.

Follow the instructions in Create a metric filter for a log group using the following required
values. For other fields, accept the default values and provide names as requested.

Field Value

Filter pattern { $.eventSource = kms* && $.errorMessage = "* is
pending deletion."}

Metric value 1

2. Create a CloudWatch alarm based on the metric filter that you created in Step 1.

Follow the instructions in Create a CloudWatch alarm based on a log group-metric filter using
the following required values. For other fields, accept the default values and provide names as
requested.

Field Value

Metric filter The name of the metric filter that you created in Step 1.

Threshold type Static

Conditions Whenever metric-name is Greater/Equal than 1

Data points to
alarm

1 out of 1

Missing data
treatment

Treat missing data as good (not breaching threshold)

After you complete this procedure, you will receive a notification each time your new CloudWatch
alarm enters the ALARM state. If you receive a notification for this alarm, it might mean that a KMS
key that is scheduled for deletion is still needed to encrypt or decrypt data. In that case, cancel
deletion of the KMS key and reconsider your decision to delete it.

Create an alarm 418

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/MonitoringLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CreateMetricFilterProcedure.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/Alarm-On-Logs.html

Amazon Key Management Service Developer Guide

Determine past usage of a KMS key

Before deleting a KMS key, you might want to know how many ciphertexts were encrypted under
that key. Amazon KMS does not store this information, and does not store any of the ciphertexts.
Knowing how a KMS key was used in the past might help you decide whether or not you will need
it in the future. This topic suggest several strategies that can help you determine the past usage of
a KMS key.

Warning

These strategies for determining past and actual usage are effective only for Amazon users
and Amazon KMS operations. They cannot detect use of the public key of an asymmetric
KMS key outside of Amazon KMS. For details about the special risks of deleting asymmetric
KMS keys used for public key cryptography, including creating ciphertexts that cannot be
decrypted, see Deleting asymmetric KMS keys.

Topics

• Examine KMS key permissions to determine the scope of potential usage

• Examine Amazon CloudTrail logs to determine actual usage

Examine KMS key permissions to determine the scope of potential
usage

Determining who or what currently has access to a KMS key might help you determine how widely
the KMS key was used and whether it is still needed. To learn how to determine who or what
currently has access to a KMS key, go to Determining access to Amazon KMS keys.

Examine Amazon CloudTrail logs to determine actual usage

You might be able to use a KMS key usage history to help you determine whether you have
ciphertexts encrypted under a particular KMS key.

All Amazon KMS API activity is recorded in Amazon CloudTrail log files. If you have created a
CloudTrail trail in the region where your KMS key is located, you can examine your CloudTrail log
files to view a history of all Amazon KMS API activity for a particular KMS key. If you don't have

Determine past usage of a KMS key 419

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html

Amazon Key Management Service Developer Guide

a trail, you can still view recent events in your CloudTrail event history. For details about how
Amazon KMS uses CloudTrail, see Logging Amazon KMS API calls with Amazon CloudTrail.

The following examples show CloudTrail log entries that are generated when a KMS key is used
to protect an object stored in Amazon Simple Storage Service (Amazon S3). In this example, the
object is uploaded to Amazon S3 using Protecting data using server-side encryption with KMS keys
(SSE-KMS). When you upload an object to Amazon S3 with SSE-KMS, you specify the KMS key to
use for protecting the object. Amazon S3 uses the Amazon KMS GenerateDataKey operation to
request a unique data key for the object, and this request event is logged in CloudTrail with an
entry similar to the following:

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROACKCEVSQ6C2EXAMPLE:example-user",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admins/example-user",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-09-10T23:12:48Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admins",
 "accountId": "111122223333",
 "userName": "Admins"
 }
 },
 "invokedBy": "internal.amazonaws.com"
 },
 "eventTime": "2015-09-10T23:58:18Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "internal.amazonaws.com",
 "userAgent": "internal.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {"aws:s3:arn": "arn:aws:s3:::example_bucket/example_object"},

Examine Amazon CloudTrail logs to determine actual usage 420

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "requestID": "cea04450-5817-11e5-85aa-97ce46071236",
 "eventID": "80721262-21a5-49b9-8b63-28740e7ce9c9",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

When you later download this object from Amazon S3, Amazon S3 sends a Decrypt request to
Amazon KMS to decrypt the object's data key using the specified KMS key. When you do this, your
CloudTrail log files include an entry similar to the following:

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROACKCEVSQ6C2EXAMPLE:example-user",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admins/example-user",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-09-10T23:12:48Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admins",
 "accountId": "111122223333",
 "userName": "Admins"
 }
 },
 "invokedBy": "internal.amazonaws.com"

Examine Amazon CloudTrail logs to determine actual usage 421

Amazon Key Management Service Developer Guide

 },
 "eventTime": "2015-09-10T23:58:39Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "internal.amazonaws.com",
 "userAgent": "internal.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {"aws:s3:arn": "arn:aws:s3:::example_bucket/example_object"}},
 "responseElements": null,
 "requestID": "db750745-5817-11e5-93a6-5b87e27d91a0",
 "eventID": "ae551b19-8a09-4cfc-a249-205ddba330e3",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

All Amazon KMS API activity is logged by CloudTrail. By evaluating these log entries, you might
be able to determine the past usage of a particular KMS key, and this might help you determine
whether or not you want to delete it.

To see more examples of how Amazon KMS API activity appears in your CloudTrail log files, go to
Logging Amazon KMS API calls with Amazon CloudTrail. For more information about CloudTrail go
to the Amazon CloudTrail User Guide.

Delete imported key material

You can delete the imported key material from a KMS key at any time. Also, when imported key
material with an expiration date expires, Amazon KMS deletes the key material. In either case,
when the key material is deleted, the key state of the KMS key changes to Pending import, and the
KMS key can't be used in any cryptographic operations.

Single-Region, symmetric encryption keys can have multiple key materials associated with them
and the deletion or expiration of any key material in a state other than PENDING_ROTATION
changes the key state to Pending import. For these keys, KMS assigns a unique identifier to each
key material. You can use the ListKeyRotations API to view these key material identifiers. You can

Delete imported key material 422

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html

Amazon Key Management Service Developer Guide

delete a specific key material by specifying its identifier using the key-material-id parameter in
the DeleteImportedKeyMaterial API.

Warning

The key-material-id parameter is optional and if you do not specify it, Amazon KMS
will delete the current key material.

Along with disabling the KMS key and withdrawing permissions, deleting key material can be
used as a strategy to quickly, but temporarily, halt the use of the KMS key. In contrast, scheduling
the deletion of a KMS key with imported key material also quickly halts the use of the KMS key.
However, if the deletion is not canceled during the waiting period, the KMS key, associated key
materials, and all key metadata are permanently deleted. For details, see Deleting KMS keys with
imported key material.

To delete key material, you can use the Amazon KMS console or the DeleteImportedKeyMaterial
API operation. Amazon KMS records an entry in your Amazon CloudTrail log when you delete
imported key material and when Amazon KMS deletes expired key material.

How deleting key material affects Amazon services

When you delete any key material, the KMS key becomes unusable right away (subject to
eventual consistency). However, resources encrypted with data keys protected by the KMS key
are not affected until the KMS key is used again, such as to decrypt the data key. This issue
affects Amazon Web Services services, many of which use data keys to protect your resources.
For details, see How unusable KMS keys affect data keys.

Using the Amazon KMS console

You can use the Amazon KMS console to delete key material.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Do one of the following:

Delete imported key material 423

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

• Select the check box for a KMS key with imported key material. Choose Key actions, Delete
key material. For symmetric encryption keys that have multiple key materials associated
with them, this will delete the current key material.

• For single-Region, symmetric encryption KMS keys with imported key material, choose the
alias or key ID of a KMS key. Choose the Key material and rotations tab. The key material
table will list all of the key materials associated with the key. Choose Delete key material
from the Actions menu in the row corresponding to the key material you want to delete.

5. Confirm that you want to delete the key material and then choose Delete key material. The
KMS key's status, which corresponds to its key state, changes to Pending import. If the deleted
key material was in PENDING_ROTATION state, there is no change to the KMS key's status.

Using the Amazon KMS API

To use the Amazon KMS API to delete key material, send a DeleteImportedKeyMaterial request. The
following example shows how to do this with the Amazon CLI.

Replace 1234abcd-12ab-34cd-56ef-1234567890ab with the key ID of the KMS key whose key
material you want to delete. You can use the KMS key's key ID or ARN but you cannot use an alias
for this operation. The following command deletes the current key material which may be the only
key material associated with the key.

$ aws kms delete-imported-key-material --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

To delete a specific key material, specify the key material identified using the key-material-id
parameter. Replace
123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0 with the
identifier of the key material you want to delete.

$ aws kms delete-imported-key-material --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --key-material-id 123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0

Delete imported key material 424

https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

Generate data keys

Data keys are symmetric keys you can use to encrypt data, including large amounts of data and
other data encryption keys. Unlike symmetric KMS keys, which can't be downloaded, data keys are
returned to you for use outside of Amazon KMS.

When Amazon KMS generates data keys, it returns a plaintext data key for immediate use
(optional) and an encrypted copy of the data key that you can safely store with the data. When you
are ready to decrypt the data, you first ask Amazon KMS to decrypt the encrypted data key.

Amazon KMS generates, encrypts, and decrypts data keys. However, Amazon KMS does not store,
manage, or track your data keys, or perform cryptographic operations with data keys. You must
use and manage data keys outside of Amazon KMS. For help using the data keys securely, see the
Amazon Encryption SDK.

Topics

• Create a data key

• How cryptographic operations with data keys work

• How unusable KMS keys affect data keys

Create a data key

To create a data key, call the GenerateDataKey operation. Amazon KMS generates the data key.
Then it encrypts a copy of the data key under a symmetric encryption KMS key that you specify.
The operation returns a plaintext copy of the data key and the copy of the data key encrypted
under the KMS key. The following image shows this operation.

Create a data key 425

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

Amazon KMS also supports the GenerateDataKeyWithoutPlaintext operation, which returns only an
encrypted data key. When you need to use the data key, ask Amazon KMS to decrypt it.

How cryptographic operations with data keys work

The following topics explain how data keys generated by a GenerateDataKey or
GenerateDataKeyWithoutPlaintext operation work.

Encrypt data with a data key

Amazon KMS cannot use a data key to encrypt data. But you can use the data key outside of
Amazon KMS, such as by using OpenSSL or a cryptographic library like the Amazon Encryption
SDK.

How cryptographic operations with data keys work 426

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/

Amazon Key Management Service Developer Guide

After using the plaintext data key to encrypt data, remove it from memory as soon as possible. You
can safely store the encrypted data key with the encrypted data so it is available to decrypt the
data.

Decrypt data with a data key

To decrypt your data, pass the encrypted data key to the Decrypt operation. Amazon KMS uses
your KMS key to decrypt the data key and then returns the plaintext data key. Use the plaintext
data key to decrypt your data and then remove the plaintext data key from memory as soon as
possible.

The following diagram shows how to use the Decrypt operation to decrypt an encrypted data key.

Decrypt data with a data key 427

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

How unusable KMS keys affect data keys

When a KMS key becomes unusable, the effect is almost immediate (subject to eventual
consistency). The key state of the KMS key changes to reflect its new condition, and all requests to
use the KMS key in cryptographic operations fail.

However, the effect on data keys encrypted by the KMS key, and on data encrypted by the data key,
is delayed until the KMS key is used again, such as to decrypt the data key.

KMS keys can become unusable for a variety of reasons, including the following actions that you
might perform.

• Disabling the KMS key

• Scheduling the KMS key for deletion

• Deleting the key material from a KMS key with imported key material, or allowing the imported
key material to expire. If a KMS key with EXTERNAL origin has multiple key materials associated,
the deletion or expiration of any key material will cause the key to become unusable.

• Disconnecting the Amazon CloudHSM key store that hosts the KMS key, or deleting the key from
the Amazon CloudHSM cluster that serves as key material for the KMS key.

How unusable KMS keys affect data keys 428

Amazon Key Management Service Developer Guide

• Disconnecting the external key store that hosts the KMS key, or any other action that interferes
with encryption and decryption requests to the external key store proxy, including deleting the
external key from its external key manager.

This effect is particularly important for the many Amazon Web Services services that use data keys
to protect the resources that the service manages. The following example uses Amazon Elastic
Block Store (Amazon EBS) and Amazon Elastic Compute Cloud (Amazon EC2). Different Amazon
Web Services services use data keys in different ways. For details, see the Data protection section of
the Security chapter for the Amazon Web Services service.

For example, consider this scenario:

1. You create an encrypted EBS volume and specify a KMS key to protect it. Amazon EBS asks
Amazon KMS to use your KMS key to generate an encrypted data key for the volume. Amazon
EBS stores the encrypted data key with the volume's metadata.

2. When you attach the EBS volume to an EC2 instance, Amazon EC2 uses your KMS key to decrypt
the EBS volume's encrypted data key. Amazon EC2 uses the data key in the Nitro hardware,
which is responsible for encrypting all disk I/O to the EBS volume. The data key persists in the
Nitro hardware while the EBS volume is attached to the EC2 instance.

3. You perform an action that makes the KMS key unusable. This has no immediate effect on the
EC2 instance or the EBS volume. Amazon EC2 uses the data key—not the KMS key—to encrypt
all disk I/O while the volume is attached to the instance.

4. However, when the encrypted EBS volume is detached from the EC2 instance, Amazon EBS
removes the data key from the Nitro hardware. The next time the encrypted EBS volume is
attached to an EC2 instance, the attachment fails, because Amazon EBS cannot use the KMS key
to decrypt the volume's encrypted data key. To use the EBS volume again, you must make the
KMS key usable again.

How unusable KMS keys affect data keys 429

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-creating-volume.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

Amazon Key Management Service Developer Guide

Generate data key pairs

An asymmetric KMS key represents a data key pair. Data key pairs are asymmetric data keys
consisting of a mathematically-related public key and private key. They are designed for use in
client-side encryption and decryption, signing and verification outside of Amazon KMS, or to
establish a shared secret between two peers.

Unlike the data key pairs that tools like OpenSSL generate, Amazon KMS protects the private
key in each data key pair under a symmetric encryption KMS key in Amazon KMS that you
specify. However, Amazon KMS does not store, manage, or track your data key pairs, or perform
cryptographic operations with data key pairs. You must use and manage data key pairs outside of
Amazon KMS.

Topics

• Create a data key pair

• How cryptographic operations with data key pairs work

Create a data key pair

To create a data key pair, call the GenerateDataKeyPair or GenerateDataKeyPairWithoutPlaintext
operations. Specify the symmetric encryption KMS key you want to use to encrypt the private key.

GenerateDataKeyPair returns a plaintext public key, a plaintext private key, and an encrypted
private key. Use this operation when you need a plaintext private key immediately, such as to
generate a digital signature.

GenerateDataKeyPairWithoutPlaintext returns a plaintext public key and an encrypted
private key, but not a plaintext private key. Use this operation when you don't need a plaintext
private key immediately, such as when you're encrypting with a public key. Later, when you need a
plaintext private key to decrypt the data, you can call the Decrypt operation.

The following image shows the GenerateDataKeyPair operation. The
GenerateDataKeyPairWithoutPlaintext operation omits the plaintext private key.

Create a data key pair 430

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

How cryptographic operations with data key pairs work

The following topics explain what cryptographic operations you can perform with data key pairs
generated by a GenerateDataKeyPair or GenerateDataKeyPairWithoutPlaintext operation and how
they work.

How cryptographic operations with data key pairs work 431

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

Amazon Key Management Service Developer Guide

Encrypt data with a data key pair

When you encrypt with a data key pair, you use the public key of the pair to encrypt the data and
the private key of the same pair to decrypt the data. Typically, you use data key pairs when many
parties need to encrypt data that only the party with the private key can decrypt.

The parties with the public key use that key to encrypt data, as shown in the following diagram.

Decrypt data with a data key pair

To decrypt your data, use the private key in the data key pair. For the operation to succeed,
the public and private keys must be from the same data key pair, and you must use the same
encryption algorithm.

To decrypt the encrypted private key, pass it to the Decrypt operation. Use the plaintext private key
to decrypt the data. Then remove the plaintext private key from memory as soon as possible.

The following diagram shows how to use the private key in a data key pair to decrypt ciphertext.

Encrypt data with a data key pair 432

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

Sign messages with a data key pair

To generate a cryptographic signature for a message, use the private key in the data key pair.
Anyone with the public key can use it to verify that the message was signed with your private key
and that it has not changed since it was signed.

If you encrypt your private key, pass the encrypted private key to the Decrypt operation. Amazon
KMS uses your KMS key to decrypt the data key and then it returns the plaintext private key. Use
the plaintext private key to generate the signature. Then remove the plaintext private key from
memory as soon as possible.

To sign a message, create a message digest using a cryptographic hash function, such as the dgst
command in OpenSSL. Then, pass your plaintext private key to the signing algorithm. The result
is a signature that represents the contents of the message. (You might be able to sign shorter
messages without first creating a digest. The maximum message size varies with the signing tool
you use.)

The following diagram shows how to use the private key in a data key pair to sign a message.

Sign messages with a data key pair 433

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://www.openssl.org/docs/man1.0.2/man1/openssl-dgst.html

Amazon Key Management Service Developer Guide

Verify a signature with a data key pair

Anyone who has the public key in your data key pair can use it to verify the signature that you
generated with your private key. Verification confirms that an authorized user signed the message
with the specified private key and signing algorithm, and the message hasn't changed since it was
signed.

To be successful, the party verifying the signature must generate the same type of digest, use
the same algorithm, and use the public key that corresponds to the private key used to sign the
message.

The following diagram shows how to use the public key in a data key pair to verify a message
signature.

Verify a signature with a data key pair 434

Amazon Key Management Service Developer Guide

Derive a shared secret with data key pairs

Key agreement enables two peers, each having an elliptic-curve public–private key pair, to establish
a shared secret over an insecure channel. To derive a shared secret, the two peers must exchange
their public keys over the insecure communication channel (like the internet). Then, each party
uses their private key and their peer's public key to calculate the same shared secret using a key
agreement algorithm. You can use the shared secret value to derive a symmetric key that can
encrypt and decrypt data that is sent between the two peers, or that can generate and verify
HMACs.

Note

Amazon KMS strongly recommends verifying that the public key you receive came from the
expected party before using it to derive a shared secret.

Derive a shared secret with data key pairs 435

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html

Amazon Key Management Service Developer Guide

Perform offline operations with public keys

In an asymmetric KMS key, the private key is created in Amazon KMS and never leaves Amazon
KMS unencrypted. To use the private key, you must call Amazon KMS. You can use the public key
within Amazon KMS by calling the Amazon KMS API operations. Or, you can download the public
key and share for use outside of Amazon KMS.

You might share a public key to let others encrypt data outside of Amazon KMS that you can
decrypt only with your private key. Or, to allow others to verify a digital signature outside of
Amazon KMS that you have generated with your private key. Or, to share your public key with a
peer to derive a shared secret.

When you use the public key in your asymmetric KMS key within Amazon KMS, you benefit from
the authentication, authorization, and logging that are part of every Amazon KMS operation. You
also reduce of risk of encrypting data that cannot be decrypted. These features are not effective
outside of Amazon KMS. For details, see Special considerations for downloading public keys.

Tip

Looking for data keys or SSH keys? This topic explains how to manage asymmetric keys in
Amazon Key Management Service, where the private key is not exportable. For exportable
data key pairs where the private key is protected by a symmetric encryption KMS key, see
GenerateDataKeyPair. For help with downloading the public key associated with an Amazon
EC2 instance, see Retrieving the public key in the Amazon EC2 User Guide and Amazon EC2
User Guide.

Topics

• Special considerations for downloading public keys

• Download public key

• Example offline operations

Special considerations for downloading public keys

To protect your KMS keys, Amazon KMS provides access controls, authenticated encryption, and
detailed logs of every operation. Amazon KMS also allows you to prevent the use of KMS keys,

Special considerations for downloading public keys 436

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/describe-keys.html#retrieving-the-public-key
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/describe-keys.html#retrieving-the-public-key
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/describe-keys.html#retrieving-the-public-key

Amazon Key Management Service Developer Guide

temporarily or permanently. Finally, Amazon KMS operations are designed to minimize of risk
of encrypting data that cannot be decrypted. These features are not available when you use
downloaded public keys outside of Amazon KMS.

Authorization

Key policies and IAM policies that control access to the KMS key within Amazon KMS have no
effect on operations performed outside of Amazon. Any user who can get the public key can
use it outside of Amazon KMS even if they don't have permission to encrypt data or verify
signatures with the KMS key.

Key usage restrictions

Key usage restrictions are not effective outside of Amazon KMS. If you call the Encrypt
operation with a KMS key that has a KeyUsage of SIGN_VERIFY, the Amazon KMS operation
fails. But if you encrypt data outside of Amazon KMS with a public key from a KMS key with a
KeyUsage of SIGN_VERIFY or KEY_AGREEMENT, the data cannot be decrypted.

Algorithm restrictions

Restrictions on the encryption and signing algorithms that Amazon KMS supports are not
effective outside of Amazon KMS. If you encrypt data with the public key from a KMS key
outside of Amazon KMS, and use an encryption algorithm that Amazon KMS does not support,
the data cannot be decrypted.

Disabling and deleting KMS keys

Actions that you can take to prevent the use of KMS key in a cryptographic operation within
Amazon KMS do not prevent anyone from using the public key outside of Amazon KMS. For
example, disabling a KMS key, scheduling deletion of a KMS key, deleting a KMS key, or deleting
the key material from a KMS key have no effect on a public key outside of Amazon KMS. If you
delete an asymmetric KMS key or delete or lose its key material, data that you encrypt with a
public key outside of Amazon KMS is unrecoverable.

Logging

Amazon CloudTrail logs that record every Amazon KMS operation, including the request,
response, date, time, and authorized user, do not record the use of the public key outside of
Amazon KMS.

Special considerations for downloading public keys 437

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html

Amazon Key Management Service Developer Guide

Offline verification with SM2 key pairs (China Regions only)

To verify a signature outside of Amazon KMS with an SM2 public key, you must specify the
distinguishing ID. By default, Amazon KMS uses 1234567812345678 as the distinguishing ID.
For more information, see Offline verification with SM2 key pairs (China Regions only).

Download public key

You can download the public key from an asymmetric KMS key pair in the Amazon KMS
console or by using the GetPublicKey operation. To download the public key, you must have
kms:GetPublicKey permission on the asymmetric KMS key.

The public key that Amazon KMS returns is a DER-encoded X.509 public key, also known as
SubjectPublicKeyInfo (SPKI), as defined in RFC 5280. When you use the HTTP API or the
Amazon CLI, the value is Base64-encoded. Otherwise, it is not Base64-encoded.

To download the public key from an asymmetric KMS key pair, you need kms:GetPublicKey
permissions. For more information about Amazon KMS permissions, see the Permissions reference.

Using the Amazon KMS console

You can use the Amazon Web Services Management Console to view, copy, and download the
public key from an asymmetric KMS key in your Amazon Web Services account. To download
the public key from an asymmetric KMS key in different Amazon Web Services account, use the
Amazon KMS API.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose the alias or key ID of an asymmetric KMS key.

5. Choose the Cryptographic configuration tab. Record the values of the Key spec, Key usage,
and Encryption algorithms or Signing Algorithms fields. You'll need to use these values to
use the public key outside of Amazon KMS. Be sure to share this information when you share
the public key.

6. Choose the Public key tab.

Download public key 438

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://datatracker.ietf.org/doc/html/rfc5280
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

7. To copy the public key to your clipboard, choose Copy. To download the public key to a file,
choose Download.

Using the Amazon KMS API

The GetPublicKey operation returns the public key in an asymmetric KMS key. It also returns critical
information that you need to use the public key correctly outside of Amazon KMS, including the
key usage and encryption algorithms. Be sure to save these values and share them whenever you
share the public key.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name,
prefix it with alias/. To specify a KMS key in a different Amazon Web Services account, you must
use its key ARN or alias ARN.

Before running this command, replace the example alias name with a valid identifier for the KMS
key. To run this command, you must have kms:GetPublicKey permissions on the KMS key.

$ aws kms get-public-key --key-id alias/example_RSA_3072

{
 "KeySpec": "RSA_3072",
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "EncryptionAlgorithms": [
 "RSAES_OAEP_SHA_1",
 "RSAES_OAEP_SHA_256"
],
 "PublicKey": "MIIBojANBgkqhkiG..."
}

Example offline operations

After downloading the public key of your asymmetric KMS key pair, you can share it with others
and use it to perform offline operations.

Example offline operations 439

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

Amazon CloudTrail logs that record every Amazon KMS operation, including the request, response,
date, time, and authorized user, do not record the use of the public key outside of Amazon KMS.

This topic provides example offline operations and details the tools Amazon KMS provides to make
offline operations easier.

Topics

• Deriving shared secrets offline

• Offline verification with ML-DSA key pairs

• Offline verification with SM2 key pairs (China Regions only)

Deriving shared secrets offline

You can download the public key of your ECC key pair for use in offline operations, that is,
operations outside of Amazon KMS.

The following OpenSSL walkthrough demonstrates one method of deriving a shared secret
outside of Amazon KMS using the public key of an ECC KMS key pair and a private key created with
OpenSSL.

1. Create an ECC key pair in OpenSSL and prepare it for use with Amazon KMS.

// Create an ECC key pair in OpenSSL and save the private key in
 openssl_ecc_key_priv.pem
export OPENSSL_CURVE_NAME="P-256"
export KMS_CURVE_NAME="ECC_NIST_P256"

export OPENSSL_KEY1_PRIV_PEM="openssl_ecc_key1_priv.pem"
openssl ecparam -name ${OPENSSL_CURVE_NAME} -genkey -out ${OPENSSL_KEY1_PRIV_PEM}

// Derive the public key from the private key
export OPENSSL_KEY1_PUB_PEM="openssl_ecc_key1_pub.pem"
openssl ec -in ${OPENSSL_KEY1_PRIV_PEM} -pubout -outform pem \
 -out ${OPENSSL_KEY1_PUB_PEM}

// View the PEM file containing the public key and extract the public key as a
// Base64 encoded string into OPENSSL_KEY1_PUB_BASE64 for use with Amazon KMS
export OPENSSL_KEY1_PUB_BASE64=`cat ${OPENSSL_KEY1_PUB_PEM} | \
 tee /dev/stderr | grep -v "PUBLIC KEY" | tr -d "\n"`

Deriving shared secrets offline 440

https://openssl.org/

Amazon Key Management Service Developer Guide

2. Create an ECC key agreement key pair in Amazon KMS and prepare it for use with OpenSSL.

// Create a KMS key on the same curve as the key pair from step 1
// with a key usage of KEY_AGREEMENT
// Save its ARN in KMS_KEY1_ARN.
export KMS_KEY1_ARN=`aws kms create-key --key-spec ${KMS_CURVE_NAME} \
 --key-usage KEY_AGREEMENT | tee /dev/stderr | jq -r .KeyMetadata.Arn`

// Download the public key and save the Base64-encoded version in KMS_KEY1_PUB_BASE64

export KMS_KEY1_PUB_BASE64=`aws kms get-public-key --key-id ${KMS_KEY1_ARN} | \
 tee /dev/stderr | jq -r .PublicKey`

// Create a PEM file for the public KMS key for use with OpenSSL
export KMS_KEY1_PUB_PEM="aws_kms_ecdh_key1_pub.pem"
echo "-----BEGIN PUBLIC KEY-----" > ${KMS_KEY1_PUB_PEM}
echo ${KMS_KEY1_PUB_BASE64} | fold -w 64 >> ${KMS_KEY1_PUB_PEM}
echo "-----END PUBLIC KEY-----" >> ${KMS_KEY1_PUB_PEM}

3. Derive shared secret in OpenSSL using the private key in OpenSSL and the public KMS key.

export OPENSSL_SHARED_SECRET1_BIN="openssl_shared_secret1.bin"
openssl pkeyutl -derive -inkey ${OPENSSL_KEY1_PRIV_PEM} \
 -peerkey ${KMS_KEY1_PUB_PEM} -out ${OPENSSL_SHARED_SECRET1_BIN}

Offline verification with ML-DSA key pairs

Amazon KMS supports a hedged variant of ML-DSA signing, as described in Federal Information
Processing Standards (FIPS) 204 standard section 3.4 for messages up to 4 KB bytes.

To sign messages larger than 4 KB, you perform the message pre-processing step outside of
Amazon KMS. This hashing step creates a 64-byte message representative μ, as defined in NIST
FIPS 204, section 6.2.

Amazon KMS has a message type called EXTERNAL_MU for messages larger than 4 KB. When you
use this instead of the RAW message type, Amazon KMS:

• Assumes you've already performed the hashing step

• Skips its internal hashing process

• Works with messages of any size

Offline verification with ML-DSA key pairs 441

https://csrc.nist.gov/pubs/fips/204/final
https://csrc.nist.gov/pubs/fips/204/final

Amazon Key Management Service Developer Guide

When you verify a message, the method that you use depends on the size restriction of the
external system or library and whether it supports the 64-byte message representative μ:

• If the message is smaller than the size restriction, use the RAW message type.

• If the message is larger than the size restriction, use the representative μ in the external system.

The following sections demonstrate how to sign messages using Amazon KMS and verify messages
using OpenSSL. We provide examples for both messages under and over the 4 KB message size
limit imposed by Amazon KMS. OpenSSL doesn't impose a limit on message size for verification.

For both examples, first get the public key from Amazon KMS. Use the following Amazon CLI
command:

aws kms get-public-key \
 --key-id _<1234abcd-12ab-34cd-56ef-1234567890ab>_ \
 --output text \
 --query PublicKey | base64 --decode > public_key.der

Message size less than 4KB

For messages under 4 KB, use the RAW message type with Amazon KMS. While you can use
EXTERNAL_MU, it isn't necessary for messages within the size limit.

Use the following Amazon CLI command to sign the message:

aws kms sign \
 --key-id _<1234abcd-12ab-34cd-56ef-1234567890ab>_ \
 --message 'your message' \
 --message-type RAW \
 --signing-algorithm ML_DSA_SHAKE_256 \
 --output text \
 --query Signature | base64 --decode > ExampleSignature.bin

To verify this message using OpenSSL use the following command:

echo -n 'your message' | ./openssl dgst -verify public_key.der -signature
 ExampleSignature.bin

Offline verification with ML-DSA key pairs 442

Amazon Key Management Service Developer Guide

Message size more than 4KB

To sign messages larger than 4KB, use the EXTERNAL_MU message type. When you use
EXTERNAL_MU, you pre-hash the message externally to a 64-byte representative μ as defined
in NIST FIPS 204 section 6.2 and pass it to the signing or verifying operations. Note that this is
different from the "Pre-hash MLDSA" or HashML-DSA defined in NIST FIPS 204 section 5.4.

1. First, construct a message prefix. The prefix contains a domain separator, the length of any
context, and the context. The default for the domain separator and context length is zero.

2. Prepend the message prefix to the message.

3. Use SHAKE256 to hash the public key and prepend it to the result of step 2.

4. Finally, hash the result of step 3 to produce a 64-byte EXTERNAL_MU.

The following example uses OpenSSL 3.5 to construct the EXTERNAL_MU:

{
 openssl asn1parse -inform DER -in public_key.der -strparse 17 -noout -out - 2>/dev/
null |
 openssl dgst -provider default -shake256 -xoflen 64 -binary;
 printf '\x00\x00';
 echo -n "your message"
} | openssl dgst -provider default -shake256 -xoflen 64 -binary > mu.bin

After you create the mu.bin file, call the Amazon KMS API with the following command to sign the
message:

aws kms sign \
 --key-id _<1234abcd-12ab-34cd-56ef-1234567890ab>_ \
 --message fileb://mu.bin \
 --message-type EXTERNAL_MU \
 --signing-algorithm ML_DSA_SHAKE_256 \
 --output text \
 --query Signature | base64 --decode > ExampleSignature.bin

The resulting signature is the same as a RAW signature on the original message. You can use the
same OpenSSL 3.5 command to verify the message:

echo -n 'your message' | ./openssl dgst -verify public_key.der -signature
 ExampleSignature.bin

Offline verification with ML-DSA key pairs 443

Amazon Key Management Service Developer Guide

Offline verification with SM2 key pairs (China Regions only)

To verify a signature outside of Amazon KMS with an SM2 public key, you must specify the
distinguishing ID. When you pass a raw message, MessageType:RAW, to the Sign API, Amazon
KMS uses the default distinguishing ID, 1234567812345678, defined by OSCCA in GM/T
0009-2012. You cannot specify your own distinguishing ID within Amazon KMS.

However, if you are generating a message digest outside of Amazon, you can specify
your own distinguishing ID, then pass the message digest, MessageType:DIGEST, to
Amazon KMS to sign. To do this, change the DEFAULT_DISTINGUISHING_ID value in the
SM2OfflineOperationHelper class. The distinguishing ID you specify can be any string up to
8,192 characters long. After Amazon KMS signs the message digest, you need either the message
digest or the message and the distinguishing ID used to compute the digest to verify it offline.

Important

The SM2OfflineOperationHelper reference code is designed to be compatible with
Bouncy Castle version 1.68. For help with other versions, contact bouncycastle.org.

SM2OfflineOperationHelper class

To help you with offline operations with SM2 keys, the SM2OfflineOperationHelper class for
Java has methods that perform the tasks for you. You can use this helper class as a model for other
cryptographic providers.

Within Amazon KMS, the raw ciphertext conversions and SM2DSA message digest calculations
occur automatically. Not all cryptographic providers implement SM2 in the same way.
Some libraries, like OpenSSL versions 1.1.1 and later, perform these actions automatically.
Amazon KMS confirmed this behavior in testing with OpenSSL version 3.0. Use the following
SM2OfflineOperationHelper class with libraries, like Bouncy Castle, that require you to
perform these conversions and calculations manually.

The SM2OfflineOperationHelper class provides methods for the following offline operations:

• Message digest calculation

To generate a message digest offline that you can use for offline verification, or that
you can pass to Amazon KMS to sign, use the calculateSM2Digest method. The

Offline verification with SM2 key pairs (China Regions only) 444

https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html#KMS-Sign-request-MessageType
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html#API_Sign_RequestSyntax
https://www.bouncycastle.org/documentation/documentation-java/
https://www.bouncycastle.org
https://openssl.org/
https://www.bouncycastle.org/java.html

Amazon Key Management Service Developer Guide

calculateSM2Digest method generates a message digest with the SM3 hashing
algorithm. The GetPublicKey API returns your public key in binary format. You must parse
the binary key into a Java PublicKey. Provide the parsed public key with the message.
The method automatically combines your message with the default distinguishing
ID, 1234567812345678, but you can set your own distinguishing ID by changing the
DEFAULT_DISTINGUISHING_ID value.

• Verify

To verify a signature offline, use the offlineSM2DSAVerify method. The
offlineSM2DSAVerify method uses the message digest calculated from the specified
distinguishing ID, and original message you provide to verify the digital signature. The
GetPublicKey API returns your public key in binary format. You must parse the binary key into
a Java PublicKey. Provide the parsed public key with the original message and the signature
you want to verify. For more details, see Offline verification with SM2 key pairs.

• Encrypt

To encrypt plaintext offline, use the offlineSM2PKEEncrypt method. This method ensures
the ciphertext is in a format Amazon KMS can decrypt. The offlineSM2PKEEncrypt
method encrypts the plaintext, and then converts the raw ciphertext produced by SM2PKE to
the ASN.1 format. The GetPublicKey API returns your public key in binary format. You must
parse the binary key into a Java PublicKey. Provide the parsed public key with the plaintext
that you want to encrypt.

If you're unsure whether you need to perform the conversion, use the following OpenSSL
operation to test the format of your ciphertext. If the operation fails, you need to convert the
ciphertext to the ASN.1 format.

openssl asn1parse -inform DER -in ciphertext.der

By default, the SM2OfflineOperationHelper class uses the default distinguishing ID,
1234567812345678, when generating message digests for SM2DSA operations.

package com.amazon.kms.utils;

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;

Offline verification with SM2 key pairs (China Regions only) 445

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html

Amazon Key Management Service Developer Guide

import javax.crypto.NoSuchPaddingException;
import java.io.IOException;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.security.InvalidKeyException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.PrivateKey;
import java.security.PublicKey;

import org.bouncycastle.crypto.CryptoException;
import org.bouncycastle.jce.interfaces.ECPublicKey;

import java.util.Arrays;

import org.bouncycastle.asn1.ASN1EncodableVector;
import org.bouncycastle.asn1.ASN1Integer;
import org.bouncycastle.asn1.DEROctetString;
import org.bouncycastle.asn1.DERSequence;
import org.bouncycastle.asn1.gm.GMNamedCurves;
import org.bouncycastle.asn1.x9.X9ECParameters;
import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.params.ParametersWithID;
import org.bouncycastle.crypto.params.ParametersWithRandom;
import org.bouncycastle.crypto.signers.SM2Signer;
import org.bouncycastle.jcajce.provider.asymmetric.util.ECUtil;

public class SM2OfflineOperationHelper {
 // You can change the DEFAULT_DISTINGUISHING_ID value to set your own
 distinguishing ID,
 // the DEFAULT_DISTINGUISHING_ID can be any string up to 8,192 characters long.
 private static final byte[] DEFAULT_DISTINGUISHING_ID =
 "1234567812345678".getBytes(StandardCharsets.UTF_8);
 private static final X9ECParameters SM2_X9EC_PARAMETERS =
 GMNamedCurves.getByName("sm2p256v1");

 // ***calculateSM2Digest***
 // Calculate message digest
 public static byte[] calculateSM2Digest(final PublicKey publicKey, final byte[]
 message) throws
 NoSuchProviderException, NoSuchAlgorithmException {
 final ECPublicKey ecPublicKey = (ECPublicKey) publicKey;

Offline verification with SM2 key pairs (China Regions only) 446

Amazon Key Management Service Developer Guide

 // Generate SM3 hash of default distinguishing ID, 1234567812345678
 final int entlenA = DEFAULT_DISTINGUISHING_ID.length * 8;
 final byte [] entla = new byte[] { (byte) (entlenA & 0xFF00), (byte) (entlenA &
 0x00FF) };
 final byte [] a = SM2_X9EC_PARAMETERS.getCurve().getA().getEncoded();
 final byte [] b = SM2_X9EC_PARAMETERS.getCurve().getB().getEncoded();
 final byte [] xg = SM2_X9EC_PARAMETERS.getG().getXCoord().getEncoded();
 final byte [] yg = SM2_X9EC_PARAMETERS.getG().getYCoord().getEncoded();
 final byte[] xa = ecPublicKey.getQ().getXCoord().getEncoded();
 final byte[] ya = ecPublicKey.getQ().getYCoord().getEncoded();
 final byte[] za = MessageDigest.getInstance("SM3", "BC")
 .digest(ByteBuffer.allocate(entla.length +
 DEFAULT_DISTINGUISHING_ID.length + a.length + b.length + xg.length + yg.length +
 xa.length +
 ya.length).put(entla).put(DEFAULT_DISTINGUISHING_ID).put(a).put(b).put(xg).put(yg).put(xa).put(ya)
 .array());

 // Combine hashed distinguishing ID with original message to generate final
 digest
 return MessageDigest.getInstance("SM3", "BC")
 .digest(ByteBuffer.allocate(za.length +
 message.length).put(za).put(message)
 .array());
 }

 // ***offlineSM2DSAVerify***
 // Verify digital signature with SM2 public key
 public static boolean offlineSM2DSAVerify(final PublicKey publicKey, final byte []
 message,
 final byte [] signature) throws InvalidKeyException {
 final SM2Signer signer = new SM2Signer();
 CipherParameters cipherParameters =
 ECUtil.generatePublicKeyParameter(publicKey);
 cipherParameters = new ParametersWithID(cipherParameters,
 DEFAULT_DISTINGUISHING_ID);
 signer.init(false, cipherParameters);
 signer.update(message, 0, message.length);
 return signer.verifySignature(signature);
 }

 // ***offlineSM2PKEEncrypt***
 // Encrypt data with SM2 public key

Offline verification with SM2 key pairs (China Regions only) 447

Amazon Key Management Service Developer Guide

 public static byte[] offlineSM2PKEEncrypt(final PublicKey publicKey, final byte []
 plaintext) throws
 NoSuchPaddingException, NoSuchAlgorithmException, NoSuchProviderException,
 InvalidKeyException,
 BadPaddingException, IllegalBlockSizeException, IOException {
 final Cipher sm2Cipher = Cipher.getInstance("SM2", "BC");
 sm2Cipher.init(Cipher.ENCRYPT_MODE, publicKey);

 // By default, Bouncy Castle returns raw ciphertext in the c1c2c3 format
 final byte [] cipherText = sm2Cipher.doFinal(plaintext);

 // Convert the raw ciphertext to the ASN.1 format before passing it to AWS KMS
 final ASN1EncodableVector asn1EncodableVector = new ASN1EncodableVector();
 final int coordinateLength = (SM2_X9EC_PARAMETERS.getCurve().getFieldSize() +
 7) / 8 * 2 + 1;
 final int sm3HashLength = 32;
 final int xCoordinateInCipherText = 33;
 final int yCoordinateInCipherText = 65;
 byte[] coords = new byte[coordinateLength];
 byte[] sm3Hash = new byte[sm3HashLength];
 byte[] remainingCipherText = new byte[cipherText.length - coordinateLength -
 sm3HashLength];

 // Split components out of the ciphertext
 System.arraycopy(cipherText, 0, coords, 0, coordinateLength);
 System.arraycopy(cipherText, cipherText.length - sm3HashLength, sm3Hash, 0,
 sm3HashLength);
 System.arraycopy(cipherText, coordinateLength, remainingCipherText,
 0,cipherText.length - coordinateLength - sm3HashLength);

 // Build standard SM2PKE ASN.1 ciphertext vector
 asn1EncodableVector.add(new ASN1Integer(new BigInteger(1,
 Arrays.copyOfRange(coords, 1, xCoordinateInCipherText))));
 asn1EncodableVector.add(new ASN1Integer(new BigInteger(1,
 Arrays.copyOfRange(coords, xCoordinateInCipherText, yCoordinateInCipherText))));
 asn1EncodableVector.add(new DEROctetString(sm3Hash));
 asn1EncodableVector.add(new DEROctetString(remainingCipherText));

 return new DERSequence(asn1EncodableVector).getEncoded("DER");
 }
}

Offline verification with SM2 key pairs (China Regions only) 448

Amazon Key Management Service Developer Guide

Monitor Amazon KMS keys

Monitoring is an important part of understanding the availability, state, and usage of your Amazon
KMS keys in Amazon KMS and maintaining the reliability, availability, and performance of your
Amazon solutions. Collecting monitoring data from all the parts of your Amazon solution will help
you debug a multipoint failure if one occurs. Before you start monitoring your KMS keys, however,
create a monitoring plan that includes answers to the following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something happens?

The next step is to monitor your KMS keys over time to establish a baseline for normal Amazon
KMS usage and expectations in your environment. As you monitor your KMS keys, store historical
monitoring data so that you can compare it with current data, identify normal patterns and
anomalies, and devise methods to address issues.

For example, you can monitor Amazon KMS API activity and events that affect your KMS keys.
When data falls above or below your established norms, you might need to investigate or take
corrective action.

To establish a baseline for normal patterns, monitor the following items:

• Amazon KMS API activity for data plane operations. These are cryptographic operations that use
a KMS key, such as Decrypt, Encrypt, ReEncrypt, and GenerateDataKey.

• Amazon KMS API activity for control plane operations that are important to you. These
operations manage a KMS key, and you might want to monitor those that change a KMS
key's availability (such as ScheduleKeyDeletion, CancelKeyDeletion, DisableKey, EnableKey,
ImportKeyMaterial, and DeleteImportedKeyMaterial) or change a KMS key's access control (such
as PutKeyPolicy and RevokeGrant).

• Other Amazon KMS metrics (such as the amount of time remaining until your imported key
material expires) and events (such as the expiration of imported key material or the deletion or
key rotation of a KMS key).

449

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CancelKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html

Amazon Key Management Service Developer Guide

Monitoring tools

Amazon provides various tools that you can use to monitor your KMS keys. You can configure some
of these tools to do the monitoring for you, while some of the tools require manual intervention.
We recommend that you automate monitoring tasks as much as possible.

Automated monitoring tools

You can use the following automated monitoring tools to watch your KMS keys and report when
something has changed.

• Amazon CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log
files in real time by sending them to CloudWatch Logs, write log processing applications with the
CloudTrail Processing Library, and validate that your log files have not changed after delivery by
CloudTrail. For more information, see Working with CloudTrail Log Files in the Amazon CloudTrail
User Guide.

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over
a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not
invoke actions simply because they are in a particular state; the state must have changed and
been maintained for a specified number of periods. For more information, see Monitor KMS keys
with Amazon CloudWatch.

• Amazon EventBridge – Match events and route them to one or more target functions or streams
to capture state information and, if necessary, make changes or take corrective action. For more
information, see Monitor KMS keys with Amazon EventBridge and the Amazon EventBridge User
Guide.

• Amazon CloudWatch Logs – Monitor, store, and access your log files from Amazon CloudTrail or
other sources. For more information, see the Amazon CloudWatch Logs User Guide.

Manual monitoring tools

Another important part of monitoring KMS keys involves manually monitoring those items that
the CloudWatch alarms and events don't cover. The Amazon KMS, CloudWatch, Amazon Trusted
Advisor, and other Amazon dashboards provide an at-a-glance view of the state of your Amazon
environment.

Monitoring tools 450

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/use-the-cloudtrail-processing-library.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/
https://docs.amazonaws.cn/eventbridge/latest/userguide/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/

Amazon Key Management Service Developer Guide

You can customize the Amazon managed keys and Customer managed keys pages of the Amazon
KMS console to display the following information about each KMS key:

• Key ID

• Status

• Creation date

• Expiration date (for KMS keys with imported key material)

• Origin

• Custom key store ID (for KMS keys in custom key stores)

The CloudWatch console dashboard shows the following:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your Amazon resource metrics

• Create and edit alarms to be notified of problems

Amazon Trusted Advisor can help you monitor your Amazon resources to improve performance,
reliability, security, and cost effectiveness. Four Trusted Advisor checks are available to all users;
more than 50 checks are available to users with a Business or Enterprise support plan. For more
information, see Amazon Trusted Advisor.

Logging Amazon KMS API calls with Amazon CloudTrail

Amazon KMS is integrated with Amazon CloudTrail, a service that records all calls to Amazon KMS
by users, roles, and other Amazon services. CloudTrail captures all API calls to Amazon KMS as
events, including calls from the Amazon KMS console, Amazon KMS APIs, Amazon CloudFormation
templates, the Amazon Command Line Interface (Amazon CLI), and Amazon Tools for PowerShell.

Logging with Amazon CloudTrail 451

https://console.amazonaws.cn/kms
https://console.amazonaws.cn/kms
https://console.amazonaws.cn/cloudwatch/home
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
http://www.amazonaws.cn/support/trustedadvisor/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/

Amazon Key Management Service Developer Guide

CloudTrail logs all Amazon KMS operations, including read-only operations, such as ListAliases and
GetKeyRotationStatus, operations that manage KMS keys, such as CreateKey and PutKeyPolicy,
and cryptographic operations, such as GenerateDataKey and Decrypt. It also logs internal
operations that Amazon KMS calls for you, such as DeleteExpiredKeyMaterial, DeleteKey,
SynchronizeMultiRegionKey, and RotateKey.

CloudTrail logs all successful operations and, in some scenarios, attempted calls that failed, such
as when the caller is denied access to a resource. Cross-account operations on KMS keys are logged
in both the caller account and the KMS key owner account. However, cross-account Amazon KMS
requests that are rejected because access is denied are logged only in the caller's account.

For security reasons, some fields are omitted from Amazon KMS log entries, such as the
Plaintext parameter of an Encrypt request, and the response to GetKeyPolicy or any
cryptographic operation. To make it easier to search for CloudTrail log entries for particular KMS
keys, Amazon KMS adds the key ARN of the affected KMS key to the responseElements field in
the log entries for some Amazon KMS key management operations, even when the API operation
doesn't return the key ARN.

Although by default, all Amazon KMS actions are logged as CloudTrail events, you can exclude
Amazon KMS actions from a CloudTrail trail. For details, see Excluding Amazon KMS events from a
trail.

Learn more:

• For CloudTrail log examples of Amazon KMS operations for an Amazon Nitro enclave, see
Monitoring requests for Nitro enclaves.

Topics

• Finding Amazon KMS log entries in CloudTrail

• Excluding Amazon KMS events from a trail

• Examples of Amazon KMS log entries

Finding Amazon KMS log entries in CloudTrail

To search CloudTrail log entries, use the CloudTrail console or the CloudTrail LookupEvents
operation. CloudTrail supports numerous attribute values for filtering your search, including event
name, user name, and event source.

Finding Amazon KMS log entries in CloudTrail 452

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_LookupEvents.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html#filtering-cloudtrail-events

Amazon Key Management Service Developer Guide

To help you search for Amazon KMS log entries in CloudTrail, Amazon KMS populates the following
CloudTrail log entry fields.

Note

Beginning in December 2022, Amazon KMS populates the Resource type and Resource
name attributes in all management operations that change a particular KMS key. These
attribute values might be null in older CloudTrail entries for the following operations:
CreateAlias, CreateGrant, DeleteAlias, DeleteImportedKeyMaterial, ImportKeyMaterial,
ReplicateKey, RetireGrant, RevokeGrant, UpdateAlias, and UpdatePrimaryRegion.

Attribute Value Log entries

Event source (EventSour
ce)

kms.amazonaws.com All operations.

Resource type (ResourceT
ype)

AWS::KMS::Key Management operations
that change a particular KMS
key, such as CreateKey
and EnableKey , but not
ListKeys.

Resource name (ResourceN
ame)

Key ARN (or key ID and key
ARN)

Management operations
that change a particular KMS
key, such as CreateKey
and EnableKey , but not
ListKeys.

To help you find log entries for management operations on particular KMS keys, Amazon KMS
records the key ARN of the affected KMS key in the responseElements.keyId element of the
log entry, even when the Amazon KMS API operation doesn't return the key ARN.

For example, a successful call to the DisableKey operation doesn't return any values in the
response, but instead of a null value, the responseElements.keyId value in the DisableKey log
entry includes the key ARN of the disabled KMS key.

Finding Amazon KMS log entries in CloudTrail 453

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html

Amazon Key Management Service Developer Guide

This feature was added in December 2022 and affects the following CloudTrail log entries:
CreateAlias, CreateGrant, DeleteAlias, DeleteKey, DisableKey, EnableKey, EnableKeyRotation,
ImportKeyMaterial, RotateKey, SynchronizeMultiRegionKey, TagResource, UntagResource,
UpdateAlias, and UpdatePrimaryRegion.

Excluding Amazon KMS events from a trail

To provide a record of the use and management of their Amazon KMS resources, most Amazon
KMS users rely on the events in a CloudTrail trail. The trail can be an valuable source of data for
auditing critical events, such as creating, disabling, and deleting Amazon KMS keys, changing
key policy, and the use of your KMS keys by Amazon services on your behalf. In some cases, the
metadata in a CloudTrail log entry, such as the encryption context in an encryption operation, can
help you to avoid or resolve errors.

However, because Amazon KMS can generate a large number of events, Amazon CloudTrail lets you
exclude Amazon KMS events from a trail. This per-trail setting excludes all Amazon KMS events;
you cannot exclude particular Amazon KMS events.

Warning

Excluding Amazon KMS events from a CloudTrail Log can obscure actions that use your
KMS keys. Be cautious when giving principals the cloudtrail:PutEventSelectors
permission that is required to perform this operation.

To exclude Amazon KMS events from a trail:

• In the CloudTrail console, use the Log Key Management Service events setting when you create
a trail or update a trail. For instructions, see Logging Management Events with the Amazon Web
Services Management Console in the Amazon CloudTrail User Guide.

• In the CloudTrail API, use the PutEventSelectors operation. Add the
ExcludeManagementEventSources attribute to your event selectors with a value of
kms.amazonaws.com. For an example, see Example: A trail that does not log Amazon Key
Management Service events in the Amazon CloudTrail User Guide.

You can disable this exclusion at any time by changing the console setting or the event selectors
for a trail. The trail will then start recording Amazon KMS events. However, it cannot recover
Amazon KMS events that occurred while the exclusion was effective.

Excluding Amazon KMS events from a trail 454

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-update-a-trail-console.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-management-and-data-events-with-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-management-and-data-events-with-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/APIReference/API_PutEventSelectors.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-additional-cli-commands.html#configuring-event-selector-example-kms
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-additional-cli-commands.html#configuring-event-selector-example-kms

Amazon Key Management Service Developer Guide

When you exclude Amazon KMS events by using the console or API, the resulting CloudTrail
PutEventSelectors API operation is also logged in your CloudTrail Logs. If Amazon KMS
events don't appear in your CloudTrail Logs, look for a PutEventSelectors event with the
ExcludeManagementEventSources attribute set to kms.amazonaws.com.

Examples of Amazon KMS log entries

Amazon KMS writes entries to your CloudTrail log when you call an Amazon KMS operation and
when an Amazon service calls an operation on your behalf. Amazon KMS also writes an entry when
it calls an operation for you. For example, it writes an entry when it deletes a KMS key that you
scheduled for deletion.

The following topics display examples of CloudTrail log entries for Amazon KMS operations.

For examples of CloudTrail log entries of requests to Amazon KMS from Amazon Nitro Enclaves,
see Monitoring requests for Nitro enclaves.

Topics

• CancelKeyDeletion

• ConnectCustomKeyStore

• CreateAlias

• CreateCustomKeyStore

• CreateGrant

• CreateKey

• Decrypt

• DeleteAlias

• DeleteCustomKeyStore

• DeleteExpiredKeyMaterial

• DeleteImportedKeyMaterial

• DeleteKey

• DescribeCustomKeyStores

• DescribeKey

• DisableKey

• DisableKeyRotation

• DisconnectCustomKeyStore

Examples of Amazon KMS log entries 455

Amazon Key Management Service Developer Guide

• EnableKey

• EnableKeyRotation

• Encrypt

• GenerateDataKey

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutPlaintext

• GenerateDataKeyWithoutPlaintext

• GenerateMac

• GenerateRandom

• GetKeyPolicy

• GetKeyRotationStatus

• GetParametersForImport

• ImportKeyMaterial

• ListAliases

• ListGrants

• ListKeyRotations

• PutKeyPolicy

• ReEncrypt

• ReplicateKey

• RetireGrant

• RevokeGrant

• RotateKey

• RotateKeyOnDemand

• ScheduleKeyDeletion

• Sign

• SynchronizeMultiRegionKey

• TagResource

• UntagResource

• UpdateAlias

• UpdateCustomKeyStore

Examples of Amazon KMS log entries 456

Amazon Key Management Service Developer Guide

• UpdateKeyDescription

• UpdatePrimaryRegion

• VerifyMac

• Verify

• Amazon EC2 example one

• Amazon EC2 example two

CancelKeyDeletion

The following example shows an Amazon CloudTrail log entry generated by calling the
CancelKeyDeletion operation. For information about deleting Amazon KMS keys, see Delete an
Amazon KMS key.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-07-27T21:53:17Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CancelKeyDeletion",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "e3452e68-d4b0-4ec7-a768-7ae96c23764f",
 "eventID": "d818bf03-6655-48e9-8b26-f279a07075fd",
 "readOnly": false,
 "resources": [

Examples of Amazon KMS log entries 457

https://docs.amazonaws.cn/kms/latest/APIReference/API_CancelKeyDeletion.html

Amazon Key Management Service Developer Guide

 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

ConnectCustomKeyStore

The following example shows an Amazon CloudTrail log entry generated by calling the
ConnectCustomKeyStore operation. For information about connecting a custom key store, see
Disconnect an Amazon CloudHSM key store.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-21T20:17:32Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ConnectCustomKeyStore",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "customKeyStoreId": "cks-1234567890abcdef0"
 },
 "responseElements": null,
 "additionalEventData": {
 "customKeyStoreName": "ExampleKeyStore",
 "clusterId": "cluster-1a23b4cdefg"
 },
 "requestID": "abcde9e1-f1a3-4460-a423-577fb6e695c9",
 "eventID": "114b61b9-0ea6-47f5-a9d2-4f2bdd0017d5",

Examples of Amazon KMS log entries 458

https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html

Amazon Key Management Service Developer Guide

 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
}

CreateAlias

The following example shows an Amazon CloudTrail log entry for the CreateAlias operation. The
resources element includes fields for the alias and KMS key resources. For information about
creating aliases in Amazon KMS, see Create aliases.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-08-14T23:08:31Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateAlias",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "aliasName": "alias/ExampleAlias",
 "targetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "caec1e0c-ce03-419e-bdab-6ab1f7c57c01",
 "eventID": "2dd6e784-8286-46a6-befd-d64e5a02fb28",
 "readOnly": false,

Examples of Amazon KMS log entries 459

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html

Amazon Key Management Service Developer Guide

 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

CreateCustomKeyStore

The following example shows an Amazon CloudTrail log entry generated by calling the
CreateCustomKeyStore operation on an Amazon CloudHSM key store. For information about
creating custom key stores, see Create an Amazon CloudHSM key store.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-21T20:17:32Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateCustomKeyStore",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "customKeyStoreName": "ExampleKeyStore",

Examples of Amazon KMS log entries 460

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html

Amazon Key Management Service Developer Guide

 "clusterId": "cluster-1a23b4cdefg"
 },
 "responseElements": {
 "customKeyStoreId": "cks-1234567890abcdef0"
 },
 "requestID": "abcde9e1-f1a3-4460-a423-577fb6e695c9",
 "eventID": "114b61b9-0ea6-47f5-a9d2-4f2bdd0017d5",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
}

CreateGrant

The following example shows an Amazon CloudTrail log entry for the CreateGrant operation. For
information about creating grants in Amazon KMS, see Grants in Amazon KMS.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:53:12Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "constraints": {
 "encryptionContextSubset": {

Examples of Amazon KMS log entries 461

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html

Amazon Key Management Service Developer Guide

 "ContextKey1": "Value1"
 }
 },
 "operations": ["Encrypt",
 "RetireGrant"],
 "granteePrincipal": "EX_PRINCIPAL_ID"
 },
 "responseElements": {
 "grantId": "f020fe75197b93991dc8491d6f19dd3cebb24ee62277a05914386724f3d48758",
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "f3c08808-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "5d529779-2d27-42b5-92da-91aaea1fc4b5",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

CreateKey

These examples show Amazon CloudTrail log entries for the CreateKey operation.

A CreateKey log entry can result from a CreateKey request or the CreateKey operation for a
ReplicateKey request.

The following example shows an CloudTrail log entry for a CreateKey operation that creates a
symmetric encryption KMS key. For information about creating KMS keys, see Create a KMS key.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"

Examples of Amazon KMS log entries 462

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

 },
 "eventTime": "2022-08-10T22:38:27Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "description": "",
 "origin": "EXTERNAL",
 "bypassPolicyLockoutSafetyCheck": false,
 "customerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "keySpec": "SYMMETRIC_DEFAULT",
 "keyUsage": "ENCRYPT_DECRYPT"
 },
 "responseElements": {
 "keyMetadata": {
 "AWSAccountId": "111122223333",
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "creationDate": "Aug 10, 2022, 10:38:27 PM",
 "enabled": false,
 "description": "",
 "keyUsage": "ENCRYPT_DECRYPT",
 "keyState": "PendingImport",
 "origin": "EXTERNAL",
 "keyManager": "CUSTOMER",
 "customerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "keySpec": "SYMMETRIC_DEFAULT",
 "encryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "multiRegion": false
 }
 },
 "requestID": "1aef6713-0223-4ff7-9a6d-781360521930",
 "eventID": "36327b37-f4f6-40a9-92ab-48064ec905a2",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",

Examples of Amazon KMS log entries 463

Amazon Key Management Service Developer Guide

 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following example shows the CloudTrail log of a CreateKey operation that creates a
symmetric encryption KMS key in an Amazon CloudHSM key store.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-14T17:39:50Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyUsage": "ENCRYPT_DECRYPT",
 "bypassPolicyLockoutSafetyCheck": false,
 "origin": "AWS_CLOUDHSM",
 "keySpec": "SYMMETRIC_DEFAULT",
 "customerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "customKeyStoreId": "cks-1234567890abcdef0",
 "description": ""
 },
 "responseElements": {
 "keyMetadata": {
 "aWSAccountId": "111122223333",
 "keyId": "0987dcba-09fe-87dc-65ba-ab0987654321",

Examples of Amazon KMS log entries 464

Amazon Key Management Service Developer Guide

 "arn": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "creationDate": "Oct 14, 2021, 5:39:50 PM",
 "enabled": true,
 "description": "",
 "keyUsage": "ENCRYPT_DECRYPT",
 "keyState": "Enabled",
 "origin": "AWS_CLOUDHSM",
 "customKeyStoreId": "cks-1234567890abcdef0",
 "cloudHsmClusterId": "cluster-1a23b4cdefg",
 "keyManager": "CUSTOMER",
 "customerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "keySpec": "SYMMETRIC_DEFAULT",
 "encryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "multiRegion": false
 }
 },
 "additionalEventData": {
 "backingKey": "{\"backingKeyId\":\"backing-key-id\"}"
 },
 "requestID": "4f0b185c-588c-4767-9e90-c618f7e13cad",
 "eventID": "c73964b8-703d-49e4-bd9e-f773d0ee1e65",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following example shows the CloudTrail log of a CreateKey operation that creates a
symmetric encryption KMS key in an external key store.

{

Examples of Amazon KMS log entries 465

Amazon Key Management Service Developer Guide

 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-09-07T22:37:45Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "tags": [],
 "keyUsage": "ENCRYPT_DECRYPT",
 "description": "",
 "origin": "EXTERNAL_KEY_STORE",
 "multiRegion": false,
 "keySpec": "SYMMETRIC_DEFAULT",
 "customerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "bypassPolicyLockoutSafetyCheck": false,
 "customKeyStoreId": "cks-1234567890abcdef0",
 "xksKeyId": "bb8562717f809024"
 },
 "responseElements": {
 "keyMetadata": {
 "aWSAccountId": "111122223333",
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "creationDate": "Dec 7, 2022, 10:37:45 PM",
 "enabled": true,
 "description": "",
 "keyUsage": "ENCRYPT_DECRYPT",
 "keyState": "Enabled",
 "origin": "EXTERNAL_KEY_STORE",
 "customKeyStoreId": "cks-1234567890abcdef0",
 "keyManager": "CUSTOMER",
 "customerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "keySpec": "SYMMETRIC_DEFAULT",
 "encryptionAlgorithms": [

Examples of Amazon KMS log entries 466

Amazon Key Management Service Developer Guide

 "SYMMETRIC_DEFAULT"
],
 "multiRegion": false,
 "xksKeyConfiguration": {
 "id": "bb8562717f809024"
 }
 }
 },
 "requestID": "ba197c82-3ac7-487a-8ff4-7736bbeb1316",
 "eventID": "838ad5f4-5fdd-4044-afd7-4dbd88c6af56",
 "readOnly": false,
 "resources": [
 {
 "accountId": "227179770375",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:227179770375:key/39c5eb22-
f37c-4956-92ca-89e8f8b57ab2"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Decrypt

These examples show Amazon CloudTrail log entries for the Decrypt operation.

The CloudTrail log entry for a Decrypt operation always includes the encryptionAlgorithm
in the requestParameters even if the encryption algorithm wasn't specified in the request. The
ciphertext in the request and the plaintext in the response are omitted.

Topics

• Decrypt with a standard symmetric encryption key

• Decrypt failure with a standard symmetric encryption key

• Decrypt with a KMS key in an Amazon CloudHSM key store

• Decrypt with a KMS key in an external key store

• Decrypt failure with a KMS key in an external key store

Examples of Amazon KMS log entries 467

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

Decrypt with a standard symmetric encryption key

The following is an example CloudTrail log entry for a Decrypt operation with a standard
symmetric encryption key.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-20T20:45:00Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "encryptionContext": {
 "Department": "Engineering",
 "Project": "Alpha"
 }
 },
 "responseElements": null,
 "additionalEventData": {
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "requestID": "12345126-30d5-4b28-98b9-9153da559963",
 "eventID": "abcde202-ba1a-467c-b4ba-f729d45ae521",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Examples of Amazon KMS log entries 468

Amazon Key Management Service Developer Guide

 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES256-GCM-SHA384",
 "clientProvidedHostHeader": "kms.us-west-2.amazonaws.com"
 }
}

Decrypt failure with a standard symmetric encryption key

The following example CloudTrail log entry records a failed Decrypt operation with a standard
symmetric encryption KMS key. The exception (errorCode) and error message (errorMessage)
are included help you to resolve the error.

In this case, the symmetric encryption KMS key specified in the Decrypt request was not the
symmetric encryption KMS key that was used to encrypt the data.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-11-24T18:57:43Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "errorCode": "IncorrectKeyException"
 "errorMessage": "The key ID in the request does not identify a CMK that can perform
 this operation.",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",

Examples of Amazon KMS log entries 469

Amazon Key Management Service Developer Guide

 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "encryptionContext": {
 "Department": "Engineering",
 "Project": "Alpha"
 }
 },
 "responseElements": null,
 "requestID": "22345126-30d5-4b28-98b9-9153da559963",
 "eventID": "abcde202-ba1a-467c-b4ba-f729d45ae521",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Decrypt with a KMS key in an Amazon CloudHSM key store

The following example CloudTrail log entry records a Decrypt operation with a KMS key in an
Amazon CloudHSM key store. All log entries for cryptographic operations with a KMS key in a
custom key store include an additionalEventData field with the customKeyStoreId and
backingKeyId. The value returned in the backingKeyId field is the CloudHSM key id attribute.
The additionalEventData isn't specified in the request.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-26T23:41:27Z",
 "eventSource": "kms.amazonaws.com",

Examples of Amazon KMS log entries 470

Amazon Key Management Service Developer Guide

 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "encryptionContext": {
 "Department": "Development",
 "Purpose": "Test"
 }
 },
 "responseElements": null,
 "additionalEventData": {
 "customKeyStoreId": "cks-1234567890abcdef0"
 },
 "requestID": "e1b881f8-2048-41f8-b6cc-382b7857ec61",
 "eventID": "a79603d5-4cde-46fc-819c-a7cf547b9df4",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Decrypt with a KMS key in an external key store

The following example CloudTrail log entry records a Decrypt operation with a KMS key in an
external key store. In addition to the customKeyStoreId, the additionalEventData field
includes the external key ID (XksKeyId). The additionalEventData isn't specified in the
request.

{
 "eventVersion": "1.08",
 "userIdentity": {

Examples of Amazon KMS log entries 471

Amazon Key Management Service Developer Guide

 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-11-24T00:26:58Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "AWS Internal",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "keyId": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "encryptionContext": {
 "Department": "Engineering",
 "Purpose": "Test"
 }
 },
 "responseElements": null,
 "additionalEventData": {
 "customKeyStoreId": "cks-9876543210fedcba9",
 "xksKeyId": "abc01234567890fe"
 },
 "requestID": "f1b881f8-2048-41f8-b6cc-382b7857ec61",
 "eventID": "b79603d5-4cde-46fc-819c-a7cf547b9df4",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Examples of Amazon KMS log entries 472

Amazon Key Management Service Developer Guide

Decrypt failure with a KMS key in an external key store

The following example CloudTrail log entry records a failed request for a Decrypt operation with
a KMS key in an external key store. CloudWatch logs requests that fail, in addition to successful
requests. When recording a failure, the CloudTrail log entry includes the exception (errorCode) and
the accompanying error message (errorMessage).

If the failed request reached your external key store proxy, as in this example, you can use the
requestId value to associate the failed request with a corresponding request your external key
store proxy logs, if your proxy provides them.

For help with Decrypt requests in external key stores, see Decryption errors.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-11-24T00:26:58Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "errorCode": "KMSInvalidStateException",
 "errorMessage": "The external key store proxy rejected the request because the
 specified ciphertext or additional authenticated data is corrupted, missing, or
 otherwise invalid.",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "keyId": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "encryptionContext": {
 "Department": "Engineering",
 "Purpose": "Test"
 }
 },
 "responseElements": null,

Examples of Amazon KMS log entries 473

Amazon Key Management Service Developer Guide

 "additionalEventData": {
 "customKeyStoreId": "cks-9876543210fedcba9",
 "xksKeyId": "abc01234567890fe"
 },
 "requestID": "f1b881f8-2048-41f8-b6cc-382b7857ec61",
 "eventID": "b79603d5-4cde-46fc-819c-a7cf547b9df4",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

DeleteAlias

The following example shows an Amazon CloudTrail log entry for the DeleteAlias operation. For
information about deleting aliases, see Delete an alias.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-04T00:52:27Z"

Examples of Amazon KMS log entries 474

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html

Amazon Key Management Service Developer Guide

 }
 }
 },
 "eventTime": "2014-11-04T00:52:27Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DeleteAlias",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "aliasName": "alias/my_alias"
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "d9542792-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "12f48554-bb04-4991-9cfc-e7e85f68eda0",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:111122223333:alias/my_alias",
 "accountId": "111122223333"
 },
 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

DeleteCustomKeyStore

The following example shows an Amazon CloudTrail log entry generated by calling the
DeleteCustomKeyStore operation. For information about creating custom key stores, see Delete
an Amazon CloudHSM key store.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",

Examples of Amazon KMS log entries 475

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteCustomKeyStore.html

Amazon Key Management Service Developer Guide

 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-21T20:17:32Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DeleteCustomKeyStore",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "customKeyStoreId": "cks-1234567890abcdef0"
 },
 "responseElements": null,
 "additionalEventData": {
 "customKeyStoreName": "ExampleKeyStore",
 "clusterId": "cluster-1a23b4cdefg"
 },
 "requestID": "abcde9e1-f1a3-4460-a423-577fb6e695c9",
 "eventID": "114b61b9-0ea6-47f5-a9d2-4f2bdd0017d5",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
}

DeleteExpiredKeyMaterial

When you import key material into an Amazon KMS key (KMS key), you can set an expiration date
and time for that key material. Amazon KMS records an entry in your CloudTrail log when you
import the key material (with the expiration settings) and when Amazon KMS deletes the expired
key material. For information about creating KMS key with imported key material, see Importing
key material for Amazon KMS keys.

The following example shows an Amazon CloudTrail log entry generated when Amazon KMS
deletes the expired key material.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "accountId": "111122223333",
 "invokedBy": "Amazon Internal"

Examples of Amazon KMS log entries 476

Amazon Key Management Service Developer Guide

 },
 "eventTime": "2025-05-22T19:55:11Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DeleteExpiredKeyMaterial",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "Amazon Internal",
 "userAgent": "Amazon Internal",
 "requestParameters": null,
 "responseElements": null,
 "eventID": "cfa932fd-0d3a-4a76-a8b8-616863a2b547",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsServiceEvent",
 "recipientAccountId": "111122223333",
 "serviceEventDetails": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "eventCategory": "Management"
}

DeleteImportedKeyMaterial

If you import key material into a KMS key, you can delete the imported key material at any time
by using the DeleteImportedKeyMaterial operation. When you delete imported key material from
a KMS key, the key state of the KMS key changes to PendingImport and the KMS key cannot be
used in any cryptographic operations. For details, see Delete imported key material.

The following example shows an Amazon CloudTrail log entry generated for the
DeleteImportedKeyMaterial operation.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "IAMUser",

Examples of Amazon KMS log entries 477

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html

Amazon Key Management Service Developer Guide

 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-20T20:45:08Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DeleteImportedKeyMaterial",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "responseElements": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "requestID": "dcf0e82f-dad0-4622-a378-a5b964ad42c1",
 "eventID": "2afbb991-c668-4641-8a00-67d62e1fecbd",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES256-GCM-SHA384",
 "clientProvidedHostHeader": "kms.us-west-2.amazonaws.com"
 }

Examples of Amazon KMS log entries 478

Amazon Key Management Service Developer Guide

}

DeleteKey

These examples show the Amazon CloudTrail log entry that is generated when a KMS key is
deleted. To delete a KMS key, you use the ScheduleKeyDeletion operation. After the specified
waiting period expires, Amazon KMS deletes the KMS key and records an entry like the following
one in your CloudTrail log to record that event.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

For an example of the CloudTrail log entry for the ScheduleKeyDeletion operation, see
ScheduleKeyDeletion. For information about deleting KMS keys, see Delete an Amazon KMS key.

The following example CloudTrail log entry records a DeleteKey operation of a KMS key with key
material in Amazon KMS.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "accountId": "111122223333",
 "invokedBy": "Amazon Internal"
 },
 "eventTime": "2020-07-31T00:07:00Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DeleteKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "Amazon Internal",
 "userAgent": "Amazon Internal",
 "requestParameters": null,
 "responseElements": null,
 "eventID": "b25f9cda-74e1-4458-847b-4972a0bf9668",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }

Examples of Amazon KMS log entries 479

https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html

Amazon Key Management Service Developer Guide

],
 "eventType": "AwsServiceEvent",
 "recipientAccountId": "111122223333",
 "managementEvent": true,
 "eventCategory": "Management"
}

The following CloudTrail log entry records a DeleteKey operation of a KMS key in an Amazon
CloudHSM custom key store.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "accountId": "111122223333",
 "invokedBy": "Amazon Internal"
 },
 "eventTime": "2021-10-26T23:41:27Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DeleteKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "Amazon Internal",
 "userAgent": "Amazon Internal",
 "requestParameters": null,
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "additionalEventData": {
 "customKeyStoreId": "cks-1234567890abcdef0",
 "clusterId": "cluster-1a23b4cdefg",
 "backingKeys": "[{\"backingKeyId\":\"backing-key-id\"}]",
 "backingKeysDeletionStatus": "[{\"backingKeyId\":\"backing-key-id\",
\"deletionStatus\":\"SUCCESS\"}]"
 },
 "eventID": "1234585c-4b0c-4340-ab11-662414b79239",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }

Examples of Amazon KMS log entries 480

Amazon Key Management Service Developer Guide

],
 "eventType": "AwsServiceEvent",
 "recipientAccountId": "111122223333",
 "managementEvent": true,
 "eventCategory": "Management"
}

DescribeCustomKeyStores

The following example shows an Amazon CloudTrail log entry generated by calling the
DescribeCustomKeyStores operation. For information about viewing custom key stores, see
View an Amazon CloudHSM key store.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-21T20:17:32Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeCustomKeyStores",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "customKeyStoreId": "cks-1234567890abcdef0"
 },
 "responseElements": null,
 "requestID": "abcde9e1-f1a3-4460-a423-577fb6e695c9",
 "eventID": "2ea1735f-628d-43e3-b2ee-486d02913a78",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
}

Examples of Amazon KMS log entries 481

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

DescribeKey

The following example shows an Amazon CloudTrail log entry for the DescribeKey operation.
Amazon KMS records an entry like the following one when you call the DescribeKey operation or
view KMS keys in the Amazon KMS console. This call is the result of viewing a key in the Amazon
KMS management console.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-09-26T18:01:36Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "requestID": "12345126-30d5-4b28-98b9-9153da559963",
 "eventID": "abcde202-ba1a-467c-b4ba-f729d45ae521",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Examples of Amazon KMS log entries 482

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

DisableKey

The following example shows an Amazon CloudTrail log entry for the DisableKey operation. For
information about enabling and disabling Amazon KMS keys in Amazon KMS, see Enable and
disable keys.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:43Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DisableKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "12345126-30d5-4b28-98b9-9153da559963",
 "eventID": "abcde202-ba1a-467c-b4ba-f729d45ae521",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"

Examples of Amazon KMS log entries 483

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html

Amazon Key Management Service Developer Guide

}

DisableKeyRotation

The following example shows an Amazon CloudTrail log entry generated by calling the
DisableKeyRotation operation. For information about automatic key rotation, see Rotate Amazon
KMS keys.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-09-01T19:31:39Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DisableKeyRotation",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "requestID": "d6a9351a-ed6e-4581-88d1-2a9a8a538497",
 "eventID": "6313164c-83aa-4cc3-9e1a-b7c426f7a5b1",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",

Examples of Amazon KMS log entries 484

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKeyRotation.html

Amazon Key Management Service Developer Guide

 "eventCategory": "Management"
}

DisconnectCustomKeyStore

The following example shows an Amazon CloudTrail log entry generated by calling the
DisconnectCustomKeyStore operation. For information about disconnecting a custom key
store, see Disconnect an Amazon CloudHSM key store.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-21T20:17:32Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DisconnectCustomKeyStore",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "customKeyStoreId": "cks-1234567890abcdef0"
 },
 "responseElements": null,
 "additionalEventData": {
 "customKeyStoreName": "ExampleKeyStore",
 "clusterId": "cluster-1a23b4cdefg"
 },
 "requestID": "abcde9e1-f1a3-4460-a423-577fb6e695c9",
 "eventID": "114b61b9-0ea6-47f5-a9d2-4f2bdd0017d5",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
}

Examples of Amazon KMS log entries 485

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html

Amazon Key Management Service Developer Guide

EnableKey

The following example shows an Amazon CloudTrail log entry for the EnableKey operation. For
information about enabling and disabling Amazon KMS keys in Amazon KMS, see Enable and
disable keys..

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:20Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "EnableKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "d528a6fb-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "be393928-3629-4370-9634-567f9274d52e",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"

Examples of Amazon KMS log entries 486

https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKey.html

Amazon Key Management Service Developer Guide

}

EnableKeyRotation

The following example shows an Amazon CloudTrail log entry of a call to the EnableKeyRotation
operation. For an example of the CloudTrail log entry that is written when the key is rotated, see
RotateKey. For information about rotating Amazon KMS keys, see Rotate Amazon KMS keys.

Note

The rotation-period is an optional request parameter. If you do not specify a rotation
period when you enable automatic key rotation, the default value is 365 days.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-07-25T23:41:56Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "EnableKeyRotation",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "rotationPeriodInDays": 180
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },

Examples of Amazon KMS log entries 487

https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKeyRotation.html

Amazon Key Management Service Developer Guide

 "requestID": "81f5b794-452b-4d6a-932b-68c188165273",
 "eventID": "fefc43a7-8e06-419f-bcab-b3bf18d6a401",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Encrypt

The following example shows an Amazon CloudTrail log entry for the Encrypt operation.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-20T20:46:16Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Encrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "encryptionContext": {
 "Department": "Engineering"
 },
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 },

Examples of Amazon KMS log entries 488

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html

Amazon Key Management Service Developer Guide

 "responseElements": null,
 "additionalEventData": {
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "requestID": "f3423043-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "91235988-eb87-476a-ac2c-0cdc244e6dca",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.us-east-1.amazonaws.com"
 }
}

GenerateDataKey

The following example shows an Amazon CloudTrail log entry for the GenerateDataKey operation.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-20T20:46:16Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",

Examples of Amazon KMS log entries 489

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "keySpec": "AES_256",
 "encryptionContext": {
 "Department": "Engineering",
 "Project": "Alpha"
 }
 },
 "responseElements": null,
 "additionalEventData": {
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "requestID": "e0eb83e3-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "a9dea4f9-8395-46c0-942c-f509c02c2b71",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.us-east-1.amazonaws.com"
 }
}

GenerateDataKeyPair

The following example shows an Amazon CloudTrail log entry for the GenerateDataKeyPair
operation. This example records an operation that generates an RSA key pair encrypted under a
symmetric encryption Amazon KMS key.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "IAMUser",

Examples of Amazon KMS log entries 490

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html

Amazon Key Management Service Developer Guide

 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-20T20:46:16Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyPair",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyPairSpec": "RSA_3072",
 "encryptionContext": {
 "Project": "Alpha"
 },
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "additionalEventData": {
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "requestID": "52fb127b-0fe5-42bb-8e5e-f560febde6b0",
 "eventID": "9b6bd6d2-529d-4890-a949-593b13800ad7",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.us-west-2.amazonaws.com"
 }

Examples of Amazon KMS log entries 491

Amazon Key Management Service Developer Guide

}

GenerateDataKeyPairWithoutPlaintext

The following example shows an Amazon CloudTrail log entry for the
GenerateDataKeyPairWithoutPlaintext operation. This example records an operation that
generates an RSA key pair that is encrypted under a symmetric encryption Amazon KMS key.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-20T20:46:16Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyPairWithoutPlaintext",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyPairSpec": "RSA_4096",
 "encryptionContext": {
 "Index": "5"
 },
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "additionalEventData": {
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "requestID": "52fb127b-0fe5-42bb-8e5e-f560febde6b0",
 "eventID": "9b6bd6d2-529d-4890-a949-593b13800ad7",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",

Examples of Amazon KMS log entries 492

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

Amazon Key Management Service Developer Guide

 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.us-west-2.amazonaws.com"
 }
}

GenerateDataKeyWithoutPlaintext

The following example shows an Amazon CloudTrail log entry for the
GenerateDataKeyWithoutPlaintext operation.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-20T20:46:16Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "keySpec": "AES_256",
 "encryptionContext": {
 "Project": "Alpha"
 }
 },

Examples of Amazon KMS log entries 493

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

Amazon Key Management Service Developer Guide

 "responseElements": null,
 "additionalEventData": {
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "requestID": "d6b8e411-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "f7734272-9ec5-4c80-9f36-528ebbe35e4a",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.us-east-1.amazonaws.com"
 }
}

GenerateMac

The following example shows an Amazon CloudTrail log entry for the GenerateMac operation.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-12-23T19:26:54Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateMac",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",

Examples of Amazon KMS log entries 494

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html

Amazon Key Management Service Developer Guide

 "userAgent": "Amazon Internal",
 "requestParameters": {
 "macAlgorithm": "HMAC_SHA_512",
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "requestID": "e0eb83e3-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "a9dea4f9-8395-46c0-942c-f509c02c2b71",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

GenerateRandom

The following example shows an Amazon CloudTrail log entry for the GenerateRandom operation.
Because this operation doesn't use an Amazon KMS key, the resources field is empty.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:37Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateRandom",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": null,

Examples of Amazon KMS log entries 495

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom.html

Amazon Key Management Service Developer Guide

 "responseElements": null,
 "requestID": "df1e3de6-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "239cb9f7-ae05-4c94-9221-6ea30eef0442",
 "readOnly": true,
 "resources": [],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

GetKeyPolicy

The following example shows an Amazon CloudTrail log entry for the GetKeyPolicy operation. For
information about viewing the key policy for a KMS key, see View a key policies.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:50:30Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GetKeyPolicy",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "policyName": "default"
 },
 "responseElements": null,
 "requestID": "93746dd6-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "4aa7e4d5-d047-452a-a5a6-2cce282a7e82",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],

Examples of Amazon KMS log entries 496

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html

Amazon Key Management Service Developer Guide

 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

GetKeyRotationStatus

The following example shows an Amazon CloudTrail log entry for the GetKeyRotationStatus
operation. For information about automatic and on-demand rotation of key material for a KMS key,
see Rotate Amazon KMS keys.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2024-02-20T19:16:45Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GetKeyRotationStatus",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "requestID": "12f9b7e8-49b9-4c1c-a7e3-34ac0cdf0467",
 "eventID": "3d082126-9e7d-4167-8372-a6cfcbed4be6",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,

Examples of Amazon KMS log entries 497

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html

Amazon Key Management Service Developer Guide

 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES256-GCM-SHA384",
 "clientProvidedHostHeader": "kms.us-east-1.amazonaws.com"
 }
}

GetParametersForImport

The following example shows an Amazon CloudTrail log entry generated when you use the
GetParametersForImport operation. This operation returns the public key and import token that
you use when importing key material into a KMS key. The same CloudTrail entry is recorded when
you use the GetParametersForImport operation or use the Amazon KMS console to download
the public key and import token.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-07-25T23:58:23Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GetParametersForImport",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "wrappingAlgorithm": "RSAES_OAEP_SHA_256",
 "wrappingKeySpec": "RSA_2048"
 },
 "responseElements": null,
 "requestID": "b5786406-e3c7-43d6-8d3c-6d5ef96e2278",
 "eventID": "4023e622-0c3e-4324-bdef-7f58193bba87",
 "readOnly": true,
 "resources": [

Examples of Amazon KMS log entries 498

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html

Amazon Key Management Service Developer Guide

 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

ImportKeyMaterial

The following example shows an Amazon CloudTrail log entry generated when you use
the ImportKeyMaterial operation. The same CloudTrail entry is recorded when you use the
ImportKeyMaterial operation or use the Amazon KMS console to import key material into an
Amazon KMS key.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-21T05:42:31Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ImportKeyMaterial",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "validTo": "May 21, 2025, 5:47:45 AM",
 "expirationModel": "KEY_MATERIAL_EXPIRES",

Examples of Amazon KMS log entries 499

https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html

Amazon Key Management Service Developer Guide

 "importType": "NEW_KEY_MATERIAL",
 "keyMaterialDescription": "ExampleKeyMaterialA"
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "keyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "requestID": "89e10ee7-a612-414d-95a2-a128346969fd",
 "eventID": "c7abd205-a5a2-4430-bbfa-fc10f3e2d79f",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.us-west-2.amazonaws.com"
 }
}

ListAliases

The following example shows an Amazon CloudTrail log entry for the ListAliases operation.
Because this operation doesn't use any particular alias or Amazon KMS key, the resources field
is empty. For information about viewing aliases in Amazon KMS, see Find the alias name and alias
ARN for a KMS key.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",

Examples of Amazon KMS log entries 500

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html

Amazon Key Management Service Developer Guide

 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:51:45Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ListAliases",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "limit": 5,
 "marker":
 "eyJiIjoiYWxpYXMvZTU0Y2MxOTMtYTMwNC00YzEwLTliZWItYTJjZjA3NjA2OTJhIiwiYSI6ImFsaWFzL2U1NGNjMTkzLWEzMDQtNGMxMC05YmViLWEyY2YwNzYwNjkyYSJ9"
 },
 "responseElements": null,
 "requestID": "bfe6c190-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "a27dda7b-76f1-4ac3-8b40-42dfba77bcd6",
 "readOnly": true,
 "resources": [],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

ListGrants

The following example shows an Amazon CloudTrail log entry for the ListGrant operation. For
information about grants in Amazon KMS, see Grants in Amazon KMS.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:49Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ListGrants",

Examples of Amazon KMS log entries 501

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html

Amazon Key Management Service Developer Guide

 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "marker":
 "eyJncmFudElkIjoiMWY4M2U2ZmM0YTY2NDgxYjQ2Yzc4MTdhM2Y4YmQwMDFkZDNiYmQ1MGVlYTMyY2RmOWFiNWY1Nzc1NDNjYmNmMyIsImtleUFybiI6ImFybjphd3M6dHJlbnQtc2FuZGJveDp1cy1lYXN0LTE6NTc4Nzg3Njk2NTMwOmtleS9lYTIyYTc1MS1lNzA3LTQwZDAtOTJhYy0xM2EyOGZhOWViMTEifQ
\u003d\u003d",
 "limit": 10
 },
 "responseElements": null,
 "requestID": "e5c23960-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "d24380f5-1b20-4253-8e92-dd0492b3bd3d",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

ListKeyRotations

The following example shows an Amazon CloudTrail log entry for the ListKeyRotations operation.
For information about automatic and on-demand rotation of key material for a KMS key, see
Rotate Amazon KMS keys.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-21T05:42:35Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ListKeyRotations",
 "awsRegion": "us-east-1",

Examples of Amazon KMS log entries 502

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html

Amazon Key Management Service Developer Guide

 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "includeKeyMaterial": "ALL_KEY_MATERIAL"
 },
 "responseElements": null,
 "requestID": "99c88d32-f2db-455e-8a9a-23855258a452",
 "eventID": "8ce0e74b-b9c7-45a2-96ef-83136d38068e",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES256-GCM-SHA384",
 "clientProvidedHostHeader": "kms.us-east-1.amazonaws.com"
 }
}

PutKeyPolicy

The following example shows an Amazon CloudTrail log entry generated by calling the
PutKeyPolicy operation. For information about updating a key policy, see Change a key policy.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"

Examples of Amazon KMS log entries 503

https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html

Amazon Key Management Service Developer Guide

 },
 "eventTime": "2022-09-01T20:06:16Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "PutKeyPolicy",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "policyName": "default",
 "policy": "{\n \"Version\" : \"2012-10-17\",\n \"Id\" : \"key-default-1\",\n
 \"Statement\" : [{\n \"Sid\" : \"Enable IAM User Permissions\",\n \"Effect\" :
 \"Allow\",\n \"Principal\" : {\n \"AWS\" : \"arn:aws:iam::111122223333:root
\"\n },\n \"Action\" : \"kms:*\",\n \"Resource\" : \"*\"\n }]\n}",
 "bypassPolicyLockoutSafetyCheck": false
 },
 "responseElements": null,
 "requestID": "7bb906fa-dc21-4350-b65c-808ff0f72f55",
 "eventID": "c217db1f-903f-4a2f-8f88-9580182d6313",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

ReEncrypt

The following example shows an Amazon CloudTrail log entry for the ReEncrypt operation. The
resources field in this log entry specifies two Amazon KMS keys, the source KMS key and the
destination KMS key, in that order.

{
 "eventVersion": "1.11",
 "userIdentity": {

Examples of Amazon KMS log entries 504

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html

Amazon Key Management Service Developer Guide

 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2025-05-22T19:34:55Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ReEncrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "sourceEncryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "sourceEncryptionContext": {
 "Project": "Alpha",
 "Department": "Engineering"
 },
 "destinationKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "destinationEncryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "destinationEncryptionContext": {
 "Level": "3A"
 }
 },
 "responseElements": null,
 "additionalEventData": {
 "destinationKeyMaterialId":
 "96083e4fb6dbc41d77578a213a6b6669c044dd4c143e96755396d2bf11fd6068",
 "sourceKeyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 },
 "requestID": "03769fd4-acf9-4b33-adf3-2ab8ca73aadf",
 "eventID": "542d9e04-0e8d-4e05-bf4b-4bdeb032e6ec",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {
 "accountId": "111122223333",

Examples of Amazon KMS log entries 505

Amazon Key Management Service Developer Guide

 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_256_GCM_SHA384",
 "clientProvidedHostHeader": "kms.us-west-2.amazonaws.com"
 }
}

ReplicateKey

The following example shows an Amazon CloudTrail log entry generated by calling the
ReplicateKey operation. A ReplicateKey request results in a ReplicateKey operation and a
CreateKey operation.

For information about replicating multi-Region keys, see Create multi-Region replica keys.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-11-18T01:29:18Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ReplicateKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "replicaRegion": "us-west-2",

Examples of Amazon KMS log entries 506

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

 "bypassPolicyLockoutSafetyCheck": false,
 "description": ""
 },
 "responseElements": {
 "replicaKeyMetadata": {
 "aWSAccountId": "111122223333",
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "creationDate": "Nov 18, 2020, 1:29:18 AM",
 "enabled": false,
 "description": "",
 "keyUsage": "ENCRYPT_DECRYPT",
 "keyState": "Creating",
 "origin": "AWS_KMS",
 "keyManager": "CUSTOMER",
 "keySpec": "SYMMETRIC_DEFAULT",
 "customerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "encryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "multiRegion": true,
 "multiRegionConfiguration": {
 "multiRegionKeyType": "REPLICA",
 "primaryKey": {
 "arn": "arn:aws:kms:us-
east-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "region": "us-east-1"
 },
 "replicaKeys": [
 {
 "arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "region": "us-west-2"
 }
]
 }
 },
 "replicaPolicy": "{\n \"Version\":\"2012-10-17\",\n \"Statement\":[{\n
 \"Effect\":\"Allow\",\n \"Principal\":{\"AWS\":\"arn:aws:iam::123456789012:user/
Alice\"},\n \"Action\":\"kms:*\",\n \"Resource\":\"*\"\n }, {\n \"Effect
\":\"Allow\",\n \"Principal\":{\"AWS\":\"arn:aws:iam::012345678901:user/Bob\"},\n
 \"Action\":\"kms:CreateGrant\",\n \"Resource\":\"*\"\n }, {\n \"Effect\":

Examples of Amazon KMS log entries 507

Amazon Key Management Service Developer Guide

\"Allow\",\n \"Principal\":{\"AWS\":\"arn:aws:iam::012345678901:user/Charlie\"},\n
 \"Action\":\"kms:Encrypt\",\n \"Resource\":\"*\"\n}]\n}",
 },
 "requestID": "abcdef68-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "fedcba44-6773-4f96-8763-1993aec9ae6a",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
east-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

RetireGrant

The following example shows an Amazon CloudTrail log entry generated by calling the RetireGrant
operation. For information about retiring grants, see Retiring and revoking grants.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-09-01T19:39:33Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "RetireGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": null,
 "responseElements": null,

Examples of Amazon KMS log entries 508

https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html

Amazon Key Management Service Developer Guide

 "additionalEventData": {
 "grantId": "abcde1237f76e4ba7987489ac329fbfba6ad343d6f7075dbd1ef191f0120514a"
 },
 "requestID": "1d274d57-5697-462c-a004-f25fcc29fa26",
 "eventID": "0771bcfb-3e24-4332-9ac8-e1c06563eecf",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

RevokeGrant

The following example shows an Amazon CloudTrail log entry generated by calling the
RevokeGrant operation. For information about revoking grants, see Retiring and revoking grants.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-09-01T19:35:17Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "RevokeGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",

Examples of Amazon KMS log entries 509

https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html

Amazon Key Management Service Developer Guide

 "grantId": "abcde1237f76e4ba7987489ac329fbfba6ad343d6f7075dbd1ef191f0120514a"
 },
 "responseElements": null,
 "requestID": "59d94c03-c5b7-428d-ae6e-f2c4b47d2917",
 "eventID": "07a23a39-6526-4ae2-b31e-d35fbe9e24ee",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

RotateKey

These examples show the Amazon CloudTrail log entries for the operations that rotate Amazon
KMS keys. For information about rotating KMS keys, see Rotate Amazon KMS keys.

The following example shows a CloudTrail log entry for the operation that rotates a symmetric
encryption KMS key on which automatic key rotation is enabled. For information about enabling
automatic rotation, see Rotate Amazon KMS keys.

For an example of the CloudTrail log entry that records the EnableKeyRotation operation, see
EnableKeyRotation.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "accountId": "111122223333",
 "invokedBy": "Amazon Internal"
 },
 "eventTime": "2025-05-20T20:44:37Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "RotateKey",
 "awsRegion": "us-west-2",

Examples of Amazon KMS log entries 510

Amazon Key Management Service Developer Guide

 "sourceIPAddress": "Amazon Internal",
 "userAgent": "Amazon Internal",
 "requestParameters": null,
 "responseElements": null,
 "eventID": "a24b3967-ddad-417f-9b22-2332b918db06",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "serviceEventDetails": {
 "rotationType": "AUTOMATIC",
 "keyOrigin": "AWS_KMS",
 "previousKeyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0",
 "currentKeyMaterialId":
 "96083e4fb6dbc41d77578a213a6b6669c044dd4c143e96755396d2bf11fd6068",
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "eventCategory": "Management"
}

The following example shows a CloudTrail log entry for an on-demand rotation initiated by the
RotateKeyOnDemand operation. For information about rotating symmetric encryption KMS keys
on demand, see Perform on-demand key rotation.

For an example of the CloudTrail log entry that records the RotateKeyOnDemand operation, see
RotateKeyOnDemand.

{
 "eventVersion": "1.11",
 "userIdentity": {
 "accountId": "111122223333",
 "invokedBy": "Amazon Internal"
 },
 "eventTime": "2025-05-20T20:44:37Z",

Examples of Amazon KMS log entries 511

https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html

Amazon Key Management Service Developer Guide

 "eventSource": "kms.amazonaws.com",
 "eventName": "RotateKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "Amazon Internal",
 "userAgent": "Amazon Internal",
 "requestParameters": null,
 "responseElements": null,
 "eventID": "a24b3967-ddad-417f-9b22-2332b918db06",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "serviceEventDetails": {
 "rotationType": "ON_DEMAND",
 "keyOrigin": "EXTERNAL",
 "previousKeyMaterialId":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0",
 "currentKeyMaterialId":
 "96083e4fb6dbc41d77578a213a6b6669c044dd4c143e96755396d2bf11fd6068",
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "eventCategory": "Management"
}

RotateKeyOnDemand

The following example shows an Amazon CloudTrail log entry for the RotateKeyOnDemand
operation. For an example of the CloudTrail log entry that is written when the key is rotated, see
RotateKey. For more information about on-demand rotation of key material for a KMS key, see
Perform on-demand key rotation.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",

Examples of Amazon KMS log entries 512

https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html

Amazon Key Management Service Developer Guide

 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2024-02-20T17:41:57Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "RotateKeyOnDemand",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "9e1dee86-eb84-42fd-8f25-e3fc7dbb32c8",
 "eventID": "00a09fbc-20d6-4a58-9b92-7da85984ab77",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES256-GCM-SHA384",
 "clientProvidedHostHeader": "kms.us-east-1.amazonaws.com"
 }
}

ScheduleKeyDeletion

These examples show Amazon CloudTrail log entries for the ScheduleKeyDeletion operation.

Examples of Amazon KMS log entries 513

https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html

Amazon Key Management Service Developer Guide

For an example of the CloudTrail log entry that is written when the key is deleted, see DeleteKey.
For information about deleting Amazon KMS keys, see Delete an Amazon KMS key.

The following example records a ScheduleKeyDeletion request for a single-Region KMS key.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-03-23T18:58:30Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ScheduleKeyDeletion",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "pendingWindowInDays": 20,
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "keyState": "PendingDeletion",
 "deletionDate": "Apr 12, 2021 18:58:30 PM"
 },
 "requestID": "ee408f36-ea01-422b-ac14-b0f147c68334",
 "eventID": "3c4226b0-1e81-48a8-a333-7fa5f3cbd118",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"

Examples of Amazon KMS log entries 514

Amazon Key Management Service Developer Guide

}

The following example records a ScheduleKeyDeletion request for a multi-Region KMS key with
replica keys.

Because Amazon KMS won't delete a multi-Region key until all of its replica keys are deleted, in the
responseElements field, the keyState is PendingReplicaDeletion and the deletionDate
field is omitted.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-28T17:59:05Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ScheduleKeyDeletion",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "pendingWindowInDays": 30,
 "keyId": "mrk-1234abcd12ab34cd56ef1234567890ab"
 },
 "responseElements": {
 "keyId": "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "keyState": "PendingReplicaDeletion",
 "pendingWindowInDays": 30
 },
 "requestID": "12341411-d846-42a6-a476-b1cbe3011f89",
 "eventID": "abcda5f-396d-494c-9380-0c47860df5f1",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",

Examples of Amazon KMS log entries 515

Amazon Key Management Service Developer Guide

 "ARN": "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following example records a ScheduleKeyDeletion request for a KMS key in an Amazon
CloudHSM custom key store.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-26T23:25:25Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ScheduleKeyDeletion",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "pendingWindowInDays": 30
 },
 "responseElements": {
 "keyId": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "deletionDate": "Nov 2, 2021, 11:25:25 PM",
 "keyState": "PendingDeletion",
 "pendingWindowInDays": 30
 },
 "additionalEventData": {
 "customKeyStoreId": "cks-1234567890abcdef0",

Examples of Amazon KMS log entries 516

Amazon Key Management Service Developer Guide

 "clusterId": "cluster-1a23b4cdefg",
 "backingKeys": "[{\"backingKeyId\":\"backing-key-id\"}]"
 },
 "requestID": "abcd9f60-2c9c-4a0b-a456-d5d998f7f321",
 "eventID": "ca01996a-01b0-4edd-bbbb-25d7b6d1a6fa",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Sign

These examples show Amazon CloudTrail log entries for the Sign operation.

The following example shows an CloudTrail log entry for a Sign operation that uses an asymmetric
RSA KMS key to generate a digital signature for a file.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-03-07T22:36:44Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Sign",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",

Examples of Amazon KMS log entries 517

https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html

Amazon Key Management Service Developer Guide

 "requestParameters": {
 "messageType": "RAW",
 "keyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "signingAlgorithm": "RSASSA_PKCS1_V1_5_SHA_256"
 },
 "responseElements": null,
 "requestID": "8d0b35e0-46cf-48b9-be99-bf2ebc9ab9fb",
 "eventID": "107b3cac-b125-4556-9702-12a2b9afcff7",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

SynchronizeMultiRegionKey

The following example shows an Amazon CloudTrail log entry generated when Amazon KMS
synchronizes a multi-Region key. Synchronizing involves cross-Region calls to copy the shared
properties of a multi-Region primary key to its replica keys. Amazon KMS synchronizes multi-
Region keys periodically to assure that all related multi-Region keys have the same key material.

The resources element of the CloudTrail log entry includes the key ARN of the multi-Region
primary key, including its Amazon Web Services Region. The related multi-Region replica keys and
their Regions are not listed in this log entry.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "accountId": "111122223333",

Examples of Amazon KMS log entries 518

Amazon Key Management Service Developer Guide

 "invokedBy": "AWS Internal"
 },
 "eventTime": "2020-11-18T02:04:37Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "SynchronizeMultiRegionKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": null,
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "12345681-de97-42e9-bed0-b02ae1abd8dc",
 "eventID": "abcdec99-2b5c-4670-9521-ddb8f031e146",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

TagResource

The following example shows an Amazon CloudTrail log entry of a call to the TagResource
operation to add a tag with a tag key of Department and a tag value of IT.

For an example of an UntagResource CloudTrail log entry that is written when the key is rotated,
see UntagResource. For information about tagging Amazon KMS keys, see Tags in Amazon KMS.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",

Examples of Amazon KMS log entries 519

https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html

Amazon Key Management Service Developer Guide

 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-07-01T21:19:25Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "TagResource",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "tags": [
 {
 "tagKey": "Department",
 "tagValue": "IT"
 }
]
 },
 "responseElements": null,
 "requestID": "b942584a-f77d-4787-9feb-b9c5be6e746d",
 "eventID": "0a091b9b-0df5-4cf9-b667-6f2879532b8f",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

UntagResource

The following example shows an Amazon CloudTrail log entry of a call to the UntagResource
operation to delete a tag with a tag key of Dept.

Examples of Amazon KMS log entries 520

https://docs.amazonaws.cn/kms/latest/APIReference/API_UntagResource.html

Amazon Key Management Service Developer Guide

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

For an example of an TagResource CloudTrail log entry, see TagResource. For information about
tagging Amazon KMS keys, see Tags in Amazon KMS.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-07-01T21:19:19Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "UntagResource",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "tagKeys": [
 "Dept"
]
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "cb1d507b-6015-47f4-812b-179713af8068",
 "eventID": "0b00f4b0-036e-411d-aa75-87eb4a35a4b3",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Examples of Amazon KMS log entries 521

Amazon Key Management Service Developer Guide

 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

UpdateAlias

The following example shows an Amazon CloudTrail log entry for the UpdateAlias operation. The
resources element includes fields for the alias and KMS key resources. For information about
creating aliases in Amazon KMS, see Create aliases.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-11-13T23:18:15Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "UpdateAlias",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "aliasName": "alias/my_alias",
 "targetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "d9472f40-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "f72d3993-864f-48d6-8f16-e26e1ae8dff0",
 "readOnly": false,

Examples of Amazon KMS log entries 522

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html

Amazon Key Management Service Developer Guide

 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:alias/my_alias"
 },
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

UpdateCustomKeyStore

The following example shows an Amazon CloudTrail log entry generated by calling the
UpdateCustomKeyStore operation to update the cluster ID for a custom key store. For
information about editing custom key stores, see Edit Amazon CloudHSM key store settings.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-10-21T20:17:32Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "UpdateCustomKeyStore",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "customKeyStoreId": "cks-1234567890abcdef0",
 "clusterId": "cluster-1a23b4cdefg"
 },

Examples of Amazon KMS log entries 523

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html

Amazon Key Management Service Developer Guide

 "responseElements": null,
 "additionalEventData": {
 "customKeyStoreName": "ExampleKeyStore",
 "clusterId": "cluster-1a23b4cdefg"
 },
 "requestID": "abcde9e1-f1a3-4460-a423-577fb6e695c9",
 "eventID": "114b61b9-0ea6-47f5-a9d2-4f2bdd0017d5",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333"
}

UpdateKeyDescription

The following example shows an Amazon CloudTrail log entry generated by calling the
UpdateKeyDescription operation.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-09-01T19:22:40Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "UpdateKeyDescription",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "description": "New key description"
 },
 "responseElements": null,
 "requestID": "8c3c1f8b-336d-4896-b034-4eb9916bc9b3",
 "eventID": "f5f3d548-2e9e-4658-8427-9dcb5b1ea791",
 "readOnly": false,
 "resources": [

Examples of Amazon KMS log entries 524

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateKeyDescription.html

Amazon Key Management Service Developer Guide

 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

UpdatePrimaryRegion

The following example shows the Amazon CloudTrail log entries that are generated by calling the
UpdatePrimaryRegion operation on a multi-Region key.

The UpdatePrimaryRegion operation writes two CloudTrail log entries: one in the Region with
the multi-Region primary key that is converted to a replica key, and one in the Region with a multi-
Region replica key that is converted to a primary key.

CloudTrail log entries for this operation recorded on or after December 2022 include the key ARN
of the affected KMS key in the responseElements.keyId value, even though this operation
does not return the key ARN.

The following example shows a CloudTrail log entry for UpdatePrimaryRegion in the Region
where the multi-Region key changed from a primary key to a replica key (us-west-2). The
primaryRegion field shows the Region that now hosts the primary key (ap-northeast-1).

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2021-03-10T20:23:37Z",
 "eventSource": "kms.amazonaws.com",

Examples of Amazon KMS log entries 525

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html

Amazon Key Management Service Developer Guide

 "eventName": "UpdatePrimaryRegion",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "mrk-1234abcd12ab34cd56ef1234567890ab",
 "primaryRegion": "ap-northeast-1"
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "ee408f36-ea01-422b-ac14-b0f147c68334",
 "eventID": "3c4226b0-1e81-48a8-a333-7fa5f3cbd118",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333"
}

The following example represents the CloudTrail log entry for UpdatePrimaryRegion in the
Region where the multi-Region key changed from a replica key to a primary key (ap-northeast-1).
This log entry doesn't identify the previous primary Region.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "invokedBy": "kms.amazonaws.com"

Examples of Amazon KMS log entries 526

Amazon Key Management Service Developer Guide

 },
 "eventTime": "2021-03-10T20:23:37Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "UpdatePrimaryRegion",
 "awsRegion": "ap-northeast-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "arn:aws:kms:ap-northeast-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "primaryRegion": "ap-northeast-1"
 },
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "requestID": "ee408f36-ea01-422b-ac14-b0f147c68334",
 "eventID": "091e6be5-737f-43c6-8431-e3679d6d0619",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "111122223333"
}

VerifyMac

The following example shows an Amazon CloudTrail log entry for the VerifyMac operation.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-03-31T19:25:54Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "VerifyMac",
 "awsRegion": "us-east-1",

Examples of Amazon KMS log entries 527

https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html

Amazon Key Management Service Developer Guide

 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "macAlgorithm": "HMAC_SHA_384",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "requestID": "f35da560-edff-4d6e-9b40-fb306fa9ef1e",
 "eventID": "6b464487-6dea-44cd-84ad-225d7450c975",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Verify

These examples show Amazon CloudTrail log entries for the Verify operation.

The following example shows an CloudTrail log entry for a Verify operation that uses an
asymmetric RSA KMS key to verify a digital signature.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2022-03-07T22:50:41Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Verify",

Examples of Amazon KMS log entries 528

https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html

Amazon Key Management Service Developer Guide

 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "signingAlgorithm": "RSASSA_PKCS1_V1_5_SHA_256",
 "keyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "messageType": "RAW"
 },
 "responseElements": null,
 "requestID": "c73ab82a-af82-4750-ae2c-b6bb790e9c28",
 "eventID": "3b4331cd-5b7b-4de5-bf5f-82ec22f0dac0",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Amazon EC2 example one

The following example records an IAM principal creating an encrypted volume using the default
volume key in the Amazon EC2 management console.

The following example shows a CloudTrail log entry in which user Alice creates an encrypted
volume with a default volume key in the Amazon EC2 management console. The EC2 log file record
includes a volumeId field with a value of "vol-13439757". The Amazon KMS record contains
an encryptionContext field with a value of "aws:ebs:id": "vol-13439757". Similarly, the
principalId and accountId between the two records match. The records reflect the fact that
creating an encrypted volume generates a data key that is used to encrypt the volume content.

{
 "Records": [
 {
 "eventVersion": "1.02",

Examples of Amazon KMS log entries 529

Amazon Key Management Service Developer Guide

 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-05T20:50:18Z",
 "eventSource": "ec2.amazonaws.com",
 "eventName": "CreateVolume",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "size": "10",
 "zone": "us-east-1a",
 "volumeType": "gp2",
 "encrypted": true
 },
 "responseElements": {
 "volumeId": "vol-13439757",
 "size": "10",
 "zone": "us-east-1a",
 "status": "creating",
 "createTime": 1415220618876,
 "volumeType": "gp2",
 "iops": 30,
 "encrypted": true
 },
 "requestID": "1565210e-73d0-4912-854c-b15ed349e526",
 "eventID": "a3447186-135f-4b00-8424-bc41f1a93b4f",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"

Examples of Amazon KMS log entries 530

Amazon Key Management Service Developer Guide

 },
 "eventTime": "2014-11-05T20:50:19Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "&AWS; Internal",
 "requestParameters": {
 "encryptionContext": {
 "aws:ebs:id": "vol-13439757"
 },
 "numberOfBytes": 64,
 "keyId": "alias/aws/ebs"
 },
 "responseElements": null,
 "requestID": "create-123456789012-758241111-1415220618",
 "eventID": "4bd2a696-d833-48cc-b72c-05e61b608399",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

Amazon EC2 example two

In the following example, an IAM principal running an Amazon EC2 instance creates and mounts
a data volume that is encrypted under a KMS key. This action generates multiple CloudTrail log
records. For more information on Amazon EBS and encryption, see Requirements for Amazon EBS
encryption.

When the volume is created, Amazon EC2, acting on behalf of the customer, gets an encrypted
data key from Amazon KMS (GenerateDataKeyWithoutPlaintext). Then it creates a grant
(CreateGrant) that allows it to decrypt the data key. When the volume is mounted, Amazon EC2
calls Amazon KMS to decrypt the data key (Decrypt).

Examples of Amazon KMS log entries 531

https://docs.amazonaws.cn/ebs/latest/userguide/ebs-encryption-requirements.html#ebs-encryption-instance-permissions
https://docs.amazonaws.cn/ebs/latest/userguide/ebs-encryption-requirements.html#ebs-encryption-instance-permissions

Amazon Key Management Service Developer Guide

The instanceId of the Amazon EC2 instance, "i-81e2f56c", appears in the RunInstances
event. The same instance ID qualifies the granteePrincipal of the grant that is created
("111122223333:aws:ec2-infrastructure:i-81e2f56c") and the assumed role that is
the principal in the Decrypt call ("arn:aws:sts::111122223333:assumed-role/aws:ec2-
infrastructure/i-81e2f56c").

The key ARN of the KMS key that protects the data volume, arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab, appears in all
three Amazon KMS calls (CreateGrant, GenerateDataKeyWithoutPlaintext, and Decrypt).

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-05T21:35:27Z",
 "eventSource": "ec2.amazonaws.com",
 "eventName": "RunInstances",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "instancesSet": {
 "items": [
 {
 "imageId": "ami-b66ed3de",
 "minCount": 1,
 "maxCount": 1
 }
]
 },
 "groupSet": {
 "items": [
 {
 "groupId": "sg-98b6e0f2"

Examples of Amazon KMS log entries 532

Amazon Key Management Service Developer Guide

 }
]
 },
 "instanceType": "m3.medium",
 "blockDeviceMapping": {
 "items": [
 {
 "deviceName": "/dev/xvda",
 "ebs": {
 "volumeSize": 8,
 "deleteOnTermination": true,
 "volumeType": "gp2"
 }
 },
 {
 "deviceName": "/dev/sdb",
 "ebs": {
 "volumeSize": 8,
 "deleteOnTermination": false,
 "volumeType": "gp2",
 "encrypted": true
 }
 }
]
 },
 "monitoring": {
 "enabled": false
 },
 "disableApiTermination": false,
 "instanceInitiatedShutdownBehavior": "stop",
 "clientToken": "XdKUT141516171819",
 "ebsOptimized": false
 },
 "responseElements": {
 "reservationId": "r-5ebc9f74",
 "ownerId": "111122223333",
 "groupSet": {
 "items": [
 {
 "groupId": "sg-98b6e0f2",
 "groupName": "launch-wizard-2"
 }
]
 },

Examples of Amazon KMS log entries 533

Amazon Key Management Service Developer Guide

 "instancesSet": {
 "items": [
 {
 "instanceId": "i-81e2f56c",
 "imageId": "ami-b66ed3de",
 "instanceState": {
 "code": 0,
 "name": "pending"
 },
 "amiLaunchIndex": 0,
 "productCodes": {

 },
 "instanceType": "m3.medium",
 "launchTime": 1415223328000,
 "placement": {
 "availabilityZone": "us-east-1a",
 "tenancy": "default"
 },
 "monitoring": {
 "state": "disabled"
 },
 "stateReason": {
 "code": "pending",
 "message": "pending"
 },
 "architecture": "x86_64",
 "rootDeviceType": "ebs",
 "rootDeviceName": "/dev/xvda",
 "blockDeviceMapping": {

 },
 "virtualizationType": "hvm",
 "hypervisor": "xen",
 "clientToken": "XdKUT1415223327917",
 "groupSet": {
 "items": [
 {
 "groupId": "sg-98b6e0f2",
 "groupName": "launch-wizard-2"
 }
]
 },
 "networkInterfaceSet": {

Examples of Amazon KMS log entries 534

Amazon Key Management Service Developer Guide

 },
 "ebsOptimized": false
 }
]
 }
 },
 "requestID": "41c4b4f7-8bce-4773-bf0e-5ae3bb5cbce2",
 "eventID": "cd75a605-2fee-4fda-b847-9c3d330ebaae",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-05T21:35:35Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "constraints": {
 "encryptionContextSubset": {
 "aws:ebs:id": "vol-f67bafb2"
 }
 },
 "granteePrincipal": "111122223333:aws:ec2-infrastructure:i-81e2f56c",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": {
 "grantId": "abcde1237f76e4ba7987489ac329fbfba6ad343d6f7075dbd1ef191f0120514a"
 },
 "requestID": "41c4b4f7-8bce-4773-bf0e-5ae3bb5cbce2",
 "eventID": "c1ad79e3-0d3f-402a-b119-d5c31d7c6a6c",
 "readOnly": false,

Examples of Amazon KMS log entries 535

Amazon Key Management Service Developer Guide

 "resources": [
 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-05T21:35:32Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "encryptionContext": {
 "aws:ebs:id": "vol-f67bafb2"
 },
 "numberOfBytes": 64,
 "keyId": "alias/aws/ebs"
 },
 "responseElements": null,
 "requestID": "create-111122223333-758247346-1415223332",
 "eventID": "ac3cab10-ce93-4953-9d62-0b6e5cba651d",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }
],

Examples of Amazon KMS log entries 536

Amazon Key Management Service Developer Guide

 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "111122223333:aws:ec2-infrastructure:i-81e2f56c",
 "arn": "arn:aws:sts::111122223333:assumed-role/aws:ec2-infrastructure/
i-81e2f56c",
 "accountId": "111122223333",
 "accessKeyId": "",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-05T21:35:38Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "111122223333:aws:ec2-infrastructure",
 "arn": "arn:aws:iam::111122223333:role/aws:ec2-infrastructure",
 "accountId": "111122223333",
 "userName": "aws:ec2-infrastructure"
 }
 }
 },
 "eventTime": "2014-11-05T21:35:47Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "requestParameters": {
 "encryptionContext": {
 "aws:ebs:id": "vol-f67bafb2"
 }
 },
 "responseElements": null,
 "requestID": "b4b27883-6533-11e4-b4d9-751f1761e9e5",
 "eventID": "edb65380-0a3e-4123-bbc8-3d1b7cff49b0",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

Examples of Amazon KMS log entries 537

Amazon Key Management Service Developer Guide

 "accountId": "111122223333"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

Monitor KMS keys with Amazon CloudWatch

You can monitor your Amazon KMS keys using Amazon CloudWatch, an Amazon service that
collects and processes raw data from Amazon KMS into readable, near real-time metrics. These
data are recorded for a period of two weeks so that you can access historical information and gain
a better understanding of the usage of your KMS keys and their changes over time.

You can use Amazon CloudWatch to alert you to important events, such as the following ones.

• The imported key material in a KMS key is nearing its expiration date.

• A KMS key that is pending deletion is still being used.

• The key material in a KMS key was automatically rotated.

• A KMS key was deleted.

You can also create an Amazon CloudWatch alarm that alerts you when your request rate reaches
a certain percentage of a quota value. For details, see Manage your Amazon KMS API request rates
using Service Quotas and Amazon CloudWatch in the Amazon Security Blog.

Amazon KMS metrics and dimensions

Amazon KMS predefines Amazon CloudWatch metrics to make it easier for you to monitor critical
data and create alarms. You can view the Amazon KMS metrics using the Amazon Web Services
Management Console and the Amazon CloudWatch API.

This section lists each Amazon KMS metrics and the dimensions for each metric, and provides some
basic guidance for creating CloudWatch alarms based on these metrics and dimensions.

Note

Dimension group name:

Monitor keys with CloudWatch 538

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/
https://amazonaws-china.com/blogs/security/manage-your-aws-kms-api-request-rates-using-service-quotas-and-amazon-cloudwatch/
https://amazonaws-china.com/blogs/security/manage-your-aws-kms-api-request-rates-using-service-quotas-and-amazon-cloudwatch/

Amazon Key Management Service Developer Guide

To view a metric in the Amazon CloudWatch console, in the Metrics section, select the
dimension group name. Then you can filter by the Metric name. This topic includes the
metric name and dimension group name for each Amazon KMS metric.

You can view Amazon KMS metrics using the Amazon Web Services Management Console and
the Amazon CloudWatch API. For more information, see View available metrics in the Amazon
CloudWatch User Guide.

Topics

• SuccessfulRequest

• SecondsUntilKeyMaterialExpiration

• CloudHSMKeyStoreThrottle

• ExternalKeyStoreThrottle

• XksProxyCertificateDaysToExpire

• XksProxyCredentialAge

• XksProxyErrors

• XksExternalKeyManagerStates

• XksProxyLatency

SuccessfulRequest

The number of successful requests for cryptographic operations on a specific KMS key. By using
the SuccessfulRequest metric, you can apply key-level filtering to Amazon KMS API usage
in CloudWatch. The Sum statistic for this metric defines the total number of successful requests
during the period.

Use this metric to identify which KMS keys consume the largest portion of your request quota
or contribute the most to API charges. You can also create a CloudWatch alarm based on the
SuccesfulRequest metric to notify you of anomalous Amazon KMS API usage patterns. These
alerts can help identify inefficient workflows that might unintentionally exceed your request
quotas or incur unexpected charges.

Dimensions for SuccessfulRequest

Amazon KMS metrics and dimensions 539

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/viewing_metrics_with_cloudwatch.html

Amazon Key Management Service Developer Guide

Dimension Description

KeyArn Value for each KMS key.

Operation Value for each Amazon KMS API operation. This metric applies only to cryptogra
phic operations.

For ReEncrypt operations, the SuccessfulRequest metric includes dimensions for both the
source and destination KMS keys.

Dimension Description

SourceKey
Arn

Value for the KMS key that decrypted the ciphertext.

Destinati
onKeyArn

Value for the KMS key that re-encrypted the data.

Operation Value for each Amazon KMS API operation, in this case, ReEncrypt.

SecondsUntilKeyMaterialExpiration

The number of seconds remaining until the earliest-expiring imported key material in a KMS
key. This metric is valid only for KMS keys with imported key material (a key material origin of
EXTERNAL) and an expiration date.

Use this metric to track how much time is left before your earliest-expiring imported
key material expires. When that time falls below a threshold that you define, you should
reimport the key material with a new expiration date to keep the KMS key usable. The
SecondsUntilKeyMaterialExpiration metric is specific to a KMS key. You cannot use this
metric to monitor multiple KMS keys or KMS keys that you might create in the future. For help with
creating a CloudWatch alarm to monitor this metric, see Create a CloudWatch alarm for expiration
of imported key material.

The most useful statistic for this metric is Minimum, which tells you the smallest amount of time
remaining for all data points in the specified statistical period. The only valid unit for this metric is
Seconds.

Amazon KMS metrics and dimensions 540

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html

Amazon Key Management Service Developer Guide

Dimension group name: Per-Key Metrics

Dimensions for SecondsUntilKeyMaterialExpiration

Dimension Description; related to Amazon

KeyId Value for each KMS key.

When you schedule deletion of a KMS key, Amazon KMS enforces a waiting period before deleting
the KMS key. You can use the waiting period to ensure that you don't need the KMS key now or
in the future. You can also configure a CloudWatch alarm to warn you if a person or application
attempts to use the KMS key in a cryptographic operation during the waiting period. If you receive
a notification from such an alarm, you might want to cancel deletion of the KMS key.

For instructions, see Create an alarm that detects use of a KMS key pending deletion.

CloudHSMKeyStoreThrottle

The number of requests for cryptographic operations on KMS keys in each Amazon CloudHSM key
store that Amazon KMS throttles (responds with a ThrottlingException). This metric applies
only to Amazon CloudHSM key stores.

The CloudHSMKeyStoreThrottle metric applies only to KMS keys in an Amazon CloudHSM key
store and only to requests for cryptographic operations. Amazon KMS throttles these requests
when the request rate exceeds the custom key store request quota for your Amazon CloudHSM key
store. This metric also includes throttling by the Amazon CloudHSM cluster.

Dimension group name: Keystore Throttle Metrics

Dimension Description

CustomKey
StoreId

Value for each Amazon CloudHSM key store.

KmsOperat
ion

Value for each Amazon KMS API operation. This metric applies only to cryptogra
phic operations on KMS keys in an Amazon CloudHSM key store.

KeySpec Value for each type of KMS key. The only supported key spec for KMS keys in an
Amazon CloudHSM key store is SYMMETRIC_DEFAULT.

Amazon KMS metrics and dimensions 541

Amazon Key Management Service Developer Guide

ExternalKeyStoreThrottle

The number of requests for cryptographic operations on KMS keys in each external key store that
Amazon KMS throttles (responds with a ThrottlingException). This metric applies only to
external key stores.

The ExternalKeyStoreThrottle metric applies only to KMS keys in an external key store and
only to requests for cryptographic operations. Amazon KMS throttles these requests when the
request rate exceeds the custom key store request quota for your external key store. This metric
does not include throttling by your external key store proxy or external key manager.

Use this metric to review and adjust the value of your custom key store request quota. If this
metric indicates that Amazon KMS is frequently throttling your requests for these KMS keys, you
might consider requesting an increase in your custom key store request quota value. For help, see
Requesting a quota increase in the Service Quotas User Guide.

If you are getting very frequent KMSInvalidStateException errors with a message that
explains that the request was rejected "due to a very high request rate" or the request was rejected
"because the external key store proxy did not respond in time," it might indicate that your external
key manager or external key store proxy cannot keep pace with the current request rate. If
possible, lower your request rate. You might also consider requesting a decrease in your custom
key store request quota value. Decreasing this quota value might increase throttling (and the
ExternalKeyStoreThrottle metric value), but it indicates that Amazon KMS is rejecting excess
requests quickly before they are sent to your external key store proxy or external key manager. To
request a quota decrease, please visit the Amazon Web Services Support Center and create a case.

Dimension group name: Keystore Throttle Metrics

Dimension Description

CustomKey
StoreId

Value for each external key store.

KmsOperat
ion

Value for each Amazon KMS API operation. This metric applies only to cryptogra
phic operations on KMS keys in an external key store.

KeySpec Value for each type of KMS key. The only supported key spec for KMS keys in an
external key store is SYMMETRIC_DEFAULT.

Amazon KMS metrics and dimensions 542

https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://console.amazonaws.cn/support/home

Amazon Key Management Service Developer Guide

XksProxyCertificateDaysToExpire

The number of days until the TLS certificate for your external key store proxy endpoint
(XksProxyUriEndpoint) expires. This metric applies only to external key stores.

Use this metric to create a CloudWatch alarm that notifies you about the upcoming expiration
of your TLS certificate. When the certificate expires, Amazon KMS cannot communicate with
the external key store proxy. All data protected by KMS keys in your external key store becomes
inaccessible until you renew the certificate.

A certificate alarm prevents certificate expiration that might prevent you from accessing your
encrypted resources. Set the alarm to give your organization time to renew the certificate before it
expires.

Dimension group name: XKS Proxy Certificate Metrics

Dimension Description

CustomKey
StoreId

Value for each external key store.

Certifica
teName

Subject name (CN) in the TLS certificate.

You can create CloudWatch alarms based on the metrics for external key stores and KMS keys in
external key stores. For instructions, see Monitor external key stores.

XksProxyCredentialAge

The number of days since the current external key store proxy authentication credential
(XksProxyAuthenticationCredential) was associated with the external key store. This count
begins when you enter the authentication credential as part of creating or updating your external
key store. This metric applies only to external key stores.

This value is designed to remind you about the age of your authentication credential. However,
because we begin the count when you associate the credential with your external key store, not
when you create your authentication credential on your external key store proxy, this might not be
an accurate indicator of the credential age on the proxy.

Amazon KMS metrics and dimensions 543

Amazon Key Management Service Developer Guide

Use this metric to create a CloudWatch alarm that reminds you to rotate your external key store
proxy authentication credential.

Dimension group name: Per-Keystore Metrics

Dimension Description

CustomKey
StoreId

Value for each external key store.

You can create CloudWatch alarms based on the metrics for external key stores and KMS keys in
external key stores. For instructions, see Monitor external key stores.

XksProxyErrors

The number of exceptions related to Amazon KMS requests to your external key store proxy. This
count includes exceptions that the external key store proxy returns to Amazon KMS and timeout
errors that occur when the external key store proxy does not respond to Amazon KMS within the
250 millisecond timeout interval. This metric applies only to external key stores.

Use this metric to track the error rate of KMS keys in your external key store. It reveals the most
frequent errors, so you can prioritize your engineering effort. For example, KMS keys that are
generating high rates of non-retryable errors might indicate a problem with the configuration of
your external key store. To view your external key store configuration, see View external key stores.
To edit your external key store settings, see Edit external key store properties.

Dimension group name: XKS Proxy Error Metrics

Dimension Description

CustomKey
StoreId

Value for each external key store.

KmsOperat
ion

Value for each Amazon KMS API operation that generated a request to the XKS
proxy.

XksOperat
ion

Value for each external key store proxy API operation.

Amazon KMS metrics and dimensions 544

Amazon Key Management Service Developer Guide

Dimension Description

KeySpec Value for each type of KMS key. The only supported key spec for KMS keys in an
external key store is SYMMETRIC_DEFAULT.

ErrorType Values:

• Retryable errors: Likely to be transient, such as networking errors.

• Non-retryable errors: Likely to indicate a problem with the custom key store
configuration or external components.

• N/A: Successful request; no errors

Exception
Name

Values:

• Name of the exception

• None: Successful request; no errors

You can create CloudWatch alarms based on the metrics for external key stores and KMS keys in
external key stores. For instructions, see Monitor external key stores.

XksExternalKeyManagerStates

A count of the number of external key manager instances in each of the following health states:
Active, Degraded, and Unavailable. The information for this metric comes from the external
key store proxy associated with each external key store. This metric applies only to external key
stores.

The following are the health states for the external key manager instances associated with an
external key store. Each external key store proxy might use different indicators to measure the
health states of your external key manager. For details, see the documentation for your external
key store proxy.

• Active: The external key manager is healthy.

• Degraded: The external key manager is unhealthy, but can still serve traffic

• Unavailable: The external key manager cannot serve traffic.

Amazon KMS metrics and dimensions 545

Amazon Key Management Service Developer Guide

Use this metric to create a CloudWatch alarm that alerts you to degraded and unavailable external
key manager instances. To determine which external key manager instances are in each state,
consult your external key store proxy logs.

Dimension group name: XKS External Key Manager Metrics

Dimension Description

CustomKey
StoreId

Value for each external key store.

XksExtern
alKeyMana
gerState

Value for each health state.

You can create CloudWatch alarms based on the metrics for external key stores and KMS keys in
external key stores. For instructions, see Monitor external key stores.

XksProxyLatency

The number of milliseconds it takes for an external key store proxy to respond to an Amazon KMS
request. If the request timed out, the recorded value is the 250 millisecond timeout limit. This
metric applies only to external key stores.

Use this metric to evaluate the performance of your external key store proxy and external
key manager. For example, if the proxy is frequently timing out on encryption and decryption
operations, consult your external proxy administrator.

Slow responses might also indicate that your external key manager cannot handle the current
request traffic. Amazon KMS recommends that your external key manager be able to handle up
to 1800 requests for cryptographic operations per second. If your external key manager cannot
handle the 1800 requests per second rate, consider requesting a decrease in your request quota for
KMS keys in a custom key store. Requests for cryptographic operations using the KMS keys in your
external key store will fail fast with a throttling exception, rather than being processed and later
rejected by your external key store proxy or external key manager.

Dimension group name: XKS Proxy Latency Metrics

Amazon KMS metrics and dimensions 546

Amazon Key Management Service Developer Guide

Dimension Description

CustomKey
StoreId

Value for each external key store.

KmsOperat
ion

Value for each Amazon KMS API operation that generated a request to the XKS
proxy.

XksOperat
ion

Value for each external key store proxy API operation.

KeySpec Value for each type of KMS key. The only supported key spec for KMS keys in an
external key store is SYMMETRIC_DEFAULT.

You can create CloudWatch alarms based on the metrics for external key stores and KMS keys in
external key stores. For instructions, see Monitor external key stores.

Create a CloudWatch alarm for expiration of imported key material

You can create a CloudWatch alarm that notifies you when the imported key material in a KMS key
is approaching its expiration time. For example, the alarm can notify you when the time to expire is
less than 30 days away.

When you import key material into a KMS key, you can optionally specify a date and time when
the key material expires. When the key material expires, Amazon KMS deletes the key material and
the KMS key becomes unusable. To use the KMS key again, you must reimport the key material.
However, if you reimport the key material before it expires, you can avoid disrupting processes that
use that KMS key.

This alarm uses the SecondsUntilKeyMaterialExpires metric that Amazon KMS publishes to
CloudWatch for KMS keys with imported key material that expires. Each alarm uses this metric to
monitor the imported key material for a particular KMS key. You cannot create a single alarm for all
KMS keys with expiring key material or an alarm for KMS keys that you might create in the future.

Requirements

The following resources are required for a CloudWatch alarm that monitors the expiration of
imported key material.

Create a CloudWatch alarm for expiration of imported key material 547

Amazon Key Management Service Developer Guide

• A KMS key with imported key material that expires.

• An Amazon SNS topic. For details, see Creating an Amazon SNS topic in the Amazon CloudWatch
User Guide.

Create the alarm

Follow the instructions in Create a CloudWatch alarm based on a static threshold using the
following required values. For other fields, accept the default values and provide names as
requested.

Field Value

Select metric Choose KMS, then choose Per-Key Metrics.

Choose the row with the KMS key and the SecondsUntilKeyMat
erialExpires metric. Then choose Select metric.

The Metrics list displays the SecondsUntilKeyMaterialExpires
metric only for KMS keys with imported key material that expires. If you don't
have KMS keys with these properties in the account and Region, this list is
empty.

Statistic Minimum

Period 1 minute

Threshold type Static

Whenever ... Whenever metric-name is Greater than 1

Create CloudWatch alarms for external key stores

You can create Amazon CloudWatch alarms based on external key store metrics to notify you when
a metric value exceeds a threshold you specified. The alarm can send the message to an Amazon
Simple Notification Service (Amazon SNS) topic or an Amazon EC2 Auto Scaling policy. For detailed
information about CloudWatch alarms, see Using Amazon CloudWatch alarms in the Amazon
CloudWatch User Guide.

Create CloudWatch alarms for external key stores 548

https://docs.amazonaws.cn/sns/latest/dg/sns-create-topic.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://docs.amazonaws.cn/sns/latest/dg/sns-create-topic.html
https://docs.amazonaws.cn/sns/latest/dg/sns-create-topic.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/as-scale-based-on-demand.html#as-how-scaling-policies-work
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon Key Management Service Developer Guide

Before creating an Amazon CloudWatch alarm, you need an Amazon SNS topic. For details, see
Creating an Amazon SNS topic in the Amazon CloudWatch User Guide.

Topics

• Create an alarm for certificate expiration

• Create an alarm for response timeout

• Create an alarm for retryable errors

• Create an alarm for non-retryable errors

Create an alarm for certificate expiration

This alarm uses the XksProxyCertificateDaysToExpire metric that Amazon KMS publishes to
CloudWatch to record the anticipated expiration of the TLS certificate associated with your external
key store proxy endpoint. You cannot create a single alarm for all external key stores in your
account or an alarm for external key stores that you might create in the future.

We recommend setting the alarm to alert you 10 days before your certificate is set to expire, but
you should set the threshold that best fits your needs.

Create the alarm

Follow the instructions in Create a CloudWatch alarm based on a static threshold using the
following required values. For other fields, accept the default values and provide names as
requested.

Field Value

Select metric Choose KMS, then choose XKS Proxy Certificate Metrics.

Select the check box next to the XksProxyCertificateName that you
want to monitor.

Then choose Select metric.

Statistic Minimum

Period 5 minutes

Create CloudWatch alarms for external key stores 549

https://docs.amazonaws.cn/sns/latest/dg/sns-create-topic.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

Amazon Key Management Service Developer Guide

Field Value

Threshold type Static

Whenever ... Whenever XksProxyCertificateDaysToExpire is Lower than 10.

Create an alarm for response timeout

This alarm uses the XksProxyLatency metric that Amazon KMS publishes to CloudWatch to record
the number of milliseconds it takes for an external key store proxy to respond to an Amazon KMS
request. You cannot create a single alarm for all external key stores in your account or an alarm for
external key stores that you might create in the future.

Amazon KMS expects the external key store proxy to respond to each request within 250
milliseconds. We recommend setting an alarm to alert you when your external key store proxy
takes longer than 200 milliseconds to respond, but you should set the threshold that best fits your
needs.

Create the alarm

Follow the instructions in Create a CloudWatch alarm based on a static threshold using the
following required values. For other fields, accept the default values and provide names as
requested.

Field Value

Select metric Choose KMS, then choose XKS Proxy Latency Metrics.

Select the check box next to the KmsOperation that you want to monitor.

Then choose Select metric.

Statistic Average

Period 5 minutes

Threshold type Static

Whenever ... Whenever XksProxyLatency is Greater than 200.

Create CloudWatch alarms for external key stores 550

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

Amazon Key Management Service Developer Guide

Create an alarm for retryable errors

This alarm uses the XksProxyErrors metric that Amazon KMS publishes to CloudWatch to record
the number of exceptions related to Amazon KMS requests to your external key store proxy. You
cannot create a single alarm for all external key stores in your account or an alarm for external key
stores that you might create in the future.

Retryable errors will lower your reliability percentage and can indicate networking errors. We
recommend setting an alarm to alert you when more than five retryable errors are recorded in a
one minute period, but you should set the threshold that best fits your needs.

Follow the instructions in Create a CloudWatch alarm based on a static threshold using the
following required values. For other fields, accept the default values and provide names as
requested.

Field Value

Select metric Choose the Query tab.

Choose AWS/KMS for Namespace.

Enter SUM(XksProxyErrors) for Metric name.

Enter ErrorType = Retryable for Filter by.

Choose Run. Then choose Select metric.

Label Retryable errors

Period 1 minute

Threshold type Static

Whenever ... Whenever q1 is Greater than 5.

Create an alarm for non-retryable errors

This alarm uses the XksProxyErrors metric that Amazon KMS publishes to CloudWatch to record
the number of exceptions related to Amazon KMS requests to your external key store proxy. You

Create CloudWatch alarms for external key stores 551

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

Amazon Key Management Service Developer Guide

cannot create a single alarm for all external key stores in your account or an alarm for external key
stores that you might create in the future.

Non-retryable errors can indicate a problem with the configuration of your external key store. We
recommend setting an alarm to alert you when more than five non-retryable errors are recorded in
a one minute period, but you should set the threshold that best fits your needs.

Follow the instructions in Create a CloudWatch alarm based on a static threshold using the
following required values. For other fields, accept the default values and provide names as
requested.

Field Value

Select metric Choose the Query tab.

Choose AWS/KMS for Namespace.

Enter SUM(XksProxyErrors) for Metric name.

Enter ErrorType = Non-retryable for Filter by.

Choose Run. Then choose Select metric.

Label Non-retryable errors

Period 1 minute

Threshold type Static

Whenever ... Whenever q1 is Greater than 5.

Monitor KMS keys with Amazon EventBridge

You can use Amazon EventBridge (formerly Amazon CloudWatch Events) to alert you to the
following important events in the lifecycle of your KMS keys.

• The key material in a KMS key was rotated automatically or on-demand.

• The imported key material in a KMS key expired.

• A KMS key that had been scheduled for deletion was deleted.

Monitor keys with Amazon EventBridge 552

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

Amazon Key Management Service Developer Guide

Amazon KMS integrates with Amazon EventBridge to notify you of important events that affect
your KMS keys. Each event is represented in JSON (JavaScript Object Notation) and includes
the event name, the date and time when the event occurred, and the affected. You can collect
these events and establish rules that route them to one or more targets such as Amazon Lambda
functions, Amazon SNS topics, Amazon SQS queues, streams in Amazon Kinesis Data Streams, or
built-in targets.

For more information about using EventBridge with other kinds of events, including those emitted
by Amazon CloudTrail when it records a read/write API request, see the Amazon EventBridge User
Guide.

The following topics describe the EventBridge events that Amazon KMS generates.

KMS CMK Rotation

Amazon KMS supports automatic and on-demand rotation of the key material in symmetric
encryption KMS keys.

Whenever Amazon KMS rotates key material, it sends a KMS CMK Rotation event to EventBridge.
Amazon KMS generates this event on a best-effort basis.

The following is an example of this event.

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "KMS CMK Rotation",
 "source": "aws.kms",
 "account": "111122223333",
 "time": "2025-05-23T03:11:54Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
],
 "detail": {
 "key-id": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "key-origin": "AWS_KMS",
 "rotation-type": "ON_DEMAND",
 "previous-key-material-id":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0",
 "current-key-material-id":
 "96083e4fb6dbc41d77578a213a6b6669c044dd4c143e96755396d2bf11fd6068"

KMS CMK Rotation 553

http://json.org
https://docs.amazonaws.cn/eventbridge/latest/userguide/
https://docs.amazonaws.cn/eventbridge/latest/userguide/

Amazon Key Management Service Developer Guide

 }
}

KMS Imported Key Material Expiration

When you import key material into a KMS key, you can optionally specify a time at which the key
material expires. When the key material expires, Amazon KMS deletes the key material and sends a
corresponding KMS Imported Key Material Expiration event to EventBridge. Amazon KMS
generates this event on a best-effort basis.

The following is an example of this event.

{
 "version": "0",
 "id": "9da9af57-9253-4406-87cb-7cc400e43465",
 "detail-type": "KMS Imported Key Material Expiration",
 "source": "aws.kms",
 "account": "111122223333",
 "time": "2025-05-23T03:11:54Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
],
 "detail": {
 "key-id": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "key-material-id":
 "123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef0"
 }
}

KMS CMK Deletion

When you schedule deletion of a KMS key, Amazon KMS enforces a waiting period before deleting
the KMS key. After the waiting period ends, Amazon KMS deletes the KMS key and sends a KMS
CMK Deletion event to EventBridge. Amazon KMS guarantees this EventBridge event. Due to
retries, it might generate multiple events within a few seconds that delete the same KMS key.

The following is an example of this event.

{
 "version": "0",

KMS Imported Key Material Expiration 554

Amazon Key Management Service Developer Guide

 "id": "e9ce3425-7d22-412a-a699-e7a5fc3fbc9a",
 "detail-type": "KMS CMK Deletion",
 "source": "aws.kms",
 "account": "111122223333",
 "time": "2025-05-23T03:11:54Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
],
 "detail": {
 "key-id": "1234abcd-12ab-34cd-56ef-1234567890ab"
 }
}

KMS CMK Deletion 555

Amazon Key Management Service Developer Guide

Aliases in Amazon KMS

An alias is a friendly name for a Amazon KMS key. For example, an alias lets you refer to a KMS key
as test-key instead of 1234abcd-12ab-34cd-56ef-1234567890ab.

You can use an alias to identify a KMS key in the Amazon KMS console, in the DescribeKey
operation, and in cryptographic operations, such as Encrypt and GenerateDataKey. Aliases also
make it easy to recognize an Amazon managed key. Aliases for these KMS keys always have the
form aws/<service-name>. For example, the alias for the Amazon managed key for Amazon
DynamoDB is aws/dynamodb. You can establish similar alias standards for your projects, such as
prefacing your aliases with the name of a project or category.

You can also allow and deny access to KMS keys based on their aliases without editing policies or
managing grants. This feature is part of Amazon KMS support for attribute-based access control
(ABAC). For details, see Use aliases to control access to KMS keys.

Much of the power of aliases come from your ability to change the KMS key associated with an
alias at any time. Aliases can make your code easier to write and maintain. For example, suppose
you use an alias to refer to a particular KMS key and you want to change the KMS key. In that case,
just associate the alias with a different KMS key. You don't need to change your code.

Aliases also make it easier to reuse the same code in different Amazon Web Services Regions.
Create aliases with the same name in multiple Regions and associate each alias with a KMS key in
its Region. When the code runs in each Region, the alias refers to the associated KMS key in that
Region. For an example, see Learn how to use aliases in your applications.

You can create an alias for a KMS key in the Amazon KMS console, by using the CreateAlias API, or
by using the AWS::KMS::Alias Amazon CloudFormation template.

The Amazon KMS API provides full control of aliases in each account and Region. The API includes
operations to create an alias (CreateAlias), view alias names and alias ARNs (ListAliases), change the
KMS key associated with an alias (UpdateAlias), and delete an alias (DeleteAlias).

How aliases work

Learn how aliases work in Amazon KMS.

How aliases work 556

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kms-alias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html

Amazon Key Management Service Developer Guide

An alias is an independent Amazon resource

An alias is not a property of a KMS key. The actions that you take on the alias don't affect its
associated KMS key. You can create an alias for a KMS key and then update the alias so it's
associated with a different KMS key. You can even delete the alias without any effect on the
associated KMS key. However, if you delete a KMS key, all aliases associated with that KMS key
are deleted.

If you specify an alias as the resource in an IAM policy, the policy refers to the alias, not to the
associated KMS key.

Each alias has two formats

When you create an alias, you specify the alias name. Amazon KMS creates the alias ARN for
you.

• An alias ARN is an Amazon Resource Name (ARN) that uniquely identifies the alias.

Alias ARN
arn:aws:kms:us-west-2:111122223333:alias/<alias-name>

• An alias name that is unique in the account and Region. In the Amazon KMS API, the alias
name is always prefixed by alias/. That prefix is omitted in the Amazon KMS console.

Alias name
alias/<alias-name>

Aliases are not secret

Aliases may be displayed in plaintext in CloudTrail logs and other output. Do not include
confidential or sensitive information in the alias name.

Each alias is associated with one KMS key at a time

The alias and its KMS key must be in the same account and Region.

You can associate an alias with any customer managed key in the same Amazon Web Services
account and Region. However, you do not have permission to associate an alias with an Amazon
managed key.

For example, this ListAliases output shows that the test-key alias is associated with exactly
one target KMS key, which is represented by the TargetKeyId property.

How aliases work 557

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html

Amazon Key Management Service Developer Guide

{
 "AliasName": "alias/test-key",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/test-key",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1593622000.191,
 "LastUpdatedDate": 1593622000.191
}

Multiple aliases can be associated with the same KMS key

For example, you can associate the test-key and project-key aliases with the same KMS
key.

{
 "AliasName": "alias/test-key",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/test-key",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1593622000.191,
 "LastUpdatedDate": 1593622000.191
},
{
 "AliasName": "alias/project-key",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/project-key",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1516435200.399,
 "LastUpdatedDate": 1516435200.399
}

An alias must be unique in an account and Region

For example, you can have only one test-key alias in each account and Region. Aliases are
case-sensitive, but aliases that differ only in their capitalization are very prone to error. You
cannot change an alias name. However, you can delete the alias and create a new alias with the
desired name.

You can create an alias with the same name in different Regions

For example, you can have a finance-key alias in US East (N. Virginia) and a finance-key
alias in Europe (Frankfurt). Each alias would be associated with a KMS key in its Region. If your
code refers to an alias name like alias/finance-key, you can run it in multiple Regions.
In each Region, it uses a different KMS key. For details, see Learn how to use aliases in your
applications.

How aliases work 558

Amazon Key Management Service Developer Guide

You can change the KMS key associated with an alias

You can use the UpdateAlias operation to associate an alias with a different
KMS key. For example, if the finance-key alias is associated with the
1234abcd-12ab-34cd-56ef-1234567890ab KMS key, you can update it so it is associated
with the 0987dcba-09fe-87dc-65ba-ab0987654321 KMS key.

However, the current and new KMS key must be the same type (both symmetric or both
asymmetric or both HMAC), and they must have the same key usage (ENCRYPT_DECRYPT or
SIGN_VERIFY or GENERATE_VERIFY_MAC). This restriction prevents errors in code that uses
aliases. If you must associate an alias with a different type of key, and you have mitigated the
risks, you can delete and recreate the alias.

Some KMS keys don't have aliases

When you create a KMS key in the Amazon KMS console, you must give it a new alias. But
an alias is not required when you use the CreateKey operation to create a KMS key. Also, you
can use the UpdateAlias operation to change the KMS key associated with an alias and the
DeleteAlias operation to delete an alias. As a result, some KMS keys might have several aliases,
and some might have none.

Amazon creates aliases in your account

Amazon creates aliases in your account for Amazon managed keys. These aliases have names of
the form alias/aws/<service-name>, such as alias/aws/s3.

Some Amazon aliases have no KMS key. These predefined aliases are usually associated with an
Amazon managed key when you start using the service.

Use aliases to identify KMS keys

You can use an alias name or alias ARN to identify a KMS key in cryptographic operations,
DescribeKey, and GetPublicKey. (If the KMS key is in a different Amazon Web Services account,
you must use its key ARN or alias ARN.) Aliases are not valid identifiers for KMS keys in other
Amazon KMS operations. For information about the valid key identifiers for each Amazon KMS
API operation, see the descriptions of the KeyId parameters in the Amazon Key Management
Service API Reference.

You cannot use an alias name or alias ARN to identify a KMS key in an IAM policy. To control
access to a KMS key based on its aliases, use the kms:RequestAlias or kms:ResourceAliases
condition keys. For details, see ABAC for Amazon KMS.

How aliases work 559

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html

Amazon Key Management Service Developer Guide

Controlling access to aliases

When you create or change an alias, you affect the alias and its associated KMS key. Therefore,
principals who manage aliases must have permission to call the alias operation on the alias and on
all affected KMS keys. You can provide these permissions by using key policies, IAM policies and
grants.

Note

Be cautious when giving principals permission to manage tags and aliases. Changing a tag
or alias can allow or deny permission to the customer managed key. For details, see ABAC
for Amazon KMS and Use aliases to control access to KMS keys.

For information about controlling access to all Amazon KMS operations, see Permissions reference.

Permissions to create and manage aliases work as follows.

kms:CreateAlias

To create an alias, the principal needs the following permissions for both the alias and for the
associated KMS key.

• kms:CreateAlias for the alias. Provide this permission in an IAM policy that is attached to the
principal who is allowed to create the alias.

The following example policy statement specifies a particular alias in a Resource element. But
you can list multiple alias ARNs or specify an alias pattern, such as "test*". You can also specify
a Resource value of "*" to allow the principal to create any alias in the account and Region.
Permission to create an alias can also be included in a kms:Create* permission for all resources
in an account and Region.

{
 "Sid": "IAMPolicyForAnAlias",
 "Effect": "Allow",
 "Action": [
 "kms:CreateAlias",
 "kms:UpdateAlias",
 "kms:DeleteAlias"

Controlling access to aliases 560

Amazon Key Management Service Developer Guide

],
 "Resource": "arn:aws:kms:us-west-2:111122223333:alias/test-key"
}

• kms:CreateAlias for the KMS key. This permission must be provided in a key policy or in an
IAM policy that is delegated from the key policy.

{
 "Sid": "Key policy for 1234abcd-12ab-34cd-56ef-1234567890ab",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/KMSAdminUser"},
 "Action": [
 "kms:CreateAlias",
 "kms:DescribeKey"
],
 "Resource": "*"
}

You can use condition keys to limit the KMS keys that you can associate with an alias. For
example, you can use the kms:KeySpec condition key to allow the principal to create aliases
only on asymmetric KMS keys. For a full list of conditions keys that you can use to limit the
kms:CreateAlias permission on KMS key resources, see Amazon KMS permissions.

kms:ListAliases

To list aliases in the account and Region, the principal must have kms:ListAliases permission in
an IAM policy. Because this policy isn't related to any particular KMS key or alias resource, the value
of the resource element in the policy must be "*".

For example, the following IAM policy statement gives the principal permission to list all KMS keys
and aliases in the account and Region.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:ListKeys",
 "kms:ListAliases"
],
 "Resource": "*"

kms:ListAliases 561

Amazon Key Management Service Developer Guide

 }
}

kms:UpdateAlias

To change the KMS key that is associated with an alias, the principal needs three permission
elements: one for the alias, one for the current KMS key, and one for the new KMS key.

For example, suppose you want to change the test-key alias from the KMS key with key ID
1234abcd-12ab-34cd-56ef-1234567890ab to the KMS key with key ID 0987dcba-09fe-87dc-65ba-
ab0987654321. In that case, include policy statements similar to the examples in this section.

• kms:UpdateAlias for the alias. You provide this permission in an IAM policy that is attached to
the principal. The following IAM policy specifies a particular alias. But you can list multiple alias
ARNs or specify an alias pattern, such as "test*". You can also specify a Resource value of
"*" to allow the principal to update any alias in the account and Region.

{
 "Sid": "IAMPolicyForAnAlias",
 "Effect": "Allow",
 "Action": [
 "kms:UpdateAlias",
 "kms:ListAliases",
 "kms:ListKeys"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:alias/test-key"
}

• kms:UpdateAlias for the KMS key that is currently associated with the alias. This permission
must be provided in a key policy or in an IAM policy that is delegated from the key policy.

{
 "Sid": "Key policy for 1234abcd-12ab-34cd-56ef-1234567890ab",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/KMSAdminUser"},
 "Action": [
 "kms:UpdateAlias",
 "kms:DescribeKey"
],
 "Resource": "*"
}

kms:UpdateAlias 562

Amazon Key Management Service Developer Guide

• kms:UpdateAlias for the KMS key that the operation associates with the alias. This permission
must be provided in a key policy or in an IAM policy that is delegated from the key policy.

{
 "Sid": "Key policy for 0987dcba-09fe-87dc-65ba-ab0987654321",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/KMSAdminUser"},
 "Action": [
 "kms:UpdateAlias",
 "kms:DescribeKey"
],
 "Resource": "*"
}

You can use condition keys to limit either or both of KMS keys in an UpdateAlias operation. For
example, you can use a kms:ResourceAliases condition key to allow the principal to update aliases
only when the target KMS key already has a particular alias. For a full list of conditions keys that
you can use to limit the kms:UpdateAlias permission on a KMS key resource, see Amazon KMS
permissions.

kms:DeleteAlias

To delete an alias, the principal needs permission for the alias and for the associated KMS key.

As always, you should exercise caution when giving principals permission to delete a resource.
However, deleting an alias has no effect on the associated KMS key. Although it might cause a
failure in an application that relies on the alias, if you mistakenly delete an alias, you can recreate
it.

• kms:DeleteAlias for the alias. Provide this permission in an IAM policy attached to the
principal who is allowed to delete the alias.

The following example policy statement specifies the alias in a Resource element. But you
can list multiple alias ARNs or specify an alias pattern, such as "test*", You can also specify a
Resource value of "*" to allow the principal to delete any alias in the account and Region.

{
 "Sid": "IAMPolicyForAnAlias",
 "Effect": "Allow",
 "Action": [

kms:DeleteAlias 563

Amazon Key Management Service Developer Guide

 "kms:CreateAlias",
 "kms:UpdateAlias",
 "kms:DeleteAlias"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:alias/test-key"
}

• kms:DeleteAlias for the associated KMS key. This permission must be provided in a key policy
or in an IAM policy that is delegated from the key policy.

{
 "Sid": "Key policy for 1234abcd-12ab-34cd-56ef-1234567890ab",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/KMSAdminUser"
 },
 "Action": [
 "kms:CreateAlias",
 "kms:UpdateAlias",
 "kms:DeleteAlias",
 "kms:DescribeKey"
],
 "Resource": "*"
}

Limiting alias permissions

You can use condition keys to limit alias permissions when the resource is a KMS key. For example,
the following IAM policy allows the alias operations on KMS keys in a particular account and
Region. However, it uses the kms:KeyOrigin condition key to further limit the permissions to KMS
keys with key material from Amazon KMS.

For a full list of conditions keys that you can use to limit alias permission on a KMS key resource,
see Amazon KMS permissions.

{
 "Sid": "IAMPolicyKeyPermissions",
 "Effect": "Allow",
 "Resource": "arn:aws:kms:us-west-2:111122223333:key/*",
 "Action": [
 "kms:CreateAlias",

Limiting alias permissions 564

Amazon Key Management Service Developer Guide

 "kms:UpdateAlias",
 "kms:DeleteAlias"
],
 "Condition": {
 "StringEquals": {
 "kms:KeyOrigin": "AWS_KMS"
 }
 }
}

You can't use condition keys in a policy statement where the resource is an alias. To limit the aliases
that a principal can manage, use the value of the Resource element of the IAM policy statement
that controls access to the alias. For example, the following policy statements allow the principal to
create, update, or delete any alias in the Amazon Web Services account and Region unless the alias
begins with Restricted.

{
 "Sid": "IAMPolicyForAnAliasAllow",
 "Effect": "Allow",
 "Action": [
 "kms:CreateAlias",
 "kms:UpdateAlias",
 "kms:DeleteAlias"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:alias/*"
},
{
 "Sid": "IAMPolicyForAnAliasDeny",
 "Effect": "Deny",
 "Action": [
 "kms:CreateAlias",
 "kms:UpdateAlias",
 "kms:DeleteAlias"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:alias/Restricted*"
}

Create aliases

You can create aliases in the Amazon KMS console or by using Amazon KMS API operations.

Create aliases 565

Amazon Key Management Service Developer Guide

The alias must be string of 1–256 characters. It can contain only alphanumeric characters, forward
slashes (/), underscores (_), and dashes (-). The alias name for a customer managed key cannot
begin with alias/aws/. The alias/aws/ prefix is reserved for Amazon managed key.

You can create an alias for a new KMS key or for an existing KMS key. You might add an alias so
that a particular KMS key is used in a project or application.

You can also use a Amazon CloudFormation template to create an alias for a KMS key. For more
information, see AWS::KMS::Alias in the Amazon CloudFormation User Guide.

Using the Amazon KMS console

When you create a KMS key in the Amazon KMS console, you must create an alias for the new KMS
key. To create an alias for an existing KMS key, use the Aliases tab on the detail page for the KMS
key.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. You cannot manage aliases for
Amazon managed keys or Amazon owned keys.

4. In the table, choose the key ID or alias of the KMS key. Then, on the KMS key detail page,
choose the Aliases tab.

If a KMS key has multiple aliases, the Aliases column in the table displays one alias and an
alias summary, such as (+n more). Choosing the alias summary takes you directly to the
Aliases tab on the KMS key detail page.

5. On the Aliases tab, choose Create alias. Enter an alias name and choose Create alias.

Important

Do not include confidential or sensitive information in this field. This field may be
displayed in plaintext in CloudTrail logs and other output.

Create aliases 566

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kms-alias.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

Note

Do not add the alias/ prefix. The console automatically adds it for you. If you enter
alias/ExampleAlias, the actual alias name will be alias/alias/ExampleAlias.

Using the Amazon KMS API

To create an alias, use the CreateAlias operation. Unlike the process of creating KMS keys in the
console, the CreateKey operation doesn't create an alias for a new KMS key.

Important

Do not include confidential or sensitive information in this field. This field may be displayed
in plaintext in CloudTrail logs and other output.

You can use the CreateAlias operation to create an alias for a new KMS key with no alias. You
can also use the CreateAlias operation to add an alias to any existing KMS key or to recreate an
alias that was accidentally deleted.

In the Amazon KMS API operations, the alias name must begin with alias/ followed by a name,
such as alias/ExampleAlias. The alias must be unique in the account and Region. To find the
alias names that are already in use, use the ListAliases operation. The alias name is case sensitive.

The TargetKeyId can be any customer managed key in the same Amazon Web Services Region.
To identify the KMS key, use its key ID or key ARN. You cannot use another alias.

The following example creates the example-key alias and associates it with the specified KMS
key. These examples use the Amazon Command Line Interface (Amazon CLI). For examples in
multiple programming languages, see Use CreateAlias with an Amazon SDK or CLI.

$ aws kms create-alias \
 --alias-name alias/example-key \
 --target-key-id 1234abcd-12ab-34cd-56ef-1234567890ab

CreateAlias does not return any output. To see the new alias, use the ListAliases operation.
For details, see Using the Amazon KMS API.

Create aliases 567

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html

Amazon Key Management Service Developer Guide

Find the alias name and alias ARN for a KMS key

Aliases make it easy to recognize KMS keys in the Amazon KMS console. You can view the aliases
for a KMS key in the Amazon KMS console or by using the ListAliases operation. The DescribeKey
operation, which returns the properties of a KMS key, does not include aliases.

The following procedures demonstrate how to view and identify the aliases associated with a KMS
key using the Amazon KMS console and Amazon KMS API. The Amazon KMS API examples use
the Amazon Command Line Interface (Amazon CLI), but you can use any supported programming
language.

Using the Amazon KMS console

The Amazon KMS console displays the aliases associated with the KMS key.

1. Open the Amazon KMS console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. To view the keys in your account that you create and manage, in the navigation pane choose
Customer managed keys. To view the keys in your account that Amazon creates and manages
for you, in the navigation pane, choose Amazon managed keys.

4. The Aliases column displays the alias for each KMS key. If a KMS key does not have an alias, a
dash (-) appears in the Aliases column.

If a KMS key has multiple aliases, the Aliases column also has an alias summary, such as (+n
more). For example, the following KMS key has two aliases, one of which is key-test.

To find the alias name and alias ARN of all aliases for the KMS key, use the Aliases tab.

• To go directly to the Aliases tab, in the Aliases column, choose the alias summary (+n more).
An alias summary appears only if the KMS key has more than one alias.

• Or, choose the alias or key ID of the KMS key (which opens the detail page for the KMS key)
and then choose the Aliases tab. The tabs are under the General configuration section.

Find the alias name and alias ARN 568

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
http://www.amazonaws.cn/cli/
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

5. The Aliases tab displays the alias name and alias ARN of all aliases for a KMS key. You can also
create and delete aliases for the KMS key on this tab.

Amazon managed keys

You can use the alias to recognize an Amazon managed key, as shown in this example
Amazon managed keys page. The aliases for Amazon managed keys always have the format:
aws/<service-name>. For example, the alias for the Amazon managed key for Amazon
DynamoDB is aws/dynamodb.

Find the alias name and alias ARN 569

Amazon Key Management Service Developer Guide

Using the Amazon KMS API

The ListAliases operation returns the alias name and alias ARN of aliases in the account and Region.
The output includes aliases for Amazon managed keys and for customer managed keys. The aliases
for Amazon managed keys have the format aws/<service-name>, such as aws/dynamodb.

The response might also include aliases that have no TargetKeyId field. These are predefined
aliases that Amazon has created but has not yet associated with a KMS key.

$ aws kms list-aliases
{
 "Aliases": [
 {
 "AliasName": "alias/access-key",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/access-key",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": 1516435200.399,

Find the alias name and alias ARN 570

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html

Amazon Key Management Service Developer Guide

 "LastUpdatedDate": 1516435200.399
 },
 {
 "AliasName": "alias/ECC-P521-Sign",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/ECC-P521-Sign",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1693622000.704,
 "LastUpdatedDate": 1693622000.704
 },
 {
 "AliasName": "alias/ImportedKey",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/ImportedKey",
 "TargetKeyId": "1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d",
 "CreationDate": 1493622000.704,
 "LastUpdatedDate": 1521097200.235
 },
 {
 "AliasName": "alias/finance-project",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/finance-project",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": 1604958290.014,
 "LastUpdatedDate": 1604958290.014
 },
 {
 "AliasName": "alias/aws/dynamodb",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/aws/dynamodb",
 "TargetKeyId": "0987ab65-43cd-21ef-09ab-87654321cdef",
 "CreationDate": 1521097200.454,
 "LastUpdatedDate": 1521097200.454
 },
 {
 "AliasName": "alias/aws/ebs",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/aws/ebs",
 "TargetKeyId": "abcd1234-09fe-ef90-09fe-ab0987654321",
 "CreationDate": 1466518990.200,
 "LastUpdatedDate": 1466518990.200
 }
]
}

To get all aliases that are associated with a particular KMS key, use the optional KeyId parameter
of the ListAliases operation. The KeyId parameter takes the key ID or key ARN of the KMS key.

Find the alias name and alias ARN 571

Amazon Key Management Service Developer Guide

This example gets all aliases associated with the 0987dcba-09fe-87dc-65ba-ab0987654321
KMS key.

$ aws kms list-aliases --key-id 0987dcba-09fe-87dc-65ba-ab0987654321
{
 "Aliases": [
 {
 "AliasName": "alias/access-key",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/access-key",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": "2018-01-20T15:23:10.194000-07:00",
 "LastUpdatedDate": "2018-01-20T15:23:10.194000-07:00"
 },
 {
 "AliasName": "alias/finance-project",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/finance-project",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": 1604958290.014,
 "LastUpdatedDate": 1604958290.014
 }
]
}

The KeyId parameter doesn't take wildcard characters, but you can use the features of your
programming language to filter the response.

For example, the following Amazon CLI command gets only the aliases for Amazon managed keys.

$ aws kms list-aliases --query 'Aliases[?starts_with(AliasName, `alias/aws/`)]'

The following command gets only the access-key alias. The alias name is case-sensitive.

$ aws kms list-aliases --query 'Aliases[?AliasName==`alias/access-key`]'
[
 {
 "AliasName": "alias/access-key",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/access-key",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": "2018-01-20T15:23:10.194000-07:00",
 "LastUpdatedDate": "2018-01-20T15:23:10.194000-07:00"
 }
]

Find the alias name and alias ARN 572

Amazon Key Management Service Developer Guide

Update aliases

Because an alias is an independent resource, you can change the KMS key associated with an alias.
For example, if the test-key alias is associated with one KMS key, you can use the UpdateAlias
operation to associate it with a different KMS key. This is one of several ways to manually rotate a
KMS key without changing its key material. You might also update a KMS key so that an application
that was using one KMS key for new resources is now using a different KMS key.

You cannot update an alias in the Amazon KMS console. Also, you cannot use UpdateAlias (or
any other operation) to change an alias name. To change an alias name, delete the current alias
and then create a new alias for the KMS key.

When you update an alias, the current KMS key and the new KMS key must be the same type (both
symmetric or asymmetric or HMAC). They must also have the same key usage (ENCRYPT_DECRYPT
or SIGN_VERIFY or GENERATE_VERIFY_MAC). This restriction prevents cryptographic errors in
code that uses aliases.

The following example begins by using the ListAliases operation to show that the test-key alias
is currently associated with KMS key 1234abcd-12ab-34cd-56ef-1234567890ab.

$ aws kms list-aliases --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "Aliases": [
 {
 "AliasName": "alias/test-key",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/test-key",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1593622000.191,
 "LastUpdatedDate": 1593622000.191
 }
]
}

Next, it uses the UpdateAlias operation to change the KMS key that is associated with the test-
key alias to KMS key 0987dcba-09fe-87dc-65ba-ab0987654321. You don't need to specify
the currently associated KMS key, only the new ("target") KMS key. The alias name is case sensitive.

$ aws kms update-alias --alias-name 'alias/test-key' --target-key-id
 0987dcba-09fe-87dc-65ba-ab0987654321

Update aliases 573

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html

Amazon Key Management Service Developer Guide

To verify that the alias is now associated with the target KMS key, use the ListAliases operation
again. This Amazon CLI command uses the --query parameter to get only the test-key alias.
The TargetKeyId and LastUpdatedDate fields are updated.

$ aws kms list-aliases --query 'Aliases[?AliasName==`alias/test-key`]'
[
 {
 "AliasName": "alias/test-key",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/test-key",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": 1593622000.191,
 "LastUpdatedDate": 1604958290.154
 }
]

Delete an alias

You can delete an alias in the Amazon KMS console or by using the DeleteAlias operation. Before
deleting an alias, make sure that it's not in use. Although deleting an alias doesn't affect the
associated KMS key, it might create problems for any application that uses the alias. If you delete
an alias by mistake, you can create a new alias with the same name and associate it with the same
or a different KMS key.

If you delete a KMS key, all aliases associated with that KMS key are deleted.

Using the Amazon KMS console

To delete an alias in the Amazon KMS console, use the Aliases tab on the detail page for the KMS
key. You can delete multiple aliases for a KMS key at one time.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. You cannot manage aliases for
Amazon managed keys or Amazon owned keys.

4. In the table, choose the key ID or alias of the KMS key. Then, on the KMS key detail page,
choose the Aliases tab.

Delete an alias 574

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

If a KMS key has multiple aliases, the Aliases column in the table displays one alias and an
alias summary, such as (+n more). Choosing the alias summary takes you directly to the
Aliases tab on the KMS key detail page.

5. On the Aliases tab, select the check box next to the aliases that you want to delete. Then
choose Delete.

Using the Amazon KMS API

To delete an alias, use the DeleteAlias operation. This operation deletes one alias at a time. The
alias name is case-sensitive and it must be preceded by the alias/ prefix.

For example, the following command deletes the test-key alias. This command does not return
any output.

$ aws kms delete-alias --alias-name alias/test-key

To verify that the alias is deleted, use the ListAliases operation. The following command uses the
--query parameter in the Amazon CLI to get only the test-key alias. The empty brackets in the
response indicate that the ListAliases response didn't include a test-key alias. To eliminate
the brackets, use the --output text parameter and value.

$ aws kms list-aliases --query 'Aliases[?AliasName==`alias/test-key`]'
[]

Use aliases to control access to KMS keys

You can control access to KMS keys based on the aliases that are associated with the KMS key. To
do so, use the kms:RequestAlias and kms:ResourceAliases condition keys. This feature is part of
Amazon KMS support for attribute-based access control (ABAC).

The kms:RequestAlias condition key allows or denies access to a KMS key based on the alias in a
request. The kms:ResourceAliases condition key allows or denies access to a KMS key based on
the aliases associated with the KMS key.

These features do not allow you to identify a KMS key by using an alias in the resource element
of a policy statement. When an alias is the value of a resource element, the policy applies to the
alias resource, not to any KMS key that might be associated with it.

Use aliases to control access to KMS keys 575

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html

Amazon Key Management Service Developer Guide

Note

It might take up to five minutes for tag and alias changes to affect KMS key authorization.
Recent changes might be visible in API operations before they affect authorization.

When using aliases to control access to KMS keys, consider the following:

• Use aliases to reinforce the best practice of least privileged access. Give IAM principals only the
permissions that they need for only the KMS keys that they must use or manage. For example,
use aliases to identify the KMS keys used for a project. Then give the project team permission to
use only KMS keys with the project aliases.

• Be cautious about giving principals the kms:CreateAlias, kms:UpdateAlias, or
kms:DeleteAlias permissions that let them add, edit, and delete aliases. When you use aliases
to control access to KMS keys, changing an alias can give principals permission to use KMS keys
that they didn't otherwise have permission to use. It can also deny access to KMS keys that other
principals require to do their jobs.

• Review the principals in your Amazon Web Services account that currently have permission to
manage aliases and adjust the permissions, if necessary. Key administrators who don't have
permission to change key policies or create grants can control access to KMS keys if they have
permission to manage aliases.

For example, the console default key policy for key administrators includes kms:CreateAlias,
kms:DeleteAlias, and kms:UpdateAlias permission. IAM policies might give alias
permissions for all KMS keys in your Amazon Web Services account. For example, the
AWSKeyManagementServicePowerUser managed policy allows principals to create, delete, and
list aliases for all KMS keys but not update them.

• Before setting a policy that depends on an alias, review the aliases on the KMS keys in your
Amazon Web Services account. Make sure that your policy applies only to the aliases that you
intend to include. Use CloudTrail logs and CloudWatch alarms to alert you to alias changes that
might affect access to your KMS keys. Also, the ListAliases response includes the creation date
and last updated date for each alias.

• The alias policy conditions use pattern matching; they aren't tied to a particular instance of an
alias. A policy that uses alias-based condition keys affects all new and existing aliases that match
the pattern. If you delete and recreate an alias that matches a policy condition, the condition
applies to the new alias, just as it did to the old one.

Use aliases to control access to KMS keys 576

https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/AWSKeyManagementServicePowerUser
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html

Amazon Key Management Service Developer Guide

The kms:RequestAlias condition key relies on the alias specified explicitly in an operation
request. The kms:ResourceAliases condition key depends on the aliases that are associated
with a KMS key, even if they don't appear in the request.

kms:RequestAlias

Allow or deny access to a KMS key based on the alias that identifies the KMS key in a request. You
can use the kms:RequestAlias condition key in a key policy or IAM policy. It applies to operations
that use an alias to identify a KMS key in a request, namely cryptographic operations, DescribeKey,
and GetPublicKey. It is not valid for alias operations, such as CreateAlias or DeleteAlias.

In the condition key, specify an alias name or alias name pattern. You cannot specify an alias ARN.

For example, the following key policy statement allows principals to use the specified operations
on the KMS key. The permission is effective only when the request uses an alias that includes
alpha to identify the KMS key.

{
 "Sid": "Key policy using a request alias condition",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/alpha-developer"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:RequestAlias": "alias/*alpha*"
 }
 }
}

The following example request from an authorized principal would fulfill the condition. However,
a request that used a key ID, a key ARN, or a different alias would not fulfill the condition, even if
these values identified the same KMS key.

kms:RequestAlias 577

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html

Amazon Key Management Service Developer Guide

$ aws kms describe-key --key-id "arn:aws:kms:us-west-2:111122223333:alias/project-
alpha"

kms:ResourceAliases

Allow or deny access to a KMS key based on the aliases associated with the KMS key, even if the
alias isn't used in a request. The kms:ResourceAliases condition key lets you specify an alias or alias
pattern, such as alias/test*, so you can use it in an IAM policy to control access to several KMS
keys in the same Region. It's valid for any Amazon KMS operation that uses a KMS key.

For example, the following IAM policy lets the principals call the specified operations on the KMS
keys in two Amazon Web Services accounts. However, the permission applies only to KMS keys
associated with aliases that begin with restricted.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AliasBasedIAMPolicy",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": [
 "arn:aws:kms:*:111122223333:key/*",
 "arn:aws:kms:*:444455556666:key/*"
],
 "Condition": {
 "ForAnyValue:StringLike": {
 "kms:ResourceAliases": "alias/restricted*"
 }
 }
 }
]
}

The kms:ResourceAliases condition is a condition of the resource, not the request. As such, a
request that doesn't specify the alias can still satisfy the condition.

kms:ResourceAliases 578

Amazon Key Management Service Developer Guide

The following example request, which specifies a matching alias, satisfies the condition.

$ aws kms enable-key-rotation --key-id "alias/restricted-project"

However, the following example request also satisfies the condition, provided that the specified
KMS key has an alias that begins with restricted, even if that alias isn't used in the request.

$ aws kms enable-key-rotation --key-id "1234abcd-12ab-34cd-56ef-1234567890ab"

Learn how to use aliases in your applications

You can use an alias to represent a KMS key in your application code. The KeyId parameter in
Amazon KMS cryptographic operations, DescribeKey, and GetPublicKey accepts an alias name or
alias ARN.

For example, the following GenerateDataKey command uses an alias name (alias/finance) to
identify a KMS key. The alias name is the value of the KeyId parameter.

$ aws kms generate-data-key --key-id alias/finance --key-spec AES_256

If the KMS key is in a different Amazon Web Services account, you must use a key ARN or alias ARN
in these operations. When using an alias ARN, remember that the alias for a KMS key is defined in
the account that owns the KMS key and might differ in each Region. For help finding the alias ARN,
see Find the alias name and alias ARN for a KMS key.

For example, the following GenerateDataKey command uses a KMS key that's not in the caller's
account. The ExampleAlias alias is associated with the KMS key in the specified account and
Region.

$ aws kms generate-data-key --key-id arn:aws:kms:us-west-2:444455556666:alias/
ExampleAlias --key-spec AES_256

One of the most powerful uses of aliases is in applications that run in multiple Amazon Web
Services Regions. For example, you might have a global application that uses an RSA asymmetric
KMS key for signing and verification.

• In US West (Oregon) (us-west-2), you want to use arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab.

Learn how to use aliases in your applications 579

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html

Amazon Key Management Service Developer Guide

• In Europe (Frankfurt) (eu-central-1), you want to use arn:aws:kms:eu-
central-1:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321

• In Asia Pacific (Singapore) (ap-southeast-1), you want to use arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d.

You could create a different version of your application in each Region or use a dictionary or switch
statement to select the right KMS key for each Region. But it's much easier to create an alias with
the same alias name in each Region. Remember that the alias name is case-sensitive.

aws --region us-west-2 kms create-alias \
 --alias-name alias/new-app \
 --key-id arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

aws --region eu-central-1 kms create-alias \
 --alias-name alias/new-app \
 --key-id arn:aws:kms:eu-central-1:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321

aws --region ap-southeast-1 kms create-alias \
 --alias-name alias/new-app \
 --key-id arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d

Then, use the alias in your code. When your code runs in each Region, the alias will refer to its
associated KMS key in that Region. For example, this code calls the Sign operation with an alias
name.

aws kms sign --key-id alias/new-app \
 --message $message \
 --message-type RAW \
 --signing-algorithm RSASSA_PSS_SHA_384

However, there is a risk that the alias might be deleted or updated to be associated with a different
KMS key. In that case, the application's attempts to verify signatures using the alias name will fail,
and you might need to recreate or update the alias.

To mitigate this risk, be cautious about giving principals permission to manage the aliases that you
use in your application. For details, see Controlling access to aliases.

Learn how to use aliases in your applications 580

https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html

Amazon Key Management Service Developer Guide

There are several other solutions for applications that encrypt data in multiple Amazon Web
Services Regions, including the Amazon Encryption SDK.

Find aliases in Amazon CloudTrail logs

You can use an alias to represent an Amazon KMS key in an Amazon KMS API operation. When
you do, the alias and the key ARN of the KMS key are recorded in the Amazon CloudTrail log entry
for the event. The alias appears in the requestParameters field. The key ARN appears in the
resources field. This is true even when an Amazon service uses an Amazon managed key in your
account.

For example, the following GenerateDataKey request uses the project-key alias to represent a
KMS key.

$ aws kms generate-data-key --key-id alias/project-key --key-spec AES_256

When this request is recorded in the CloudTrail log, the log entry includes both the alias and the
key ARN of the actual KMS key that was used.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "ABCDE",
 "arn": "arn:aws:iam::111122223333:role/ProjectDev",
 "accountId": "111122223333",
 "accessKeyId": "FFHIJ",
 "userName": "example-dev"
 },
 "eventTime": "2020-06-29T23:36:41Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "205.205.123.000",
 "userAgent": "aws-cli/1.18.89 Python/3.6.10
 Linux/4.9.217-0.1.ac.205.84.332.metal1.x86_64 botocore/1.17.12",
 "requestParameters": {
 "keyId": "alias/project-key",
 "keySpec": "AES_256"
 },
 "responseElements": null,

Find aliases in Amazon CloudTrail logs 581

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

 "requestID": "d93f57f5-d4c5-4bab-8139-5a1f7824a363",
 "eventID": "d63001e2-dbc6-4aae-90cb-e5370aca7125",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

For details about logging Amazon KMS operations in CloudTrail logs, see Logging Amazon KMS API
calls with Amazon CloudTrail.

Find aliases in Amazon CloudTrail logs 582

Amazon Key Management Service Developer Guide

Tags in Amazon KMS

A tag is an optional metadata label that you can assign (or Amazon can assign) to an Amazon
resource. Each tag consists of a tag key and a tag value, both of which are case-sensitive strings.
The tag value can be an empty (null) string. Each tag on a resource must have a different tag key,
but you can add the same tag to multiple Amazon resources. Each resource can have up to 50 user-
created tags.

Do not include confidential or sensitive information in the tag key or tag value. Tags are accessible
to many Amazon Web Services services, including billing.

In Amazon KMS, you can add tags to a customer managed key when you create the KMS key, and
tag or untag existing KMS keys unless they are pending deletion. You cannot tag aliases, custom
key stores, Amazon managed keys,Amazon owned keys, or KMS keys in other Amazon Web Services
accounts. Tags are optional, but they can be very useful.

For example, you can add a "Project"="Alpha" tag to all KMS keys and Amazon S3 buckets that
you use for the Alpha project.

TagKey = "Project"
TagValue = "Alpha"

For general information about tags, including the format and syntax, see Tagging Amazon
resources in the Amazon Web Services General Reference.

Tags help you do the following:

• Identify and organize your Amazon resources. Many Amazon services support tagging, so you
can assign the same tag to resources from different services to indicate that the resources are
related. For example, you can assign the same tag to a KMS key and an Amazon Elastic Block
Store (Amazon EBS) volume or Amazon Secrets Manager secret. You can also use tags to identify
KMS keys for automation.

• Track your Amazon costs. When you add tags to your Amazon resources, Amazon generates a
cost allocation report with usage and costs aggregated by tags. You can use this feature to track
Amazon KMS costs for a project, application, or cost center.

For more information about using tags for cost allocation, see Using Cost Allocation Tags in the
Amazon Billing User Guide. For information about the rules for tag keys and tag values, see User-
Defined Tag Restrictions in the Amazon Billing User Guide.

583

https://docs.amazonaws.cn/general/latest/gr/aws_tagging.html
https://docs.amazonaws.cn/general/latest/gr/aws_tagging.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html

Amazon Key Management Service Developer Guide

• Control access to your Amazon resources. Allowing and denying access to KMS keys based
on their tags is part of Amazon KMS support for attribute-based access control (ABAC). For
information about controlling access to Amazon KMS keys based on their tags, see Use tags to
control access to KMS keys. For more general information about using tags to control access to
Amazon resources, see Controlling Access to Amazon Resources Using Resource Tags in the IAM
User Guide.

Amazon KMS writes an entry to your Amazon CloudTrail log when you use the TagResource,
UntagResource, or ListResourceTags operations.

Topics

• Controlling access to tags

• Add tags to a KMS key

• Edit tags associated with a KMS key

• Remove tags associated with a KMS key

• View tags associated with a KMS key

• Use tags to control access to KMS keys

Controlling access to tags

To add, view, and delete tags, either in the Amazon KMS console or by using the API, principals
need tagging permissions. You can provide these permissions in key policies. You can also provide
them in IAM policies (including VPC endpoint policies), but only if the key policy allows it. The
AWSKeyManagementServicePowerUser managed policy allows principals to tag, untag, and list
tags on all KMS keys the account can access.

You can also limit these permissions by using Amazon global condition keys for tags. In Amazon
KMS, these conditions can control access to tagging operations, such as TagResource and
UntagResource.

Note

Be cautious when giving principals permission to manage tags and aliases. Changing a tag
or alias can allow or deny permission to the customer managed key. For details, see ABAC
for Amazon KMS and Use tags to control access to KMS keys.

Controlling access to tags 584

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html
https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#edit-vpc-endpoint-policy
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UntagResource.html

Amazon Key Management Service Developer Guide

For example policies and more information, see Controlling Access Based on Tag Keys in the IAM
User Guide.

Permissions to create and manage tags work as follows.

kms:TagResource

Allows principals to add or edit tags. To add tags while creating a KMS key, the principal must
have permission in an IAM policy that isn't restricted to particular KMS keys.

kms:ListResourceTags

Allows principals to view tags on KMS keys.

kms:UntagResource

Allows principals to delete tags from KMS keys.

Tag permissions in policies

You can provide tagging permissions in a key policy or IAM policy. For example, the following
example key policy gives select users tagging permission on the KMS key. It gives all users who can
assume the example Administrator or Developer roles permission to view tags.

{
 "Version": "2012-10-17",
 "Id": "example-key-policy",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:root"},
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Allow all tagging permissions",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:user/LeadAdmin",
 "arn:aws:iam::111122223333:user/SupportLead"
]},

Tag permissions in policies 585

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys

Amazon Key Management Service Developer Guide

 "Action": [
 "kms:TagResource",
 "kms:ListResourceTags",
 "kms:UntagResource"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow roles to view tags",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:role/Administrator",
 "arn:aws:iam::111122223333:role/Developer"
]},
 "Action": "kms:ListResourceTags",
 "Resource": "*"
 }
]
}

To give principals tagging permission on multiple KMS keys, you can use an IAM policy. For this
policy to be effective, the key policy for each KMS key must allow the account to use IAM policies
to control access to the KMS key.

For example, the following IAM policy allows the principals to create KMS keys. It also allows them
to create and manage tags on all KMS keys in the specified account. This combination allows the
principals to use the Tags parameter of the CreateKey operation to add tags to a KMS key while
they are creating it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMPolicyCreateKeys",
 "Effect": "Allow",
 "Action": "kms:CreateKey",
 "Resource": "*"
 },
 {
 "Sid": "IAMPolicyTags",
 "Effect": "Allow",
 "Action": [
 "kms:TagResource",

Tag permissions in policies 586

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html#KMS-CreateKey-request-Tags
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

 "kms:UntagResource",
 "kms:ListResourceTags"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*"
 }
]
}

Limiting tag permissions

You can limit tagging permissions by using policy conditions. The following policy conditions can
be applied to the kms:TagResource and kms:UntagResource permissions. For example, you
can use the aws:RequestTag/tag-key condition to allow a principal to add only particular
tags, or prevent a principal from adding tags with particular tag keys. Or, you can use the
kms:KeyOrigin condition to prevent principals from tagging or untagging KMS keys with
imported key material.

• aws:RequestTag

• aws:ResourceTag/tag-key (IAM policies only)

• aws:TagKeys

• kms:CallerAccount

• kms:KeySpec

• kms:KeyUsage

• kms:KeyOrigin

• kms:ViaService

As a best practice when you use tags to control access to KMS keys, use the
aws:RequestTag/tag-key or aws:TagKeys condition key to determine which tags (or tag keys)
are allowed.

For example, the following IAM policy is similar to the previous one. However, this policy allows
the principals to create tags (TagResource) and delete tags UntagResource only for tags with a
Project tag key.

Because TagResource and UntagResource requests can include multiple tags, you must
specify a ForAllValues or ForAnyValue set operator with the aws:TagKeys condition. The

Limiting tag permissions 587

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tag-keys
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys

Amazon Key Management Service Developer Guide

ForAnyValue operator requires that at least one of the tag keys in the request matches one of the
tag keys in the policy. The ForAllValues operator requires that all of the tag keys in the request
match one of the tag keys in the policy. The ForAllValues operator also returns true if there
are no tags in the request, but TagResource and UntagResource fail when no tags are specified. For
details about the set operators, see Use multiple keys and values in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMPolicyCreateKey",
 "Effect": "Allow",
 "Action": "kms:CreateKey",
 "Resource": "*"
 },
 {
 "Sid": "IAMPolicyViewAllTags",
 "Effect": "Allow",
 "Action": "kms:ListResourceTags",
 "Resource": "arn:aws:kms:*:111122223333:key/*"
 },
 {
 "Sid": "IAMPolicyManageTags",
 "Effect": "Allow",
 "Action": [
 "kms:TagResource",
 "kms:UntagResource"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "ForAllValues:StringEquals": {"aws:TagKeys": "Project"}
 }
 }
]
}

Add tags to a KMS key

Tags help identify and organize your Amazon resources. You can add tags to a customer managed
key when you create the KMS key, or add tags to existing KMS keys. You cannot tag Amazon
managed keys.

Add tags 588

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multi-key-or-value-conditions

Amazon Key Management Service Developer Guide

The following procedures demonstrate how to add tags to customer managed keys using the
Amazon KMS console and Amazon KMS API. The Amazon KMS API examples use the Amazon
Command Line Interface (Amazon CLI), but you can use any supported programming language.

Topics

• Add tags while creating a KMS key

• Add tags to existing KMS keys

Add tags while creating a KMS key

You can add tags to a KMS key as you create the key using the Amazon KMS console or the
CreateKey operation. To add tags when creating a KMS key, you must have kms:TagResource
permission in an IAM policy in addition to the permissions required to create KMS keys. At a
minimum, the permission must cover all KMS keys in the account and Region. For details, see
Controlling access to tags.

Using the Amazon KMS console

To add tags when creating a KMS key in the console, you must have the permissions required to
view KMS keys in the console in addition to the permissions required to tag and create KMS keys.
At a minimum, the permission must cover all KMS keys in the account and Region.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot manage the tags of an
Amazon managed key)

4. Choose the key type, then choose Next.

5. Enter an alias and optional description.

6. Enter a tag key and, optionally, a tag value. To add additional tags, choose Add tag. To delete
a tag, choose Remove. When you're done tagging your new KMS key, choose Next.

7. Finish creating your KMS key.

Add tags while creating a KMS key 589

http://www.amazonaws.cn/cli/
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

Using the Amazon KMS API

To specify tags when creating keys using the CreateKey operation, use the Tags parameter of the
operation.

The value of the Tags parameter of CreateKey is a collection of case-sensitive tag key and tag
value pairs. Each tag on a KMS key must have a different tag name. The tag value can be a null or
empty string.

For example, the following Amazon CLI command creates a symmetric encryption KMS key with a
Project:Alpha tag. When specifying more than one key-value pair, use a space to separate each
pair.

$ aws kms create-key --tags TagKey=Project,TagValue=Alpha

When this command is successful, it returns a KeyMetadata object with information about
the new KMS key. However, the KeyMetadata does not include tags. To get the tags, use the
ListResourceTags operation.

Add tags to existing KMS keys

You can add tags to your existing customer managed KMS keys in the Amazon KMS console or by
using the TagResource operation. To add tags, you need tagging permission on the KMS key. You
can get this permission from the key policy for the KMS key or, if the key policy allows it, from an
IAM policy that includes the KMS key.

Using the Amazon KMS console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot manage the tags of an
Amazon managed key)

4. You can use the table filter to display only KMS keys with particular tags. For details, see View
tags using the Amazon KMS console.

5. Select the check box next to the alias of a KMS key.

6. Choose Key actions, Add or edit tags.

Add tags to existing KMS keys 590

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

7. On the details page for KMS key, choose the Tags tab.

• To create your first tag, choose Create tag, type a tag key (required) and tag value (optional),
and then choose Save.

If you leave the tag value blank, the actual tag value is a null or empty string.

• To add a tag, choose Edit, choose Add tag, type a tag key and tag value, and then choose
Save.

8. To save your changes, choose Save changes.

Using the Amazon KMS API

The TagResource operation adds one or more tags to a KMS key. You cannot use this operation to
add tags in a different Amazon Web Services account. You can also use the TagResource operation
to edit existing tags. For more information, see the section called “Edit tags”.

To add a tag, specify a new tag key and a tag value. Each tag on a KMS key must have a different
tag key. The tag value can be a null or empty string.

For example, the following command adds Purpose and Department tags to an example KMS
key.

$ aws kms tag-resource \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --tags TagKey=Purpose,TagValue=Pretest TagKey=Department,TagValue=Finance

When this command is successful, it does not return any output. To view the tags on a KMS key, use
the ListResourceTags operation.

Edit tags associated with a KMS key

Tags help identify and organize your Amazon resources. You can edit the tags associated with your
customer managed KMS keys in the Amazon KMS console or by using the TagResource operation.
You cannot edit the tags of an Amazon managed key.

The following procedures demonstrate how to edit the tags associated with a KMS key. The
Amazon KMS API examples use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

Edit tags 591

https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

Using the Amazon KMS console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot edit the tags of an
Amazon managed key)

4. You can use the table filter to display only KMS keys with particular tags. For details, see View
tags using the Amazon KMS console.

5. Select the check box next to the alias of a KMS key.

6. Choose Key actions, Add or edit tags.

7. On the details page for KMS key, choose the Tags tab.

• To change the name or value of a tag, choose Edit, make your changes, and then choose
Save.

8. To save your changes, choose Save changes.

Using the Amazon KMS API

The TagResource operation add one or more tags to a customer managed key;. However, you can
also use TagResource to change the tag value of an existing tag. You cannot use this operation to
add or edit tags in a different Amazon Web Services account.

To edit a tag, specify an existing tag key and a new tag value. Each tag on a KMS key must have a
different tag key. The tag value can be a null or empty string.

For example, this command changes the value of the Purpose tag from Pretest to Test.

$ aws kms tag-resource \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --tags TagKey=Purpose,TagValue=Test

Edit tags 592

https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html

Amazon Key Management Service Developer Guide

Remove tags associated with a KMS key

Tags help identify and organize your Amazon resources. You can remove the tags associated with
your customer managed KMS keys in the Amazon KMS console or by using the UntagResource
operation. You cannot edit or remove the tags of an Amazon managed key.

The following procedures demonstrate how to remove tags from a KMS key. The Amazon KMS API
examples use the Amazon Command Line Interface (Amazon CLI), but you can use any supported
programming language.

Using the Amazon KMS console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot manage the tags of an
Amazon managed key)

4. You can use the table filter to display only KMS keys with particular tags. For details, see View
tags using the Amazon KMS console.

5. Select the check box next to the alias of a KMS key.

6. Choose Key actions, Add or edit tags.

7. On the details page for KMS key, choose the Tags tab.

• To delete a tag, choose Edit. On the tag row, choose Remove, and then choose Save.

8. To save your changes, choose Save changes.

Using the Amazon KMS API

The UntagResource operation deletes tags from a KMS key. To identify the tags to delete, specify
the tag keys. You cannot use this operation to delete tags from KMS keys a different Amazon Web
Services account.

When it succeeds, the UntagResource operation doesn't return any output. Also, if the specified
tag key isn't found on the KMS key, it doesn't throw an exception or return a response. To confirm
that the operation worked, use the ListResourceTags operation.

Remove tags 593

https://docs.amazonaws.cn/kms/latest/APIReference/API_UntagResource.html
http://www.amazonaws.cn/cli/
https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html

Amazon Key Management Service Developer Guide

For example, this command deletes the Purpose tag and its value from the specified KMS key.

$ aws kms untag-resource --key-id 1234abcd-12ab-34cd-56ef-1234567890ab --tag-keys
 Purpose

View tags associated with a KMS key

Tags help identify and organize your Amazon resources. You can view the tags associated with
your customer managed KMS keys in the Amazon KMS console or by using the ListResourceTags
operation.

The following procedures demonstrate how to find the tags associated with a specific KMS key. The
Amazon KMS API examples use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

Using the Amazon KMS console

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot manage the tags of an
Amazon managed key)

4. You can use the table filter to display only KMS keys with particular tags.

To display only KMS keys with a particular tag, choose the filter box, choose the tag key, and
then choose from among the actual tag values. You can also type all or part of the tag value.

The resulting table displays all KMS keys with the chosen tag. However, it doesn't display the
tag. To see the tag, choose the key ID or alias of the KMS key and on its detail page, choose the
Tags tab. The tabs appear below the General configuration section.

This filter requires both the tag key and tag value. It won't find KMS keys by typing only
the tag key or only its value. To filter tags by all or part of the tag key or value, use the
ListResourceTags operation to get tagged KMS keys, then use the filtering features of your
programming language.

5. Select the check box next to the alias of a KMS key.

View tags 594

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html
http://www.amazonaws.cn/cli/
https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html

Amazon Key Management Service Developer Guide

6. Choose Key actions, Add or edit tags.

7. On the details page for KMS key, choose the Tags tab.

Using the Amazon KMS API

The ListResourceTags operation gets the tags for a KMS key. The KeyId parameter is required.
You cannot use this operation to view the tags on KMS keys in a different Amazon Web Services
account.

For example, the following command gets the tags for an example KMS key.

$ aws kms list-resource-tags --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

 "Truncated": false,
 "Tags": [
 {
 "TagKey": "Project",
 "TagValue": "Alpha"
 },
 {
 "TagKey": "Purpose",
 "TagValue": "Test"
 },
 {
 "TagKey": "Department",
 "TagValue": "Finance"
 }
]
}

Use tags to control access to KMS keys

You can control access to Amazon KMS keys based on the tags on the KMS key. For example,
you can write an IAM policy that allows principals to enable and disable only the KMS keys that
have a particular tag. Or you can use an IAM policy to prevent principals from using KMS keys in
cryptographic operations unless the KMS key has a particular tag.

This feature is part of Amazon KMS support for attribute-based access control (ABAC). For
information about using tags to control access to Amazon resources, see What is ABAC for

Use tags to control access to KMS keys 595

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html

Amazon Key Management Service Developer Guide

Amazon? and Controlling Access to Amazon Resources Using Resource Tags in the IAM User Guide.
For help resolving access issues related to ABAC, see Troubleshooting ABAC for Amazon KMS.

Note

It might take up to five minutes for tag and alias changes to affect KMS key authorization.
Recent changes might be visible in API operations before they affect authorization.

Amazon KMS supports the aws:ResourceTag/tag-key global condition context key, which lets you
control access to KMS keys based on the tags on the KMS key. Because multiple KMS keys can have
the same tag, this feature lets you apply the permission to a select set of KMS keys. You can also
easily change the KMS keys in the set by changing their tags.

In Amazon KMS, the aws:ResourceTag/tag-key condition key is supported only in IAM policies.
It isn't supported in key policies, which apply only to one KMS key, or on operations that don't use
a particular KMS key, such as the ListKeys or ListAliases operations.

Controlling access with tags provides a simple, scalable, and flexible way to manage permissions.
However, if not properly designed and managed, it can allow or deny access to your KMS keys
inadvertently. If you are using tags to control access, consider the following practices.

• Use tags to reinforce the best practice of least privileged access. Give IAM principals only the
permissions they need on only the KMS keys they must use or manage. For example, use tags to
label the KMS keys used for a project. Then give the project team permission to use only KMS
keys with the project tag.

• Be cautious about giving principals the kms:TagResource and kms:UntagResource
permissions that let them add, edit, and delete tags. When you use tags to control access to KMS
keys, changing a tag can give principals permission to use KMS keys that they didn't otherwise
have permission to use. It can also deny access to KMS keys that other principals require to do
their jobs. Key administrators who don't have permission to change key policies or create grants
can control access to KMS keys if they have permission to manage tags.

Whenever possible, use a policy condition, such as aws:RequestTag/tag-key or
aws:TagKeys to limit a principal's tagging permissions to particular tags or tag patterns on
particular KMS keys.

• Review the principals in your Amazon Web Services account that currently have tagging and
untagging permissions and adjust them, if necessary. For example, the console default key policy

Use tags to control access to KMS keys 596

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon Key Management Service Developer Guide

for key administrators includes kms:TagResource and kms:UntagResource permission on
that KMS key. IAM policies might allow tag and untag permissions on all KMS keys. For example,
the AWSKeyManagementServicePowerUser managed policy allows principals to tag, untag, and
list tags on all KMS keys.

• Before setting a policy that depends on a tag, review the tags on the KMS keys in your Amazon
Web Services account. Make sure that your policy applies only to the tags you intend to include.
Use CloudTrail logs and CloudWatch alarms to alert you to tag changes that might affect access
to your KMS keys.

• The tag-based policy conditions use pattern matching; they aren't tied to a particular instance
of a tag. A policy that uses tag-based condition keys affects all new and existing tags that match
the pattern. If you delete and recreate a tag that matches a policy condition, the condition
applies to the new tag, just as it did to the old one.

For example, consider the following IAM policy. It allows the principals to call the
GenerateDataKeyWithoutPlaintext and Decrypt operations only on KMS keys in your account that
are the Asia Pacific (Singapore) Region and have a "Project"="Alpha" tag. You might attach this
policy to roles in the example Alpha project.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMPolicyWithResourceTag",
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:ap-southeast-1:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Project": "Alpha"
 }
 }
 }
]
}

Use tags to control access to KMS keys 597

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

The following example IAM policy allows the principals to use any KMS key in the account for
certain cryptographic operations. But it prohibits the principals from using these cryptographic
operations on KMS keys with a "Type"="Reserved" tag or no "Type" tag.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMAllowCryptographicOperations",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:Decrypt",
 "kms:ReEncrypt*"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*"
 },
 {
 "Sid": "IAMDenyOnTag",
 "Effect": "Deny",
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:Decrypt",
 "kms:ReEncrypt*"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Type": "Reserved"
 }
 }
 },
 {
 "Sid": "IAMDenyNoTag",
 "Effect": "Deny",
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:Decrypt",
 "kms:ReEncrypt*"
],

Use tags to control access to KMS keys 598

Amazon Key Management Service Developer Guide

 "Resource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/Type": "true"
 }
 }
 }
]
}

Use tags to control access to KMS keys 599

Amazon Key Management Service Developer Guide

Key stores

A key store is a secure location for storing and using cryptographic keys. The default key store
in Amazon KMS also supports methods for generating and managing the keys that it stores. By
default, the cryptographic key material for the Amazon KMS keys that you create in Amazon
KMS is generated in and protected by hardware security modules (HSMs) that are FIPS 140-3
Cryptographic Module Validation Program. Key material for your KMS keys never leave the HSMs
unencrypted.

Amazon KMS supports several types of key stores to protect your key material when using Amazon
KMS to create and manage your encryption keys. All of the key store options supplied by Amazon
KMS are continually validated under FIPS 140-3 at Security Level 3 and are designed to prevent
anyone, including Amazon operators, from accessing your plaintext keys or using them without
your permission.

Amazon KMS standard key store

By default, a KMS key is created using the standard Amazon KMS HSM. This HSM type can be
thought of as a multi-tenant fleet of HSMs that allows for the most scalable, lowest cost and
easiest key store to manage from your perspective. If you are creating a KMS key for use within one
or more Amazon Web Services services so that service can encrypt your data on your behalf, you
will create a symmetric key. If you are using a KMS key for your own application design, you may
choose to create a symmetric encryption key, asymmetric key, or HMAC key.

In the standard key store option, Amazon KMS creates your key, then encrypts it under keys that
the service manages internally. Multiple copies of encrypted versions of your keys are then stored
in systems that are designed for durability. Generating and protecting your key material in the
standard key store type lets you take full advantage of the scalability, availability, and durability of
Amazon KMS with the lowest operational burden and cost of the Amazon key stores.

Amazon KMS standard key store with imported key material

Instead of asking Amazon KMS to both generate and store the only copies of a given key, you
can choose to import key material into Amazon KMS, allowing you to generate your own 256-bit
symmetric encryption key, RSA or elliptic curve (ECC) key, or Hash-Based Message Authentication
Code (HMAC) key, and apply it to a KMS key identifier (keyId). This is sometimes referred to as

Amazon KMS standard key store 600

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884

Amazon Key Management Service Developer Guide

bring your own key (BYOK). Imported key material from your local key management system must
be protected by using a public key issued by Amazon KMS, a supported cryptographic wrapping
algorithm, and a time-based import token provided by Amazon KMS. This process verifies that your
encrypted, imported key can only ever be decrypted by an Amazon KMS HSM once it has left your
environment.

Imported key material may be useful if you have specific requirements around the system that
generates keys, or want a copy of your key outside of Amazon as a backup. Note that you are
responsible for an imported key material's overall availability and durability. While Amazon KMS
has a copy of your imported key and will keep highly available while you need it, imported keys
offer a special API for deletion – DeleteImportedKeyMaterial. This API will immediately delete all
copies of the imported key material that Amazon KMS has, with no option for Amazon to recover
the key. In addition, you can set an expiration time on an imported key, after which the key will be
unusable. To make the key useful again in Amazon KMS, you will have to reimport the key material
and assign it to the same keyId. This deletion action for imported keys is different than standard
keys that Amazon KMS generates and stored for you on your behalf. In the standard case, the
key deletion process has a mandatory waiting period where a key scheduled for deletion is first
blocked from usage. This action allows you to see access denied errors in logs from any application
or Amazon service that might need that key to access data. If you see such access requests, you
can choose to cancel the scheduled deletion and re-enable the key. After a configurable waiting
period (between 7 and 30 days), only then will KMS actually delete the key material, the keyID and
all metadata associated with the key. For more information about availability and durability, see
Protecting imported key material in the Amazon KMS Developer Guide.

There are some additional limitations with imported key material to be aware of. Since Amazon
KMS cannot generate new key material, there is no way to configure automatic rotation of
imported keys. You will need to create a new KMS key with a new keyId, then import new key
material to achieve an effective rotation. Also, ciphertexts created in Amazon KMS under an
imported symmetric key cannot be easily decrypted using your local copy of the key outside of
Amazon. This is because the authenticated encryption format used by Amazon KMS appends
additional metadata to the ciphertext to provide assurances during the decryption operation that
the ciphertext was created by the expected KMS key under a previous encrypt operation. Most
external cryptographic systems won’t understand how to parse this metadata to gain access to the
raw ciphertext to be able to use their copy of a symmetric key. Ciphertexts created under imported
asymmetric keys (e.g. RSA or ECC) can be used outside of Amazon KMS with the matching (public
or private) portion of the key because there is no additional metadata added by Amazon KMS to
the ciphertext.

Amazon KMS standard key store with imported key material 601

Amazon Key Management Service Developer Guide

Amazon KMS custom key stores

However, if you require even more control of the HSMs, you can create a custom key store.

A custom key store is a key store within Amazon KMS that is backed by a key manager outside
of Amazon KMS, which you own and manage. Custom key stores combine the convenient and
comprehensive key management interface of Amazon KMS with the ability to own and control the
key material and cryptographic operations. When you use a KMS key in a custom key store, the
cryptographic operations are performed by your key manager using your cryptographic keys. As a
result, you assume more responsibility for the availability and durability of cryptographic keys, and
for the operation of the HSMs.

Owning your HSMs may be useful to help meet certain regulatory requirements that don’t yet
allow multi-tenant web services like the standard KMS key store to hold your cryptographic keys.
Custom key stores are not more secure than KMS key store that use Amazon-managed HSMs, but
they have different (and higher) management and cost implications. As a result, you assume more
responsibility for the availability and durability of cryptographic keys and for the operation of the
HSMs. Regardless of whether you use the standard key store with Amazon KMS HSMs or a custom
key store, the service is designed so that no one, including Amazon employees, can retrieve your
plaintext keys or use them without your permission. Amazon KMS supports two types of custom
key stores, Amazon CloudHSM key stores and external key stores.

Unsupported features

Amazon KMS does not support the following features in custom key stores.

• Asymmetric KMS keys

• HMAC KMS keys

• KMS keys with imported key material

• Automatic key rotation

• Multi-Region keys

Amazon CloudHSM key store

You can create a KMS key in an Amazon CloudHSM key store, where root user keys are generated,
stored and used in a Amazon CloudHSM cluster that you own and manage. Requests to Amazon
KMS to use a key for some cryptographic operation are forwarded to your Amazon CloudHSM
cluster to perform the operation. While a Amazon CloudHSM cluster is hosted by Amazon, it is

Amazon KMS custom key stores 602

http://www.amazonaws.cn/kms/pricing/

Amazon Key Management Service Developer Guide

a single-tenant solution that is directly managed and operated by you. You own much of the
availability and performance of KMS keys in a Amazon CloudHSM cluster. To see if a Amazon
CloudHSM custom key store is a good fit for your requirements, read Are Amazon KMS custom key
stores right for you? on the Amazon security blog.

External key store

You can configure Amazon KMS to use an External Key Store (XKS), where root user keys are
generated, stored and used in a key management system outside the Amazon Web Services
Cloud. Requests to Amazon KMS to use a key for some cryptographic operation are forwarded
to your externally hosted system to perform the operation. Specifically, requests are forwarded
to an XKS Proxy in your network, which then forwards the request to whichever cryptographic
system you use. The XKS Proxy is an open-source specification that anyone can integrate with.
Many commercial key management vendors support the XKS Proxy specification. Because an
External Key Store is hosted by you or some third party, you own all of the availability, durability,
and performance of the keys in the system. To see if an External Key Store is a good fit for your
requirements, read Announcing Amazon KMS External Key Store (XKS) on the Amazon News blog.

Amazon CloudHSM key stores

An Amazon CloudHSM key store is a custom key store backed by a Amazon CloudHSM cluster.
When you create an Amazon KMS key in a custom key store, Amazon KMS generates and stores
non-extractable key material for the KMS key in an Amazon CloudHSM cluster that you own
and manage. When you use a KMS key in a custom key store, the cryptographic operations are
performed in the HSMs in the cluster. This feature combines the convenience and widespread
integration of Amazon KMS with the added control of an Amazon CloudHSM cluster in your
Amazon Web Services account.

Amazon KMS provides full console and API support for creating, using, and managing your custom
key stores. You can use the KMS keys in your custom key store the same way that you use any KMS
key. For example, you can use the KMS keys to generate data keys and encrypt data. You can also
use the KMS keys in your custom key store with Amazon services that support customer managed
keys.

Do I need a custom key store?

For most users, the default Amazon KMS key store, which is protected by FIPS 140-3 validated
cryptographic modules, fulfills their security requirements. There is no need to add an extra layer
of maintenance responsibility or a dependency on an additional service.

External key store 603

https://amazonaws-china.com/blogs/security/are-kms-custom-key-stores-right-for-you/
https://amazonaws-china.com/blogs/security/are-kms-custom-key-stores-right-for-you/
https://amazonaws-china.com/blogs/aws/announcing-aws-kms-external-key-store-xks/
https://docs.amazonaws.cn/cloudhsm/latest/userguide/
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884

Amazon Key Management Service Developer Guide

However, you might consider creating a custom key store if your organization has any of the
following requirements:

• You have keys that are explicitly required to be protected in a single tenant HSM or in an HSM
that you have direct control over.

• You need the ability to immediately remove key material from Amazon KMS.

• You need to be able to audit all use of your keys independently of Amazon KMS or Amazon
CloudTrail.

How do custom key stores work?

Each custom key store is associated with an Amazon CloudHSM cluster in your Amazon Web
Services account. When you connect the custom key store to its cluster, Amazon KMS creates the
network infrastructure to support the connection. Then it logs into the key Amazon CloudHSM
client in the cluster using the credentials of a dedicated crypto user in the cluster.

You create and manage your custom key stores in Amazon KMS and create and manage your HSM
clusters in Amazon CloudHSM. When you create Amazon KMS keys in an Amazon KMS custom key
store, you view and manage the KMS keys in Amazon KMS. But you can also view and manage their
key material in Amazon CloudHSM, just as you would do for other keys in the cluster.

Amazon CloudHSM key stores 604

Amazon Key Management Service Developer Guide

You can create symmetric encryption KMS keys with key material generated by Amazon KMS in
your custom key store. Then use the same techniques to view and manage the KMS keys in your
custom key store that you use for KMS keys in the Amazon KMS key store. You can control access
with IAM and key policies, create tags and aliases, enable and disable the KMS keys, and schedule
key deletion. You can use the KMS keys for cryptographic operations and use them with Amazon
services that integrate with Amazon KMS.

In addition, you have full control over the Amazon CloudHSM cluster, including creating and
deleting HSMs and managing backups. You can use the Amazon CloudHSM client and supported
software libraries to view, audit, and manage the key material for your KMS keys. While the custom
key store is disconnected, Amazon KMS cannot access it, and users cannot use the KMS keys in
the custom key store for cryptographic operations. This added layer of control makes custom key
stores a powerful solution for organizations that require it.

Where do I start?

To create and manage an Amazon CloudHSM key store, you use features of Amazon KMS and
Amazon CloudHSM.

1. Start in Amazon CloudHSM. Create an active Amazon CloudHSM cluster or select an existing
cluster. The cluster must have at least two active HSMs in different Availability Zones. Then
create a dedicated crypto user (CU) account in that cluster for Amazon KMS.

2. In Amazon KMS, create a custom key store that is associated with your selected Amazon
CloudHSM cluster. Amazon KMS provides a complete management interface that lets you create,
view, edit, and delete your custom key stores.

3. When you're ready to use your custom key store, connect it to its associated Amazon CloudHSM
cluster. Amazon KMS creates the network infrastructure that it needs to support the connection.
It then logs in to the cluster using the dedicated crypto user account credentials so it can
generate and manage key material in the cluster.

4. Now, you can create symmetric encryption KMS keys in your custom key store. Just specify the
custom key store when you create the KMS key.

If you get stuck at any point, you can find help in the Troubleshooting a custom key store topic. If
your question is not answered, use the feedback link at the bottom of each page of this guide or
post a question on the Amazon Key Management Service Discussion Forum.

Quotas

Amazon CloudHSM key stores 605

https://docs.amazonaws.cn/cloudhsm/latest/userguide/getting-started.html
https://repost.aws/tags/TAMC3vcPOPTF-rPAHZVRj1PQ/aws-key-management-service

Amazon Key Management Service Developer Guide

Amazon KMS allows up to 10 custom key stores in each Amazon Web Services account and
Region, including both Amazon CloudHSM key stores and external key stores, regardless of their
connection state. In addition, there are Amazon KMS request quotas on the use of KMS keys in an
Amazon CloudHSM key store.

Pricing

For information on the cost of Amazon KMS custom key stores and customer managed keys in a
custom key store, see Amazon Key Management Service pricing. For information about the cost of
Amazon CloudHSM clusters and HSMs, see Amazon CloudHSM Pricing.

Regions

Amazon KMS supports Amazon CloudHSM key stores in all Amazon Web Services Regions where
Amazon KMS is supported, except for Asia Pacific (Melbourne), China (Beijing), China (Ningxia), and
Europe (Spain).

Unsupported features

Amazon KMS does not support the following features in custom key stores.

• Asymmetric KMS keys

• HMAC KMS keys

• KMS keys with imported key material

• Automatic key rotation

• Multi-Region keys

Amazon CloudHSM key store concepts

This topic explains some of the terms and concepts used in Amazon CloudHSM key stores.

Amazon CloudHSM key store

An Amazon CloudHSM key store is a custom key store associated with an Amazon CloudHSM cluster
that you own and manage. Amazon CloudHSM clusters are backed by hardware security modules
(HSMs) certified at FIPS 140-2 or FIPS 140-3Level 3.

When you create a KMS key in your Amazon CloudHSM key store, Amazon KMS generates a
256-bit, persistent, non-exportable Advanced Encryption Standard (AES) symmetric key in the

Amazon CloudHSM key store concepts 606

https://docs.amazonaws.cn/kms/latest/developerguide/keystore-cloudhsm.html
https://docs.amazonaws.cn/kms/latest/developerguide/keystore-external.html
http://www.amazonaws.cn/kms/pricing/
http://www.amazonaws.cn/cloudhsm/pricing/
https://docs.amazonaws.cn/cloudhsm/latest/userguide/compliance.html

Amazon Key Management Service Developer Guide

associated Amazon CloudHSM cluster. This key material never leaves your HSMs unencrypted.
When you use a KMS key in an Amazon CloudHSM key store, the cryptographic operations are
performed in the HSMs in the cluster.

Amazon CloudHSM key stores combine the convenient and comprehensive key management
interface of Amazon KMS with the additional controls provided by an Amazon CloudHSM cluster
in your Amazon Web Services account. This integrated feature lets you create, manage, and
use KMS keys in Amazon KMS while maintaining full control of the HSMs that store their key
material, including managing clusters, HSMs, and backups. You can use the Amazon KMS console
and APIs to manage the Amazon CloudHSM key store and its KMS keys. You can also use the
Amazon CloudHSM console, APIs, client software, and associated software libraries to manage the
associated cluster.

You can view and manage your Amazon CloudHSM key store, edit its properties, and connect and
disconnect it from its associated Amazon CloudHSM cluster. If you need to delete an Amazon
CloudHSM key store, you must first delete the KMS keys in the Amazon CloudHSM key store
by scheduling their deletion and waiting until the grace period expires. Deleting the Amazon
CloudHSM key store removes the resource from Amazon KMS, but it does not affect your Amazon
CloudHSM cluster.

Amazon CloudHSM cluster

Every Amazon CloudHSM key store is associated with one Amazon CloudHSM cluster. When you
create an Amazon KMS key in your Amazon CloudHSM key store, Amazon KMS creates its key
material in the associated cluster. When you use a KMS key in your Amazon CloudHSM key store,
the cryptographic operation is performed in the associated cluster.

Each Amazon CloudHSM cluster can be associated with only one Amazon CloudHSM key store. The
cluster that you choose cannot be associated with another Amazon CloudHSM key store or share
a backup history with a cluster that is associated with another Amazon CloudHSM key store. The
cluster must be initialized and active, and it must be in the same Amazon Web Services account
and Region as the Amazon CloudHSM key store. You can create a new cluster or use an existing
one. Amazon KMS does not need exclusive use of the cluster. To create KMS keys in the Amazon
CloudHSM key store, its associated cluster it must contain at least two active HSMs. All other
operations require only one HSM.

You specify the Amazon CloudHSM cluster when you create the Amazon CloudHSM key store, and
you cannot change it. However, you can substitute any cluster that shares a backup history with the

Amazon CloudHSM key store concepts 607

Amazon Key Management Service Developer Guide

original cluster. This lets you delete the cluster, if necessary, and replace it with a cluster created
from one of its backups. You retain full control of the associated Amazon CloudHSM cluster so you
can manage users and keys, create and delete HSMs, and use and manage backups.

When you are ready to use your Amazon CloudHSM key store, you connect it to its associated
Amazon CloudHSM cluster. You can connect and disconnect your custom key store at any
time. When a custom key store is connected, you can create and use its KMS keys. When it is
disconnected, you can view and manage the Amazon CloudHSM key store and its KMS keys. But
you cannot create new KMS keys or use the KMS keys in the Amazon CloudHSM key store for
cryptographic operations.

kmsuser Crypto user

To create and manage key material in the associated Amazon CloudHSM cluster on your behalf,
Amazon KMS uses a dedicated Amazon CloudHSM crypto user (CU) in the cluster named kmsuser.
The kmsuser CU is a standard CU account that is automatically synchronized to all HSMs in the
cluster and is saved in cluster backups.

Before you create your Amazon CloudHSM key store, you create a kmsuser CU account in your
Amazon CloudHSM cluster using the user create command in CloudHSM CLI. Then when you create
the Amazon CloudHSM key store, you provide the kmsuser account password to Amazon KMS.
When you connect the custom key store, Amazon KMS logs into the cluster as the kmsuser CU and
rotates its password. Amazon KMS encrypts your kmsuser password before it stores it securely.
When the password is rotated, the new password is encrypted and stored in the same way.

Amazon KMS remains logged in as kmsuser as long as the Amazon CloudHSM key store is
connected. You should not use this CU account for other purposes. However, you retain ultimate
control of the kmsuser CU account. At any time, you can find the keys that kmsuser owns. If
necessary, you can disconnect the custom key store, change the kmsuser password, log into the
cluster as kmsuser, and view and manage the keys that kmsuser owns.

For instructions on creating your kmsuser CU account, see Create the kmsuser Crypto User.

KMS keys in an Amazon CloudHSM key store

You can use the Amazon KMS or Amazon KMS API to create a Amazon KMS keys in an Amazon
CloudHSM key store. You use the same technique that you would use on any KMS key. The only
difference is that you must identify the Amazon CloudHSM key store and specify that the origin of
the key material is the Amazon CloudHSM cluster.

Amazon CloudHSM key store concepts 608

https://docs.amazonaws.cn/cloudhsm/latest/userguide/hsm-users.html#crypto-user
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-user-cloudhsm-cli.html

Amazon Key Management Service Developer Guide

When you create a KMS key in an Amazon CloudHSM key store, Amazon KMS creates the KMS
key in Amazon KMS and it generates a 256-bit, persistent, non-exportable Advanced Encryption
Standard (AES) symmetric key material in its associated cluster. When you use the Amazon KMS key
in a cryptographic operation, the operation is performed in the Amazon CloudHSM cluster using
the cluster-based AES key. Although Amazon CloudHSM supports symmetric and asymmetric keys
of different types, Amazon CloudHSM key stores support only AES symmetric encryption keys.

You can view the KMS keys in an Amazon CloudHSM key store in the Amazon KMS console, and use
the console options to display the custom key store ID. You can also use the DescribeKey operation
to find the Amazon CloudHSM key store ID and Amazon CloudHSM cluster ID.

The KMS keys in an Amazon CloudHSM key store work just like any KMS keys in Amazon KMS.
Authorized users need the same permissions to use and manage the KMS keys. You use the same
console procedures and API operations to view and manage the KMS keys in an Amazon CloudHSM
key store. These include enabling and disabling KMS keys, creating and using tags and aliases, and
setting and changing IAM and key policies. You can use the KMS keys in an Amazon CloudHSM key
store for cryptographic operations, and use them with integrated Amazon services that support the
use of customer managed keys However, you cannot enable automatic key rotation or import key
material into a KMS key in an Amazon CloudHSM key store.

You also use the same process to schedule deletion of a KMS key in an Amazon CloudHSM key
store. After the waiting period expires, Amazon KMS deletes the KMS key from KMS. Then it makes
a best effort to delete the key material for the KMS key from the associated Amazon CloudHSM
cluster. However, you might need to manually delete the orphaned key material from the cluster
and its backups.

Control access to your Amazon CloudHSM key store

You use IAM policies to control access to your Amazon CloudHSM key store and your Amazon
CloudHSM cluster. You can use key policies, IAM policies, and grants to control access to the
Amazon KMS keys in your Amazon CloudHSM key store. We recommend that you provide users,
groups, and roles only the permissions that they require for the tasks that they are likely to
perform.

To support your Amazon CloudHSM key stores, Amazon KMS needs permission to
get information about your Amazon CloudHSM clusters. It also needs permission to
create the network infrastructure that connects your Amazon CloudHSM key store
to its Amazon CloudHSM cluster. To get these permissions, Amazon KMS creates the

Control access to your Amazon CloudHSM key store 609

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role in your Amazon
Web Services account. For more information, see Authorizing Amazon KMS to manage Amazon
CloudHSM and Amazon EC2 resources.

When designing your Amazon CloudHSM key store, be sure that the principals who use and
manage it have only the permissions that they require. The following list describes the minimum
permissions required for Amazon CloudHSM key store managers and users.

• Principals who create and manage your Amazon CloudHSM key store require the following
permission to use the Amazon CloudHSM key store API operations.

• cloudhsm:DescribeClusters

• kms:CreateCustomKeyStore

• kms:ConnectCustomKeyStore

• kms:DeleteCustomKeyStore

• kms:DescribeCustomKeyStores

• kms:DisconnectCustomKeyStore

• kms:UpdateCustomKeyStore

• iam:CreateServiceLinkedRole

• Principals who create and manage the Amazon CloudHSM cluster that is associated with your
Amazon CloudHSM key store need permission to create and initialize an Amazon CloudHSM
cluster. This includes permission to create or use an Amazon Virtual Private Cloud (VPC), create
subnets, and create an Amazon EC2 instance. They might also need to create and delete HSMs,
and manage backups. For lists of the required permissions, see Identity and access management
for Amazon CloudHSM in the Amazon CloudHSM User Guide.

• Principals who create and manage Amazon KMS keys in your Amazon CloudHSM key store
require the same permissions as those who create and manage any KMS key in Amazon KMS.
The default key policy for a KMS key in an Amazon CloudHSM key store is identical to the default
key policy for KMS keys in Amazon KMS. Attribute-based access control (ABAC), which uses tags
and aliases to control access to KMS keys, is also effective on KMS keys in Amazon CloudHSM key
stores.

• Principals who use the KMS keys in your Amazon CloudHSM key store for cryptographic
operations need permission to perform the cryptographic operation with the KMS key, such as
kms:Decrypt. You can provide these permissions in a key policy, IAM policy. But, they do not need
any additional permissions to use a KMS key in an Amazon CloudHSM key store.

Control access to your Amazon CloudHSM key store 610

https://docs.aws.amazon.com/cloudhsm/latest/userguide/identity-access-management.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/identity-access-management.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

Create an Amazon CloudHSM key store

You can create one or several Amazon CloudHSM key stores in your account. Each Amazon
CloudHSM key store is associated with one Amazon CloudHSM cluster in the same Amazon Web
Services account and Region. Before you create your Amazon CloudHSM key store, you need to
assemble the prerequisites. Then, before you can use your Amazon CloudHSM key store, you must
connect it to its Amazon CloudHSM cluster.

Notes

KMS cannot communicate over IPv6 with Amazon CloudHSM key stores.
If you try to create an Amazon CloudHSM key store with all of the same property values
as an existing disconnected Amazon CloudHSM key store, Amazon KMS does not create a
new Amazon CloudHSM key store, and it does not throw an exception or display an error.
Instead, Amazon KMS recognizes the duplicate as the likely consequence of a retry, and it
returns the ID of the existing Amazon CloudHSM key store.
You do not have to connect your Amazon CloudHSM key store immediately. You can leave it
in a disconnected state until you are ready to use it. However, to verify that it is configured
properly, you might want to connect it, view its connection state, and then disconnect it.

Topics

• Assemble the prerequisites

• Create a new Amazon CloudHSM key store

Assemble the prerequisites

Each Amazon CloudHSM key store is backed by an Amazon CloudHSM cluster. To create an Amazon
CloudHSM key store, you must specify an active Amazon CloudHSM cluster that is not already
associated with another key store. You also need to create a dedicated crypto user (CU) in the
cluster's HSMs that Amazon KMS can use to create and manage keys on your behalf.

Before you create an Amazon CloudHSM key store, do the following:

Select an Amazon CloudHSM cluster

Every Amazon CloudHSM key store is associated with exactly one Amazon CloudHSM cluster.
When you create Amazon KMS keys in your Amazon CloudHSM key store, Amazon KMS creates

Create an Amazon CloudHSM key store 611

Amazon Key Management Service Developer Guide

the KMS key metadata, such as an ID and Amazon Resource Name (ARN) in Amazon KMS.
It then creates the key material in the HSMs of the associated cluster. You can create a new
Amazon CloudHSM cluster or use an existing one. Amazon KMS does not require exclusive
access to the cluster.

The Amazon CloudHSM cluster that you select is permanently associated with the Amazon
CloudHSM key store. After you create the Amazon CloudHSM key store, you can change the
cluster ID of the associated cluster, but the cluster that you specify must share a backup
history with the original cluster. To use an unrelated cluster, you need to create a new Amazon
CloudHSM key store.

The Amazon CloudHSM cluster that you select must have the following characteristics:

• The cluster must be active.

You must create the cluster, initialize it, install the Amazon CloudHSM client software for your
platform, and then activate the cluster. For detailed instructions, see Getting started with
Amazon CloudHSM in the Amazon CloudHSM User Guide.

• The cluster must be in the same account and Region as the Amazon CloudHSM key store.
You cannot associate an Amazon CloudHSM key store in one Region with a cluster in a
different Region. To create a key infrastructure in multiple Regions, you must create Amazon
CloudHSM key stores and clusters in each Region.

• The cluster cannot be associated with another custom key store in the same account and
Region. Each Amazon CloudHSM key store in the account and Region must be associated with
a different Amazon CloudHSM cluster. You cannot specify a cluster that is already associated
with a custom key store or a cluster that shares a backup history with an associated cluster.
Clusters that share a backup history have the same cluster certificate. To view the cluster
certificate of a cluster, use the Amazon CloudHSM console or the DescribeClusters operation.

If you back up an Amazon CloudHSM cluster to a different Region, it is considered to be
different cluster, and you can associate the backup with a custom key store in its Region.
However, KMS keys in the two custom key stores are not interoperable, even if they have the
same backing key. Amazon KMS binds metadata to the ciphertext so it can be decrypted only
by the KMS key that encrypted it.

• The cluster must be configured with private subnets in at least two Availability Zones in the
Region. Because Amazon CloudHSM is not supported in all Availability Zones, we recommend
that you create private subnets in all Availability Zones in the region. You cannot reconfigure

Create an Amazon CloudHSM key store 612

https://docs.amazonaws.cn/cloudhsm/latest/userguide/getting-started.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/getting-started.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/copy-backup-to-region.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-subnets.html

Amazon Key Management Service Developer Guide

the subnets for an existing cluster, but you can create a cluster from a backup with different
subnets in the cluster configuration.

Important

After you create your Amazon CloudHSM key store, do not delete any of the private
subnets configured for its Amazon CloudHSM cluster. If Amazon KMS cannot find all
of the subnets in the cluster configuration, attempts to connect to the custom key
store fail with a SUBNET_NOT_FOUND connection error state. For details, see How to
fix a connection failure.

• The security group for the cluster (cloudhsm-cluster-<cluster-id>-sg) must include
inbound rules and outbound rules that allow TCP traffic over IPv4, on ports 2223-2225.
The Source in the inbound rules and the Destination in the outbound rules must match the
security group ID. These rules are set by default when you create the cluster. Do not delete or
change them.

• The cluster must contain at least two active HSMs in different Availability Zones. To verify
the number of HSMs, use the Amazon CloudHSM console or the DescribeClusters operation. If
necessary, you can add an HSM.

Find the trust anchor certificate

When you create a custom key store, you must upload the trust anchor certificate for the
Amazon CloudHSM cluster to Amazon KMS. Amazon KMS needs the trust anchor certificate to
connect the Amazon CloudHSM key store to its associated Amazon CloudHSM cluster.

Every active Amazon CloudHSM cluster has a trust anchor certificate. When you initialize the
cluster, you generate this certificate, save it in the customerCA.crt file, and copy it to hosts
that connect to the cluster.

Create the kmsuser crypto user for Amazon KMS

To administer your Amazon CloudHSM key store, Amazon KMS logs into the kmsuser crypto
user (CU) account in the selected cluster. Before you create your Amazon CloudHSM key store,
you must create the kmsuser CU. Then when you create your Amazon CloudHSM key store,
you provide the password for kmsuser to Amazon KMS. Whenever you connect the Amazon
CloudHSM key store to its associated Amazon CloudHSM cluster, Amazon KMS logs in as the
kmsuser and rotates the kmsuser password

Create an Amazon CloudHSM key store 613

https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/configure-sg.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/add-remove-hsm.html#add-hsm
https://docs.amazonaws.cn/cloudhsm/latest/userguide/initialize-cluster.html#sign-csr
https://docs.amazonaws.cn/cloudhsm/latest/userguide/initialize-cluster.html#sign-csr

Amazon Key Management Service Developer Guide

Important

Do not specify the 2FA option when you create the kmsuser CU. If you do, Amazon
KMS cannot log in and your Amazon CloudHSM key store cannot be connected to this
Amazon CloudHSM cluster. Once you specify 2FA, you cannot undo it. Instead, you must
delete the CU and recreate it.

Notes

The following procedures use the Amazon CloudHSM Client SDK 5 command line tool,
CloudHSM CLI. The CloudHSM CLI replaces key-handle with key-reference.
On January 1, 2025, Amazon CloudHSM will end support for the Client SDK 3 command
line tools, the CloudHSM Management Utility (CMU) and the Key Management Utility
(KMU). For more information on the differences between the Client SDK 3 command
line tools and the Client SDK 5 command line tool, see Migrate from Client SDK 3 CMU
and KMU to Client SDK 5 CloudHSM CLI in the Amazon CloudHSM User Guide.

1. Follow the getting started procedures as described in the Getting started with CloudHSM
Command Line Interface (CLI) topic of the Amazon CloudHSM User Guide.

2. Use the user create command to create a CU named kmsuser.

The password must consist of 7-32 alphanumeric characters. It is case-sensitive and cannot
contain any special characters.

The following example command creates a kmsuser CU.

aws-cloudhsm > user create --username kmsuser --role crypto-user
Enter password:
Confirm password:
{
 "error_code": 0,
 "data": {
 "username": "kmsuser",
 "role": "crypto-user"
 }
}

Create an Amazon CloudHSM key store 614

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-getting-started.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-getting-started.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-user-cloudhsm-cli.html

Amazon Key Management Service Developer Guide

Create a new Amazon CloudHSM key store

After assembling the prerequisites, you can create a new Amazon CloudHSM key store in the
Amazon KMS console or by using the CreateCustomKeyStore operation.

Using the Amazon KMS console

When you create an Amazon CloudHSM key store in the Amazon Web Services Management
Console, you can add and create the prerequisites as part of your workflow. However, the process is
quicker when you have assembled them in advance.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, Amazon CloudHSM key stores.

4. Choose Create a key store.

5. Enter a friendly name for the custom key store. The name must be unique among all custom
key stores in your account.

Important

Do not include confidential or sensitive information in this field. This field may be
displayed in plaintext in CloudTrail logs and other output.

6. Select an Amazon CloudHSM cluster for the Amazon CloudHSM key store. Or, to create a new
Amazon CloudHSM cluster, choose the Create an Amazon CloudHSM cluster link.

The menu displays the Amazon CloudHSM clusters in your account and region that are
not already associated with an Amazon CloudHSM key store. The cluster must fulfill the
requirements for association with a custom key store.

7. Choose Choose file, and then upload the trust anchor certificate for the Amazon CloudHSM
cluster that you chose. This is the customerCA.crt file that you created when you initialized
the cluster.

8. Enter the password of the kmsuser crypto user (CU) that you created in the selected cluster.

9. Choose Create.

Create an Amazon CloudHSM key store 615

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html
https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/cloudhsm/latest/userguide/initialize-cluster.html#sign-csr
https://docs.amazonaws.cn/cloudhsm/latest/userguide/initialize-cluster.html#sign-csr

Amazon Key Management Service Developer Guide

When the procedure is successful, the new Amazon CloudHSM key store appears in the list of
Amazon CloudHSM key stores in the account and Region. If it is unsuccessful, an error message
appears that describes the problem and provides help on how to fix it. If you need more help, see
Troubleshooting a custom key store.

If you try to create an Amazon CloudHSM key store with all of the same property values as an
existing disconnected Amazon CloudHSM key store, Amazon KMS does not create a new Amazon
CloudHSM key store, and it does not throw an exception or display an error. Instead, Amazon KMS
recognizes the duplicate as the likely consequence of a retry, and it returns the ID of the existing
Amazon CloudHSM key store.

Next: New Amazon CloudHSM key stores are not automatically connected. Before you can create
Amazon KMS keys in the Amazon CloudHSM key store, you must connect the custom key store to
its associated Amazon CloudHSM cluster.

Using the Amazon KMS API

You can use the CreateCustomKeyStore operation to create a new Amazon CloudHSM key
store that is associated with an Amazon CloudHSM cluster in the account and Region. These
examples use the Amazon Command Line Interface (Amazon CLI), but you can use any supported
programming language.

The CreateCustomKeyStore operation requires the following parameter values.

• CustomKeyStoreName – A friendly name for the custom key store that is unique in the account.

Important

Do not include confidential or sensitive information in this field. This field may be
displayed in plaintext in CloudTrail logs and other output.

• CloudHsmClusterId – The cluster ID of an Amazon CloudHSM cluster that fulfills the
requirements for an Amazon CloudHSM key store.

• KeyStorePassword – The password of kmsuser CU account in the specified cluster.

• TrustAnchorCertificate – The content of the customerCA.crt file that you created when you
initialized the cluster.

The following example uses a fictitious cluster ID. Before running the command, replace it with a
valid cluster ID.

Create an Amazon CloudHSM key store 616

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/initialize-cluster.html

Amazon Key Management Service Developer Guide

$ aws kms create-custom-key-store
 --custom-key-store-name ExampleCloudHSMKeyStore \
 --cloud-hsm-cluster-id cluster-1a23b4cdefg \
 --key-store-password kmsPswd \
 --trust-anchor-certificate <certificate-goes-here>

If you are using the Amazon CLI, you can specify the trust anchor certificate file, instead of its
contents. In the following example, the customerCA.crt file is in the root directory.

$ aws kms create-custom-key-store
 --custom-key-store-name ExampleCloudHSMKeyStore \
 --cloud-hsm-cluster-id cluster-1a23b4cdefg \
 --key-store-password kmsPswd \
 --trust-anchor-certificate file://customerCA.crt

When the operation is successful, CreateCustomKeyStore returns the custom key store ID, as
shown in the following example response.

{
 "CustomKeyStoreId": cks-1234567890abcdef0
}

If the operation fails, correct the error indicated by the exception, and try again. For additional
help, see Troubleshooting a custom key store.

If you try to create an Amazon CloudHSM key store with all of the same property values as an
existing disconnected Amazon CloudHSM key store, Amazon KMS does not create a new Amazon
CloudHSM key store, and it does not throw an exception or display an error. Instead, Amazon KMS
recognizes the duplicate as the likely consequence of a retry, and it returns the ID of the existing
Amazon CloudHSM key store.

Next: To use the Amazon CloudHSM key store, connect it to its Amazon CloudHSM cluster.

View an Amazon CloudHSM key store

You can view the Amazon CloudHSM key stores in each account and Region by using the Amazon
KMS console or the DescribeCustomKeyStores operation.

View an Amazon CloudHSM key store 617

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

Using the Amazon KMS console

When you view the Amazon CloudHSM key stores in the Amazon Web Services Management
Console, you can see the following:

• The custom key store name and ID

• The ID of associated Amazon CloudHSM cluster

• The number of HSMs in the cluster

• The current connection state

A connection state (Status) value of Disconnected indicates that the custom key store is new
and has never been connected, or it was intentionally disconnected from its Amazon CloudHSM
cluster. However, if your attempts to use a KMS key in a connected custom key store fail, that
might indicate a problem with the custom key store or its Amazon CloudHSM cluster. For help, see
How to fix a failing KMS key.

To view the Amazon CloudHSM key stores in a given account and Region, use the following
procedure.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, Amazon CloudHSM key stores.

To customize the display, click the gear icon that appears below the Create key store button.

Using the Amazon KMS API

To view your Amazon CloudHSM key stores, use the DescribeCustomKeyStores operation. By
default, this operation returns all custom key stores in the account and Region. But you can use
either the CustomKeyStoreId or CustomKeyStoreName parameter (but not both) to limit the
output to a particular custom key store. For Amazon CloudHSM key stores, the output consists of
the custom key store ID and name, the custom key store type, the ID of the associated Amazon
CloudHSM cluster, and the connection state. If the connection state indicates an error, the output
also includes an error code that describes the reason for the error.

View an Amazon CloudHSM key store 618

https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

For example, the following command returns all custom key stores in the account and Region. You
can use the Limit and Marker parameters to page through the custom key stores in the output.

$ aws kms describe-custom-key-stores

The following example command uses the CustomKeyStoreName parameter to get only the
custom key store with the ExampleCloudHSMKeyStore friendly name. You can use either the
CustomKeyStoreName or CustomKeyStoreId parameter (but not both) in each command.

The following example output represents an Amazon CloudHSM key store that is connected to its
Amazon CloudHSM cluster.

Note

The CustomKeyStoreType field was added to the DescribeCustomKeyStores response
to distinguish Amazon CloudHSM key stores from external key stores.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleCloudHSMKeyStore
{
 "CustomKeyStores": [
 {
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionState": "CONNECTED",
 "CreationDate": "1.499288695918E9",
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleCloudHSMKeyStore",
 "CustomKeyStoreType": "AWS_CLOUDHSM",
 "TrustAnchorCertificate": "<certificate appears here>"
 }
]
}

A ConnectionState of Disconnected indicates that a custom key store has never been
connected or it was intentionally disconnected from its Amazon CloudHSM cluster. However, if
attempts to use a KMS key in a connected Amazon CloudHSM key store fail, that might indicate a

View an Amazon CloudHSM key store 619

http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

problem with the Amazon CloudHSM key store or its Amazon CloudHSM cluster. For help, see How
to fix a failing KMS key.

If the ConnectionState of the custom key store is FAILED, the DescribeCustomKeyStores
response includes a ConnectionErrorCode element that explains the reason for the error.

For example, in the following output, the INVALID_CREDENTIALS value indicates that the custom
key store connection failed because the kmsuser password is invalid. For help with this and other
connection error failures, see Troubleshooting a custom key store.

$ aws kms describe-custom-key-stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 {
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionErrorCode": "INVALID_CREDENTIALS",
 "ConnectionState": "FAILED",
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleCloudHSMKeyStore",
 "CustomKeyStoreType": "AWS_CLOUDHSM",
 "CreationDate": "1.499288695918E9",
 "TrustAnchorCertificate": "<certificate appears here>"
 }
]
}

Learn more:

• View external key stores

• Identify KMS keys in Amazon CloudHSM key stores

• Logging Amazon KMS API calls with Amazon CloudTrail

Edit Amazon CloudHSM key store settings

You can change the settings of an existing Amazon CloudHSM key store. The custom key store
must be disconnected its Amazon CloudHSM cluster.

To edit Amazon CloudHSM key store settings:

1. Disconnect the custom key store from its Amazon CloudHSM cluster.

Edit Amazon CloudHSM key store settings 620

Amazon Key Management Service Developer Guide

While the custom key store is disconnected, you cannot create Amazon KMS keys (KMS
keys) in the custom key store and you cannot use the KMS keys it contains for cryptographic
operations.

2. Edit one or more of the Amazon CloudHSM key store settings.

You can edit the following settings in a custom key store:

The friendly name of the custom key store.

Enter a new friendly name. The new name must be unique among all custom key stores in
your Amazon Web Services account.

Important

Do not include confidential or sensitive information in this field. This field may be
displayed in plaintext in CloudTrail logs and other output.

The cluster ID of the associated Amazon CloudHSM cluster.

Edit this value to substitute a related Amazon CloudHSM cluster for the original one. You
can use this feature to repair a custom key store if its Amazon CloudHSM cluster becomes
corrupted or is deleted.

Specify an Amazon CloudHSM cluster that shares a backup history with the original cluster
and fulfills the requirements for association with a custom key store, including two active
HSMs in different Availability Zones. Clusters that share a backup history have the same
cluster certificate. To view the cluster certificate of a cluster, use the DescribeClusters
operation. You cannot use the edit feature to associate the custom key store with an
unrelated Amazon CloudHSM cluster.

The current password of the kmsuser crypto user (CU).

Tells Amazon KMS the current password of the kmsuser CU in the Amazon CloudHSM
cluster. This action does not change the password of the kmsuser CU in the Amazon
CloudHSM cluster.

Edit Amazon CloudHSM key store settings 621

https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html

Amazon Key Management Service Developer Guide

If you change the password of the kmsuser CU in the Amazon CloudHSM cluster, use this
feature to tell Amazon KMS the new kmsuser password. Otherwise, Amazon KMS cannot
log into the cluster and all attempts to connect the custom key store to the cluster fail.

3. Reconnect the custom key store to its Amazon CloudHSM cluster.

Edit your key store settings

You can edit your Amazon CloudHSM key store settings in the Amazon KMS console or by using the
UpdateCustomKeyStore operation.

Using the Amazon KMS console

When you edit an Amazon CloudHSM key store, you can change any or of the configurable values.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, Amazon CloudHSM key stores.

4. Choose the row of the Amazon CloudHSM key store you want to edit.

If the value in the Connection state column is not Disconnected, you must disconnect
the custom key store before you can edit it. (From the Key store actions menu, choose
Disconnect.)

While an Amazon CloudHSM key store is disconnected, you can manage the Amazon
CloudHSM key store and its KMS keys, but you cannot create or use KMS keys in the Amazon
CloudHSM key store.

5. From the Key store actions menu, choose Edit.

6. Do one or more of the following actions.

• Type a new friendly name for the custom key store.

• Type the cluster ID of a related Amazon CloudHSM cluster.

• Type the current password of the kmsuser crypto user in the associated Amazon CloudHSM
cluster.

7. Choose Save.

Edit Amazon CloudHSM key store settings 622

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

When the procedure is successful, a message describes the settings that you edited. When it is
unsuccessful, an error message appears that describes the problem and provides help on how
to fix it. If you need more help, see Troubleshooting a custom key store.

8. Reconnect the custom key store.

To use the Amazon CloudHSM key store, you must reconnect it after editing. You can leave
the Amazon CloudHSM key store disconnected. But while it is disconnected, you cannot create
KMS keys in the Amazon CloudHSM key store or use the KMS keys in the Amazon CloudHSM
key store in cryptographic operations.

Using the Amazon KMS API

To change the properties of an Amazon CloudHSM key store, use the UpdateCustomKeyStore
operation. You can change multiple properties of a custom key store in the same command. If the
operation is successful, Amazon KMS returns an HTTP 200 response and a JSON object with no
properties. To verify that the changes are effective, use the DescribeCustomKeyStores operation.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

Begin by using DisconnectCustomKeyStore to disconnect the custom key store from its Amazon
CloudHSM cluster. Replace the example custom key store ID, cks-1234567890abcdef0, with an
actual ID.

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

The first example uses UpdateCustomKeyStore to change the friendly name of the Amazon
CloudHSM key store to DevelopmentKeys. The command uses the CustomKeyStoreId
parameter to identify the Amazon CloudHSM key store and the CustomKeyStoreName to specify
the new name for the custom key store.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 --new-
custom-key-store-name DevelopmentKeys

The following example changes the cluster that is associated with an Amazon CloudHSM key store
to another backup of the same cluster. The command uses the CustomKeyStoreId parameter to
identify the Amazon CloudHSM key store and the CloudHsmClusterId parameter to specify the
new cluster ID.

Edit Amazon CloudHSM key store settings 623

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html

Amazon Key Management Service Developer Guide

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 --cloud-
hsm-cluster-id cluster-1a23b4cdefg

The following example tells Amazon KMS that the current kmsuser password is
ExamplePassword. The command uses the CustomKeyStoreId parameter to identify the
Amazon CloudHSM key store and the KeyStorePassword parameter to specify the current
password.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 --key-
store-password ExamplePassword

The final command reconnects the Amazon CloudHSM key store to its Amazon CloudHSM cluster.
You can leave the custom key store in the disconnected state, but you must connect it before
you can create new KMS keys or use existing KMS keys for cryptographic operations. Replace the
example custom key store ID with an actual ID.

$ aws kms connect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

Connect an Amazon CloudHSM key store

New Amazon CloudHSM key stores are not connected. Before you can create and use Amazon
KMS keys in your Amazon CloudHSM key store, you need to connect it to its associated Amazon
CloudHSM cluster. You can connect and disconnect your Amazon CloudHSM key store at any time,
and view its connection state.

You are not required to connect your Amazon CloudHSM key store. You can leave an Amazon
CloudHSM key store in a disconnected state indefinitely and connect it only when you need to
use it. However, you might want to test the connection periodically to verify that the settings are
correct and it can be connected.

Note

Amazon CloudHSM key stores have a DISCONNECTED connection state only when the key
store has never been connected or you explicitly disconnect it. If your Amazon CloudHSM
key store connection state is CONNECTED but you are having trouble using it, make sure
that its associated Amazon CloudHSM cluster is active and contains at least one active

Connect an Amazon CloudHSM key store 624

Amazon Key Management Service Developer Guide

HSMs. For help with connection failures, see the section called “Troubleshooting a custom
key store”.

When you connect an Amazon CloudHSM key store, Amazon KMS finds the associated Amazon
CloudHSM cluster, connects to it, logs into the Amazon CloudHSM client as the kmsuser crypto
user (CU), and then rotates the kmsuser password. Amazon KMS remains logged into the Amazon
CloudHSM client as long as the Amazon CloudHSM key store is connected.

To establish the connection, Amazon KMS creates a security group named kms-<custom key
store ID> in the virtual private cloud (VPC) of the cluster. The security group has a single rule
that allows inbound traffic from the cluster security group. Amazon KMS also creates an elastic
network interface (ENI) in each Availability Zone of the private subnet for the cluster. Amazon KMS
adds the ENIs to the kms-<cluster ID> security group and the security group for the cluster.
The description of each ENI is KMS managed ENI for cluster <cluster-ID>.

The connection process can take an extended amount of time to complete; up to 20 minutes.

Before you connect the Amazon CloudHSM key store, verify that it meets the requirements.

• Its associated Amazon CloudHSM cluster must contain at least one active HSM. To find the
number of HSMs in the cluster, view the cluster in the Amazon CloudHSM console or use the
DescribeClusters operation. If necessary, you can add an HSM.

• The cluster must have a kmsuser crypto user (CU) account, but that CU cannot be logged into
the cluster when you connect the Amazon CloudHSM key store. For help with logging out, see
How to log out and reconnect.

• The connection state of the Amazon CloudHSM key store cannot be DISCONNECTING or FAILED.
To view the connection state, use the Amazon KMS console or the DescribeCustomKeyStores
response. If the connection state is FAILED, disconnect the custom key store, fix the problem,
and then connect it.

For help with connection failures, see How to fix a connection failure.

When your Amazon CloudHSM key store is connected, you can create KMS keys in it and use
existing KMS keys in cryptographic operations.

Connect an Amazon CloudHSM key store 625

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/add-remove-hsm.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

Connect and reconnect to your Amazon CloudHSM key store

You can connect, or reconnect, your Amazon CloudHSM key store in the Amazon KMS console or by
using the ConnectCustomKeyStore operation.

Using the Amazon KMS console

To connect an Amazon CloudHSM key store in the Amazon Web Services Management Console,
begin by selecting the Amazon CloudHSM key store from the Custom key stores page. The
connection process can take up to 20 minutes to complete.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, Amazon CloudHSM key stores.

4. Choose the row of the Amazon CloudHSM key store you want to connect.

If the connection state of the Amazon CloudHSM key store is Failed, you must disconnect the
custom key store before you connect it.

5. From the Key store actions menu, choose Connect.

Amazon KMS begins the process of connecting your custom key store. It finds the associated
Amazon CloudHSM cluster, builds the required network infrastructure, connects to it, logs into
the Amazon CloudHSM cluster as the kmsuser CU, and rotates the kmsuser password. When the
operation completes, the connection state changes to Connected.

If the operation fails, an error message appears that describes the reason for the failure. Before
you try to connect again, view the connection state of your Amazon CloudHSM key store. If it is
Failed, you must disconnect the custom key store before you connect it again. If you need help, see
Troubleshooting a custom key store.

Next: the section called “Create a KMS key in an Amazon CloudHSM key store”.

Using the Amazon KMS API

To connect a disconnected Amazon CloudHSM key store, use the ConnectCustomKeyStore
operation. The associated Amazon CloudHSM cluster must contain at least one active HSM and the
connection state cannot be FAILED.

Connect an Amazon CloudHSM key store 626

https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html

Amazon Key Management Service Developer Guide

The connection process takes an extended amount of time to complete; up to 20 minutes. Unless
it fails quickly, the operation returns an HTTP 200 response and a JSON object with no properties.
However, this initial response does not indicate that the connection was successful. To determine
the connection state of the custom key store, see the DescribeCustomKeyStores response.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

To identify the Amazon CloudHSM key store, use its custom key store ID. You can find the ID on the
Custom key stores page in the console or by using the DescribeCustomKeyStores operation with
no parameters. Before running this example, replace the example ID with a valid one.

$ aws kms connect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

To verify that the Amazon CloudHSM key store is connected, use the DescribeCustomKeyStores
operation. By default, this operation returns all custom keys stores in your account and Region. But
you can use either the CustomKeyStoreId or CustomKeyStoreName parameter (but not both)
to limit the response to particular custom key stores. The ConnectionState value of CONNECTED
indicates that the custom key store is connected to its Amazon CloudHSM cluster.

Note

The CustomKeyStoreType field was added to the DescribeCustomKeyStores response
to distinguish Amazon CloudHSM key stores from external key stores.

$ aws kms describe-custom-key-stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleCloudHSMKeyStore",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "CustomKeyStoreType": "AWS_CLOUDHSM",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "CONNECTED"
],
}

Connect an Amazon CloudHSM key store 627

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

If the ConnectionState value is failed, the ConnectionErrorCode element indicates the
reason for the failure. In this case, Amazon KMS could not find an Amazon CloudHSM cluster in
your account with the cluster ID cluster-1a23b4cdefg. If you deleted the cluster, you can
restore it from a backup of the original cluster and then edit the cluster ID for the custom key
store. For help responding to a connection error code, see How to fix a connection failure.

$ aws kms describe-custom-key-stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "CustomKeyStoreType": "AWS_CLOUDHSM",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "FAILED"
 "ConnectionErrorCode": "CLUSTER_NOT_FOUND"
],
}

Disconnect an Amazon CloudHSM key store

When you disconnect an Amazon CloudHSM key store, Amazon KMS logs out of the Amazon
CloudHSM client, disconnects from the associated Amazon CloudHSM cluster, and removes the
network infrastructure that it created to support the connection.

While an Amazon CloudHSM key store is disconnected, you can manage the Amazon CloudHSM
key store and its KMS keys, but you cannot create or use KMS keys in the Amazon CloudHSM key
store. The connection state of the key store is DISCONNECTED and the key state of KMS keys in
the custom key store is Unavailable, unless they are PendingDeletion. You can reconnect the
Amazon CloudHSM key store at any time.

Note

Amazon CloudHSM key stores have a DISCONNECTED connection state only when the key
store has never been connected or you explicitly disconnect it. If your Amazon CloudHSM
key store connection state is CONNECTED but you are having trouble using it, make sure
that its associated Amazon CloudHSM cluster is active and contains at least one active

Disconnect an Amazon CloudHSM key store 628

https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-cluster-from-backup.html

Amazon Key Management Service Developer Guide

HSMs. For help with connection failures, see the section called “Troubleshooting a custom
key store”.

When you disconnect a custom key store, the KMS keys in the key store become unusable right
away (subject to eventual consistency). However, resources encrypted with data keys protected by
the KMS key are not affected until the KMS key is used again, such as to decrypt the data key. This
issue affects Amazon Web Services services, many of which use data keys to protect your resources.
For details, see How unusable KMS keys affect data keys.

Note

While a custom key store is disconnected, all attempts to create KMS keys in the custom
key store or to use existing KMS keys in cryptographic operations will fail. This action can
prevent users from storing and accessing sensitive data.

To better estimate the effect of disconnecting your custom key store, identify the KMS keys in the
custom key store and determine their past use.

You might disconnect an Amazon CloudHSM key store for reasons such as the following:

• To rotate of the kmsuser password. Amazon KMS changes the kmsuser password each time
that it connects to the Amazon CloudHSM cluster. To force a password rotation, just disconnect
and reconnect.

• To audit the key material for the KMS keys in the Amazon CloudHSM cluster. When you
disconnect the custom key store, Amazon KMS logs out of the kmsuser crypto user account in
the Amazon CloudHSM client. This allows you to log into the cluster as the kmsuser CU and
audit and manage the key material for the KMS key.

• To immediately disable all KMS keys in the Amazon CloudHSM key store. You can disable
and re-enable KMS keys in an Amazon CloudHSM key store by using the Amazon Web Services
Management Console or the DisableKey operation. These operations complete quickly, but they
act on one KMS key at a time. Disconnecting the Amazon CloudHSM key store immediately
changes the key state of all KMS keys in the Amazon CloudHSM key store to Unavailable,
which prevents them from being used in any cryptographic operation.

Disconnect an Amazon CloudHSM key store 629

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html

Amazon Key Management Service Developer Guide

• To repair a failed connection attempt. If an attempt to connect an Amazon CloudHSM key store
fails (the connection state of the custom key store is FAILED), you must disconnect the Amazon
CloudHSM key store before you try to connect it again.

Disconnect your Amazon CloudHSM key store

You can disconnect your Amazon CloudHSM key store in the Amazon KMS console or by using the
DisconnectCustomKeyStore operation.

Disconnect using the Amazon KMS console

To disconnect a connected Amazon CloudHSM key store in the Amazon KMS console, begin by
choosing the Amazon CloudHSM key store from the Custom Key Stores page.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, Amazon CloudHSM key stores.

4. Choose the row of the external key store you want to disconnect.

5. From the Key store actions menu, choose Disconnect.

When the operation completes, the connection state changes from Disconnecting to
Disconnected. If the operation fails, an error message appears that describes the problem and
provides help on how to fix it. If you need more help, see Troubleshooting a custom key store.

Disconnect using the Amazon KMS API

To disconnect a connected Amazon CloudHSM key store, use the DisconnectCustomKeyStore
operation. If the operation is successful, Amazon KMS returns an HTTP 200 response and a JSON
object with no properties.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

This example disconnects an Amazon CloudHSM key store. Before running this example, replace
the example ID with a valid one.

Disconnect an Amazon CloudHSM key store 630

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

To verify that the Amazon CloudHSM key store is disconnected, use the DescribeCustomKeyStores
operation. By default, this operation returns all custom keys stores in your account and Region.
But you can use either the CustomKeyStoreId and CustomKeyStoreName parameter (but
not both) to limit the response to particular custom key stores. The ConnectionState value of
DISCONNECTED indicates that this example Amazon CloudHSM key store is not connected to its
Amazon CloudHSM cluster.

$ aws kms describe-custom-key-stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionState": "DISCONNECTED",
 "CreationDate": "1.499288695918E9",
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "CustomKeyStoreType": "AWS_CLOUDHSM",
 "TrustAnchorCertificate": "<certificate string appears here>"
],
}

Delete an Amazon CloudHSM key store

When you delete an Amazon CloudHSM key store, Amazon KMS deletes all metadata about the
Amazon CloudHSM key store from KMS, including information about its association with an
Amazon CloudHSM cluster. This operation does not affect the Amazon CloudHSM cluster, its HSMs,
or its users. You can create a new Amazon CloudHSM key store that is associated with the same
Amazon CloudHSM cluster, but you cannot undo the delete operation.

You can only delete an Amazon CloudHSM key store that is disconnected from its Amazon
CloudHSM cluster and does not contain any Amazon KMS keys. Before you delete a custom key
store, do the following.

• Verify that you will never need to use any of the KMS keys in the key store for any cryptographic
operations. Then schedule deletion of all of the KMS keys from the key store. For help finding
the KMS keys in an Amazon CloudHSM key store, see Find the KMS keys in an Amazon CloudHSM
key store.

Delete an Amazon CloudHSM key store 631

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

• Confirm that all KMS keys have been deleted. To view the KMS keys in an Amazon CloudHSM key
store, see the section called “Identify KMS keys in Amazon CloudHSM key stores”.

• Disconnect the Amazon CloudHSM key store from its Amazon CloudHSM cluster.

Instead of deleting the Amazon CloudHSM key store, consider disconnecting it from its associated
Amazon CloudHSM cluster. While an Amazon CloudHSM key store is disconnected, you can manage
the Amazon CloudHSM key store and its Amazon KMS keys. But you cannot create or use KMS keys
in the Amazon CloudHSM key store. You can reconnect the Amazon CloudHSM key store at any
time.

Delete your Amazon CloudHSM key store

You can delete your Amazon CloudHSM key store in the Amazon KMS console or by using the
DeleteCustomKeyStore operation.

Using the Amazon KMS console

To delete an Amazon CloudHSM key store in the Amazon Web Services Management Console,
begin by selecting the Amazon CloudHSM key store from the Custom key stores page.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, Amazon CloudHSM key stores.

4. Find the row that represents the Amazon CloudHSM key store that you want to delete. If
the Connection state of the Amazon CloudHSM key store is not Disconnected, you must
disconnect the Amazon CloudHSM key store before you delete it.

5. From the Key store actions menu, choose Delete.

When the operation completes, a success message appears and the Amazon CloudHSM key
store no longer appears in the key stores list. If the operation is unsuccessful, an error message
appears that describes the problem and provides help on how to fix it. If you need more help, see
Troubleshooting a custom key store.

Delete an Amazon CloudHSM key store 632

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteCustomKeyStore.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

Using the Amazon KMS API

To delete an Amazon CloudHSM key store, use the DeleteCustomKeyStore operation. If the
operation is successful, Amazon KMS returns an HTTP 200 response and a JSON object with no
properties.

To begin, verify that the Amazon CloudHSM key store does not contain any Amazon KMS keys.
You cannot delete a custom key store that contains KMS keys. The first example command uses
ListKeys and DescribeKey to search for Amazon KMS keys in the Amazon CloudHSM key store with
the example cks-1234567890abcdef0 custom key store ID. In this case, the command does not
return any KMS keys. If it does, use the ScheduleKeyDeletion operation to schedule deletion of
each of the KMS keys.

Bash

for key in $(aws kms list-keys --query 'Keys[*].KeyId' --output text) ;
do aws kms describe-key --key-id $key |
grep '"CustomKeyStoreId": "cks-1234567890abcdef0"' --context 100; done

PowerShell

PS C:\> Get-KMSKeyList | Get-KMSKey | where CustomKeyStoreId -eq
 'cks-1234567890abcdef0'

Next, disconnect the Amazon CloudHSM key store. This example command uses the
DisconnectCustomKeyStore operation to disconnect an Amazon CloudHSM key store from its
Amazon CloudHSM cluster. Before running this command, replace the example custom key store ID
with a valid one.

Bash

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

PowerShell

PS C:\> Disconnect-KMSCustomKeyStore -CustomKeyStoreId cks-1234567890abcdef0

Delete an Amazon CloudHSM key store 633

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html

Amazon Key Management Service Developer Guide

After the custom key store is disconnected, you can use the DeleteCustomKeyStore operation to
delete it.

Bash

$ aws kms delete-custom-key-store --custom-key-store-id cks-1234567890abcdef0

PowerShell

PS C:\> Remove-KMSCustomKeyStore -CustomKeyStoreId cks-1234567890abcdef0

Troubleshooting a custom key store

Amazon CloudHSM key stores are designed to be available and resilient. However, there are
some error conditions that you might have to repair to keep your Amazon CloudHSM key store
operational.

Topics

• How to fix unavailable KMS keys

• How to fix a failing KMS key

• How to fix a connection failure

• How to respond to a cryptographic operation failure

• How to fix invalid kmsuser credentials

• How to delete orphaned key material

• How to recover deleted key material for a KMS key

• How to log in as kmsuser

How to fix unavailable KMS keys

The key state of Amazon KMS keys in an Amazon CloudHSM key store is typically Enabled. Like all
KMS keys, the key state changes when you disable the KMS keys in an Amazon CloudHSM key store
or schedule them for deletion. However, unlike other KMS keys, the KMS keys in a custom key store
can also have a key state of Unavailable.

A key state of Unavailable indicates that the KMS key is in a custom key store that was
intentionally disconnected and attempts to reconnect it, if any, failed. While a KMS key is

Troubleshooting a custom key store 634

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteCustomKeyStore.html

Amazon Key Management Service Developer Guide

unavailable, you can view and manage the KMS key, but you cannot use it for cryptographic
operations.

To find the key state of a KMS key, on the Customer managed keys page, view the Status field of
the KMS key. Or, use the DescribeKey operation and view the KeyState element in the response.
For details, see Identify and view keys.

The KMS keys in a disconnected custom key store will have a key state of Unavailable or
PendingDeletion. KMS keys that are scheduled for deletion from a custom key store have a
Pending Deletion key state, even when the custom key store is disconnected. This allows you to
cancel the scheduled key deletion without reconnecting the custom key store.

To fix an unavailable KMS key, reconnect the custom key store. After the custom key store is
reconnected, the key state of the KMS keys in the custom key store is automatically restored to
its previous state, such as Enabled or Disabled. KMS keys that are pending deletion remain in
the PendingDeletion state. However, while the problem persists, enabling and disabling an
unavailable KMS key does not change its key state. The enable or disable action takes effect only
when the key becomes available.

For help with failed connections, see How to fix a connection failure.

How to fix a failing KMS key

Problems with creating and using KMS keys in Amazon CloudHSM key stores can be caused by a
problem with your Amazon CloudHSM key store, its associated Amazon CloudHSM cluster, the KMS
key, or its key material.

When an Amazon CloudHSM key store is disconnected from its Amazon CloudHSM cluster, the key
state of KMS keys in the custom key store is Unavailable. All requests to create KMS keys in a
disconnected Amazon CloudHSM key store return a CustomKeyStoreInvalidStateException
exception. All requests to encrypt, decrypt, re-encrypt, or generate data keys return a
KMSInvalidStateException exception. To fix the problem, reconnect the Amazon CloudHSM
key store.

However, your attempts to use a KMS key in an Amazon CloudHSM key store for cryptographic
operations might fail even when its key state is Enabled and the connection state of the Amazon
CloudHSM key store is Connected. This might be caused by any of the following conditions.

Troubleshooting a custom key store 635

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

• The key material for the KMS key might have been deleted from the associated Amazon
CloudHSM cluster. To investigate, find the key id of the key material for a KMS key and, if
necessary, try to recover the key material.

• All HSMs were deleted from the Amazon CloudHSM cluster that is associated with the Amazon
CloudHSM key store. To use a KMS key in an Amazon CloudHSM key store in a cryptographic
operation, its Amazon CloudHSM cluster must contain at least one active HSM. To verify the
number and state of HSMs in an Amazon CloudHSM cluster, use the Amazon CloudHSM console
or the DescribeClusters operation. To add an HSM to the cluster, use the Amazon CloudHSM
console or the CreateHsm operation.

• The Amazon CloudHSM cluster associated with the Amazon CloudHSM key store was deleted.
To fix the problem, create a cluster from a backup that is related to the original cluster, such as a
backup of the original cluster, or a backup that was used to create the original cluster. Then, edit
the cluster ID in the custom key store settings. For instructions, see How to recover deleted key
material for a KMS key.

• The Amazon CloudHSM cluster associated with the custom key store did not have any available
PKCS #11 sessions. This typically occurs during periods of high burst traffic when additional
sessions are needed to service the traffic. To respond to a KMSInternalException with an
error message about PKCS #11 sessions, back off and retry the request again.

How to fix a connection failure

If you try to connect an Amazon CloudHSM key store to its Amazon CloudHSM cluster, but the
operation fails, the connection state of the Amazon CloudHSM key store changes to FAILED. To
find the connection state of an Amazon CloudHSM key store, use the Amazon KMS console or the
DescribeCustomKeyStores operation.

Alternatively, some connection attempts fail quickly due to easily detected cluster configuration
errors. In this case, the connection state is still DISCONNECTED. These failures return an error
message or exception that explains why the attempt failed. Review the exception description and
cluster requirements, fix the problem, update the Amazon CloudHSM key store, if necessary, and
try to connect again.

When the connection state is FAILED, run the DescribeCustomKeyStores operation and see the
ConnectionErrorCode element in the response.

Troubleshooting a custom key store 636

https://docs.amazonaws.cn/cloudhsm/latest/userguide/add-remove-hsm.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_CreateHsm.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html#API_ConnectCustomKeyStore_Errors
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

Note

When the connection state of an Amazon CloudHSM key store is FAILED, you must
disconnect the Amazon CloudHSM key store before attempting to reconnect it. You cannot
connect an Amazon CloudHSM key store with a FAILED connection state.

• CLUSTER_NOT_FOUND indicates that Amazon KMS cannot find an Amazon CloudHSM cluster
with the specified cluster ID. This might occur because the wrong cluster ID was provided to an
API operation or the cluster was deleted and not replaced. To fix this error, verify the cluster ID,
such as by using the Amazon CloudHSM console or the DescribeClusters operation. If the cluster
was deleted, create a cluster from a recent backup of the original. Then, disconnect the Amazon
CloudHSM key store, edit the Amazon CloudHSM key store cluster ID setting, and reconnect the
Amazon CloudHSM key store to the cluster.

• INSUFFICIENT_CLOUDHSM_HSMS indicates that the associated Amazon CloudHSM cluster does
not contain any HSMs. To connect, the cluster must have at least one HSM. To find the number
of HSMs in the cluster, use the DescribeClusters operation. To resolve this error, add at least one
HSM to the cluster. If you add multiple HSMs, it's best to create them in different Availability
Zones.

• INSUFFICIENT_FREE_ADDRESSES_IN_SUBNET indicates that Amazon KMS could not
connect the Amazon CloudHSM key store to its Amazon CloudHSM cluster because at least one
private subnet associated with the cluster doesn't have any available IP addresses. An Amazon
CloudHSM key store connection requires one free IP address in each of the associated private
subnets, although two are preferable.

You can't add IP addresses (CIDR blocks) to an existing subnet. If possible, move or delete other
resources that are using the IP addresses in the subnet, such as unused EC2 instances or elastic
network interfaces. Otherwise, you can create a cluster from a recent backup of the Amazon
CloudHSM cluster with new or existing private subnets that have more free address space. Then,
to associate the new cluster with your Amazon CloudHSM key store, disconnect the custom key
store, change the cluster ID of the Amazon CloudHSM key store to the ID of the new cluster, and
try to connect again.

Troubleshooting a custom key store 637

https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-hsm.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-hsm.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-subnets.html
http://www.amazonaws.cn/support-plans/knowledge-center/vpc-ip-address-range/
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.amazonaws.cn/vpc/latest/userguide/configure-subnets.html#subnet-sizing

Amazon Key Management Service Developer Guide

Tip

To avoid resetting the kmsuser password, use the most recent backup of the Amazon
CloudHSM cluster.

• INTERNAL_ERROR indicates that Amazon KMS could not complete the request due to an internal
error. Retry the request. For ConnectCustomKeyStore requests, disconnect the Amazon
CloudHSM key store before trying to connect again.

• INVALID_CREDENTIALS indicates that Amazon KMS cannot log into the associated Amazon
CloudHSM cluster because it doesn't have the correct kmsuser account password. For help with
this error, see How to fix invalid kmsuser credentials.

• NETWORK_ERRORS usually indicates transient network issues. Disconnect the Amazon CloudHSM
key store, wait a few minutes, and try to connect again.

• SUBNET_NOT_FOUND indicates that at least one subnet in the Amazon CloudHSM cluster
configuration was deleted. If Amazon KMS cannot find all of the subnets in the cluster
configuration, attempts to connect the Amazon CloudHSM key store to the Amazon CloudHSM
cluster fail.

To fix this error, create a cluster from a recent backup of the same Amazon CloudHSM cluster.
(This process creates a new cluster configuration with a VPC and private subnets.) Verify that the
new cluster meets the requirements for a custom key store, and note the new cluster ID. Then,
to associate the new cluster with your Amazon CloudHSM key store, disconnect the custom key
store, change the cluster ID of the Amazon CloudHSM key store to the ID of the new cluster, and
try to connect again.

Tip

To avoid resetting the kmsuser password, use the most recent backup of the Amazon
CloudHSM cluster.

• USER_LOCKED_OUT indicates that the kmsuser crypto user (CU) account is locked out of the
associated Amazon CloudHSM cluster due to too many failed password attempts. For help with
this error, see How to fix invalid kmsuser credentials.

To fix this error, disconnect the Amazon CloudHSM key store and use the user change-password
command in CloudHSM CLI to change the kmsuser account password. Then, edit the kmsuser

Troubleshooting a custom key store 638

https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-user-change-password.html

Amazon Key Management Service Developer Guide

password setting for the custom key store, and try to connect again. For help, use the procedure
described in the How to fix invalid kmsuser credentials topic.

• USER_LOGGED_IN indicates that the kmsuser CU account is logged into the associated Amazon
CloudHSM cluster. This prevents Amazon KMS from rotating the kmsuser account password and
logging into the cluster. To fix this error, log the kmsuser CU out of the cluster. If you changed
the kmsuser password to log into the cluster, you must also and update the key store password
value for the Amazon CloudHSM key store. For help, see How to log out and reconnect.

• USER_NOT_FOUND indicates that Amazon KMS cannot find a kmsuser CU account in the
associated Amazon CloudHSM cluster. To fix this error, create a kmsuser CU account in the
cluster, and then update the key store password value for the Amazon CloudHSM key store. For
help, see How to fix invalid kmsuser credentials.

How to respond to a cryptographic operation failure

A cryptographic operation that uses a KMS key in a custom key store might fail with a
KMSInvalidStateException. The following error messages might accompany the
KMSInvalidStateException.

KMS cannot communicate with your CloudHSM cluster. This might be a transient network issue.
If you see this error repeatedly, verify that the Network ACLs and the security group rules for the
VPC of your Amazon CloudHSM cluster are correct.

• Although this is an HTTPS 400 error, it might result from transient network issues. To respond,
begin by retrying the request. However, if it continues to fail, examine the configuration of your
networking components. This error is most likely caused by the misconfiguration of a networking
component, such as a firewall rule or VPC security group rule that is blocking outgoing traffic.
For example, KMS cannot communicate with Amazon CloudHSM clusters over IPv6. For details on
prerequisites, see Create an Amazon CloudHSM key store.

KMS cannot communicate with your Amazon CloudHSM cluster because the kmsuser is locked
out. If you see this error repeatedly, disconnect the Amazon CloudHSM key store and reset the
kmsuser account password. Update the kmsuser password for the custom key store and try the
request again.

Troubleshooting a custom key store 639

Amazon Key Management Service Developer Guide

• This error message indicates that the kmsuser crypto user (CU) account is locked out of the
associated Amazon CloudHSM cluster due to too many failed password attempts. For help with
this error, see How to disconnect and log in.

How to fix invalid kmsuser credentials

When you connect an Amazon CloudHSM key store, Amazon KMS logs into the associated
Amazon CloudHSM cluster as the kmsuser crypto user (CU). It remains logged in until the
Amazon CloudHSM key store is disconnected. The DescribeCustomKeyStores response shows a
ConnectionState of FAILED and ConnectionErrorCode value of INVALID_CREDENTIALS, as
shown in the following example.

If you disconnect the Amazon CloudHSM key store and change the kmsuser password,
Amazon KMS cannot log into the Amazon CloudHSM cluster with the credentials of the
kmsuser CU account. As a result, all attempts to connect the Amazon CloudHSM key store
fail. The DescribeCustomKeyStores response shows a ConnectionState of FAILED and
ConnectionErrorCode value of INVALID_CREDENTIALS, as shown in the following example.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleKeyStore
{
 "CustomKeyStores": [
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionErrorCode": "INVALID_CREDENTIALS"
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "FAILED"
],
}

Also, after five failed attempts to log into the cluster with an incorrect password, Amazon
CloudHSM locks the user account. To log into the cluster, you must change the account password.

If Amazon KMS gets a lockout response when it tries to log into the cluster as the kmsuser CU,
the request to connect the Amazon CloudHSM key store fails. The DescribeCustomKeyStores
response includes a ConnectionState of FAILED and ConnectionErrorCode value of
USER_LOCKED_OUT, as shown in the following example.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleKeyStore

Troubleshooting a custom key store 640

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

{
 "CustomKeyStores": [
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionErrorCode": "USER_LOCKED_OUT"
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "FAILED"
],
}

To repair any of these conditions, use the following procedure.

1. Disconnect the Amazon CloudHSM key store.

2. Run the DescribeCustomKeyStores operation and view the value of the
ConnectionErrorCode element in the response.

• If the ConnectionErrorCode value is INVALID_CREDENTIALS, determine the current
password for the kmsuser account. If necessary, use the user change-password command
in CloudHSM CLI to set the password to a known value.

• If the ConnectionErrorCode value is USER_LOCKED_OUT, you must use the user change-
password command in CloudHSM CLI to change the kmsuser password.

3. Edit the kmsuser password setting so it matches the current kmsuser password in the cluster.
This action tells Amazon KMS which password to use to log into the cluster. It does not change
the kmsuser password in the cluster.

4. Connect the custom key store.

How to delete orphaned key material

After scheduling deletion of a KMS key from an Amazon CloudHSM key store, you might need to
manually delete the corresponding key material from the associated Amazon CloudHSM cluster.

When you create a KMS key in an Amazon CloudHSM key store, Amazon KMS creates the KMS key
metadata in Amazon KMS and generates the key material in the associated Amazon CloudHSM
cluster. When you schedule deletion of a KMS key in an Amazon CloudHSM key store, after the
waiting period, Amazon KMS deletes the KMS key metadata. Then Amazon KMS makes a best
effort to delete the corresponding key material from the Amazon CloudHSM cluster. The attempt
might fail if Amazon KMS cannot access the cluster, such as when it's disconnected from the

Troubleshooting a custom key store 641

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-user-change-password.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-user-change-password.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-user-change-password.html

Amazon Key Management Service Developer Guide

Amazon CloudHSM key store or the kmsuser password changes. Amazon KMS does not attempt to
delete key material from cluster backups.

Amazon KMS reports the results of its attempt to delete the key material from the
cluster in the DeleteKey event entry of your Amazon CloudTrail logs. It appears in the
backingKeysDeletionStatus element of the additionalEventData element, as shown in
the following example entry. The entry also includes the KMS key ARN, the Amazon CloudHSM
cluster ID, and the ID (backing-key-id) of the key material.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "accountId": "111122223333",
 "invokedBy": "Amazon Internal"
 },
 "eventTime": "2021-12-10T14:23:51Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DeleteKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "Amazon Internal",
 "userAgent": "AWS Internal",
 "requestParameters": null,
 "responseElements": {
 "keyId":"arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "additionalEventData": {
 "customKeyStoreId": "cks-1234567890abcdef0",
 "clusterId": "cluster-1a23b4cdefg",
 "backingKeys": "[{\"backingKeyId\":\"backing-key-id\"}]",
 "backingKeysDeletionStatus": "[{\"backingKeyId\":\"backing-key-id\",
\"deletionStatus\":\"FAILURE\"}]"
 },
 "eventID": "c21f1f47-f52b-4ffe-bff0-6d994403cf40",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:eu-
west-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],

Troubleshooting a custom key store 642

Amazon Key Management Service Developer Guide

 "eventType": "AwsServiceEvent",
 "recipientAccountId": "111122223333",
 "managementEvent": true,
 "eventCategory": "Management"
}

Notes

The following procedures use the Amazon CloudHSM Client SDK 5 command line tool,
CloudHSM CLI. The CloudHSM CLI replaces key-handle with key-reference.
On January 1, 2025, Amazon CloudHSM will end support for the Client SDK 3 command
line tools, the CloudHSM Management Utility (CMU) and the Key Management Utility
(KMU). For more information on the differences between the Client SDK 3 command line
tools and the Client SDK 5 command line tool, see Migrate from Client SDK 3 CMU and
KMU to Client SDK 5 CloudHSM CLI in the Amazon CloudHSM User Guide.

The following procedures demonstrate how to delete the orphaned key material from the
associated Amazon CloudHSM cluster.

1. Disconnect the Amazon CloudHSM key store, if it is not already disconnected, then login, as
explained in How to disconnect and log in.

Note

While a custom key store is disconnected, all attempts to create KMS keys in the
custom key store or to use existing KMS keys in cryptographic operations will fail. This
action can prevent users from storing and accessing sensitive data.

2. Use the key delete command in CloudHSM CLI to delete the key from the HSMs in the cluster.

All CloudTrail log entries for cryptographic operation with a KMS key in a Amazon CloudHSM
key store include an additionalEventData field with the customKeyStoreId and
backingKey. The value returned in the backingKeyId field is the CloudHSM key id
attribute. We recommend filtering the key delete operation by id to delete the orphaned key
material you identified in your CloudTrail logs.

Troubleshooting a custom key store 643

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-login.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-key-delete.html

Amazon Key Management Service Developer Guide

Amazon CloudHSM recognizes the backingKeyId value as a hexadecimal value. To filter by
id, you must prepend the backingKeyId with Ox. For example, if the backingKeyId in your
CloudTrail log is 1a2b3c45678abcdef, you would filter by 0x1a2b3c45678abcdef.

The following example deletes a key from the HSMs in your cluster. The backing-key-
id is listed in the CloudTrail log entry. Before running this command, replace the example
backing-key-id with a valid one from your account.

aws-cloudhsm key delete --filter attr.id="0x<backing-key-id>"
{
 "error_code": 0,
 "data": {
 "message": "Key deleted successfully"
 }
}

3. Log out and reconnect the Amazon CloudHSM key store as described in How to log out and
reconnect.

How to recover deleted key material for a KMS key

If the key material for an Amazon KMS key is deleted, the KMS key is unusable and all ciphertext
that was encrypted under the KMS key cannot be decrypted. This can happen if the key material
for a KMS key in an Amazon CloudHSM key store is deleted from the associated Amazon CloudHSM
cluster. However, it might be possible to recover the key material.

When you create an Amazon KMS key (KMS key) in an Amazon CloudHSM key store, Amazon KMS
logs into the associated Amazon CloudHSM cluster and creates the key material for the KMS key.
It also changes the password to a value that only it knows and remains logged in as long as the
Amazon CloudHSM key store is connected. Because only the key owner, that is, the CU who created
a key, can delete the key, it is unlikely that the key will be deleted from the HSMs accidentally.

However, if the key material for a KMS key is deleted from the HSMs in a cluster, the key state
of the KMS key eventually changes to UNAVAILABLE. If you attempt to use the KMS key for a
cryptographic operation, the operation fails with a KMSInvalidStateException exception. Most
importantly, any data that was encrypted under the KMS key cannot be decrypted.

Troubleshooting a custom key store 644

Amazon Key Management Service Developer Guide

Under certain circumstances, you can recover deleted key material by creating a cluster from a
backup that contains the key material. This strategy works only when at least one backup was
created while the key existed and before it was deleted.

Use the following process to recover the key material.

1. Find a cluster backup that contains the key material. The backup must also contain all users and
keys that you need to support the cluster and its encrypted data.

Use the DescribeBackups operation to list the backups for a cluster. Then use the backup
timestamp to help you select a backup. To limit the output to the cluster that is associated
with the Amazon CloudHSM key store, use the Filters parameter, as shown in the following
example.

$ aws cloudhsmv2 describe-backups --filters clusterIds=<cluster ID>
{
 "Backups": [
 {
 "ClusterId": "cluster-1a23b4cdefg",
 "BackupId": "backup-9g87f6edcba",
 "CreateTimestamp": 1536667238.328,
 "BackupState": "READY"
 },
 ...
]
}

2. Create a cluster from the selected backup. Verify that the backup contains the deleted key and
other users and keys that the cluster requires.

3. Disconnect the Amazon CloudHSM key store so you can edit its properties.

4. Edit the cluster ID of the Amazon CloudHSM key store. Enter the cluster ID of the cluster that
you created from the backup. Because the cluster shares a backup history with the original
cluster, the new cluster ID should be valid.

5. Reconnect the Amazon CloudHSM key store.

How to log in as kmsuser

To create and manage the key material in the Amazon CloudHSM cluster for your Amazon
CloudHSM key store, Amazon KMS uses the kmsuser crypto user (CU) account. You create the

Troubleshooting a custom key store 645

https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeBackups.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/create-cluster-from-backup.html

Amazon Key Management Service Developer Guide

kmsuser CU account in your cluster and provide its password to Amazon KMS when you create
your Amazon CloudHSM key store.

In general, Amazon KMS manages the kmsuser account. However, for some tasks, you need to
disconnect the Amazon CloudHSM key store, log into the cluster as the kmsuser CU, and use the
CloudHSM Command Line Interface (CLI).

Note

While a custom key store is disconnected, all attempts to create KMS keys in the custom
key store or to use existing KMS keys in cryptographic operations will fail. This action can
prevent users from storing and accessing sensitive data.

This topic explains how to disconnect your Amazon CloudHSM key store and log in as kmsuser,
run the Amazon CloudHSM command line tool, and log out and reconnect your Amazon CloudHSM
key store.

Topics

• How to disconnect and log in

• How to log out and reconnect

How to disconnect and log in

Use the following procedure each time to need to log into an associated cluster as the kmsuser
crypto user.

Notes

The following procedures use the Amazon CloudHSM Client SDK 5 command line tool,
CloudHSM CLI. The CloudHSM CLI replaces key-handle with key-reference.
On January 1, 2025, Amazon CloudHSM will end support for the Client SDK 3 command
line tools, the CloudHSM Management Utility (CMU) and the Key Management Utility
(KMU). For more information on the differences between the Client SDK 3 command line
tools and the Client SDK 5 command line tool, see Migrate from Client SDK 3 CMU and
KMU to Client SDK 5 CloudHSM CLI in the Amazon CloudHSM User Guide.

Troubleshooting a custom key store 646

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html

Amazon Key Management Service Developer Guide

1. Disconnect the Amazon CloudHSM key store, if it is not already disconnected. You can use the
Amazon KMS console or Amazon KMS API.

While your Amazon CloudHSM key is connected, Amazon KMS is logged in as the kmsuser.
This prevents you from logging in as kmsuser or changing the kmsuser password.

For example, this command uses DisconnectCustomKeyStore to disconnect an example key
store. Replace the example Amazon CloudHSM key store ID with a valid one.

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

2. Use the login command to login as an admin. Use the procedures described in the Using
CloudHSM CLI section of the Amazon CloudHSM User Guide.

aws-cloudhsm > login --username admin --role admin
 Enter password:
{
 "error_code": 0,
 "data": {
 "username": "admin",
 "role": "admin"
 }
}

3. Use the user change-password command in CloudHSM CLI to change the password of the
kmsuser account to one that you know. (Amazon KMS rotates the password when you
connect your Amazon CloudHSM key store.) The password must consist of 7-32 alphanumeric
characters. It is case-sensitive and cannot contain any special characters.

4. Login as kmsuser using the password that you set. For detailed instructions, see the Using
CloudHSM CLI section of the Amazon CloudHSM User Guide.

aws-cloudhsm > login --username kmsuser --role crypto-user
 Enter password:
{
 "error_code": 0,
 "data": {
 "username": "kmsuser",
 "role": "crypto-user"
 }
}

Troubleshooting a custom key store 647

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-getting-started.html#w17aac19c11c13b7
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-getting-started.html#w17aac19c11c13b7
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-user-change-password.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-getting-started.html#w17aac19c11c13b7
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-getting-started.html#w17aac19c11c13b7

Amazon Key Management Service Developer Guide

How to log out and reconnect

Use the following procedure each time you need to log out as the kmsuser crypto user and
reconnect your key store.

Notes

The following procedures use the Amazon CloudHSM Client SDK 5 command line tool,
CloudHSM CLI. The CloudHSM CLI replaces key-handle with key-reference.
On January 1, 2025, Amazon CloudHSM will end support for the Client SDK 3 command
line tools, the CloudHSM Management Utility (CMU) and the Key Management Utility
(KMU). For more information on the differences between the Client SDK 3 command line
tools and the Client SDK 5 command line tool, see Migrate from Client SDK 3 CMU and
KMU to Client SDK 5 CloudHSM CLI in the Amazon CloudHSM User Guide.

1. Perform the task, then use the logout command in CloudHSM CLI to log out. If you do not log
out, attempts to reconnect your Amazon CloudHSM key store will fail.

aws-cloudhsm logout
{
 "error_code": 0,
 "data": "Logout successful"
}

2. Edit the kmsuser password setting for the custom key store.

This tells Amazon KMS the current password for kmsuser in the cluster. If you omit this
step, Amazon KMS will not be able to log into the cluster as kmsuser, and all attempts
to reconnect your custom key store will fail. You can use the Amazon KMS console or the
KeyStorePassword parameter of the UpdateCustomKeyStore operation.

For example, this command tells Amazon KMS that the current password is tempPassword.
Replace the example password with the actual one.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 --
key-store-password tempPassword

Troubleshooting a custom key store 648

https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-migrate-from-kmu-cmu.html
https://docs.amazonaws.cn/cloudhsm/latest/userguide/cloudhsm_cli-logout.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html

Amazon Key Management Service Developer Guide

3. Reconnect the Amazon KMS key store to its Amazon CloudHSM cluster. Replace the example
Amazon CloudHSM key store ID with a valid one. During the connection process, Amazon KMS
changes the kmsuser password to a value that only it knows.

The ConnectCustomKeyStore operation returns quickly, but the connection process can take an
extended period of time. The initial response does not indicate the success of the connection
process.

$ aws kms connect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

4. Use the DescribeCustomKeyStores operation to verify that the Amazon CloudHSM key store is
connected. Replace the example Amazon CloudHSM key store ID with a valid one.

In this example, the connection state field shows that the Amazon CloudHSM key store is now
connected.

$ aws kms describe-custom-key-stores --custom-key-store-
id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "CONNECTED"
],
}

External key stores

External key stores allow you to protect your Amazon resources using cryptographic keys outside
of Amazon. This advanced feature is designed for regulated workloads that you must protect with
encryption keys stored in an external key management system that you control. External key stores
support the Amazon digital sovereignty pledge to give you sovereign control over your data in
Amazon, including the ability to encrypt with key material that you own and control outside of
Amazon.

External key stores 649

https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://amazonaws-china.com/blogs/security/aws-digital-sovereignty-pledge-control-without-compromise/

Amazon Key Management Service Developer Guide

An external key store is a custom key store backed by an external key manager that you own and
manage outside of Amazon. Your external key manager can be a physical or virtual hardware
security modules (HSMs), or any hardware-based or software-based system capable of generating
and using cryptographic keys. Encryption and decryption operations that use a KMS key in an
external key store are performed by your external key manager using your cryptographic key
material, a feature known as hold your own keys (HYOKs).

Amazon KMS never interacts directly with your external key manager, and cannot create, view,
manage, or delete your keys. Instead, Amazon KMS interacts only with external key store proxy
(XKS proxy) software that you provide. Your external key store proxy mediates all communication
between Amazon KMS and your external key manager. It transmits all requests from Amazon KMS
to your external key manager, and transmits responses from your external key manager back to
Amazon KMS. The external key store proxy also translates generic requests from Amazon KMS
into a vendor-specific format that your external key manager can understand, allowing you to use
external key stores with key managers from a variety of vendors.

You can use KMS keys in an external key store for client-side encryption, including with the
Amazon Encryption SDK. But external key stores are an important resource for server-side
encryption, allowing you to protect your Amazon resources in multiple Amazon Web Services
services with your cryptographic keys outside of Amazon. Amazon Web Services services that
support customer managed keys for symmetric encryption also support KMS keys in an external
key store. For service support details, see Amazon Service Integration.

External key stores allow you to use Amazon KMS for regulated workloads where encryption keys
must be stored and used outside of Amazon. But they are a major departure from the standard
shared responsibility model, and require additional operational burdens. The greater risk to
availability and latency will, for most customers, exceed the perceived security benefits of external
key stores.

External key stores let you control the root of trust. Data encrypted under KMS keys in your
external key store can be decrypted only by using the external key manager that you control. If
you temporarily revoke access to your external key manager, such as by disconnecting the external
key store or disconnecting your external key manager from the external key store proxy, Amazon
loses all access to your cryptographic keys until you restore it. During that interval, ciphertext
encrypted under your KMS keys can't be decrypted. If you permanently revoke access to your
external key manager, all ciphertext encrypted under a KMS key in your external key store becomes
unrecoverable. The only exceptions are Amazon services that briefly cache the data keys protected

External key stores 650

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/
https://aws.amazon.com/kms/features/#AWS_service_integration

Amazon Key Management Service Developer Guide

by your KMS keys. These data keys continue to work until you deactivate the resource or the cache
expires. For details, see How unusable KMS keys affect data keys.

External key stores unblock the few use cases for regulated workloads where encryption keys
must remain solely under your control and inaccessible to Amazon. But this is a major change in
the way you operate cloud-based infrastructure and a significant shift in the shared responsibility
model. For most workloads, the additional operational burden and greater risks to availability and
performance will exceed the perceived security benefits of external key stores.

Do I need an external key store?

For most users, the default Amazon KMS key store, which is protected by FIPS 140-3 Security Level
3 validated hardware security modules, fulfills their security, control, and regulatory requirements.
External key store users incur substantial cost, maintenance, and troubleshooting burden, and risks
to latency, availability and reliability.

When considering an external key store, take some time to understand the alternatives, including
an Amazon CloudHSM key store backed by an Amazon CloudHSM cluster that you own and
manage, and KMS keys with imported key material that you generate in your own HSMs and can
delete from KMS keys on demand. In particular, importing key material with a very brief expiration
interval might provide a similar level of control without the performance or availability risks.

An external key store might be the right solution for your organization if you have the following
requirements:

• You are required to use cryptographic keys in your on-premises key manager or a key manager
outside of Amazon that you control.

• You must demonstrate that your cryptographic keys are retained solely under your control
outside of the cloud.

• You must encrypt and decrypt using cryptographic keys with independent authorization.

• Key material must be subject to a secondary, independent audit path.

If you choose an external key store, limit its use to workloads that require protection with
cryptographic keys outside of Amazon.

Shared responsibility model

External key stores 651

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884

Amazon Key Management Service Developer Guide

Standard KMS keys use key material that is generated and used in HSMs that Amazon KMS
owns and manages. You establish the access control policies on your KMS keys and configure
Amazon Web Services services that use KMS keys to protect your resources. Amazon KMS assumes
responsibility for the security, availability, latency, and durability of the key material in your KMS
keys.

KMS keys in external key stores rely on key material and operations in your external key manager.
As such, the balance of responsibility shifts in your direction. You are responsible for the security,
reliability, durability, and performance of the cryptographic keys in your external key manager.
Amazon KMS is responsible for responding promptly to requests and communicating with your
external key store proxy, and for maintaining our security standards. To ensure that every external
key store ciphertext at least as strong than standard Amazon KMS ciphertext, Amazon KMS first
encrypts all plaintext with Amazon KMS key material specific to your KMS key, and then sends it
to your external key manager for encryption with your external key, a procedure known as double
encryption. As a result, neither Amazon KMS nor the owner of the external key material can decrypt
double-encrypted ciphertext alone.

You are responsible for maintaining an external key manager that meet your regulatory and
performance standards, for supplying and maintaining an external key store proxy that conforms
to the Amazon KMS External Key Store Proxy API Specification, and for ensuring the availability
and durability of your key material. You must also create, configure, and maintain an external key
store. When errors arise that are caused by components that you maintain, you must be prepared
to identify and resolve the errors so that Amazon services can access your resources without undue
disruption. Amazon KMS provides troubleshooting guidance to help you determine the cause of
problems and the most likely resolutions.

Review the Amazon CloudWatch metrics and dimensions that Amazon KMS records for external
key stores. Amazon KMS strongly recommends that you create CloudWatch alarms to monitor
your external key store so you can detect the early signs of performance and operational problems
before they occur.

What is changing?

External key stores support only symmetric encryption KMS keys. Within Amazon KMS, you use and
manage KMS keys in an external key store in much the same way that you manage other customer
managed keys, including setting access control policies and monitoring key use. You use the same
APIs with the same parameters to request a cryptographic operation with a KMS key in an external
key store that you use for any KMS key. Pricing is also the same as for standard KMS keys. For
details, see KMS keys in external key stores and Amazon Key Management Service Pricing.

External key stores 652

https://github.com/aws/aws-kms-xksproxy-api-spec/
http://www.amazonaws.cn/kms/pricing/

Amazon Key Management Service Developer Guide

However, with external key stores the following principles change:

• You are responsible for the availability, durability, and latency of key operations.

• You are responsible for all costs for developing, purchasing, operating, and licensing your
external key manager system.

• You can implement independent authorization of all requests from Amazon KMS to your external
key store proxy.

• You can monitor, audit, and log all operations of your external key store proxy, and all operations
of your external key manager related to Amazon KMS requests.

Where do I start?

To create and manage an external key store, you need to choose your external key store proxy
connectivity option, assemble the prerequisites, and create and configure your external key store.

Quotas

Amazon KMS allows up to 10 custom key stores in each Amazon Web Services account and
Region, including both Amazon CloudHSM key stores and external key stores, regardless of their
connection state. In addition, there are Amazon KMS request quotas on the use of KMS keys in an
external key store.

If you choose VPC proxy connectivity for your external key store proxy, there might also be quotas
on the required components, such as VPCs, subnets, and network load balancers. For information
about these quotas, use the Service Quotas console.

Regions

To minimize network latency, create your external key store components in the Amazon Web
Services Region closest to your external key manager. If possible, choose a Region with a network
round-trip time (RTT) of 35 milliseconds or less.

External key stores are supported in all Amazon Web Services Regions in which Amazon KMS is
supported except for China (Beijing) and China (Ningxia).

Unsupported features

Amazon KMS does not support the following features in custom key stores.

External key stores 653

https://docs.amazonaws.cn/kms/latest/developerguide/keystore-cloudhsm.html
https://docs.amazonaws.cn/kms/latest/developerguide/keystore-external.html
https://console.amazonaws.cn/servicequotas/home

Amazon Key Management Service Developer Guide

• Asymmetric KMS keys

• HMAC KMS keys

• KMS keys with imported key material

• Automatic key rotation

• Multi-Region keys

Learn more:

• Announcing Amazon KMS External Key Store in the Amazon News Blog.

External key store concepts

Learn the basic terms and concepts used in external key stores.

External key store

An external key store is an Amazon KMS custom key store backed by an external key manager
outside of Amazon that you own and manage. Each KMS key in an external key store is associated
with an external key in your external key manager. When you use a KMS key in an external key
store for encryption or decryption, the operation is performed in your external key manager using
your external key, an arrangement known as Hold your Own Keys (HYOK). This feature is designed
for organizations that are required to maintain their cryptographic keys in their own external key
manager.

External key stores ensure that the cryptographic keys and operations that protect your Amazon
resources remain in your external key manager under your control. Amazon KMS sends requests to
your external key manager to encrypt and decrypt data, but Amazon KMS cannot create, delete,
or manage any external keys. All requests from Amazon KMS to your external key manager are
mediated by an external key store proxy software component that you supply, own, and manage.

Amazon services that support Amazon KMS customer managed keys can use the KMS keys in your
external key store to protect your data. As a result, your data is ultimately protected by your keys
using your encryption operations in your external key manager.

The KMS keys in an external key store have fundamentally different trust models, shared
responsibility arrangements, and performance expectations than standard KMS keys. With
external key stores, you are responsible for the security and integrity of the key material and the

External key store concepts 654

https://amazonaws-china.com/blogs/aws/announcing-aws-kms-external-key-store-xks/

Amazon Key Management Service Developer Guide

cryptographic operations. The availability and latency of KMS keys in an external key store are
affected by the hardware, software, networking components, and the distance between Amazon
KMS and your external key manager. You are also likely to incur additional costs for your external
key manager and for the networking and load balancing infrastructure you need for your external
key manager to communicate with Amazon KMS

You can use your external key store as part of your broader data protection strategy. For each
Amazon resource that you protect, you can decide which require a KMS key in an external key store
and which can be protected by a standard KMS key. This gives you the flexibility to chose KMS keys
for specific data classifications, applications, or projects.

External key manager

An external key manager is a component outside of Amazon that can generate 256-bit AES
symmetric keys and perform symmetric encryption and decryption. The external key manager
for an external key store can be a physical hardware security module (HSM), a virtual HSM, or a
software key manager with or without an HSM component. It can be located anywhere outside
of Amazon, including on your premises, in a local or remote data center, or in any cloud. Your
external key store can be backed by a single external key manager or multiple related key manager
instances that share cryptographic keys, such as an HSM cluster. External key stores are designed
to support a variety of external managers from different vendors. For details about connecting to
your external key manager, see Choose an external key store proxy connectivity option.

External key

Each KMS key in an external key store is associated with a cryptographic key in your external key
manager known as an external key. When you encrypt or decrypt with a KMS key in your external
key store, the cryptographic operation is performed in your external key manager using your
external key.

Warning

The external key is essential to the operation of the KMS key. If the external key is lost or
deleted, ciphertext encrypted under the associated KMS key is unrecoverable.

For external key stores, an external key must be a 256-bit AES key that is enabled and can perform
encryption and decryption. For detailed external key requirements, see Requirements for a KMS
key in an external key store.

External key store concepts 655

Amazon Key Management Service Developer Guide

Amazon KMS cannot create, delete, or manage any external keys. Your cryptographic key material
never leaves your external key manager.When you create a KMS key in an external key store, you
provide the ID of an external key (XksKeyId). You cannot change the external key ID associated
with a KMS key, although your external key manager can rotate the key material associated with
the external key ID.

In addition to your external key, a KMS key in an external key store also has Amazon KMS key
material. Data protected by the KMS key is encrypted first by Amazon KMS using the Amazon
KMS key material, and then by your external key manager using your external key. This double
encryption process ensures that ciphertext protected by your KMS key is always at least as strong
as ciphertext protected only by Amazon KMS.

Many cryptographic keys have different types of identifiers. When creating a KMS key in an
external key store, provide the ID of the external key that the external key store proxy uses to
refer to the external key. If you use the wrong identifier, your attempt to create a KMS key in your
external key store fails.

External key store proxy

The external key store proxy ("XKS proxy") is a customer-owned and customer-managed software
application that mediates all communication between Amazon KMS and your external key
manager. It also translates generic Amazon KMS requests into a format that your vendor-specific
external key manager understand. An external key store proxy is required for an external key store.
Each external key store is associated with one external key store proxy.

Amazon KMS cannot create, delete, or manage any external keys. Your cryptographic key material
never leaves your external key manager. All communication between Amazon KMS and your
external key manager is mediated by your external key store proxy. Amazon KMS sends requests to
the external key store proxy and receives responses from the external key store proxy. The external

External key store concepts 656

Amazon Key Management Service Developer Guide

key store proxy is responsible for transmitting requests from Amazon KMS to your external key
manager and transmitting responses from your external key manager back to Amazon KMS

You own and manage the external key store proxy for your external key store, and you are
responsible for its maintenance and operation. You can develop your external key store proxy
based on the open-source external key store proxy API specification that Amazon KMS publishes
or purchase a proxy application from a vendor. Your external key store proxy might be included in
your external key manager. To support proxy development, Amazon KMS also provides a sample
external key store proxy (aws-kms-xks-proxy) and a test client (xks-kms-xksproxy-test-client) that
verifies that your external key store proxy conforms to the specification.

To authenticate to Amazon KMS, the proxy uses server-side TLS certificates. To authenticate to
your proxy, Amazon KMS signs all requests to your external key store proxy with a SigV4 proxy
authentication credential. Optionally, your proxy can enable mutual TLS (mTLS) for additional
assurance that it only accepts requests from Amazon KMS.

Your external key store proxy must support HTTP/1.1 or later and TLS 1.2 or later with at least one
of the following cipher suites:

• TLS_AES_256_GCM_SHA384 (TLS 1.3)

• TLS_CHACHA20_POLY1305_SHA256 (TLS 1.3)

Note

The Amazon GovCloud (US) Region does not support
TLS_CHACHA20_POLY1305_SHA256.

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (TLS 1.2)

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (TLS 1.2)

To create and use the KMS keys in your external key store, you must first connect the external key
store to its external key store proxy. You can also disconnect your external key store from its proxy
on demand. When you do, all KMS keys in the external key store become unavailable; they cannot
be used in any cryptographic operation.

External key store proxy connectivity

The external key store proxy connectivity ("XKS proxy connectivity") describes the method that
Amazon KMS uses to communicate with your external key store proxy.

External key store concepts 657

https://github.com/aws/aws-kms-xksproxy-api-spec/
https://github.com/aws-samples/aws-kms-xks-proxy
https://github.com/aws-samples/aws-kms-xksproxy-test-client

Amazon Key Management Service Developer Guide

You specify your proxy connectivity option when you create your external key store, and it becomes
a property of the external key store. You can change your proxy connectivity option by updating
the custom key store property, but you must be certain that your external key store proxy can still
access the same external keys.

Amazon KMS supports the following connectivity options:

• Public endpoint connectivity — Amazon KMS sends requests for your external key store proxy
over the internet to a public endpoint that you control. This option is simple to create and
maintain, but it might not fulfill the security requirements for every installation.

• VPC endpoint service connectivity — Amazon KMS sends requests to a Amazon Virtual Private
Cloud (Amazon VPC) endpoint service that you create and maintain. You can host your external
key store proxy inside your Amazon VPC, or host your external key store proxy outside of
Amazon and use the Amazon VPC only for communication.

For details about the external key store proxy connectivity options, see Choose an external key
store proxy connectivity option.

External key store proxy authentication credential

To authenticate to your external key store proxy, Amazon KMS signs all requests to your external
key store proxy with a Signature V4 (SigV4) authentication credential. You establish and maintain
the authentication credential on your proxy, then provide this credential to Amazon KMS when you
create your external store.

Note

The SigV4 credential that Amazon KMS uses to sign requests to the XKS proxy is unrelated
to any SigV4 credentials associated with Amazon Identity and Access Management
principals in your Amazon Web Services accounts. Do not reuse any IAM SigV4 credentials
for your external key store proxy.

Each proxy authentication credential has two parts. You must provide both parts when creating an
external key store or updating the authentication credential for your external key store.

• Access key ID: Identifies the secret access key. You can provide this ID in plaintext.

External key store concepts 658

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon Key Management Service Developer Guide

• Secret access key: The secret part of the credential. Amazon KMS encrypts the secret access key
in the credential before storing it.

You can edit the credential setting at any time, such as when you enter incorrect values, when
you change your credential on the proxy, or when your proxy rotates the credential. For technical
details about Amazon KMS authentication to the external key store proxy, see Authentication in the
Amazon KMS External Key Store Proxy API Specification.

To allow you to rotate your credential without disrupting the Amazon Web Services services that
use KMS keys in your external key store, we recommend that the external key store proxy support
at least two valid authentication credentials for Amazon KMS. This ensures that your previous
credential continues to work while you provide your new credential to Amazon KMS.

To help you track the age of your proxy authentication credential, Amazon KMS defines an Amazon
CloudWatch metric, XksProxyCredentialAge. You can use this metric to create a CloudWatch alarm
that notifies you when the age of your credential reaches a threshold you establish.

To provide additional assurance that your external key store proxy responds only to Amazon KMS,
some external key proxies support mutual Transport Layer Security (mTLS). For details, see mTLS
authentication (optional).

Proxy APIs

To support an Amazon KMS external key store, an external key store proxy must implement the
required proxy APIs as described in the Amazon KMS External Key Store Proxy API Specification.
These proxy API requests are the only requests that Amazon KMS sends to the proxy. Although you
never send these requests directly, knowing about them might help you fix any issues that might
arise with your external key store or its proxy. For example, Amazon KMS includes information
about the latency and success rates of these API calls in its Amazon CloudWatch metrics for
external key stores. For details, see Monitor external key stores.

The following table lists and describes each of the proxy APIs. It also includes the Amazon KMS
operations that trigger a call to the proxy API and any Amazon KMS operation exceptions related
to the proxy API.

Proxy API Description Related Amazon KMS operations

Decrypt Amazon KMS sends the ciphertext
to be decrypted, and the ID of the

Decrypt, ReEncrypt

External key store concepts 659

https://github.com/aws/aws-kms-xksproxy-api-spec/blob/main/xks_proxy_api_spec.md#authentication
https://github.com/aws/aws-kms-xksproxy-api-spec/
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html

Amazon Key Management Service Developer Guide

Proxy API Description Related Amazon KMS operations

external key to use. The required
encryption algorithm is AES_GCM.

Encrypt Amazon KMS sends data to be
encrypted, and the ID of the external
key to use. The required encryption
algorithm is AES_GCM.

Encrypt, GenerateDataKey,
GenerateDataKeyWithoutPlaintext,
ReEncrypt

GetHealth
Status

Amazon KMS requests information
about the status of the proxy and
your external key manager.

The status of each external key
manager can be one of the following.

• Active: Healthy; can serve traffic

• Degraded: Unhealthy, but can
serve traffic

• Unavailable : Unhealthy; cannot
serve traffic

CreateCustomKeyStore (for public
endpoint connectivity), ConnectCu
stomKeyStore (for VPC endpoint
service connectivity)

If all external key manager instances
are Unavailable , attempts to
create or connect the key store
fail with XksProxyUriUnreach
ableException .

GetKeyMet
adata

Amazon KMS requests information
about the external key associated
with a KMS key in your external key
store.

The response includes the key
spec (AES_256), the key usage
([ENCRYPT, DECRYPT]), and the
whether the external key is ENABLED
or DISABLED.

CreateKey

If the key spec is not AES_256, or
the key usage is not [ENCRYPT,
DECRYPT], or the status is
DISABLED, the CreateKey
operation fails with XksKeyInv
alidConfigurationE
xception .

Double encryption

Data encrypted by a KMS key in an external key store is encrypted twice. First, Amazon KMS
encrypts the data with Amazon KMS key material specific to the KMS key. Then the Amazon KMS-

External key store concepts 660

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

encrypted ciphertext is encrypted by your external key manager using your external key. This
process is known as double encryption.

Double encryption ensures that data encrypted by a KMS key in an external key store is at least
as strong as ciphertext encrypted by a standard KMS key. It also protects your plaintext in transit
from Amazon KMS to your external key store proxy. With double encryption, you retain full control
of your ciphertexts. If you permanently revoke Amazon access to your external key through your
external proxy, any ciphertext remaining in Amazon is effectively crypto-shredded.

To enable double encryption, each KMS key in an external key store has two cryptographic backing
keys:

• An Amazon KMS key material unique to the KMS key. This key material is generated and only
used in Amazon KMS FIPS 140-3 Security Level 3 certified hardware security modules (HSMs).

External key store concepts 661

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884

Amazon Key Management Service Developer Guide

• An external key in your external key manager.

Double encryption has the following effects:

• Amazon KMS cannot decrypt any ciphertext encrypted by a KMS key in an external key store
without access to your external keys via your external key store proxy.

• You cannot decrypt any ciphertext encrypted by a KMS key in an external key store outside of
Amazon, even if you have its external key material.

• You cannot recreate a KMS key that was deleted from an external key store, even if you have
its external key material. Each KMS key has unique metadata that it includes in the symmetric
ciphertext. A new KMS key would not be able to decrypt ciphertext encrypted by the original key,
even if it used the same external key material.

For an example of double encryption in practice, see How external key stores work.

How external key stores work

Your external key store, external key store proxy, and external key manager work together to
protect your Amazon resources. The following procedure depicts the encryption workflow of a
typical Amazon Web Services service that encrypts each object under a unique data key protected
by a KMS key. In this case, you've chosen a KMS key in an external key store to protect the object.
The example shows how Amazon KMS uses double encryption to protect the data key in transit and
ensure that ciphertext generated by a KMS key in an external key store is always at least as strong
as ciphertext encrypted by a standard symmetric KMS key with key material in Amazon KMS.

The encryption methods used by each actual Amazon Web Services service that integrates with
Amazon KMS vary. For details, see the "Data protection" topic in the Security chapter of the
Amazon Web Services service documentation.

How external key stores work 662

Amazon Key Management Service Developer Guide

1. You add a new object to your Amazon Web Services service resource. To encrypt the object, the
Amazon Web Services service sends a GenerateDataKey request to Amazon KMS using a KMS key
in your external key store.

2. Amazon KMS generates a 256-bit symmetric data key and prepares to send a copy of the
plaintext data key to your external key manager via your external key store proxy. Amazon KMS
begins the double encryption process by encrypting the plaintext data key with the Amazon
KMS key material associated with the KMS key in the external key store.

3. Amazon KMS sends an encrypt request to the external key store proxy associated with the
external key store. The request includes the data key ciphertext to be encrypted and the ID of
the external key that is associated with the KMS key. Amazon KMS signs the request using the
proxy authentication credential for your external key store proxy.

The plaintext copy of the data key is not sent to the external key store proxy.

4. The external key store proxy authenticates the request, and then passes the encrypt request to
your external key manager.

How external key stores work 663

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

Some external key store proxies also implement an optional authorization policy that allows
only selected principals to perform operations under specific conditions.

5. Your external key manager encrypts the data key ciphertext using the specified external key. The
external key manager returns the double-encrypted data key to your external key store proxy,
which returns it to Amazon KMS.

6. Amazon KMS returns the plaintext data key and the double-encrypted copy of that data key to
the Amazon Web Services service.

7. The Amazon Web Services service uses the plaintext data key to encrypt the resource object,
destroys the plaintext data key, and stores the encrypted data key with the encrypted object.

Some Amazon Web Services services might cache the plaintext data key to use for multiple
objects, or to reuse while the resource is in use. For details, see How unusable KMS keys affect
data keys.

To decrypt the encrypted object, the Amazon Web Services service must send the encrypted
data key back to Amazon KMS in a Decrypt request. To decrypt the encrypted data key, Amazon
KMS must send the encrypted data key back to your external key store proxy with the ID of the
external key. If the decrypt request to the external key store proxy fails for any reason, Amazon
KMS cannot decrypt the encrypted data key, and the Amazon Web Services service cannot decrypt
the encrypted object.

Control access to your external key store

All Amazon KMS access control features — key policies, IAM policies, and grants — that you use
with standard KMS keys, work the same way for KMS keys in an external key store. You can use IAM
policies to control access to the API operations that create and manage external key stores. You use
IAM policies and key policies to control access to the Amazon KMS keys in your external key store.
You can also use service control policies for your Amazon organization and VPC endpoint policies
to control access to KMS keys in your external key store.

We recommend that you provide users and roles only the permissions that they require for the
tasks that they are likely to perform.

Topics

• Authorizing external key store managers

• Authorizing users of KMS keys in external key stores

Control access to your external key store 664

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#edit-vpc-endpoint-policy

Amazon Key Management Service Developer Guide

• Authorizing Amazon KMS to communicate with your external key store proxy

• External key store proxy authorization (optional)

• mTLS authentication (optional)

Authorizing external key store managers

Principals who create and manage an external key store need permissions to the custom key store
operations. The following list describes the minimum permissions required for external key store
managers. Because a custom key store is not an Amazon resource, you cannot provide permission
to an external key store for principals in other Amazon Web Services accounts.

• kms:CreateCustomKeyStore

• kms:DescribeCustomKeyStores

• kms:ConnectCustomKeyStore

• kms:DisconnectCustomKeyStore

• kms:UpdateCustomKeyStore

• kms:DeleteCustomKeyStore

Principals who create an external key store need permission to create and configure the external
key store components. Principals can create external key stores only in their own accounts.
To create an external key store with VPC endpoint service connectivity, principals must have
permission to create the following components:

• An Amazon VPC

• Public and private subnets

• A network load balancer and target group

• An Amazon VPC endpoint service

For details, see Identity and access management for Amazon VPC, Identity and access management
for VPC endpoints and VPC endpoint services and Elastic Load Balancing API permissions.

Authorizing users of KMS keys in external key stores

Principals who create and manage Amazon KMS keys in your external key store require the same
permissions as those who create and manage any KMS key in Amazon KMS. The default key policy

Control access to your external key store 665

https://docs.amazonaws.cn/vpc/latest/userguide/security-iam.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-iam.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/userguide/elb-api-permissions.html

Amazon Key Management Service Developer Guide

for KMS key in an external key store is identical to the default key policy for KMS keys in Amazon
KMS. Attribute-based access control (ABAC), which uses tags and aliases to control access to KMS
keys, is also effective on KMS keys in an external key stores.

Principals who use the KMS keys in your custom key store for cryptographic operations need
permission to perform the cryptographic operation with the KMS key, such as kms:Decrypt. You can
provide these permissions in an IAM or key policy. But, they do not need any additional permissions
to use a KMS key in a custom key store.

To set a permission that applies only to KMS keys in an external key store, use the kms:KeyOrigin
policy condition with a value of EXTERNAL_KEY_STORE. You can use this condition to limit the
kms:CreateKey permission or any permission that is specific to a KMS key resource. For example,
the following IAM policy allows the identity to which it is attached to call the specified operations
on all KMS keys in the account, provided that the KMS keys are in an external key store. Notice that
you can limit the permission to KMS keys in an external key store, and KMS keys in an Amazon Web
Services account, but not to any particular external key store in the account.

{
 "Sid": "AllowKeysInExternalKeyStores",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:us-west-2:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "kms:KeyOrigin": "EXTERNAL_KEY_STORE"
 }
 }
}

Authorizing Amazon KMS to communicate with your external key store proxy

Amazon KMS communicates with your external key manager only through the external key store
proxy that you provide. Amazon KMS authenticates to your proxy by signing its requests using the
Signature Version 4 (SigV4) process with the external key store proxy authentication credential that

Control access to your external key store 666

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html

Amazon Key Management Service Developer Guide

you specify. If you are using public endpoint connectivity for your external key store proxy, Amazon
KMS does not require any additional permissions.

However, if you are using VPC endpoint service connectivity, you must give Amazon KMS
permission to create an interface endpoint to your Amazon VPC endpoint service. This permission
is required regardless of whether the external key store proxy is in your VPC or the external key
store proxy is located elsewhere, but uses the VPC endpoint service to communicate with Amazon
KMS.

To allow Amazon KMS to create an interface endpoint, use the Amazon VPC console or the
ModifyVpcEndpointServicePermissions operation. Allow permissions for the following principal:
cks.kms.<region>.amazonaws.com.

For example, the following Amazon CLI command allows Amazon KMS to connect to the specified
VPC endpoint service in the US West (Oregon) (us-west-2) Region. Before using this command,
replace the Amazon VPC service ID and Amazon Web Services Region with valid values for your
configuration.

modify-vpc-endpoint-service-permissions
--service-id vpce-svc-12abc34567def0987
--add-allowed-principals '["cks.kms.us-west-2.amazonaws.com"]'

To remove this permission, use the Amazon VPC console or the
ModifyVpcEndpointServicePermissions with the RemoveAllowedPrincipals parameter.

External key store proxy authorization (optional)

Some external key store proxies implement authorization requirements for the use of its external
keys. An external key store proxy is permitted, but not required, to design and implement an
authorization scheme that allows particular users to request particular operations only under
certain conditions. For example, a proxy might be configured to allow user A to encrypt with a
particular external key, but not to decrypt with it.

Proxy authorization is independent of the SigV4-based proxy authentication that Amazon KMS
requires for all external key store proxies. It is also independent of the key policies, IAM policies,
and grants that authorize access to operations affecting the external key store or its KMS keys.

To enable authorization by the external key store proxy, Amazon KMS includes metadata in each
proxy API request, including the caller, the KMS key, the Amazon KMS operation, the Amazon Web

Control access to your external key store 667

https://docs.amazonaws.cn/vpc/latest/privatelink/configure-endpoint-service.html#add-remove-permissions
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_ModifyVpcEndpointServicePermissions.html
https://docs.amazonaws.cn/vpc/latest/privatelink/configure-endpoint-service.html#add-remove-permissions
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_ModifyVpcEndpointServicePermissions.html

Amazon Key Management Service Developer Guide

Services service (if any). The request metadata for version 1 (v1) of the external key proxy API is as
follows.

"requestMetadata": {
 "awsPrincipalArn": string,
 "awsSourceVpc": string, // optional
 "awsSourceVpce": string, // optional
 "kmsKeyArn": string,
 "kmsOperation": string,
 "kmsRequestId": string,
 "kmsViaService": string // optional
}

For example, you might configure your proxy to allow requests from a particular principal
(awsPrincipalArn), but only when the request is made on the principal's behalf by a particular
Amazon Web Services service (kmsViaService).

If proxy authorization fails, the related Amazon KMS operation fails with a message that explains
the error. For details , see Proxy authorization issues.

mTLS authentication (optional)

To enable your external key store proxy to authenticate requests from Amazon KMS, Amazon
KMS signs all requests to your external key store proxy with the Signature V4 (SigV4) proxy
authentication credential for your external key store.

To provide additional assurance that your external key store proxy responds only to Amazon KMS
requests, some external key proxies support mutual Transport Layer Security (mTLS), in which
both parties to a transaction use certificates to authenticate to each other. mTLS adds client-side
authentication — where the external key store proxy server authenticates the Amazon KMS client
— to the server-side authentication that standard TLS provides. In the rare case that your proxy
authentication credential is compromised, mTLS prevents a third party from making successful API
requests to the external key store proxy.

To implement mTLS, configure your external key store proxy to accept only client-side TLS
certificates with the following properties:

• The subject common name on the TLS certificate must be
cks.kms.<Region>.amazonaws.com, for example, cks.kms.eu-west-3.amazonaws.com.

• The certificate must be chained to a certificate authority associated with Amazon Trust Services.

Control access to your external key store 668

https://www.amazontrust.com/repository/

Amazon Key Management Service Developer Guide

Choose an external key store proxy connectivity option

Before creating your external key store, choose the connectivity option that determines how
Amazon KMS communicates with your external key store components. The connectivity option that
you choose determines the remainder of the planning process.

If you are creating an external key store, you need to determine how Amazon KMS communicates
with your external key store proxy. This choice will determine which components you need and
how you configure them. Amazon KMS supports the following connectivity options. Choose the
option that meets your performance and security goals.

Before you begin, confirm that you need an external key store. Most customer can use KMS keys
backed by Amazon KMS key material.

Note

If your external key store proxy is built into your external key manager, your connectivity
might be predetermined. For guidance, consult the documentation for your external key
manager or external key store proxy.

You can change your external key store proxy connectivity option even on an operating external
key store. However, the process must be carefully planned and executed to minimize disruption,
avoid errors, and ensure continued access to the cryptographic keys that encrypt your data.

Public endpoint connectivity

Amazon KMS connects to the external key store proxy (XKS proxy) over the internet using a public
endpoint.

This connectivity option is easier to set up and maintain, and it aligns well with some models of key
management. However, it might not fulfill the security requirements of some organizations.

Choose a proxy connectivity option 669

Amazon Key Management Service Developer Guide

Requirements

If you choose public endpoint connectivity, the following are required.

• Your external key store proxy must be reachable at a publicly routable endpoint.

• You can use the same public endpoint for multiple external key stores provided that they use
different proxy URI path values.

• You cannot use the same endpoint for an external key store with public endpoint connectivity
and any external key store with VPC endpoint services connectivity in the same Amazon Web
Services Region, even if the key stores are in different Amazon Web Services accounts.

• You must obtain a TLS certificate issued by a public certificate authority supported for external
key stores. For a list, see Trusted Certificate Authorities.

The subject common name (CN) on the TLS certificate must match the domain name in the
proxy URI endpoint for the external key store proxy. For example, if the public endpoint is
https://myproxy.xks.example.com, the TLS, the CN on the TLS certificate must be
myproxy.xks.example.com or *.xks.example.com.

• Ensure that any firewalls between Amazon KMS and the external key store proxy allow traffic to
and from port 443 on the proxy. Amazon KMS communicates on port 443 over IPv4. This value is
not configurable.

Choose a proxy connectivity option 670

https://github.com/aws/aws-kms-xksproxy-api-spec/blob/main/TrustedCertificateAuthorities

Amazon Key Management Service Developer Guide

For all requirements for an external key store, see the Assemble the prerequisites.

VPC endpoint service connectivity

Amazon KMS connects to the external key store proxy (XKS proxy) by creating an interface
endpoint to an Amazon VPC endpoint service that you create and configure. You are responsible
for creating the VPC endpoint service and for connecting your VPC to your external key manager.

Your endpoint service can use any of the supported network-to-Amazon VPC options for
communications, including Amazon Direct Connect.

This connectivity option is more complicated to set up and maintain. But it uses Amazon
PrivateLink, which enables Amazon KMS to privately connect to your Amazon VPC and your
external key store proxy without using the public internet.

You can locate your external key store proxy in your Amazon VPC.

Or, locate your external key store proxy outside of Amazon and use your Amazon VPC endpoint
service only for secure communication with Amazon KMS.

Choose a proxy connectivity option 671

https://docs.amazonaws.cn/whitepapers/latest/aws-vpc-connectivity-options/network-to-amazon-vpc-connectivity-options.html
https://docs.amazonaws.cn/directconnect/latest/UserGuide/

Amazon Key Management Service Developer Guide

Learn more:

• Review the process for creating an external key store, including assembling the prerequisites.
It will help you to ensure that you have all of the components you need when you create your
external key store.

• Learn how to control access to your external key store, including the permissions that external
key store administrators and users require.

• Learn about the Amazon CloudWatch metrics and dimensions that Amazon KMS records for
external key stores. We strongly recommend that you create alarms to monitor your external key
store so you can detect the early signs of performance and operational problems.

Configure VPC endpoint service connectivity

Use the guidance in this section to create and configure the Amazon resources and related
components that are required for an external key store that uses VPC endpoint service
connectivity. The resources listed for this connectivity option are a supplement to the resources
required for all external key stores. After you create and configure the required resources, you can
create your external key store.

You can locate your external key store proxy in your Amazon VPC or locate the proxy outside of
Amazon and use your VPC endpoint service for communication.

Before you begin, confirm that you need an external key store. Most customer can use KMS keys
backed by Amazon KMS key material.

Choose a proxy connectivity option 672

Amazon Key Management Service Developer Guide

Note

Some of the elements required for VPC endpoint service connectivity might be included
in your external key manager. Also, your software might have additional configuration
requirements. Before creating and configuring the Amazon resources in this section, consult
your proxy and key manager documentation.

Topics

• Requirements for VPC endpoint service connectivity

• Step 1: Create an Amazon VPC and subnets

• Step 2: Create a target group

• Step 3: Create a network load balancer

• Step 4: Create a VPC endpoint service

• Step 5: Verify your private DNS name domain

• Step 6: Authorize Amazon KMS to connect to the VPC endpoint service

Requirements for VPC endpoint service connectivity

If you choose VPC endpoint service connectivity for your external key store, the following resources
are required.

To minimize network latency, create your Amazon components in the supported Amazon Web
Services Region that is closest to your external key manager. If possible, choose a Region with a
network round-trip time (RTT) of 35 milliseconds or less.

• An Amazon VPC that is connected to your external key manager. It must have at least two private
subnets in two different Availability Zones.

You can use an existing Amazon VPC for your external key store, provided that it fulfills the
requirements for use with an external key store. Multiple external key stores can share an
Amazon VPC, but each external key store must have its own VPC endpoint service and private
DNS name.

• An Amazon VPC endpoint service powered by Amazon PrivateLink with a network load balancer
and target group.

Choose a proxy connectivity option 673

https://docs.aws.amazon.com/vpc/latest/userguide/configure-subnets.html
https://docs.amazonaws.cn/vpc/latest/privatelink/privatelink-share-your-services.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html

Amazon Key Management Service Developer Guide

The endpoint service cannot require acceptance. Also, you must add Amazon KMS as an allowed
principal. This allows Amazon KMS to create interface endpoints so it can communicate with your
external key store proxy.

• A private DNS name for the VPC endpoint service that is unique in its Amazon Web Services
Region.

The private DNS name must be a subdomain of a higher-level public domain. For example, if
the private DNS name is myproxy-private.xks.example.com, it must be a subdomain of a
public domain such as xks.example.com or example.com.

You must verify ownership of the DNS domain for private DNS name.

• A TLS certificate issued by a supported public certificate authority for your external key store
proxy.

The subject common name (CN) on the TLS certificate must match the private DNS name. For
example, if the private DNS name is myproxy-private.xks.example.com, the CN on the TLS
certificate must be myproxy-private.xks.example.com or *.xks.example.com.

For all requirements for an external key store, see the Assemble the prerequisites.

Step 1: Create an Amazon VPC and subnets

VPC endpoint service connectivity requires an Amazon VPC that is connected to your external
key manager with at least two private subnets. You can create an Amazon VPC or use an existing
Amazon VPC that fulfills the requirements for external key stores. For help with creating a new
Amazon VPC, see Create a VPC in the Amazon Virtual Private Cloud User Guide.

Requirements for your Amazon VPC

To work with external key stores using VPC endpoint service connectivity, the Amazon VPC must
have the following properties:

• Must be in the same Amazon Web Services account and supported Region as your external key
store.

• Requires at least two private subnets, each in a different Availability Zone.

• The private IP address range of your Amazon VPC must not overlap with the private IP address
range of the data center hosting your external key manager.

Choose a proxy connectivity option 674

https://github.com/aws/aws-kms-xksproxy-api-spec/blob/main/TrustedCertificateAuthorities
https://docs.amazonaws.cn/vpc/latest/userguide/working-with-vpcs.html#Create-VPC

Amazon Key Management Service Developer Guide

• All components must use IPv4.

You have many options for connecting the Amazon VPC to your external key store proxy. Choose an
option that meets your performance and security needs. For a list, see Connect your VPC to other
networks and Network-to-Amazon VPC connectivity options. For more details, see Amazon Direct
Connect, and the Amazon Site-to-Site VPN User Guide.

Creating an Amazon VPC for your external key store

Use the following instructions to create the Amazon VPC for your external key store. An Amazon
VPC is required only if you choose the VPC endpoint service connectivity option. You can use an
existing Amazon VPC that fulfills the requirements for an external key store.

Follow the instructions in the Create a VPC, subnets, and other VPC resources topic using the
following required values. For other fields, accept the default values and provide names as
requested.

Field Value

IPv4 CIDR block Enter the IP addresses for your VPC. The private IP address range of your
Amazon VPC must not overlap with the private IP address range of the data
center hosting your external key manager.

Number of
Availability
Zones (AZs)

2 or more

Number of
public subnets

None are required (0)

Number of
private subnets

One for each AZ

NAT gateways None are required.

VPC endpoints None are required.

Enable DNS
hostnames

Yes

Choose a proxy connectivity option 675

https://docs.amazonaws.cn/vpc/latest/userguide/extend-intro.html
https://docs.amazonaws.cn/vpc/latest/userguide/extend-intro.html
https://docs.amazonaws.cn/whitepapers/latest/aws-vpc-connectivity-options/network-to-amazon-vpc-connectivity-options.html
https://docs.amazonaws.cn/directconnect/latest/UserGuide/Welcome.html
https://docs.amazonaws.cn/directconnect/latest/UserGuide/Welcome.html
https://docs.amazonaws.cn/vpn/latest/s2svpn/
https://docs.amazonaws.cn/vpc/latest/userguide/working-with-vpcs.html#create-vpc-and-other-resources

Amazon Key Management Service Developer Guide

Field Value

Enable DNS
resolution

Yes

Be sure to test your VPC communication. For example, if your external key store proxy is not
located in your Amazon VPC, create an Amazon EC2 instance in your Amazon VPC, verify that the
Amazon VPC can communicate with your external key store proxy.

Connecting the VPC to the external key manager

Connect the VPC to the data center that hosts your external key manager using any of the network
connectivity options that Amazon VPC supports. Ensure that the Amazon EC2 instance in the VPC
(or the external key store proxy, if it is in the VPC), can communicate with the data center and the
external key manager.

Step 2: Create a target group

Before you create the required VPC endpoint service, create its required components, a network
load balancer (NLB) and a target group. The network load balancer (NLB) distributes requests
among multiple healthy targets, any of which can service the request. In this step, you create
a target group with at least two hosts for your external key store proxy, and register your IP
addresses with the target group.

Follow the instructions in the Configure a target group topic using the following required values.
For other fields, accept the default values and provide names as requested.

Field Value

Target type IP addresses

Protocol TCP

Port 443

IP address type IPv4

VPC Choose the VPC where you will create the VPC endpoint service for your
external key store.

Choose a proxy connectivity option 676

https://docs.amazonaws.cn/whitepapers/latest/aws-vpc-connectivity-options/network-to-amazon-vpc-connectivity-options.html
https://docs.amazonaws.cn/whitepapers/latest/aws-vpc-connectivity-options/network-to-amazon-vpc-connectivity-options.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/network/create-network-load-balancer.html#configure-target-group

Amazon Key Management Service Developer Guide

Field Value

Health check
protocol and
path

Your health check protocol and path will differ with your external key store
proxy configuration. Consult the documentation for your external key
manager or external key store proxy.
For general information about configuring health checks for your target
groups, see Health checks for your target groups in the Elastic Load Balancing
User Guide for Network Load Balancers.

Network Other private IP address

IPv4 address The private addresses of your external key store proxy

Ports 443

Step 3: Create a network load balancer

The network load balancer distributes the network traffic, including requests from Amazon KMS to
your external key store proxy, to the configured targets.

Follow the instructions in the Configure a load balancer and a listener topic to configure and add a
listener and create a load balancer using the following required values. For other fields, accept the
default values and provide names as requested.

Field Value

Scheme Internal

IP address type IPv4

Network
mapping

Choose the VPC where you will create the VPC endpoint service for your
external key store.

Mapping Choose both of the availability zones (at least two) that you configured for
your VPC subnets. Verify the subnet names and private IP address.

Protocol TCP

Port 443

Choose a proxy connectivity option 677

https://docs.amazonaws.cn/elasticloadbalancing/latest/network/target-group-health-checks.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/create-network-load-balancer.html#configure-load-balancer

Amazon Key Management Service Developer Guide

Field Value

Default action:
Forward to

Choose the target group for your network load balancer.

Step 4: Create a VPC endpoint service

Typically, you create an endpoint to a service. However, when you create a VPC endpoint service,
you are the provider, and Amazon KMS creates an endpoint to your service. For an external key
store, create a VPC endpoint service with the network load balancer that you created in the
previous step. The VPC endpoint service must must be in the same Amazon Web Services account
and supported Region as your external key store.

Multiple external key stores can share an Amazon VPC, but each external key store must have its
own VPC endpoint service and private DNS name.

Follow the instructions in the Create an endpoint service topic to create your VPC endpoint service
with the following required values. For other fields, accept the default values and provide names as
requested.

Field Value

Load balancer
type

Network

Available load
balancers

Choose the network load balancer that you created in the previous step.

If your new load balancer does not appear in the list, verify that its state is
active. It might take a few minutes for the load balancer state to change from
provisioning to active.

Acceptance
required

False. Uncheck the check box.

Do not require acceptance. Amazon KMS cannot connect to the VPC endpoint
service without a manual acceptance. If acceptance is required, attempts
to create the external key store fail with an XksProxyInvalidCon
figurationException exception.

Choose a proxy connectivity option 678

https://docs.amazonaws.cn/vpc/latest/privatelink/create-endpoint-service.html#create-endpoint-service-nlb

Amazon Key Management Service Developer Guide

Field Value

Enable private
DNS name

Associate a private DNS name with the service

Private DNS
name

Enter a private DNS name that is unique in its Amazon Web Services Region.

The private DNS name must be a subdomain of a higher level public
domain. For example, if the private DNS name is myproxy-private.xk
s.example.com , it must be a subdomain of a public domain such as
xks.example.com or example.com .

This private DNS name must match the subject common name (CN) in the
TLS certificate configured on your external key store proxy. For example, if
the private DNS name is myproxy-private.xks.example.com , the
CN on the TLS certificate must be myproxy-private.xks.example
.com or *.xks.example.com .

If the certificate and private DNS name do not match, attempts to connect an
external key store to its external key store proxy fail with a connection error
code of XKS_PROXY_INVALID_TLS_CONFIGURATION . For details, see
General configuration errors.

Supported IP
address types

IPv4

Step 5: Verify your private DNS name domain

When you create your VPC endpoint service, its domain verification status is
pendingVerification. Before using the VPC endpoint service to create an external key store,
this status must be verified. To verify that you own the domain associated with your private DNS
name, you must create a TXT record in a public DNS server.

For example, if the private DNS name for your VPC endpoint service is myproxy-
private.xks.example.com, you must create a TXT record in a public domain, such as
xks.example.com or example.com, whichever is public. Amazon PrivateLink looks for the TXT
record first on xks.example.com and then on example.com.

Choose a proxy connectivity option 679

Amazon Key Management Service Developer Guide

Tip

After you add a TXT record, it might take a few minutes for the Domain verification status
value to change from pendingVerification to verify.

To begin, find the verification status of your domain using either of the following methods. Valid
values are verified, pendingVerification, and failed.

• In the Amazon VPC console, choose Endpoint services, and choose your endpoint service. In the
detail pane, see Domain verification status.

• Use the DescribeVpcEndpointServiceConfigurations operation. The State value is in the
ServiceConfigurations.PrivateDnsNameConfiguration.State field.

If the verification status is not verified, follow the instructions in the Domain ownership
verification topic to add a TXT record to your domain's DNS server and verify that the TXT record is
published. Then check your verification status again.

You are not required to create an A record for the private DNS domain name. When Amazon KMS
creates an interface endpoint to your VPC endpoint service, Amazon PrivateLink automatically
creates a hosted zone with the required A record for the private domain name in the Amazon
KMS VPC. For external key stores with VPC endpoint service connectivity, this happens when you
connect your external key store to its external key store proxy.

Step 6: Authorize Amazon KMS to connect to the VPC endpoint service

You must add Amazon KMS to the Allow principals list for your VPC endpoint service. This
allows Amazon KMS to create interface endpoints to your VPC endpoint service. If Amazon
KMS is not an allowed principal, attempts to create an external key store will fail with an
XksProxyVpcEndpointServiceNotFoundException exception.

Follow the instructions in the Manage permissions topic in the Amazon PrivateLink Guide. Use the
following required value.

Field Value

ARN cks.kms.<region>.amazonaws.com

Choose a proxy connectivity option 680

https://console.amazonaws.cn/vpc
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeVpcEndpointServiceConfigurations.html
https://docs.amazonaws.cn/vpc/latest/privatelink/manage-dns-names.html#verify-domain-ownership
https://docs.amazonaws.cn/vpc/latest/privatelink/manage-dns-names.html#verify-domain-ownership
https://docs.aws.amazon.com/vpc/latest/privatelink/configure-endpoint-service.html#add-remove-permissions

Amazon Key Management Service Developer Guide

Field Value

For example, cks.kms.us-east-1.amazonaws.com

Next: Create an external key store

Create an external key store

You can create one or many external key stores in each Amazon Web Services account and Region.
Each external key store must be associated with an external key manager outside of Amazon, and
an external key store proxy (XKS proxy) that mediates communication between Amazon KMS and
your external key manager. For details, see Choose an external key store proxy connectivity option.
Before you begin, confirm that you need an external key store. Most customer can use KMS keys
backed by Amazon KMS key material.

Tip

Some external key managers provide a simpler method for creating an external key store.
For details, see your external key manager documentation.

Before you create your external key store, you need to assemble the prerequisites. During the
creation process, you specify the properties of your external key store. Most importantly, you
indicate whether your external key store in Amazon KMS uses a public endpoint or a VPC endpoint
service to connect to its external key store proxy. You also specify the connection details, including
the URI endpoint of the proxy and the path within that proxy endpoint where Amazon KMS sends
API requests to the proxy.

Considerations

• KMS cannot communicate over IPv6 with External key stores.

• If you use public endpoint connectivity, make sure that Amazon KMS can communicate with your
proxy over the internet using an HTTPS connection. This includes configuring TLS on the external
key store proxy and ensuring that any firewalls between Amazon KMS and the proxy allow
IPv4 traffic to and from port 443 on the proxy. While creating an external key store with public
endpoint connectivity, Amazon KMS tests the connection by sending a status request to the
external key store proxy. This test verifies that the endpoint is reachable and that your external

Create an external key store 681

Amazon Key Management Service Developer Guide

key store proxy will accept a request signed with your external key store proxy authentication
credential. If this test request fails, the operation to create the external key store fails.

• If you use VPC endpoint service connectivity, make sure that the network load balancer, private
DNS name, and VPC endpoint service are configured correctly and operational. If the external key
store proxy isn't in the VPC, you need to ensure that the VPC endpoint service can communicate
with the external key store proxy. (Amazon KMS tests VPC endpoint service connectivity when
you connect the external key store to its external key store proxy.)

• Amazon KMS records Amazon CloudWatch metrics and dimensions especially for external key
stores. Monitoring graphs based on some of these metrics appear in the Amazon KMS console
for each external key store. We strongly recommend that you use these metrics to create alarms
that monitor your external key store. These alarms alert you to early signs of performance and
operational problems before they occur. For instructions, see Monitor external key stores.

• External key stores are subject to resource quotas. Use of KMS keys in an external key store
are subject to request quotas. Review these quotas before designing your external key store
implementation.

Note

Review your configuration for circular dependencies that might prevent it from working.
For example, if you create your external key store proxy using Amazon resources, make sure
that operating the proxy does not require the availability of a KMS key in an external key
store that is accessed via that proxy.

All new external key stores are created in a disconnected state. Before you can create KMS
keys your external key store, you must connect it to its external key store proxy. To change the
properties of your external key store, edit your external key store settings.

Topics

• Assemble the prerequisites

• Create a new external key store

Assemble the prerequisites

Before you create an external key store, you need to assemble the required components, including
the external key manager that you will use to support the external key store and the external key

Create an external key store 682

Amazon Key Management Service Developer Guide

store proxy that translates Amazon KMS requests into a format that your external key manager can
understand.

The following components are required for all external key stores. In addition to these
components, you need to provide the components to support the external key store proxy
connectivity option that you choose.

Tip

Your external key manager might include some of these components, or they might be
configured for you. For details, see your external key manager documentation.
If you are creating your external key store in the Amazon KMS console, you have the option
to upload a JSON-based proxy configuration file that specifies the proxy URI path and
proxy authentication credential. Some external key store proxies generate this file for
you. For details, see the documentation for your external key store proxy or external key
manager.

External key manager

Each external key store requires at least one external key manager instance. This can be a physical
or virtual hardware security module (HSM), or key management software.

You can use a single key manager, but we recommend at least two related key manager instances
that share cryptographic keys for redundancy. The external key store does not require exclusive use
of the external key manager. However, the external key manager must have the capacity to handle
the expected frequency of encryption and decryption requests from the Amazon services that use
KMS keys in the external key store to protect your resources. Your external key manager should be
configured to handle up to 1800 requests per second and to respond within the 250 millisecond
timeout for each request. We recommend that you locate the external key manager close to an
Amazon Web Services Region so that the network round-trip time (RTT) is 35 milliseconds or less.

If your external key store proxy allows it, you can change the external key manager that you
associate with your external key store proxy, but the new external key manager must be a backup
or snapshot with the same key material. If the external key that you associate with a KMS key is
no longer available to your external key store proxy, Amazon KMS cannot decrypt the ciphertext
encrypted with the KMS key.

Create an external key store 683

Amazon Key Management Service Developer Guide

The external key manager must be accessible to the external key store proxy. If the
GetHealthStatus response from the proxy reports that all external key manager
instances are Unavailable, all attempts to create an external key store fail with an
XksProxyUriUnreachableException.

External key store proxy

You must specify an external key store proxy (XKS proxy) that conforms to the design requirements
in the Amazon KMS External Key Store Proxy API Specification. You can develop or buy an external
key store proxy, or use an external key store proxy provided by or built into your external key
manager. Amazon KMS recommends that your external key store proxy be configured to handle up
to 1800 requests per second and respond within the 250 millisecond timeout for each request. We
recommend that you locate the external key manager close to an Amazon Web Services Region so
that the network round-trip time (RTT) is 35 milliseconds or less.

You can use an external key store proxy for more than one external key store, but each external
key store must have a unique URI endpoint and path within the external key store proxy for its
requests.

If you are using VPC endpoint service connectivity, you can locate your external key store proxy in
your Amazon VPC, but that is not required. You can locate your proxy outside of Amazon, such as in
your private data center, and use the VPC endpoint service only to communicate with the proxy.

Proxy authentication credential

To create an external key store, you must specify your external key store proxy authentication
credential (XksProxyAuthenticationCredential).

You must establish an authentication credential (XksProxyAuthenticationCredential)
for Amazon KMS on your external key store proxy. Amazon KMS authenticates to your proxy by
signing its requests using the Signature Version 4 (SigV4) process with the external key store proxy
authentication credential. You specify the authentication credential when you create your external
key store and you can change it at any time. If your proxy rotates your credential, be sure to update
the credential values for your external key store.

The proxy authentication credential has two parts. You must provide both parts for your external
key store.

• Access key ID: Identifies the secret access key. You can provide this ID in plain text.

Create an external key store 684

https://github.com/aws/aws-kms-xksproxy-api-spec/
https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html

Amazon Key Management Service Developer Guide

• Secret access key: The secret part of the credential. Amazon KMS encrypts the secret access key
in the credential before storing it.

The SigV4 credential that Amazon KMS uses to sign requests to the external key store proxy are
unrelated to any SigV4 credentials associated with any Amazon Identity and Access Management
principals in your Amazon accounts. Do not reuse any IAM SigV4 credentials for your external key
store proxy.

Proxy connectivity

To create an external key store, you must specify your external key store proxy connectivity option
(XksProxyConnectivity).

Amazon KMS can communicate with your external key store proxy by using a public endpoint or an
Amazon Virtual Private Cloud (Amazon VPC) endpoint service. While a public endpoint is simpler
to configure and maintain, it might not meet the security requirements for every installation. If
you choose the Amazon VPC endpoint service connectivity option, you must create and maintain
the required components, including an Amazon VPC with at least two subnets in two different
Availability Zones, a VPC endpoint service with a network load balancer and target group, and a
private DNS name for the VPC endpoint service.

You can change the proxy connectivity option for your external key store. However, you must
ensure that the continued availability of the key material associated with the KMS keys in your
external key store. Otherwise, Amazon KMS cannot decrypt any ciphertext encrypted with those
KMS keys.

For help deciding which proxy connectivity option is best for your external key store, see Choose an
external key store proxy connectivity option. For help creating an configuring VPC endpoint service
connectivity, see Configure VPC endpoint service connectivity.

Proxy URI endpoint

To create an external key store, you must specify the endpoint (XksProxyUriEndpoint) that
Amazon KMS uses to send requests to the external key store proxy.

The protocol must be HTTPS. Amazon KMS communicates over IPv4 on port 443. Do not specify
the port in the proxy URI endpoint value.

• Public endpoint connectivity — Specify the publicly available endpoint for your external key
store proxy. This endpoint must be reachable before you create your external key store.

Create an external key store 685

Amazon Key Management Service Developer Guide

• VPC endpoint service connectivity — Specify https:// followed by the private DNS name of
the VPC endpoint service.

The TLS server certificate configured on the external key store proxy must match the domain name
in the external key store proxy URI endpoint and be issued by a certificate authority supported
for external key stores. For a list, see Trusted Certificate Authorities. Your certificate authority will
require proof of domain ownership before issuing the TLS certificate.

The subject common name (CN) on the TLS certificate must match the private DNS name. For
example, if the private DNS name is myproxy-private.xks.example.com, the CN on the TLS
certificate must be myproxy-private.xks.example.com or *.xks.example.com.

You can change your proxy URI endpoint, but be sure that the external key store proxy has access
to the key material associated with the KMS keys in your external key store. Otherwise, Amazon
KMS cannot decrypt any ciphertext encrypted with those KMS keys.

Uniqueness requirements

• The combined proxy URI endpoint (XksProxyUriEndpoint) and proxy URI path
(XksProxyUriPath) value must be unique in the Amazon Web Services account and Region.

• External key stores with public endpoint connectivity can share the same proxy URI endpoint,
provided that they have different proxy URI path values.

• An external key store with public endpoint connectivity cannot use the same proxy URI endpoint
value as any external key store with VPC endpoint services connectivity in the same Amazon Web
Services Region, even if the key stores are in different Amazon Web Services accounts.

• Each external key store with VPC endpoint connectivity must have its own private DNS name.
The proxy URI endpoint (private DNS name) must be unique in the Amazon Web Services account
and Region.

Proxy URI path

To create an external key store, you must specify the base path in your external key store proxy
to the required proxy APIs. The value must start with / and must end with /kms/xks/v1 where
v1 represents the version of the Amazon KMS API for the external key store proxy. This path can
include an optional prefix between the required elements such as /example-prefix/kms/xks/
v1. To find this value, see the documentation for your external key store proxy.

Create an external key store 686

https://github.com/aws/aws-kms-xksproxy-api-spec/blob/main/TrustedCertificateAuthorities

Amazon Key Management Service Developer Guide

Amazon KMS sends proxy requests to the address specified by the concatenation of the
proxy URI endpoint and proxy URI path. For example, if the proxy URI endpoint is https://
myproxy.xks.example.com and the proxy URI path is /kms/xks/v1, Amazon KMS sends its
proxy API requests to https://myproxy.xks.example.com/kms/xks/v1.

You can change your proxy URI path, but be sure that the external key store proxy has access to
the key material associated with the KMS keys in your external key store. Otherwise, Amazon KMS
cannot decrypt any ciphertext encrypted with those KMS keys.

Uniqueness requirements

• The combined proxy URI endpoint (XksProxyUriEndpoint) and proxy URI path
(XksProxyUriPath) value must be unique in the Amazon Web Services account and Region.

VPC endpoint service

Specifies the name of the Amazon VPC endpoint service that is used to communicate with your
external key store proxy. This component is required only for external key stores that use VPC
endpoint service connectivity. For help setting up and configuring your VPC endpoint service for an
external key store, see Configure VPC endpoint service connectivity.

The VPC endpoint service must have the following properties:

• The VPC endpoint service must be in the same Amazon Web Services account and Region as the
external key store.

• It must have a network load balancer (NLB) connected to at least two subnets, each in a different
Availability Zone.

• The allow principals list for the VPC endpoint service must include the Amazon KMS service
principal for the Region: cks.kms.<region>.amazonaws.com, such as cks.kms.us-
east-1.amazonaws.com.

• It must not require acceptance of connection requests.

• It must have a private DNS name within a higher level public domain. For example, you could
have a private DNS name of myproxy-private.xks.example.com in the public xks.example.com
domain.

The private DNS name for an external key store with VPC endpoint service connectivity must be
unique in its Amazon Web Services Region.

• The domain verification status of the private DNS name domain must be verified.

Create an external key store 687

Amazon Key Management Service Developer Guide

• The TLS server certificate configured on the external key store proxy must specify the private
DNS hostname at which the endpoint is reachable.

Uniqueness requirements

• External key stores with VPC endpoint connectivity can share an Amazon VPC, but each external
key store must have its own VPC endpoint service and private DNS name.

Proxy configuration file

A proxy configuration file is an optional JSON-based file that contains values for the proxy URI path
and proxy authentication credential properties of your external key store. When creating or editing
an external key store in the Amazon KMS console, you can upload a proxy configuration file to
supply configuration values for your external key store. Using this file avoids typing and pasting
errors, and ensures that the values in your external key store match the values in your external key
store proxy.

Proxy configuration files are generated by the external key store proxy. To learn whether your
external key store proxy offers a proxy configuration file, see your external key store proxy
documentation.

The following is an example of a well-formed proxy configuration file with fictitious values.

{
 "XksProxyUriPath": "/example-prefix/kms/xks/v1",
 "XksProxyAuthenticationCredential": {
 "AccessKeyId": "ABCDE12345670EXAMPLE",
 "RawSecretAccessKey": "0000EXAMPLEFA5FT0mCc3DrGUe2sti527BitkQ0Zr9MO9+vE="
 }
}

You can upload a proxy configuration file only when creating or editing an external key
store in the Amazon KMS console. You cannot use it with the CreateCustomKeyStore or
UpdateCustomKeyStore operations, but you can use the values in the proxy configuration file to
ensure that your parameter values are correct.

Create a new external key store

Once you've assembled the necessary prerequisites, you can create a new external key store in the
Amazon KMS console or by using the CreateCustomKeyStore operation.

Create an external key store 688

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html

Amazon Key Management Service Developer Guide

Using the Amazon KMS console

Before creating an external key store, choose your proxy connectivity type and ensure that you
have created and configured all of the required components. If you need help finding any of the
required values, consult the documentation for your external key store proxy or key management
software.

Note

When you create an external key store in the Amazon Web Services Management Console,
you can upload a JSON-based proxy configuration file with values for the proxy URI path
and proxy authentication credential. Some proxies generate this file for you. It is not
required.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, External key stores.

4. Choose Create external key store.

5. Enter a friendly name for the external key store. The name must be unique among all external
key stores in your account.

Important

Do not include confidential or sensitive information in this field. This field may be
displayed in plaintext in CloudTrail logs and other output.

6. Choose your proxy connectivity type.

Your proxy connectivity choice determines the components required for your external key
store proxy. For help making this choice, see Choose an external key store proxy connectivity
option.

7. Choose or enter the name of the VPC endpoint service for this external key store. This step
appears only when your external key store proxy connectivity type is VPC endpoint service.

Create an external key store 689

https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

The VPC endpoint service and its VPCs must fulfill the requirements for an external key store.
For details, see the section called “Assemble the prerequisites”.

8. Enter your proxy URI endpoint. The protocol must be HTTPS. Amazon KMS communicates over
IPv4 on port 443. Do not specify the port in the proxy URI endpoint value.

If Amazon KMS recognizes the VPC endpoint service that you specified in the previous step, it
completes this field for you.

For public endpoint connectivity, enter a publicly available endpoint URI. For VPC endpoint
connectivity, enter https:// followed by the private DNS name of the VPC endpoint service.

9. To enter the values for the proxy URI path prefix and proxy authentication credential, upload a
proxy configuration file, or enter the values manually.

• If you have an optional proxy configuration file that contains values for your proxy URI
path and proxy authentication credential, choose Upload configuration file. Follow the
steps to upload the file.

When the file is uploaded, the console displays the values from the file in editable fields.
You can change the values now or edit these values after the external key store is created.

To display the value of the secret access key, choose Show secret access key.

• If you don't have a proxy configuration file, you can enter the proxy URI path and proxy
authentication credential values manually.

a. If you don't have a proxy configuration file, you can enter your proxy URI manually.
The console supplies the required /kms/xks/v1 value.

If your proxy URI path includes an optional prefix, such as the example-prefix in
/example-prefix/kms/xks/v1, enter the prefix in the Proxy URI path prefix field.
Otherwise, leave the field empty.

b. If you don't have a proxy configuration file, you can enter your proxy authentication
credential manually. Both the access key ID and secret access key are required.

• In Proxy credential: Access key ID, enter the access key ID of the proxy
authentication credential. The access key ID identifies the secret access key.

• In Proxy credential: Secret access key, enter the secret access key of the proxy
authentication credential.

Create an external key store 690

Amazon Key Management Service Developer Guide

To display the value of the secret access key, choose Show secret access key.

This procedure does not set or change the authentication credential you established
on your external key store proxy. It just associates these values with your external
key store. For information about setting, changing, and your rotating proxy
authentication credential, see the documentation for your external key store proxy or
key management software.

If your proxy authentication credential changes, edit the credential setting for your
external key store.

10. Choose Create external key store.

When the procedure is successful, the new external key store appears in the list of external key
stores in the account and Region. If it is unsuccessful, an error message appears that describes the
problem and provides help on how to fix it. If you need more help, see CreateKey errors for the
external key.

Next: New external key stores are not automatically connected. Before you can create Amazon KMS
keys in your external key store, you must connect the external key store to its external key store
proxy.

Using the Amazon KMS API

You can use the CreateCustomKeyStore operation to create a new external key store. For help
finding the values for the required parameters, see the documentation for your external key store
proxy or key management software.

Tip

You cannot upload a proxy configuration file when using the CreateCustomKeyStore
operation. However, you can use the values in the proxy configuration file to ensure that
your parameter values are correct.

To create an external key store, the CreateCustomKeyStore operation requires the following
parameter values.

Create an external key store 691

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html

Amazon Key Management Service Developer Guide

• CustomKeyStoreName – A friendly name for the external key store that is unique in the
account.

Important

Do not include confidential or sensitive information in this field. This field may be
displayed in plaintext in CloudTrail logs and other output.

• CustomKeyStoreType — Specify EXTERNAL_KEY_STORE.

• XksProxyConnectivity – Specify PUBLIC_ENDPOINT or VPC_ENDPOINT_SERVICE.

• XksProxyAuthenticationCredential — Specify both the access key ID and the secret
access key.

• XksProxyUriEndpoint — The endpoint that Amazon KMS uses to communicate with your
external key store proxy.

• XksProxyUriPath — The path within the proxy to the proxy APIs.

• XksProxyVpcEndpointServiceName — Required only when your XksProxyConnectivity
value is VPC_ENDPOINT_SERVICE.

Note

If you use Amazon CLI version 1.0, run the following command before specifying a
parameter with an HTTP or HTTPS value, such as the XksProxyUriEndpoint parameter.

aws configure set cli_follow_urlparam false

Otherwise, Amazon CLI version 1.0 replaces the parameter value with the content found at
that URI address, causing the following error:

Error parsing parameter '--xks-proxy-uri-endpoint': Unable to retrieve
https:// : received non 200 status code of 404

The following examples use fictitious values. Before running the command, replace them with valid
values for your external key store.

Create an external key store with public endpoint connectivity.

Create an external key store 692

Amazon Key Management Service Developer Guide

$ aws kms create-custom-key-store
 --custom-key-store-name ExampleExternalKeyStorePublic \
 --custom-key-store-type EXTERNAL_KEY_STORE \
 --xks-proxy-connectivity PUBLIC_ENDPOINT \
 --xks-proxy-uri-endpoint https://myproxy.xks.example.com \
 --xks-proxy-uri-path /kms/xks/v1 \
 --xks-proxy-authentication-credential
 AccessKeyId=<value>,RawSecretAccessKey=<value>

Create an external key store with VPC endpoint service connectivity.

$ aws kms create-custom-key-store
 --custom-key-store-name ExampleExternalKeyStoreVPC \
 --custom-key-store-type EXTERNAL_KEY_STORE \
 --xks-proxy-connectivity VPC_ENDPOINT_SERVICE \
 --xks-proxy-vpc-endpoint-service-name com.amazonaws.vpce.us-east-1.vpce-svc-
example \
 --xks-proxy-uri-endpoint https://myproxy-private.xks.example.com \
 --xks-proxy-uri-path /kms/xks/v1 \
 --xks-proxy-authentication-credential
 AccessKeyId=<value>,RawSecretAccessKey=<value>

When the operation is successful, CreateCustomKeyStore returns the custom key store ID, as
shown in the following example response.

{
 "CustomKeyStoreId": cks-1234567890abcdef0
}

If the operation fails, correct the error indicated by the exception, and try again. For additional
help, see Troubleshooting external key stores.

Next: To use the external key store, connect it to its external key store proxy.

Edit external key store properties

You can edit selected properties of an existing external key store.

You can edit some properties while the external key store is connected or disconnected. For other
properties, you must first disconnect your external key store from its external key store proxy.

Edit external key store properties 693

Amazon Key Management Service Developer Guide

The connection state of the external key store must be DISCONNECTED. While your external key
store is disconnected, you can manage the key store and its KMS keys, but you cannot create or use
KMS keys in the external key store. To find the connection state of your external key store, use the
DescribeCustomKeyStores operation or see the General configuration section on the detail page
for the external key store.

Before updating the properties your external key store, Amazon KMS sends a GetHealthStatus
request to the external key store proxy using the new values. If the request succeeds, it indicates
that you can connect and authenticate to an external key store proxy with the updated property
values. If the request fails, the edit operation fails with an exception that identifies the error.

When the edit operation completes, the updated property values for your external key store
appear in the Amazon KMS console and the DescribeCustomKeyStores response. However, it
can take up to five minutes for the changes to be fully effective.

If you edit your external key store in the Amazon KMS console, you have the option to upload a
JSON-based proxy configuration file that specifies the proxy URI path and proxy authentication
credential. Some external key store proxies generate this file for you. For details, see the
documentation for your external key store proxy or external key manager.

Warning

The updated property values must connect your external key store to a proxy for the same
external key manager as the previous values, or for a backup or snapshot of the external
key manager with the same cryptographic keys. If your external key store permanently
loses its access to the external keys associated with its KMS keys, ciphertext encrypted
under those external keys is unrecoverable. In particular, changing the proxy connectivity of
an external key store can prevent Amazon KMS from accessing your external keys.

Tip

Some external key managers provide a simpler method for editing external key store
properties. For details, see your external key manager documentation.

You can change the following properties of an external key store.

Edit external key store properties 694

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

Editable external key store properties Any connection
state

Require Disconnec
ted state

Custom key store name

A required friendly name for a custom key store.

Important

Do not include confidential or sensitive
information in this field. This field may be
displayed in plaintext in CloudTrail logs
and other output.

Proxy authentication credential (XksProxy
AuthenticationCredential)

(You must specify both the access key ID and the
secret access key, even if you are changing only
one element.)

Proxy URI path (XksProxyUriPath)

Proxy connectivity (XksProxyConnectivity)

(You must also update the proxy URI endpoint.
If you are changing to VPC endpoint service
connectivity, you must specify a proxy VPC
endpoint service name.)

Proxy URI endpoint (XksProxyUriEndpoint)

If you change the proxy endpoint URI, you might
also need to change the associated TLS certificate.

Proxy VPC endpoint service name (XksProxy
VpcEndpointServiceName)

Edit external key store properties 695

Amazon Key Management Service Developer Guide

Editable external key store properties Any connection
state

Require Disconnec
ted state

(This field is required for VPC endpoint service
connectivity)

Edit your external key store's properties

You can edit your external key store's properties in the Amazon KMS console or by using the
UpdateCustomKeyStore operation.

Using the Amazon KMS console

When you edit an key store, you can change any or of the editable values. Some changes require
that the external key store be disconnected from its external key store proxy.

If you are editing the proxy URI path or proxy authentication credential, you can enter the new
values or upload an external key store proxy configuration file that includes the new values.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, External key stores.

4. Choose the row of the external key store you want to edit.

5. If necessary, disconnect the external key store from its external key store proxy. From the Key
store actions menu, choose Disconnect.

6. From the Key store actions menu, choose Edit.

7. Change one or more of the editable external key store properties. You can also upload an
external key store proxy configuration file with values for the proxy URI path and proxy
authentication credential.You can use a proxy configuration file even if some values specified
in the file haven't changed.

8. Choose Update external key store.

9. Review the warning, and if you decide to continue, confirm the warning, and then choose
Update external key store.

Edit external key store properties 696

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

When the procedure is successful, a message describes the properties that you edited. When
it is unsuccessful, an error message appears that describes the problem and provides help on
how to fix it.

10. If necessary, reconnect the external key store. From the Key store actions menu, choose
Connect.

You can leave the external key store disconnected. But while it is disconnected, you cannot
create KMS keys in the external key store or use the KMS keys in the external key store in
cryptographic operations.

Using the Amazon KMS API

To change the properties of an external key store, use the UpdateCustomKeyStore operation. You
can change multiple properties of an external key store in the same operation. If the operation is
successful, Amazon KMS returns an HTTP 200 response and a JSON object with no properties.

Use the CustomKeyStoreId parameter to identify the external key store. Use the other
parameters to change the properties. You cannot use a proxy configuration file with the
UpdateCustomKeyStore operation. The proxy configuration file is supported only by the Amazon
KMS console. However, you can use the proxy configuration file to help you determine the correct
parameter values for your external key store proxy.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

Before you begin, if necessary, disconnect the external key store from its external key store proxy.
After updating, if necessary, you can reconnect the external key store to its external key store
proxy. You can leave the external key store in the disconnected state, but you must reconnect it
before you can create new KMS keys in the key store or use existing KMS keys in the key store for
cryptographic operations.

Note

If you use Amazon CLI version 1.0, run the following command before specifying a
parameter with an HTTP or HTTPS value, such as the XksProxyUriEndpoint parameter.

aws configure set cli_follow_urlparam false

Edit external key store properties 697

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html
http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

Otherwise, Amazon CLI version 1.0 replaces the parameter value with the content found at
that URI address, causing the following error:

Error parsing parameter '--xks-proxy-uri-endpoint': Unable to retrieve
https:// : received non 200 status code of 404

Change the name of the external key store

The first example uses the UpdateCustomKeyStore operation to change the friendly name of the
external key store to XksKeyStore. The command uses the CustomKeyStoreId parameter to
identify the custom key store and the CustomKeyStoreName to specify the new name for the
custom key store. Replace all example values with actual values for your external key store.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 --new-
custom-key-store-name XksKeyStore

Change the proxy authentication credential

The following example updates the proxy authentication credential that Amazon KMS uses to
authenticate to the external key store proxy. You can use a command like this one to update the
credential if it is rotated on your proxy.

Update the credential on your external key store proxy first. Then use this feature to report the
change to Amazon KMS. (Your proxy will briefly support both the old and new credential so you
have time to update your credential in Amazon KMS.)

You must always specify both the access key ID and the secret access key in the credential, even if
only one value is changed.

The first two commands set variables to hold the credential values. The UpdateCustomKeyStore
operations uses the CustomKeyStoreId parameter to identify the external key store. It
uses the XksProxyAuthenticationCredential parameter with its AccessKeyId and
RawSecretAccessKey fields to specify the new credential. Replace all example values with actual
values for your external key store.

$ accessKeyID=access key id
$ secretAccessKey=secret access key

Edit external key store properties 698

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html

Amazon Key Management Service Developer Guide

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 \
 --xks-proxy-authentication-credential \
 AccessKeyId=$accessKeyId,RawSecretAccessKey=$secretAccessKey

Change the proxy URI path

The following example updates the proxy URI path (XksProxyUriPath). The combination of the
proxy URI endpoint and the proxy URI path must be unique in the Amazon Web Services account
and Region. Replace all example values with actual values for your external key store.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 \
 --xks-proxy-uri-path /kms/xks/v1

Change to VPC endpoint service connectivity

The following example uses the UpdateCustomKeyStore operation to change the external key store
proxy connectivity type to VPC_ENDPOINT_SERVICE. To make this change, you must specify the
required values for VPC endpoint service connectivity, including the VPC endpoint service name
(XksProxyVpcEndpointServiceName) and a proxy URI endpoint (XksProxyUriEndpoint)
value that includes the private DNS name for the VPC endpoint service. Replace all example values
with actual values for your external key store.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 \
 --xks-proxy-connectivity "VPC_ENDPOINT_SERVICE" \
 --xks-proxy-uri-endpoint https://myproxy-private.xks.example.com \
 --xks-proxy-vpc-endpoint-service-name com.amazonaws.vpce.us-east-1.vpce-
svc-example

Change to public endpoint connectivity

The following example changes the external key store proxy connectivity type to
PUBLIC_ENDPOINT. When you make this change, you must update the proxy URI endpoint
(XksProxyUriEndpoint) value. Replace all example values with actual values for your external
key store.

Edit external key store properties 699

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html

Amazon Key Management Service Developer Guide

Note

VPC endpoint connectivity provides greater security than public endpoint connectivity.
Before changing to public endpoint connectivity, consider other options, including locating
your external key store proxy on premises and using the VPC only for communication.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 \
 --xks-proxy-connectivity "PUBLIC_ENDPOINT" \
 --xks-proxy-uri-endpoint https://myproxy.xks.example.com

View external key stores

You can view external key stores in each account and Region by using the Amazon KMS console or
by using the DescribeCustomKeyStores operation.

When you view an external key store, you can see the following:

• Basic information about the key store, including its friendly name, ID, key store type, and
creation date.

• Configuration information for the external key store proxy, including the connectivity type, proxy
URI endpoint and path, and the access key ID of your current proxy authentication credential.

• If the external key store proxy uses VPC endpoint service connectivity, the console displays the
name of the VPC endpoint service.

• The current connection state.

Note

A connection state value of Disconnected indicates that the external key store has never
been connected, or it was intentionally disconnected from its external key store proxy.
However, if your attempts to use a KMS key in a connected external key store fail, that
might indicate a problem with the external key store or its proxy. For help, see External
key store connection errors.

• A Monitoring section with graphs of Amazon CloudWatch metrics designed to help you detect
and resolve issues with your external key store. For help interpreting the graphs, using them in

View external key stores 700

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

your planning and troubleshooting, and creating CloudWatch alarms based on the metrics in the
graphs, see Monitor external key stores.

External key store properties

The following properties of an external key store are visible in the Amazon KMS console and the
DescribeCustomKeyStores response.

Custom key store properties

The following values appear in the General configuration section of the detail page for each
custom key store.These properties apply to all custom key stores, including Amazon CloudHSM key
stores and external key stores.

Custom key store ID

A unique ID that Amazon KMS assigns to the custom key store.

Custom key store name

A friendly name that you assign to the custom key store when you create it. You can change this
value at any time.

Custom key store type

The type of custom key store. Valid values are Amazon CloudHSM (AWS_CLOUDHSM) or External
key store (EXTERNAL_KEY_STORE). You cannot change the type after you create the custom
key store.

Creation date

The date that the custom key store was created. This date is displayed in local time for the
Amazon Web Services Region.

Connection state

Indicates whether the custom key store is connected to its backing key store. The connection
state is DISCONNECTED only if the custom key store has never been connected to its backing
key store, or it has been intentionally disconnected. For details, see the section called
“Connection state”.

View external key stores 701

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

External key store configuration properties

The following values appear in the External key store proxy configuration section of the
detail page for each external key store and in the XksProxyConfiguration element of the
DescribeCustomKeyStores response. For a detailed description of each field, including uniqueness
requirements and help with determining the correct value for each field, see the section called
“Assemble the prerequisites” in the Creating an external key store topic.

Proxy connectivity

Indicates whether the external key store uses public endpoint connectivity or VPC endpoint
service connectivity.

Proxy URI endpoint

The endpoint that Amazon KMS uses to connect to your external key store proxy.

Proxy URI path

The path from the proxy URI endpoint where Amazon KMS sends proxy API requests.

Proxy credential: Access key ID

Part of the proxy authentication credential that you establish on your external key store proxy.
The access key ID identifies the secret access key in the credential.

Amazon KMS uses the SigV4 signing process and the proxy authentication credential to sign its
requests to your external key store proxy. The credential in the signature allows the external key
store proxy to authenticate requests on your behalf from Amazon KMS.

VPC endpoint service name

The name of the Amazon VPC endpoint service that supports your external key store. This
value appears only when the external key store uses VPC endpoint service connectivity. You can
locate your external key store proxy in the VPC or use the VPC endpoint service to communicate
securely with your external key store proxy.

View your external key store properties

You can view your external key store and its associated properties in the Amazon KMS console or
by using the DescribeCustomKeyStores operation.

View external key stores 702

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

Using the Amazon KMS console

To view the external key stores in a given account and Region, use the following procedure.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, External key stores.

4. To view detailed information about an external key store, choose the key store name.

Using the Amazon KMS API

To view your external key stores, use the DescribeCustomKeyStores operation. By default, this
operation returns all custom key stores in the account and Region. But you can use either the
CustomKeyStoreId or CustomKeyStoreName parameter (but not both) to limit the output to a
particular custom key store.

For custom key stores, the output consists of the custom key store ID, name, and type, and the
connection state of the key store. If the connection state is FAILED, the output also includes
a ConnectionErrorCode that describes the reason for the error. For help interpreting the
ConnectionErrorCode for an external key store, see Connection error codes for external key
stores.

For external key stores, the output also includes the XksProxyConfiguration element. This
element includes the connectivity type, proxy URI endpoint, proxy URI path, and the access key ID
of the proxy authentication credential.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

For example, the following command returns all custom key stores in the account and Region. You
can use the Limit and Marker parameters to page through the custom key stores in the output.

$ aws kms describe-custom-key-stores

The following command uses the CustomKeyStoreName parameter to get only the example
external key store with the ExampleXksPublic friendly name. This example key store uses public
endpoint connectivity. It is connected to its external key store proxy.

View external key stores 703

https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
http://www.amazonaws.cn/cli/

Amazon Key Management Service Developer Guide

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleXksPublic
{
 "CustomKeyStores": [
 {
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleXksPublic",
 "ConnectionState": "CONNECTED",
 "CreationDate": "2022-12-14T20:17:36.419000+00:00",
 "CustomKeyStoreType": "EXTERNAL_KEY_STORE",
 "XksProxyConfiguration": {
 "AccessKeyId": "ABCDE12345670EXAMPLE",
 "Connectivity": "PUBLIC_ENDPOINT",
 "UriEndpoint": "https://xks.example.com:6443",
 "UriPath": "/example/prefix/kms/xks/v1"
 }
 }
]
}

The following command gets an example external key store with VPC endpoint service
connectivity. In this example, the external key store is connected to its external key store proxy.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleXksVpc
{
 "CustomKeyStores": [
 {
 "CustomKeyStoreId": "cks-9876543210fedcba9",
 "CustomKeyStoreName": "ExampleXksVpc",
 "ConnectionState": "CONNECTED",
 "CreationDate": "2022-12-13T18:34:10.675000+00:00",
 "CustomKeyStoreType": "EXTERNAL_KEY_STORE",
 "XksProxyConfiguration": {
 "AccessKeyId": "ABCDE98765432EXAMPLE",
 "Connectivity": "VPC_ENDPOINT_SERVICE",
 "UriEndpoint": "https://example-proxy-uri-endpoint-vpc",
 "UriPath": "/example/prefix/kms/xks/v1",
 "VpcEndpointServiceName": "com.amazonaws.vpce.us-east-1.vpce-svc-example"
 }
 }
]
}

View external key stores 704

Amazon Key Management Service Developer Guide

A ConnectionState of Disconnected indicates that an external key store has never been
connected or it was intentionally disconnected from its external key store proxy. However, if
attempts to use a KMS key in a connected external key store fail, that might indicate a problem
with the external key store proxy or other external components.

If the ConnectionState of the external key store is FAILED, the DescribeCustomKeyStores
response includes a ConnectionErrorCode element that explains the reason for the error.

For example, in the following output, the XKS_PROXY_TIMED_OUT value indicates Amazon
KMS can connect to the external key store proxy, but the connection failed because the external
key store proxy did not respond to Amazon KMS in the time allotted. If you see this connection
error code repeatedly, notify your external key store proxy vendor. For help with this and other
connection error failures, see Troubleshooting external key stores.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleXksVpc
{
 "CustomKeyStores": [
 {
 "CustomKeyStoreId": "cks-9876543210fedcba9",
 "CustomKeyStoreName": "ExampleXksVpc",
 "ConnectionState": "FAILED",
 "ConnectionErrorCode": "XKS_PROXY_TIMED_OUT",
 "CreationDate": "2022-12-13T18:34:10.675000+00:00",
 "CustomKeyStoreType": "EXTERNAL_KEY_STORE",
 "XksProxyConfiguration": {
 "AccessKeyId": "ABCDE98765432EXAMPLE",
 "Connectivity": "VPC_ENDPOINT_SERVICE",
 "UriEndpoint": "https://example-proxy-uri-endpoint-vpc",
 "UriPath": "/example/prefix/kms/xks/v1",
 "VpcEndpointServiceName": "com.amazonaws.vpce.us-east-1.vpce-svc-example"
 }
 }
]
}

Monitor external key stores

Amazon KMS collects metrics for each interaction with an external key store and publishes them
in your CloudWatch account. These metrics are used to generate the graphs in the monitoring
section of the detail page for each external key store. The following topic details how to use the
graphs to identify and troubleshoot operational and configuration issues impacting your external

Monitor external key stores 705

Amazon Key Management Service Developer Guide

key store. We recommend using the CloudWatch metrics to set alarms that notify you when your
external key store isn't performing as expected. For more information, see Monitoring with Amazon
CloudWatch.

Topics

• Viewing the graphs

• Interpreting the graphs

Viewing the graphs

You can view the graphs at different levels of detail. By default, each graph uses a three hour time
range and five minute aggregation period. You can adjust the graph view within the console, but
your changes will revert to the default settings when the external key store detail page is closed or
the browser is refreshed. For help with Amazon CloudWatch terminology, see Amazon CloudWatch
concepts.

View data point details

The data in each graph is collected by Amazon KMS metrics. To view more information about a
specific data point, pause the mouse over the data point on the line graph. This will display a pop-
up with more information about the metric that the graph was derived from. Each list item displays
the dimension value recorded at that data point. The pop-up displays a null value (–) if there is
no metric data available for the dimension value at that data point. Some graphs record multiple
dimensions and values for a single data point. Other graphs, like the reliability graph, use the data
collected by the metric to calculate a unique value. Each list item is associated with a different line
graph color.

Modify the time range

To modify the time range, select one of the predefined time ranges in the upper right corner of
the monitoring section. The predefined time ranges span from 1 hour to 1 week (1h, 3h, 12h, 1d,
3d, or 1w). This adjusts the time range for all graphs. If you want to view one specific graph in a
different time range, or if you want to set a custom time range, enlarge the graph or view it in the
Amazon CloudWatch console.

Zoom in on graphs

You can use the mini-map zoom feature to focus on sections of line graphs and stacked portions
of the graphs without changing between zoomed-in and zoomed-out views. For example, you can

Monitor external key stores 706

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#CloudWatchPeriods
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html
https://docs.amazonaws.cn/kms/latest/developerguide/monitoring-cloudwatch.html#kms-metrics
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/modify_graph_date_time.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/zoom-graph.html

Amazon Key Management Service Developer Guide

use the mini-map zoom feature to focus on a peak in a graph, so that you can compare the spike
against other graphs in the monitoring section from the same timeline.

1. Choose and drag on the area of the graph that you want to focus on, and then release the drag.

2. To reset the zoom, choose the Reset zoom icon, which looks like a magnifying glass with a
minus (-) symbol inside.

Enlarge a graph

To enlarge a graph, select the menu icon in the upper right corner of an individual graph and
choose Enlarge. You can also select the enlarge icon that appears next to the menu icon when you
hover over a graph.

Enlarging a graph enables you to further modify the view of a graph by specifying a different
period, custom time range, or refresh interval. These changes will revert to the default settings
when you close the enlarged view.

Modify the period

1. Choose the Period options menu. By default, this menu displays the value: 5 minutes.

2. Choose a period, the predefined periods span from 1 second to 30 days.

For example, you can choose a one-minute view, which can be useful when troubleshooting.
Or, choose a less detailed, one-hour view. That can be useful when viewing a broader time
range (for example, 3 days) so that you can see trends over time. For more information, see
Periods in the Amazon CloudWatch User Guide.

Modify the time range or time zone

1. Select one of the predefined time ranges, which span from 1 hour to 1 week (1h, 3h, 12h,
1d, 3d, or 1w). Alternatively, you can choose Custom to set your own time range.

2. Choose Custom

a. Time range: select the Absolute tab in the upper left corner of the box. Use the
calendar picker or text field boxes to specify a time range.

b. Time zone: choose the dropdown in the upper right corner of the box. You can change
the time zone to UTC or Local time zone.

3. After you specify a time range, choose Apply.

Monitor external key stores 707

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#CloudWatchPeriods

Amazon Key Management Service Developer Guide

Modify how often the data in your graph is refreshed

1. Choose the Refresh options menu in the upper-right corner.

2. Choose a refresh interval (Off, 10 Seconds, 1 Minute, 2 Minutes, 5 Minutes, or 15 Minutes).

View graphs in the Amazon CloudWatch console

The graphs in the monitoring section are derived from predefined metrics that Amazon KMS
publishes to Amazon CloudWatch. You can open them within the CloudWatch console and save
them to CloudWatch dashboards. If you have multiple external key stores, you can open their
respective graphs in CloudWatch and save them to a single dashboard to compare their health and
usage.

Add to CloudWatch dashboard

Select Add to dashboard in the upper right corner to add all of the graphs to an Amazon
CloudWatch dashboard. You can either select an existing dashboard or create a new one. For
information on using this dashboard to create customized views of the graphs and alarms, see
Using Amazon CloudWatch dashboards in the Amazon CloudWatch User Guide.

View in CloudWatch metrics

Select the menu icon in the upper right corner of an individual graph and choose View in metrics
to view this graph in the Amazon CloudWatch console. From the CloudWatch console, you can add
this single graph to a dashboard and modify time ranges, periods, and refresh intervals. For more
information see, Graphing metrics in the Amazon CloudWatch User Guide.

Interpreting the graphs

Amazon KMS provides several graphs to monitor the health of your external key store within the
Amazon KMS console. These graphs are automatically configured and derived from Amazon KMS
metrics.

The graph data is collected as part of the calls you make to your external key store and external
keys. You might see data populating graphs during a time range that you did not make any calls,
this data comes from the periodic GetHealthStatus calls that Amazon KMS makes on your
behalf to check the status of your external key store proxy and external key manager. If your
graphs display the message No data available, then there were no calls recorded during that time
range or your external key store is in a DISCONNECTED state. You might be able to identify the
time your external key store disconnected by adjusting your view to a broader time range.

Monitor external key stores 708

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/graph_metrics.html
https://docs.amazonaws.cn/kms/latest/developerguide/monitoring-cloudwatch.html#kms-metrics
https://docs.amazonaws.cn/kms/latest/developerguide/monitoring-cloudwatch.html#kms-metrics

Amazon Key Management Service Developer Guide

Topics

• Total requests

• Reliability

• Latency

• Top 5 exceptions

• Certificate days to expire

Total requests

The total number of Amazon KMS requests being received for a specific external key store during a
given time range. Use this graph to determine if you are at risk of throttling.

Amazon KMS recommends that your external key manager be able to handle up to 1800 requests
for cryptographic operations per second. If you approach 540,000 calls in a five-minute period, you
are at risk of throttling.

You can monitor the number of requests for cryptographic operations on KMS keys in your external
key store that Amazon KMS throttles with the ExternalKeyStoreThrottle metric.

If you are getting very frequent KMSInvalidStateException errors with a message that
explains that the request was rejected "due to a very high request rate," it might indicate that
your external key manager or external key store proxy cannot keep pace with the current request
rate. If possible, lower your request rate. You might also consider requesting a decrease in your
custom key store request quota value. Decreasing this quota value might increase throttling, but
it indicates that Amazon KMS is rejecting excess requests quickly before they are sent to your
external key store proxy or external key manager. To request a quota decrease, please visit Amazon
Web Services Support Center and create a case.

The total requests graph is derived from the XksProxyErrors metric, which collects data on
both the successful and unsuccessful responses that Amazon KMS receives from your external
key store proxy. When you view a specific data point, the pop-up displays the value of the
CustomKeyStoreId dimension alongside the total number of Amazon KMS requests recorded at
that data point. The CustomKeyStoreId will always be the same.

Monitor external key stores 709

https://console.amazonaws.cn/support/home
https://console.amazonaws.cn/support/home

Amazon Key Management Service Developer Guide

Reliability

The percentage of Amazon KMS requests for which the external key store proxy returned either a
successful response or a non-retryable error. Use this graph to evaluate the operational health of
your external key store proxy.

When the graph displays a value less than 100%, it indicates cases where the proxy either did not
respond or responded with a retryable error. This can indicate problems with the network, slowness
of the external key store proxy or external key manager, or implementation bugs.

If the request includes a bad credential and your proxy responds with an
AuthenticationFailedException, the graph will still indicate 100% reliability because the
proxy identified an incorrect value in the external key store proxy API request, and therefore the
failure is expected. If the percentage of your reliability graph is 100%, then your external key
store proxy is responding as expected. If the graph displays a value less than 100%, then the
proxy either responded with a retryable error or timed out. For example, if the proxy responds
with a ThrottlingException due to a very high request rate, it will display a lower reliability
percentage because the proxy was unable to identify a specific problem in the request that caused
it to fail. This is because retryable errors are likely transient problems that can be resolved by
retrying the request.

The following error responses will lower the reliability percentage. You can use the Top 5
exceptions graph and the XksProxyErrors metric to further monitor how frequently your proxy
returns each retryable error.

• InternalException

• DependencyTimeoutException

• ThrottlingException

• XksProxyUnreachableException

The reliability graph is derived from the XksProxyErrors metric, which collects data on both
the successful and unsuccessful responses that Amazon KMS receives from your external key
store proxy. The reliability percentage will only lower if the response has an ErrorType value
of Retryable. When you view a specific data point, the pop-up displays the value of the
CustomKeyStoreId dimension alongside the reliability percentage for Amazon KMS requests
recorded at that data point. The CustomKeyStoreId will always be the same.

Monitor external key stores 710

Amazon Key Management Service Developer Guide

We recommend using the XksProxyErrors metric to create a CloudWatch alarm that notifies you of
potential networking problems by alerting you when more than five retryable errors are recorded
in a one minute period. For more information, see Create an alarm for retryable errors.

Latency

The number of milliseconds it takes for an external key store proxy to respond to an Amazon KMS
request. Use this graph to evaluate the performance of your external key store proxy and external
key manager.

Amazon KMS expects the external key store proxy to respond to each request within 250
milliseconds. In the case of network timeouts, Amazon KMS will retry the request once. If the
proxy fails a second time, the recorded latency is the combined timeout limit for both request
attempts and the graph will display approximately 500 milliseconds. In all other cases where
the proxy doesn't respond within the 250 millisecond timeout limit, the recorded latency is 250
milliseconds. If the proxy is frequently timing out on encryption and decryption operations, consult
your external proxy administrator. For help troubleshooting latency problems, see Latency and
timeout errors.

Slow responses might also indicate that your external key manager cannot handle the current
request traffic. Amazon KMS recommends that your external key manager be able to handle up
to 1800 requests for cryptographic operations per second. If your external key manager cannot
handle the 1800 requests per second rate, consider requesting a decrease in your request quota for
KMS keys in a custom key store. Requests for cryptographic operations using the KMS keys in your
external key store will fail fast with a throttling exception, rather than being processed and later
rejected by your external key store proxy or external key manager.

The latency graph is derived from the XksProxyLatency metric. When you view a specific data
point, the pop-up displays the corresponding KmsOperation and XksOperation dimension
values alongside the average latency recorded for the operations at that data point. The list items
are ordered from highest latency to lowest.

We recommend using the XksProxyLatency metric to create a CloudWatch alarm that notifies you
when your latency is approaching the timeout limit. For more information, see Create an alarm for
response timeout.

Monitor external key stores 711

Amazon Key Management Service Developer Guide

Top 5 exceptions

The top five exceptions for failed cryptographic and management operations during a given time
range. Use this graph to track the most frequent errors, so you can prioritize your engineering
effort.

This count includes exceptions that Amazon KMS received from the external key store proxy and
the XksProxyUnreachableException that Amazon KMS returns internally when it cannot
establish communication with the external key store proxy.

High rates of retryable errors might indicate networking errors, while high rates of non-
retryable errors might indicate a problem with the configuration of your external key store. For
example, a spike in AuthenticationFailedExceptions indicates a discrepancy between the
authentication credentials configured in Amazon KMS and the external key store proxy. To view
your external key store configuration, see View external key stores. To edit your external key store
settings, see Edit external key store properties.

The exceptions that Amazon KMS receives from the external key store proxy are different from
the exceptions that Amazon KMS returns when an operation fails. Amazon KMS cryptographic
operations return an KMSInvalidStateException for all failures related to the external
configuration or connection state of the external key store. To identify the problem, use the
accompanying error message text.

The following table shows the exceptions that can appear in the top 5 exceptions graph and the
corresponding exceptions that Amazon KMS returns to you.

Error type Exception displayed in the
graph

Exception that Amazon KMS
returned to you

Non-retryable AccessDeniedExcept
ion

For troubleshooting help, see
Proxy authorization issues.

CustomKeyStoreInva
lidStateException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Monitor external key stores 712

Amazon Key Management Service Developer Guide

Error type Exception displayed in the
graph

Exception that Amazon KMS
returned to you

Non-retryable AuthenticationFail
edException

For troubleshooting help,
see Authentication credential
errors.

XksProxyIncorrectA
uthenticationCrede
ntialException in
response to CreateCus
tomKeyStore and
UpdateCustomKeyStore
operations.

CustomKeyStoreInva
lidStateException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Retryable DependencyTimeoutE
xception

For troubleshooting help, see
Latency and timeout errors.

XksProxyUriUnreach
ableException in
response to CreateCus
tomKeyStore and
UpdateCustomKeyStore
operations.

CustomKeyStoreInva
lidStateException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Monitor external key stores 713

Amazon Key Management Service Developer Guide

Error type Exception displayed in the
graph

Exception that Amazon KMS
returned to you

Retryable InternalException

The external key store proxy
rejected the request because
it cannot communicate with
the external key manager.
Verify that the external key
store proxy configuration is
correct and that the external
key manager is available.

XksProxyInvalidRes
ponseException in
response to CreateCus
tomKeyStore and
UpdateCustomKeyStore
operations.

CustomKeyStoreInva
lidStateException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Non-retryable InvalidCiphertextE
xception

For troubleshooting help, see
Decryption errors.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Non-retryable InvalidKeyUsageExc
eption

For troubleshooting help,
see Cryptographic operation
errors for the external key.

XksKeyInvalidConfi
gurationException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Monitor external key stores 714

Amazon Key Management Service Developer Guide

Error type Exception displayed in the
graph

Exception that Amazon KMS
returned to you

Non-retryable InvalidStateExcept
ion

For troubleshooting help,
see Cryptographic operation
errors for the external key.

XksKeyInvalidConfi
gurationException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Non-retryable InvalidUriPathExce
ption

For troubleshooting help, see
General configuration errors.

XksProxyInvalidCon
figurationException
in response to CreateCus
tomKeyStore and
UpdateCustomKeyStore
operations.

CustomKeyStoreInva
lidStateException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Non-retryable KeyNotFoundException

For troubleshooting help, see
External key errors.

XksKeyNotFoundExce
ption in response to
CreateKey operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Monitor external key stores 715

Amazon Key Management Service Developer Guide

Error type Exception displayed in the
graph

Exception that Amazon KMS
returned to you

Retryable ThrottlingException

The external key store proxy
rejected the request due
to a very high request rate.
Reduce the frequency of your
calls using KMS keys in this
external key store.

XksProxyUriUnreach
ableException in
response to CreateCus
tomKeyStore and
UpdateCustomKeyStore
operations.

CustomKeyStoreInva
lidStateException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Non-retryable UnsupportedOperati
onException

For troubleshooting help,
see Cryptographic operation
errors for the external key.

XksKeyInvalidRespo
nseException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Monitor external key stores 716

Amazon Key Management Service Developer Guide

Error type Exception displayed in the
graph

Exception that Amazon KMS
returned to you

Non-retryable ValidationException

For troubleshooting help, see
Proxy issues.

XksProxyInvalidRes
ponseException in
response to CreateCus
tomKeyStore and
UpdateCustomKeyStore
operations.

CustomKeyStoreInva
lidStateException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

Retryable XksProxyUnreachabl
eException

If you see this error repeatedl
y, verify that your external
key store proxy is active and
is connected to the network,
and that its URI path and
endpoint URI or VPC service
name are correct in your
external key store.

XksProxyUriUnreach
ableException in
response to CreateCus
tomKeyStore and
UpdateCustomKeyStore
operations.

CustomKeyStoreInva
lidStateException in
response to CreateKey
operations.

KMSInvalidStateExc
eption in response to
cryptographic operations.

The top 5 exceptions graph is derived from the XksProxyErrors metric. When you view a specific
data point, the pop-up displays the value of the ExceptionName dimension alongside the number

Monitor external key stores 717

Amazon Key Management Service Developer Guide

of times that the exception was recorded at that data point. The five list items are ordered from
most frequent exception to least.

We recommend using the XksProxyErrors metric to create a CloudWatch alarm that notifies you
of potential configuration problems by alerting you when more than five non-retryable errors
are recorded in a one minute period. For more information, see Create an alarm for non-retryable
errors.

Certificate days to expire

The number of days until the TLS certificate for your external key store proxy endpoint
(XksProxyUriEndpoint) expires. Use this graph to monitor upcoming expiration of your TLS
certificate.

When the certificate expires, Amazon KMS cannot communicate with the external key store proxy.
All data protected by KMS keys in your external key store becomes inaccessible until you renew the
certificate.

The certificate days to expire graph is derived from the XksProxyCertificateDaysToExpire metric.
We strongly recommend using this metric to create a CloudWatch alarm that notifies you about
the upcoming expiration. Certificate expiration might prevent you from accessing your encrypted
resources. Set the alarm to give your organization time to renew the certificate before it expires.
For more information, see Create an alarm for certificate expiration.

Connect and disconnect external key stores

New external key stores are not connected. To create and use Amazon KMS keys in your external
key store, you need to connect your external key store to its external key store proxy. You can
connect and disconnect your external key store at any time, and view its connection state.

While your external key store is disconnected, Amazon KMS cannot communicate with your
external key store proxy. As a result, you can view and manage your external key store and its
existing KMS keys. However, you cannot create KMS keys in your external key store, or use its KMS
keys in cryptographic operations. You might need to disconnect your external key store at some
point, such as when editing its properties, but plan accordingly. Disconnecting the key store might
disrupt the operation of Amazon services that use its KMS keys.

You are not required to connect your external key store. You can leave an external key store
in a disconnected state indefinitely and connect it only when you need to use it. However, you

Connect and disconnect external key stores 718

Amazon Key Management Service Developer Guide

might want to test the connection periodically to verify that the settings are correct and it can be
connected.

When you disconnect a custom key store, the KMS keys in the key store become unusable right
away (subject to eventual consistency). However, resources encrypted with data keys protected by
the KMS key are not affected until the KMS key is used again, such as to decrypt the data key. This
issue affects Amazon Web Services services, many of which use data keys to protect your resources.
For details, see How unusable KMS keys affect data keys.

Note

External key stores are in a DISCONNECTED state only when the key store has never
been connected or you explicitly disconnect it. A CONNECTED state does not indicate
that external key store or its supporting components are operating efficiently. For
information about the performance of your external key store components, see the graphs
in Monitoring section of the detail page for each external key store. For details, see
Monitor external key stores.
Your external key manager might provide additional methods of stopping and restarting
communication between your Amazon KMS external key store and your external key store
proxy, or between your external key store proxy and external key manager. For details, see
your external key manager documentation.

Topics

• Connection state

• Connect an external key store

• Disconnect an external key store

Connection state

Connecting and disconnecting changes the connection state of your custom key store. Connection
state values are the same for Amazon CloudHSM key stores and external key stores.

To view the connection state of your custom key store, use the DescribeCustomKeyStores operation
or Amazon KMS console. Connection state appears in each custom key store table, in the General
configuration section of the detail page for each custom key store, and on the Cryptographic

Connect and disconnect external key stores 719

https://docs.amazonaws.cn/kms/latest/APIReference/DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

configuration tab of KMS keys in a custom key store. For details, see View an Amazon CloudHSM
key store and View external key stores.

An custom key store can have one of the following connection states:

• CONNECTED: The custom key store is connected to its backing key store. You can create and use
KMS keys in the custom key store.

The backing key store for an Amazon CloudHSM key store is its associated Amazon CloudHSM
cluster. The backing key store for an external key store is external key store proxy and the
external key manager that it supports.

A CONNECTED state means that a connection succeeded and the custom key store has not been
intentionally disconnected. It does not indicate that the connection is operating properly. For
information about the status of the Amazon CloudHSM cluster associated with your Amazon
CloudHSM key store, see Getting CloudWatch metrics for Amazon CloudHSM in the Amazon
CloudHSM User Guide. For information about the status and operation of your external key
store, see the graphs in the Monitoring section of the detail page for each external key store. For
details, see Monitor external key stores.

• CONNECTING: The process of connecting an custom key store is in progress. This is a transient
state.

• DISCONNECTED: The custom key store has never been connected to its backing, or it was
intentionally disconnected by using the Amazon KMS console or the DisconnectCustomKeyStore
operation.

• DISCONNECTING: The process of disconnecting an custom key store is in progress. This is a
transient state.

• FAILED: An attempt to connect the custom key store failed. The ConnectionErrorCode in the
DescribeCustomKeyStores response indicates the problem.

To connect an custom key store, its connection state must be DISCONNECTED. If the connection
state is FAILED, use the ConnectionErrorCode to identify and resolve the problem. Then
disconnect the custom key store before trying to connect it again. For help with connection
failures, see External key store connection errors. For help responding to a connection error code,
see Connection error codes for external key stores.

To view the connection error code:

Connect and disconnect external key stores 720

https://docs.amazonaws.cn/cloudhsm/latest/userguide/hsm-metrics-cw.html
https://docs.amazonaws.cn/kms/latest/APIReference/DisconnectCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

• In the DescribeCustomKeyStores response, view the value of the ConnectionErrorCode
element. This element appears in the DescribeCustomKeyStores response only when the
ConnectionState is FAILED.

• To view the connection error code in the Amazon KMS console, on detail page for the external
key store and hover over the Failed value.

Connect an external key store

When your external key store is connected to its external key store proxy, you can create KMS keys
in your external key store and use its existing KMS keys in cryptographic operations.

The process that connects an external key store to its external key store proxy differs based on the
connectivity of the external key store.

• When you connect an external key store with public endpoint connectivity, Amazon KMS sends
a GetHealthStatus request to the external key store proxy to validate the proxy URI endpoint,
proxy URI path, and proxy authentication credential. A successful response from the proxy
confirms that the proxy URI endpoint and proxy URI path are accurate and accessible, and that
the proxy authenticated the request signed with the proxy authentication credential for the
external key store.

• When you connect an external key store with VPC endpoint service connectivity to its external
key store proxy, Amazon KMS does the following:

• Confirms that the domain for the private DNS name specified in the proxy URI endpoint is
verified.

• Creates an interface endpoint from an Amazon KMS VPC to your VPC endpoint service.

• Creates a private hosted zone for the private DNS name specified in the proxy URI endpoint

Connect and disconnect external key stores 721

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

• Sends a GetHealthStatus request to the external key store proxy. A successful response
from the proxy confirms that the proxy URI endpoint and proxy URI path are accurate and
accessible, and that the proxy authenticated the request signed with the proxy authentication
credential for the external key store.

The connect operation begins the process of connecting your custom key store, but connecting
an external key store it its external proxy takes approximately five minutes. A success response
from the connect operation does not indicate that the external key store is connected. To confirm
that the connection was successful, use the Amazon KMS console or the DescribeCustomKeyStores
operation to view the connection state of external your key store.

When the connection state is FAILED, a connection error code is displayed in the Amazon
KMS console and is added to the DescribeCustomKeyStore response. For help interpreting
connection error codes, see Connection error codes for external key stores.

Connect and reconnect to your external key store

You can connect, or reconnect, your external key store in the Amazon KMS console or by using the
ConnectCustomKeyStore operation.

Using the Amazon KMS console

You can use the Amazon KMS console to connect an external key store to its external key store
proxy.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, External key stores.

4. Choose the row of the external key store you want to connect.

If the connection state of the external key store is FAILED, you must disconnect the external
key store before you connect it.

5. From the Key store actions menu, choose Connect.

The connection process typically takes about five minutes to complete.When the operation
completes, the connection state changes to CONNECTED.

Connect and disconnect external key stores 722

https://docs.amazonaws.cn/kms/latest/APIReference/DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

If the connection state is Failed, hover over the connection state to see the connection error
code, which explains the cause of the error. For help responding to a connection error code, see
Connection error codes for external key stores. To connect an external key store with a Failed
connection state, you must first disconnect the custom key store.

Using the Amazon KMS API

To connect a disconnected external key store, use the ConnectCustomKeyStore operation.

Before connecting, the connection state of the external key store must be DISCONNECTED. If the
current connection state is FAILED, disconnect the external key store, and then connect it.

The connection process takes about five minutes to complete. Unless it fails quickly,
ConnectCustomKeyStore returns an HTTP 200 response and a JSON object with no
properties. However, this initial response does not indicate that the connection was successful.
To determine whether the external key store is connected, see the connection state in the
DescribeCustomKeyStores response.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

To identify the external key store, use its custom key store ID. You can find the ID on the Custom
key stores page in the console or by using the DescribeCustomKeyStores operation. Before running
this example, replace the example ID with a valid one.

$ aws kms connect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

The ConnectCustomKeyStore operation does not return the ConnectionState in its response.
To verify that the external key store is connected, use the DescribeCustomKeyStores operation. By
default, this operation returns all custom keys stores in your account and Region. But you can use
either the CustomKeyStoreId or CustomKeyStoreName parameter (but not both) to limit the
response to particular custom key stores. A ConnectionState value of CONNECTED indicates that
the external key store is connected to its external key store proxy.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleXksVpc
{
 "CustomKeyStores": [
 {
 "CustomKeyStoreId": "cks-9876543210fedcba9",
 "CustomKeyStoreName": "ExampleXksVpc",

Connect and disconnect external key stores 723

https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

 "ConnectionState": "CONNECTED",
 "CreationDate": "2022-12-13T18:34:10.675000+00:00",
 "CustomKeyStoreType": "EXTERNAL_KEY_STORE",
 "XksProxyConfiguration": {
 "AccessKeyId": "ABCDE98765432EXAMPLE",
 "Connectivity": "VPC_ENDPOINT_SERVICE",
 "UriEndpoint": "https://example-proxy-uri-endpoint-vpc",
 "UriPath": "/example/prefix/kms/xks/v1",
 "VpcEndpointServiceName": "com.amazonaws.vpce.us-east-1.vpce-svc-example"
 }
 }
]
}

If the ConnectionState value in the DescribeCustomKeyStores response is FAILED, the
ConnectionErrorCode element indicates the reason for the failure.

In the following example, the XKS_VPC_ENDPOINT_SERVICE_NOT_FOUND value for
the ConnectionErrorCode indicates that Amazon KMS can't find the VPC endpoint
service that it uses to communicate with the external key store proxy. Verify that the
XksProxyVpcEndpointServiceName is correct, the Amazon KMS service principal is an allowed
principal on the Amazon VPC endpoint service, and that the VPC endpoint service does not require
acceptance of connection requests. For help responding to a connection error code, see Connection
error codes for external key stores.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleXksVpc
{
 "CustomKeyStores": [
 {
 "CustomKeyStoreId": "cks-9876543210fedcba9",
 "CustomKeyStoreName": "ExampleXksVpc",
 "ConnectionState": "FAILED",
 "ConnectionErrorCode": "XKS_VPC_ENDPOINT_SERVICE_NOT_FOUND",
 "CreationDate": "2022-12-13T18:34:10.675000+00:00",
 "CustomKeyStoreType": "EXTERNAL_KEY_STORE",
 "XksProxyConfiguration": {
 "AccessKeyId": "ABCDE98765432EXAMPLE",
 "Connectivity": "VPC_ENDPOINT_SERVICE",
 "UriEndpoint": "https://example-proxy-uri-endpoint-vpc",
 "UriPath": "/example/prefix/kms/xks/v1",
 "VpcEndpointServiceName": "com.amazonaws.vpce.us-east-1.vpce-svc-example"
 }

Connect and disconnect external key stores 724

Amazon Key Management Service Developer Guide

 }
]
}

Disconnect an external key store

When you disconnect an external key store with VPC endpoint service connectivity from its
external key store proxy, Amazon KMS deletes its interface endpoint to the VPC endpoint service
and removes the network infrastructure that it created to support the connection. No equivalent
process is required for external key stores with public endpoint connectivity. This action does not
affect the VPC endpoint service or any of its supporting components, and it does not affect the
external key store proxy or any external components.

While the external key store is disconnected, Amazon KMS does not send any requests to the
external key store proxy. The connection state of the external key store is DISCONNECTED. The
KMS keys in the disconnected external key store are in an UNAVAILABLE key state (unless they are
pending deletion), which means that they cannot be used in cryptographic operations. However,
you can still view and manage your external key store and its existing KMS keys.

The disconnected state is designed to be temporary and reversible. You can reconnect your
external key store at any time. Typically, no reconfiguration is necessary. However, if any properties
of the associated external key store proxy have changed while it was disconnected, such as
rotation of its proxy authentication credential, you must edit the external key store settings before
reconnecting.

Note

While a custom key store is disconnected, all attempts to create KMS keys in the custom
key store or to use existing KMS keys in cryptographic operations will fail. This action can
prevent users from storing and accessing sensitive data.

To better estimate the effect of disconnecting your external key store, identify the KMS keys in the
external key store and determine their past use.

You might disconnect an external key store for reasons such as the following:

• To edit its properties. You can edit the custom key store name, proxy URI path, and proxy
authentication credential while the external key store is connected. However, to edit the proxy

Connect and disconnect external key stores 725

Amazon Key Management Service Developer Guide

connectivity type, proxy URI endpoint, or VPC endpoint service name, you must first disconnect
the external key store. For details, see Edit external key store properties.

• To stop all communication between Amazon KMS and the external key store proxy. You can also
stop communication between Amazon KMS and your proxy by disabling your endpoint or VPC
endpoint service. In addition, your external key store proxy or key management software might
provide additional mechanisms to prevent Amazon KMS from communicating with the proxy or
to prevent the proxy from accessing your external key manager.

• To disable all KMS keys in the external key store. You can disable and re-enable KMS keys in
an external key store by using the Amazon KMS console or the DisableKey operation. These
operations complete quickly (subject to eventual consistency), but they act on one KMS key
at a time. Disconnecting the external key store changes the key state of all KMS keys in the
external key store to Unavailable, which prevents them from being used in any cryptographic
operation.

• To repair a failed connection attempt. If an attempt to connect an external key store fails (the
connection state of the custom key store is FAILED), you must disconnect the external key store
before you try to connect it again.

Disconnect your external key store

You can disconnect your external key store in the Amazon KMS console or by using the
DisconnectCustomKeyStore operation.

Using the Amazon KMS console

You can use the Amazon KMS console to connect an external key store to its external key store
proxy. This process takes about 5 minutes to complete.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

3. In the navigation pane, choose Custom key stores, External key stores.

4. Choose the row of the external key store you want to disconnect.

5. From the Key store actions menu, choose Disconnect.

Connect and disconnect external key stores 726

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

When the operation completes, the connection state changes from DISCONNECTING to
DISCONNECTED. If the operation fails, an error message appears that describes the problem and
provides help on how to fix it. If you need more help, see External key store connection errors.

Using the Amazon KMS API

To disconnect a connected external key store, use the DisconnectCustomKeyStore operation. If the
operation is successful, Amazon KMS returns an HTTP 200 response and a JSON object with no
properties. The process takes about five minutes to complete. To find the connection state of the
external key store, use the DescribeCustomKeyStores operation.

The examples in this section use the Amazon Command Line Interface (Amazon CLI), but you can
use any supported programming language.

This example disconnects an external key store with VPC endpoint service connectivity. Before
running this example, replace the example custom key store ID with a valid one.

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

To verify that the external key store is disconnected, use the DescribeCustomKeyStores operation.
By default, this operation returns all custom keys stores in your account and Region. But you can
use either the CustomKeyStoreId and CustomKeyStoreName parameter (but not both) to limit
the response to particular custom key stores. The ConnectionState value of DISCONNECTED
indicates that this example external key store is no longer connected to its external key store proxy.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleXksVpc
{
 "CustomKeyStores": [
 {
 "CustomKeyStoreId": "cks-9876543210fedcba9",
 "CustomKeyStoreName": "ExampleXksVpc",
 "ConnectionState": "DISCONNECTED",
 "CreationDate": "2022-12-13T18:34:10.675000+00:00",
 "CustomKeyStoreType": "EXTERNAL_KEY_STORE",
 "XksProxyConfiguration": {
 "AccessKeyId": "ABCDE98765432EXAMPLE",
 "Connectivity": "VPC_ENDPOINT_SERVICE",
 "UriEndpoint": "https://example-proxy-uri-endpoint-vpc",
 "UriPath": "/example/prefix/kms/xks/v1",
 "VpcEndpointServiceName": "com.amazonaws.vpce.us-east-1.vpce-svc-example"
 }

Connect and disconnect external key stores 727

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
http://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

 }
]
}

Delete an external key store

When you delete an external key store, Amazon KMS deletes all metadata about the external key
store from Amazon KMS, including information about its external key store proxy. This operation
does not affect the external key store proxy, external key manager, external keys, or any Amazon
resources that you created to support the external key store, such as an Amazon VPC or a VPC
endpoint service.

Before you delete an external key store, you must delete all of the KMS keys from the key store and
disconnect the key store from its external key store proxy. Otherwise, attempts to delete the key
store fail.

Deleting an external key store is irreversible, but you can create a new external key store and
associate it with the same external key store proxy and external key manager. However, you cannot
recreate the symmetric encryption KMS keys in the external key store, even you have access to the
same external key material. Amazon KMS includes metadata in the symmetric ciphertext unique
to each KMS key. This security feature ensures that only the KMS key that encrypted the data can
decrypt it.

Instead of deleting the external key store, consider disconnecting it. While an external key store
is disconnected, you can manage the external key store and its Amazon KMS keys but you cannot
create or use KMS keys in the external key store. You can reconnect the external key store at
any time and resume using its KMS keys to encrypt and decrypt data. There is no cost for a
disconnected external key store proxy or its unavailable KMS keys.

You can delete your external key store in the Amazon KMS console or by using the
DeleteCustomKeyStore operation.

Using the Amazon KMS console

You can use the Amazon KMS console to delete an external key store.

1. Sign in to the Amazon Web Services Management Console and open the Amazon Key
Management Service (Amazon KMS) console at https://console.amazonaws.cn/kms.

2. To change the Amazon Web Services Region, use the Region selector in the upper-right corner
of the page.

Delete an external key store 728

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteCustomKeyStore.html
https://console.amazonaws.cn/kms

Amazon Key Management Service Developer Guide

3. In the navigation pane, choose Custom key stores, External key stores.

4. Find the row that represents the external key store that you want to delete. If the Connection
state of the external key store is not DISCONNECTED, you must disconnect the external key
store before you delete it.

5. From the Key store actions menu, choose Delete.

When the operation completes, a success message appears and the external key store no
longer appears in the key store list. If the operation is unsuccessful, an error message appears
that describes the problem and provides help on how to fix it. If you need more help, see
Troubleshooting external key stores.

Using the Amazon KMS API

To delete an external key store, use the DeleteCustomKeyStore operation. If the operation is
successful, Amazon KMS returns an HTTP 200 response and a JSON object with no properties.

To begin, disconnect the external key store. Before running this command, replace the example
custom key store ID with a valid one.

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

After the external key store is disconnected, you can use the DeleteCustomKeyStore operation to
delete it.

$ aws kms delete-custom-key-store --custom-key-store-id cks-1234567890abcdef0

To confirm that the external key store is deleted, use the DescribeCustomKeyStores operation.

$ aws kms describe-custom-key-stores

{
 "CustomKeyStores": []
}

If you specify a custom key store name or ID that no longer exists, Amazon KMS returns a
CustomKeyStoreNotFoundException exception.

$ aws kms describe-custom-key-stores --custom-key-store-id cks-1234567890abcdef0

Delete an external key store 729

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

An error occurred (CustomKeyStoreNotFoundException) when calling the
 DescribeCustomKeyStore operation:

Troubleshooting external key stores

The resolution for most problems with external key stores are indicated by the error message that
Amazon KMS displays with each exception, or by the connection error code that Amazon KMS
returns when an attempt to connect the external key store to its external key store proxy fails.
However, some issues are a bit more complex.

When diagnosing an issue with an external key store, first locate the cause. This will narrow the
range of remedies and make your troubleshooting more efficient.

• Amazon KMS — The problem might be within Amazon KMS, such as an incorrect value in your
external key store configuration.

• External — The problem might originate outside of Amazon KMS, including problems with the
configuration or operation of the external key store proxy, external key manager, external keys,
or VPC endpoint service.

• Networking — It might be a problem with connectivity or networking, such as a problem with
your proxy endpoint, port, IP stack, or your private DNS name or domain.

Note

When management operations on external key stores fail, they generate
several different exceptions. But Amazon KMS cryptographic operations return
KMSInvalidStateException for all failures related to the external configuration or
connection state of the external key store. To identify the problem, use the accompanying
error message text.
The ConnectCustomKeyStore operation succeeds quickly before the connection process is
complete. To determine whether the connection process is successful, view the connection
state of the external key store. If the connection process fails, Amazon KMS returns a
connection error code that explains the cause and suggests a remedy.

Topics

• Troubleshooting tools for external key stores

• Configuration errors

Troubleshooting external key stores 730

Amazon Key Management Service Developer Guide

• External key store connection errors

• Latency and timeout errors

• Authentication credential errors

• Key state errors

• Decryption errors

• External key errors

• Proxy issues

• Proxy authorization issues

Troubleshooting tools for external key stores

Amazon KMS provides several tools to help you identify and resolve problems with your external
key store and its keys. Use these tools in conjunction with the tools provided with your external key
store proxy and external key manager.

Note

Your external key store proxy and external key manager might provide easier methods
of creating and maintaining your external key store and its KMS keys. For details, see the
documentation for your external tools.

Amazon KMS exceptions and error messages

Amazon KMS provides a detailed error message about any problem it encounters. You can
find additional information about Amazon KMS exceptions in the Amazon Key Management
Service API Reference and Amazon SDKs. Even if you are using the Amazon KMS console,
you might find these references to be helpful. For example, see the Errors list for the
CreateCustomKeyStores operation.

To optimize the performance of your external key store proxy, Amazon KMS returns exceptions
based on your proxy's reliability within a given aggregation period of 5 minutes. In the
event of a 500 Internal Server Error, 503 Service Unavailable, or connection timeout, a
proxy with high reliability returns KMSInternalException and triggers an automatic retry
to ensure that requests eventually succeed. However, a proxy with low reliability returns
KMSInvalidStateException. For more information, see Monitoring an external key store.

Troubleshooting external key stores 731

https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html#API_CreateCustomKeyStore_Errors
https://docs.amazonaws.cn/kms/latest/developerguide/xks-monitoring.html

Amazon Key Management Service Developer Guide

If the problem surfaces in a different Amazon service, such as when you use a KMS key in your
external key store to protect a resource in another Amazon service, the Amazon service might
provide additional information to help you identify the problem. If the Amazon service doesn't
provide the message, you can view the error message in the CloudTrail logs that record the use
of your KMS key.

CloudTrail logs

Every Amazon KMS API operation, including actions in the Amazon KMS console, is recorded in
Amazon CloudTrail logs. Amazon KMS records a log entry for successful and failed operations.
For failed operations, the log entry includes the Amazon KMS exception name (errorCode)
and the error message (errorMessage). You can use this information to help you identify and
resolve the error. For an example, see Decrypt failure with a KMS key in an external key store.

The log entry also includes the request ID. If the request reached your external key store proxy,
you can use the request ID in the log entry to find the corresponding request in your proxy logs,
if your proxy provides them.

CloudWatch metrics

Amazon KMS records detailed Amazon CloudWatch metrics about the operation and
performance of your external key store, including latency, throttling, proxy errors, external key
manager status, the number of days until your TLS certificate expires, and the reported age of
your proxy authentication credentials. You can use these metrics to develop data models for
the operation of your external key store and CloudWatch alarms that alert you to impending
problems before they occur.

Important

Amazon KMS recommends that you create CloudWatch alarms to monitor the external
key store metrics. These alarms will alert you to early signs of problems before they
develop.

Monitoring graphs

Amazon KMS displays graphs of the external key store CloudWatch metrics on the detail page
for each external key store in the Amazon KMS console. You can use the data in the graphs to
help locate the source of errors, detect impending problems, establish baselines, and refine
your CloudWatch alarm thresholds. For details about interpreting the monitoring graphs and
using their data, see Monitor external key stores.

Troubleshooting external key stores 732

Amazon Key Management Service Developer Guide

Displays of external key stores and KMS keys

Amazon KMS displays detailed information about your external key stores and the KMS
keys in the external key store in the Amazon KMS console, and in the response to the
DescribeCustomKeyStores and DescribeKey operations. These displays include special fields
for external key stores and KMS keys with information that you can use for troubleshooting,
such as the connection state of the external key store and the ID of the external key that is
associated with the KMS key. For details, see View external key stores.

XKS Proxy Test Client

Amazon KMS provides an open source test client that verifies that your external key store proxy
conforms to the Amazon KMS External Key Store Proxy API Specification. You can use this test
client to identify and resolve problems with your external key store proxy.

Configuration errors

When you create an external key store, you specify property values that comprise the configuration
of your external key store, such as the proxy authentication credential, proxy URI endpoint, proxy
URI path, and VPC endpoint service name. When Amazon KMS detects an error in a property value,
the operation fails and returns an error that indicates the faulty value.

Many configuration issues can be resolved by fixing the incorrect value. You can fix an invalid proxy
URI path or proxy authentication credential without disconnecting the external key store. For
definitions of these values, including uniqueness requirements, see Assemble the prerequisites. For
instructions about updating these values, see Edit external key store properties.

To avoid errors with your proxy URI path and proxy authentication credential values, when creating
or updating your external key store, upload a proxy configuration file to the Amazon KMS console.
This is a JSON-based file with proxy URI path and proxy authentication credential values that
is provided by your external key store proxy or external key manager. You can't use a proxy
configuration file with Amazon KMS API operations, but you can use the values in the file to help
you provide parameter values for your API requests that match the values in your proxy.

General configuration errors

Exceptions: CustomKeyStoreInvalidStateException (CreateKey),
KMSInvalidStateException (cryptographic operations),
XksProxyInvalidConfigurationException (management operations, except for CreateKey)

Troubleshooting external key stores 733

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://github.com/aws-samples/aws-kms-xksproxy-test-client
https://github.com/aws/aws-kms-xksproxy-api-spec/

Amazon Key Management Service Developer Guide

Connection error codes: XKS_PROXY_INVALID_CONFIGURATION,
XKS_PROXY_INVALID_TLS_CONFIGURATION

For external key stores with public endpoint connectivity, Amazon KMS tests the property values
when you create and update the external key store. For external key stores with VPC endpoint
service connectivity, Amazon KMS tests the property values when you connect and update the
external key store.

Note

The ConnectCustomKeyStore operation, which is asynchronous, might succeed even
though the attempt to connect the external key store to its external key store proxy fails. In
that case, there is no exception, but the connection state of the external key store is Failed,
and a connection error code explains the error message. For more information, see External
key store connection errors.

If Amazon KMS detects an error in a property value, the operation fails and returns
XksProxyInvalidConfigurationException with one of the following error messages.

The external key store proxy rejected the request because of an invalid URI path. Verify the URI
path for your external key store and update if necessary.

• The proxy URI path is the base path for Amazon KMS requests to the proxy APIs. If this path is
incorrect, all requests to the proxy fail. To view the current proxy URI path for your external key
store, use the Amazon KMS console or the DescribeCustomKeyStores operation. To find the
correct proxy URI path, see your external key store proxy documentation. For help correcting
your proxy URI path value, see Edit external key store properties.

• The proxy URI path for your external key store proxy can change with updates to your external
key store proxy or external key manager. For information about these changes, see the
documentation for your external key store proxy or external key manager.

XKS_PROXY_INVALID_TLS_CONFIGURATION
Amazon KMS cannot establish a TLS connection to the external key store proxy. Verify the TLS
configuration, including its certificate.

Troubleshooting external key stores 734

Amazon Key Management Service Developer Guide

• All external key store proxies require a TLS certificate. The TLS certificate must be issued by a
public certificate authority (CA) that is supported for external key stores. For list of supported
CAs, see Trusted Certificate Authorities in the Amazon KMS External Key Store Proxy API
Specification.

• For public endpoint connectivity, the subject common name (CN) on the TLS certificate must
match the domain name in the proxy URI endpoint for the external key store proxy. For example,
if the public endpoint is https://myproxy.xks.example.com, the TLS, the CN on the TLS certificate
must be myproxy.xks.example.com or *.xks.example.com.

• For VPC endpoint service connectivity, the subject common name (CN) on the TLS certificate
must match the private DNS name for your VPC endpoint service. For example, if the private
DNS name is myproxy-private.xks.example.com, the CN on the TLS certificate must be myproxy-
private.xks.example.com or *.xks.example.com.

• The TLS certificate cannot be expired. To get the expiration date of a TLS certificate, use SSL
tools, such as OpenSSL. To monitor the expiration date of a TLS certificate associated with an
external key store, use the XksProxyCertificateDaysToExpire CloudWatch metric. The number
of days to your TLS certification expiration date also appears in the Monitoring section of the
Amazon KMS console.

• If you are using public endpoint connectivity, use SSL test tools to test your SSL configuration.
TLS connection errors can result from incorrect certificate chaining.

VPC endpoint service connectivity configuration errors

Exceptions: XksProxyVpcEndpointServiceNotFoundException,
XksProxyVpcEndpointServiceInvalidConfigurationException

In addition to general connectivity issues, you might encounter the following issues while creating,
connecting, or updating an external key store with VPC endpoint service connectivity. Amazon KMS
tests the property values of an external key store with VPC endpoint service connectivity while
creating, connecting, and updating the external key store. When management operations fail due
to configuration errors, they generate the following exceptions:

XksProxyVpcEndpointServiceNotFoundException

The cause might be one of the following:

Troubleshooting external key stores 735

https://github.com/aws/aws-kms-xksproxy-api-spec/blob/main/TrustedCertificateAuthorities
https://www.openssl.org/

Amazon Key Management Service Developer Guide

• An incorrect VPC endpoint service name. Verify that the VPC endpoint service name for
the external key store is correct and matches the proxy URI endpoint value for the external
key store. To find the VPC endpoint service name, use the Amazon VPC console or the
DescribeVpcEndpointServices operation. To find the VPC endpoint service name and
proxy URI endpoint of an existing external key store, use the Amazon KMS console or the
DescribeCustomKeyStores operation. For details, see View external key stores.

• The VPC endpoint service might be in a different Amazon Web Services Region than the external
key store. Verify that the VPC endpoint service and external key store are in same Region. (The
external name of the Region name, such as us-east-1, is part of the VPC endpoint service
name, such as com.amazonaws.vpce.us-east-1.vpce-svc-example.) For a list of requirements for
the VPC endpoint service for an external key store, see VPC endpoint service. You cannot move
a VPC endpoint service or an external key store to a different Region. However, you can create a
new external key store in the same Region as the VPC endpoint service. For details, see Configure
VPC endpoint service connectivity and Create an external key store.

• Amazon KMS is not an allowed principal for the VPC endpoint service. The Allow principals list
for the VPC endpoint service must include the cks.kms.<region>.amazonaws.com value,
such as cks.kms.eu-west-3.amazonaws.com. For instructions about adding this value, see
Manage permissions in the Amazon PrivateLink Guide.

XksProxyVpcEndpointServiceInvalidConfigurationException

This error occurs when the VPC endpoint service fails to meet one of the following requirements:

• The VPC requires at least two private subnets, each in a different Availability Zone. For help
adding a subnet to your VPC, see Create a subnet in your VPC in the Amazon VPC User Guide.

• Your VPC endpoint service type must use a network load balancer, not a gateway load balancer.

• Acceptance must not be required for the VPC endpoint service (Acceptance required must be
false.). If manual acceptance of each connection request is required, Amazon KMS cannot use the
VPC endpoint service to connect to the external key store proxy. For details, see Accept or reject
connection requests in the Amazon PrivateLink Guide.

• The VPC endpoint service must have a private DNS name that is a subdomain of a public domain.
For example, if the private DNS name is https://myproxy-private.xks.example.com, the
xks.example.com or example.com domains must have a public DNS server. To view or change

Troubleshooting external key stores 736

https://console.amazonaws.cn/vpc
https://docs.amazonaws.cn/AmazonVPC/latest/APIReference/DescribeVpcEndpointServices.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/vpc/latest/privatelink/configure-endpoint-service.html#add-remove-permissions
https://docs.amazonaws.cn/vpc/latest/userguide/working-with-subnets.html#create-subnets
https://docs.amazonaws.cn/vpc/latest/privatelink/create-endpoint-service.html
https://docs.amazonaws.cn/vpc/latest/privatelink/configure-endpoint-service.html#accept-reject-connection-requests
https://docs.amazonaws.cn/vpc/latest/privatelink/configure-endpoint-service.html#accept-reject-connection-requests

Amazon Key Management Service Developer Guide

the private DNS name for your VPC endpoint service, see Manage DNS names for VPC endpoint
services in the Amazon PrivateLink Guide.

• The Domain verification status of the domain for your private DNS name must be verified.
To view and update the verification status of the private DNS name domain, see Step 5: Verify
your private DNS name domain. It might take a few minutes for the updated verification status
to appear after you've added the required text record.

Note

A private DNS domain can be verified only if it is the subdomain of a public domain.
Otherwise, the verification status of the private DNS domain does not change, even after
you add the required TXT record.

• Ensure that any firewalls between Amazon KMS and the external key store proxy allow traffic to
and from port 443 on the proxy. Amazon KMS communicates on port 443 over IPv4. This value is
not configurable.

• The private DNS name of the VPC endpoint service must match the proxy URI endpoint value
for the external key store. For an external key store with VPC endpoint service connectivity, the
proxy URI endpoint must be https:// followed by the private DNS name of the VPC endpoint
service. To view the proxy URI endpoint value, see View external key stores. To change the proxy
URI endpoint value, see Edit external key store properties.

External key store connection errors

The process of connecting an external key store to its external key store proxy takes about five
minutes to complete. Unless it fails quickly, the ConnectCustomKeyStore operation returns
an HTTP 200 response and a JSON object with no properties. However, this initial response does
not indicate that the connection was successful. To determine whether the external key store is
connected, see its connection state. If the connection fails, the connection state of the external key
store changes to FAILED and Amazon KMS returns a connection error code that explains the cause
of the failure.

Troubleshooting external key stores 737

https://docs.amazonaws.cn/vpc/latest/privatelink/manage-dns-names.html
https://docs.amazonaws.cn/vpc/latest/privatelink/manage-dns-names.html

Amazon Key Management Service Developer Guide

Note

When the connection state of a custom key store is FAILED, you must disconnect the
custom key store before attempting to reconnect it. You cannot connect a custom key store
with a FAILED connection status.

To view the connection state of an external key store:

• In the DescribeCustomKeyStores response, view the value of the ConnectionState element.

• In the Amazon KMS console, the Connection state appears in the external key store table. Also,
on the detail page for each external key store, the Connection state appears in the General
configuration section.

When the connection state is FAILED, the connection error code helps to explains the error.

To view the connection error code:

• In the DescribeCustomKeyStores response, view the value of the ConnectionErrorCode
element. This element appears in the DescribeCustomKeyStores response only when the
ConnectionState is FAILED.

• To view the connection error code in the Amazon KMS console, on detail page for the external
key store and hover over the Failed value.

Connection error codes for external key stores

The following connection error codes apply to external key stores

Troubleshooting external key stores 738

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

INTERNAL_ERROR

Amazon KMS could not complete the request due to an internal error. Retry the request. For
ConnectCustomKeyStore requests, disconnect the custom key store before trying to connect
again.

INVALID_CREDENTIALS

One or both of the XksProxyAuthenticationCredential values is not valid on the
specified external key store proxy.

NETWORK_ERRORS

Network errors are preventing Amazon KMS from connecting the custom key store to its
backing key store.

XKS_PROXY_ACCESS_DENIED

Amazon KMS requests are denied access to the external key store proxy. If the external key store
proxy has authorization rules, verify that they permit Amazon KMS to communicate with the
proxy on your behalf.

XKS_PROXY_INVALID_CONFIGURATION

A configuration error is preventing the external key store from connecting to its proxy. Verify
the value of the XksProxyUriPath.

XKS_PROXY_INVALID_RESPONSE

Amazon KMS cannot interpret the response from the external key store proxy. If you see this
connection error code repeatedly, notify your external key store proxy vendor.

XKS_PROXY_INVALID_TLS_CONFIGURATION

Amazon KMS cannot connect to the external key store proxy because the TLS configuration is
invalid. Verify that the external key store proxy supports TLS 1.2 or 1.3. Also, verify that the
TLS certificate is not expired, that it matches the hostname in the XksProxyUriEndpoint
value, and that it is signed by a trusted certificate authority included in the Trusted Certificate
Authorities list.

XKS_PROXY_NOT_REACHABLE

Amazon KMS can't communicate with your external key store proxy. Verify that the
XksProxyUriEndpoint and XksProxyUriPath are correct. Use the tools for your external
key store proxy to verify that the proxy is active and available on its network. Also, verify that
your external key manager instances are operating properly. Connection attempts fail with

Troubleshooting external key stores 739

https://github.com/aws/aws-kms-xksproxy-api-spec/blob/main/TrustedCertificateAuthorities
https://github.com/aws/aws-kms-xksproxy-api-spec/blob/main/TrustedCertificateAuthorities

Amazon Key Management Service Developer Guide

this connection error code if the proxy reports that all external key manager instances are
unavailable.

XKS_PROXY_TIMED_OUT

Amazon KMS can connect to the external key store proxy, but the proxy does not respond to
Amazon KMS in the time allotted. If you see this connection error code repeatedly, notify your
external key store proxy vendor.

XKS_VPC_ENDPOINT_SERVICE_INVALID_CONFIGURATION

The Amazon VPC endpoint service configuration doesn't conform to the requirements for an
Amazon KMS external key store.

• The VPC endpoint service must be an endpoint service for interface endpoints in the caller's
Amazon Web Services account.

• It must have a network load balancer (NLB) connected to at least two subnets, each in a
different Availability Zone.

• The Allow principals list must include the Amazon KMS service principal for the Region,
cks.kms.<region>.amazonaws.com, such as cks.kms.us-east-1.amazonaws.com.

• It must not require acceptance of connection requests.

• It must have a private DNS name. The private DNS name for an external key store with
VPC_ENDPOINT_SERVICE connectivity must be unique in its Amazon Web Services Region.

• The domain of the private DNS name must have a verification status of verified.

• The TLS certificate specifies the private DNS hostname at which the endpoint is reachable.

XKS_VPC_ENDPOINT_SERVICE_NOT_FOUND

Amazon KMS can't find the VPC endpoint service that it uses to communicate with the external
key store proxy. Verify that the XksProxyVpcEndpointServiceName is correct and the
Amazon KMS service principal has service consumer permissions on the Amazon VPC endpoint
service.

Latency and timeout errors

Exceptions: CustomKeyStoreInvalidStateException (CreateKey),
KMSInvalidStateException (cryptographic operations),
XksProxyUriUnreachableException (management operations)

Connection error codes: XKS_PROXY_NOT_REACHABLE, XKS_PROXY_TIMED_OUT

Troubleshooting external key stores 740

https://docs.amazonaws.cn/vpc/latest/privatelink/create-endpoint-service.html
https://docs.amazonaws.cn/vpc/latest/privatelink/verify-domains.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/network/create-tls-listener.html

Amazon Key Management Service Developer Guide

When Amazon KMS can't contact the proxy within the 250 millisecond timeout interval,
it returns an exception. CreateCustomKeyStore and UpdateCustomKeyStore return
XksProxyUriUnreachableException. Cryptographic operations return the standard
KMSInvalidStateException with an error message that describes the problem. If
ConnectCustomKeyStore fails, Amazon KMS returns a connection error code that describes the
problem.

Timeout errors might be transient issues that can be resolved by retrying the request. If the
problem persists, verify that your external key store proxy is active and is connected to the
network, and that its proxy URI endpoint, proxy URI path, and VPC endpoint service name (if any)
are correct in your external key store. Also, verify that your external key manager is close to the
Amazon Web Services Region for your external key store. If you need to update any of these values,
see Edit external key store properties.

To track latency patterns, use the XksProxyLatency CloudWatch metric and the Average latency
graph (based on that metric) in the Monitoring section of the Amazon KMS console. Your external
key store proxy might also generate logs and metrics that track latency and timeouts.

XksProxyUriUnreachableException
Amazon KMS cannot communicate with the external key store proxy. This might be a transient
 network issue. If you see this error repeatedly, verify that your external key store proxy is active
and is connected to the network, and that its endpoint URI is correct in your external key store.

• The external key store proxy didn't respond to an Amazon KMS proxy API request within the 250
millisecond timeout interval. This might indicate a transient network problem or an operational
or performance problem with the proxy. If retrying doesn't solve the problem, notify your
external key store proxy administrator.

Latency and timeout errors often manifest as connection failures. When the
ConnectCustomKeyStore operation fails, the connection state of the external key store changes
to FAILED and Amazon KMS returns a connection error code that explains the error. For a list of
connection error codes and suggestions for resolving the errors, see Connection error codes for
external key stores. The connection codes lists for All custom key stores and External key stores
apply to external key stores. The following connection errors are related to latency and timeouts.

XKS_PROXY_NOT_REACHABLE

Troubleshooting external key stores 741

https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html

Amazon Key Management Service Developer Guide

-or-

CustomKeyStoreInvalidStateException , KMSInvalidStateException ,
XksProxyUriUnreachableException
Amazon KMS cannot communicate with the external key store proxy. Verify that your external
key store proxy is active and is connected to the network, and that its URI path and endpoint
URI or VPC service name are correct in your external key store.

This error might occur for the following reasons:

• The external key store proxy is not active and or not connected to the network.

• There is an error in the proxy URI endpoint, proxy URI path, or VPC endpoint service name
(if applicable) values in the external key store configuration. To view the external key store
configuration, use the DescribeCustomKeyStores operation or view the detail page for the
external key store in the Amazon KMS console.

• There might be a network configuration error, such as a port error, on the network path between
Amazon KMS and the external key store proxy. Amazon KMS communicates with the external key
store proxy on port 443 over IPv4. This value is not configurable.

• When the external key store proxy reports (in a GetHealthStatus response) that all external
key manager instances are UNAVAILABLE, the ConnectCustomKeyStore operation fails with
a ConnectionErrorCode of XKS_PROXY_NOT_REACHABLE. For help, see your external key
manager documentation.

• This error can result from a long physical distance between the external key manager and the
Amazon Web Services Region with the external key store. The ping latency (network round-trip
time (RTT)) between the Amazon Web Services Region and the external key manager must be
no more than 35 milliseconds. You might have to create an external key store in an Amazon Web
Services Region that is closer to the external key manager, or move the external key manager to
a data center that is closer to the Amazon Web Services Region.

XKS_PROXY_TIMED_OUT

-or-

CustomKeyStoreInvalidStateException , KMSInvalidStateException ,
XksProxyUriUnreachableException

Troubleshooting external key stores 742

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html

Amazon Key Management Service Developer Guide

Amazon KMS rejected the request because the external key store proxy did not respond in time.
Retry the request. If you see this error repeatedly, report it to your external key store proxy
administrator.

This error might occur for the following reasons:

• This error can result from a long physical distance between the external key manager and the
external key store proxy. If possible, move the external key store proxy closer to the external key
manager.

• Timeout errors can occur when the proxy is not designed to handle the volume and frequency
of requests from Amazon KMS. If your CloudWatch metrics indicate a persistent problem, notify
your external key store proxy administrator.

• Timeout errors can occur when the connection between the external key manager and the
Amazon VPC for the external key store is not operating properly. If you are using Amazon Direct
Connect, verify that your VPC and external key manager can communicate effectively. For help
resolving any issues, see Troubleshooting Amazon Direct Connect in the Amazon Direct Connect
User Guide.

XKS_PROXY_TIMED_OUT

-or-

CustomKeyStoreInvalidStateException , KMSInvalidStateException ,
XksProxyUriUnreachableException
The external key store proxy did not respond to the request in the time allotted. Retry the
request. If you see this error repeatedly, report it to your external key store proxy administrator.

• This error can result from a long physical distance between the external key manager and the
external key store proxy. If possible, move the external key store proxy closer to the external key
manager.

Authentication credential errors

Exceptions: CustomKeyStoreInvalidStateException (CreateKey),
KMSInvalidStateException (cryptographic operations),

Troubleshooting external key stores 743

https://docs.amazonaws.cn/directconnect/latest/UserGuide/Troubleshooting.html

Amazon Key Management Service Developer Guide

XksProxyIncorrectAuthenticationCredentialException (management operations other
than CreateKey)

You establish and maintain an authentication credential for Amazon KMS on your external key
store proxy. Then you tell Amazon KMS the credential values when you create an external key
store. To change the authentication credential, make the change on your external key store proxy.
Then update the credential for your external key store. If your proxy rotates the credential, you
must update the credential for your external key store.

If the external key store proxy won't authenticate a request signed with the proxy authentication
credential for your external key store, the effect depends on the request:

• CreateCustomKeyStore and UpdateCustomKeyStore fail with an
XksProxyIncorrectAuthenticationCredentialException.

• ConnectCustomKeyStore succeeds, but the connection fails. The connection state is FAILED
and the connection error code is INVALID_CREDENTIALS. For details, see External key store
connection errors.

• Cryptographic operations return KMSInvalidStateException for all external configuration
errors and connection state errors in an external key store. The accompanying error message
describes the problem.

The external key store proxy rejected the request because it could not authenticate Amazon
KMS. Verify the credentials for your external key store and update if necessary.

This error might occur for the following reasons:

• The access key ID or the secret access key for the external key store doesn't match the values
established on the external key store proxy.

To fix this error, update the proxy authentication credential for your external key store. You can
make this change without disconnecting your external key store.

• A reverse proxy between Amazon KMS and the external key store proxy could be manipulating
HTTP headers in a manner that invalidates the SigV4 signatures. To fix this error, notify your
proxy administrator.

Troubleshooting external key stores 744

Amazon Key Management Service Developer Guide

Key state errors

Exceptions: KMSInvalidStateException

KMSInvalidStateException is used for two distinct purposes for KMS keys in custom key
stores.

• When a management operation, such as CancelKeyDeletion, fails and returns this exception,
it indicates that the key state of the KMS key is not compatible with the operation.

• When a cryptographic operation on a KMS key in a custom key store fails with
KMSInvalidStateException, it can indicate a problem with the key state of the KMS key. But
Amazon KMS cryptographic operation return KMSInvalidStateException for all external
configuration errors and connection state errors in an external key store. To identify the problem,
use the error message that accompanies the exception.

To find the required key state for an Amazon KMS API operations, see Key states of Amazon KMS
keys. To find the key state of a KMS key, on the Customer managed keys page, view the Status
field of the KMS key. Or, use the DescribeKey operation and view the KeyState element in the
response. For details, see Identify and view keys.

Note

The key state of a KMS key in an external key store does not indicate anything about the
status of its associated external key. For information about the external key status, use your
external key manager and external key store proxy tools.
The CustomKeyStoreInvalidStateException refers to the connection state of the
external key store, not the key state of a KMS key.

A cryptographic operation on a KMS key in a custom store might fail because the key state of the
KMS key is Unavailable or PendingDeletion. (Disabled keys return DisabledException.)

• A KMS key has a Disabled key state only when you intentionally disable the KMS key in the
Amazon KMS console or by using the DisableKey operation. While a KMS key is disabled, you can
view and manage the key, but you cannot use it in cryptographic operations. To fix this problem,
enable the key. For details, see Enable and disable keys.

• A KMS key has an Unavailable key state when the external key store is disconnected from its
external key store proxy. To fix an unavailable KMS key, reconnect the external key store. After

Troubleshooting external key stores 745

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html

Amazon Key Management Service Developer Guide

the external key store is reconnected, the key state of the KMS keys in the external key store is
automatically restored to its previous state, such as Enabled or Disabled.

A KMS key has a PendingDeletion key state when it has been scheduled for deletion and is
in its waiting period. A key state error on a KMS key that is pending deletion indicates that the
key should not be deleted, either because it's being used for encryption, or it is required for
decryption. To re-enable the KMS key, cancel the scheduled deletion, and then enable the key.
For details, see Schedule key deletion.

Decryption errors

Exceptions: KMSInvalidStateException

When a Decrypt operation with a KMS key in an external key store fails, Amazon KMS returns
the standard KMSInvalidStateException that cryptographic operations use for all external
configuration errors and connection state errors on an external key store. The error message
indicates the problem.

To decrypt a ciphertext that was encrypted using double encryption, the external key manager first
uses the external key to decrypt the outer layer of ciphertext. Then Amazon KMS uses the Amazon
KMS key material in the KMS key to decrypt the inner layer of ciphertext. An invalid or corrupt
ciphertext can be rejected by the external key manager or Amazon KMS.

The following error messages accompany the KMSInvalidStateException when decryption
fails. It indicates a problem with the ciphertext or the optional encryption context in the request.

The external key store proxy rejected the request because the specified ciphertext or additional
authenticated data is corrupted, missing, or otherwise invalid.

• When the external key store proxy or external key manager report that a ciphertext or its
encryption context is invalid, it typically indicates a problem with the ciphertext or encryption
context in the Decrypt request sent to Amazon KMS. For Decrypt operations, Amazon KMS
sends the proxy the same ciphertext and encryption context it receives in the Decrypt request.

This error might be caused by a networking problem in transit, such as a flipped bit. Retry the
Decrypt request. If the problem persists, verify that the ciphertext was not altered or corrupted.
Also, verify that the encryption context in the Decrypt request to Amazon KMS matches the
encryption context in the request that encrypted the data.

Troubleshooting external key stores 746

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

The ciphertext that the external key store proxy submitted for decryption, or the encryption
context, is corrupted, missing, or otherwise invalid.

• When Amazon KMS rejects the ciphertext that it received from the proxy, it indicates that the
external key manager or proxy returned an invalid or corrupt ciphertext to Amazon KMS.

This error might be caused by a networking problem in transit, such as a flipped bit. Retry the
Decrypt request. If the problem persists, verify that the external key manager is operating
properly, and that the external key store proxy does not alter the ciphertext that it receives from
the external key manager before it returns it to Amazon KMS.

External key errors

An external key is a cryptographic key in the external key manager that serves as the external
key material for a KMS key. Amazon KMS cannot directly access the external key. It must ask the
external key manager (via the external key store proxy) to use the external key to encrypt data or
decrypt a ciphertext.

You specify the ID of the external key in its external key manager when you create a KMS key
in your external key store. You cannot change the external key ID after the KMS key is created.
To prevent problems with the KMS key, the CreateKey operation asks the external key store
proxy to verify the ID and configuration of the external key. If the external key doesn't fulfill the
requirements for use with a KMS key, the CreateKey operation fails with an exception and error
message that identifies the problem.

However, issues can occur after the KMS key is created. If a cryptographic operation fails because of
a problem with the external key, the operation fails and returns an KMSInvalidStateException
with an error message that indicates the problem.

CreateKey errors for the external key

Exceptions: XksKeyAlreadyInUseException, XksKeyNotFoundException,
XksKeyInvalidConfigurationException

The CreateKey operation attempts to verify the ID and properties of the external key that you
provide in the External key ID (console) or XksKeyId (API) parameter. This practice is designed to
detect errors early before you try to use the external key with the KMS key.

Troubleshooting external key stores 747

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html

Amazon Key Management Service Developer Guide

External key in use

Each KMS key in an external key store must use a different external key. When CreateKey
recognizes that the external key ID (XksKeyId) for a KMS key is not unique in the external key store,
it fails with an XksKeyAlreadyInUseException.

If you use multiple IDs for the same external key, CreateKey won't recognize the duplicate.
However, KMS keys with the same external key are not interoperable because they have different
Amazon KMS key material and metadata.

External key not found

When the external key store proxy reports that it cannot find the external key using the
external key ID (XksKeyId) for the KMS key, the CreateKey operation fails and returns
XksKeyNotFoundException with the following error message.

The external key store proxy rejected the request because it could not find the external key.

This error might occur for the following reasons:

• The ID of the external key (XksKeyId) for the KMS key might be invalid. To find the ID for your
external key proxy uses to identify the external key, see your external key store proxy or external
key manager documentation.

• The external key might have been deleted from your external key manager. To investigate, use
your external key manager tools. If the external key is permanently deleted, use a different
external key with the KMS key. For a list or requirements for the external key, see Requirements
for a KMS key in an external key store.

External key requirements not met

When the external key store proxy reports that the external key does not fulfill the
requirements for use with a KMS key, the CreateKey operation fails and returns
XksKeyInvalidConfigurationException with one of the following error messages.

The key spec of the external key must be AES_256. The key spec of specified external key is
<key-spec> .

Troubleshooting external key stores 748

Amazon Key Management Service Developer Guide

• The external key must be a 256-bit symmetric encryption key with a key spec of AES_256. If
the specified external key is a different type, specify the ID of an external key that fulfills this
requirement.

The status of the external key must be ENABLED. The status of specified external key is
<status>.

• The external key must be enabled in the external key manager. If the specified external key is not
enabled, use your external key manager tools to enable it, or specify an enabled external key.

The key usage of the external key must include ENCRYPT and DECRYPT. The key use of specified
external key is <key-usage >.

• The external key must be configured for encryption and decryption in the external key manager.
If the specified external key does not include these operations, use your external key manager
tools to change the operations, or specify a different external key.

Cryptographic operation errors for the external key

Exceptions: KMSInvalidStateException

When the external key store proxy cannot find the external key associated with the KMS key, or the
external key doesn't fulfill the requirements for use with a KMS key, the cryptographic operation
fails.

External key issues that are detected during a cryptographic operation are more difficult to resolve
than external key issues detected before creating the KMS key. You cannot change the external
key ID after the KMS key is created. If the KMS key has not yet encrypted any data, you can delete
the KMS key and create a new one with a different external key ID. However, ciphertext generated
with the KMS key cannot be decrypted by any other KMS key, even one with the same external key,
because keys will have different key metadata and different Amazon KMS key material. Instead, to
the extent possible, use your external key manager tools to resolve the problem with the external
key.

Troubleshooting external key stores 749

Amazon Key Management Service Developer Guide

When the external key store proxy reports a problem with the external key, cryptographic
operations return KMSInvalidStateException with an error message that identifies the
problem.

External key not found

When the external key store proxy reports that it cannot find the external key using
the external key ID (XksKeyId) for the KMS key, cryptographic operations return a
KMSInvalidStateException with the following error message.

The external key store proxy rejected the request because it could not find the external key.

This error might occur for the following reasons:

• The ID of the external key (XksKeyId) for the KMS key is no longer valid.

To find the external key ID associated with your KMS key, view the details of the KMS key. To find
the ID that your external key proxy uses to identify the external key, see your external key store
proxy or external key manager documentation.

Amazon KMS verifies the external key ID when it creates a KMS key in an external key store.
However, the ID might become invalid, especially if the external key ID value is an alias or
mutable name. You cannot change the external key ID associated with an existing KMS key. To
decrypt any ciphertext encrypted under the KMS key, you must re-associate the external key with
the existing external key ID.

If you have not yet used the KMS key to encrypt data, you can create a new KMS key with a valid
external key ID. However, if you have generated ciphertext with the KMS key, you cannot use any
other KMS key to decrypt the ciphertext, even if uses the same external key.

• The external key might have been deleted from your external key manager. To investigate,
use your external key manager tools. If possible, try to recover the key material from a copy or
backup of your external key manager. If the external key is permanently deleted, any ciphertext
encrypted under the associated KMS key is unrecoverable.

External key configuration errors

Troubleshooting external key stores 750

Amazon Key Management Service Developer Guide

When the external key store proxy reports that the external key doesn't fulfill the requirements for
use with a KMS key, the cryptographic operation returns KMSInvalidStateException with the
one of the following error messages.

The external key store proxy rejected the request because the external key does not support the
requested operation.

• The external key must support both encryption and decryption. If the key usage does not include
encryption and decryption, use your external key manager tools to change the key usage.

The external key store proxy rejected the request because the external key is not enabled in the
external key manager.

• The external key must be enabled and available for use in the external key manager. If the status
of the external key is not Enabled, use your external key manager tools to enable it.

Proxy issues

Exceptions:

CustomKeyStoreInvalidStateException (CreateKey), KMSInvalidStateException
(cryptographic operations), UnsupportedOperationException,
XksProxyUriUnreachableException, XksProxyInvalidResponseException (management
operations other than CreateKey)

The external key store proxy mediates all communication between Amazon KMS and the external
key manager. It translates generic Amazon KMS requests into a format that your external key
manager can understand. If the external key store proxy doesn't conform to the Amazon KMS
External Key Store Proxy API Specification, or if isn't operating properly, or can't communicate with
Amazon KMS, you won't be able to create or use KMS keys in your external key store.

While many errors mention the external key store proxy because of its critical role in the external
key store architecture, those problem might originate in the external key manager or external key.

The issues in this section relate to problems with the design or operation of the external key store
proxy. Resolving these issues might require a change to the proxy software. Consult your proxy

Troubleshooting external key stores 751

https://github.com/aws/aws-kms-xksproxy-api-spec/
https://github.com/aws/aws-kms-xksproxy-api-spec/

Amazon Key Management Service Developer Guide

administrator. To help diagnose proxy issues, Amazon KMS provides XKS Proxy Text Client, an open
source test client that verifies that your external key store proxy conforms to the Amazon KMS
External Key Store Proxy API Specification.

CustomKeyStoreInvalidStateException , KMSInvalidStateException or
XksProxyUriUnreachableException
The external key store proxy is in an unhealthy state. If you see this message repeatedly, notify
your external key store proxy administrator.

• This error can indicate an operational problem or software error in the external key store proxy.
You can find CloudTrail log entries for the Amazon KMS API operation that generated each
error. This error might be resolved by retrying the operation. However, if it persists, notify your
external key store proxy administrator.

• When the external key store proxy reports (in a GetHealthStatus response) that all external key
manager instances are UNAVAILABLE, attempts to create or update an external key store fail
with this exception. If this error persists, consult your external key manager documentation.

CustomKeyStoreInvalidStateException , KMSInvalidStateException or
XksProxyInvalidResponseException
Amazon KMS cannot interpret the response from the external key store proxy. If you see this
error repeatedly, consult your external key store proxy administrator.

• Amazon KMS operations generate this exception when the proxy returns an undefined response
that Amazon KMS cannot parse or interpret. This error might occur occasionally due to
temporarily external issues or sporadic network errors. However, if it persists, it might indicate
that the external key store proxy doesn't conform to the Amazon KMS External Key Store Proxy
API Specification. Notify your external key store administrator or vendor.

CustomKeyStoreInvalidStateException , KMSInvalidStateException or
UnsupportedOperationException

The external key store proxy rejected the request because it does not support the requested
cryptographic operation.

Troubleshooting external key stores 752

https://github.com/aws-samples/aws-kms-xksproxy-test-client
https://github.com/aws/aws-kms-xksproxy-api-spec/
https://github.com/aws/aws-kms-xksproxy-api-spec/
https://github.com/aws/aws-kms-xksproxy-api-spec/
https://github.com/aws/aws-kms-xksproxy-api-spec/

Amazon Key Management Service Developer Guide

• The external key store proxy should support all proxy APIs defined in the Amazon KMS External
Key Store Proxy API Specification. This error indicates that the proxy does not support the
operation that is related to the request. Notify your external key store administrator or vendor.

Proxy authorization issues

Exceptions: CustomKeyStoreInvalidStateException, KMSInvalidStateException

Some external key store proxies implement authorization requirements for the use of its external
keys. An external key store proxy is permitted, but not required, to design and implement an
authorization scheme that allows particular users to request particular operations under certain
conditions. For example, a proxy might allow a user to encrypt with a particular external key, but
not to decrypt with it. For more information, see External key store proxy authorization (optional).

Proxy authorization is based on metadata that Amazon KMS includes in its requests to the proxy.
The awsSourceVpc and awsSourceVpce fields are included in the metadata only when the
request is from a VPC endpoint and only when the caller is in the same account as the KMS key.

"requestMetadata": {
 "awsPrincipalArn": string,
 "awsSourceVpc": string, // optional
 "awsSourceVpce": string, // optional
 "kmsKeyArn": string,
 "kmsOperation": string,
 "kmsRequestId": string,
 "kmsViaService": string // optional
}

When the proxy rejects a request due to an authorization failure, the related Amazon KMS
operation fails. CreateKey returns CustomKeyStoreInvalidStateException. Amazon KMS
cryptographic operations return KMSInvalidStateException. Both use the following error
message:

The external key store proxy denied access to the operation. Verify that the user and the
external key are both authorized for this operation, and try the request again.

• To resolve the error, use your external key manager or external key store proxy tools to
determine why authorization failed. Then, update the procedure that caused the unauthorized

Troubleshooting external key stores 753

https://github.com/aws/aws-kms-xksproxy-api-spec/
https://github.com/aws/aws-kms-xksproxy-api-spec/

Amazon Key Management Service Developer Guide

request or use your external key store proxy tools to update the authorization policy. You cannot
resolve this error in Amazon KMS.

Troubleshooting external key stores 754

Amazon Key Management Service Developer Guide

Security of Amazon Key Management Service

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a data
center and network architecture that are built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs Amazon
services in the Amazon Cloud. Amazon also provides you with services that you can use securely.
Third-party auditors regularly test and verify the effectiveness of our security as part of the
Amazon Compliance Programs. To learn about the compliance programs that apply to Amazon
Key Management Service (Amazon KMS), see Amazon Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you use. In
Amazon KMS, in addition to your configuration and use of Amazon KMS keys, you are responsible
for other factors including the sensitivity of your data, your company’s requirements, and
applicable laws and regulations

This documentation helps you understand how to apply the shared responsibility model when
using Amazon Key Management Service. It shows you how to configure Amazon KMS to meet your
security and compliance objectives.

Topics

• Data protection in Amazon Key Management Service

• Identity and access management for Amazon Key Management Service

• Logging and monitoring in Amazon Key Management Service

• Compliance validation for Amazon Key Management Service

• Resilience in Amazon Key Management Service

• Infrastructure security in Amazon Key Management Service

Data protection in Amazon Key Management Service

Amazon Key Management Service stores and protects your encryption keys to make them highly
available while providing you with strong and flexible access control.

Data protection 755

http://www.amazonaws.cn/compliance/programs/
http://www.amazonaws.cn/compliance/services-in-scope/

Amazon Key Management Service Developer Guide

Topics

• Protecting key material

• Data encryption

• Internetwork traffic privacy

Protecting key material

By default, Amazon KMS generates and protects the cryptographic key material for KMS keys. In
addition, Amazon KMS offers options for key material that is created and protected outside of
Amazon KMS.

Protecting key material generated in Amazon KMS

When you create a KMS key, by default, Amazon KMS generates and protects the cryptographic
material for the KMS key.

To safeguard key material for KMS keys, Amazon KMS relies on a distributed fleet of FIPS 140-3
Security Level 3–validated hardware security modules (HSMs). Each Amazon KMS HSM is a
dedicated, standalone hardware appliance designed to provide dedicated cryptographic functions
to meet the security and scalability requirements of Amazon KMS. (The HSMs that Amazon KMS
uses in China Regions are certified by OSCCA and comply with all pertinent Chinese regulations,
but are not validated under the FIPS 140-3 Cryptographic Module Validation Program.)

The key material for a KMS key is encrypted by default when it is generated in the HSM. The key
material is decrypted only within HSM volatile memory and only for the few milliseconds that
it takes to use it in a cryptographic operation. Whenever the key material is not in active use, it
is encrypted within the HSM and transferred to highly durable (99.999999999%), low-latency
persistent storage where it remains separate and isolated from the HSMs. Plaintext key material
never leaves the HSM security boundary; it is never written to disk or persisted in any storage
medium. (The only exception is the public key of an asymmetric key pair, which is not secret.)

Amazon asserts as a fundamental security principle that there is no human interaction with
plaintext cryptographic key material of any type in any Amazon Web Services service. There is no
mechanism for anyone, including Amazon Web Services service operators, to view, access, or export
plaintext key material. This principle applies even during catastrophic failures and disaster recovery
events. Plaintext customer key material in Amazon KMS is used for cryptographic operations within
Amazon KMS FIPS 140-3 validated HSMs only in response to authorized requests made to the
service by the customer or their delegate.

Protecting key material 756

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884
https://www.oscca.gov.cn/
https://docs.amazonaws.cn/kms/latest/cryptographic-details/durability-protection.html
https://docs.amazonaws.cn/kms/latest/cryptographic-details/internal-communication-security.html#hsm-security-boundary

Amazon Key Management Service Developer Guide

For customer managed keys, the Amazon Web Services account that creates the key is the sole and
non-transferable owner of the key. The owning account has complete and exclusive control over
the authorization policies that control access to the key. For Amazon managed keys, the Amazon
Web Services account has complete control over the IAM policies that authorize requests to the
Amazon Web Services service.

Protecting key material generated outside of Amazon KMS

Amazon KMS provides alternatives to key material generated in Amazon KMS.

Custom key stores, an optional Amazon KMS feature, let you create KMS keys backed by key
material that is generated and used outside of Amazon KMS. KMS keys in Amazon CloudHSM key
stores are backed by keys in Amazon CloudHSM hardware security modules that you control. These
HSMs are certified at FIPS 140-2 Security Level 3 or 140-3 Security Level 3. KMS keys in external
key stores are backed by keys in an external key manager that you control and manage outside of
Amazon, such as a physical HSM in your private data center.

Another optional feature lets you import the key material for a KMS key. To protect imported key
material while it is in transit to Amazon KMS, you encrypt the key material using a public key from
an RSA key pair generated in an Amazon KMS HSM. The imported key material is decrypted in
an Amazon KMS HSM and re-encrypted under a symmetric key in the HSM. Like all Amazon KMS
key material, plaintext imported key material never leaves the HSMs unencrypted. However, the
customer who provided the key material is responsible for secure use, durability, and maintenance
of the key material outside of Amazon KMS.

Data encryption

The data in Amazon KMS consists of Amazon KMS keys and the encryption key material they
represent. This key material exists in plaintext only within Amazon KMS hardware security modules
(HSMs) and only when in use. Otherwise, the key material is encrypted and stored in durable
persistent storage.

The key material that Amazon KMS generates for KMS keys never leaves the boundary of Amazon
KMS HSMs unencrypted. It is not exported or transmitted in any Amazon KMS API operations. The
exception is for multi-Region keys, where Amazon KMS uses a cross-Region replication mechanism
to copy the key material for a multi-Region key from an HSM in one Amazon Web Services Region
to an HSM in a different Amazon Web Services Region. For details, see Replication process for
multi-Region keys in Amazon Key Management Service Cryptographic Details.

Data encryption 757

https://docs.aws.amazon.com/cloudhsm/latest/userguide/compliance.html
https://docs.amazonaws.cn/kms/latest/cryptographic-details/replicate-key-details.html
https://docs.amazonaws.cn/kms/latest/cryptographic-details/replicate-key-details.html

Amazon Key Management Service Developer Guide

Topics

• Encryption at rest

• Encryption in transit

Encryption at rest

Amazon KMS generates key material for Amazon KMS keys in FIPS 140-3 Security Level 3–
compliant hardware security modules (HSMs). The only exception is China Regions, where the HSMs
that Amazon KMS uses to generate KMS keys comply with all pertinent Chinese regulations, but
are not validated under the FIPS 140-3 Cryptographic Module Validation Program. When not in
use, key material is encrypted by an HSM key and written to durable, persistent storage. The key
material for KMS keys and the encryption keys that protect the key material never leave the HSMs
in plaintext form.

Encryption and management of key material for KMS keys is handled entirely by Amazon KMS.

For more details, see Working with Amazon KMS keys in Amazon Key Management Service
Cryptographic Details.

Encryption in transit

Key material that Amazon KMS generates for KMS keys is never exported or transmitted in Amazon
KMS API operations. Amazon KMS uses key identifiers to represent the KMS keys in API operations.
Similarly, key material for KMS keys in Amazon KMS custom key stores is non-exportable and never
transmitted in Amazon KMS or Amazon CloudHSM API operations.

However, some Amazon KMS API operations return data keys. Also, customers can use API
operations to import key material for selected KMS keys.

All Amazon KMS API calls must be signed and transmitted using Transport Layer Security (TLS).
Amazon KMS requires TLS 1.2 and recommends TLS 1.3 in all regions. Amazon KMS also supports
hybrid post-quantum TLS for Amazon KMS service endpoints in all regions, except China Regions.
Amazon KMS does not support hybrid post-quantum TLS for FIPS endpoints in Amazon GovCloud
(US). Calls to Amazon KMS also require a modern cipher suite that supports perfect forward secrecy,
which means that compromise of any secret, such as a private key, does not also compromise the
session key.

If you require FIPS 140-3 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. To use standard Amazon KMS endpoints

Data encryption 758

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884
https://docs.amazonaws.cn/kms/latest/cryptographic-details/kms-keys.html

Amazon Key Management Service Developer Guide

or Amazon KMS FIPS endpoints, clients must support TLS 1.2 or later. For more information about
the available FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3. For a list
of Amazon KMS FIPS endpoints, see Amazon Key Management Service endpoints and quotas in the
Amazon Web Services General Reference.

Communications between Amazon KMS service hosts and HSMs are protected using Elliptic Curve
Cryptography (ECC) and Advanced Encryption Standard (AES) in an authenticated encryption
scheme. For more details, see Internal communication security in Amazon Key Management Service
Cryptographic Details.

Internetwork traffic privacy

Amazon KMS supports an Amazon Web Services Management Console and a set of API operations
that enable you to create and manage Amazon KMS keys and use them in cryptographic
operations.

Amazon KMS supports two network connectivity options from your private network to Amazon.

• An IPSec VPN connection over the internet

• Amazon Direct Connect, which links your internal network to an Amazon Direct Connect location
over a standard Ethernet fiber-optic cable.

All Amazon KMS API calls must be signed and be transmitted using Transport Layer Security (TLS).
The calls also require a modern cipher suite that supports perfect forward secrecy. Traffic to the
hardware security modules (HSMs) that store key material for KMS keys is permitted only from
known Amazon KMS API hosts over the Amazon internal network.

To connect directly to Amazon KMS from your virtual private cloud (VPC) without sending
traffic over the public internet, use VPC endpoints, powered by Amazon PrivateLink. For more
information, see Connect to Amazon KMS through a VPC endpoint.

Amazon KMS also supports a hybrid post-quantum key exchange option for the Transport Layer
Security (TLS) network encryption protocol. You can use this option with TLS when you connect to
Amazon KMS API endpoints.

Internetwork privacy 759

https://www.amazonaws.cn/compliance/fips/
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/kms/latest/cryptographic-details/internal-communication-security.html
http://www.amazonaws.cn/directconnect/
https://en.wikipedia.org/wiki/Forward_secrecy
https://docs.amazonaws.cn/vpc/latest/privatelink/

Amazon Key Management Service Developer Guide

Identity and access management for Amazon Key Management
Service

Amazon Identity and Access Management (IAM) helps you securely control access to Amazon
resources. Administrators control who can be authenticated (signed in) and authorized (have
permissions) to use Amazon KMS resources. For more information, see Using IAM policies with
Amazon KMS.

Key policies are the primary mechanism for controlling access to KMS keys in Amazon KMS. Every
KMS key must have a key policy. You can also use IAM policies and grants, along with key policies,
to control access to your KMS keys. For more information, see KMS key access and permissions.

If you are using an Amazon Virtual Private Cloud (Amazon VPC), you can create an interface VPC
endpoint to Amazon KMS powered by Amazon PrivateLink. You can also use VPC endpoint policies
to determine which principals can access your Amazon KMS endpoint, which API calls they can
make, and which KMS key they can access.

Topics

• Amazon managed policies for Amazon Key Management Service

• Using service-linked roles for Amazon KMS

Amazon managed policies for Amazon Key Management Service

An Amazon managed policy is a standalone policy that is created and administered by Amazon.
Amazon managed policies are designed to provide permissions for many common use cases so that
you can start assigning permissions to users, groups, and roles.

Keep in mind that Amazon managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all Amazon customers to use. We recommend that
you reduce permissions further by defining customer managed policies that are specific to your
use cases.

You cannot change the permissions defined in Amazon managed policies. If Amazon updates
the permissions defined in an Amazon managed policy, the update affects all principal identities
(users, groups, and roles) that the policy is attached to. Amazon is most likely to update an Amazon
managed policy when a new Amazon Web Services service is launched or new API operations
become available for existing services.

Identity and access management 760

https://docs.amazonaws.cn/vpc/latest/privatelink/
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

Amazon Key Management Service Developer Guide

For more information, see Amazon managed policies in the IAM User Guide.

Amazon managed policy: AWSKeyManagementServicePowerUser

You can attach the AWSKeyManagementServicePowerUser policy to your IAM identities.

You can use the AWSKeyManagementServicePowerUser managed policy to give IAM principals
in your account the permissions of a power user. Power users can create KMS keys, use and manage
the KMS keys they create, and view all KMS keys and IAM identities. Principals who have the
AWSKeyManagementServicePowerUser managed policy can also get permissions from other
sources, including key policies, other IAM policies, and grants.

AWSKeyManagementServicePowerUser is an Amazon managed IAM policy. For more
information about Amazon managed policies, see Amazon managed policies in the IAM User Guide.

Note

Permissions in this policy that are specific to a KMS key, such as kms:TagResource and
kms:GetKeyRotationStatus, are effective only when the key policy for that KMS key
explicitly allows the Amazon Web Services account to use IAM policies to control access
to the key. To determine whether a permission is specific to a KMS key, see Amazon KMS
permissions and look for a value of KMS key in the Resources column.
This policy gives a power user permissions on any KMS key with a key policy that
permits the operation. For cross-account permissions, such as kms:DescribeKey and
kms:ListGrants, this might include KMS keys in untrusted Amazon Web Services
accounts. For details, see Best practices for IAM policies and Allowing users in other
accounts to use a KMS key. To determine whether a permission is valid on KMS keys in
other accounts, see Amazon KMS permissions and look for a value of Yes in the Cross-
account use column.
To allow principals to view the Amazon KMS console without errors, the
principal needs the tag:GetResources permission, which is not included in the
AWSKeyManagementServicePowerUser policy. You can allow this permission in a
separate IAM policy.

The AWSKeyManagementServicePowerUser managed IAM policy includes the following
permissions.

Amazon managed policies 761

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/resourcegroupstagging/latest/APIReference/API_GetResources.html
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/AWSKeyManagementServicePowerUser

Amazon Key Management Service Developer Guide

• Allows principals to create KMS keys. Because this process includes setting the key policy, power
users can give themselves and others permission to use and manage the KMS keys they create.

• Allows principals to create and delete aliases and tags on all KMS keys. Changing a tag or alias
can allow or deny permission to use and manage the KMS key. For details, see ABAC for Amazon
KMS.

• Allows principals to get detailed information about all KMS keys, including their key ARN,
cryptographic configuration, key policy, aliases, tags, and rotation status.

• Allows principals to list IAM users, groups, and roles.

• This policy does not allow principals to use or manage KMS keys that they didn't create.
However, they can change aliases and tags on all KMS keys, which might allow or deny them
permission to use or manage a KMS key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:CreateAlias",
 "kms:CreateKey",
 "kms:DeleteAlias",
 "kms:Describe*",
 "kms:GenerateRandom",
 "kms:Get*",
 "kms:List*",
 "kms:TagResource",
 "kms:UntagResource",
 "iam:ListGroups",
 "iam:ListRoles",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Amazon managed policies 762

Amazon Key Management Service Developer Guide

Amazon managed policy:
AWSServiceRoleForKeyManagementServiceCustomKeyStores

You can't attach AWSServiceRoleForKeyManagementServiceCustomKeyStores to your
IAM entities. This policy is attached to a service-linked role that gives Amazon KMS permission to
view the Amazon CloudHSM clusters associated with your Amazon CloudHSM key store and create
the network to support a connection between your custom key store and its Amazon CloudHSM
cluster. For more information, see Authorizing Amazon KMS to manage Amazon CloudHSM and
Amazon EC2 resources.

Amazon managed policy:
AWSServiceRoleForKeyManagementServiceMultiRegionKeys

You can't attach AWSServiceRoleForKeyManagementServiceMultiRegionKeys to your
IAM entities. This policy is attached to a service-linked role that gives Amazon KMS permission to
synchronize any changes to the key material of a multi-Region primary key to its replica keys. For
more information, see Authorizing Amazon KMS to synchronize multi-Region keys.

Amazon KMS updates to Amazon managed policies

View details about updates to Amazon managed policies for Amazon KMS since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the Amazon KMS Document history page.

Change Description Date

AWSKeyManagementSe
rviceMultiRegionKeysService
RolePolicy – Update to
existing policy

Amazon KMS added a
statement ID (Sid) field to
the managed policy in policy
version v2.

November 21, 2024

AWSKeyManagementSe
rviceCustomKeyStoresService
RolePolicy – Update to
existing policy

Amazon KMS added the
ec2:DescribeVpcs ,
ec2:DescribeNetwor
kAcls , and ec2:Descr
ibeNetworkInterfac
es permissions to monitor
changes in the VPC that

November 10, 2023

Amazon managed policies 763

Amazon Key Management Service Developer Guide

Change Description Date

contains your Amazon
CloudHSM cluster so that
Amazon KMS can provide
clear error messages in the
case of failures.

Amazon KMS started tracking
changes

Amazon KMS started tracking
changes for its Amazon
managed policies.

November 10, 2023

Using service-linked roles for Amazon KMS

Amazon Key Management Service uses Amazon Identity and Access Management (IAM) service-
linked roles. A service-linked role is a unique type of IAM role that is linked directly to Amazon
KMS. Service-linked roles are defined by Amazon KMS and include all the permissions that the
service requires to call other Amazon services on your behalf.

A service-linked role makes setting up Amazon KMS easier because you don’t have to manually add
the necessary permissions. Amazon KMS defines the permissions of its service-linked roles, and
unless defined otherwise, only Amazon KMS can assume its roles. The defined permissions include
the trust policy and the permissions policy, and that permissions policy cannot be attached to any
other IAM entity.

You can delete a service-linked role only after first deleting the related resources. This protects
your Amazon KMS resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see Amazon Services That
Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose
a Yes with a link to view the service-linked role documentation for that service.

To view details about updates to the service-linked roles discussed in this topic, see Amazon KMS
updates to Amazon managed policies.

Topics

• Authorizing Amazon KMS to manage Amazon CloudHSM and Amazon EC2 resources

Service-linked roles 764

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Key Management Service Developer Guide

• Authorizing Amazon KMS to synchronize multi-Region keys

Authorizing Amazon KMS to manage Amazon CloudHSM and Amazon EC2
resources

To support your Amazon CloudHSM key stores, Amazon KMS needs permission to
get information about your Amazon CloudHSM clusters. It also needs permission to
create the network infrastructure that connects your Amazon CloudHSM key store
to its Amazon CloudHSM cluster. To get these permissions, Amazon KMS creates the
AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role in your
Amazon Web Services account. Users who create Amazon CloudHSM key stores must have the
iam:CreateServiceLinkedRole permission that allows them to create service-linked roles.

To view details about updates to the
AWSKeyManagementServiceCustomKeyStoresServiceRolePolicy managed policy, see Amazon
KMS updates to Amazon managed policies.

Topics

• About the Amazon KMS service-linked role

• Create the service-linked role

• Edit the service-linked role description

• Delete the service-linked role

About the Amazon KMS service-linked role

A service-linked role is an IAM role that gives one Amazon service permission to call other Amazon
services on your behalf. It's designed to make it easier for you to use the features of multiple
integrated Amazon services without having to create and maintain complex IAM policies. For more
information, see Using service-linked roles for Amazon KMS.

For Amazon CloudHSM key stores, Amazon KMS creates the
AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role with the
AWSKeyManagementServiceCustomKeyStoresServiceRolePolicy managed policy. This policy
grants the role the following permissions:

• cloudhsm:Describe* – detects changes in the Amazon CloudHSM cluster that is attached to your
custom key store.

Service-linked roles 765

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.amazonaws.cn/cloudhsm/latest/APIReference/API_DescribeClusters.html

Amazon Key Management Service Developer Guide

• ec2:CreateSecurityGroup – used when you connect an Amazon CloudHSM key store to create
the security group that enables network traffic flow between Amazon KMS and your Amazon
CloudHSM cluster.

• ec2:AuthorizeSecurityGroupIngress – used when you connect an Amazon CloudHSM key store
to allow network access from Amazon KMS into the VPC that contains your Amazon CloudHSM
cluster.

• ec2:CreateNetworkInterface – used when you connect an Amazon CloudHSM key store to
create the network interface used for communication between Amazon KMS and the Amazon
CloudHSM cluster.

• ec2:RevokeSecurityGroupEgress – used when you connect an Amazon CloudHSM key store to
remove all outbound rules from the security group that Amazon KMS created.

• ec2:DeleteSecurityGroup – used when you disconnect an Amazon CloudHSM key store to delete
security groups that were created when you connected the Amazon CloudHSM key store.

• ec2:DescribeSecurityGroups – used to monitor changes in the security group that Amazon KMS
created in the VPC that contains your Amazon CloudHSM cluster so that Amazon KMS can
provide clear error messages in case of failures.

• ec2:DescribeVpcs – used to monitor changes in the VPC that contains your Amazon CloudHSM
cluster so that Amazon KMS can provide clear error messages in case of failures.

• ec2:DescribeNetworkAcls – used to monitor changes in the network ACLs for the VPC that
contains your Amazon CloudHSM cluster so that Amazon KMS can provide clear error messages
in case of failures.

• ec2:DescribeNetworkInterfaces – used to monitor changes in the network interfaces that
Amazon KMS created in the VPC that contains your Amazon CloudHSM cluster so that Amazon
KMS can provide clear error messages in case of failures.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudhsm:Describe*",
 "ec2:CreateNetworkInterface",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateSecurityGroup",
 "ec2:DescribeSecurityGroups",

Service-linked roles 766

https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_AuthorizeSecurityGroupIngress.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_RevokeSecurityGroupEgress.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DeleteSecurityGroup.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeVpcs.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeNetworkAcls.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_DescribeNetworkInterfaces.html

Amazon Key Management Service Developer Guide

 "ec2:RevokeSecurityGroupEgress",
 "ec2:DeleteSecurityGroup",
 "ec2:DescribeVpcs",
 "ec2:DescribeNetworkAcls",
 "ec2:DescribeNetworkInterfaces"
],
 "Resource": "*"
 }
]
}

Because the AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role
trusts only cks.kms.amazonaws.com, only Amazon KMS can assume this service-linked role. This
role is limited to the operations that Amazon KMS needs to view your Amazon CloudHSM clusters
and to connect an Amazon CloudHSM key store to its associated Amazon CloudHSM cluster. It
does not give Amazon KMS any additional permissions. For example, Amazon KMS does not have
permission to create, manage, or delete your Amazon CloudHSM clusters, HSMs, or backups.

Regions

Like the Amazon CloudHSM key stores feature, the
AWSServiceRoleForKeyManagementServiceCustomKeyStores role is supported in all Amazon
Web Services Regions where Amazon KMS and Amazon CloudHSM are available. For a list of
Amazon Web Services Regions that each service supports, see Amazon Key Management Service
Endpoints and Quotas and Amazon CloudHSM endpoints and quotas in the Amazon Web Services
General Reference.

For more information about how Amazon services use service-linked roles, see Using service-linked
roles in the IAM User Guide.

Create the service-linked role

Amazon KMS automatically creates the
AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role in your Amazon
Web Services account when you create an Amazon CloudHSM key store, if the role does not already
exist. You cannot create or re-create this service-linked role directly.

Service-linked roles 767

https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/cloudhsm.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon Key Management Service Developer Guide

Edit the service-linked role description

You cannot edit the role name or the policy statements in the
AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role, but you can
edit role description. For instructions, see Editing a service-linked role in the IAM User Guide.

Delete the service-linked role

Amazon KMS does not delete the AWSServiceRoleForKeyManagementServiceCustomKeyStores
service-linked role from your Amazon Web Services account even if you have deleted all of
your Amazon CloudHSM key stores. Although there is currently no procedure for deleting the
AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role, Amazon KMS
does not assume this role or use its permissions unless you have active Amazon CloudHSM key
stores.

Authorizing Amazon KMS to synchronize multi-Region keys

To support multi-Region keys, Amazon KMS needs permission to synchronize the shared properties
of a multi-Region primary key with its replica keys. To get these permissions, Amazon KMS
creates the AWSServiceRoleForKeyManagementServiceMultiRegionKeys service-linked role
in your Amazon Web Services account. Users who create multi-Region keys must have the
iam:CreateServiceLinkedRole permission that allows them to create service-linked roles.

You can view the SynchronizeMultiRegionKey CloudTrail event that records Amazon KMS
synchronizing shared properties in your Amazon CloudTrail logs.

To view details about updates to the
AWSKeyManagementServiceMultiRegionKeysServiceRolePolicy managed policy, see Amazon
KMS updates to Amazon managed policies.

Topics

• About the service-linked role for multi-Region keys

• Create the service-linked role

• Edit the service-linked role description

• Delete the service-linked role

Service-linked roles 768

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon Key Management Service Developer Guide

About the service-linked role for multi-Region keys

A service-linked role is an IAM role that gives one Amazon service permission to call other Amazon
services on your behalf. It's designed to make it easier for you to use the features of multiple
integrated Amazon services without having to create and maintain complex IAM policies.

For multi-Region keys, Amazon KMS creates the
AWSServiceRoleForKeyManagementServiceMultiRegionKeys service-linked role with the
AWSKeyManagementServiceMultiRegionKeysServiceRolePolicy managed policy. This policy gives
the role the kms:SynchronizeMultiRegionKey permission, which allows it to synchronize the
shared properties of multi-Region keys.

Because the AWSServiceRoleForKeyManagementServiceMultiRegionKeys service-linked role
trusts only mrk.kms.amazonaws.com, only Amazon KMS can assume this service-linked role.
This role is limited to the operations that Amazon KMS needs to synchronize multi-Region shared
properties. It does not give Amazon KMS any additional permissions. For example, Amazon KMS
does not have permission to create, replicate, or delete any KMS keys.

For more information about how Amazon services use service-linked roles, see Using Service-
Linked Roles in the IAM User Guide.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Sid" : "KMSSynchronizeMultiRegionKey",
 "Effect" : "Allow",
 "Action" : [
 "kms:SynchronizeMultiRegionKey"
],
 "Resource" : "*"
 }
]
}

Create the service-linked role

Amazon KMS automatically creates the
AWSServiceRoleForKeyManagementServiceMultiRegionKeys service-linked role in your Amazon
Web Services account when you create a multi-Region key, if the role does not already exist. You
cannot create or re-create this service-linked role directly.

Service-linked roles 769

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon Key Management Service Developer Guide

Edit the service-linked role description

You cannot edit the role name or the policy statements in the
AWSServiceRoleForKeyManagementServiceMultiRegionKeys service-linked role, but you can edit
the role description. For instructions, see Editing a Service-Linked Role in the IAM User Guide.

Delete the service-linked role

Amazon KMS does not delete the AWSServiceRoleForKeyManagementServiceMultiRegionKeys
service-linked role from your Amazon Web Services account and you cannot delete it. However,
Amazon KMS does not assume the AWSServiceRoleForKeyManagementServiceMultiRegionKeys
role or use any of its permissions unless you have multi-Region keys in your Amazon Web Services
account and Region.

Logging and monitoring in Amazon Key Management Service

Monitoring is an important part of understanding the availability, state, and usage of your Amazon
KMS keys in Amazon KMS. Monitoring helps maintain the security, reliability, availability, and
performance of your Amazon solutions. Amazon provides several tools for monitoring your KMS
keys.

Amazon CloudTrail Logs

Every call to an Amazon KMS API operation is captured as an event in an Amazon CloudTrail log.
These logs record all API calls from the Amazon KMS console, and calls made by Amazon KMS
and other Amazon services. Cross-account API calls, such as a call to use a KMS key in a different
Amazon Web Services account, are recorded in the CloudTrail logs of both accounts.

When troubleshooting or auditing, you can use the log to reconstruct the lifecycle of a KMS
key. You can also view its management and use of the KMS key in cryptographic operations. For
more information, see the section called “Logging with Amazon CloudTrail”.

Amazon CloudWatch Logs

Monitor, store, and access your log files from Amazon CloudTrail and other sources. For more
information, see the Amazon CloudWatch User Guide.

For Amazon KMS, CloudWatch stores useful information that helps you to prevent problems
with your KMS keys and the resources that they protect. For more information, see the section
called “Monitor keys with CloudWatch”.

Logging and monitoring 770

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/

Amazon Key Management Service Developer Guide

Amazon EventBridge

Amazon KMS generates EventBridge events when your KMS key is rotated or deleted or the
imported key material in your KMS key expires. Search for Amazon KMS events (API operations)
and route them to one or more target functions or streams to capture state information. For
more information, see the section called “Monitor keys with Amazon EventBridge” and the
Amazon EventBridge User Guide.

Amazon CloudWatch Metrics

You can monitor your KMS keys using CloudWatch metrics, which collects and processes raw
data from Amazon KMS into performance metrics. The data are recorded in two-week intervals
so you can view trends of current and historical information. This helps you to understand how
your KMS keys are used and how their use changes over time. For information about using
CloudWatch metrics to monitor KMS keys, see Amazon KMS metrics and dimensions.

Amazon CloudWatch Alarms

Watch a single metric change over a time period that you specify. Then perform actions based
on the value of the metric relative to a threshold over a number of time periods. For example,
you can create a CloudWatch alarm that is triggered when someone tries to use a KMS key that
is scheduled to be deleted in a cryptographic operation. This indicates that the KMS key is still
being used and probably should not be deleted. For more information, see the section called
“Create an alarm”.

Amazon Security Hub

You can monitor your Amazon KMS usage for security industry standards and best practices
compliance using Amazon Security Hub. Security Hub uses security controls to evaluate
resource configurations and security standards to help you comply with various compliance
frameworks. For more information, see Amazon Key Management Service controls in the
Amazon Security Hub User Guide.

Compliance validation for Amazon Key Management Service

Third-party auditors assess the security and compliance of Amazon Key Management Service as
part of multiple Amazon compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and
others.

Topics

Compliance validation 771

https://docs.amazonaws.cn/eventbridge/latest/userguide/
https://docs.amazonaws.cn/securityhub/latest/userguide/kms-controls.html

Amazon Key Management Service Developer Guide

• Compliance and security documents

• Learn more

Compliance and security documents

The following compliance and security documents cover Amazon KMS. To view them, use Amazon
Artifact.

• Cloud Computing Compliance Controls Catalogue (C5)

• ISO 27001:2013 Statement of Applicability (SoA)

• ISO 27001:2013 Certification

• ISO 27017:2015 Statement of Applicability (SoA)

• ISO 27017:2015 Certification

• ISO 27018:2015 Statement of Applicability (SoA)

• ISO 27018:2014 Certification

• ISO 9001:2015 Certification

• PCI DSS Attestation of Compliance (AOC) and Responsibility Summary

• Service Organization Controls (SOC) 1 Report

• Service Organization Controls (SOC) 2 Report

• Service Organization Controls (SOC) 2 Report For Confidentiality

• FedRAMP-High

For help using Amazon Artifact, see Downloading Reports in Amazon Artifact.

Learn more

Your compliance responsibility when using Amazon KMS is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. If your use of
Amazon KMS is subject to compliance with a published standard, Amazon provides resources to
help:

• Amazon Services in Scope by Compliance Program – This page lists Amazon services that are
in scope of specific compliance programs. For general information, see Amazon Compliance
Programs.

Compliance and security documents 772

https://docs.amazonaws.cn/artifact/latest/ug/what-is-aws-artifact.html
https://docs.amazonaws.cn/artifact/latest/ug/what-is-aws-artifact.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://www.amazonaws.cn/compliance/services-in-scope/
http://www.amazonaws.cn/compliance/programs/
http://www.amazonaws.cn/compliance/programs/

Amazon Key Management Service Developer Guide

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on Amazon.

• Amazon Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Amazon Config – This Amazon service assesses how well your resource configurations comply
with internal practices, industry guidelines, and regulations.

• Amazon Security Hub – This Amazon service provides a comprehensive view of your security
state within Amazon. Security Hub uses security controls to evaluate your Amazon resources
and to check your compliance against security industry standards and best practices. For a list of
supported services and controls, see Security Hub controls reference.

Resilience in Amazon Key Management Service

The Amazon global infrastructure is built around Amazon Web Services Regions and Availability
Zones. Amazon Web Services Regions provide multiple physically separated and isolated
Availability Zones, which are connected with low-latency, high-throughput, and highly redundant
networking. With Availability Zones, you can design and operate applications and databases that
automatically fail over between Availability Zones without interruption. Availability Zones are
more highly available, fault tolerant, and scalable than traditional single or multiple data center
infrastructures.

In addition to the Amazon global infrastructure, Amazon KMS offers several features to help
support your data resiliency and backup needs. For more information about Amazon Web Services
Regions and Availability Zones, see Amazon Global Infrastructure.

Regional isolation

Amazon Key Management Service (Amazon KMS) is a self-sustaining Regional service that is
available in all Amazon Web Services Regions. The Regionally isolated design of Amazon KMS
ensures that an availability issue in one Amazon Web Services Region cannot affect Amazon KMS
operation in any other Region. Amazon KMS is designed to ensure zero planned downtime, with all
software updates and scaling operations performed seamlessly and imperceptibly.

The Amazon KMS Service Level Agreement (SLA) includes a service commitment of 99.999% for
all KMS APIs. To fulfill this commitment, Amazon KMS ensures that all data and authorization

Resilience 773

http://www.amazonaws.cn/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
http://www.amazonaws.cn/compliance/resources/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html
https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html
https://docs.amazonaws.cn/securityhub/latest/userguide/securityhub-controls-reference.html
https://www.amazonaws.cn/about-aws/global-infrastructure/
http://www.amazonaws.cn/kms/sla/

Amazon Key Management Service Developer Guide

information required to execute an API request is available on all regional hosts that receive the
request.

The Amazon KMS infrastructure is replicated in at least three Availability Zones (AZs) in each
Region. To ensure that multiple host failures do not affect Amazon KMS performance, Amazon
KMS is designed to service customer traffic from any of the AZs in a Region.

Changes that you make to the properties or permissions of a KMS key are replicated to all hosts in
the Region to ensure that subsequent request can be processed correctly by any host in the Region.
Requests for cryptographic operations using your KMS key are forwarded to a fleet of Amazon KMS
hardware security modules (HSMs), any of which can perform the operation with the KMS key.

Multi-tenant design

The multi-tenant design of Amazon KMS enables it to fulfill the 99.999% availability SLA, and to
sustain high request rates, while protecting the confidentiality of your keys and data.

Multiple integrity-enforcing mechanisms are deployed to ensure that the KMS key that you
specified for the cryptographic operation is always the one that is used.

The plaintext key material for your KMS keys is protected extensively. The key material is encrypted
in the HSM as soon as it is created, and the encrypted key material is immediately moved to secure,
low latency storage. The encrypted key is retrieved and decrypted within the HSM just in time
for use. The plaintext key remains in HSM memory only for the time needed to complete the
cryptographic operation. Then it is re-encrypted in the HSM and the encrypted key is returned to
storage. Plaintext key material never leaves the HSMs; it is never written to persistent storage.

Resilience best practices in Amazon KMS

To optimize resilience for your Amazon KMS resources, consider the following strategies.

• To support your backup and disaster recovery strategy, consider multi-Region keys, which are
KMS keys created in one Amazon Web Services Region and replicated only to Regions that you
specify. With multi-Region keys, you can move encrypted resources between Amazon Web
Services Regions (within the same partition) without ever exposing the plaintext, and decrypt
the resource, when needed, in any of its destination Regions. Related multi-Region keys are
interoperable because they share the same key material and key ID, but they have independent
key policies for high-resolution access control. For details, see Multi-Region keys in Amazon KMS.

• To protect your keys in a multi-tenant service like Amazon KMS, be sure to use access controls,
including key policies and IAM policies. In addition, you can send your requests to Amazon KMS

Multi-tenant design 774

Amazon Key Management Service Developer Guide

using a VPC interface endpoint powered by Amazon PrivateLink. When you do, all communication
between your Amazon VPC and Amazon KMS is conducted entirely within the Amazon network
using a dedicated Amazon KMS endpoint restricted to your VPC. You can further secure these
requests by creating an additional authorization layer using VPC endpoint policies. For details,
see Connecting to Amazon KMS through a VPC endpoint.

Infrastructure security in Amazon Key Management Service

As a managed service, Amazon Key Management Service (Amazon KMS) is protected by the
Amazon global network security procedures that are described in the Amazon Web Services:
Overview of Security Processes.

To access Amazon KMS over the network, you can call the Amazon KMS API operations that are
described in the Amazon Key Management Service API Reference. Amazon KMS requires TLS 1.2
and recommends TLS 1.3 in all regions. Amazon KMS also supports hybrid post-quantum TLS for
Amazon KMS service endpoints in all regions, except China Regions. Amazon KMS does not support
hybrid post-quantum TLS for FIPS endpoints in Amazon GovCloud (US). To use standard Amazon
KMS endpoints or Amazon KMS FIPS endpoints, clients must support TLS 1.2 or later. Clients must
also support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman
(DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems, such as Java 7
and later, support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

You can call these API operations from any network location, but Amazon KMS supports global
policy conditions that let you control access to a KMS key based on the source IP address, VPC, and
VPC endpoint. You can use these condition keys in key policies and IAM policies. However, these
conditions can prevent Amazon from using the KMS key on your behalf. For details, see Amazon
global condition keys.

For example, the following key policy statement allows users who can assume the KMSTestRole
role to use this Amazon KMS key for the specified cryptographic operations unless the source IP
address is one of the IP addresses specified in the policy.

{
 "Version": "2012-10-17",

Infrastructure security 775

https://docs.amazonaws.cn/vpc/latest/privatelink/interface-endpoints.html#edit-vpc-endpoint-policy
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.amazonaws.cn/kms/latest/APIReference/
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html

Amazon Key Management Service Developer Guide

 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS":
 "arn:aws:iam::111122223333:role/KMSTestRole"},
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "NotIpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 }
 }
 }
}

Isolation of Physical Hosts

The security of the physical infrastructure that Amazon KMS uses is subject to the controls
described in the Physical and Environmental Security section of the Amazon Web Services:
Overview of Security Processes. You can find more detail in compliance reports and third-party
audit findings listed in the previous section.

Amazon KMS is supported by dedicated hardened hardware security modules (HSMs) designed
with specific controls to resist physical attacks. The HSMs are physical devices that do not
have a virtualization layer, such as a hypervisor, that shares the physical device among several
logical tenants. The key material for Amazon KMS keys is stored only in volatile memory on the
HSMs, and only while the KMS key is in use. This memory is erased when the HSM moves out of
the operational state, including intended and unintended shutdowns and resets. For detailed
information about the operation of Amazon KMS HSMs, see Amazon Key Management Service
Cryptographic Details.

Isolation of Physical Hosts 776

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.amazonaws.cn/kms/latest/cryptographic-details/
https://docs.amazonaws.cn/kms/latest/cryptographic-details/

Amazon Key Management Service Developer Guide

Quotas

To make Amazon KMS responsive and performant for all users, Amazon KMS applies two types
of quotas, resource quotas and request quotas. Each quota is calculated independently for each
Region of each Amazon Web Services account.

All Amazon KMS quotas are adjustable, except for the on-demand rotation resource quota and the
Amazon CloudHSM key store request quota. To request a quota increase, see Requesting a quota
increase in the Service Quotas User Guide. To request a quota decrease, to change a quota that is
not listed in Service Quotas, or to change a quota in an Amazon Web Services Region where Service
Quotas for Amazon KMS is not available, please visit Amazon Web Services Support Center and
create a case.

Topics

• Resource quotas

• Request quotas

• Throttling Amazon KMS requests

Resource quotas

Amazon KMS establishes resource quotas to ensure that it can provide fast and resilient service
to all of our customers. Some resource quotas apply only to resources that you create, but not
to resources that Amazon services create for you. Resources that you use, but that aren't in your
Amazon Web Services account, such as Amazon owned keys, do not count against these quotas.

If you have exceeded a resource limit, requests to create an additional resource of that type
generate an LimitExceededException error message.

All Amazon KMS resource quotas are adjustable, except for the on-demand rotation resource
quota. To request a quota increase, see Requesting a quota increase in the Service Quotas User
Guide. To request a quota decrease, to change a quota that is not listed in Service Quotas, or to
change a quota in an Amazon Web Services Region where Service Quotas for Amazon KMS is not
available, please visit Amazon Web Services Support Center and create a case.

The following table lists and describes the Amazon KMS resource quotas in each Amazon Web
Services account and Region.

Resource quotas 777

https://docs.amazonaws.cn/servicequotas/latest/userguide/request-increase.html
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-increase.html
https://console.amazonaws.cn/support/home
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-increase.html
https://console.amazonaws.cn/support/home

Amazon Key Management Service Developer Guide

Quota name Default value Applies to Adjustable

Amazon KMS keys 100,000 Customer managed
keys

Yes

Aliases per KMS key 50 Customer created
aliases

Yes

Grants per KMS key 50,000 Customer managed
keys

Yes

Custom key store
resource quota

10 Amazon Web Services
account and Region

Yes

On-demand rotation 10 Customer managed
keys

No

In addition to resource quotas, Amazon KMS uses request quotas to ensure the responsiveness of
the service. For details, see the section called “Request quotas”.

Amazon KMS keys: 100,000

You can have up to 100,000 customer managed keys in each Region of your Amazon Web Services
account. This quota applies to all customer managed keys in all Amazon Web Services Regions
regardless of their key spec or key state. Each KMS key is considered to be one resource. Amazon
managed keys and Amazon owned keys do not count against this quota.

Aliases per KMS key: 50

You can associate up to 50 aliases with each customer managed key. Aliases that Amazon
associates with Amazon managed keys do not count against this quota. You might encounter this
quota when you create or update an alias.

Note

The kms:ResourceAliases condition is effective only when the KMS key conforms to this
quota. If a KMS key exceeds this quota, principals who are authorized to use the KMS key

Amazon KMS keys: 100,000 778

Amazon Key Management Service Developer Guide

by the kms:ResourceAliases condition are denied access to the KMS key. For details, see
Access denied due to alias quota.

The Aliases per KMS key quota replaces the Aliases per Region quota that limited the total number
of aliases in each Region of an Amazon Web Services account. Amazon KMS has eliminated the
Aliases per Region quota.

Grants per KMS key: 50,000

Each customer managed key can have up to 50,000 grants, including the grants created by Amazon
services that are integrated with Amazon KMS. This quota does not apply to Amazon managed
keys or Amazon owned keys.

One effect of this quota is that you cannot perform more than 50,000 grant-authorized operations
that use the same KMS key at the same time. After you reach the quota, you can create new grants
on the KMS key only when an active grant is retired or revoked.

For example, when you attach an Amazon Elastic Block Store (Amazon EBS) volume to an Amazon
Elastic Compute Cloud (Amazon EC2) instance, the volume is decrypted so you can read it. To get
permission to decrypt the data, Amazon EBS creates a grant for each volume. Therefore, if all of
your Amazon EBS volumes use the same KMS key, you cannot attach more than 50,000 volumes at
one time.

Custom key stores resource quota: 10

You can create up to 10 custom key stores in each Amazon Web Services account and Region. If you
try to create more, the CreateCustomKeyStore operation fails.

This quota applies to the total number of custom key stores in each account and region, including
all Amazon CloudHSM key stores and external key stores, regardless of their connection state.

On-demand rotation: 10

You can perform on-demand key rotation a maximum of 10 times per KMS key. If you try to
perform more on-demand rotations, the RotateKeyOnDemand operation fails.

This quota is not adjustable. You cannot increase it by using Service Quotas or by creating a case in
Amazon Web Services Support. To prevent reaching the on-demand rotation quota, we recommend
using automatic key rotation whenever possible.

Grants per KMS key: 50,000 779

http://www.amazonaws.cn/kms/features/#AWS_Service_Integration
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html

Amazon Key Management Service Developer Guide

Request quotas

Amazon KMS establishes quotas for the number of API operations requested in each second. The
request quotas differ with the API operation, the Amazon Web Services Region, and other factors,
such as the KMS key type. When you exceed an API request quota, Amazon KMS throttles the
request.

All Amazon KMS request quotas are adjustable, except for the Amazon CloudHSM key store request
quota. To request a quota increase, see Requesting a quota increase in the Service Quotas User
Guide. To request a quota decrease, to change a quota that is not listed in Service Quotas, or to
change a quota in an Amazon Web Services Region where Service Quotas for Amazon KMS is not
available, please visit Amazon Web Services Support Center and create a case.

If you are exceeding the request quota for the GenerateDataKey operation, consider using the data
key caching feature of the Amazon Encryption SDK. Reusing data keys might reduce the frequency
of your requests to Amazon KMS.

In addition to request quotas, Amazon KMS uses resource quotas to ensure capacity for all users.
For details, see Resource quotas.

To view trends in your request rates, use the Service Quotas console. You can also create an
Amazon CloudWatch alarm that alerts you when your request rate reaches a certain percentage of
a quota value. For details, see Manage your Amazon KMS API request rates using Service Quotas
and Amazon CloudWatch in the Amazon Security Blog.

Topics

• Request quotas for each Amazon KMS API operation

• Applying request quotas

• Shared quotas for cryptographic operations

• API requests made on your behalf

• Cross-account requests

• Custom key store request quotas

Request quotas 780

https://docs.amazonaws.cn/servicequotas/latest/userguide/request-increase.html
https://console.amazonaws.cn/support/home
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/data-key-caching.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/data-key-caching.html
https://console.aws.amazon.com/servicequotas
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/
https://amazonaws-china.com/blogs/security/manage-your-aws-kms-api-request-rates-using-service-quotas-and-amazon-cloudwatch/
https://amazonaws-china.com/blogs/security/manage-your-aws-kms-api-request-rates-using-service-quotas-and-amazon-cloudwatch/

Amazon Key Management Service Developer Guide

Request quotas for each Amazon KMS API operation

This table lists the Service Quotas quota code and the default value for each Amazon KMS request
quota. All Amazon KMS request quotas are adjustable, except for the Amazon CloudHSM key store
request quota.

Note

You might need to scroll horizontally or vertically to see all of the data in this table.

Quota name Default value (requests per second)

Cryptographic operations
(symmetric) request rate

Applies to:

• Decrypt

• Encrypt

• GenerateDataKey

• GenerateDataKeyWithoutPlain
text

• GenerateMac

• GenerateRandom

• ReEncrypt

• VerifyMac

These shared quotas vary with the Amazon
Web Services Region and the type of KMS key
used in the request. Each quota is calculated
separately.

• 10,000 (shared)

• 20,000 (shared) in the following Regions:

• US East (Ohio), us-east-2

• Asia Pacific (Singapore), ap-southeast-1

• Asia Pacific (Sydney), ap-southeast-2

• Asia Pacific (Tokyo), ap-northeast-1

• Europe (Frankfurt), eu-central-1

• Europe (London), eu-west-2

• 100,000 (shared) in the following Regions:

• US East (N. Virginia), us-east-1

• US West (Oregon), us-west-2

• Europe (Ireland), eu-west-1

Cryptographic operations (RSA)
request rate

Applies to:

1,000 (shared) for RSA KMS keys

Request quotas for each Amazon KMS API operation 781

https://docs.amazonaws.cn/servicequotas/latest/userguide/

Amazon Key Management Service Developer Guide

Quota name Default value (requests per second)

• Decrypt

• Encrypt

• ReEncrypt

• Sign

• Verify

Cryptographic operations (ML-DSA)
request rate

Applies to:

• Sign

• Verify

1,000 (shared) for ML-DSA KMS keys

Cryptographic operations (ECC and
SM2) request rate

Applies to:

• Decrypt—only supported for SM2 (China
Regions only) KMS keys

• DeriveSharedSecret

• Encrypt—only supported for SM2 (China
Regions only) KMS keys

• ReEncrypt —only supported for SM2
(China Regions only) KMS keys

• Sign

• Verify

1,000 (shared) for elliptic curve (ECC) and SM2
(China Regions only) KMS keys

Request quotas for each Amazon KMS API operation 782

Amazon Key Management Service Developer Guide

Quota name Default value (requests per second)

Custom key store request quotas

Applies to:

• Decrypt

• DeriveSharedSecret

• Encrypt

• GenerateDataKey

• GenerateDataKeyWithoutPlain
text

• GenerateRandom

• ReEncrypt

Custom key store request quotas are calculate
d separately for each custom key store

• 1,800 (shared) for each Amazon CloudHSM
key store

• 1,800 (shared) for each external key store

CancelKeyDeletion request rate 5

ConnectCustomKeyStore request
rate

5

CreateAlias request rate 5

CreateCustomKeyStore request rate 5

CreateGrant request rate 50

CreateKey request rate 5

DeleteAlias request rate 15

DeleteCustomKeyStore request rate 5

DeleteImportedKeyMaterial request
rate

15

DescribeCustomKeyStores request
rate

5

DescribeKey request rate 2000

Request quotas for each Amazon KMS API operation 783

Amazon Key Management Service Developer Guide

Quota name Default value (requests per second)

DisableKey request rate 5

DisableKeyRotation request rate 5

DisconnectCustomKeyStore request
rate

5

EnableKey request rate 5

EnableKeyRotation request rate 15

GenerateDataKeyPair (ECC_NIST
_P256) request rate

Applies to:

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutP
laintext

100

GenerateDataKeyPair (ECC_NIST
_P384) request rate

Applies to:

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutP
laintext

100

GenerateDataKeyPair (ECC_NIST
_P521) request rate

Applies to:

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutP
laintext

100

Request quotas for each Amazon KMS API operation 784

Amazon Key Management Service Developer Guide

Quota name Default value (requests per second)

GenerateDataKeyPair (ECC_SECG
_P256K1) request rate

Applies to:

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutP
laintext

100

GenerateDataKeyPair (RSA_2048)
request rate

Applies to:

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutP
laintext

1

GenerateDataKeyPair (RSA_3072)
request rate

Applies to:

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutP
laintext

0.5 (1 in each 2-second interval)

GenerateDataKeyPair (RSA_4096)
request rate

Applies to:

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutP
laintext

0.1 (1 in each 10-second interval)

Request quotas for each Amazon KMS API operation 785

Amazon Key Management Service Developer Guide

Quota name Default value (requests per second)

GenerateDataKeyPair (SM2 — China
Regions only) request rate

Applies to:

• GenerateDataKeyPair

• GenerateDataKeyPairWithoutP
laintext

25

GetKeyPolicy request rate 1000

GetKeyRotationStatus request rate 1000

GetParametersForImport request
rate

0.25 (1 in each 4-second interval)

GetPublicKey request rate 2000

ImportKeyMaterial request rate 15

ListAliases request rate 500

ListGrants request rate 100

ListKeyPolicies request rate 100

ListKeys request rate 500

ListKeyRotations request rate 100

ListResourceTags request rate 2000

ListRetirableGrants request rate 100

PutKeyPolicy request rate 15

Request quotas for each Amazon KMS API operation 786

Amazon Key Management Service Developer Guide

Quota name Default value (requests per second)

ReplicateKey request rate

A ReplicateKey operation counts as one
ReplicateKey request in the primary key's
Region and two CreateKey requests in
the replica's Region. One of the CreateKey

 requests is a dry run to detect potential
problems before creating the key.

5

RetireGrant request rate 50

RevokeGrant request rate 50

RotateKeyOnDemand request rate 5

ScheduleKeyDeletion request rate 15

TagResource request rate 10

UntagResource request rate 5

UpdateAlias request rate 5

UpdateCustomKeyStore request rate 5

UpdateKeyDescription request rate 5

UpdatePrimaryRegion request rate

An UpdatePrimaryRegion operation
counts as two UpdatePrimaryRegion
requests; one request in each of the two
affected Regions.

5

Applying request quotas

When reviewing request quotas, keep in mind the following information.

Applying request quotas 787

Amazon Key Management Service Developer Guide

• Request quotas apply to both customer managed keys and Amazon managed keys. The use
of Amazon owned keys does not count against request quotas for your Amazon Web Services
account, even when they are used to protect resources in your account.

• Request quotas apply to requests sent to FIPS endpoints and non-FIPS endpoints. For a list of
Amazon KMS service endpoints, see Amazon Key Management Service endpoints and quotas in
the Amazon Web Services General Reference.

• Throttling is based on all requests on KMS keys of all types in the Region. This total includes
requests from all principals in the Amazon Web Services account, including requests from
Amazon services on your behalf.

• Each request quota is calculated independently. For example, requests for the CreateKey
operation have no effect on the request quota for the CreateAlias operation. If your
CreateAlias requests are throttled, your CreateKey requests can still complete successfully.

• Although cryptographic operations share a quota, the shared quota is calculated independently
of quotas for other operations. For example, calls to the Encrypt and Decrypt operations share a
request quota, but that quota is independent of the quota for management operations, such as
EnableKey. For example, in the Europe (London) Region, you can perform 10,000 cryptographic
operations on symmetric KMS keys plus 5 EnableKey operations per second without being
throttled.

Shared quotas for cryptographic operations

Amazon KMS cryptographic operations share request quotas. You can request any combination
of the cryptographic operations that are supported by the KMS key, just so the total number
of cryptographic operations doesn't exceed the request quota for that type of KMS key. The
exceptions are GenerateDataKeyPair and GenerateDataKeyPairWithoutPlaintext, which share a
separate quota.

The quotas for different types of KMS keys are calculated independently. Each quota applies to all
requests for these operations in the Amazon Web Services account and Region with the given key
type in each one-second interval.

• Cryptographic operations (symmetric) request rate is the shared request quota for cryptographic
operations using symmetric KMS keys in an account and region. This quota applies to
cryptographic operations with symmetric encryption keys and HMAC keys, which are also
symmetric.

Shared quotas for cryptographic operations 788

https://docs.amazonaws.cn/general/latest/gr/kms.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

Amazon Key Management Service Developer Guide

For example, you might be using symmetric KMS keys in an Amazon Web Services Region with a
shared quota of 10,000 requests per second. When you make 7,000 GenerateDataKey requests
per second and 2,000 Decrypt requests per second, Amazon KMS doesn't throttle your requests.
However, when you make 9,500 GenerateDataKey requests and 1,000 Encrypt and requests
per second, Amazon KMS throttles your requests because they exceed the shared quota.

Cryptographic operations on the symmetric encryption KMS keys in a custom key store count
toward both the Cryptographic operations (symmetric) request rate for the account and the
custom key store request quota for the custom key store.

• Cryptographic operations (RSA) request rate is the shared request quota for cryptographic
operations using RSA asymmetric KMS keys.

For example, with a request quota of 1,000 operations per second, you can make 400 Encrypt
requests and 200 Decrypt requests with RSA KMS keys that can encrypt and decrypt, plus 250
Sign requests and 150 Verify requests with RSA KMS keys that can sign and verify.

• Cryptographic operations (ECC) request rate is the shared request quota for cryptographic
operations using elliptic curve (ECC) asymmetric KMS keys and SM asymmetric KMS keys.

For example, with a request quota of 1,000 operations per second, you can make 400 Sign
requests and 200 Verify requests with ECC KMS keys that can sign and verify, plus 250 Sign
requests and 150 Verify requests with SM2 KMS keys that can sign and verify.

• Custom key store request quota is the shared request quota for cryptographic operations on KMS
keys in a custom key store. This quota is calculated separately for each custom key store.

Cryptographic operations on the symmetric encryption KMS keys in a custom key store count
toward both the Cryptographic operations (symmetric) request rate for the account and the
custom key store request quota for the custom key store.

The quotas for different key types are also calculated independently. For example, in the Asia
Pacific (Singapore) Region, if you use both symmetric and asymmetric KMS keys, you can make
up to 10,000 calls per second with symmetric KMS keys (including HMAC keys) plus up to 500
additional calls per second with your RSA asymmetric KMS keys, plus up to 300 additional requests
per second with your ECC-based KMS keys.

Shared quotas for cryptographic operations 789

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html

Amazon Key Management Service Developer Guide

API requests made on your behalf

You can make API requests directly or by using an integrated Amazon service that makes API
requests to Amazon KMS on your behalf. The quota applies to both kinds of requests.

For example, you might store data in Amazon S3 using server-side encryption with a KMS key (SSE-
KMS). Each time you upload or download an S3 object that's encrypted with SSE-KMS, Amazon S3
makes a GenerateDataKey (for uploads) or Decrypt (for downloads) request to Amazon KMS on
your behalf. These requests count toward your quota, so Amazon KMS throttles the requests if you
exceed a combined total of 5,500 (or 10,000 or 50,000 depending upon your Amazon Web Services
Region) uploads or downloads per second of S3 objects encrypted with SSE-KMS.

Cross-account requests

When an application in one Amazon Web Services account uses a KMS key owned by a different
account, it's known as a cross-account request. For cross-account requests, Amazon KMS throttles
the account that makes the requests, not the account that owns the KMS key. For example, if an
application in account A uses a KMS key in account B, the KMS key use applies only to the quotas in
account A.

Custom key store request quotas

Amazon KMS maintains request quotas for cryptographic operations on the KMS keys in a custom
key store. These request quotas are calculated separately for each custom key store.

Custom key store request
quota

Default value (requests per
second) for each custom key
store

Adjustable

Amazon CloudHSM key store
request quota

1800 No

External key store request
quota

1800 Yes

API requests made on your behalf 790

Amazon Key Management Service Developer Guide

Note

Amazon KMS custom key store request quotas do not appear in the Service Quotas console.
You cannot view or manage these quotas by using Service Quotas API operations. To
request a change to your external key store request quota, visit the Amazon Web Services
Support Center and create a case.
If the Amazon CloudHSM cluster associated with an Amazon CloudHSM key store is
processing numerous commands, including those unrelated to the custom key store, you
might get an Amazon KMS ThrottlingException at a lower-than-expected rate. If
this occurs, lower your request rate to Amazon KMS, reduce the unrelated load, or use a
dedicated Amazon CloudHSM cluster for your Amazon CloudHSM key store.
Amazon KMS reports throttling of external key store requests in the
ExternalKeyStoreThrottle CloudWatch metric. You can use this metric to view
throttling patterns, create alarms, and adjust your external key store request quota.

A request for a cryptographic operation on a KMS key in a custom key store counts toward two
quotas:

• Cryptographic operations (symmetric) request rate quota (per account)

Requests for cryptographic operations on KMS keys in a custom key store count toward the
Cryptographic operations (symmetric) request rate quota for each Amazon Web
Services account and Region. For example, in US East (N. Virginia) (us-east-1), each Amazon Web
Services account can have up to 100,000 requests per second on symmetric encryption KMS
keys, including requests that use a KMS key in a custom key store.

• Custom key store request quota (per custom key store)

Requests for cryptographic operations on KMS keys in a custom key store also count toward
a Custom key store request quota of 1,800 operations per second. These quotas are
calculated separately for each custom key store. They might include requests from multiple
Amazon Web Services accounts that use KMS keys in the custom key store.

For example, an Encrypt operation on a KMS key in a custom key store (either type) in the US East
(N. Virginia) (us-east-1) Region counts toward the Cryptographic operations (symmetric)
request rate account-level quota (100,000 requests per second) for its account and Region, and
toward a Custom key store request quota (1,800 requests per second) for its custom key

Custom key store request quotas 791

https://console.amazonaws.cn/support/home
https://console.amazonaws.cn/support/home
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html

Amazon Key Management Service Developer Guide

store. However, a request for a management operation, such as PutKeyPolicy, on a KMS key in a
custom key store applies only to its account-level quota (15 requests per second).

Throttling Amazon KMS requests

To ensure that Amazon KMS can provide fast and reliable responses to API requests from all
customers, it throttles API requests that exceed certain boundaries.

Throttling occurs when Amazon KMS rejects a request that might otherwise be valid, and returns a
ThrottlingException error like the following one.

You have exceeded the rate at which you may call KMS. Reduce the frequency of your
 calls.
(Service: AWSKMS; Status Code: 400; Error Code: ThrottlingException; Request ID: <ID>

Amazon KMS throttles requests for the following conditions.

• The rate of requests per second exceeds the Amazon KMS request quota for an account and
Region.

For example, if users in your account submit 1000 DescribeKey requests in a second, Amazon
KMS throttles all subsequent DescribeKey requests in that second.

To respond to throttling, use a backoff and retry strategy. This strategy is implemented
automatically for HTTP 400 errors in some Amazon SDKs.

• A burst or sustained high rate of requests to change the state of the same KMS key. This
condition is often known as a "hot key."

For example, if an application in your account sends a persistent volley of EnableKey and
DisableKey requests for the same KMS key, Amazon KMS throttles the requests. This throttling
occurs even if the requests don't exceed the request-per-second request limit for the EnableKey
and DisableKey operations.

To respond to throttling, adjust your application logic so it makes only required requests or it
consolidates the requests of multiple functions.

• Requests for operations on KMS keys in a Amazon CloudHSM key store might be throttled at
a lower-than-expected rate when the Amazon CloudHSM cluster associated with the Amazon
CloudHSM key store is processing numerous commands, including those unrelated to the
Amazon CloudHSM key store.

Throttling requests 792

https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Amazon Key Management Service Developer Guide

(Amazon KMS no longer throttles requests for operations on KMS keys in a Amazon CloudHSM
key store when there are no available PKCS #11 sessions for the Amazon CloudHSM cluster.
Instead, it throws a KMSInternalException and recommends that you retry your request.)

To view trends in your request rates, use the Service Quotas console. You can also create an
Amazon CloudWatch alarm that alerts you when your request rate reaches a certain percentage of
a quota value. For details, see Manage your Amazon KMS API request rates using Service Quotas
and Amazon CloudWatch in the Amazon Security Blog.

All Amazon KMS quotas are adjustable, except for the on-demand rotation resource quota and the
Amazon CloudHSM key store request quota. To request a quota increase, see Requesting a quota
increase in the Service Quotas User Guide. To request a quota decrease, to change a quota that is
not listed in Service Quotas, or to change a quota in an Amazon Web Services Region where Service
Quotas for Amazon KMS is not available, please visit Amazon Web Services Support Center and
create a case.

Note

Amazon KMS custom key store request quotas do not appear in the Service Quotas console.
You cannot view or manage these quotas by using Service Quotas API operations. To
request a change to your external key store request quota, visit the Amazon Web Services
Support Center and create a case.

Throttling requests 793

https://console.aws.amazon.com/servicequotas
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/
https://amazonaws-china.com/blogs/security/manage-your-aws-kms-api-request-rates-using-service-quotas-and-amazon-cloudwatch/
https://amazonaws-china.com/blogs/security/manage-your-aws-kms-api-request-rates-using-service-quotas-and-amazon-cloudwatch/
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-increase.html
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-increase.html
https://console.amazonaws.cn/support/home
https://console.amazonaws.cn/support/home
https://console.amazonaws.cn/support/home

Amazon Key Management Service Developer Guide

Code examples for Amazon KMS using Amazon SDKs

The following code examples show how to use Amazon KMS with an Amazon software
development kit (SDK).

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Get started

Hello Amazon Key Management Service

The following code examples show how to get started using Amazon Key Management Service.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.services.kms.KmsAsyncClient;
import software.amazon.awssdk.services.kms.model.ListKeysRequest;
import software.amazon.awssdk.services.kms.paginators.ListKeysPublisher;
import java.util.concurrent.CompletableFuture;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.

794

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class HelloKMS {
 public static void main(String[] args) {
 listAllKeys();
 }

 public static void listAllKeys() {
 KmsAsyncClient kmsAsyncClient = KmsAsyncClient.builder()
 .build();
 ListKeysRequest listKeysRequest = ListKeysRequest.builder()
 .limit(15)
 .build();

 /*
 * The `subscribe` method is required when using paginator methods in the
 AWS SDK
 * because paginator methods return an instance of a `ListKeysPublisher`,
 which is
 * based on a reactive stream. This allows asynchronous retrieval of
 paginated
 * results as they become available. By subscribing to the stream, we can
 process
 * each page of results as they are emitted.
 */
 ListKeysPublisher keysPublisher =
 kmsAsyncClient.listKeysPaginator(listKeysRequest);
 CompletableFuture<Void> future = keysPublisher
 .subscribe(r -> r.keys().forEach(key ->
 System.out.println("The key ARN is: " + key.keyArn() + ". The key
 Id is: " + key.keyId())))
 .whenComplete((result, exception) -> {
 if (exception != null) {
 System.err.println("Error occurred: " +
 exception.getMessage());
 } else {
 System.out.println("Successfully listed all keys.");
 }
 });

795

Amazon Key Management Service Developer Guide

 try {
 future.join();
 } catch (Exception e) {
 System.err.println("Failed to list keys: " + e.getMessage());
 }
 }
}

• For API details, see ListKeys in Amazon SDK for Java 2.x API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

include "vendor/autoload.php";

use Aws\Kms\KmsClient;

echo "This file shows how to connect to the KmsClient, uses a paginator to get
 the keys for the account, and lists the KeyIds for up to 10 keys.\n";

$client = new KmsClient([]);

$pageLength = 10; // Change this value to change the number of records shown, or
 to break up the result into pages.

$keys = [];
$keysPaginator = $client->getPaginator("ListKeys", ['Limit' => $pageLength]);
foreach($keysPaginator as $page){
 foreach($page['Keys'] as $index => $key){
 echo "The $index index Key's ID is: {$key['KeyId']}\n";
 }
 echo "End of page one of results. Alter the \$pageLength variable to see more
 results.\n";
 break;

796

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ListKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

}

• For API details, see ListKeys in Amazon SDK for PHP API Reference.

Code examples

• Basic examples for Amazon KMS using Amazon SDKs

• Hello Amazon Key Management Service

• Learn the basics of Amazon KMS with an Amazon SDK

• Actions for Amazon KMS using Amazon SDKs

• Use CreateAlias with an Amazon SDK or CLI

• Use CreateGrant with an Amazon SDK or CLI

• Use CreateKey with an Amazon SDK or CLI

• Use Decrypt with an Amazon SDK or CLI

• Use DeleteAlias with an Amazon SDK or CLI

• Use DescribeKey with an Amazon SDK or CLI

• Use DisableKey with an Amazon SDK or CLI

• Use EnableKey with an Amazon SDK or CLI

• Use EnableKeyRotation with an Amazon SDK or CLI

• Use Encrypt with an Amazon SDK or CLI

• Use GenerateDataKey with an Amazon SDK or CLI

• Use GenerateDataKeyWithoutPlaintext with an Amazon SDK or CLI

• Use GenerateRandom with an Amazon SDK or CLI

• Use GetKeyPolicy with an Amazon SDK or CLI

• Use ListAliases with an Amazon SDK or CLI

• Use ListGrants with an Amazon SDK or CLI

• Use ListKeyPolicies with an Amazon SDK or CLI

• Use ListKeys with an Amazon SDK or CLI

• Use PutKeyPolicy with an Amazon SDK or CLI

• Use ReEncrypt with an Amazon SDK or CLI

• Use RetireGrant with an Amazon SDK or CLI 797

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ListKeys

Amazon Key Management Service Developer Guide

• Use RevokeGrant with an Amazon SDK or CLI

• Use ScheduleKeyDeletion with an Amazon SDK or CLI

• Use Sign with an Amazon SDK or CLI

• Use TagResource with an Amazon SDK or CLI

• Use UpdateAlias with an Amazon SDK or CLI

• Use Verify with an Amazon SDK or CLI

• Scenarios for Amazon KMS using Amazon SDKs

• Work with DynamoDB table encryption using Amazon Command Line Interface v2

Basic examples for Amazon KMS using Amazon SDKs

The following code examples show how to use the basics of Amazon Key Management Service with
Amazon SDKs.

Examples

• Hello Amazon Key Management Service

• Learn the basics of Amazon KMS with an Amazon SDK

• Actions for Amazon KMS using Amazon SDKs

• Use CreateAlias with an Amazon SDK or CLI

• Use CreateGrant with an Amazon SDK or CLI

• Use CreateKey with an Amazon SDK or CLI

• Use Decrypt with an Amazon SDK or CLI

• Use DeleteAlias with an Amazon SDK or CLI

• Use DescribeKey with an Amazon SDK or CLI

• Use DisableKey with an Amazon SDK or CLI

• Use EnableKey with an Amazon SDK or CLI

• Use EnableKeyRotation with an Amazon SDK or CLI

• Use Encrypt with an Amazon SDK or CLI

• Use GenerateDataKey with an Amazon SDK or CLI

• Use GenerateDataKeyWithoutPlaintext with an Amazon SDK or CLI

• Use GenerateRandom with an Amazon SDK or CLIBasics 798

Amazon Key Management Service Developer Guide

• Use GetKeyPolicy with an Amazon SDK or CLI

• Use ListAliases with an Amazon SDK or CLI

• Use ListGrants with an Amazon SDK or CLI

• Use ListKeyPolicies with an Amazon SDK or CLI

• Use ListKeys with an Amazon SDK or CLI

• Use PutKeyPolicy with an Amazon SDK or CLI

• Use ReEncrypt with an Amazon SDK or CLI

• Use RetireGrant with an Amazon SDK or CLI

• Use RevokeGrant with an Amazon SDK or CLI

• Use ScheduleKeyDeletion with an Amazon SDK or CLI

• Use Sign with an Amazon SDK or CLI

• Use TagResource with an Amazon SDK or CLI

• Use UpdateAlias with an Amazon SDK or CLI

• Use Verify with an Amazon SDK or CLI

Hello Amazon Key Management Service

The following code examples show how to get started using Amazon Key Management Service.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.services.kms.KmsAsyncClient;
import software.amazon.awssdk.services.kms.model.ListKeysRequest;
import software.amazon.awssdk.services.kms.paginators.ListKeysPublisher;
import java.util.concurrent.CompletableFuture;

/**
Hello Amazon KMS 799

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class HelloKMS {
 public static void main(String[] args) {
 listAllKeys();
 }

 public static void listAllKeys() {
 KmsAsyncClient kmsAsyncClient = KmsAsyncClient.builder()
 .build();
 ListKeysRequest listKeysRequest = ListKeysRequest.builder()
 .limit(15)
 .build();

 /*
 * The `subscribe` method is required when using paginator methods in the
 AWS SDK
 * because paginator methods return an instance of a `ListKeysPublisher`,
 which is
 * based on a reactive stream. This allows asynchronous retrieval of
 paginated
 * results as they become available. By subscribing to the stream, we can
 process
 * each page of results as they are emitted.
 */
 ListKeysPublisher keysPublisher =
 kmsAsyncClient.listKeysPaginator(listKeysRequest);
 CompletableFuture<Void> future = keysPublisher
 .subscribe(r -> r.keys().forEach(key ->
 System.out.println("The key ARN is: " + key.keyArn() + ". The key
 Id is: " + key.keyId())))
 .whenComplete((result, exception) -> {
 if (exception != null) {
 System.err.println("Error occurred: " +
 exception.getMessage());
 } else {
 System.out.println("Successfully listed all keys.");
 }

Hello Amazon KMS 800

Amazon Key Management Service Developer Guide

 });

 try {
 future.join();
 } catch (Exception e) {
 System.err.println("Failed to list keys: " + e.getMessage());
 }
 }
}

• For API details, see ListKeys in Amazon SDK for Java 2.x API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

include "vendor/autoload.php";

use Aws\Kms\KmsClient;

echo "This file shows how to connect to the KmsClient, uses a paginator to get
 the keys for the account, and lists the KeyIds for up to 10 keys.\n";

$client = new KmsClient([]);

$pageLength = 10; // Change this value to change the number of records shown, or
 to break up the result into pages.

$keys = [];
$keysPaginator = $client->getPaginator("ListKeys", ['Limit' => $pageLength]);
foreach($keysPaginator as $page){
 foreach($page['Keys'] as $index => $key){
 echo "The $index index Key's ID is: {$key['KeyId']}\n";
 }

Hello Amazon KMS 801

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ListKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 echo "End of page one of results. Alter the \$pageLength variable to see more
 results.\n";
 break;
}

• For API details, see ListKeys in Amazon SDK for PHP API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Learn the basics of Amazon KMS with an Amazon SDK

The following code examples show how to:

• Create a KMS key.

• List KMS keys for your account and get details about them.

• Enable and disable KMS keys.

• Generate a symmetric data key that can be used for client-side encryption.

• Generate an asymmetric key used to digitally sign data.

• Tag keys.

• Delete KMS keys.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Run a scenario at a command prompt.

import software.amazon.awssdk.core.SdkBytes;

Learn the basics 802

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ListKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

import software.amazon.awssdk.regions.Region;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.services.kms.model.AlreadyExistsException;
import software.amazon.awssdk.services.kms.model.DisabledException;
import software.amazon.awssdk.services.kms.model.EnableKeyRotationResponse;
import software.amazon.awssdk.services.kms.model.KmsException;
import software.amazon.awssdk.services.kms.model.NotFoundException;
import software.amazon.awssdk.services.kms.model.RevokeGrantResponse;
import java.util.List;
import java.util.Scanner;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.CompletionException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

public class KMSScenario {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");
 private static String accountId = "";

 private static final Logger logger =
 LoggerFactory.getLogger(KMSScenario.class);

 static KMSActions kmsActions = new KMSActions();

 static Scanner scanner = new Scanner(System.in);

 static String aliasName = "alias/dev-encryption-key";

 public static void main(String[] args) {
 final String usage = """
 Usage: <granteePrincipal>

 Where:

Learn the basics 803

Amazon Key Management Service Developer Guide

 granteePrincipal - The principal (user, service account, or group)
 to whom the grant or permission is being given.
 """;

 if (args.length != 1) {
 logger.info(usage);
 return;
 }
 String granteePrincipal = args[0];
 String policyName = "default";

 accountId = kmsActions.getAccountId();
 String keyDesc = "Created by the AWS KMS API";

 logger.info(DASHES);
 logger.info("""
 Welcome to the AWS Key Management SDK Basics scenario.

 This program demonstrates how to interact with AWS Key Management
 using the AWS SDK for Java (v2).
 The AWS Key Management Service (KMS) is a secure and highly available
 service that allows you to create
 and manage AWS KMS keys and control their use across a wide range of
 AWS services and applications.
 KMS provides a centralized and unified approach to managing
 encryption keys, making it easier to meet your
 data protection and regulatory compliance requirements.

 This Basics scenario creates two key types:

 - A symmetric encryption key is used to encrypt and decrypt data.
 - An asymmetric key used to digitally sign data.

 Let's get started...
 """);
 waitForInputToContinue(scanner);

 try {
 // Run the methods that belong to this scenario.
 String targetKeyId = runScenario(granteePrincipal, keyDesc, policyName);
 requestDeleteResources(aliasName, targetKeyId);

 } catch (Throwable rt) {
 Throwable cause = rt.getCause();

Learn the basics 804

Amazon Key Management Service Developer Guide

 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 }
 }

 private static String runScenario(String granteePrincipal, String keyDesc,
 String policyName) throws Throwable {
 logger.info(DASHES);
 logger.info("1. Create a symmetric KMS key\n");
 logger.info("First, the program will creates a symmetric KMS key that you
 can used to encrypt and decrypt data.");
 waitForInputToContinue(scanner);
 String targetKeyId;
 try {
 CompletableFuture<String> futureKeyId =
 kmsActions.createKeyAsync(keyDesc);
 targetKeyId = futureKeyId.join();
 logger.info("A symmetric key was successfully created " +
 targetKeyId);

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 throw cause;
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("""
 2. Enable a KMS key

 By default, when the SDK creates an AWS key, it is enabled. The next
 bit of code checks to
 determine if the key is enabled.
 """);

Learn the basics 805

Amazon Key Management Service Developer Guide

 waitForInputToContinue(scanner);
 boolean isEnabled;
 try {
 CompletableFuture<Boolean> futureIsKeyEnabled =
 kmsActions.isKeyEnabledAsync(targetKeyId);
 isEnabled = futureIsKeyEnabled.join();
 logger.info("Is the key enabled? {}", isEnabled);

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 throw cause;
 }

 if (!isEnabled)
 try {
 CompletableFuture<Void> future =
 kmsActions.enableKeyAsync(targetKeyId);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error
 code {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " +
 rt.getMessage());
 }
 throw cause;
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("3. Encrypt data using the symmetric KMS key");
 String plaintext = "Hello, AWS KMS!";
 logger.info("""
 One of the main uses of symmetric keys is to encrypt and decrypt
 data.

Learn the basics 806

Amazon Key Management Service Developer Guide

 Next, the code encrypts the string {} with the SYMMETRIC_DEFAULT
 encryption algorithm.
 """, plaintext);
 waitForInputToContinue(scanner);
 SdkBytes encryptedData;
 try {
 CompletableFuture<SdkBytes> future =
 kmsActions.encryptDataAsync(targetKeyId, plaintext);
 encryptedData = future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof DisabledException kmsDisabledEx) {
 logger.info("KMS error occurred due to a disabled
 key: Error message: {}, Error code {}", kmsDisabledEx.getMessage(),
 kmsDisabledEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteKey(targetKeyId);
 throw cause;
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("4. Create an alias");
 logger.info("""

 The alias name should be prefixed with 'alias/'.
 The default, 'alias/dev-encryption-key'.
 """);
 waitForInputToContinue(scanner);

 try {
 CompletableFuture<Void> future =
 kmsActions.createCustomAliasAsync(targetKeyId, aliasName);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof AlreadyExistsException kmsExistsEx) {
 if (kmsExistsEx.getMessage().contains("already exists")) {
 logger.info("The alias '" + aliasName + "' already exists.
 Moving on...");

Learn the basics 807

Amazon Key Management Service Developer Guide

 }
 } else {
 logger.error("An unexpected error occurred: " + rt.getMessage(),
 rt);
 deleteKey(targetKeyId);
 throw cause;
 }
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("5. List all of your aliases");
 waitForInputToContinue(scanner);
 try {
 CompletableFuture<Object> future = kmsActions.listAllAliasesAsync();
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteAliasName(aliasName);
 deleteKey(targetKeyId);
 throw cause;
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("6. Enable automatic rotation of the KMS key");
 logger.info("""

 By default, when the SDK enables automatic rotation of a KMS key,
 KMS rotates the key material of the KMS key one year (approximately
 365 days) from the enable date and every year
 thereafter.
 """);
 waitForInputToContinue(scanner);
 try {
 CompletableFuture<EnableKeyRotationResponse> future =
 kmsActions.enableKeyRotationAsync(targetKeyId);

Learn the basics 808

Amazon Key Management Service Developer Guide

 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteAliasName(aliasName);
 deleteKey(targetKeyId);
 throw cause;
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("""
 7. Create a grant

 A grant is a policy instrument that allows Amazon Web Services
 principals to use KMS keys.
 It also can allow them to view a KMS key (DescribeKey) and create and
 manage grants.
 When authorizing access to a KMS key, grants are considered along
 with key policies and IAM policies.
 """);

 waitForInputToContinue(scanner);
 String grantId = null;
 try {
 CompletableFuture<String> futureGrantId =
 kmsActions.grantKeyAsync(targetKeyId, granteePrincipal);
 grantId = futureGrantId.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteKey(targetKeyId);

Learn the basics 809

Amazon Key Management Service Developer Guide

 throw cause;
 }
 waitForInputToContinue(scanner);
 logger.info(DASHES);

 logger.info(DASHES);
 logger.info("8. List grants for the KMS key");
 waitForInputToContinue(scanner);
 try {
 CompletableFuture<Object> future =
 kmsActions.displayGrantIdsAsync(targetKeyId);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteAliasName(aliasName);
 deleteKey(targetKeyId);
 throw cause;
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("9. Revoke the grant");
 logger.info("""
 The revocation of a grant immediately removes the permissions and
 access that the grant had provided.
 This means that any principal (user, role, or service) that was
 granted access to perform specific
 KMS operations on a KMS key will no longer be able to perform those
 operations.
 """);
 waitForInputToContinue(scanner);
 try {
 CompletableFuture<RevokeGrantResponse> future =
 kmsActions.revokeKeyGrantAsync(targetKeyId, grantId);
 future.join();

 } catch (RuntimeException rt) {

Learn the basics 810

Amazon Key Management Service Developer Guide

 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 if (kmsEx.getMessage().contains("Grant does not exist")) {
 logger.info("The grant ID '" + grantId + "' does not exist.
 Moving on...");
 } else {
 logger.info("KMS error occurred: Error message: {}, Error
 code {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 throw cause;
 }
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 deleteAliasName(aliasName);
 deleteKey(targetKeyId);
 throw cause;
 }
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("10. Decrypt the data\n");
 logger.info("""
 Lets decrypt the data that was encrypted in an early step.
 The code uses the same key to decrypt the string that we encrypted
 earlier in the program.
 """);
 waitForInputToContinue(scanner);
 String decryptedData = "";
 try {
 CompletableFuture<String> future =
 kmsActions.decryptDataAsync(encryptedData, targetKeyId);
 decryptedData = future.join();
 logger.info("Decrypted data: " + decryptedData);

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteAliasName(aliasName);
 deleteKey(targetKeyId);

Learn the basics 811

Amazon Key Management Service Developer Guide

 throw cause;
 }
 logger.info("Decrypted text is: " + decryptedData);
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("11. Replace a key policy\n");
 logger.info("""
 A key policy is a resource policy for a KMS key. Key policies are the
 primary way to control
 access to KMS keys. Every KMS key must have exactly one key policy.
 The statements in the key policy
 determine who has permission to use the KMS key and how they can use
 it.
 You can also use IAM policies and grants to control access to the KMS
 key, but every KMS key
 must have a key policy.

 By default, when you create a key by using the SDK, a policy is
 created that
 gives the AWS account that owns the KMS key full access to the KMS
 key.

 Let's try to replace the automatically created policy with the
 following policy.

 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::0000000000:root"},
 "Action": "kms:*",
 "Resource": "*"
 }]
 """);

 waitForInputToContinue(scanner);
 try {
 CompletableFuture<Boolean> future =
 kmsActions.replacePolicyAsync(targetKeyId, policyName, accountId);
 boolean success = future.join();
 if (success) {
 logger.info("Key policy replacement succeeded.");
 } else {
 logger.error("Key policy replacement failed.");

Learn the basics 812

Amazon Key Management Service Developer Guide

 }

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteAliasName(aliasName);
 deleteKey(targetKeyId);
 throw cause;
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("12. Get the key policy\n");
 logger.info("The next bit of code that runs gets the key policy to make
 sure it exists.");
 waitForInputToContinue(scanner);
 try {
 CompletableFuture<String> future =
 kmsActions.getKeyPolicyAsync(targetKeyId, policyName);
 String policy = future.join();
 if (!policy.isEmpty()) {
 logger.info("Retrieved policy: " + policy);
 }

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteAliasName(aliasName);
 deleteKey(targetKeyId);
 throw cause;
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);

Learn the basics 813

Amazon Key Management Service Developer Guide

 logger.info("13. Create an asymmetric KMS key and sign your data\n");
 logger.info("""
 Signing your data with an AWS key can provide several benefits that
 make it an attractive option
 for your data signing needs. By using an AWS KMS key, you can
 leverage the
 security controls and compliance features provided by AWS,
 which can help you meet various regulatory requirements and enhance
 the overall security posture
 of your organization.
 """);
 waitForInputToContinue(scanner);
 try {
 CompletableFuture<Boolean> future = kmsActions.signVerifyDataAsync();
 boolean success = future.join();
 if (success) {
 logger.info("Sign and verify data operation succeeded.");
 } else {
 logger.error("Sign and verify data operation failed.");
 }

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteAliasName(aliasName);
 deleteKey(targetKeyId);
 throw cause;
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("14. Tag your symmetric KMS Key\n");
 logger.info("""
 By using tags, you can improve the overall management, security, and
 governance of your
 KMS keys, making it easier to organize, track, and control access to
 your encrypted data within
 your AWS environment
 """);

Learn the basics 814

Amazon Key Management Service Developer Guide

 waitForInputToContinue(scanner);
 try {
 CompletableFuture<Void> future =
 kmsActions.tagKMSKeyAsync(targetKeyId);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 deleteAliasName(aliasName);
 deleteKey(targetKeyId);
 throw cause;
 }
 waitForInputToContinue(scanner);
 return targetKeyId;
 }

 // Deletes KMS resources with user input.
 private static void requestDeleteResources(String aliasName, String
 targetKeyId) {
 logger.info(DASHES);
 logger.info("15. Schedule the deletion of the KMS key\n");
 logger.info("""
 By default, KMS applies a waiting period of 30 days,
 but you can specify a waiting period of 7-30 days. When this
 operation is successful,
 the key state of the KMS key changes to PendingDeletion and the key
 can't be used in any
 cryptographic operations. It remains in this state for the duration
 of the waiting period.

 Deleting a KMS key is a destructive and potentially dangerous
 operation. When a KMS key is deleted,
 all data that was encrypted under the KMS key is unrecoverable.
 """);
 logger.info("Would you like to delete the Key Management resources? (y/
n)");
 String delAns = scanner.nextLine().trim();
 if (delAns.equalsIgnoreCase("y")) {

Learn the basics 815

Amazon Key Management Service Developer Guide

 logger.info("You selected to delete the AWS KMS resources.");
 waitForInputToContinue(scanner);
 try {
 CompletableFuture<Void> future =
 kmsActions.deleteSpecificAliasAsync(aliasName);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error
 code {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " +
 rt.getMessage());
 }
 }
 waitForInputToContinue(scanner);
 try {
 CompletableFuture<Void> future =
 kmsActions.disableKeyAsync(targetKeyId);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error
 code {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " +
 rt.getMessage());
 }
 }

 try {
 CompletableFuture<Void> future =
 kmsActions.deleteKeyAsync(targetKeyId);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error
 code {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());

Learn the basics 816

Amazon Key Management Service Developer Guide

 } else {
 logger.info("An unexpected error occurred: " +
 rt.getMessage());
 }
 }

 } else {
 logger.info("The Key Management resources will not be deleted");
 }

 logger.info(DASHES);
 logger.info("This concludes the AWS Key Management SDK scenario");
 logger.info(DASHES);
 }

 // This method is invoked from Exceptions to clean up the resources.
 private static void deleteKey(String targetKeyId) {
 try {
 CompletableFuture<Void> future =
 kmsActions.disableKeyAsync(targetKeyId);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 }

 try {
 CompletableFuture<Void> future =
 kmsActions.deleteKeyAsync(targetKeyId);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());

Learn the basics 817

Amazon Key Management Service Developer Guide

 }
 }
 }

 // This method is invoked from Exceptions to clean up the resources.
 private static void deleteAliasName(String aliasName) {
 try {
 CompletableFuture<Void> future =
 kmsActions.deleteSpecificAliasAsync(aliasName);
 future.join();

 } catch (RuntimeException rt) {
 Throwable cause = rt.getCause();
 if (cause instanceof KmsException kmsEx) {
 logger.info("KMS error occurred: Error message: {}, Error code
 {}", kmsEx.getMessage(), kmsEx.awsErrorDetails().errorCode());
 } else {
 logger.info("An unexpected error occurred: " + rt.getMessage());
 }
 }
 }

 private static void waitForInputToContinue(Scanner scanner) {
 while (true) {
 logger.info("");
 logger.info("Enter 'c' followed by <ENTER> to continue:");
 String input = scanner.nextLine();

 if (input.trim().equalsIgnoreCase("c")) {
 logger.info("Continuing with the program...");
 logger.info("");
 break;
 } else {
 // Handle invalid input.
 logger.info("Invalid input. Please try again.");
 }
 }
 }
}

Define a class that wraps KMS actions.

Learn the basics 818

Amazon Key Management Service Developer Guide

public class KMSActions {
 private static final Logger logger =
 LoggerFactory.getLogger(KMSActions.class);
 private static KmsAsyncClient kmsAsyncClient;

 /**
 * Retrieves an asynchronous AWS Key Management Service (KMS) client.
 * <p>
 * This method creates and returns a singleton instance of the KMS async
 client, with the following configurations:
 *
 * Max concurrency: 100
 * Connection timeout: 60 seconds
 * Read timeout: 60 seconds
 * Write timeout: 60 seconds
 * API call timeout: 2 minutes
 * API call attempt timeout: 90 seconds
 * Retry policy: up to 3 retries
 * Credentials provider: environment variable credentials provider
 *
 * <p>
 * If the client instance has already been created, it is returned instead of
 creating a new one.
 *
 * @return the KMS async client instance
 */
 private static KmsAsyncClient getAsyncClient() {
 if (kmsAsyncClient == null) {
 SdkAsyncHttpClient httpClient = NettyNioAsyncHttpClient.builder()
 .maxConcurrency(100)
 .connectionTimeout(Duration.ofSeconds(60))
 .readTimeout(Duration.ofSeconds(60))
 .writeTimeout(Duration.ofSeconds(60))
 .build();

 ClientOverrideConfiguration overrideConfig =
 ClientOverrideConfiguration.builder()
 .apiCallTimeout(Duration.ofMinutes(2))
 .apiCallAttemptTimeout(Duration.ofSeconds(90))
 .retryPolicy(RetryPolicy.builder()
 .numRetries(3)
 .build())
 .build();

Learn the basics 819

Amazon Key Management Service Developer Guide

 kmsAsyncClient = KmsAsyncClient.builder()
 .httpClient(httpClient)
 .overrideConfiguration(overrideConfig)
 .build();
 }
 return kmsAsyncClient;
 }

 /**
 * Creates a new symmetric encryption key asynchronously.
 *
 * @param keyDesc the description of the key to be created
 * @return a {@link CompletableFuture} that completes with the ID of the
 newly created key
 * @throws RuntimeException if an error occurs while creating the key
 */
 public CompletableFuture<String> createKeyAsync(String keyDesc) {
 CreateKeyRequest keyRequest = CreateKeyRequest.builder()
 .description(keyDesc)
 .keySpec(KeySpec.SYMMETRIC_DEFAULT)
 .keyUsage(KeyUsageType.ENCRYPT_DECRYPT)
 .build();

 return getAsyncClient().createKey(keyRequest)
 .thenApply(resp -> resp.keyMetadata().keyId())
 .exceptionally(ex -> {
 throw new RuntimeException("An error occurred while creating the
 key: " + ex.getMessage(), ex);
 });
 }

 /**
 * Asynchronously checks if a specified key is enabled.
 *
 * @param keyId the ID of the key to check
 * @return a {@link CompletableFuture} that, when completed, indicates
 whether the key is enabled or not
 *
 * @throws RuntimeException if an exception occurs while checking the key
 state
 */
 public CompletableFuture<Boolean> isKeyEnabledAsync(String keyId) {
 DescribeKeyRequest keyRequest = DescribeKeyRequest.builder()

Learn the basics 820

Amazon Key Management Service Developer Guide

 .keyId(keyId)
 .build();

 CompletableFuture<DescribeKeyResponse> responseFuture =
 getAsyncClient().describeKey(keyRequest);
 return responseFuture.whenComplete((resp, ex) -> {
 if (resp != null) {
 KeyState keyState = resp.keyMetadata().keyState();
 if (keyState == KeyState.ENABLED) {
 logger.info("The key is enabled.");
 } else {
 logger.info("The key is not enabled. Key state: {}",
 keyState);
 }
 } else {
 throw new RuntimeException(ex);
 }
 }).thenApply(resp -> resp.keyMetadata().keyState() == KeyState.ENABLED);
 }

 /**
 * Asynchronously enables the specified key.
 *
 * @param keyId the ID of the key to enable
 * @return a {@link CompletableFuture} that completes when the key has been
 enabled
 */
 public CompletableFuture<Void> enableKeyAsync(String keyId) {
 EnableKeyRequest enableKeyRequest = EnableKeyRequest.builder()
 .keyId(keyId)
 .build();

 CompletableFuture<EnableKeyResponse> responseFuture =
 getAsyncClient().enableKey(enableKeyRequest);
 responseFuture.whenComplete((response, exception) -> {
 if (exception == null) {
 logger.info("Key with ID [{}] has been enabled.", keyId);
 } else {
 if (exception instanceof KmsException kmsEx) {
 throw new RuntimeException("KMS error occurred while enabling
 key: " + kmsEx.getMessage(), kmsEx);
 } else {
 throw new RuntimeException("An unexpected error occurred
 while enabling key: " + exception.getMessage(), exception);

Learn the basics 821

Amazon Key Management Service Developer Guide

 }
 }
 });

 return responseFuture.thenApply(response -> null);
 }

 /**
 * Encrypts the given text asynchronously using the specified KMS client and
 key ID.
 *
 * @param keyId the ID of the KMS key to use for encryption
 * @param text the text to encrypt
 * @return a CompletableFuture that completes with the encrypted data as an
 SdkBytes object
 */
 public CompletableFuture<SdkBytes> encryptDataAsync(String keyId, String
 text) {
 SdkBytes myBytes = SdkBytes.fromUtf8String(text);
 EncryptRequest encryptRequest = EncryptRequest.builder()
 .keyId(keyId)
 .plaintext(myBytes)
 .build();

 CompletableFuture<EncryptResponse> responseFuture =
 getAsyncClient().encrypt(encryptRequest).toCompletableFuture();
 return responseFuture.whenComplete((response, ex) -> {
 if (response != null) {
 String algorithm = response.encryptionAlgorithm().toString();
 logger.info("The string was encrypted with algorithm {}.",
 algorithm);
 } else {
 throw new RuntimeException(ex);
 }
 }).thenApply(EncryptResponse::ciphertextBlob);
 }

 /**
 * Creates a custom alias for the specified target key asynchronously.
 *
 * @param targetKeyId the ID of the target key for the alias
 * @param aliasName the name of the alias to create
 * @return a {@link CompletableFuture} that completes when the alias creation
 operation is finished

Learn the basics 822

Amazon Key Management Service Developer Guide

 */
 public CompletableFuture<Void> createCustomAliasAsync(String targetKeyId,
 String aliasName) {
 CreateAliasRequest aliasRequest = CreateAliasRequest.builder()
 .aliasName(aliasName)
 .targetKeyId(targetKeyId)
 .build();

 CompletableFuture<CreateAliasResponse> responseFuture =
 getAsyncClient().createAlias(aliasRequest);
 responseFuture.whenComplete((response, exception) -> {
 if (exception == null) {
 logger.info("{} was successfully created.", aliasName);
 } else {
 if (exception instanceof ResourceExistsException) {
 logger.info("Alias [{}] already exists. Moving on...",
 aliasName);
 } else if (exception instanceof KmsException kmsEx) {
 throw new RuntimeException("KMS error occurred while creating
 alias: " + kmsEx.getMessage(), kmsEx);
 } else {
 throw new RuntimeException("An unexpected error occurred
 while creating alias: " + exception.getMessage(), exception);
 }
 }
 });

 return responseFuture.thenApply(response -> null);
 }

 /**
 * Asynchronously lists all the aliases in the current AWS account.
 *
 * @return a {@link CompletableFuture} that completes when the list of
 aliases has been processed
 */
 public CompletableFuture<Object> listAllAliasesAsync() {
 ListAliasesRequest aliasesRequest = ListAliasesRequest.builder()
 .limit(15)
 .build();

 ListAliasesPublisher paginator =
 getAsyncClient().listAliasesPaginator(aliasesRequest);
 return paginator.subscribe(response -> {

Learn the basics 823

Amazon Key Management Service Developer Guide

 response.aliases().forEach(alias ->
 logger.info("The alias name is: " + alias.aliasName())
);
 })
 .thenApply(v -> null)
 .exceptionally(ex -> {
 if (ex.getCause() instanceof KmsException) {
 KmsException e = (KmsException) ex.getCause();
 throw new RuntimeException("A KMS exception occurred: " +
 e.getMessage());
 } else {
 throw new RuntimeException("An unexpected error occurred: " +
 ex.getMessage());
 }
 });
 }

 /**
 * Enables key rotation asynchronously for the specified key ID.
 *
 * @param keyId the ID of the key for which to enable key rotation
 * @return a CompletableFuture that represents the asynchronous operation of
 enabling key rotation
 * @throws RuntimeException if there was an error enabling key rotation,
 either due to a KMS exception or an unexpected error
 */
 public CompletableFuture<EnableKeyRotationResponse>
 enableKeyRotationAsync(String keyId) {
 EnableKeyRotationRequest enableKeyRotationRequest =
 EnableKeyRotationRequest.builder()
 .keyId(keyId)
 .build();

 CompletableFuture<EnableKeyRotationResponse> responseFuture =
 getAsyncClient().enableKeyRotation(enableKeyRotationRequest);
 responseFuture.whenComplete((response, exception) -> {
 if (exception == null) {
 logger.info("Key rotation has been enabled for key with id [{}]",
 keyId);
 } else {
 if (exception instanceof KmsException kmsEx) {
 throw new RuntimeException("Failed to enable key rotation: "
 + kmsEx.getMessage(), kmsEx);
 } else {

Learn the basics 824

Amazon Key Management Service Developer Guide

 throw new RuntimeException("An unexpected error occurred: " +
 exception.getMessage(), exception);
 }
 }
 });

 return responseFuture;
 }

 /**
 * Grants permissions to a specified principal on a customer master key (CMK)
 asynchronously.
 *
 * @param keyId The unique identifier for the customer master key
 (CMK) that the grant applies to.
 * @param granteePrincipal The principal that is given permission to perform
 the operations that the grant permits on the CMK.
 * @return A {@link CompletableFuture} that, when completed, contains the ID
 of the created grant.
 * @throws RuntimeException If an error occurs during the grant creation
 process.
 */
 public CompletableFuture<String> grantKeyAsync(String keyId, String
 granteePrincipal) {
 List<GrantOperation> grantPermissions = List.of(
 GrantOperation.ENCRYPT,
 GrantOperation.DECRYPT,
 GrantOperation.DESCRIBE_KEY
);

 CreateGrantRequest grantRequest = CreateGrantRequest.builder()
 .keyId(keyId)
 .name("grant1")
 .granteePrincipal(granteePrincipal)
 .operations(grantPermissions)
 .build();

 CompletableFuture<CreateGrantResponse> responseFuture =
 getAsyncClient().createGrant(grantRequest);
 responseFuture.whenComplete((response, ex) -> {
 if (ex == null) {
 logger.info("Grant created successfully with ID: " +
 response.grantId());
 } else {

Learn the basics 825

Amazon Key Management Service Developer Guide

 if (ex instanceof KmsException kmsEx) {
 throw new RuntimeException("Failed to create grant: " +
 kmsEx.getMessage(), kmsEx);
 } else {
 throw new RuntimeException("An unexpected error occurred: " +
 ex.getMessage(), ex);
 }
 }
 });

 return responseFuture.thenApply(CreateGrantResponse::grantId);
 }

 /**
 * Asynchronously displays the grant IDs for the specified key ID.
 *
 * @param keyId the ID of the AWS KMS key for which to list the grants
 * @return a {@link CompletableFuture} that, when completed, will be null
 if the operation succeeded, or will throw a {@link RuntimeException} if the
 operation failed
 * @throws RuntimeException if there was an error listing the grants, either
 due to an {@link KmsException} or an unexpected error
 */
 public CompletableFuture<Object> displayGrantIdsAsync(String keyId) {
 ListGrantsRequest grantsRequest = ListGrantsRequest.builder()
 .keyId(keyId)
 .limit(15)
 .build();

 ListGrantsPublisher paginator =
 getAsyncClient().listGrantsPaginator(grantsRequest);
 return paginator.subscribe(response -> {
 response.grants().forEach(grant -> {
 logger.info("The grant Id is: " + grant.grantId());
 });
 })
 .thenApply(v -> null)
 .exceptionally(ex -> {
 Throwable cause = ex.getCause();
 if (cause instanceof KmsException) {
 throw new RuntimeException("Failed to list grants: " +
 cause.getMessage(), cause);
 } else {

Learn the basics 826

Amazon Key Management Service Developer Guide

 throw new RuntimeException("An unexpected error occurred: " +
 cause.getMessage(), cause);
 }
 });
 }

 /**
 * Revokes a grant for the specified AWS KMS key asynchronously.
 *
 * @param keyId The ID or key ARN of the AWS KMS key.
 * @param grantId The identifier of the grant to be revoked.
 * @return A {@link CompletableFuture} representing the asynchronous
 operation of revoking the grant.
 * The {@link CompletableFuture} will complete with a {@link
 RevokeGrantResponse} object
 * if the operation is successful, or with a {@code null} value if an
 error occurs.
 */
 public CompletableFuture<RevokeGrantResponse> revokeKeyGrantAsync(String
 keyId, String grantId) {
 RevokeGrantRequest grantRequest = RevokeGrantRequest.builder()
 .keyId(keyId)
 .grantId(grantId)
 .build();

 CompletableFuture<RevokeGrantResponse> responseFuture =
 getAsyncClient().revokeGrant(grantRequest);
 responseFuture.whenComplete((response, exception) -> {
 if (exception == null) {
 logger.info("Grant ID: [" + grantId + "] was successfully
 revoked!");
 } else {
 if (exception instanceof KmsException kmsEx) {
 if (kmsEx.getMessage().contains("Grant does not exist")) {
 logger.info("The grant ID '" + grantId + "' does not
 exist. Moving on...");
 } else {
 throw new RuntimeException("KMS error occurred: " +
 kmsEx.getMessage(), kmsEx);
 }
 } else {
 throw new RuntimeException("An unexpected error occurred: " +
 exception.getMessage(), exception);
 }

Learn the basics 827

Amazon Key Management Service Developer Guide

 }
 });

 return responseFuture;
 }

 /**
 * Asynchronously decrypts the given encrypted data using the specified key
 ID.
 *
 * @param encryptedData The encrypted data to be decrypted.
 * @param keyId The ID of the key to be used for decryption.
 * @return A CompletableFuture that, when completed, will contain the
 decrypted data as a String.
 * If an error occurs during the decryption process, the
 CompletableFuture will complete
 * exceptionally with the error, and the method will return an empty
 String.
 */
 public CompletableFuture<String> decryptDataAsync(SdkBytes encryptedData,
 String keyId) {
 DecryptRequest decryptRequest = DecryptRequest.builder()
 .ciphertextBlob(encryptedData)
 .keyId(keyId)
 .build();

 CompletableFuture<DecryptResponse> responseFuture =
 getAsyncClient().decrypt(decryptRequest);
 responseFuture.whenComplete((decryptResponse, exception) -> {
 if (exception == null) {
 logger.info("Data decrypted successfully for key ID: " + keyId);
 } else {
 if (exception instanceof KmsException kmsEx) {
 throw new RuntimeException("KMS error occurred while
 decrypting data: " + kmsEx.getMessage(), kmsEx);
 } else {
 throw new RuntimeException("An unexpected error occurred
 while decrypting data: " + exception.getMessage(), exception);
 }
 }
 });

Learn the basics 828

Amazon Key Management Service Developer Guide

 return responseFuture.thenApply(decryptResponse ->
 decryptResponse.plaintext().asString(StandardCharsets.UTF_8));
 }

 /**
 * Asynchronously replaces the policy for the specified KMS key.
 *
 * @param keyId the ID of the KMS key to replace the policy for
 * @param policyName the name of the policy to be replaced
 * @param accountId the AWS account ID to be used in the policy
 * @return a {@link CompletableFuture} that completes with a boolean
 indicating
 * whether the policy replacement was successful or not
 */
 public CompletableFuture<Boolean> replacePolicyAsync(String keyId, String
 policyName, String accountId) {
 String policy = """
 {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::%s:root"},
 "Action": "kms:*",
 "Resource": "*"
 }]
 }
 """.formatted(accountId);

 PutKeyPolicyRequest keyPolicyRequest = PutKeyPolicyRequest.builder()
 .keyId(keyId)
 .policyName(policyName)
 .policy(policy)
 .build();

 // First, get the current policy to check if it exists
 return getAsyncClient().getKeyPolicy(r ->
 r.keyId(keyId).policyName(policyName))
 .thenCompose(response -> {
 logger.info("Current policy exists. Replacing it...");
 return getAsyncClient().putKeyPolicy(keyPolicyRequest);
 })
 .thenApply(putPolicyResponse -> {
 logger.info("The key policy has been replaced.");
 return true;

Learn the basics 829

Amazon Key Management Service Developer Guide

 })
 .exceptionally(throwable -> {
 if (throwable.getCause() instanceof LimitExceededException) {
 logger.error("Cannot replace policy, as only one policy is
 allowed per key.");
 return false;
 }
 throw new RuntimeException("Error replacing policy", throwable);
 });
 }

 /**
 * Asynchronously retrieves the key policy for the specified key ID and
 policy name.
 *
 * @param keyId the ID of the AWS KMS key for which to retrieve the
 policy
 * @param policyName the name of the key policy to retrieve
 * @return a {@link CompletableFuture} that, when completed, contains the key
 policy as a {@link String}
 */
 public CompletableFuture<String> getKeyPolicyAsync(String keyId, String
 policyName) {
 GetKeyPolicyRequest policyRequest = GetKeyPolicyRequest.builder()
 .keyId(keyId)
 .policyName(policyName)
 .build();

 return getAsyncClient().getKeyPolicy(policyRequest)
 .thenApply(response -> {
 String policy = response.policy();
 logger.info("The response is: " + policy);
 return policy;
 })
 .exceptionally(ex -> {
 throw new RuntimeException("Failed to get key policy", ex);
 });
 }

 /**
 * Asynchronously signs and verifies data using AWS KMS.
 *
 * <p>The method performs the following steps:

Learn the basics 830

Amazon Key Management Service Developer Guide

 *
 * Creates an AWS KMS key with the specified key spec, key usage, and
 origin.
 * Signs the provided message using the created KMS key and the
 RSASSA-PSS-SHA-256 algorithm.
 * Verifies the signature of the message using the created KMS key
 and the RSASSA-PSS-SHA-256 algorithm.
 *
 *
 * @return a {@link CompletableFuture} that completes with the result of the
 signature verification,
 * {@code true} if the signature is valid, {@code false} otherwise.
 * @throws KmsException if any error occurs during the KMS operations.
 * @throws RuntimeException if an unexpected error occurs.
 */
 public CompletableFuture<Boolean> signVerifyDataAsync() {
 String signMessage = "Here is the message that will be digitally signed";

 // Create an AWS KMS key used to digitally sign data.
 CreateKeyRequest createKeyRequest = CreateKeyRequest.builder()
 .keySpec(KeySpec.RSA_2048)
 .keyUsage(KeyUsageType.SIGN_VERIFY)
 .origin(OriginType.AWS_KMS)
 .build();

 return getAsyncClient().createKey(createKeyRequest)
 .thenCompose(createKeyResponse -> {
 String keyId = createKeyResponse.keyMetadata().keyId();

 SdkBytes messageBytes = SdkBytes.fromString(signMessage,
 Charset.defaultCharset());
 SignRequest signRequest = SignRequest.builder()
 .keyId(keyId)
 .message(messageBytes)
 .signingAlgorithm(SigningAlgorithmSpec.RSASSA_PSS_SHA_256)
 .build();

 return getAsyncClient().sign(signRequest)
 .thenCompose(signResponse -> {
 byte[] signedBytes =
 signResponse.signature().asByteArray();

 VerifyRequest verifyRequest = VerifyRequest.builder()
 .keyId(keyId)

Learn the basics 831

Amazon Key Management Service Developer Guide

 .message(SdkBytes.fromByteArray(signMessage.getBytes(Charset.defaultCharset())))

 .signature(SdkBytes.fromByteBuffer(ByteBuffer.wrap(signedBytes)))

 .signingAlgorithm(SigningAlgorithmSpec.RSASSA_PSS_SHA_256)
 .build();

 return getAsyncClient().verify(verifyRequest)
 .thenApply(verifyResponse -> {
 return (boolean) verifyResponse.signatureValid();
 });
 });
 })
 .exceptionally(throwable -> {
 throw new RuntimeException("Failed to sign or verify data",
 throwable);
 });
 }

 /**
 * Asynchronously tags a KMS key with a specific tag.
 *
 * @param keyId the ID of the KMS key to be tagged
 * @return a {@link CompletableFuture} that completes when the tagging
 operation is finished
 */
 public CompletableFuture<Void> tagKMSKeyAsync(String keyId) {
 Tag tag = Tag.builder()
 .tagKey("Environment")
 .tagValue("Production")
 .build();

 TagResourceRequest tagResourceRequest = TagResourceRequest.builder()
 .keyId(keyId)
 .tags(tag)
 .build();

 return getAsyncClient().tagResource(tagResourceRequest)
 .thenRun(() -> {
 logger.info("{} key was tagged", keyId);
 })
 .exceptionally(throwable -> {

Learn the basics 832

Amazon Key Management Service Developer Guide

 throw new RuntimeException("Failed to tag the KMS key",
 throwable);
 });
 }

 /**
 * Deletes a specific KMS alias asynchronously.
 *
 * @param aliasName the name of the alias to be deleted
 * @return a {@link CompletableFuture} representing the asynchronous
 operation of deleting the specified alias
 */
 public CompletableFuture<Void> deleteSpecificAliasAsync(String aliasName) {
 DeleteAliasRequest deleteAliasRequest = DeleteAliasRequest.builder()
 .aliasName(aliasName)
 .build();

 return getAsyncClient().deleteAlias(deleteAliasRequest)
 .thenRun(() -> {
 logger.info("Alias {} has been deleted successfully", aliasName);
 })
 .exceptionally(throwable -> {
 throw new RuntimeException("Failed to delete alias: " +
 aliasName, throwable);
 });
 }

 /**
 * Asynchronously disables the specified AWS Key Management Service (KMS)
 key.
 *
 * @param keyId the ID or Amazon Resource Name (ARN) of the KMS key to be
 disabled
 * @return a CompletableFuture that, when completed, indicates that the key
 has been disabled successfully
 */
 public CompletableFuture<Void> disableKeyAsync(String keyId) {
 DisableKeyRequest keyRequest = DisableKeyRequest.builder()
 .keyId(keyId)
 .build();

 return getAsyncClient().disableKey(keyRequest)
 .thenRun(() -> {
 logger.info("Key {} has been disabled successfully",keyId);

Learn the basics 833

Amazon Key Management Service Developer Guide

 })
 .exceptionally(throwable -> {
 throw new RuntimeException("Failed to disable key: " + keyId,
 throwable);
 });
 }

 /**
 * Deletes a KMS key asynchronously.
 *
 * <p>Warning: Deleting a KMS key is a destructive and
 potentially dangerous operation.
 * When a KMS key is deleted, all data that was encrypted under the KMS key
 becomes unrecoverable.
 * This means that any files, databases, or other data that were encrypted
 using the deleted KMS key
 * will become permanently inaccessible. Exercise extreme caution when
 deleting KMS keys.</p>
 *
 * @param keyId the ID of the KMS key to delete
 * @return a {@link CompletableFuture} that completes when the key deletion
 is scheduled
 */
 public CompletableFuture<Void> deleteKeyAsync(String keyId) {
 ScheduleKeyDeletionRequest deletionRequest =
 ScheduleKeyDeletionRequest.builder()
 .keyId(keyId)
 .pendingWindowInDays(7)
 .build();

 return getAsyncClient().scheduleKeyDeletion(deletionRequest)
 .thenRun(() -> {
 logger.info("Key {} will be deleted in 7 days", keyId);
 })
 .exceptionally(throwable -> {
 throw new RuntimeException("Failed to schedule key deletion for
 key ID: " + keyId, throwable);
 });
 }

 public String getAccountId(){
 try (StsClient stsClient = StsClient.create()){

Learn the basics 834

Amazon Key Management Service Developer Guide

 GetCallerIdentityResponse callerIdentity =
 stsClient.getCallerIdentity();
 return callerIdentity.account();
 }
 }
}

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateAlias

• CreateGrant

• CreateKey

• Decrypt

• DescribeKey

• DisableKey

• EnableKey

• Encrypt

• GetKeyPolicy

• ListAliases

• ListGrants

• ListKeys

• RevokeGrant

• ScheduleKeyDeletion

• Sign

• TagResource

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Learn the basics 835

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/CreateAlias
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/CreateGrant
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/CreateKey
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/Decrypt
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/DescribeKey
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/DisableKey
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/EnableKey
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/Encrypt
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/GetKeyPolicy
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ListAliases
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ListGrants
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ListKeys
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/RevokeGrant
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ScheduleKeyDeletion
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/Sign
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/TagResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 echo "\n";
 echo "--------------------------------------\n";
 echo <<<WELCOME
Welcome to the AWS Key Management Service SDK Basics scenario.

This program demonstrates how to interact with AWS Key Management Service using
 the AWS SDK for PHP (v3).
The AWS Key Management Service (KMS) is a secure and highly available service
 that allows you to create
and manage AWS KMS keys and control their use across a wide range of AWS services
 and applications.
KMS provides a centralized and unified approach to managing encryption keys,
 making it easier to meet your
data protection and regulatory compliance requirements.

This KMS Basics scenario creates two key types:
- A symmetric encryption key is used to encrypt and decrypt data.
- An asymmetric key used to digitally sign data.

Let's get started...\n
WELCOME;
 echo "--------------------------------------\n";
 $this->pressEnter();

 $this->kmsClient = new KmsClient([]);
 // Initialize the KmsService class with the client. This allows you to
 override any defaults in the client before giving it to the service class.
 $this->kmsService = new KmsService($this->kmsClient);

 // 1. Create a symmetric KMS key.
 echo "\n";
 echo "1. Create a symmetric KMS key.\n";
 echo "First, we will create a symmetric KMS key that is used to encrypt
 and decrypt data by invoking createKey().\n";
 $this->pressEnter();

 $key = $this->kmsService->createKey();
 $this->resources['symmetricKey'] = $key['KeyId'];
 echo "Created a customer key with ARN {$key['Arn']}.\n";
 $this->pressEnter();

 // 2. Enable a KMS key.

Learn the basics 836

Amazon Key Management Service Developer Guide

 echo "\n";
 echo "2. Enable a KMS key.\n";
 echo "By default when you create an AWS key, it is enabled. The code
 checks to
determine if the key is enabled. If it is not enabled, the code enables it.\n";
 $this->pressEnter();

 $keyInfo = $this->kmsService->describeKey($key['KeyId']);
 if(!$keyInfo['Enabled']){
 echo "The key was not enabled, so we will enable it.\n";
 $this->pressEnter();
 $this->kmsService->enableKey($key['KeyId']);
 echo "The key was successfully enabled.\n";
 }else{
 echo "The key was already enabled, so there was no need to enable it.
\n";
 }
 $this->pressEnter();

 // 3. Encrypt data using the symmetric KMS key.
 echo "\n";
 echo "3. Encrypt data using the symmetric KMS key.\n";
 echo "One of the main uses of symmetric keys is to encrypt and decrypt
 data.\n";
 echo "Next, we'll encrypt the string 'Hello, AWS KMS!' with the
 SYMMETRIC_DEFAULT encryption algorithm.\n";
 $this->pressEnter();
 $text = "Hello, AWS KMS!";
 $encryption = $this->kmsService->encrypt($key['KeyId'], $text);
 echo "The plaintext data was successfully encrypted with the algorithm:
 {$encryption['EncryptionAlgorithm']}.\n";
 $this->pressEnter();

 // 4. Create an alias.
 echo "\n";
 echo "4. Create an alias.\n";
 $aliasInput = testable_readline("Please enter an alias prefixed with
 \"alias/\" or press enter to use a default value: ");
 if($aliasInput == ""){
 $aliasInput = "alias/dev-encryption-key";
 }
 $this->kmsService->createAlias($key['KeyId'], $aliasInput);
 $this->resources['alias'] = $aliasInput;
 echo "The alias \"$aliasInput\" was successfully created.\n";

Learn the basics 837

Amazon Key Management Service Developer Guide

 $this->pressEnter();

 // 5. List all of your aliases.
 $aliasPageSize = 10;
 echo "\n";
 echo "5. List all of your aliases, up to $aliasPageSize.\n";
 $this->pressEnter();
 $aliasPaginator = $this->kmsService->listAliases();
 foreach($aliasPaginator as $pages){
 foreach($pages['Aliases'] as $alias){
 echo $alias['AliasName'] . "\n";
 }
 break;
 }
 $this->pressEnter();

 // 6. Enable automatic rotation of the KMS key.
 echo "\n";
 echo "6. Enable automatic rotation of the KMS key.\n";
 echo "By default, when the SDK enables automatic rotation of a KMS key,
KMS rotates the key material of the KMS key one year (approximately 365 days)
 from the enable date and every year
thereafter.";
 $this->pressEnter();
 $this->kmsService->enableKeyRotation($key['KeyId']);
 echo "The key's rotation was successfully set for key:
 {$key['KeyId']}\n";
 $this->pressEnter();

 // 7. Create a grant.
 echo "7. Create a grant.\n";
 echo "\n";
 echo "A grant is a policy instrument that allows Amazon Web Services
 principals to use KMS keys.
It also can allow them to view a KMS key (DescribeKey) and create and manage
 grants.
When authorizing access to a KMS key, grants are considered along with key
 policies and IAM policies.\n";
 $granteeARN = testable_readline("Please enter the Amazon Resource Name
 (ARN) of an Amazon Web Services principal. Valid principals include Amazon
 Web Services accounts, IAM users, IAM roles, federated users, and assumed
 role users. For help with the ARN syntax for a principal, see IAM ARNs in the
 Identity and Access Management User Guide. \nTo skip this step, press enter
 without any other values: ");

Learn the basics 838

Amazon Key Management Service Developer Guide

 if($granteeARN){
 $operations = [
 "ENCRYPT",
 "DECRYPT",
 "DESCRIBE_KEY",
];
 $grant = $this->kmsService->createGrant($key['KeyId'], $granteeARN,
 $operations);
 echo "The grant Id is: {$grant['GrantId']}\n";
 }else{
 echo "Steps 7, 8, and 9 will be skipped.\n";
 }
 $this->pressEnter();

 // 8. List grants for the KMS key.
 if($granteeARN){
 echo "8. List grants for the KMS key.\n\n";
 $grantsPaginator = $this->kmsService->listGrants($key['KeyId']);
 foreach($grantsPaginator as $page){
 foreach($page['Grants'] as $grant){
 echo $grant['GrantId'] . "\n";
 }
 }
 }else{
 echo "Skipping step 8...\n";
 }
 $this->pressEnter();

 // 9. Revoke the grant.
 if($granteeARN) {
 echo "\n";
 echo "9. Revoke the grant.\n";
 $this->pressEnter();
 $this->kmsService->revokeGrant($grant['GrantId'], $keyInfo['KeyId']);
 echo "{$grant['GrantId']} was successfully revoked!\n";
 }else{
 echo "Skipping step 9...\n";
 }
 $this->pressEnter();

 // 10. Decrypt the data.
 echo "\n";
 echo "10. Decrypt the data.\n";
 echo "Let's decrypt the data that was encrypted before.\n";

Learn the basics 839

Amazon Key Management Service Developer Guide

 echo "We'll use the same key to decrypt the string that we encrypted
 earlier in the program.\n";
 $this->pressEnter();
 $decryption = $this->kmsService->decrypt($keyInfo['KeyId'],
 $encryption['CiphertextBlob'], $encryption['EncryptionAlgorithm']);
 echo "The decrypted text is: {$decryption['Plaintext']}\n";
 $this->pressEnter();

 // 11. Replace a Key Policy.
 echo "\n";
 echo "11. Replace a Key Policy.\n";
 echo "A key policy is a resource policy for a KMS key. Key policies are
 the primary way to control access to KMS keys.\n";
 echo "Every KMS key must have exactly one key policy. The statements in
 the key policy determine who has permission to use the KMS key and how they can
 use it.\n";
 echo " You can also use IAM policies and grants to control access to the
 KMS key, but every KMS key must have a key policy.\n";
 echo "We will replace the key's policy with a new one:\n";
 $stsClient = new StsClient([]);
 $result = $stsClient->getCallerIdentity();
 $accountId = $result['Account'];
 $keyPolicy = <<< KEYPOLICY
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::$accountId:root"},
 "Action": "kms:*",
 "Resource": "*"
 }]
}
KEYPOLICY;
 echo $keyPolicy;
 $this->pressEnter();
 $this->kmsService->putKeyPolicy($keyInfo['KeyId'], $keyPolicy);
 echo "The Key Policy was successfully replaced!\n";
 $this->pressEnter();

 // 12. Retrieve the key policy.
 echo "\n";
 echo "12. Retrieve the key policy.\n";
 echo "Let's get some information about the new policy and print it to the
 screen.\n";

Learn the basics 840

Amazon Key Management Service Developer Guide

 $this->pressEnter();
 $policyInfo = $this->kmsService->getKeyPolicy($keyInfo['KeyId']);
 echo "We got the info! Here is the policy: \n";
 echo $policyInfo['Policy'] . "\n";
 $this->pressEnter();

 // 13. Create an asymmetric KMS key and sign data.
 echo "\n";
 echo "13. Create an asymmetric KMS key and sign data.\n";
 echo "Signing your data with an AWS key can provide several benefits that
 make it an attractive option for your data signing needs.\n";
 echo "By using an AWS KMS key, you can leverage the security controls and
 compliance features provided by AWS, which can help you meet various regulatory
 requirements and enhance the overall security posture of your organization.\n";
 echo "First we'll create the asymmetric key.\n";
 $this->pressEnter();
 $keySpec = "RSA_2048";
 $keyUsage = "SIGN_VERIFY";
 $asymmetricKey = $this->kmsService->createKey($keySpec, $keyUsage);
 $this->resources['asymmetricKey'] = $asymmetricKey['KeyId'];
 echo "Created the key with ID: {$asymmetricKey['KeyId']}\n";
 echo "Next, we'll sign the data.\n";
 $this->pressEnter();
 $algorithm = "RSASSA_PSS_SHA_256";
 $sign = $this->kmsService->sign($asymmetricKey['KeyId'], $text,
 $algorithm);
 $verify = $this->kmsService->verify($asymmetricKey['KeyId'], $text,
 $sign['Signature'], $algorithm);
 echo "Signature verification result: {$sign['signature']}\n";
 $this->pressEnter();

 // 14. Tag the symmetric KMS key.
 echo "\n";
 echo "14. Tag the symmetric KMS key.\n";
 echo "By using tags, you can improve the overall management, security,
 and governance of your KMS keys, making it easier to organize, track, and
 control access to your encrypted data within your AWS environment.\n";
 echo "Let's tag our symmetric key as Environment->Production\n";
 $this->pressEnter();
 $this->kmsService->tagResource($key['KeyId'], [
 [
 'TagKey' => "Environment",
 'TagValue' => "Production",
],

Learn the basics 841

Amazon Key Management Service Developer Guide

]);
 echo "The key was successfully tagged!\n";
 $this->pressEnter();

 // 15. Schedule the deletion of the KMS key
 echo "\n";
 echo "15. Schedule the deletion of the KMS key.\n";
 echo "By default, KMS applies a waiting period of 30 days, but you can
 specify a waiting period of 7-30 days.\n";
 echo "When this operation is successful, the key state of the KMS key
 changes to PendingDeletion and the key can't be used in any cryptographic
 operations.\n";
 echo "It remains in this state for the duration of the waiting period.\n
\n";

 echo "Deleting a KMS key is a destructive and potentially dangerous
 operation. When a KMS key is deleted, all data that was encrypted under the KMS
 key is unrecoverable.\n\n";

 $cleanUp = testable_readline("Would you like to delete the resources
 created during this scenario, including the keys? (y/n): ");
 if($cleanUp == "Y" || $cleanUp == "y"){
 $this->cleanUp();
 }

 echo
 "--
\n";
 echo "This concludes the AWS Key Management SDK Basics scenario\n";
 echo
 "--
\n";

namespace Kms;

use Aws\Kms\Exception\KmsException;
use Aws\Kms\KmsClient;
use Aws\Result;
use Aws\ResultPaginator;
use AwsUtilities\AWSServiceClass;

class KmsService extends AWSServiceClass

Learn the basics 842

Amazon Key Management Service Developer Guide

{

 protected KmsClient $client;
 protected bool $verbose;

 /***
 * @param KmsClient|null $client
 * @param bool $verbose
 */
 public function __construct(KmsClient $client = null, bool $verbose = false)
 {
 $this->verbose = $verbose;
 if($client){
 $this->client = $client;
 return;
 }
 $this->client = new KmsClient([]);
 }

 /***
 * @param string $keySpec
 * @param string $keyUsage
 * @param string $description
 * @return array
 */
 public function createKey(string $keySpec = "", string $keyUsage = "", string
 $description = "Created by the SDK for PHP")
 {
 $parameters = ['Description' => $description];
 if($keySpec && $keyUsage){
 $parameters['KeySpec'] = $keySpec;
 $parameters['KeyUsage'] = $keyUsage;
 }
 try {
 $result = $this->client->createKey($parameters);
 return $result['KeyMetadata'];
 }catch(KmsException $caught){
 // Check for error specific to createKey operations
 if ($caught->getAwsErrorMessage() == "LimitExceededException"){
 echo "The request was rejected because a quota was exceeded. For
 more information, see Quotas in the Key Management Service Developer Guide.";
 }
 throw $caught;

Learn the basics 843

Amazon Key Management Service Developer Guide

 }
 }

 /***
 * @param string $keyId
 * @param string $ciphertext
 * @param string $algorithm
 * @return Result
 */
 public function decrypt(string $keyId, string $ciphertext, string $algorithm
 = "SYMMETRIC_DEFAULT")
 {
 try{
 return $this->client->decrypt([
 'CiphertextBlob' => $ciphertext,
 'EncryptionAlgorithm' => $algorithm,
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 echo "There was a problem decrypting the data: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param string $text
 * @return Result
 */
 public function encrypt(string $keyId, string $text)
 {
 try {
 return $this->client->encrypt([
 'KeyId' => $keyId,
 'Plaintext' => $text,
]);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "DisabledException"){

Learn the basics 844

Amazon Key Management Service Developer Guide

 echo "The request was rejected because the specified KMS key is
 not enabled.\n";
 }
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param int $limit
 * @return ResultPaginator
 */
 public function listAliases(string $keyId = "", int $limit = 0)
 {
 $args = [];
 if($keyId){
 $args['KeyId'] = $keyId;
 }
 if($limit){
 $args['Limit'] = $limit;
 }
 try{
 return $this->client->getPaginator("ListAliases", $args);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "InvalidMarkerException"){
 echo "The request was rejected because the marker that specifies
 where pagination should next begin is not valid.\n";
 }
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param string $alias
 * @return void
 */
 public function createAlias(string $keyId, string $alias)
 {
 try{

Learn the basics 845

Amazon Key Management Service Developer Guide

 $this->client->createAlias([
 'TargetKeyId' => $keyId,
 'AliasName' => $alias,
]);
 }catch (KmsException $caught){
 if($caught->getAwsErrorMessage() == "InvalidAliasNameException"){
 echo "The request was rejected because the specified alias name
 is not valid.";
 }
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param string $granteePrincipal
 * @param array $operations
 * @param array $grantTokens
 * @return Result
 */
 public function createGrant(string $keyId, string $granteePrincipal, array
 $operations, array $grantTokens = [])
 {
 $args = [
 'KeyId' => $keyId,
 'GranteePrincipal' => $granteePrincipal,
 'Operations' => $operations,
];
 if($grantTokens){
 $args['GrantTokens'] = $grantTokens;
 }
 try{
 return $this->client->createGrant($args);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "InvalidGrantTokenException"){
 echo "The request was rejected because the specified grant token
 is not valid.\n";
 }
 throw $caught;
 }
 }

Learn the basics 846

Amazon Key Management Service Developer Guide

 /***
 * @param string $keyId
 * @return array
 */
 public function describeKey(string $keyId)
 {
 try {
 $result = $this->client->describeKey([
 "KeyId" => $keyId,
]);
 return $result['KeyMetadata'];
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "NotFoundException"){
 echo "The request was rejected because the specified entity or
 resource could not be found.\n";
 }
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @return void
 */
 public function disableKey(string $keyId)
 {
 try {
 $this->client->disableKey([
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 echo "There was a problem disabling the key: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

 /***

Learn the basics 847

Amazon Key Management Service Developer Guide

 * @param string $keyId
 * @return void
 */
 public function enableKey(string $keyId)
 {
 try {
 $this->client->enableKey([
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "NotFoundException"){
 echo "The request was rejected because the specified entity or
 resource could not be found.\n";
 }
 throw $caught;
 }
 }

 /***
 * @return array
 */
 public function listKeys()
 {
 try {
 $contents = [];
 $paginator = $this->client->getPaginator("ListKeys");
 foreach($paginator as $result){
 foreach ($result['Content'] as $object) {
 $contents[] = $object;
 }
 }
 return $contents;
 }catch(KmsException $caught){
 echo "There was a problem listing the keys: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

 /***

Learn the basics 848

Amazon Key Management Service Developer Guide

 * @param string $keyId
 * @return Result
 */
 public function listGrants(string $keyId)
 {
 try{
 return $this->client->listGrants([
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "NotFoundException"){
 echo " The request was rejected because the specified entity
 or resource could not be found.\n";
 }
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @return Result
 */
 public function getKeyPolicy(string $keyId)
 {
 try {
 return $this->client->getKeyPolicy([
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 echo "There was a problem getting the key policy: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

 /***
 * @param string $grantId
 * @param string $keyId
 * @return void
 */
 public function revokeGrant(string $grantId, string $keyId)
 {

Learn the basics 849

Amazon Key Management Service Developer Guide

 try{
 $this->client->revokeGrant([
 'GrantId' => $grantId,
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 echo "There was a problem with revoking the grant: {$caught-
>getAwsErrorMessage()}.\n";
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param int $pendingWindowInDays
 * @return void
 */
 public function scheduleKeyDeletion(string $keyId, int $pendingWindowInDays =
 7)
 {
 try {
 $this->client->scheduleKeyDeletion([
 'KeyId' => $keyId,
 'PendingWindowInDays' => $pendingWindowInDays,
]);
 }catch(KmsException $caught){
 echo "There was a problem scheduling the key deletion: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param array $tags
 * @return void
 */
 public function tagResource(string $keyId, array $tags)
 {
 try {

Learn the basics 850

Amazon Key Management Service Developer Guide

 $this->client->tagResource([
 'KeyId' => $keyId,
 'Tags' => $tags,
]);
 }catch(KmsException $caught){
 echo "There was a problem applying the tag(s): {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param string $message
 * @param string $algorithm
 * @return Result
 */
 public function sign(string $keyId, string $message, string $algorithm)
 {
 try {
 return $this->client->sign([
 'KeyId' => $keyId,
 'Message' => $message,
 'SigningAlgorithm' => $algorithm,
]);
 }catch(KmsException $caught){
 echo "There was a problem signing the data: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param int $rotationPeriodInDays
 * @return void
 */
 public function enableKeyRotation(string $keyId, int $rotationPeriodInDays =
 365)
 {

Learn the basics 851

Amazon Key Management Service Developer Guide

 try{
 $this->client->enableKeyRotation([
 'KeyId' => $keyId,
 'RotationPeriodInDays' => $rotationPeriodInDays,
]);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "NotFoundException"){
 echo "The request was rejected because the specified entity or
 resource could not be found.\n";
 }
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param string $policy
 * @return void
 */
 public function putKeyPolicy(string $keyId, string $policy)
 {
 try {
 $this->client->putKeyPolicy([
 'KeyId' => $keyId,
 'Policy' => $policy,
]);
 }catch(KmsException $caught){
 echo "There was a problem replacing the key policy: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

 /***
 * @param string $aliasName
 * @return void
 */
 public function deleteAlias(string $aliasName)
 {
 try {

Learn the basics 852

Amazon Key Management Service Developer Guide

 $this->client->deleteAlias([
 'AliasName' => $aliasName,
]);
 }catch(KmsException $caught){
 echo "There was a problem deleting the alias: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

 /***
 * @param string $keyId
 * @param string $message
 * @param string $signature
 * @param string $signingAlgorithm
 * @return bool
 */
 public function verify(string $keyId, string $message, string $signature,
 string $signingAlgorithm)
 {
 try {
 $result = $this->client->verify([
 'KeyId' => $keyId,
 'Message' => $message,
 'Signature' => $signature,
 'SigningAlgorithm' => $signingAlgorithm,
]);
 return $result['SignatureValid'];
 }catch(KmsException $caught){
 echo "There was a problem verifying the signature: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

}

• For API details, see the following topics in Amazon SDK for PHP API Reference.

Learn the basics 853

Amazon Key Management Service Developer Guide

• CreateAlias

• CreateGrant

• CreateKey

• Decrypt

• DescribeKey

• DisableKey

• EnableKey

• Encrypt

• GetKeyPolicy

• ListAliases

• ListGrants

• ListKeys

• RevokeGrant

• ScheduleKeyDeletion

• Sign

• TagResource

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KMSScenario:
 """Runs an interactive scenario that shows how to get started with KMS."""

 def __init__(
 self,
 key_manager: KeyManager,
 key_encryption: KeyEncrypt,
 alias_manager: AliasManager,

Learn the basics 854

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/CreateAlias
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/CreateGrant
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/CreateKey
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/Decrypt
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/DescribeKey
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/DisableKey
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/EnableKey
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/Encrypt
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/GetKeyPolicy
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ListAliases
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ListGrants
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ListKeys
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/RevokeGrant
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ScheduleKeyDeletion
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/Sign
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/TagResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 grant_manager: GrantManager,
 key_policy: KeyPolicy,
):
 self.key_manager = key_manager
 self.key_encryption = key_encryption
 self.alias_manager = alias_manager
 self.grant_manager = grant_manager
 self.key_policy = key_policy
 self.key_id = ""
 self.alias_name = ""
 self.asymmetric_key_id = ""

 def kms_scenario(self):
 key_description = "Created by the AWS KMS API"

 print(DASHES)
 print(
 """
Welcome to the AWS Key Management SDK Basics scenario.

This program demonstrates how to interact with AWS Key Management using the AWS
 SDK for Python (Boto3).
The AWS Key Management Service (KMS) is a secure and highly available service
 that allows you to create
and manage AWS KMS keys and control their use across a wide range of AWS services
 and applications.
KMS provides a centralized and unified approach to managing encryption keys,
 making it easier to meet your
data protection and regulatory compliance requirements.

This Basics scenario creates two key types:

- A symmetric encryption key is used to encrypt and decrypt data.
- An asymmetric key used to digitally sign data.

Let's get started...
 """
)
 q.ask("Press Enter to continue...")

 print(DASHES)
 print(f"1. Create a symmetric KMS key\n")
 print(

Learn the basics 855

Amazon Key Management Service Developer Guide

 f"First, the program will creates a symmetric KMS key that you can
 used to encrypt and decrypt data."
)
 q.ask("Press Enter to continue...")
 self.key_id = self.key_manager.create_key(key_description)["KeyId"]
 print(f"A symmetric key was successfully created {self.key_id}.")
 q.ask("Press Enter to continue...")
 print(DASHES)
 print(
 """
2. Enable a KMS key

By default, when the SDK creates an AWS key, it is enabled. The next bit of code
 checks to
determine if the key is enabled.
 """
)
 q.ask("Press Enter to continue...")
 is_enabled = self.is_key_enabled(self.key_id)
 print(f"Is the key enabled? {is_enabled}")
 if not is_enabled:
 self.key_manager.enable_key(self.key_id)
 q.ask("Press Enter to continue...")
 print(DASHES)
 print(f"3. Encrypt data using the symmetric KMS key")
 plain_text = "Hello, AWS KMS!"
 print(
 f"""
One of the main uses of symmetric keys is to encrypt and decrypt data.
Next, the code encrypts the string "{plain_text}" with the SYMMETRIC_DEFAULT
 encryption algorithm.
 """
)
 q.ask("Press Enter to continue...")
 encrypted_text = self.key_encryption.encrypt(self.key_id, plain_text)
 print(DASHES)
 print(f"4. Create an alias")
 print(
 """
Now, the program will create an alias for the KMS key. An alias is a friendly
 name that you
can associate with a KMS key. The alias name should be prefixed with 'alias/'.
 """
)

Learn the basics 856

Amazon Key Management Service Developer Guide

 alias_name = q.ask("Enter an alias name: ", q.non_empty)
 self.alias_manager.create_alias(self.key_id, alias_name)
 print(f"{alias_name} was successfully created.")
 self.alias_name = alias_name
 print(DASHES)
 print(f"5. List all of your aliases")
 q.ask("Press Enter to continue...")
 self.alias_manager.list_aliases(10)
 q.ask("Press Enter to continue...")
 print(DASHES)
 print(f"6. Enable automatic rotation of the KMS key")
 print(
 """

By default, when the SDK enables automatic rotation of a KMS key,
KMS rotates the key material of the KMS key one year (approximately 365 days)
 from the enable date and every year
thereafter.
 """
)
 q.ask("Press Enter to continue...")
 self.key_manager.enable_key_rotation(self.key_id)
 print(DASHES)
 print(f"Key rotation has been enabled for key with id {self.key_id}")
 print(
 """
7. Create a grant

A grant is a policy instrument that allows Amazon Web Services principals to use
 KMS keys.
It also can allow them to view a KMS key (DescribeKey) and create and manage
 grants.
When authorizing access to a KMS key, grants are considered along with key
 policies and IAM policies.
 """
)
 print(
 """
To create a grant you must specify a account_id. To specify the grantee
 account_id, use the Amazon Resource Name (ARN)
of an AWS account_id. Valid principals include AWS accounts, IAM users, IAM
 roles, federated users,
and assumed role users.
 """

Learn the basics 857

Amazon Key Management Service Developer Guide

)
 account_id = q.ask(
 "Enter an account_id, or press enter to skip creating a grant... "
)
 grant = None
 if account_id != "":
 grant = self.grant_manager.create_grant(
 self.key_id,
 account_id,
 [
 "Encrypt",
 "Decrypt",
 "DescribeKey",
],
)
 print(f"Grant created successfully with ID: {grant['GrantId']}")

 q.ask("Press Enter to continue...")
 print(DASHES)
 print(DASHES)
 print(f"8. List grants for the KMS key")
 q.ask("Press Enter to continue...")
 self.grant_manager.list_grants(self.key_id)
 q.ask("Press Enter to continue...")
 print(DASHES)
 print(f"9. Revoke the grant")
 print(
 """
The revocation of a grant immediately removes the permissions and access that the
 grant had provided.
This means that any account_id (user, role, or service) that was granted access
 to perform specific
KMS operations on a KMS key will no longer be able to perform those operations.
 """
)
 q.ask("Press Enter to continue...")

 if grant is not None:
 self.grant_manager.revoke_grant(self.key_id, grant["GrantId"])
 print(f"Grant ID: {grant['GrantId']} was successfully revoked!")

 q.ask("Press Enter to continue...")
 print(DASHES)
 print(f"10. Decrypt the data\n")

Learn the basics 858

Amazon Key Management Service Developer Guide

 print(
 """
Lets decrypt the data that was encrypted in an early step.
The code uses the same key to decrypt the string that we encrypted earlier in the
 program.
 """
)
 q.ask("Press Enter to continue...")
 decrypted_data = self.key_encryption.decrypt(self.key_id, encrypted_text)
 print(f"Data decrypted successfully for key ID: {self.key_id}")
 print(f"Decrypted data: {decrypted_data}")

 q.ask("Press Enter to continue...")
 print(DASHES)
 print(f"11. Replace a key policy\n")
 print(
 """
A key policy is a resource policy for a KMS key. Key policies are the primary way
 to control
access to KMS keys. Every KMS key must have exactly one key policy. The
 statements in the key policy
determine who has permission to use the KMS key and how they can use it.
You can also use IAM policies and grants to control access to the KMS key, but
 every KMS key
must have a key policy.

By default, when you create a key by using the SDK, a policy is created that
gives the AWS account that owns the KMS key full access to the KMS key.

Let's try to replace the automatically created policy with the following policy.
{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {"AWS": "arn:aws:iam::0000000000:root"},
"Action": "kms:*",
"Resource": "*"
}]
}
 """
)
 account_id = q.ask("Enter your account ID or press enter to skip: ")
 if account_id != "":
 policy = {

Learn the basics 859

Amazon Key Management Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"AWS": f"arn:aws:iam::{account_id}:root"},
 "Action": "kms:*",
 "Resource": "*",
 }
],
 }

 self.key_policy.set_new_policy(self.key_id, policy)
 print("Key policy replacement succeeded.")
 q.ask("Press Enter to continue...")
 else:
 print("Skipping replacing the key policy.")

 print(DASHES)
 print(f"12. Get the key policy\n")
 print(
 f"The next bit of code that runs gets the key policy to make sure it
 exists."
)
 q.ask("Press Enter to continue...")
 policy = self.key_policy.get_policy(self.key_id)
 print(f"The key policy is: {policy}")

 q.ask("Press Enter to continue...")
 print(DASHES)
 print(f"13. Create an asymmetric KMS key and sign your data\n")
 print(
 """
 Signing your data with an AWS key can provide several benefits that make
 it an attractive option
 for your data signing needs. By using an AWS KMS key, you can leverage
 the
 security controls and compliance features provided by AWS,
 which can help you meet various regulatory requirements and enhance the
 overall security posture
 of your organization.
 """
)
 q.ask("Press Enter to continue...")
 print(f"Sign and verify data operation succeeded.")

Learn the basics 860

Amazon Key Management Service Developer Guide

 self.asymmetric_key_id = self.key_manager.create_asymmetric_key()
 message = "Here is the message that will be digitally signed"
 signature = self.key_encryption.sign(self.asymmetric_key_id, message)
 if self.key_encryption.verify(self.asymmetric_key_id, message,
 signature):
 print("Signature verification succeeded.")
 else:
 print("Signature verification failed.")

 q.ask("Press Enter to continue...")
 print(DASHES)
 print(f"14. Tag your symmetric KMS Key\n")
 print(
 """
 By using tags, you can improve the overall management, security, and
 governance of your
 KMS keys, making it easier to organize, track, and control access to your
 encrypted data within
 your AWS environment
 """
)
 q.ask("Press Enter to continue...")
 self.key_manager.tag_resource(self.key_id, "Environment", "Production")
 self.clean_up()

 def is_key_enabled(self, key_id: str) -> bool:
 """
 Check if the key is enabled or not.

 :param key_id: The key to check.
 :return: True if the key is enabled, otherwise False.
 """
 response = self.key_manager.describe_key(key_id)
 return response["Enabled"] is True

 def clean_up(self):
 """
 Delete resources created by this scenario.
 """
 if self.alias_name != "":
 print(f"Deleting the alias {self.alias_name}.")
 self.alias_manager.delete_alias(self.alias_name)
 window = 7 # The window in days for a scheduled deletion.
 if self.key_id != "":

Learn the basics 861

Amazon Key Management Service Developer Guide

 print(
 """
Warning:
Deleting a KMS key is a destructive and potentially dangerous operation. When a
 KMS key is deleted,
all data that was encrypted under the KMS key is unrecoverable.
 """
)
 if q.ask(
 f"Do you want to delete the key with ID {self.key_id} (y/n)?",
 q.is_yesno,
):
 print(
 f"The key {self.key_id} will be deleted with a window of
 {window} days. You can cancel the deletion before"
)
 print("the window expires.")
 self.key_manager.delete_key(self.key_id, window)
 self.key_id = ""

 if self.asymmetric_key_id != "":
 if q.ask(
 f"Do you want to delete the asymmetric key with ID
 {self.asymmetric_key_id} (y/n)?",
 q.is_yesno,
):
 print(
 f"The key {self.asymmetric_key_id} will be deleted with a
 window of {window} days. You can cancel the deletion before"
)
 print("the window expires.")
 self.key_manager.delete_key(self.asymmetric_key_id, window)
 self.asymmetric_key_id = ""

if __name__ == "__main__":
 kms_scenario = None
 try:
 kms_client = boto3.client("kms")
 a_key_manager = KeyManager(kms_client)
 a_key_encrypt = KeyEncrypt(kms_client)
 an_alias_manager = AliasManager(kms_client)
 a_grant_manager = GrantManager(kms_client)
 a_key_policy = KeyPolicy(kms_client)

Learn the basics 862

Amazon Key Management Service Developer Guide

 kms_scenario = KMSScenario(
 key_manager=a_key_manager,
 key_encryption=a_key_encrypt,
 alias_manager=an_alias_manager,
 grant_manager=a_grant_manager,
 key_policy=a_key_policy,
)
 kms_scenario.kms_scenario()
 except Exception:
 logging.exception("Something went wrong with the demo!")
 if kms_scenario is not None:
 kms_scenario.clean_up()

Wrapper class and methods for KMS key management.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """
 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def create_key(self, key_description: str) -> dict[str, any]:
 """
 Creates a key with a user-provided description.

 :param key_description: A description for the key.
 :return: The key ID.
 """
 try:

Learn the basics 863

Amazon Key Management Service Developer Guide

 key = self.kms_client.create_key(Description=key_description)
["KeyMetadata"]
 self.created_keys.append(key)
 return key
 except ClientError as err:
 logging.error(
 "Couldn't create your key. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

 def describe_key(self, key_id: str) -> dict[str, any]:
 """
 Describes a key.

 :param key_id: The ARN or ID of the key to describe.
 :return: Information about the key.
 """

 try:
 key = self.kms_client.describe_key(KeyId=key_id)["KeyMetadata"]
 return key
 except ClientError as err:
 logging.error(
 "Couldn't get key '%s'. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

 def enable_key_rotation(self, key_id: str) -> None:
 """
 Enables rotation for a key.

 :param key_id: The ARN or ID of the key to enable rotation for.
 """
 try:
 self.kms_client.enable_key_rotation(KeyId=key_id)
 except ClientError as err:
 logging.error(
 "Couldn't enable rotation for key '%s'. Here's why: %s",
 key_id,

Learn the basics 864

Amazon Key Management Service Developer Guide

 err.response["Error"]["Message"],
)
 raise

 def create_asymmetric_key(self) -> str:
 """
 Creates an asymmetric key in AWS KMS for signing messages.

 :return: The ID of the created key.
 """
 try:
 key = self.kms_client.create_key(
 KeySpec="RSA_2048", KeyUsage="SIGN_VERIFY", Origin="AWS_KMS"
)["KeyMetadata"]
 self.created_keys.append(key)
 return key["KeyId"]
 except ClientError as err:
 logger.error(
 "Couldn't create your key. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

 def tag_resource(self, key_id: str, tag_key: str, tag_value: str) -> None:
 """
 Add or edit tags on a customer managed key.

 :param key_id: The ARN or ID of the key to enable rotation for.
 :param tag_key: Key for the tag.
 :param tag_value: Value for the tag.
 """
 try:
 self.kms_client.tag_resource(
 KeyId=key_id, Tags=[{"TagKey": tag_key, "TagValue": tag_value}]
)
 except ClientError as err:
 logging.error(
 "Couldn't add a tag for the key '%s'. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

Learn the basics 865

Amazon Key Management Service Developer Guide

 def delete_key(self, key_id: str, window: int) -> None:
 """
 Deletes a list of keys.

 Warning:
 Deleting a KMS key is a destructive and potentially dangerous operation.
 When a KMS key is deleted,
 all data that was encrypted under the KMS key is unrecoverable.

 :param key_id: The ARN or ID of the key to delete.
 :param window: The waiting period, in days, before the KMS key is
 deleted.
 """

 try:
 self.kms_client.schedule_key_deletion(
 KeyId=key_id, PendingWindowInDays=window
)
 except ClientError as err:
 logging.error(
 "Couldn't delete key %s. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

Wrapper class and methods for KMS key aliases.

class AliasManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_key = None

 @classmethod
 def from_client(cls) -> "AliasManager":
 """
 Creates an AliasManager instance with a default KMS client.

Learn the basics 866

Amazon Key Management Service Developer Guide

 :return: An instance of AliasManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def create_alias(self, key_id: str, alias: str) -> None:
 """
 Creates an alias for the specified key.

 :param key_id: The ARN or ID of a key to give an alias.
 :param alias: The alias to assign to the key.
 """
 try:
 self.kms_client.create_alias(AliasName=alias, TargetKeyId=key_id)
 except ClientError as err:
 if err.response["Error"]["Code"] == "AlreadyExistsException":
 logger.error(
 "Could not create the alias %s because it already exists.",
 key_id
)
 else:
 logger.error(
 "Couldn't encrypt text. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

 def list_aliases(self, page_size: int) -> None:
 """
 Lists aliases for the current account.
 :param page_size: The number of aliases to list per page.
 """
 try:
 alias_paginator = self.kms_client.get_paginator("list_aliases")
 for alias_page in alias_paginator.paginate(
 PaginationConfig={"PageSize": page_size}
):
 print(f"Here are {page_size} aliases:")
 pprint(alias_page["Aliases"])
 if alias_page["Truncated"]:
 answer = input(

Learn the basics 867

Amazon Key Management Service Developer Guide

 f"Do you want to see the next {page_size} aliases (y/n)?
 "
)
 if answer.lower() != "y":
 break
 else:
 print("That's all your aliases!")
 except ClientError as err:
 logging.error(
 "Couldn't list your aliases. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

 def delete_alias(self, alias: str) -> None:
 """
 Deletes an alias.

 :param alias: The alias to delete.
 """
 try:
 self.kms_client.delete_alias(AliasName=alias)
 except ClientError as err:
 logger.error(
 "Couldn't delete alias %s. Here's why: %s",
 alias,
 err.response["Error"]["Message"],
)
 raise

Wrapper class and methods for KMS key encryption.

class KeyEncrypt:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "KeyEncrypt":
 """

Learn the basics 868

Amazon Key Management Service Developer Guide

 Creates a KeyEncrypt instance with a default KMS client.

 :return: An instance of KeyEncrypt initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def encrypt(self, key_id: str, text: str) -> str:
 """
 Encrypts text by using the specified key.

 :param key_id: The ARN or ID of the key to use for encryption.
 :param text: The text to encrypt.
 :return: The encrypted version of the text.
 """
 try:
 response = self.kms_client.encrypt(KeyId=key_id,
 Plaintext=text.encode())
 print(
 f"The string was encrypted with algorithm
 {response['EncryptionAlgorithm']}"
)
 return response["CiphertextBlob"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DisabledException":
 logger.error(
 "Could not encrypt because the key %s is disabled.", key_id
)
 else:
 logger.error(
 "Couldn't encrypt text. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

 def decrypt(self, key_id: str, cipher_text: str) -> bytes:
 """
 Decrypts text previously encrypted with a key.

 :param key_id: The ARN or ID of the key used to decrypt the data.
 :param cipher_text: The encrypted text to decrypt.

Learn the basics 869

Amazon Key Management Service Developer Guide

 :return: The decrypted text.
 """
 try:
 return self.kms_client.decrypt(KeyId=key_id,
 CiphertextBlob=cipher_text)[
 "Plaintext"
]
 except ClientError as err:
 logger.error(
 "Couldn't decrypt your ciphertext. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

 def sign(self, key_id: str, message: str) -> str:
 """
 Signs a message with a key.

 :param key_id: The ARN or ID of the key to use for signing.
 :param message: The message to sign.
 :return: The signature of the message.
 """
 try:
 return self.kms_client.sign(
 KeyId=key_id,
 Message=message.encode(),
 SigningAlgorithm="RSASSA_PSS_SHA_256",
)["Signature"]
 except ClientError as err:
 logger.error(
 "Couldn't sign your message. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

 def verify(self, key_id: str, message: str, signature: str) -> bool:
 """
 Verifies a signature against a message.

 :param key_id: The ARN or ID of the key used to sign the message.
 :param message: The message to verify.
 :param signature: The signature to verify.

Learn the basics 870

Amazon Key Management Service Developer Guide

 :return: True when the signature matches the message, otherwise False.
 """
 try:
 response = self.kms_client.verify(
 KeyId=key_id,
 Message=message.encode(),
 Signature=signature,
 SigningAlgorithm="RSASSA_PSS_SHA_256",
)
 valid = response["SignatureValid"]
 print(f"The signature is {'valid' if valid else 'invalid'}.")
 return valid
 except ClientError as err:
 if err.response["Error"]["Code"] == "SignatureDoesNotMatchException":
 print("The signature is not valid.")
 else:
 logger.error(
 "Couldn't verify your signature. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

Wrapper class and methods for KMS key grants.

class GrantManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "GrantManager":
 """
 Creates a GrantManager instance with a default KMS client.

 :return: An instance of GrantManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def create_grant(

Learn the basics 871

Amazon Key Management Service Developer Guide

 self, key_id: str, principal: str, operations: [str]
) -> dict[str, str]:
 """
 Creates a grant for a key that lets a principal generate a symmetric data
 encryption key.

 :param key_id: The ARN or ID of the key.
 :param principal: The principal to grant permission to.
 :param operations: The operations to grant permission for.
 :return: The grant that is created.
 """
 try:
 return self.kms_client.create_grant(
 KeyId=key_id,
 GranteePrincipal=principal,
 Operations=operations,
)
 except ClientError as err:
 logger.error(
 "Couldn't create a grant on key %s. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

 def list_grants(self, key_id):
 """
 Lists grants for a key.

 :param key_id: The ARN or ID of the key to query.
 :return: The grants for the key.
 """
 try:
 paginator = self.kms_client.get_paginator("list_grants")
 grants = []
 page_iterator = paginator.paginate(KeyId=key_id)
 for page in page_iterator:
 grants.extend(page["Grants"])

 print(f"Grants for key {key_id}:")
 pprint(grants)
 return grants
 except ClientError as err:

Learn the basics 872

Amazon Key Management Service Developer Guide

 logger.error(
 "Couldn't list grants for key %s. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

 def revoke_grant(self, key_id: str, grant_id: str) -> None:
 """
 Revokes a grant so that it can no longer be used.

 :param key_id: The ARN or ID of the key associated with the grant.
 :param grant_id: The ID of the grant to revoke.
 """
 try:
 self.kms_client.revoke_grant(KeyId=key_id, GrantId=grant_id)
 except ClientError as err:
 logger.error(
 "Couldn't revoke grant %s. Here's why: %s",
 grant_id,
 err.response["Error"]["Message"],
)
 raise

Wrapper class and methods for KMS key policies.

class KeyPolicy:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "KeyPolicy":
 """
 Creates a KeyPolicy instance with a default KMS client.

 :return: An instance of KeyPolicy initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")

Learn the basics 873

Amazon Key Management Service Developer Guide

 return cls(kms_client)

 def set_new_policy(self, key_id: str, policy: dict[str, any]) -> None:
 """
 Sets the policy of a key. Setting a policy entirely overwrites the
 existing
 policy, so care is taken to add a statement to the existing list of
 statements
 rather than simply writing a new policy.

 :param key_id: The ARN or ID of the key to set the policy to.
 :param policy: A new key policy. The key policy must allow the calling
 principal to make a subsequent
 PutKeyPolicy request on the KMS key. This reduces the risk
 that the KMS key becomes unmanageable
 """

 try:
 self.kms_client.put_key_policy(KeyId=key_id,
 Policy=json.dumps(policy))
 except ClientError as err:
 logger.error(
 "Couldn't set policy for key %s. Here's why %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

 def get_policy(self, key_id: str) -> dict[str, str]:
 """
 Gets the policy of a key.

 :param key_id: The ARN or ID of the key to query.
 :return: The key policy as a dict.
 """
 if key_id != "":
 try:
 response = self.kms_client.get_key_policy(
 KeyId=key_id,
)
 policy = json.loads(response["Policy"])

Learn the basics 874

Amazon Key Management Service Developer Guide

 except ClientError as err:
 logger.error(
 "Couldn't get policy for key %s. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise
 else:
 pprint(policy)
 return policy
 else:
 print("Skipping get policy demo.")

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• CreateAlias

• CreateGrant

• CreateKey

• Decrypt

• DescribeKey

• DisableKey

• EnableKey

• Encrypt

• GetKeyPolicy

• ListAliases

• ListGrants

• ListKeys

• RevokeGrant

• ScheduleKeyDeletion

• Sign

• TagResource

Learn the basics 875

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/CreateAlias
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/CreateGrant
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/CreateKey
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/Decrypt
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/DescribeKey
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/DisableKey
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/EnableKey
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/Encrypt
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/GetKeyPolicy
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ListAliases
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ListGrants
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ListKeys
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/RevokeGrant
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ScheduleKeyDeletion
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/Sign
https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/TagResource

Amazon Key Management Service Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Actions for Amazon KMS using Amazon SDKs

The following code examples demonstrate how to perform individual Amazon KMS actions with
Amazon SDKs. Each example includes a link to GitHub, where you can find instructions for setting
up and running the code.

These excerpts call the Amazon KMS API and are code excerpts from larger programs that must be
run in context. You can see actions in context in Scenarios for Amazon KMS using Amazon SDKs .

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Key Management Service API Reference.

Examples

• Use CreateAlias with an Amazon SDK or CLI

• Use CreateGrant with an Amazon SDK or CLI

• Use CreateKey with an Amazon SDK or CLI

• Use Decrypt with an Amazon SDK or CLI

• Use DeleteAlias with an Amazon SDK or CLI

• Use DescribeKey with an Amazon SDK or CLI

• Use DisableKey with an Amazon SDK or CLI

• Use EnableKey with an Amazon SDK or CLI

• Use EnableKeyRotation with an Amazon SDK or CLI

• Use Encrypt with an Amazon SDK or CLI

• Use GenerateDataKey with an Amazon SDK or CLI

• Use GenerateDataKeyWithoutPlaintext with an Amazon SDK or CLI

• Use GenerateRandom with an Amazon SDK or CLI

• Use GetKeyPolicy with an Amazon SDK or CLI

• Use ListAliases with an Amazon SDK or CLI

• Use ListGrants with an Amazon SDK or CLI

• Use ListKeyPolicies with an Amazon SDK or CLI

• Use ListKeys with an Amazon SDK or CLI

Actions 876

https://docs.amazonaws.cn/kms/latest/APIReference/Welcome.html

Amazon Key Management Service Developer Guide

• Use PutKeyPolicy with an Amazon SDK or CLI

• Use ReEncrypt with an Amazon SDK or CLI

• Use RetireGrant with an Amazon SDK or CLI

• Use RevokeGrant with an Amazon SDK or CLI

• Use ScheduleKeyDeletion with an Amazon SDK or CLI

• Use Sign with an Amazon SDK or CLI

• Use TagResource with an Amazon SDK or CLI

• Use UpdateAlias with an Amazon SDK or CLI

• Use Verify with an Amazon SDK or CLI

Use CreateAlias with an Amazon SDK or CLI

The following code examples show how to use CreateAlias.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Creates an alias for an AWS Key Management Service (AWS KMS) key.
 /// </summary>

Actions 877

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

Amazon Key Management Service Developer Guide

 public class CreateAlias
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();

 // The alias name must start with alias/ and can be
 // up to 256 alphanumeric characters long.
 var aliasName = "alias/ExampleAlias";

 // The value supplied as the TargetKeyId can be either
 // the key ID or key Amazon Resource Name (ARN) of the
 // AWS KMS key.
 var keyId = "1234abcd-12ab-34cd-56ef-1234567890ab";

 var request = new CreateAliasRequest
 {
 AliasName = aliasName,
 TargetKeyId = keyId,
 };

 var response = await client.CreateAliasAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 Console.WriteLine($"Alias, {aliasName}, successfully created.");
 }
 else
 {
 Console.WriteLine($"Could not create alias.");
 }
 }
 }

• For API details, see CreateAlias in Amazon SDK for .NET API Reference.

CLI

Amazon CLI

To create an alias for a KMS key

Actions 878

https://docs.amazonaws.cn/goto/DotNetSDKV3/kms-2014-11-01/CreateAlias

Amazon Key Management Service Developer Guide

The following create-alias command creates an alias named example-alias for the
KMS key identified by key ID 1234abcd-12ab-34cd-56ef-1234567890ab.

Alias names must begin with alias/. Do not use alias names that begin with alias/aws;
these are reserved for use by Amazon.

aws kms create-alias \
 --alias-name alias/example-alias \
 --target-key-id 1234abcd-12ab-34cd-56ef-1234567890ab

This command doesn't return any output. To see the new alias, use the list-aliases
command.

For more information, see Using aliases in the Amazon Key Management Service Developer
Guide.

• For API details, see CreateAlias in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Creates a custom alias for the specified target key asynchronously.
 *
 * @param targetKeyId the ID of the target key for the alias
 * @param aliasName the name of the alias to create
 * @return a {@link CompletableFuture} that completes when the alias creation
 operation is finished
 */
 public CompletableFuture<Void> createCustomAliasAsync(String targetKeyId,
 String aliasName) {
 CreateAliasRequest aliasRequest = CreateAliasRequest.builder()
 .aliasName(aliasName)
 .targetKeyId(targetKeyId)

Actions 879

https://docs.aws.amazon.com/kms/latest/developerguide/kms-alias.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/create-alias.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 .build();

 CompletableFuture<CreateAliasResponse> responseFuture =
 getAsyncClient().createAlias(aliasRequest);
 responseFuture.whenComplete((response, exception) -> {
 if (exception == null) {
 logger.info("{} was successfully created.", aliasName);
 } else {
 if (exception instanceof ResourceExistsException) {
 logger.info("Alias [{}] already exists. Moving on...",
 aliasName);
 } else if (exception instanceof KmsException kmsEx) {
 throw new RuntimeException("KMS error occurred while creating
 alias: " + kmsEx.getMessage(), kmsEx);
 } else {
 throw new RuntimeException("An unexpected error occurred
 while creating alias: " + exception.getMessage(), exception);
 }
 }
 });

 return responseFuture.thenApply(response -> null);
 }

• For API details, see CreateAlias in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun createCustomAlias(
 targetKeyIdVal: String?,
 aliasNameVal: String?,
) {
 val request =

Actions 880

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/CreateAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples

Amazon Key Management Service Developer Guide

 CreateAliasRequest {
 aliasName = aliasNameVal
 targetKeyId = targetKeyIdVal
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 kmsClient.createAlias(request)
 println("$aliasNameVal was successfully created")
 }
}

• For API details, see CreateAlias in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @param string $alias
 * @return void
 */
 public function createAlias(string $keyId, string $alias)
 {
 try{
 $this->client->createAlias([
 'TargetKeyId' => $keyId,
 'AliasName' => $alias,
]);
 }catch (KmsException $caught){
 if($caught->getAwsErrorMessage() == "InvalidAliasNameException"){
 echo "The request was rejected because the specified alias name
 is not valid.";
 }

Actions 881

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 throw $caught;
 }
 }

• For API details, see CreateAlias in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class AliasManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_key = None

 @classmethod
 def from_client(cls) -> "AliasManager":
 """
 Creates an AliasManager instance with a default KMS client.

 :return: An instance of AliasManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def create_alias(self, key_id: str, alias: str) -> None:
 """
 Creates an alias for the specified key.

 :param key_id: The ARN or ID of a key to give an alias.
 :param alias: The alias to assign to the key.
 """

Actions 882

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/CreateAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 try:
 self.kms_client.create_alias(AliasName=alias, TargetKeyId=key_id)
 except ClientError as err:
 if err.response["Error"]["Code"] == "AlreadyExistsException":
 logger.error(
 "Could not create the alias %s because it already exists.",
 key_id
)
 else:
 logger.error(
 "Couldn't encrypt text. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see CreateAlias in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use CreateGrant with an Amazon SDK or CLI

The following code examples show how to use CreateGrant.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions 883

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/CreateAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

Amazon Key Management Service Developer Guide

 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();

 // The identity that is given permission to perform the operations
 // specified in the grant.
 var grantee = "arn:aws:iam::111122223333:role/ExampleRole";

 // The identifier of the AWS KMS key to which the grant applies. You
 // can use the key ID or the Amazon Resource Name (ARN) of the KMS
 key.
 var keyId = "7c9eccc2-38cb-4c4f-9db3-766ee8dd3ad4";

 var request = new CreateGrantRequest
 {
 GranteePrincipal = grantee,
 KeyId = keyId,

 // A list of operations that the grant allows.
 Operations = new List<string>
 {
 "Encrypt",
 "Decrypt",
 },
 };

 var response = await client.CreateGrantAsync(request);

 string grantId = response.GrantId; // The unique identifier of the
 grant.
 string grantToken = response.GrantToken; // The grant token.

 Console.WriteLine($"Id: {grantId}, Token: {grantToken}");
 }
 }

• For API details, see CreateGrant in Amazon SDK for .NET API Reference.

Actions 884

https://docs.amazonaws.cn/goto/DotNetSDKV3/kms-2014-11-01/CreateGrant

Amazon Key Management Service Developer Guide

CLI

Amazon CLI

To create a grant

The following create-grant example creates a grant that allows the exampleUser user
to use the decrypt command on the 1234abcd-12ab-34cd-56ef-1234567890ab
example KMS key. The retiring principal is the adminRole role. The grant uses the
EncryptionContextSubset grant constraint to allow this permission only when the
encryption context in the decrypt request includes the "Department": "IT" key-value
pair.

aws kms create-grant \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --grantee-principal arn:aws:iam::123456789012:user/exampleUser \
 --operations Decrypt \
 --constraints EncryptionContextSubset={Department=IT} \
 --retiring-principal arn:aws:iam::123456789012:role/adminRole

Output:

{
 "GrantId":
 "1a2b3c4d2f5e69f440bae30eaec9570bb1fb7358824f9ddfa1aa5a0dab1a59b2",
 "GrantToken": "<grant token here>"
}

To view detailed information about the grant, use the list-grants command.

For more information, see Grants in Amazon KMS in the Amazon Key Management Service
Developer Guide.

• For API details, see CreateGrant in Amazon CLI Command Reference.

Actions 885

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/create-grant.html

Amazon Key Management Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Grants permissions to a specified principal on a customer master key (CMK)
 asynchronously.
 *
 * @param keyId The unique identifier for the customer master key
 (CMK) that the grant applies to.
 * @param granteePrincipal The principal that is given permission to perform
 the operations that the grant permits on the CMK.
 * @return A {@link CompletableFuture} that, when completed, contains the ID
 of the created grant.
 * @throws RuntimeException If an error occurs during the grant creation
 process.
 */
 public CompletableFuture<String> grantKeyAsync(String keyId, String
 granteePrincipal) {
 List<GrantOperation> grantPermissions = List.of(
 GrantOperation.ENCRYPT,
 GrantOperation.DECRYPT,
 GrantOperation.DESCRIBE_KEY
);

 CreateGrantRequest grantRequest = CreateGrantRequest.builder()
 .keyId(keyId)
 .name("grant1")
 .granteePrincipal(granteePrincipal)
 .operations(grantPermissions)
 .build();

 CompletableFuture<CreateGrantResponse> responseFuture =
 getAsyncClient().createGrant(grantRequest);
 responseFuture.whenComplete((response, ex) -> {
 if (ex == null) {

Actions 886

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 logger.info("Grant created successfully with ID: " +
 response.grantId());
 } else {
 if (ex instanceof KmsException kmsEx) {
 throw new RuntimeException("Failed to create grant: " +
 kmsEx.getMessage(), kmsEx);
 } else {
 throw new RuntimeException("An unexpected error occurred: " +
 ex.getMessage(), ex);
 }
 }
 });

 return responseFuture.thenApply(CreateGrantResponse::grantId);
 }

• For API details, see CreateGrant in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun createNewGrant(
 keyIdVal: String?,
 granteePrincipalVal: String?,
 operation: String,
): String? {
 val operationOb = GrantOperation.fromValue(operation)
 val grantOperationList = ArrayList<GrantOperation>()
 grantOperationList.add(operationOb)

 val request =
 CreateGrantRequest {
 keyId = keyIdVal
 granteePrincipal = granteePrincipalVal

Actions 887

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/CreateGrant
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples

Amazon Key Management Service Developer Guide

 operations = grantOperationList
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val response = kmsClient.createGrant(request)
 return response.grantId
 }
}

• For API details, see CreateGrant in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @param string $granteePrincipal
 * @param array $operations
 * @param array $grantTokens
 * @return Result
 */
 public function createGrant(string $keyId, string $granteePrincipal, array
 $operations, array $grantTokens = [])
 {
 $args = [
 'KeyId' => $keyId,
 'GranteePrincipal' => $granteePrincipal,
 'Operations' => $operations,
];
 if($grantTokens){
 $args['GrantTokens'] = $grantTokens;
 }
 try{

Actions 888

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 return $this->client->createGrant($args);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "InvalidGrantTokenException"){
 echo "The request was rejected because the specified grant token
 is not valid.\n";
 }
 throw $caught;
 }
 }

• For API details, see CreateGrant in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class GrantManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "GrantManager":
 """
 Creates a GrantManager instance with a default KMS client.

 :return: An instance of GrantManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def create_grant(
 self, key_id: str, principal: str, operations: [str]

Actions 889

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/CreateGrant
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

) -> dict[str, str]:
 """
 Creates a grant for a key that lets a principal generate a symmetric data
 encryption key.

 :param key_id: The ARN or ID of the key.
 :param principal: The principal to grant permission to.
 :param operations: The operations to grant permission for.
 :return: The grant that is created.
 """
 try:
 return self.kms_client.create_grant(
 KeyId=key_id,
 GranteePrincipal=principal,
 Operations=operations,
)
 except ClientError as err:
 logger.error(
 "Couldn't create a grant on key %s. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see CreateGrant in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use CreateKey with an Amazon SDK or CLI

The following code examples show how to use CreateKey.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Work with table encryption

Actions 890

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/CreateGrant

Amazon Key Management Service Developer Guide

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Shows how to create a new AWS Key Management Service (AWS KMS)
 /// key.
 /// </summary>
 public class CreateKey
 {
 public static async Task Main()
 {
 // Note that if you need to create a Key in an AWS Region
 // other than the Region defined for the default user, you need to
 // pass the Region to the client constructor.
 var client = new AmazonKeyManagementServiceClient();

 // The call to CreateKeyAsync will create a symmetrical AWS KMS
 // key. For more information about symmetrical and asymmetrical
 // keys, see:
 //
 // https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-
choose.html
 var response = await client.CreateKeyAsync(new CreateKeyRequest());

 // The KeyMetadata object contains information about the new AWS KMS
 key.
 KeyMetadata keyMetadata = response.KeyMetadata;

 if (keyMetadata is not null)
 {

Actions 891

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

Amazon Key Management Service Developer Guide

 Console.WriteLine($"KMS Key: {keyMetadata.KeyId} was successfully
 created.");
 }
 else
 {
 Console.WriteLine("Could not create KMS Key.");
 }
 }
 }

• For API details, see CreateKey in Amazon SDK for .NET API Reference.

CLI

Amazon CLI

Example 1: To create a customer managed KMS key in Amazon KMS

The following create-key example creates a symmetric encryption KMS key.

To create the basic KMS key, a symmetric encryption key, you do not need to specify any
parameters. The default values for those parameters create a symmetric encryption key.

Because this command doesn't specify a key policy, the KMS key gets the default key policy
for programmatically created KMS keys. To view the key policy, use the get-key-policy
command. To change the key policy, use the put-key-policy command.

aws kms create-key

The create-key command returns the key metadata, including the key ID and ARN of
the new KMS key. You can use these values to identify the KMS key in other Amazon KMS
operations. The output does not include the tags. To view the tags for a KMS key, use the
list-resource-tags command.

Output:

{
 "KeyMetadata": {

Actions 892

https://docs.amazonaws.cn/goto/DotNetSDKV3/kms-2014-11-01/CreateKey
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default

Amazon Key Management Service Developer Guide

 "AWSAccountId": "111122223333",
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": "2017-07-05T14:04:55-07:00",
 "CurrentKeyMaterialId":
 "0b7fd7ddbac6eef27907413567cad8c810e2883dc8a7534067a82ee1142fc1e6",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "Description": "",
 "Enabled": true,
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "MultiRegion": false,
 "Origin": "AWS_KMS"
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

Note: The create-key command does not let you specify an alias, To create an alias for the
new KMS key, use the create-alias command.

For more information, see Creating keys in the Amazon Key Management Service Developer
Guide.

Example 2: To create an asymmetric RSA KMS key for encryption and decryption

The following create-key example creates a KMS key that contains an asymmetric RSA key
pair for encryption and decryption. The key spec and key usage can't be changed after the
key is created.:

aws kms create-key \
 --key-spec RSA_4096 \
 --key-usage ENCRYPT_DECRYPT

Output:

{

Actions 893

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Key Management Service Developer Guide

 "KeyMetadata": {
 "Arn": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "CreationDate": "2021-04-05T14:04:55-07:00",
 "CustomerMasterKeySpec": "RSA_4096",
 "Description": "",
 "Enabled": true,
 "EncryptionAlgorithms": [
 "RSAES_OAEP_SHA_1",
 "RSAES_OAEP_SHA_256"
],
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeySpec": "RSA_4096",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "MultiRegion": false,
 "Origin": "AWS_KMS"
 }
}

For more information, see Asymmetric keys in Amazon KMS in the Amazon Key Management
Service Developer Guide.

Example 3: To create an asymmetric elliptic curve KMS key for signing and verification

To create an asymmetric KMS key that contains an asymmetric elliptic curve (ECC) key
pair for signing and verification. The --key-usage parameter is required even though
SIGN_VERIFY is the only valid value for ECC KMS keys. The key spec and key usage can't be
changed after the key is created.:

aws kms create-key \
 --key-spec ECC_NIST_P521 \
 --key-usage SIGN_VERIFY

Output:

{
 "KeyMetadata": {
 "Arn": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

Actions 894

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html

Amazon Key Management Service Developer Guide

 "AWSAccountId": "111122223333",
 "CreationDate": "2019-12-02T07:48:55-07:00",
 "CustomerMasterKeySpec": "ECC_NIST_P521",
 "Description": "",
 "Enabled": true,
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeySpec": "ECC_NIST_P521",
 "KeyState": "Enabled",
 "KeyUsage": "SIGN_VERIFY",
 "MultiRegion": false,
 "Origin": "AWS_KMS",
 "SigningAlgorithms": [
 "ECDSA_SHA_512"
]
 }
}

For more information, see Asymmetric keys in Amazon KMS in the Amazon Key Management
Service Developer Guide.

Example 4: To create an asymmetric ML-DSA KMS key for signing and verification

This example creates a module-lattice digital signature algorithm (ML-DSA) key for signing
and verification. The key-usage parameter is required even though SIGN_VERIFY is the only
valid value for ML-DSA keys.

aws kms create-key \
 --key-spec ML_DSA_65 \
 --key-usage SIGN_VERIFY

Output:

{
 "KeyMetadata": {
 "Arn": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "CreationDate": "2019-12-02T07:48:55-07:00",
 "Description": "",
 "Enabled": true,
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",

Actions 895

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html

Amazon Key Management Service Developer Guide

 "KeyManager": "CUSTOMER",
 "KeySpec": "ML_DSA_65",
 "KeyState": "Enabled",
 "KeyUsage": "SIGN_VERIFY",
 "MultiRegion": false,
 "Origin": "AWS_KMS",
 "SigningAlgorithms": [
 "ML_DSA_SHAKE_256"
]
 }
}

For more information, see Asymmetric keys in Amazon KMS in the Amazon Key Management
Service Developer Guide.

Example 5: To create an HMAC KMS key

The following create-key example creates a 384-bit HMAC KMS key. The
GENERATE_VERIFY_MAC value for the --key-usage parameter is required even though it's
the only valid value for HMAC KMS keys.

aws kms create-key \
 --key-spec HMAC_384 \
 --key-usage GENERATE_VERIFY_MAC

Output:

{
 "KeyMetadata": {
 "Arn": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "CreationDate": "2022-04-05T14:04:55-07:00",
 "CustomerMasterKeySpec": "HMAC_384",
 "Description": "",
 "Enabled": true,
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeySpec": "HMAC_384",
 "KeyState": "Enabled",
 "KeyUsage": "GENERATE_VERIFY_MAC",
 "MacAlgorithms": [

Actions 896

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html

Amazon Key Management Service Developer Guide

 "HMAC_SHA_384"
],
 "MultiRegion": false,
 "Origin": "AWS_KMS"
 }
}

For more information, see HMAC keys in Amazon KMS in the Amazon Key Management
Service Developer Guide.

Example 6: To create a multi-Region primary KMS key

The following create-key example creates a multi-Region primary symmetric encryption
key. Because the default values for all parameters create a symmetric encryption key, only
the --multi-region parameter is required for this KMS key. In the Amazon CLI, to indicate
that a Boolean parameter is true, just specify the parameter name.

aws kms create-key \
 --multi-region

Output:

{
 "KeyMetadata": {
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef12345678990ab",
 "AWSAccountId": "111122223333",
 "CreationDate": "2021-09-02T016:15:21-09:00",
 "CurrentKeyMaterialId":
 "0b7fd7ddbac6eef27907413567cad8c810e2883dc8a7534067a82ee1142fc1e6",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "Description": "",
 "Enabled": true,
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "KeyId": "mrk-1234abcd12ab34cd56ef12345678990ab",
 "KeyManager": "CUSTOMER",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "MultiRegion": true,

Actions 897

https://docs.aws.amazon.com/kms/latest/developerguide/hmac.html

Amazon Key Management Service Developer Guide

 "MultiRegionConfiguration": {
 "MultiRegionKeyType": "PRIMARY",
 "PrimaryKey": {
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef12345678990ab",
 "Region": "us-west-2"
 },
 "ReplicaKeys": []
 },
 "Origin": "AWS_KMS"
 }
}

For more information, see Asymmetric keys in Amazon KMS in the Amazon Key Management
Service Developer Guide.

Example 7: To create a KMS key for imported key material

The following create-key example creates a creates a KMS key with no key material. When
the operation is complete, you can import your own key material into the KMS key. To create
this KMS key, set the --origin parameter to EXTERNAL.

aws kms create-key \
 --origin EXTERNAL

Output:

{
 "KeyMetadata": {
 "Arn": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "CreationDate": "2019-12-02T07:48:55-07:00",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "Description": "",
 "Enabled": false,
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeySpec": "SYMMETRIC_DEFAULT",

Actions 898

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html

Amazon Key Management Service Developer Guide

 "KeyState": "PendingImport",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "MultiRegion": false,
 "Origin": "EXTERNAL"
 }
 }

For more information, see Importing key material in Amazon KMS keys in the Amazon Key
Management Service Developer Guide.

Example 6: To create a KMS key in an Amazon CloudHSM key store

The following create-key example creates a creates a KMS key in the specified Amazon
CloudHSM key store. The operation creates the KMS key and its metadata in Amazon KMS
and creates the key material in the Amazon CloudHSM cluster associated with the custom
key store. The --custom-key-store-id and --origin parameters are required.

aws kms create-key \
 --origin AWS_CLOUDHSM \
 --custom-key-store-id cks-1234567890abcdef0

Output:

{
 "KeyMetadata": {
 "Arn": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "CreationDate": "2019-12-02T07:48:55-07:00",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "Description": "",
 "Enabled": true,
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",

Actions 899

https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html

Amazon Key Management Service Developer Guide

 "MultiRegion": false,
 "Origin": "AWS_CLOUDHSM"
 }
}

For more information, see Amazon CloudHSM key stores in the Amazon Key Management
Service Developer Guide.

Example 8: To create a KMS key in an external key store

The following create-key example creates a creates a KMS key in the specified external
key store. The --custom-key-store-id, --origin, and --xks-key-id parameters are
required in this command.

The --xks-key-id parameter specifies the ID of an existing symmetric encryption key in
your external key manager. This key serves as the external key material for the KMS key.The
value of the --origin parameter must be EXTERNAL_KEY_STORE.The custom-key-
store-id parameter must identify an external key store that is connected to its external
key store proxy.

aws kms create-key \
 --origin EXTERNAL_KEY_STORE \
 --custom-key-store-id cks-9876543210fedcba9 \
 --xks-key-id bb8562717f809024

Output:

{
 "KeyMetadata": {
 "Arn": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333",
 "CreationDate": "2022-12-02T07:48:55-07:00",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "CustomKeyStoreId": "cks-9876543210fedcba9",
 "Description": "",
 "Enabled": true,
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",

Actions 900

https://docs.aws.amazon.com/kms/latest/developerguide/keystore-cloudhsm.html

Amazon Key Management Service Developer Guide

 "KeyManager": "CUSTOMER",
 "KeySpec": "SYMMETRIC_DEFAULT",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "MultiRegion": false,
 "Origin": "EXTERNAL_KEY_STORE",
 "XksKeyConfiguration": {
 "Id": "bb8562717f809024"
 }
 }
}

For more information, see External key stores in the Amazon Key Management Service
Developer Guide.

• For API details, see CreateKey in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Creates a new symmetric encryption key asynchronously.
 *
 * @param keyDesc the description of the key to be created
 * @return a {@link CompletableFuture} that completes with the ID of the
 newly created key
 * @throws RuntimeException if an error occurs while creating the key
 */
 public CompletableFuture<String> createKeyAsync(String keyDesc) {
 CreateKeyRequest keyRequest = CreateKeyRequest.builder()
 .description(keyDesc)
 .keySpec(KeySpec.SYMMETRIC_DEFAULT)
 .keyUsage(KeyUsageType.ENCRYPT_DECRYPT)
 .build();

Actions 901

https://docs.aws.amazon.com/kms/latest/developerguide/keystore-external.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/create-key.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 return getAsyncClient().createKey(keyRequest)
 .thenApply(resp -> resp.keyMetadata().keyId())
 .exceptionally(ex -> {
 throw new RuntimeException("An error occurred while creating the
 key: " + ex.getMessage(), ex);
 });
 }

• For API details, see CreateKey in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun createKey(keyDesc: String?): String? {
 val request =
 CreateKeyRequest {
 description = keyDesc
 customerMasterKeySpec = CustomerMasterKeySpec.SymmetricDefault
 keyUsage = KeyUsageType.fromValue("ENCRYPT_DECRYPT")
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val result = kmsClient.createKey(request)
 println("Created a customer key with id " + result.keyMetadata?.arn)
 return result.keyMetadata?.keyId
 }
}

• For API details, see CreateKey in Amazon SDK for Kotlin API reference.

Actions 902

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/CreateKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Key Management Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keySpec
 * @param string $keyUsage
 * @param string $description
 * @return array
 */
 public function createKey(string $keySpec = "", string $keyUsage = "", string
 $description = "Created by the SDK for PHP")
 {
 $parameters = ['Description' => $description];
 if($keySpec && $keyUsage){
 $parameters['KeySpec'] = $keySpec;
 $parameters['KeyUsage'] = $keyUsage;
 }
 try {
 $result = $this->client->createKey($parameters);
 return $result['KeyMetadata'];
 }catch(KmsException $caught){
 // Check for error specific to createKey operations
 if ($caught->getAwsErrorMessage() == "LimitExceededException"){
 echo "The request was rejected because a quota was exceeded. For
 more information, see Quotas in the Key Management Service Developer Guide.";
 }
 throw $caught;
 }
 }

• For API details, see CreateKey in Amazon SDK for PHP API Reference.

Actions 903

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/CreateKey

Amazon Key Management Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """
 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def create_key(self, key_description: str) -> dict[str, any]:
 """
 Creates a key with a user-provided description.

 :param key_description: A description for the key.
 :return: The key ID.
 """
 try:
 key = self.kms_client.create_key(Description=key_description)
["KeyMetadata"]
 self.created_keys.append(key)
 return key
 except ClientError as err:
 logging.error(
 "Couldn't create your key. Here's why: %s",

Actions 904

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 err.response["Error"]["Message"],
)
 raise

• For API details, see CreateKey in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

require 'aws-sdk-kms' # v2: require 'aws-sdk'

Create a AWS KMS key.
As long we are only encrypting small amounts of data (4 KiB or less) directly,
a KMS key is fine for our purposes.
For larger amounts of data,
use the KMS key to encrypt a data encryption key (DEK).

client = Aws::KMS::Client.new

resp = client.create_key({
 tags: [
 {
 tag_key: 'CreatedBy',
 tag_value: 'ExampleUser'
 }
]
 })

puts resp.key_metadata.key_id

Actions 905

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/CreateKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

• For API details, see CreateKey in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn make_key(client: &Client) -> Result<(), Error> {
 let resp = client.create_key().send().await?;

 let id = resp.key_metadata.as_ref().unwrap().key_id();

 println!("Key: {}", id);

 Ok(())
}

• For API details, see CreateKey in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use Decrypt with an Amazon SDK or CLI

The following code examples show how to use Decrypt.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

Actions 906

https://docs.amazonaws.cn/goto/SdkForRubyV3/kms-2014-11-01/CreateKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/kms#code-examples
https://docs.rs/aws-sdk-kms/latest/aws_sdk_kms/client/struct.Client.html#method.create_key

Amazon Key Management Service Developer Guide

CLI

Amazon CLI

Example 1: To decrypt an encrypted message with a symmetric KMS key (Linux and
macOS)

The following decrypt command example demonstrates the recommended way to decrypt
data with the Amazon CLI. This version shows how to decrypt data under a symmetric KMS
key.

Provide the ciphertext in a file.In the value of the --ciphertext-blob parameter, use the
fileb:// prefix, which tells the CLI to read the data from a binary file. If the file is not in
the current directory, type the full path to file. For more information about reading Amazon
CLI parameter values from a file, see Loading Amazon CLI parameters from a file <https://
docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html> in the Amazon
Command Line Interface User Guide and Best Practices for Local File Parameters<https://
aws.amazon.com/blogs/developer/best-practices-for-local-file-parameters/> in the Amazon
Command Line Tool Blog.Specify the KMS key to decrypt the ciphertext.The --key-id
parameter is not required when decrypting with a symmetric KMS key. Amazon KMS can
get the key ID of the KMS key that was used to encrypt the data from the metadata in the
ciphertext. But it's always a best practice to specify the KMS key you are using. This practice
ensures that you use the KMS key that you intend, and prevents you from inadvertently
decrypting a ciphertext using a KMS key you do not trust.Request the plaintext output as
a text value.The --query parameter tells the CLI to get only the value of the Plaintext
field from the output. The --output parameter returns the output as text.Base64-decode
the plaintext and save it in a file.The following example pipes (|) the value of the Plaintext
parameter to the Base64 utility, which decodes it. Then, it redirects (>) the decoded output
to the ExamplePlaintext file.

Before running this command, replace the example key ID with a valid key ID from your
Amazon account.

aws kms decrypt \
 --ciphertext-blob fileb://ExampleEncryptedFile \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --output text \
 --query Plaintext | base64 \
 --decode > ExamplePlaintextFile

Actions 907

Amazon Key Management Service Developer Guide

This command produces no output. The output from the decrypt command is base64-
decoded and saved in a file.

For more information, see Decrypt in the Amazon Key Management Service API Reference.

Example 2: To decrypt an encrypted message with a symmetric KMS key (Windows
command prompt)

The following example is the same as the previous one except that it uses the certutil
utility to Base64-decode the plaintext data. This procedure requires two commands, as
shown in the following examples.

Before running this command, replace the example key ID with a valid key ID from your
Amazon account.

aws kms decrypt ^
 --ciphertext-blob fileb://ExampleEncryptedFile ^
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab ^
 --output text ^
 --query Plaintext > ExamplePlaintextFile.base64

Run the certutil command.

certutil -decode ExamplePlaintextFile.base64 ExamplePlaintextFile

Output:

Input Length = 18
Output Length = 12
CertUtil: -decode command completed successfully.

For more information, see Decrypt in the Amazon Key Management Service API Reference.

Example 3: To decrypt an encrypted message with an asymmetric KMS key (Linux and
macOS)

The following decrypt command example shows how to decrypt data encrypted under an
RSA asymmetric KMS key.

When using an asymmetric KMS key, the encryption-algorithm parameter, which
specifies the algorithm used to encrypt the plaintext, is required.

Actions 908

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

Before running this command, replace the example key ID with a valid key ID from your
Amazon account.

aws kms decrypt \
 --ciphertext-blob fileb://ExampleEncryptedFile \
 --key-id 0987dcba-09fe-87dc-65ba-ab0987654321 \
 --encryption-algorithm RSAES_OAEP_SHA_256 \
 --output text \
 --query Plaintext | base64 \
 --decode > ExamplePlaintextFile

This command produces no output. The output from the decrypt command is base64-
decoded and saved in a file.

For more information, see Asymmetric keys in Amazon KMS in the Amazon Key Management
Service Developer Guide.

• For API details, see Decrypt in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Asynchronously decrypts the given encrypted data using the specified key
 ID.
 *
 * @param encryptedData The encrypted data to be decrypted.
 * @param keyId The ID of the key to be used for decryption.
 * @return A CompletableFuture that, when completed, will contain the
 decrypted data as a String.
 * If an error occurs during the decryption process, the
 CompletableFuture will complete
 * exceptionally with the error, and the method will return an empty
 String.

Actions 909

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/decrypt.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 */
 public CompletableFuture<String> decryptDataAsync(SdkBytes encryptedData,
 String keyId) {
 DecryptRequest decryptRequest = DecryptRequest.builder()
 .ciphertextBlob(encryptedData)
 .keyId(keyId)
 .build();

 CompletableFuture<DecryptResponse> responseFuture =
 getAsyncClient().decrypt(decryptRequest);
 responseFuture.whenComplete((decryptResponse, exception) -> {
 if (exception == null) {
 logger.info("Data decrypted successfully for key ID: " + keyId);
 } else {
 if (exception instanceof KmsException kmsEx) {
 throw new RuntimeException("KMS error occurred while
 decrypting data: " + kmsEx.getMessage(), kmsEx);
 } else {
 throw new RuntimeException("An unexpected error occurred
 while decrypting data: " + exception.getMessage(), exception);
 }
 }
 });

 return responseFuture.thenApply(decryptResponse ->
 decryptResponse.plaintext().asString(StandardCharsets.UTF_8));
 }

• For API details, see Decrypt in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun encryptData(keyIdValue: String): ByteArray? {

Actions 910

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/Decrypt
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples

Amazon Key Management Service Developer Guide

 val text = "This is the text to encrypt by using the AWS KMS Service"
 val myBytes: ByteArray = text.toByteArray()

 val encryptRequest =
 EncryptRequest {
 keyId = keyIdValue
 plaintext = myBytes
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val response = kmsClient.encrypt(encryptRequest)
 val algorithm: String = response.encryptionAlgorithm.toString()
 println("The encryption algorithm is $algorithm")

 // Return the encrypted data.
 return response.ciphertextBlob
 }
}

suspend fun decryptData(
 encryptedDataVal: ByteArray?,
 keyIdVal: String?,
) {
 val decryptRequest =
 DecryptRequest {
 ciphertextBlob = encryptedDataVal
 keyId = keyIdVal
 }
 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val decryptResponse = kmsClient.decrypt(decryptRequest)
 val myVal = decryptResponse.plaintext

 // Print the decrypted data.
 print(myVal)
 }
}

• For API details, see Decrypt in Amazon SDK for Kotlin API reference.

Actions 911

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Key Management Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @param string $ciphertext
 * @param string $algorithm
 * @return Result
 */
 public function decrypt(string $keyId, string $ciphertext, string $algorithm
 = "SYMMETRIC_DEFAULT")
 {
 try{
 return $this->client->decrypt([
 'CiphertextBlob' => $ciphertext,
 'EncryptionAlgorithm' => $algorithm,
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 echo "There was a problem decrypting the data: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

• For API details, see Decrypt in Amazon SDK for PHP API Reference.

Actions 912

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/Decrypt

Amazon Key Management Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyEncrypt:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "KeyEncrypt":
 """
 Creates a KeyEncrypt instance with a default KMS client.

 :return: An instance of KeyEncrypt initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def decrypt(self, key_id: str, cipher_text: str) -> bytes:
 """
 Decrypts text previously encrypted with a key.

 :param key_id: The ARN or ID of the key used to decrypt the data.
 :param cipher_text: The encrypted text to decrypt.
 :return: The decrypted text.
 """
 try:
 return self.kms_client.decrypt(KeyId=key_id,
 CiphertextBlob=cipher_text)[
 "Plaintext"
]
 except ClientError as err:
 logger.error(
 "Couldn't decrypt your ciphertext. Here's why: %s",

Actions 913

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 err.response["Error"]["Message"],
)
 raise

• For API details, see Decrypt in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

require 'aws-sdk-kms' # v2: require 'aws-sdk'

Decrypted blob

blob =
 '01020200785d68faeec386af1057904926253051eb2919d3c16078badf65b808b26dd057c101747cadf3593596e093d4ffbf22434a6d00000068306606092a864886f70d010706a0593057020100305206092a864886f70d010701301e060960864801650304012e3011040c9d629e573683972cdb7d94b30201108025b20b060591b02ca0deb0fbdfc2f86c8bfcb265947739851ad56f3adce91eba87c59691a9a1'
blob_packed = [blob].pack('H*')

client = Aws::KMS::Client.new(region: 'us-west-2')

resp = client.decrypt({
 ciphertext_blob: blob_packed
 })

puts 'Raw text: '
puts resp.plaintext

• For API details, see Decrypt in Amazon SDK for Ruby API Reference.

Actions 914

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/Decrypt
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/kms-2014-11-01/Decrypt

Amazon Key Management Service Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn decrypt_key(client: &Client, key: &str, filename: &str) -> Result<(),
 Error> {
 // Open input text file and get contents as a string
 // input is a base-64 encoded string, so decode it:
 let data = fs::read_to_string(filename)
 .map(|input| {
 base64::decode(input).expect("Input file does not contain valid base
 64 characters.")
 })
 .map(Blob::new);

 let resp = client
 .decrypt()
 .key_id(key)
 .ciphertext_blob(data.unwrap())
 .send()
 .await?;

 let inner = resp.plaintext.unwrap();
 let bytes = inner.as_ref();

 let s = String::from_utf8(bytes.to_vec()).expect("Could not convert to
 UTF-8");

 println!();
 println!("Decoded string:");
 println!("{}", s);

 Ok(())
}

Actions 915

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/kms#code-examples

Amazon Key Management Service Developer Guide

• For API details, see Decrypt in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DeleteAlias with an Amazon SDK or CLI

The following code examples show how to use DeleteAlias.

CLI

Amazon CLI

To delete an Amazon KMS alias

The following delete-alias example deletes the alias alias/example-alias. The alias
name must begin with alias/.

aws kms delete-alias \
 --alias-name alias/example-alias

This command produces no output. To find the alias, use the list-aliases command.

For more information, see Deleting an alias in the Amazon Key Management Service
Developer Guide.

• For API details, see DeleteAlias in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Deletes a specific KMS alias asynchronously.

Actions 916

https://docs.rs/aws-sdk-kms/latest/aws_sdk_kms/client/struct.Client.html#method.decrypt
https://docs.aws.amazon.com/kms/latest/developerguide/alias-manage.html#alias-delete
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/delete-alias.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 *
 * @param aliasName the name of the alias to be deleted
 * @return a {@link CompletableFuture} representing the asynchronous
 operation of deleting the specified alias
 */
 public CompletableFuture<Void> deleteSpecificAliasAsync(String aliasName) {
 DeleteAliasRequest deleteAliasRequest = DeleteAliasRequest.builder()
 .aliasName(aliasName)
 .build();

 return getAsyncClient().deleteAlias(deleteAliasRequest)
 .thenRun(() -> {
 logger.info("Alias {} has been deleted successfully", aliasName);
 })
 .exceptionally(throwable -> {
 throw new RuntimeException("Failed to delete alias: " +
 aliasName, throwable);
 });
 }

• For API details, see DeleteAlias in Amazon SDK for Java 2.x API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $aliasName
 * @return void
 */
 public function deleteAlias(string $aliasName)
 {
 try {
 $this->client->deleteAlias([

Actions 917

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/DeleteAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 'AliasName' => $aliasName,
]);
 }catch(KmsException $caught){
 echo "There was a problem deleting the alias: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

• For API details, see DeleteAlias in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class AliasManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_key = None

 @classmethod
 def from_client(cls) -> "AliasManager":
 """
 Creates an AliasManager instance with a default KMS client.

 :return: An instance of AliasManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def delete_alias(self, alias: str) -> None:
 """

Actions 918

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/DeleteAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 Deletes an alias.

 :param alias: The alias to delete.
 """
 try:
 self.kms_client.delete_alias(AliasName=alias)
 except ClientError as err:
 logger.error(
 "Couldn't delete alias %s. Here's why: %s",
 alias,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteAlias in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeKey with an Amazon SDK or CLI

The following code examples show how to use DescribeKey.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions 919

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/DeleteAlias
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

Amazon Key Management Service Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Retrieve information about an AWS Key Management Service (AWS KMS) key.
 /// You can supply either the key Id or the key Amazon Resource Name (ARN)
 /// to the DescribeKeyRequest KeyId property.
 /// </summary>
 public class DescribeKey
 {
 public static async Task Main()
 {
 var keyId = "7c9eccc2-38cb-4c4f-9db3-766ee8dd3ad4";
 var request = new DescribeKeyRequest
 {
 KeyId = keyId,
 };

 var client = new AmazonKeyManagementServiceClient();

 var response = await client.DescribeKeyAsync(request);
 var metadata = response.KeyMetadata;

 Console.WriteLine($"{metadata.KeyId} created on:
 {metadata.CreationDate}");
 Console.WriteLine($"State: {metadata.KeyState}");
 Console.WriteLine($"{metadata.Description}");
 }
 }

• For API details, see DescribeKey in Amazon SDK for .NET API Reference.

CLI

Amazon CLI

Example 1: To find detailed information about a KMS key

Actions 920

https://docs.amazonaws.cn/goto/DotNetSDKV3/kms-2014-11-01/DescribeKey

Amazon Key Management Service Developer Guide

The following describe-key example gets detailed information about the Amazon
managed key for Amazon S3 in the example account and Region. You can use this command
to find details about Amazon managed keys and customer managed keys.

To specify the KMS key, use the key-id parameter. This example uses an alias name value,
but you can use a key ID, key ARN, alias name, or alias ARN in this command.

aws kms describe-key \
 --key-id alias/aws/s3

Output:

{
 "KeyMetadata": {
 "AWSAccountId": "846764612917",
 "KeyId": "b8a9477d-836c-491f-857e-07937918959b",
 "Arn": "arn:aws:kms:us-west-2:846764612917:key/
b8a9477d-836c-491f-857e-07937918959b",
 "CurrentKeyMaterialId":
 "0b7fd7ddbac6eef27907413567cad8c810e2883dc8a7534067a82ee1142fc1e6",
 "CreationDate": 2017-06-30T21:44:32.140000+00:00,
 "Enabled": true,
 "Description": "Default KMS key that protects my S3 objects when no other
 key is defined",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "Origin": "AWS_KMS",
 "KeyManager": "AWS",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

For more information, see Viewing keys in the Amazon Key Management Service Developer
Guide.

Example 2: To get details about an RSA asymmetric KMS key

The following describe-key example gets detailed information about an asymmetric RSA
KMS key used for signing and verification.

Actions 921

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html

Amazon Key Management Service Developer Guide

aws kms describe-key \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

Output:

{
 "KeyMetadata": {
 "AWSAccountId": "111122223333",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": "2019-12-02T19:47:14.861000+00:00",
 "CustomerMasterKeySpec": "RSA_2048",
 "Enabled": false,
 "Description": "",
 "KeyState": "Disabled",
 "Origin": "AWS_KMS",
 "MultiRegion": false,
 "KeyManager": "CUSTOMER",
 "KeySpec": "RSA_2048",
 "KeyUsage": "SIGN_VERIFY",
 "SigningAlgorithms": [
 "RSASSA_PKCS1_V1_5_SHA_256",
 "RSASSA_PKCS1_V1_5_SHA_384",
 "RSASSA_PKCS1_V1_5_SHA_512",
 "RSASSA_PSS_SHA_256",
 "RSASSA_PSS_SHA_384",
 "RSASSA_PSS_SHA_512"
]
 }
}

Example 3: To get details about a multi-Region replica key

The following describe-key example gets metadata for a multi-Region replica key. This
multi-Region key is a symmetric encryption key. The output of a describe-key command
for any multi-Region key returns information about the primary key and all of its replicas.

aws kms describe-key \
 --key-id arn:aws:kms:ap-northeast-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab

Actions 922

Amazon Key Management Service Developer Guide

Output:

{
 "KeyMetadata": {
 "MultiRegion": true,
 "AWSAccountId": "111122223333",
 "Arn": "arn:aws:kms:ap-northeast-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "CreationDate": "2021-06-28T21:09:16.114000+00:00",
 "CurrentKeyMaterialId":
 "0b7fd7ddbac6eef27907413567cad8c810e2883dc8a7534067a82ee1142fc1e6",
 "Description": "",
 "Enabled": true,
 "KeyId": "mrk-1234abcd12ab34cd56ef1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "Origin": "AWS_KMS",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
],
 "MultiRegionConfiguration": {
 "MultiRegionKeyType": "PRIMARY",
 "PrimaryKey": {
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "us-west-2"
 },
 "ReplicaKeys": [
 {
 "Arn": "arn:aws:kms:eu-west-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "eu-west-1"
 },
 {
 "Arn": "arn:aws:kms:ap-northeast-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "ap-northeast-1"
 },
 {
 "Arn": "arn:aws:kms:sa-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab",
 "Region": "sa-east-1"

Actions 923

Amazon Key Management Service Developer Guide

 }
]
 }
 }
}

Example 4: To get details about an HMAC KMS key

The following describe-key example gets detailed information about an HMAC KMS key.

aws kms describe-key \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

Output:

{
 "KeyMetadata": {
 "AWSAccountId": "123456789012",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Arn": "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": "2022-04-03T22:23:10.194000+00:00",
 "Enabled": true,
 "Description": "Test key",
 "KeyUsage": "GENERATE_VERIFY_MAC",
 "KeyState": "Enabled",
 "Origin": "AWS_KMS",
 "KeyManager": "CUSTOMER",
 "CustomerMasterKeySpec": "HMAC_256",
 "MacAlgorithms": [
 "HMAC_SHA_256"
],
 "MultiRegion": false
 }
}

• For API details, see DescribeKey in Amazon CLI Command Reference.

Actions 924

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/describe-key.html

Amazon Key Management Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Asynchronously checks if a specified key is enabled.
 *
 * @param keyId the ID of the key to check
 * @return a {@link CompletableFuture} that, when completed, indicates
 whether the key is enabled or not
 *
 * @throws RuntimeException if an exception occurs while checking the key
 state
 */
 public CompletableFuture<Boolean> isKeyEnabledAsync(String keyId) {
 DescribeKeyRequest keyRequest = DescribeKeyRequest.builder()
 .keyId(keyId)
 .build();

 CompletableFuture<DescribeKeyResponse> responseFuture =
 getAsyncClient().describeKey(keyRequest);
 return responseFuture.whenComplete((resp, ex) -> {
 if (resp != null) {
 KeyState keyState = resp.keyMetadata().keyState();
 if (keyState == KeyState.ENABLED) {
 logger.info("The key is enabled.");
 } else {
 logger.info("The key is not enabled. Key state: {}",
 keyState);
 }
 } else {
 throw new RuntimeException(ex);
 }
 }).thenApply(resp -> resp.keyMetadata().keyState() == KeyState.ENABLED);
 }

Actions 925

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

• For API details, see DescribeKey in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun describeSpecifcKey(keyIdVal: String?) {
 val request =
 DescribeKeyRequest {
 keyId = keyIdVal
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val response = kmsClient.describeKey(request)
 println("The key description is ${response.keyMetadata?.description}")
 println("The key ARN is ${response.keyMetadata?.arn}")
 }
}

• For API details, see DescribeKey in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions 926

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/DescribeKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 /***
 * @param string $keyId
 * @return array
 */
 public function describeKey(string $keyId)
 {
 try {
 $result = $this->client->describeKey([
 "KeyId" => $keyId,
]);
 return $result['KeyMetadata'];
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "NotFoundException"){
 echo "The request was rejected because the specified entity or
 resource could not be found.\n";
 }
 throw $caught;
 }
 }

• For API details, see DescribeKey in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """

Actions 927

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/DescribeKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def describe_key(self, key_id: str) -> dict[str, any]:
 """
 Describes a key.

 :param key_id: The ARN or ID of the key to describe.
 :return: Information about the key.
 """

 try:
 key = self.kms_client.describe_key(KeyId=key_id)["KeyMetadata"]
 return key
 except ClientError as err:
 logging.error(
 "Couldn't get key '%s'. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DescribeKey in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DisableKey with an Amazon SDK or CLI

The following code examples show how to use DisableKey.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

Actions 928

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/DescribeKey

Amazon Key Management Service Developer Guide

• Learn the basics

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Disable an AWS Key Management Service (AWS KMS) key and then retrieve
 /// the key's status to show that it has been disabled.
 /// </summary>
 public class DisableKey
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();

 // The identifier of the AWS KMS key to disable. You can use the
 // key Id or the Amazon Resource Name (ARN) of the AWS KMS key.
 var keyId = "1234abcd-12ab-34cd-56ef-1234567890ab";

 var request = new DisableKeyRequest
 {
 KeyId = keyId,
 };

 var response = await client.DisableKeyAsync(request);

 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 // Retrieve information about the key to show that it has now
 // been disabled.

Actions 929

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

Amazon Key Management Service Developer Guide

 var describeResponse = await client.DescribeKeyAsync(new
 DescribeKeyRequest
 {
 KeyId = keyId,
 });
 Console.WriteLine($"{describeResponse.KeyMetadata.KeyId} - state:
 {describeResponse.KeyMetadata.KeyState}");
 }
 }
 }

• For API details, see DisableKey in Amazon SDK for .NET API Reference.

CLI

Amazon CLI

To temporarily disable a KMS key

The following disable-key command disables a customer managed KMS key. To re-enable
the KMS key, use the enable-key command.

aws kms disable-key \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

This command produces no output.

For more information, see Enabling and Disabling Keys in the Amazon Key Management
Service Developer Guide.

• For API details, see DisableKey in Amazon CLI Command Reference.

Actions 930

https://docs.amazonaws.cn/goto/DotNetSDKV3/kms-2014-11-01/DisableKey
https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/disable-key.html

Amazon Key Management Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Asynchronously disables the specified AWS Key Management Service (KMS)
 key.
 *
 * @param keyId the ID or Amazon Resource Name (ARN) of the KMS key to be
 disabled
 * @return a CompletableFuture that, when completed, indicates that the key
 has been disabled successfully
 */
 public CompletableFuture<Void> disableKeyAsync(String keyId) {
 DisableKeyRequest keyRequest = DisableKeyRequest.builder()
 .keyId(keyId)
 .build();

 return getAsyncClient().disableKey(keyRequest)
 .thenRun(() -> {
 logger.info("Key {} has been disabled successfully",keyId);
 })
 .exceptionally(throwable -> {
 throw new RuntimeException("Failed to disable key: " + keyId,
 throwable);
 });
 }

• For API details, see DisableKey in Amazon SDK for Java 2.x API Reference.

Actions 931

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/DisableKey

Amazon Key Management Service Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun disableKey(keyIdVal: String?) {
 val request =
 DisableKeyRequest {
 keyId = keyIdVal
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 kmsClient.disableKey(request)
 println("$keyIdVal was successfully disabled")
 }
}

• For API details, see DisableKey in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @return void
 */

Actions 932

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 public function disableKey(string $keyId)
 {
 try {
 $this->client->disableKey([
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 echo "There was a problem disabling the key: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

• For API details, see DisableKey in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """
 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

Actions 933

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/DisableKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 def disable_key(self, key_id: str) -> None:
 try:
 self.kms_client.disable_key(KeyId=key_id)
 except ClientError as err:
 logging.error(
 "Couldn't disable key '%s'. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DisableKey in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use EnableKey with an Amazon SDK or CLI

The following code examples show how to use EnableKey.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions 934

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/DisableKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

Amazon Key Management Service Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// Enable an AWS Key Management Service (AWS KMS) key.
 /// </summary>
 public class EnableKey
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();

 // The identifier of the AWS KMS key to enable. You can use the
 // key Id or the Amazon Resource Name (ARN) of the AWS KMS key.
 var keyId = "1234abcd-12ab-34cd-56ef-1234567890ab";

 var request = new EnableKeyRequest
 {
 KeyId = keyId,
 };

 var response = await client.EnableKeyAsync(request);
 if (response.HttpStatusCode == System.Net.HttpStatusCode.OK)
 {
 // Retrieve information about the key to show that it has now
 // been enabled.
 var describeResponse = await client.DescribeKeyAsync(new
 DescribeKeyRequest
 {
 KeyId = keyId,
 });
 Console.WriteLine($"{describeResponse.KeyMetadata.KeyId} - state:
 {describeResponse.KeyMetadata.KeyState}");
 }
 }
 }

• For API details, see EnableKey in Amazon SDK for .NET API Reference.

Actions 935

https://docs.amazonaws.cn/goto/DotNetSDKV3/kms-2014-11-01/EnableKey

Amazon Key Management Service Developer Guide

CLI

Amazon CLI

To enable a KMS key

The following enable-key example enables a customer managed key. You can use a
command like this one to enable a KMS key that you temporarily disabled by using the
disable-key command. You can also use it to enable a KMS key that is disabled because it
was scheduled for deletion and the deletion was canceled.

To specify the KMS key, use the key-id parameter. This example uses an key ID value, but
you can use a key ID or key ARN value in this command.

Before running this command, replace the example key ID with a valid one.

aws kms enable-key \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

This command produces no output. To verify that the KMS key is enabled, use the
describe-key command. See the values of the KeyState and Enabled fields in the
describe-key output.

For more information, see Enabling and Disabling Keys in the Amazon Key Management
Service Developer Guide.

• For API details, see EnableKey in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Asynchronously enables the specified key.
 *

Actions 936

https://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/enable-key.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 * @param keyId the ID of the key to enable
 * @return a {@link CompletableFuture} that completes when the key has been
 enabled
 */
 public CompletableFuture<Void> enableKeyAsync(String keyId) {
 EnableKeyRequest enableKeyRequest = EnableKeyRequest.builder()
 .keyId(keyId)
 .build();

 CompletableFuture<EnableKeyResponse> responseFuture =
 getAsyncClient().enableKey(enableKeyRequest);
 responseFuture.whenComplete((response, exception) -> {
 if (exception == null) {
 logger.info("Key with ID [{}] has been enabled.", keyId);
 } else {
 if (exception instanceof KmsException kmsEx) {
 throw new RuntimeException("KMS error occurred while enabling
 key: " + kmsEx.getMessage(), kmsEx);
 } else {
 throw new RuntimeException("An unexpected error occurred
 while enabling key: " + exception.getMessage(), exception);
 }
 }
 });

 return responseFuture.thenApply(response -> null);
 }

• For API details, see EnableKey in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun enableKey(keyIdVal: String?) {

Actions 937

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/EnableKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples

Amazon Key Management Service Developer Guide

 val request =
 EnableKeyRequest {
 keyId = keyIdVal
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 kmsClient.enableKey(request)
 println("$keyIdVal was successfully enabled.")
 }
}

• For API details, see EnableKey in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @return void
 */
 public function enableKey(string $keyId)
 {
 try {
 $this->client->enableKey([
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "NotFoundException"){
 echo "The request was rejected because the specified entity or
 resource could not be found.\n";
 }
 throw $caught;
 }

Actions 938

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 }

• For API details, see EnableKey in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """
 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def enable_key(self, key_id: str) -> None:
 """
 Enables a key. Gets the key state after each state change.

 :param key_id: The ARN or ID of the key to enable.
 """
 try:
 self.kms_client.enable_key(KeyId=key_id)
 except ClientError as err:

Actions 939

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/EnableKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 logging.error(
 "Couldn't enable key '%s'. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see EnableKey in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use EnableKeyRotation with an Amazon SDK or CLI

The following code examples show how to use EnableKeyRotation.

CLI

Amazon CLI

To enable automatic rotation of a KMS key

The following enable-key-rotation example enables automatic rotation of a customer
managed KMS key with a rotation period of 180 days. The KMS key will be rotated one
year (approximate 365 days) from the date that this command completes and every year
thereafter.

The --key-id parameter identifies the KMS key. This example uses a key ARN value, but
you can use either the key ID or the ARN of the KMS key.The --rotation-period-in-
days parameter specifies the number of days between each rotation date. Specify a value
between 90 and 2560 days. If no value is specified, the default value is 365 days.

aws kms enable-key-rotation \
 --key-id arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
 --rotation-period-in-days 180

Actions 940

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/EnableKey

Amazon Key Management Service Developer Guide

This command produces no output. To verify that the KMS key is enabled, use the get-key-
rotation-status command.

For more information, see Rotating keys in the Amazon Key Management Service Developer
Guide.

• For API details, see EnableKeyRotation in Amazon CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """
 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def enable_key_rotation(self, key_id: str) -> None:
 """
 Enables rotation for a key.

 :param key_id: The ARN or ID of the key to enable rotation for.
 """
 try:

Actions 941

https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/enable-key-rotation.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 self.kms_client.enable_key_rotation(KeyId=key_id)
 except ClientError as err:
 logging.error(
 "Couldn't enable rotation for key '%s'. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see EnableKeyRotation in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use Encrypt with an Amazon SDK or CLI

The following code examples show how to use Encrypt.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

CLI

Amazon CLI

Example 1: To encrypt the contents of a file on Linux or MacOS

The following encrypt command demonstrates the recommended way to encrypt data
with the Amazon CLI.

aws kms encrypt \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --plaintext fileb://ExamplePlaintextFile \
 --output text \
 --query CiphertextBlob | base64 \
 --decode > ExampleEncryptedFile

Actions 942

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/EnableKeyRotation

Amazon Key Management Service Developer Guide

The command does several things:

Uses the --plaintext parameter to indicate the data to encrypt. This parameter value
must be base64-encoded.The value of the plaintext parameter must be base64-
encoded, or you must use the fileb:// prefix, which tells the Amazon CLI to read
binary data from the file.If the file is not in the current directory, type the full path to
file. For example: fileb:///var/tmp/ExamplePlaintextFile or fileb://C:
\Temp\ExamplePlaintextFile. For more information about reading Amazon CLI
parameter values from a file, see Loading Parameters from a File in the Amazon Command
Line Interface User Guide and Best Practices for Local File Parameters on the Amazon
Command Line Tool Blog.Uses the --output and --query parameters to control the
command's output.These parameters extract the encrypted data, called the ciphertext, from
the command's output.For more information about controlling output, see Controlling
Command Output in the Amazon Command Line Interface User Guide.Uses the base64
utility to decode the extracted output into binary data.The ciphertext that is returned by a
successful encrypt command is base64-encoded text. You must decode this text before you
can use the Amazon CLI to decrypt it.Saves the binary ciphertext to a file.The final part of
the command (> ExampleEncryptedFile) saves the binary ciphertext to a file to make
decryption easier. For an example command that uses the Amazon CLI to decrypt data, see
the decrypt examples.

Example 2: Using the Amazon CLI to encrypt data on Windows

This example is the same as the previous one, except that it uses the certutil tool instead
of base64. This procedure requires two commands, as shown in the following example.

aws kms encrypt \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --plaintext fileb://ExamplePlaintextFile \
 --output text \
 --query CiphertextBlob > C:\Temp\ExampleEncryptedFile.base64

certutil -decode C:\Temp\ExampleEncryptedFile.base64 C:\Temp\ExampleEncryptedFile

Example 3: Encrypting with an asymmetric KMS key

The following encrypt command shows how to encrypt plaintext with an asymmetric
KMS key. The --encryption-algorithm parameter is required. As in all encrypt CLI

Actions 943

https://docs.aws.amazon.com/cli/latest/userguide/cli-using-param.html#cli-using-param-file
https://blogs.aws.amazon.com/cli/post/TxLWWN1O25V1HE/Best-Practices-for-Local-File-Parameters
https://docs.aws.amazon.com/cli/latest/userguide/controlling-output.html
https://docs.aws.amazon.com/cli/latest/userguide/controlling-output.html

Amazon Key Management Service Developer Guide

commands, the plaintext parameter must be base64-encoded, or you must use the
fileb:// prefix, which tells the Amazon CLI to read binary data from the file.

aws kms encrypt \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --encryption-algorithm RSAES_OAEP_SHA_256 \
 --plaintext fileb://ExamplePlaintextFile \
 --output text \
 --query CiphertextBlob | base64 \
 --decode > ExampleEncryptedFile

This command produces no output.

• For API details, see Encrypt in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Encrypts the given text asynchronously using the specified KMS client and
 key ID.
 *
 * @param keyId the ID of the KMS key to use for encryption
 * @param text the text to encrypt
 * @return a CompletableFuture that completes with the encrypted data as an
 SdkBytes object
 */
 public CompletableFuture<SdkBytes> encryptDataAsync(String keyId, String
 text) {
 SdkBytes myBytes = SdkBytes.fromUtf8String(text);
 EncryptRequest encryptRequest = EncryptRequest.builder()
 .keyId(keyId)
 .plaintext(myBytes)
 .build();

Actions 944

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/encrypt.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 CompletableFuture<EncryptResponse> responseFuture =
 getAsyncClient().encrypt(encryptRequest).toCompletableFuture();
 return responseFuture.whenComplete((response, ex) -> {
 if (response != null) {
 String algorithm = response.encryptionAlgorithm().toString();
 logger.info("The string was encrypted with algorithm {}.",
 algorithm);
 } else {
 throw new RuntimeException(ex);
 }
 }).thenApply(EncryptResponse::ciphertextBlob);
 }

• For API details, see Encrypt in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun encryptData(keyIdValue: String): ByteArray? {
 val text = "This is the text to encrypt by using the AWS KMS Service"
 val myBytes: ByteArray = text.toByteArray()

 val encryptRequest =
 EncryptRequest {
 keyId = keyIdValue
 plaintext = myBytes
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val response = kmsClient.encrypt(encryptRequest)
 val algorithm: String = response.encryptionAlgorithm.toString()
 println("The encryption algorithm is $algorithm")

Actions 945

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/Encrypt
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples

Amazon Key Management Service Developer Guide

 // Return the encrypted data.
 return response.ciphertextBlob
 }
}

suspend fun decryptData(
 encryptedDataVal: ByteArray?,
 keyIdVal: String?,
) {
 val decryptRequest =
 DecryptRequest {
 ciphertextBlob = encryptedDataVal
 keyId = keyIdVal
 }
 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val decryptResponse = kmsClient.decrypt(decryptRequest)
 val myVal = decryptResponse.plaintext

 // Print the decrypted data.
 print(myVal)
 }
}

• For API details, see Encrypt in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @param string $text
 * @return Result
 */

Actions 946

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 public function encrypt(string $keyId, string $text)
 {
 try {
 return $this->client->encrypt([
 'KeyId' => $keyId,
 'Plaintext' => $text,
]);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "DisabledException"){
 echo "The request was rejected because the specified KMS key is
 not enabled.\n";
 }
 throw $caught;
 }
 }

• For API details, see Encrypt in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyEncrypt:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "KeyEncrypt":
 """
 Creates a KeyEncrypt instance with a default KMS client.

 :return: An instance of KeyEncrypt initialized with the default KMS
 client.
 """

Actions 947

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/Encrypt
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 kms_client = boto3.client("kms")
 return cls(kms_client)

 def encrypt(self, key_id: str, text: str) -> str:
 """
 Encrypts text by using the specified key.

 :param key_id: The ARN or ID of the key to use for encryption.
 :param text: The text to encrypt.
 :return: The encrypted version of the text.
 """
 try:
 response = self.kms_client.encrypt(KeyId=key_id,
 Plaintext=text.encode())
 print(
 f"The string was encrypted with algorithm
 {response['EncryptionAlgorithm']}"
)
 return response["CiphertextBlob"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "DisabledException":
 logger.error(
 "Could not encrypt because the key %s is disabled.", key_id
)
 else:
 logger.error(
 "Couldn't encrypt text. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see Encrypt in Amazon SDK for Python (Boto3) API Reference.

Actions 948

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/Encrypt

Amazon Key Management Service Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

require 'aws-sdk-kms' # v2: require 'aws-sdk'

ARN of the AWS KMS key.
#
Replace the fictitious key ARN with a valid key ID

keyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

text = '1234567890'

client = Aws::KMS::Client.new(region: 'us-west-2')

resp = client.encrypt({
 key_id: keyId,
 plaintext: text
 })

Display a readable version of the resulting encrypted blob.
puts 'Blob:'
puts resp.ciphertext_blob.unpack('H*')

• For API details, see Encrypt in Amazon SDK for Ruby API Reference.

Actions 949

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/kms-2014-11-01/Encrypt

Amazon Key Management Service Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn encrypt_string(
 verbose: bool,
 client: &Client,
 text: &str,
 key: &str,
 out_file: &str,
) -> Result<(), Error> {
 let blob = Blob::new(text.as_bytes());

 let resp = client.encrypt().key_id(key).plaintext(blob).send().await?;

 // Did we get an encrypted blob?
 let blob = resp.ciphertext_blob.expect("Could not get encrypted text");
 let bytes = blob.as_ref();

 let s = base64::encode(bytes);

 let mut ofile = File::create(out_file).expect("unable to create file");
 ofile.write_all(s.as_bytes()).expect("unable to write");

 if verbose {
 println!("Wrote the following to {:?}", out_file);
 println!("{}", s);
 }

 Ok(())
}

• For API details, see Encrypt in Amazon SDK for Rust API reference.

Actions 950

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/kms#code-examples
https://docs.rs/aws-sdk-kms/latest/aws_sdk_kms/client/struct.Client.html#method.encrypt

Amazon Key Management Service Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use GenerateDataKey with an Amazon SDK or CLI

The following code examples show how to use GenerateDataKey.

CLI

Amazon CLI

Example 1: To generate a 256-bit symmetric data key

The following generate-data-key example requests a 256-bit symmetric data key for
use outside of Amazon. The command returns a plaintext data key for immediate use and
deletion, and a copy of that data key encrypted under the specified KMS key. You can safely
store the encrypted data key with the encrypted data.

To request a 256-bit data key, use the key-spec parameter with a value of AES_256. To
request a 128-bit data key, use the key-spec parameter with a value of AES_128. For all
other data key lengths, use the number-of-bytes parameter.

The KMS key you specify must be a symmetric encryption KMS key, that is, a KMS key with a
key spec value of SYMMETRIC_DEFAULT.

aws kms generate-data-key \
 --key-id alias/ExampleAlias \
 --key-spec AES_256

Output:

{
 "Plaintext": "VdzKNHGzUAzJeRBVY+uUmofUGGiDzyB3+i9fVkh3piw=",
 "KeyId": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyMaterialId":
 "0b7fd7ddbac6eef27907413567cad8c810e2883dc8a7534067a82ee1142fc1e6",
 "CiphertextBlob":
 "AQEDAHjRYf5WytIc0C857tFSnBaPn2F8DgfmThbJlGfR8P3WlwAAAH4wfAYJKoZIhvcNAQcGoG8wbQIBADBoBgkqhkiG9w0BBwEwHgYJYIZIAWUDBAEuMBEEDEFogLqPWZconQhwHAIBEIA7d9AC7GeJJM34njQvg4Wf1d5sw0NIo1MrBqZa
+YdhV8MrkBQPeac0ReRVNDt9qleAt+SHgIRF8P0H+7U="
}

Actions 951

Amazon Key Management Service Developer Guide

The Plaintext (plaintext data key) and the CiphertextBlob (encrypted data key) are
returned in base64-encoded format.

For more information, see Data keys in the Amazon Key Management Service Developer
Guide. Example 2: To generate a 512-bit symmetric data key

The following generate-data-key example requests a 512-bit symmetric data key for
encryption and decryption. The command returns a plaintext data key for immediate use
and deletion, and a copy of that data key encrypted under the specified KMS key. You can
safely store the encrypted data key with the encrypted data.

To request a key length other than 128 or 256 bits, use the number-of-bytes parameter.
To request a 512-bit data key, the following example uses the number-of-bytes
parameter with a value of 64 (bytes).

The KMS key you specify must be a symmetric encryption KMS key, that is, a KMS key with a
key spec value of SYMMETRIC_DEFAULT.

NOTE: The values in the output of this example are truncated for display.

aws kms generate-data-key \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --number-of-bytes 64

Output:

{
 "CiphertextBlob": "AQIBAHi6LtupRpdKl2aJTzkK6FbhOtQkMlQJJH3PdtHvS/y+hAEnX/
QQNmMwDfg2korNMEc8AAACaDCCAmQGCSqGSIb3DQEHBqCCAlUwggJRAgEAMIICSgYJKoZ...",
 "Plaintext": "ty8Lr0Bk6OF07M2BWt6qbFdNB
+G00ZLtf5MSEb4al3R2UKWGOp06njAwy2n72VRm2m7z/
Pm9Wpbvttz6a4lSo9hgPvKhZ5y6RTm4OovEXiVfBveyX3DQxDzRSwbKDPk/...",
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyMaterialId":
 "0b7fd7ddbac6eef27907413567cad8c810e2883dc8a7534067a82ee1142fc1e6"
}

The Plaintext (plaintext data key) and CiphertextBlob (encrypted data key) are
returned in base64-encoded format.

Actions 952

https://docs.aws.amazon.com/kms/latest/developerguide/data-keys.html

Amazon Key Management Service Developer Guide

For more information, see Data keys in the Amazon Key Management Service Developer
Guide.

• For API details, see GenerateDataKey in Amazon CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """
 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def generate_data_key(self, key_id):
 """
 Generates a symmetric data key that can be used for client-side
 encryption.
 """
 answer = input(
 f"Do you want to generate a symmetric data key from key {key_id} (y/
n)? "
)
 if answer.lower() == "y":

Actions 953

https://docs.aws.amazon.com/kms/latest/developerguide/data-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/generate-data-key.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 try:
 data_key = self.kms_client.generate_data_key(
 KeyId=key_id, KeySpec="AES_256"
)
 except ClientError as err:
 logger.error(
 "Couldn't generate a data key for key %s. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 else:
 pprint(data_key)

• For API details, see GenerateDataKey in Amazon SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn make_key(client: &Client, key: &str) -> Result<(), Error> {
 let resp = client
 .generate_data_key()
 .key_id(key)
 .key_spec(DataKeySpec::Aes256)
 .send()
 .await?;

 // Did we get an encrypted blob?
 let blob = resp.ciphertext_blob.expect("Could not get encrypted text");
 let bytes = blob.as_ref();

 let s = base64::encode(bytes);

 println!();

Actions 954

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/GenerateDataKey
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/kms#code-examples

Amazon Key Management Service Developer Guide

 println!("Data key:");
 println!("{}", s);

 Ok(())
}

• For API details, see GenerateDataKey in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use GenerateDataKeyWithoutPlaintext with an Amazon SDK or CLI

The following code examples show how to use GenerateDataKeyWithoutPlaintext.

CLI

Amazon CLI

To generate a 256-bit symmetric data key without a plaintext key

The following generate-data-key-without-plaintext example requests an encrypted
copy of a 256-bit symmetric data key for use outside of Amazon. You can call Amazon KMS
to decrypt the data key when you are ready to use it.

To request a 256-bit data key, use the key-spec parameter with a value of AES_256. To
request a 128-bit data key, use the key-spec parameter with a value of AES_128. For all
other data key lengths, use the number-of-bytes parameter.

The KMS key you specify must be a symmetric encryption KMS key, that is, a KMS key with a
key spec value of SYMMETRIC_DEFAULT.

aws kms generate-data-key-without-plaintext \
 --key-id "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" \
 --key-spec AES_256

Output:

Actions 955

https://docs.rs/aws-sdk-kms/latest/aws_sdk_kms/client/struct.Client.html#method.generate_data_key

Amazon Key Management Service Developer Guide

{
 "CiphertextBlob":
 "AQEDAHjRYf5WytIc0C857tFSnBaPn2F8DgfmThbJlGfR8P3WlwAAAH4wfAYJKoZIhvcNAQcGoG8wbQIBADBoBgkqhkiG9w0BBwEwHgYJYIZIAWUDBAEuMBEEDEFogL",
 "KeyId": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyMaterialId":
 "0b7fd7ddbac6eef27907413567cad8c810e2883dc8a7534067a82ee1142fc1e6"
}

The CiphertextBlob (encrypted data key) is returned in base64-encoded format.

For more information, see Data keys in the Amazon Key Management Service Developer
Guide.

• For API details, see GenerateDataKeyWithoutPlaintext in Amazon CLI Command Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn make_key(client: &Client, key: &str) -> Result<(), Error> {
 let resp = client
 .generate_data_key_without_plaintext()
 .key_id(key)
 .key_spec(DataKeySpec::Aes256)
 .send()
 .await?;

 // Did we get an encrypted blob?
 let blob = resp.ciphertext_blob.expect("Could not get encrypted text");
 let bytes = blob.as_ref();

 let s = base64::encode(bytes);

 println!();

Actions 956

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/generate-data-key-without-plaintext.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/kms#code-examples

Amazon Key Management Service Developer Guide

 println!("Data key:");
 println!("{}", s);

 Ok(())
}

• For API details, see GenerateDataKeyWithoutPlaintext in Amazon SDK for Rust API
reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use GenerateRandom with an Amazon SDK or CLI

The following code examples show how to use GenerateRandom.

CLI

Amazon CLI

Example 1: To generate a 256-bit random byte string (Linux or macOs)

The following generate-random example generates a 256-bit (32-byte), base64-encoded
random byte string. The example decodes the byte string and saves it in the random file.

When you run this command, you must use the number-of-bytes parameter to specify the
length of the random value in bytes.

You don't specify a KMS key when you run this command. The random byte string is
unrelated to any KMS key.

By default, Amazon KMS generates the random number. However, if you specify a custom
key store, the random byte string is generated in the Amazon CloudHSM cluster associated
with the custom key store.

This example uses the following parameters and values:

It uses the required --number-of-bytes parameter with a value of 32 to request a 32-
byte (256-bit) string.It uses the --output parameter with a value of text to direct the

Actions 957

https://docs.rs/aws-sdk-kms/latest/aws_sdk_kms/client/struct.Client.html#method.generate_data_key_without_plaintext
https://docs.aws.amazon.com/kms/latest/developerguide/custom-key-store-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/custom-key-store-overview.html

Amazon Key Management Service Developer Guide

Amazon CLI to return the output as text, instead of JSON.It uses the --query parameter
to extract the value of the Plaintext property from the response.It pipes (|) the output
of the command to the base64 utility, which decodes the extracted output.It uses the
redirection operator (>) to save decoded byte string to the ExampleRandom file.It uses the
redirection operator (>) to save the binary ciphertext to a file.

aws kms generate-random \
 --number-of-bytes 32 \
 --output text \
 --query Plaintext | base64 --decode > ExampleRandom

This command produces no output.

For more information, see GenerateRandom in the Amazon Key Management Service API
Reference.

Example 2: To generate a 256-bit random number (Windows Command Prompt)

The following example uses the generate-random command to generate a 256-bit (32-
byte), base64-encoded random byte string. The example decodes the byte string and saves
it in the random file. This example is the same as the previous example, except that it uses
the certutil utility in Windows to base64-decode the random byte string before saving it
in a file.

First, generate a base64-encoded random byte string and saves it in a temporary file,
ExampleRandom.base64.

aws kms generate-random \
 --number-of-bytes 32 \
 --output text \
 --query Plaintext > ExampleRandom.base64

Because the output of the generate-random command is saved in a file, this example
produces no output.

Now use the certutil -decode command to decode the base64-encoded byte string
in the ExampleRandom.base64 file. Then, it saves the decoded byte string in the
ExampleRandom file.

certutil -decode ExampleRandom.base64 ExampleRandom

Actions 958

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateRandom.html

Amazon Key Management Service Developer Guide

Output:

Input Length = 18
Output Length = 12
CertUtil: -decode command completed successfully.

For more information, see GenerateRandom in the Amazon Key Management Service API
Reference.

• For API details, see GenerateRandom in Amazon CLI Command Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn make_string(client: &Client, length: i32) -> Result<(), Error> {
 let resp = client
 .generate_random()
 .number_of_bytes(length)
 .send()
 .await?;

 // Did we get an encrypted blob?
 let blob = resp.plaintext.expect("Could not get encrypted text");
 let bytes = blob.as_ref();

 let s = base64::encode(bytes);

 println!();
 println!("Data key:");
 println!("{}", s);

 Ok(())
}

Actions 959

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateRandom.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/generate-random.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/kms#code-examples

Amazon Key Management Service Developer Guide

• For API details, see GenerateRandom in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use GetKeyPolicy with an Amazon SDK or CLI

The following code examples show how to use GetKeyPolicy.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

CLI

Amazon CLI

To copy a key policy from one KMS key to another KMS key

The following get-key-policy example gets the key policy from one KMS key and saves
it in a text file. Then, it replaces the policy of a different KMS key using the text file as the
policy input.

Because the --policy parameter of put-key-policy requires a string, you must use the
--output text option to return the output as a text string instead of JSON.

aws kms get-key-policy \
 --policy-name default \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --query Policy \
 --output text > policy.txt

aws kms put-key-policy \
 --policy-name default \
 --key-id 0987dcba-09fe-87dc-65ba-ab0987654321 \
 --policy file://policy.txt

This command produces no output.

Actions 960

https://docs.rs/aws-sdk-kms/latest/aws_sdk_kms/client/struct.Client.html#method.generate_random

Amazon Key Management Service Developer Guide

For more information, see PutKeyPolicy in the Amazon KMS API Reference.

• For API details, see GetKeyPolicy in Amazon CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyPolicy:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "KeyPolicy":
 """
 Creates a KeyPolicy instance with a default KMS client.

 :return: An instance of KeyPolicy initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def get_policy(self, key_id: str) -> dict[str, str]:
 """
 Gets the policy of a key.

 :param key_id: The ARN or ID of the key to query.
 :return: The key policy as a dict.
 """
 if key_id != "":
 try:
 response = self.kms_client.get_key_policy(
 KeyId=key_id,
)

Actions 961

https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/get-key-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 policy = json.loads(response["Policy"])
 except ClientError as err:
 logger.error(
 "Couldn't get policy for key %s. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise
 else:
 pprint(policy)
 return policy
 else:
 print("Skipping get policy demo.")

• For API details, see GetKeyPolicy in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ListAliases with an Amazon SDK or CLI

The following code examples show how to use ListAliases.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions 962

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/GetKeyPolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

Amazon Key Management Service Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// List the AWS Key Management Service (AWS KMS) aliases that have been
 defined for
 /// the keys in the same AWS Region as the default user. If you want to list
 /// the aliases in a different Region, pass the Region to the client
 /// constructor.
 /// </summary>
 public class ListAliases
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();
 var request = new ListAliasesRequest();
 var response = new ListAliasesResponse();

 do
 {
 response = await client.ListAliasesAsync(request);

 response.Aliases.ForEach(alias =>
 {
 Console.WriteLine($"Created: {alias.CreationDate} Last
 Update: {alias.LastUpdatedDate} Name: {alias.AliasName}");
 });

 request.Marker = response.NextMarker;
 }
 while (response.Truncated);
 }
 }

• For API details, see ListAliases in Amazon SDK for .NET API Reference.

Actions 963

https://docs.amazonaws.cn/goto/DotNetSDKV3/kms-2014-11-01/ListAliases

Amazon Key Management Service Developer Guide

CLI

Amazon CLI

Example 1: To list all aliases in an Amazon account and Region

The following example uses the list-aliases command to list all aliases in the default
Region of the Amazon account. The output includes aliases associated with Amazon
managed KMS keys and customer managed KMS keys.

aws kms list-aliases

Output:

{
 "Aliases": [
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/testKey",
 "AliasName": "alias/testKey",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/FinanceDept",
 "AliasName": "alias/FinanceDept",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321"
 },
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/aws/dynamodb",
 "AliasName": "alias/aws/dynamodb",
 "TargetKeyId": "1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"
 },
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/aws/ebs",
 "AliasName": "alias/aws/ebs",
 "TargetKeyId": "0987ab65-43cd-21ef-09ab-87654321cdef"
 },
 ...
]
}

Example 2: To list all aliases for a particular KMS key

Actions 964

Amazon Key Management Service Developer Guide

The following example uses the list-aliases command and its key-id parameter to list
all aliases that are associated with a particular KMS key.

Each alias is associated with only one KMS key, but a KMS key can have multiple aliases. This
command is very useful because the Amazon KMS console lists only one alias for each KMS
key. To find all aliases for a KMS key, you must use the list-aliases command.

This example uses the key ID of the KMS key for the --key-id parameter, but you can use a
key ID, key ARN, alias name, or alias ARN in this command.

aws kms list-aliases --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

Output:

{
 "Aliases": [
 {
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/oregon-test-
key",
 "AliasName": "alias/oregon-test-key"
 },
 {
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/project121-
test",
 "AliasName": "alias/project121-test"
 }
]
}

For more information, see Working with Aliases in the Amazon Key Management Service
Developer Guide.

• For API details, see ListAliases in Amazon CLI Command Reference.

Actions 965

https://docs.aws.amazon.com/kms/latest/developerguide/programming-aliases.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/list-aliases.html

Amazon Key Management Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Asynchronously lists all the aliases in the current AWS account.
 *
 * @return a {@link CompletableFuture} that completes when the list of
 aliases has been processed
 */
 public CompletableFuture<Object> listAllAliasesAsync() {
 ListAliasesRequest aliasesRequest = ListAliasesRequest.builder()
 .limit(15)
 .build();

 ListAliasesPublisher paginator =
 getAsyncClient().listAliasesPaginator(aliasesRequest);
 return paginator.subscribe(response -> {
 response.aliases().forEach(alias ->
 logger.info("The alias name is: " + alias.aliasName())
);
 })
 .thenApply(v -> null)
 .exceptionally(ex -> {
 if (ex.getCause() instanceof KmsException) {
 KmsException e = (KmsException) ex.getCause();
 throw new RuntimeException("A KMS exception occurred: " +
 e.getMessage());
 } else {
 throw new RuntimeException("An unexpected error occurred: " +
 ex.getMessage());
 }
 });
 }

Actions 966

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

• For API details, see ListAliases in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun listAllAliases() {
 val request =
 ListAliasesRequest {
 limit = 15
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val response = kmsClient.listAliases(request)
 response.aliases?.forEach { alias ->
 println("The alias name is ${alias.aliasName}")
 }
 }
}

• For API details, see ListAliases in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions 967

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ListAliases
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 /***
 * @param string $keyId
 * @param int $limit
 * @return ResultPaginator
 */
 public function listAliases(string $keyId = "", int $limit = 0)
 {
 $args = [];
 if($keyId){
 $args['KeyId'] = $keyId;
 }
 if($limit){
 $args['Limit'] = $limit;
 }
 try{
 return $this->client->getPaginator("ListAliases", $args);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "InvalidMarkerException"){
 echo "The request was rejected because the marker that specifies
 where pagination should next begin is not valid.\n";
 }
 throw $caught;
 }
 }

• For API details, see ListAliases in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class AliasManager:

Actions 968

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ListAliases
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_key = None

 @classmethod
 def from_client(cls) -> "AliasManager":
 """
 Creates an AliasManager instance with a default KMS client.

 :return: An instance of AliasManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def list_aliases(self, page_size: int) -> None:
 """
 Lists aliases for the current account.
 :param page_size: The number of aliases to list per page.
 """
 try:
 alias_paginator = self.kms_client.get_paginator("list_aliases")
 for alias_page in alias_paginator.paginate(
 PaginationConfig={"PageSize": page_size}
):
 print(f"Here are {page_size} aliases:")
 pprint(alias_page["Aliases"])
 if alias_page["Truncated"]:
 answer = input(
 f"Do you want to see the next {page_size} aliases (y/n)?
 "
)
 if answer.lower() != "y":
 break
 else:
 print("That's all your aliases!")
 except ClientError as err:
 logging.error(
 "Couldn't list your aliases. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

Actions 969

Amazon Key Management Service Developer Guide

• For API details, see ListAliases in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ListGrants with an Amazon SDK or CLI

The following code examples show how to use ListGrants.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// List the AWS Key Management Service (AWS KMS) grants that are associated
 with
 /// a specific key.
 /// </summary>
 public class ListGrants
 {
 public static async Task Main()

Actions 970

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ListAliases
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

Amazon Key Management Service Developer Guide

 {
 // The identifier of the AWS KMS key to disable. You can use the
 // key Id or the Amazon Resource Name (ARN) of the AWS KMS key.
 var keyId = "1234abcd-12ab-34cd-56ef-1234567890ab";
 var client = new AmazonKeyManagementServiceClient();
 var request = new ListGrantsRequest
 {
 KeyId = keyId,
 };

 var response = new ListGrantsResponse();

 do
 {
 response = await client.ListGrantsAsync(request);

 response.Grants.ForEach(grant =>
 {
 Console.WriteLine($"{grant.GrantId}");
 });

 request.Marker = response.NextMarker;
 }
 while (response.Truncated);
 }
 }

• For API details, see ListGrants in Amazon SDK for .NET API Reference.

CLI

Amazon CLI

To view the grants on an Amazon KMS key

The following list-grants example displays all of the grants on the specified Amazon
managed KMS key for Amazon DynamoDB in your account. This grant allows DynamoDB to
use the KMS key on your behalf to encrypt a DynamoDB table before writing it to disk. You
can use a command like this one to view the grants on the Amazon managed KMS keys and
customer managed KMS keys in the Amazon account and Region.

Actions 971

https://docs.amazonaws.cn/goto/DotNetSDKV3/kms-2014-11-01/ListGrants

Amazon Key Management Service Developer Guide

This command uses the key-id parameter with a key ID to identify the KMS key. You can
use a key ID or key ARN to identify the KMS key. To get the key ID or key ARN of an Amazon
managed KMS key, use the list-keys or list-aliases command.

aws kms list-grants \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

The output shows that the grant gives Amazon DynamoDB permission to use the KMS key
for cryptographic operations, and gives it permission to view details about the KMS key
(DescribeKey) and to retire grants (RetireGrant). The EncryptionContextSubset
constraint limits these permission to requests that include the specified encryption context
pairs. As a result, the permissions in the grant are effective only on specified account and
DynamoDB table.

{
 "Grants": [
 {
 "Constraints": {
 "EncryptionContextSubset": {
 "aws:dynamodb:subscriberId": "123456789012",
 "aws:dynamodb:tableName": "Services"
 }
 },
 "IssuingAccount": "arn:aws:iam::123456789012:root",
 "Name": "8276b9a6-6cf0-46f1-b2f0-7993a7f8c89a",
 "Operations": [
 "Decrypt",
 "Encrypt",
 "GenerateDataKey",
 "ReEncryptFrom",
 "ReEncryptTo",
 "RetireGrant",
 "DescribeKey"
],
 "GrantId":
 "1667b97d27cf748cf05b487217dd4179526c949d14fb3903858e25193253fe59",
 "KeyId": "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "RetiringPrincipal": "dynamodb.us-west-2.amazonaws.com",
 "GranteePrincipal": "dynamodb.us-west-2.amazonaws.com",
 "CreationDate": "2021-05-13T18:32:45.144000+00:00"
 }

Actions 972

Amazon Key Management Service Developer Guide

]
}

For more information, see Grants in Amazon KMS in the Amazon Key Management Service
Developer Guide.

• For API details, see ListGrants in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Asynchronously displays the grant IDs for the specified key ID.
 *
 * @param keyId the ID of the AWS KMS key for which to list the grants
 * @return a {@link CompletableFuture} that, when completed, will be null
 if the operation succeeded, or will throw a {@link RuntimeException} if the
 operation failed
 * @throws RuntimeException if there was an error listing the grants, either
 due to an {@link KmsException} or an unexpected error
 */
 public CompletableFuture<Object> displayGrantIdsAsync(String keyId) {
 ListGrantsRequest grantsRequest = ListGrantsRequest.builder()
 .keyId(keyId)
 .limit(15)
 .build();

 ListGrantsPublisher paginator =
 getAsyncClient().listGrantsPaginator(grantsRequest);
 return paginator.subscribe(response -> {
 response.grants().forEach(grant -> {
 logger.info("The grant Id is: " + grant.grantId());
 });
 })
 .thenApply(v -> null)

Actions 973

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/list-grants.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 .exceptionally(ex -> {
 Throwable cause = ex.getCause();
 if (cause instanceof KmsException) {
 throw new RuntimeException("Failed to list grants: " +
 cause.getMessage(), cause);
 } else {
 throw new RuntimeException("An unexpected error occurred: " +
 cause.getMessage(), cause);
 }
 });
 }

• For API details, see ListGrants in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun displayGrantIds(keyIdVal: String?) {
 val request =
 ListGrantsRequest {
 keyId = keyIdVal
 limit = 15
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val response = kmsClient.listGrants(request)
 response.grants?.forEach { grant ->
 println("The grant Id is ${grant.grantId}")
 }
 }
}

Actions 974

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ListGrants
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples

Amazon Key Management Service Developer Guide

• For API details, see ListGrants in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @return Result
 */
 public function listGrants(string $keyId)
 {
 try{
 return $this->client->listGrants([
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 if($caught->getAwsErrorMessage() == "NotFoundException"){
 echo " The request was rejected because the specified entity
 or resource could not be found.\n";
 }
 throw $caught;
 }
 }

• For API details, see ListGrants in Amazon SDK for PHP API Reference.

Actions 975

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ListGrants

Amazon Key Management Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class GrantManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "GrantManager":
 """
 Creates a GrantManager instance with a default KMS client.

 :return: An instance of GrantManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def list_grants(self, key_id):
 """
 Lists grants for a key.

 :param key_id: The ARN or ID of the key to query.
 :return: The grants for the key.
 """
 try:
 paginator = self.kms_client.get_paginator("list_grants")
 grants = []
 page_iterator = paginator.paginate(KeyId=key_id)
 for page in page_iterator:
 grants.extend(page["Grants"])

 print(f"Grants for key {key_id}:")
 pprint(grants)

Actions 976

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 return grants
 except ClientError as err:
 logger.error(
 "Couldn't list grants for key %s. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListGrants in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ListKeyPolicies with an Amazon SDK or CLI

The following code examples show how to use ListKeyPolicies.

CLI

Amazon CLI

To get the names of key policies for a KMS key

The following list-key-policies example gets the names of the key policies for a
customer managed key in the example account and Region. You can use this command to
find the names of key policies for Amazon managed keys and customer managed keys.

Because the only valid key policy name is default, this command is not useful.

To specify the KMS key, use the key-id parameter. This example uses a key ID value, but
you can use a key ID or key ARN in this command.

aws kms list-key-policies \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

Output:

Actions 977

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ListGrants

Amazon Key Management Service Developer Guide

{
 "PolicyNames": [
 "default"
]
}

For more information about Amazon KMS key policies, see Using Key Policies in Amazon
KMS in the Amazon Key Management Service Developer Guide.

• For API details, see ListKeyPolicies in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Asynchronously retrieves the key policy for the specified key ID and
 policy name.
 *
 * @param keyId the ID of the AWS KMS key for which to retrieve the
 policy
 * @param policyName the name of the key policy to retrieve
 * @return a {@link CompletableFuture} that, when completed, contains the key
 policy as a {@link String}
 */
 public CompletableFuture<String> getKeyPolicyAsync(String keyId, String
 policyName) {
 GetKeyPolicyRequest policyRequest = GetKeyPolicyRequest.builder()
 .keyId(keyId)
 .policyName(policyName)
 .build();

 return getAsyncClient().getKeyPolicy(policyRequest)
 .thenApply(response -> {
 String policy = response.policy();

Actions 978

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/list-key-policies.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 logger.info("The response is: " + policy);
 return policy;
 })
 .exceptionally(ex -> {
 throw new RuntimeException("Failed to get key policy", ex);
 });
 }

• For API details, see ListKeyPolicies in Amazon SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyPolicy:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "KeyPolicy":
 """
 Creates a KeyPolicy instance with a default KMS client.

 :return: An instance of KeyPolicy initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def list_policies(self, key_id):
 """
 Lists the names of the policies for a key.

 :param key_id: The ARN or ID of the key to query.

Actions 979

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ListKeyPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 """
 try:
 policy_names = self.kms_client.list_key_policies(KeyId=key_id)[
 "PolicyNames"
]
 except ClientError as err:
 logging.error(
 "Couldn't list your policies. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise
 else:
 print(f"The policies for key {key_id} are:")
 pprint(policy_names)

• For API details, see ListKeyPolicies in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ListKeys with an Amazon SDK or CLI

The following code examples show how to use ListKeys.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions 980

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ListKeyPolicies
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/KMS#code-examples

Amazon Key Management Service Developer Guide

 using System;
 using System.Threading.Tasks;
 using Amazon.KeyManagementService;
 using Amazon.KeyManagementService.Model;

 /// <summary>
 /// List the AWS Key Managements Service (AWS KMS) keys for the AWS Region
 /// of the default user. To list keys in another AWS Region, supply the
 Region
 /// as a parameter to the client constructor.
 /// </summary>
 public class ListKeys
 {
 public static async Task Main()
 {
 var client = new AmazonKeyManagementServiceClient();
 var request = new ListKeysRequest();
 var response = new ListKeysResponse();

 do
 {
 response = await client.ListKeysAsync(request);

 response.Keys.ForEach(key =>
 {
 Console.WriteLine($"ID: {key.KeyId}, {key.KeyArn}");
 });

 // Set the Marker property when response.Truncated is true
 // in order to get the next keys.
 request.Marker = response.NextMarker;
 }
 while (response.Truncated);
 }
 }

• For API details, see ListKeys in Amazon SDK for .NET API Reference.

Actions 981

https://docs.amazonaws.cn/goto/DotNetSDKV3/kms-2014-11-01/ListKeys

Amazon Key Management Service Developer Guide

CLI

Amazon CLI

To get the KMS keys in an account and Region

The following list-keys example gets the KMS keys in an account and Region. This
command returns both Amazon managed keys and customer managed keys.

aws kms list-keys

Output:

{
 "Keys": [
 {
 "KeyArn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {
 "KeyArn": "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
 "KeyId": "0987dcba-09fe-87dc-65ba-ab0987654321"
 },
 {
 "KeyArn": "arn:aws:kms:us-
east-2:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d",
 "KeyId": "1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"
 }
]
}

For more information, see Viewing Keys in the Amazon Key Management Service Developer
Guide.

• For API details, see ListKeys in Amazon CLI Command Reference.

Actions 982

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/list-keys.html

Amazon Key Management Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.services.kms.KmsAsyncClient;
import software.amazon.awssdk.services.kms.model.ListKeysRequest;
import software.amazon.awssdk.services.kms.paginators.ListKeysPublisher;
import java.util.concurrent.CompletableFuture;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class HelloKMS {
 public static void main(String[] args) {
 listAllKeys();
 }

 public static void listAllKeys() {
 KmsAsyncClient kmsAsyncClient = KmsAsyncClient.builder()
 .build();
 ListKeysRequest listKeysRequest = ListKeysRequest.builder()
 .limit(15)
 .build();

 /*
 * The `subscribe` method is required when using paginator methods in the
 AWS SDK
 * because paginator methods return an instance of a `ListKeysPublisher`,
 which is

Actions 983

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 * based on a reactive stream. This allows asynchronous retrieval of
 paginated
 * results as they become available. By subscribing to the stream, we can
 process
 * each page of results as they are emitted.
 */
 ListKeysPublisher keysPublisher =
 kmsAsyncClient.listKeysPaginator(listKeysRequest);
 CompletableFuture<Void> future = keysPublisher
 .subscribe(r -> r.keys().forEach(key ->
 System.out.println("The key ARN is: " + key.keyArn() + ". The key
 Id is: " + key.keyId())))
 .whenComplete((result, exception) -> {
 if (exception != null) {
 System.err.println("Error occurred: " +
 exception.getMessage());
 } else {
 System.out.println("Successfully listed all keys.");
 }
 });

 try {
 future.join();
 } catch (Exception e) {
 System.err.println("Failed to list keys: " + e.getMessage());
 }
 }
}

• For API details, see ListKeys in Amazon SDK for Java 2.x API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions 984

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ListKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/kms#code-examples

Amazon Key Management Service Developer Guide

suspend fun listAllKeys() {
 val request =
 ListKeysRequest {
 limit = 15
 }

 KmsClient { region = "us-west-2" }.use { kmsClient ->
 val response = kmsClient.listKeys(request)
 response.keys?.forEach { key ->
 println("The key ARN is ${key.keyArn}")
 println("The key Id is ${key.keyId}")
 }
 }
}

• For API details, see ListKeys in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @return array
 */
 public function listKeys()
 {
 try {
 $contents = [];
 $paginator = $this->client->getPaginator("ListKeys");
 foreach($paginator as $result){
 foreach ($result['Content'] as $object) {
 $contents[] = $object;
 }

Actions 985

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 }
 return $contents;
 }catch(KmsException $caught){
 echo "There was a problem listing the keys: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

• For API details, see ListKeys in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """
 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def list_keys(self):
 """

Actions 986

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ListKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 Lists the keys for the current account by using a paginator.
 """
 try:
 page_size = 10
 print("\nLet's list your keys.")
 key_paginator = self.kms_client.get_paginator("list_keys")
 for key_page in key_paginator.paginate(PaginationConfig={"PageSize":
 10}):
 print(f"Here are {len(key_page['Keys'])} keys:")
 pprint(key_page["Keys"])
 if key_page["Truncated"]:
 answer = input(
 f"Do you want to see the next {page_size} keys (y/n)? "
)
 if answer.lower() != "y":
 break
 else:
 print("That's all your keys!")
 except ClientError as err:
 logging.error(
 "Couldn't list your keys. Here's why: %s",
 err.response["Error"]["Message"],
)

• For API details, see ListKeys in Amazon SDK for Python (Boto3) API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn show_keys(client: &Client) -> Result<(), Error> {
 let resp = client.list_keys().send().await?;

 let keys = resp.keys.unwrap_or_default();

Actions 987

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ListKeys
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/kms#code-examples

Amazon Key Management Service Developer Guide

 let len = keys.len();

 for key in keys {
 println!("Key ARN: {}", key.key_arn.as_deref().unwrap_or_default());
 }

 println!();
 println!("Found {} keys", len);

 Ok(())
}

• For API details, see ListKeys in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use PutKeyPolicy with an Amazon SDK or CLI

The following code examples show how to use PutKeyPolicy.

CLI

Amazon CLI

To change the key policy for a KMS key

The following put-key-policy example changes the key policy for a customer managed
key.

To begin, create a key policy and save it in a local JSON file. In this example, the file is
key_policy.json. You can also specify the key policy as a string value of the policy
parameter.

The first statement in this key policy gives the Amazon account permission to use IAM
policies to control access to the KMS key. The second statement gives the test-user user
permission to run the describe-key and list-keys commands on the KMS key.

Contents of key_policy.json:

Actions 988

https://docs.rs/aws-sdk-kms/latest/aws_sdk_kms/client/struct.Client.html#method.list_keys

Amazon Key Management Service Developer Guide

{
 "Version" : "2012-10-17",
 "Id" : "key-default-1",
 "Statement" : [
 {
 "Sid" : "Enable IAM User Permissions",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : "kms:*",
 "Resource" : "*"
 },
 {
 "Sid" : "Allow Use of Key",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:user/test-user"
 },
 "Action" : [
 "kms:DescribeKey",
 "kms:ListKeys"
],
 "Resource" : "*"
 }
]
}

To identify the KMS key, this example uses the key ID, but you can also use a key ARN. To
specify the key policy, the command uses the policy parameter. To indicate that the policy
is in a file, it uses the required file:// prefix. This prefix is required to identify files on all
supported operating systems. Finally, the command uses the policy-name parameter with
a value of default. If no policy name is specified, the default value is default. The only
valid value is default.

aws kms put-key-policy \
 --policy-name default \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --policy file://key_policy.json

Actions 989

Amazon Key Management Service Developer Guide

This command does not produce any output. To verify that the command was effective, use
the get-key-policy command. The following example command gets the key policy for
the same KMS key. The output parameter with a value of text returns a text format that is
easy to read.

aws kms get-key-policy \
 --policy-name default \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --output text

Output:

{
 "Version" : "2012-10-17",
 "Id" : "key-default-1",
 "Statement" : [
 {
 "Sid" : "Enable IAM User Permissions",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : "kms:*",
 "Resource" : "*"
 },
 {
 "Sid" : "Allow Use of Key",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:user/test-user"
 },
 "Action" : ["kms:Describe", "kms:List"],
 "Resource" : "*"
 }
]
}

For more information, see Changing a Key Policy in the Amazon Key Management Service
Developer Guide.

• For API details, see PutKeyPolicy in Amazon CLI Command Reference.

Actions 990

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/put-key-policy.html

Amazon Key Management Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @param string $policy
 * @return void
 */
 public function putKeyPolicy(string $keyId, string $policy)
 {
 try {
 $this->client->putKeyPolicy([
 'KeyId' => $keyId,
 'Policy' => $policy,
]);
 }catch(KmsException $caught){
 echo "There was a problem replacing the key policy: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

• For API details, see PutKeyPolicy in Amazon SDK for PHP API Reference.

Actions 991

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/PutKeyPolicy

Amazon Key Management Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyPolicy:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "KeyPolicy":
 """
 Creates a KeyPolicy instance with a default KMS client.

 :return: An instance of KeyPolicy initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def set_policy(self, key_id: str, policy: dict[str, any]) -> None:
 """
 Sets the policy of a key. Setting a policy entirely overwrites the
 existing
 policy, so care is taken to add a statement to the existing list of
 statements
 rather than simply writing a new policy.

 :param key_id: The ARN or ID of the key to set the policy to.
 :param policy: The existing policy of the key.
 :return: None
 """
 principal = input(
 "Enter the ARN of an IAM role to set as the principal on the policy:
 "
)

Actions 992

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 if key_id != "" and principal != "":
 # The updated policy replaces the existing policy. Add a new
 statement to
 # the list along with the original policy statements.
 policy["Statement"].append(
 {
 "Sid": "Allow access for ExampleRole",
 "Effect": "Allow",
 "Principal": {"AWS": principal},
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:ReEncrypt*",
],
 "Resource": "*",
 }
)
 try:
 self.kms_client.put_key_policy(KeyId=key_id,
 Policy=json.dumps(policy))
 except ClientError as err:
 logger.error(
 "Couldn't set policy for key %s. Here's why %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise
 else:
 print(f"Set policy for key {key_id}.")
 else:
 print("Skipping set policy demo.")

• For API details, see PutKeyPolicy in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Actions 993

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/PutKeyPolicy

Amazon Key Management Service Developer Guide

Use ReEncrypt with an Amazon SDK or CLI

The following code examples show how to use ReEncrypt.

CLI

Amazon CLI

Example 1: To re-encrypt an encrypted message under a different symmetric KMS key
(Linux and macOS).

The following re-encrypt command example demonstrates the recommended way to re-
encrypt data with the Amazon CLI.

Provide the ciphertext in a file.In the value of the --ciphertext-blob parameter, use
the fileb:// prefix, which tells the CLI to read the data from a binary file. If the file is
not in the current directory, type the full path to file. For more information about reading
Amazon CLI parameter values from a file, see Loading Amazon CLI parameters from a
file in the Amazon Command Line Interface User Guide and Best Practices for Local File
Parameters in the Amazon Command Line Tool Blog.Specify the source KMS key, which
decrypts the ciphertext.The --source-key-id parameter is not required when decrypting
with symmetric encryption KMS keys. Amazon KMS can get the KMS key that was used to
encrypt the data from the metadata in the ciphertext blob. But it's always a best practice to
specify the KMS key you are using. This practice ensures that you use the KMS key that you
intend, and prevents you from inadvertently decrypting a ciphertext using a KMS key you do
not trust.Specify the destination KMS key, which re-encrypts the data.The --destination-
key-id parameter is always required. This example uses a key ARN, but you can use any
valid key identifier.Request the plaintext output as a text value.The --query parameter
tells the CLI to get only the value of the Plaintext field from the output. The --output
parameter returns the output as text.Base64-decode the plaintext and save it in a file.The
following example pipes (|) the value of the Plaintext parameter to the Base64 utility,
which decodes it. Then, it redirects (>) the decoded output to the ExamplePlaintext file.

Before running this command, replace the example key IDs with valid key identifiers from
your Amazon account.

aws kms re-encrypt \
 --ciphertext-blob fileb://ExampleEncryptedFile \
 --source-key-id 1234abcd-12ab-34cd-56ef-1234567890ab \

Actions 994

https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html
https://aws.amazon.com/blogs/developer/best-practices-for-local-file-parameters/
https://aws.amazon.com/blogs/developer/best-practices-for-local-file-parameters/

Amazon Key Management Service Developer Guide

 --destination-key-id 0987dcba-09fe-87dc-65ba-ab0987654321 \
 --query CiphertextBlob \
 --output text | base64 --decode > ExampleReEncryptedFile

This command produces no output. The output from the re-encrypt command is base64-
decoded and saved in a file.

For more information, see ReEncrypt in the Amazon Key Management Service API Reference.

Example 2: To re-encrypt an encrypted message under a different symmetric KMS key
(Windows command prompt).

The following re-encrypt command example is the same as the previous one except that
it uses the certutil utility to Base64-decode the plaintext data. This procedure requires
two commands, as shown in the following examples.

Before running this command, replace the example key ID with a valid key ID from your
Amazon account.

aws kms re-encrypt ^
 --ciphertext-blob fileb://ExampleEncryptedFile ^
 --source-key-id 1234abcd-12ab-34cd-56ef-1234567890ab ^
 --destination-key-id 0987dcba-09fe-87dc-65ba-ab0987654321 ^
 --query CiphertextBlob ^
 --output text > ExampleReEncryptedFile.base64

Then use the certutil utility

certutil -decode ExamplePlaintextFile.base64 ExamplePlaintextFile

Output:

Input Length = 18
Output Length = 12
CertUtil: -decode command completed successfully.

For more information, see ReEncrypt in the Amazon Key Management Service API Reference.

• For API details, see ReEncrypt in Amazon CLI Command Reference.

Actions 995

https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/re-encrypt.html

Amazon Key Management Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyEncrypt:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "KeyEncrypt":
 """
 Creates a KeyEncrypt instance with a default KMS client.

 :return: An instance of KeyEncrypt initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def re_encrypt(self, source_key_id, cipher_text):
 """
 Takes ciphertext previously encrypted with one key and reencrypt it by
 using
 another key.

 :param source_key_id: The ARN or ID of the original key used to encrypt
 the
 ciphertext.
 :param cipher_text: The encrypted ciphertext.
 :return: The ciphertext encrypted by the second key.
 """
 destination_key_id = input(
 f"Your ciphertext is currently encrypted with key {source_key_id}. "
 f"Enter another key ID or ARN to reencrypt it: "
)

Actions 996

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 if destination_key_id != "":
 try:
 cipher_text = self.kms_client.re_encrypt(
 SourceKeyId=source_key_id,
 DestinationKeyId=destination_key_id,
 CiphertextBlob=cipher_text,
)["CiphertextBlob"]
 except ClientError as err:
 logger.error(
 "Couldn't reencrypt your ciphertext. Here's why: %s",
 err.response["Error"]["Message"],
)
 else:
 print(f"Reencrypted your ciphertext as: {cipher_text}")
 return cipher_text
 else:
 print("Skipping reencryption demo.")

• For API details, see ReEncrypt in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

require 'aws-sdk-kms' # v2: require 'aws-sdk'

Human-readable version of the ciphertext of the data to reencrypt.

blob =
 '01020200785d68faeec386af1057904926253051eb2919d3c16078badf65b808b26dd057c101747cadf3593596e093d4ffbf22434a6d00000068306606092a864886f70d010706a0593057020100305206092a864886f70d010701301e060960864801650304012e3011040c9d629e573683972cdb7d94b30201108025b20b060591b02ca0deb0fbdfc2f86c8bfcb265947739851ad56f3adce91eba87c59691a9a1'
sourceCiphertextBlob = [blob].pack('H*')

Replace the fictitious key ARN with a valid key ID

Actions 997

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ReEncrypt
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

destinationKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321'

client = Aws::KMS::Client.new(region: 'us-west-2')

resp = client.re_encrypt({
 ciphertext_blob: sourceCiphertextBlob,
 destination_key_id: destinationKeyId
 })

Display a readable version of the resulting re-encrypted blob.
puts 'Blob:'
puts resp.ciphertext_blob.unpack('H*')

• For API details, see ReEncrypt in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn reencrypt_string(
 verbose: bool,
 client: &Client,
 input_file: &str,
 output_file: &str,
 first_key: &str,
 new_key: &str,
) -> Result<(), Error> {
 // Get blob from input file
 // Open input text file and get contents as a string
 // input is a base-64 encoded string, so decode it:
 let data = fs::read_to_string(input_file)
 .map(|input_file| base64::decode(input_file).expect("invalid base 64"))
 .map(Blob::new);

Actions 998

https://docs.amazonaws.cn/goto/SdkForRubyV3/kms-2014-11-01/ReEncrypt
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/kms#code-examples

Amazon Key Management Service Developer Guide

 let resp = client
 .re_encrypt()
 .ciphertext_blob(data.unwrap())
 .source_key_id(first_key)
 .destination_key_id(new_key)
 .send()
 .await?;

 // Did we get an encrypted blob?
 let blob = resp.ciphertext_blob.expect("Could not get encrypted text");
 let bytes = blob.as_ref();

 let s = base64::encode(bytes);
 let o = &output_file;

 let mut ofile = File::create(o).expect("unable to create file");
 ofile.write_all(s.as_bytes()).expect("unable to write");

 if verbose {
 println!("Wrote the following to {}:", output_file);
 println!("{}", s);
 } else {
 println!("Wrote base64-encoded output to {}", output_file);
 }

 Ok(())
}

• For API details, see ReEncrypt in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use RetireGrant with an Amazon SDK or CLI

The following code examples show how to use RetireGrant.

Actions 999

https://docs.rs/aws-sdk-kms/latest/aws_sdk_kms/client/struct.Client.html#method.re_encrypt

Amazon Key Management Service Developer Guide

CLI

Amazon CLI

To retire a grant on a customer master key

The following retire-grant example deletes a grant from a KMS key.

The following example command specifies the grant-id and the key-id parameters. The
value of the key-id parameter must be the key ARN of the KMS key.

aws kms retire-grant \
 --grant-id 1234a2345b8a4e350500d432bccf8ecd6506710e1391880c4f7f7140160c9af3 \
 --key-id arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

This command produces no output. To confirm that the grant was retired, use the list-
grants command.

For more information, see Retiring and revoking grants in the Amazon Key Management
Service Developer Guide.

• For API details, see RetireGrant in Amazon CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class GrantManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "GrantManager":
 """

Actions 1000

https://docs.aws.amazon.com/kms/latest/developerguide/grant-manage.html#grant-delete
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/retire-grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 Creates a GrantManager instance with a default KMS client.

 :return: An instance of GrantManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def retire_grant(self, grant):
 """
 Retires a grant so that it can no longer be used.

 :param grant: The grant to retire.
 """
 try:
 self.kms_client.retire_grant(GrantToken=grant["GrantToken"])
 except ClientError as err:
 logger.error(
 "Couldn't retire grant %s. Here's why: %s",
 grant["GrantId"],
 err.response["Error"]["Message"],
)
 else:
 print(f"Grant {grant['GrantId']} retired.")

• For API details, see RetireGrant in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use RevokeGrant with an Amazon SDK or CLI

The following code examples show how to use RevokeGrant.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

Actions 1001

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/RetireGrant

Amazon Key Management Service Developer Guide

CLI

Amazon CLI

To revoke a grant on a customer master key

The following revoke-grant example deletes a grant from a KMS key. The following
example command specifies the grant-id and the key-id parameters. The value of the
key-id parameter can be the key ID or key ARN of the KMS key.

aws kms revoke-grant \
 --grant-id 1234a2345b8a4e350500d432bccf8ecd6506710e1391880c4f7f7140160c9af3 \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

This command produces no output. To confirm that the grant was revoked, use the list-
grants command.

For more information, see Retiring and revoking grants in the Amazon Key Management
Service Developer Guide.

• For API details, see RevokeGrant in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Revokes a grant for the specified AWS KMS key asynchronously.
 *
 * @param keyId The ID or key ARN of the AWS KMS key.
 * @param grantId The identifier of the grant to be revoked.
 * @return A {@link CompletableFuture} representing the asynchronous
 operation of revoking the grant.
 * The {@link CompletableFuture} will complete with a {@link
 RevokeGrantResponse} object

Actions 1002

https://docs.aws.amazon.com/kms/latest/developerguide/grant-manage.html#grant-delete
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/revoke-grant.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 * if the operation is successful, or with a {@code null} value if an
 error occurs.
 */
 public CompletableFuture<RevokeGrantResponse> revokeKeyGrantAsync(String
 keyId, String grantId) {
 RevokeGrantRequest grantRequest = RevokeGrantRequest.builder()
 .keyId(keyId)
 .grantId(grantId)
 .build();

 CompletableFuture<RevokeGrantResponse> responseFuture =
 getAsyncClient().revokeGrant(grantRequest);
 responseFuture.whenComplete((response, exception) -> {
 if (exception == null) {
 logger.info("Grant ID: [" + grantId + "] was successfully
 revoked!");
 } else {
 if (exception instanceof KmsException kmsEx) {
 if (kmsEx.getMessage().contains("Grant does not exist")) {
 logger.info("The grant ID '" + grantId + "' does not
 exist. Moving on...");
 } else {
 throw new RuntimeException("KMS error occurred: " +
 kmsEx.getMessage(), kmsEx);
 }
 } else {
 throw new RuntimeException("An unexpected error occurred: " +
 exception.getMessage(), exception);
 }
 }
 });

 return responseFuture;
 }

• For API details, see RevokeGrant in Amazon SDK for Java 2.x API Reference.

Actions 1003

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/RevokeGrant

Amazon Key Management Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $grantId
 * @param string $keyId
 * @return void
 */
 public function revokeGrant(string $grantId, string $keyId)
 {
 try{
 $this->client->revokeGrant([
 'GrantId' => $grantId,
 'KeyId' => $keyId,
]);
 }catch(KmsException $caught){
 echo "There was a problem with revoking the grant: {$caught-
>getAwsErrorMessage()}.\n";
 throw $caught;
 }
 }

• For API details, see RevokeGrant in Amazon SDK for PHP API Reference.

Actions 1004

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/RevokeGrant

Amazon Key Management Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class GrantManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "GrantManager":
 """
 Creates a GrantManager instance with a default KMS client.

 :return: An instance of GrantManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def revoke_grant(self, key_id: str, grant_id: str) -> None:
 """
 Revokes a grant so that it can no longer be used.

 :param key_id: The ARN or ID of the key associated with the grant.
 :param grant_id: The ID of the grant to revoke.
 """
 try:
 self.kms_client.revoke_grant(KeyId=key_id, GrantId=grant_id)
 except ClientError as err:
 logger.error(
 "Couldn't revoke grant %s. Here's why: %s",
 grant_id,
 err.response["Error"]["Message"],
)
 raise

Actions 1005

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

• For API details, see RevokeGrant in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ScheduleKeyDeletion with an Amazon SDK or CLI

The following code examples show how to use ScheduleKeyDeletion.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

CLI

Amazon CLI

To schedule the deletion of a customer managed KMS key.

The following schedule-key-deletion example schedules the specified customer
managed KMS key to be deleted in 15 days.

The --key-id parameter identifies the KMS key. This example uses a key ARN value, but
you can use either the key ID or the ARN of the KMS key.The --pending-window-in-days
parameter specifies the length of the 7-30 day waiting period. By default, the waiting period
is 30 days. This example specifies a value of 15, which tells Amazon to permanently delete
the KMS key 15 days after the command completes.

aws kms schedule-key-deletion \
 --key-id arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab \
 --pending-window-in-days 15

Actions 1006

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/RevokeGrant

Amazon Key Management Service Developer Guide

The response includes the key ARN, key state, waiting period (PendingWindowInDays),
and the deletion date in Unix time. To view the deletion date in local time, use the Amazon
KMS console. KMS keys in the PendingDeletion key state cannot be used in cryptographic
operations.

{
 "KeyId": "arn:aws:kms:us-
west-2:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "DeletionDate": "2022-06-18T23:43:51.272000+00:00",
 "KeyState": "PendingDeletion",
 "PendingWindowInDays": 15
}

For more information, see Deleting keys in the Amazon Key Management Service Developer
Guide.

• For API details, see ScheduleKeyDeletion in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Deletes a KMS key asynchronously.
 *
 * <p>Warning: Deleting a KMS key is a destructive and
 potentially dangerous operation.
 * When a KMS key is deleted, all data that was encrypted under the KMS key
 becomes unrecoverable.
 * This means that any files, databases, or other data that were encrypted
 using the deleted KMS key
 * will become permanently inaccessible. Exercise extreme caution when
 deleting KMS keys.</p>
 *
 * @param keyId the ID of the KMS key to delete

Actions 1007

https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/schedule-key-deletion.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 * @return a {@link CompletableFuture} that completes when the key deletion
 is scheduled
 */
 public CompletableFuture<Void> deleteKeyAsync(String keyId) {
 ScheduleKeyDeletionRequest deletionRequest =
 ScheduleKeyDeletionRequest.builder()
 .keyId(keyId)
 .pendingWindowInDays(7)
 .build();

 return getAsyncClient().scheduleKeyDeletion(deletionRequest)
 .thenRun(() -> {
 logger.info("Key {} will be deleted in 7 days", keyId);
 })
 .exceptionally(throwable -> {
 throw new RuntimeException("Failed to schedule key deletion for
 key ID: " + keyId, throwable);
 });
 }

• For API details, see ScheduleKeyDeletion in Amazon SDK for Java 2.x API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @param int $pendingWindowInDays
 * @return void
 */
 public function scheduleKeyDeletion(string $keyId, int $pendingWindowInDays =
 7)
 {

Actions 1008

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/ScheduleKeyDeletion
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 try {
 $this->client->scheduleKeyDeletion([
 'KeyId' => $keyId,
 'PendingWindowInDays' => $pendingWindowInDays,
]);
 }catch(KmsException $caught){
 echo "There was a problem scheduling the key deletion: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

• For API details, see ScheduleKeyDeletion in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """
 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

Actions 1009

https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/ScheduleKeyDeletion
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 def delete_key(self, key_id: str, window: int) -> None:
 """
 Deletes a list of keys.

 Warning:
 Deleting a KMS key is a destructive and potentially dangerous operation.
 When a KMS key is deleted,
 all data that was encrypted under the KMS key is unrecoverable.

 :param key_id: The ARN or ID of the key to delete.
 :param window: The waiting period, in days, before the KMS key is
 deleted.
 """

 try:
 self.kms_client.schedule_key_deletion(
 KeyId=key_id, PendingWindowInDays=window
)
 except ClientError as err:
 logging.error(
 "Couldn't delete key %s. Here's why: %s",
 key_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see ScheduleKeyDeletion in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use Sign with an Amazon SDK or CLI

The following code examples show how to use Sign.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

Actions 1010

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/ScheduleKeyDeletion

Amazon Key Management Service Developer Guide

• Learn the basics

CLI

Amazon CLI

Example 1: To generate a digital signature for a message

The following sign example generates a cryptographic signature for a short message. The
output of the command includes a base-64 encoded Signature field that you can verify by
using the verify command.

You must specify a message to sign and a signing algorithm that your asymmetric KMS
key supports. To get the signing algorithms for your KMS key, use the describe-key
command.

In Amazon CLI v2, the value of the message parameter must be Base64-encoded. Or, you
can save the message in a file and use the fileb:// prefix, which tells the Amazon CLI to
read binary data from the file.

Before running this command, replace the example key ID with a valid key ID from your
Amazon account. The key ID must represent an asymmetric KMS key with a key usage of
SIGN_VERIFY.

msg=(echo 'Hello World' | base64)

aws kms sign \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --message fileb://UnsignedMessage \
 --message-type RAW \
 --signing-algorithm RSASSA_PKCS1_V1_5_SHA_256

Output:

{
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Signature": "ABCDEFhpyVYyTxbafE74ccSvEJLJr3zuoV1Hfymz4qv+/
fxmxNLA7SE1SiF8lHw80fKZZ3bJ...",
 "SigningAlgorithm": "RSASSA_PKCS1_V1_5_SHA_256"

Actions 1011

Amazon Key Management Service Developer Guide

}

For more information about using asymmetric KMS keys in Amazon KMS, see Asymmetric
keys in Amazon KMS in the Amazon Key Management Service Developer Guide.

Example 2: To save a digital signature in a file (Linux and macOs)

The following sign example generates a cryptographic signature for a short message stored
in a local file. The command also gets the Signature property from the response, Base64-
decodes it and saves it in the ExampleSignature file. You can use the signature file in a
verify command that verifies the signature.

The sign command requires a Base64-encoded message and a signing algorithm that your
asymmetric KMS key supports. To get the signing algorithms that your KMS key supports,
use the describe-key command.

Before running this command, replace the example key ID with a valid key ID from your
Amazon account. The key ID must represent an asymmetric KMS key with a key usage of
SIGN_VERIFY.

echo 'hello world' | base64 > EncodedMessage

aws kms sign \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --message fileb://EncodedMessage \
 --message-type RAW \
 --signing-algorithm RSASSA_PKCS1_V1_5_SHA_256 \
 --output text \
 --query Signature | base64 --decode > ExampleSignature

This command produces no output. This example extracts the Signature property of the
output and saves it in a file.

For more information about using asymmetric KMS keys in Amazon KMS, see Asymmetric
keys in Amazon KMS in the Amazon Key Management Service Developer Guide.

• For API details, see Sign in Amazon CLI Command Reference.

Actions 1012

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/sign.html

Amazon Key Management Service Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Asynchronously signs and verifies data using AWS KMS.
 *
 * <p>The method performs the following steps:
 *
 * Creates an AWS KMS key with the specified key spec, key usage, and
 origin.
 * Signs the provided message using the created KMS key and the
 RSASSA-PSS-SHA-256 algorithm.
 * Verifies the signature of the message using the created KMS key
 and the RSASSA-PSS-SHA-256 algorithm.
 *
 *
 * @return a {@link CompletableFuture} that completes with the result of the
 signature verification,
 * {@code true} if the signature is valid, {@code false} otherwise.
 * @throws KmsException if any error occurs during the KMS operations.
 * @throws RuntimeException if an unexpected error occurs.
 */
 public CompletableFuture<Boolean> signVerifyDataAsync() {
 String signMessage = "Here is the message that will be digitally signed";

 // Create an AWS KMS key used to digitally sign data.
 CreateKeyRequest createKeyRequest = CreateKeyRequest.builder()
 .keySpec(KeySpec.RSA_2048)
 .keyUsage(KeyUsageType.SIGN_VERIFY)
 .origin(OriginType.AWS_KMS)
 .build();

 return getAsyncClient().createKey(createKeyRequest)
 .thenCompose(createKeyResponse -> {
 String keyId = createKeyResponse.keyMetadata().keyId();

Actions 1013

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 SdkBytes messageBytes = SdkBytes.fromString(signMessage,
 Charset.defaultCharset());
 SignRequest signRequest = SignRequest.builder()
 .keyId(keyId)
 .message(messageBytes)
 .signingAlgorithm(SigningAlgorithmSpec.RSASSA_PSS_SHA_256)
 .build();

 return getAsyncClient().sign(signRequest)
 .thenCompose(signResponse -> {
 byte[] signedBytes =
 signResponse.signature().asByteArray();

 VerifyRequest verifyRequest = VerifyRequest.builder()
 .keyId(keyId)

 .message(SdkBytes.fromByteArray(signMessage.getBytes(Charset.defaultCharset())))

 .signature(SdkBytes.fromByteBuffer(ByteBuffer.wrap(signedBytes)))

 .signingAlgorithm(SigningAlgorithmSpec.RSASSA_PSS_SHA_256)
 .build();

 return getAsyncClient().verify(verifyRequest)
 .thenApply(verifyResponse -> {
 return (boolean) verifyResponse.signatureValid();
 });
 });
 })
 .exceptionally(throwable -> {
 throw new RuntimeException("Failed to sign or verify data",
 throwable);
 });
 }

• For API details, see Sign in Amazon SDK for Java 2.x API Reference.

Actions 1014

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/Sign

Amazon Key Management Service Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @param string $message
 * @param string $algorithm
 * @return Result
 */
 public function sign(string $keyId, string $message, string $algorithm)
 {
 try {
 return $this->client->sign([
 'KeyId' => $keyId,
 'Message' => $message,
 'SigningAlgorithm' => $algorithm,
]);
 }catch(KmsException $caught){
 echo "There was a problem signing the data: {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

• For API details, see Sign in Amazon SDK for PHP API Reference.

Actions 1015

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/Sign

Amazon Key Management Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyEncrypt:
 def __init__(self, kms_client):
 self.kms_client = kms_client

 @classmethod
 def from_client(cls) -> "KeyEncrypt":
 """
 Creates a KeyEncrypt instance with a default KMS client.

 :return: An instance of KeyEncrypt initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def sign(self, key_id: str, message: str) -> str:
 """
 Signs a message with a key.

 :param key_id: The ARN or ID of the key to use for signing.
 :param message: The message to sign.
 :return: The signature of the message.
 """
 try:
 return self.kms_client.sign(
 KeyId=key_id,
 Message=message.encode(),
 SigningAlgorithm="RSASSA_PSS_SHA_256",
)["Signature"]
 except ClientError as err:
 logger.error(

Actions 1016

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 "Couldn't sign your message. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see Sign in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use TagResource with an Amazon SDK or CLI

The following code examples show how to use TagResource.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

CLI

Amazon CLI

To add a tag to a KMS key

The following tag-resource example adds "Purpose":"Test" and "Dept":"IT" tags
to a customer managed KMS key. You can use tags like these to label KMS keys and create
categories of KMS keys for permissions and auditing.

To specify the KMS key, use the key-id parameter. This example uses a key ID value, but
you can use a key ID or key ARN in this command.

aws kms tag-resource \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --tags TagKey='Purpose',TagValue='Test' TagKey='Dept',TagValue='IT'

This command produces no output. To view the tags on an Amazon KMS KMS key, use the
list-resource-tags command.

Actions 1017

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/Sign

Amazon Key Management Service Developer Guide

For more information about using tags in Amazon KMS, see Tagging keys in the Amazon Key
Management Service Developer Guide.

• For API details, see TagResource in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /**
 * Asynchronously tags a KMS key with a specific tag.
 *
 * @param keyId the ID of the KMS key to be tagged
 * @return a {@link CompletableFuture} that completes when the tagging
 operation is finished
 */
 public CompletableFuture<Void> tagKMSKeyAsync(String keyId) {
 Tag tag = Tag.builder()
 .tagKey("Environment")
 .tagValue("Production")
 .build();

 TagResourceRequest tagResourceRequest = TagResourceRequest.builder()
 .keyId(keyId)
 .tags(tag)
 .build();

 return getAsyncClient().tagResource(tagResourceRequest)
 .thenRun(() -> {
 logger.info("{} key was tagged", keyId);
 })
 .exceptionally(throwable -> {
 throw new RuntimeException("Failed to tag the KMS key",
 throwable);
 });
 }

Actions 1018

https://docs.aws.amazon.com/kms/latest/developerguide/tagging-keys.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/tag-resource.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

• For API details, see TagResource in Amazon SDK for Java 2.x API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /***
 * @param string $keyId
 * @param array $tags
 * @return void
 */
 public function tagResource(string $keyId, array $tags)
 {
 try {
 $this->client->tagResource([
 'KeyId' => $keyId,
 'Tags' => $tags,
]);
 }catch(KmsException $caught){
 echo "There was a problem applying the tag(s): {$caught-
>getAwsErrorMessage()}\n";
 throw $caught;
 }
 }

• For API details, see TagResource in Amazon SDK for PHP API Reference.

Actions 1019

https://docs.amazonaws.cn/goto/SdkForJavaV2/kms-2014-11-01/TagResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/kms#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/kms-2014-11-01/TagResource

Amazon Key Management Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_keys = []

 @classmethod
 def from_client(cls) -> "KeyManager":
 """
 Creates a KeyManager instance with a default KMS client.

 :return: An instance of KeyManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def tag_resource(self, key_id: str, tag_key: str, tag_value: str) -> None:
 """
 Add or edit tags on a customer managed key.

 :param key_id: The ARN or ID of the key to enable rotation for.
 :param tag_key: Key for the tag.
 :param tag_value: Value for the tag.
 """
 try:
 self.kms_client.tag_resource(
 KeyId=key_id, Tags=[{"TagKey": tag_key, "TagValue": tag_value}]
)
 except ClientError as err:
 logging.error(
 "Couldn't add a tag for the key '%s'. Here's why: %s",

Actions 1020

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 key_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see TagResource in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use UpdateAlias with an Amazon SDK or CLI

The following code examples show how to use UpdateAlias.

CLI

Amazon CLI

To associate an alias with a different KMS key

The following update-alias example associates the alias alias/test-key with a
different KMS key.

The --alias-name parameter specifies the alias. The alias name value must begin with
alias/.The --target-key-id parameter specifies the KMS key to associate with the alias.
You don't need to specify the current KMS key for the alias.

aws kms update-alias \
 --alias-name alias/test-key \
 --target-key-id 1234abcd-12ab-34cd-56ef-1234567890ab

This command produces no output. To find the alias, use the list-aliases command.

For more information, see Updating aliases in the Amazon Key Management Service
Developer Guide.

• For API details, see UpdateAlias in Amazon CLI Command Reference.

Actions 1021

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/TagResource
https://docs.aws.amazon.com/kms/latest/developerguide/alias-manage.html#alias-update
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/update-alias.html

Amazon Key Management Service Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class AliasManager:
 def __init__(self, kms_client):
 self.kms_client = kms_client
 self.created_key = None

 @classmethod
 def from_client(cls) -> "AliasManager":
 """
 Creates an AliasManager instance with a default KMS client.

 :return: An instance of AliasManager initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def update_alias(self, alias, current_key_id):
 """
 Updates an alias by assigning it to another key.

 :param alias: The alias to reassign.
 :param current_key_id: The ARN or ID of the key currently associated with
 the alias.
 """
 new_key_id = input(
 f"Alias {alias} is currently associated with {current_key_id}. "
 f"Enter another key ID or ARN that you want to associate with
 {alias}: "
)
 if new_key_id != "":
 try:

Actions 1022

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 self.kms_client.update_alias(AliasName=alias,
 TargetKeyId=new_key_id)
 except ClientError as err:
 logger.error(
 "Couldn't associate alias %s with key %s. Here's why: %s",
 alias,
 new_key_id,
 err.response["Error"]["Message"],
)
 else:
 print(f"Alias {alias} is now associated with key {new_key_id}.")
 else:
 print("Skipping alias update.")

• For API details, see UpdateAlias in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use Verify with an Amazon SDK or CLI

The following code examples show how to use Verify.

CLI

Amazon CLI

To verify a digital signature

The following verify command verifies a cryptographic signature for a short, Base64-
encoded message. The key ID, message, message type, and signing algorithm must be same
ones that were used to sign the message.

In Amazon CLI v2, the value of the message parameter must be Base64-encoded. Or, you
can save the message in a file and use the fileb:// prefix, which tells the Amazon CLI to
read binary data from the file.

The signature that you specify cannot be base64-encoded. For help decoding the signature
that the sign command returns, see the sign command examples.

Actions 1023

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/UpdateAlias

Amazon Key Management Service Developer Guide

The output of the command includes a Boolean SignatureValid field that indicates that
the signature was verified. If the signature validation fails, the verify command fails, too.

Before running this command, replace the example key ID with a valid key ID from your
Amazon account.

aws kms verify \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --message fileb://EncodedMessage \
 --message-type RAW \
 --signing-algorithm RSASSA_PKCS1_V1_5_SHA_256 \
 --signature fileb://ExampleSignature

Output:

{
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "SignatureValid": true,
 "SigningAlgorithm": "RSASSA_PKCS1_V1_5_SHA_256"
}

For more information about using asymmetric KMS keys in Amazon KMS, see Using
asymmetric keys in the Amazon Key Management Service Developer Guide.

• For API details, see Verify in Amazon CLI Command Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class KeyEncrypt:
 def __init__(self, kms_client):
 self.kms_client = kms_client

Actions 1024

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kms/verify.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/kms#code-examples

Amazon Key Management Service Developer Guide

 @classmethod
 def from_client(cls) -> "KeyEncrypt":
 """
 Creates a KeyEncrypt instance with a default KMS client.

 :return: An instance of KeyEncrypt initialized with the default KMS
 client.
 """
 kms_client = boto3.client("kms")
 return cls(kms_client)

 def verify(self, key_id: str, message: str, signature: str) -> bool:
 """
 Verifies a signature against a message.

 :param key_id: The ARN or ID of the key used to sign the message.
 :param message: The message to verify.
 :param signature: The signature to verify.
 :return: True when the signature matches the message, otherwise False.
 """
 try:
 response = self.kms_client.verify(
 KeyId=key_id,
 Message=message.encode(),
 Signature=signature,
 SigningAlgorithm="RSASSA_PSS_SHA_256",
)
 valid = response["SignatureValid"]
 print(f"The signature is {'valid' if valid else 'invalid'}.")
 return valid
 except ClientError as err:
 if err.response["Error"]["Code"] == "SignatureDoesNotMatchException":
 print("The signature is not valid.")
 else:
 logger.error(
 "Couldn't verify your signature. Here's why: %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see Verify in Amazon SDK for Python (Boto3) API Reference.

Actions 1025

https://docs.amazonaws.cn/goto/boto3/kms-2014-11-01/Verify

Amazon Key Management Service Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Scenarios for Amazon KMS using Amazon SDKs

The following code examples show you how to implement common scenarios in Amazon KMS
with Amazon SDKs. These scenarios show you how to accomplish specific tasks by calling multiple
functions within Amazon KMS or combined with other Amazon Web Services services. Each
scenario includes a link to the complete source code, where you can find instructions on how to set
up and run the code.

Scenarios target an intermediate level of experience to help you understand service actions in
context.

Examples

• Work with DynamoDB table encryption using Amazon Command Line Interface v2

Work with DynamoDB table encryption using Amazon Command Line
Interface v2

The following code example shows how to manage encryption options for DynamoDB tables.

• Create a table with default encryption.

• Create a table with a customer managed CMK.

• Update table encryption settings.

• Describe table encryption.

Bash

Amazon CLI with Bash script

Create a table with default encryption.

Create a table with default encryption (AWS owned key)
aws dynamodb create-table \
 --table-name CustomerData \

Scenarios 1026

Amazon Key Management Service Developer Guide

 --attribute-definitions \
 AttributeName=CustomerID,AttributeType=S \
 --key-schema \
 AttributeName=CustomerID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST \
 --sse-specification Enabled=true,SSEType=KMS

Create a table with a customer managed CMK.

Step 1: Create a customer managed key in KMS
aws kms create-key \
 --description "Key for DynamoDB table encryption" \
 --key-usage ENCRYPT_DECRYPT \
 --customer-master-key-spec SYMMETRIC_DEFAULT

Store the key ID for later use
KEY_ID=$(aws kms list-keys --query "Keys[?contains(KeyArn, 'Key for
 DynamoDB')].KeyId" --output text)

Step 2: Create a table with the customer managed key
aws dynamodb create-table \
 --table-name SensitiveData \
 --attribute-definitions \
 AttributeName=RecordID,AttributeType=S \
 --key-schema \
 AttributeName=RecordID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST \
 --sse-specification Enabled=true,SSEType=KMS,KMSMasterKeyId=$KEY_ID

Update table encryption.

Update a table to use a different KMS key
aws dynamodb update-table \
 --table-name CustomerData \
 --sse-specification Enabled=true,SSEType=KMS,KMSMasterKeyId=$KEY_ID

Describe table encryption.

Describe the table to see encryption settings

Work with table encryption 1027

Amazon Key Management Service Developer Guide

aws dynamodb describe-table \
 --table-name CustomerData \
 --query "Table.SSEDescription"

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateKey

• CreateTable

• DescribeTable

• UpdateTable

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Work with table encryption 1028

https://docs.amazonaws.cn/goto/aws-cli/kms-2014-11-01/CreateKey
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateTable

Amazon Key Management Service Developer Guide

Cryptographic attestation for Amazon Nitro Enclaves

Amazon KMS supports cryptographic attestation for Amazon Nitro Enclaves. Applications that
support Amazon Nitro Enclaves call the following Amazon KMS cryptographic operations with a
signed attestation document for the enclave. These Amazon KMS APIs verify that the attestation
document came from a Nitro enclave. Then, instead of returning plaintext data in the response,
these APIs encrypt the plaintext with the public key from the attestation document and return
ciphertext that can be decrypted only by the corresponding private key in the enclave.

• Decrypt

• DeriveSharedSecret

• GenerateDataKey

• GenerateDataKeyPair

• GenerateRandom

The following table shows how the response to Nitro enclave requests differs from the standard
response for each API operation.

Amazon KMS operation Standard response Response for Amazon Nitro
Enclaves

Decrypt Returns plaintext data Returns the plaintext data
encrypted by the public
key from the attestation
document

DeriveSharedSecret Returns raw shared secret Returns the raw shared secret
encrypted by the public
key from the attestation
document

GenerateDataKey Returns a plaintext copy of
the data key

Returns a copy of the data
key encrypted by the public
key from the attestation
document

1029

https://docs.amazonaws.cn/enclaves/latest/user/
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom

Amazon Key Management Service Developer Guide

Amazon KMS operation Standard response Response for Amazon Nitro
Enclaves

(Also returns a copy of the
data key encrypted by a KMS
key)

(Also returns a copy of the
data key encrypted by a KMS
key)

GenerateDataKeyPair Returns a plaintext copy of
the private key

(Also returns the public key
and a copy of the private key
encrypted by a KMS key)

Returns a copy of the private
key encrypted by the public
key from the attestation
document

(Also returns the public key
and a copy of the private key
encrypted by a KMS key)

GenerateRandom Returns a random byte string Returns the random byte
string encrypted by the public
key from the attestation
document

Amazon KMS supports policy condition keys that you can use to allow or deny enclave operations
with an Amazon KMS key based on the content of the attestation document. You can also monitor
requests to Amazon KMS for your Nitro enclave in your Amazon CloudTrail logs.

Learn more

• Cryptographic attestation

• Amazon KMS condition keys for Amazon Nitro Enclaves

• How to call Amazon KMS APIs for a Nitro enclave

• Monitoring requests for Nitro enclaves

How to call Amazon KMS APIs for a Nitro enclave

To call Amazon KMS APIs for a Nitro enclave, use the Recipient parameter in the request
to provide the signed attestation document for the enclave and the encryption algorithm to
use with the enclave's public key. When a request includes the Recipient parameter with a

How to call Amazon KMS APIs for a Nitro enclave 1030

https://docs.amazonaws.cn/enclaves/latest/user/set-up-attestation.html

Amazon Key Management Service Developer Guide

signed attestation document, the response includes a CiphertextForRecipient field with the
ciphertext encrypted by the public key. The plaintext field is null or empty.

The Recipient parameter must specify a signed attestation document from an Amazon Nitro
enclave. Amazon KMS relies on the digital signature for the enclave’s attestation document to
prove that the public key in the request came from a valid enclave. You cannot supply your own
certificate to digitally sign the attestation document.

To specify the Recipient parameter, use the Amazon Nitro Enclaves SDK or any Amazon SDK.
The Amazon Nitro Enclaves SDK, which is supported only within a Nitro enclave, automatically
adds the Recipient parameter and its values to every Amazon KMS request. To make requests for
Nitro enclaves in the Amazon SDKs, you have to specify the Recipient parameter and its values.
Support for Nitro enclave cryptographic attestation in the Amazon SDKs was introduced in March
2023.

Amazon KMS supports policy condition keys that you can use to allow or deny enclave operations
with an Amazon KMS key based on the content of the attestation document. You can also monitor
requests to Amazon KMS for your Nitro enclave in your Amazon CloudTrail logs.

For detailed information about the Recipient parameter and the AWS
CiphertextForRecipient response field, see the Decrypt, DeriveSharedSecret,
GenerateDataKey, GenerateDataKeyPair, and GenerateRandom topics in the Amazon Key
Management Service API Reference, the Amazon Nitro Enclaves SDK, or any Amazon SDK. For
information about setting up your data and data keys for encryption, see Using cryptographic
attestation with Amazon KMS.

Monitoring requests for Nitro enclaves

You can use your Amazon CloudTrail logs to monitor Decrypt, DeriveSharedSecret,
GenerateDataKey, GenerateDataKeyPair, and GenerateRandom operations for an
Amazon Nitro enclave. In these log entries, the additionalEventData field has a
recipient field with the module ID (attestationDocumentModuleId), image digest
(attestationDocumentEnclaveImageDigest), and platform configuration registers (PCRs)
from the attestation document in the request. These fields are included only when the Recipient
parameter in the request specifies a signed attestation document from an Amazon Nitro enclave.

The module ID is the enclave ID of the Nitro enclave. The image digest is the SHA384 hash of the
enclave image. You can use the image digest and PCR values in conditions for key policies and

Monitoring requests for Nitro enclaves 1031

https://docs.amazonaws.cn/enclaves/latest/user/developing-applications.html#sdk
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom
https://docs.amazonaws.cn/enclaves/latest/user/developing-applications.html#sdk
https://docs.amazonaws.cn/enclaves/latest/user/kms.html
https://docs.amazonaws.cn/enclaves/latest/user/kms.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave-concepts.html#term-enclaveid

Amazon Key Management Service Developer Guide

IAM policies. For information about the PCRs, see Where to get an enclave's measurements in the
Amazon Nitro Enclaves User Guide.

This section shows an example CloudTrail log entry for each of the supported Nitro enclave
requests to Amazon KMS.

Decrypt (for an enclave)

The following example shows an Amazon CloudTrail log entry of a Decrypt operation for an
Amazon Nitro enclave.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-07-27T22:58:24Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "additionalEventData": {
 "recipient": {
 "attestationDocumentModuleId": "i-123456789abcde123-enc123456789abcde12",
 "attestationDocumentEnclaveImageDigest": "<AttestationDocument.PCR0>",
 "attestationDocumentEnclavePCR1": "<AttestationDocument.PCR1>",
 "attestationDocumentEnclavePCR2": "<AttestationDocument.PCR2>",
 "attestationDocumentEnclavePCR3": "<AttestationDocument.PCR3>",
 "attestationDocumentEnclavePCR4": "<AttestationDocument.PCR4>",
 "attestationDocumentEnclavePCR8": "<AttestationDocument.PCR8>"
 }

Decrypt (for an enclave) 1032

https://docs.amazonaws.cn/enclaves/latest/user/set-up-attestation.html#where
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

 },
 "requestID": "b4a65126-30d5-4b28-98b9-9153da559963",
 "eventID": "e5a2f202-ba1a-467c-b4ba-f729d45ae521",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

GenerateDataKey (for an enclave)

The following example shows an Amazon CloudTrail log entry of a GenerateDataKey operation for
an Amazon Nitro enclave.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:40Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "numberOfBytes": 32
 },
 "responseElements": null,
 "additionalEventData": {

GenerateDataKey (for an enclave) 1033

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

 "recipient": {
 "attestationDocumentModuleId": "i-123456789abcde123-enc123456789abcde12",
 "attestationDocumentEnclaveImageDigest": "<AttestationDocument.PCR0>",
 "attestationDocumentEnclavePCR1": "<AttestationDocument.PCR1>",
 "attestationDocumentEnclavePCR2": "<AttestationDocument.PCR2>",
 "attestationDocumentEnclavePCR3": "<AttestationDocument.PCR3>",
 "attestationDocumentEnclavePCR4": "<AttestationDocument.PCR4>",
 "attestationDocumentEnclavePCR8": "<AttestationDocument.PCR8>"
 }
 },
 "requestID": "e0eb83e3-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "a9dea4f9-8395-46c0-942c-f509c02c2b71",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

GenerateDataKeyPair (for an enclave)

The following example shows an Amazon CloudTrail log entry of a GenerateDataKeyPair operation
for an Amazon Nitro enclave.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-07-27T18:57:57Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyPair",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",

GenerateDataKeyPair (for an enclave) 1034

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html

Amazon Key Management Service Developer Guide

 "requestParameters": {
 "keyPairSpec": "RSA_3072",
 "encryptionContext": {
 "Project": "Alpha"
 },
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "additionalEventData": {
 "recipient": {
 "attestationDocumentModuleId": "i-123456789abcde123-enc123456789abcde12",
 "attestationDocumentEnclaveImageDigest": "<AttestationDocument.PCR0>",
 "attestationDocumentEnclavePCR1": "<AttestationDocument.PCR1>",
 "attestationDocumentEnclavePCR2": "<AttestationDocument.PCR2>",
 "attestationDocumentEnclavePCR3": "<AttestationDocument.PCR3>",
 "attestationDocumentEnclavePCR4": "<AttestationDocument.PCR4>",
 "attestationDocumentEnclavePCR8": "<AttestationDocument.PCR8>"
 }
 },
 "requestID": "52fb127b-0fe5-42bb-8e5e-f560febde6b0",
 "eventID": "9b6bd6d2-529d-4890-a949-593b13800ad7",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

GenerateRandom (for an enclave)

The following example shows an Amazon CloudTrail log entry of a GenerateRandom operation for
an Amazon Nitro enclave.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",

GenerateRandom (for an enclave) 1035

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom.html

Amazon Key Management Service Developer Guide

 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:37Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateRandom",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon Internal",
 "requestParameters": null,
 "responseElements": null,
 "additionalEventData": {
 "recipient": {
 "attestationDocumentModuleId": "i-123456789abcde123-enc123456789abcde12",
 "attestationDocumentEnclaveImageDigest": "<AttestationDocument.PCR0>",
 "attestationDocumentEnclavePCR1": "<AttestationDocument.PCR1>",
 "attestationDocumentEnclavePCR2": "<AttestationDocument.PCR2>",
 "attestationDocumentEnclavePCR3": "<AttestationDocument.PCR3>",
 "attestationDocumentEnclavePCR4": "<AttestationDocument.PCR4>",
 "attestationDocumentEnclavePCR8": "<AttestationDocument.PCR8>"
 }
 },
 "requestID": "df1e3de6-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "239cb9f7-ae05-4c94-9221-6ea30eef0442",
 "readOnly": true,
 "resources": [],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

GenerateRandom (for an enclave) 1036

Amazon Key Management Service Developer Guide

Using Amazon KMS encryption with Amazon services

With Amazon Key Management Service, you can provide encryption keys for protecting data
in other Amazon services. Using Amazon KMS encryption with Amazon services refers to the
process of integrating Amazon KMS with other Amazon services to encrypt and decrypt data
at rest or in transit. Developers, system administrators, and security professionals might be
interested in this topic to secure sensitive data stored or transmitted through Amazon services,
meet regulatory compliance requirements, or implement encryption best practices. Common use
cases include encrypting Amazon EBS volumes, Amazon S3 buckets, and Amazon RDS databases.
The following sections will cover the steps to configure and manage Amazon KMS encryption
keys for specific Amazon services, ensuring data confidentiality and integrity across your Amazon
environment.For the complete list of Amazon services integrated with Amazon KMS, see Amazon
Service Integration.

The following topics discuss in detail how particular services use Amazon KMS, including the KMS
keys they support, how they manage data keys, the permissions they require, and how to track
each service's use of the KMS keys in your account.

Important

Amazon services that are integrated with Amazon KMS use only symmetric encryption KMS
keys to encrypt your data. These services do not support encryption with asymmetric KMS
keys. For help determining whether a KMS key is symmetric or asymmetric, see Identify
different key types.

Topics

• How Amazon Elastic Block Store (Amazon EBS) uses Amazon KMS

• How Amazon EMR uses Amazon KMS

• How Amazon Redshift uses Amazon KMS

1037

http://www.amazonaws.cn/kms/features/#AWS_Service_Integration
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

How Amazon Elastic Block Store (Amazon EBS) uses Amazon
KMS

This topic discusses in detail how Amazon Elastic Block Store (Amazon EBS) uses Amazon KMS to
encrypt volumes and snapshots. For basic instructions about encrypting Amazon EBS volumes, see
Amazon EBS Encryption.

Topics

• Amazon EBS encryption

• Using KMS keys and data keys

• Amazon EBS encryption context

• Detecting Amazon EBS failures

• Using Amazon CloudFormation to create encrypted Amazon EBS volumes

Amazon EBS encryption

When you attach an encrypted Amazon EBS volume to a supported Amazon Elastic Compute Cloud
(Amazon EC2) instance type, data stored at rest on the volume, disk I/O, and snapshots created
from the volume are all encrypted. The encryption occurs on the servers that host Amazon EC2
instances.

This feature is supported on all Amazon EBS volume types. You access encrypted volumes the
same way you access other volumes; encryption and decryption are handled transparently and
they require no additional action from you, your EC2 instance, or your application. Snapshots of
encrypted volumes are automatically encrypted, and volumes that are created from encrypted
snapshots are also automatically encrypted.

The encryption status of an EBS volume is determined when you create the volume. You cannot
change the encryption status of an existing volume. However, you can migrate data between
encrypted and unencrypted volumes and apply a new encryption status while copying a snapshot.

Amazon EBS supports optional encryption by default. You can enable encryption automatically on
all new EBS volumes and snapshot copies in your Amazon Web Services account and Region. This
configuration setting doesn't affect existing volumes or snapshots. For details, see Amazon EBS
encryption in the Amazon EBS User Guide.

Amazon Elastic Block Store (Amazon EBS) 1038

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_supported_instances
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_supported_instances
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_considerations
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html#encryption-by-default
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html#encryption-by-default

Amazon Key Management Service Developer Guide

Using KMS keys and data keys

When you create an encrypted Amazon EBS volume, you specify an Amazon KMS key. By default,
Amazon EBS uses the Amazon managed key for Amazon EBS in your account (aws/ebs). However,
you can specify a customer managed key that you create and manage.

To use a customer managed key, you must give Amazon EBS permission to use the KMS key on
your behalf. For a list of required permissions, see Permissions for IAM users in the Amazon EC2
User Guide or Amazon EC2 User Guide.

Important

Amazon EBS supports only symmetric KMS keys. You cannot use an asymmetric KMS key to
encrypt an Amazon EBS volume. For help determining whether a KMS key is symmetric or
asymmetric, see Identify different key types.

For each volume, Amazon EBS asks Amazon KMS to generate a unique data key encrypted under
the KMS key that you specify. Amazon EBS stores the encrypted data key with the volume. Then,
when you attach the volume to an Amazon EC2 instance, Amazon EBS calls Amazon KMS to
decrypt the data key. Amazon EBS uses the plaintext data key in hypervisor memory to encrypt all
disk I/O to the volume. For details, see How EBS encryption works in the Amazon EC2 User Guide or
Amazon EC2 User Guide.

Amazon EBS encryption context

In its GenerateDataKeyWithoutPlaintext and Decrypt requests to Amazon KMS, Amazon EBS uses
an encryption context with a name-value pair that identifies the volume or snapshot in the request.
The name in the encryption context does not vary.

An encryption context is a set of key–value pairs that contain arbitrary nonsecret data. When you
include an encryption context in a request to encrypt data, Amazon KMS cryptographically binds
the encryption context to the encrypted data. To decrypt the data, you must pass in the same
encryption context.

For all volumes and for encrypted snapshots created with the Amazon EBS CreateSnapshot
operation, Amazon EBS uses the volume ID as encryption context value. In the
requestParameters field of a CloudTrail log entry, the encryption context looks similar to the
following:

Using KMS keys and data keys 1039

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-creating-volume.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html#ebs-encryption-permissions
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html#ebs-encryption-permissions
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/EBSEncryption.html#ebs-encryption-permissions
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSEncryption.html#how-ebs-encryption-works
https://docs.amazonaws.cn/AWSEC2/latest/WindowsGuide/EBSEncryption.html#how-ebs-encryption-works
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CreateSnapshot.html

Amazon Key Management Service Developer Guide

"encryptionContext": {
 "aws:ebs:id": "vol-0cfb133e847d28be9"
}

For encrypted snapshots created with the Amazon EC2 CopySnapshot operation, Amazon EBS uses
the snapshot ID as encryption context value. In the requestParameters field of a CloudTrail log
entry, the encryption context looks similar to the following:

"encryptionContext": {
 "aws:ebs:id": "snap-069a655b568de654f"
}

Detecting Amazon EBS failures

To create an encrypted EBS volume or attach the volume to an EC2 instance, Amazon EBS and the
Amazon EC2 infrastructure must be able to use the KMS key that you specified for EBS volume
encryption. When the KMS key is not usable—for example, when its key state is not Enabled —the
volume creation or volume attachment fails.

In this case, Amazon EBS sends an event to Amazon EventBridge (formerly CloudWatch Events) to
notify you about the failure. In EventBridge, you can establish rules that trigger automatic actions
in response to these events. For more information, see Amazon CloudWatch Events for Amazon
EBS in the Amazon EC2 User Guide, especially the following sections:

• Invalid Encryption Key on Volume Attach or Reattach

• Invalid Encryption Key on Create Volume

To fix these failures, ensure that the KMS key that you specified for EBS volume encryption is
enabled. To do this, first view the KMS key to determine its current key state (the Status column in
the Amazon Web Services Management Console). Then, see the information at one of the following
links:

• If the KMS key's key state is disabled, enable it.

• If the KMS key's key state is pending import, import key material.

• If the KMS key's key state is pending deletion, cancel key deletion.

Detecting Amazon EBS failures 1040

https://docs.amazonaws.cn/AWSEC2/latest/APIReference/API_CopySnapshot.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html#attach-fail-key
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html#create-fail-key

Amazon Key Management Service Developer Guide

Using Amazon CloudFormation to create encrypted Amazon EBS
volumes

You can use Amazon CloudFormation to create encrypted Amazon EBS volumes. For more
information, see AWS::EC2::Volume in the Amazon CloudFormation User Guide.

How Amazon EMR uses Amazon KMS

When you use an Amazon EMR cluster, you can configure the cluster to encrypt data at rest before
saving it to a persistent storage location. You can encrypt data at rest on the EMR File System
(EMRFS), on the storage volumes of cluster nodes, or both. To encrypt data at rest, you can use
an Amazon KMS key. The following topics explain how an Amazon EMR cluster uses a KMS key to
encrypt data at rest.

Important

Amazon EMR supports only symmetric KMS keys. You cannot use an asymmetric KMS key
to encrypt data at rest in an Amazon EMR cluster. For help determining whether a KMS key
is symmetric or asymmetric, see Identify different key types.

Amazon EMR clusters also encrypt data in transit, which means the cluster encrypts data before
sending it through the network. You cannot use a KMS key to encrypt data in transit. For more
information, see In-Transit Data Encryption in the Amazon EMR Management Guide.

For more information about all the encryption options available in Amazon EMR, see Encryption
Options in the Amazon EMR Management Guide.

Topics

• Encrypting data on the EMR file system (EMRFS)

• Encrypting data on the storage volumes of cluster nodes

• Encryption context

Encrypting data on the EMR file system (EMRFS)

Amazon EMR clusters use two distributed files systems:

Using Amazon CloudFormation to create encrypted Amazon EBS volumes 1041

http://www.amazonaws.cn/cloudformation/
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-ebs-volume.html
http://www.amazonaws.cn/emr/
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-intransit
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-data-encryption-options.html
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-data-encryption-options.html

Amazon Key Management Service Developer Guide

• The Hadoop Distributed File System (HDFS). HDFS encryption does not use a KMS key in Amazon
KMS.

• The EMR File System (EMRFS). EMRFS is an implementation of HDFS that allows Amazon EMR
clusters to store data in Amazon Simple Storage Service (Amazon S3). EMRFS supports four
encryption options, two of which use a KMS key in Amazon KMS. For more information about all
four of the EMRFS encryption options, see Encryption Options in the Amazon EMR Management
Guide.

The two EMRFS encryption options that use a KMS key use the following encryption features
offered by Amazon S3:

• Protecting data using server-side encryption with Amazon Key Management Service (SSE-KMS).
The Amazon EMR cluster sends data to Amazon S3. Amazon S3 uses a KMS key to encrypt the
data before saving it to an S3 bucket. For more information about how this works, see Process
for encrypting data on EMRFS with SSE-KMS.

• Protecting data using client-side encryption (CSE-KMS). Data in an Amazon EMR is encrypted
under an Amazon KMS key before it's sent to Amazon S3 for storage. For more information
about how this works, see Process for encrypting data on EMRFS with CSE-KMS.

When you configure an Amazon EMR cluster to encrypt data on EMRFS with a KMS key, you choose
the KMS key that you want Amazon S3 or the Amazon EMR cluster to use. With SSE-KMS, you can
choose the Amazon managed key for Amazon S3 with the alias aws/s3, or a symmetric customer
managed key that you create. With client-side encryption, you must choose a symmetric customer
managed key that you create. When you choose a customer managed key, you must ensure that
your Amazon EMR cluster has permission to use the KMS key. For more information, see Using
Amazon KMS keys for encryption in the Amazon EMR Management Guide.

For both server-side and client-side encryption, the KMS key you choose is the root key in an
envelope encryption workflow. The data is encrypted with a unique data key that is encrypted
under the KMS key in Amazon KMS. The encrypted data and an encrypted copy of its data key are
stored together as a single encrypted object in an S3 bucket. For more information about how this
works, see the following topics.

Topics

• Process for encrypting data on EMRFS with SSE-KMS

• Process for encrypting data on EMRFS with CSE-KMS

Encrypting data on the EMR file system (EMRFS) 1042

https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-data-encryption-options.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-awskms-keys
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-awskms-keys

Amazon Key Management Service Developer Guide

Process for encrypting data on EMRFS with SSE-KMS

When you configure an Amazon EMR cluster to use SSE-KMS, the encryption process works like
this:

1. The cluster sends data to Amazon S3 for storage in an S3 bucket.

2. Amazon S3 sends a GenerateDataKey request to Amazon KMS, specifying the key ID of the
KMS key that you chose when you configured the cluster to use SSE-KMS. The request includes
encryption context; for more information, see Encryption context.

3. Amazon KMS generates a unique data encryption key (data key) and then sends two copies
of this data key to Amazon S3. One copy is unencrypted (plaintext), and the other copy is
encrypted under the KMS key.

4. Amazon S3 uses the plaintext data key to encrypt the data that it received in step 1, and then
removes the plaintext data key from memory as soon as possible after use.

5. Amazon S3 stores the encrypted data and the encrypted copy of the data key together as a
single encrypted object in an S3 bucket.

The decryption process works like this:

1. The cluster requests an encrypted data object from an S3 bucket.

2. Amazon S3 extracts the encrypted data key from the S3 object, and then sends the encrypted
data key to Amazon KMS with a Decrypt request. The request includes an encryption context.

3. Amazon KMS decrypts the encrypted data key using the same KMS key that was used to encrypt
it, and then sends the decrypted (plaintext) data key to Amazon S3.

4. Amazon S3 uses the plaintext data key to decrypt the encrypted data, and then removes the
plaintext data key from memory as soon as possible after use.

5. Amazon S3 sends the decrypted data to the cluster.

Process for encrypting data on EMRFS with CSE-KMS

When you configure an Amazon EMR cluster to use CSE-KMS, the encryption process works like
this:

1. When it's ready to store data in Amazon S3, the cluster sends a GenerateDataKey request to
Amazon KMS, specifying the key ID of the KMS key that you chose when you configured the

Encrypting data on the EMR file system (EMRFS) 1043

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon Key Management Service Developer Guide

cluster to use CSE-KMS. The request includes encryption context; for more information, see
Encryption context.

2. Amazon KMS generates a unique data encryption key (data key) and then sends two copies of
this data key to the cluster. One copy is unencrypted (plaintext), and the other copy is encrypted
under the KMS key.

3. The cluster uses the plaintext data key to encrypt the data, and then removes the plaintext data
key from memory as soon as possible after use.

4. The cluster combines the encrypted data and the encrypted copy of the data key together into a
single encrypted object.

5. The cluster sends the encrypted object to Amazon S3 for storage.

The decryption process works like this:

1. The cluster requests the encrypted data object from an S3 bucket.

2. Amazon S3 sends the encrypted object to the cluster.

3. The cluster extracts the encrypted data key from the encrypted object, and then sends the
encrypted data key to Amazon KMS with a Decrypt request. The request includes encryption
context.

4. Amazon KMS decrypts the encrypted data key using the same KMS key that was used to encrypt
it, and then sends the decrypted (plaintext) data key to the cluster.

5. The cluster uses the plaintext data key to decrypt the encrypted data, and then removes the
plaintext data key from memory as soon as possible after use.

Encrypting data on the storage volumes of cluster nodes

An Amazon EMR cluster is a collection of Amazon Elastic Compute Cloud (Amazon EC2) instances.
Each instance in the cluster is called a cluster node or node. Each node can have two types of
storage volumes: instance store volumes, and Amazon Elastic Block Store (Amazon EBS) volumes.
You can configure the cluster to use Linux Unified Key Setup (LUKS) to encrypt both types of
storage volumes on the nodes (but not the boot volume of each node). This is called local disk
encryption.

When you enable local disk encryption for a cluster, you can choose to encrypt the LUKS key with
a KMS key in Amazon KMS. You must choose a customer managed key that you create; you cannot
use an Amazon managed key. If you choose a customer managed key, you must ensure that your

Encrypting data on the storage volumes of cluster nodes 1044

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md

Amazon Key Management Service Developer Guide

Amazon EMR cluster has permission to use the KMS key. For more information, see Using Amazon
KMS keys for encryption in the Amazon EMR Management Guide.

When you enable local disk encryption using a KMS key, the encryption process works like this:

1. When each cluster node launches, it sends a GenerateDataKey request to Amazon KMS,
specifying the key ID of the KMS key that you chose when you enabled local disk encryption for
the cluster.

2. Amazon KMS generates a unique data encryption key (data key) and then sends two copies of
this data key to the node. One copy is unencrypted (plaintext), and the other copy is encrypted
under the KMS key.

3. The node uses a base64-encoded version of the plaintext data key as the password that protects
the LUKS key. The node saves the encrypted copy of the data key on its boot volume.

4. If the node reboots, the rebooted node sends the encrypted data key to Amazon KMS with a
Decrypt request.

5. Amazon KMS decrypts the encrypted data key using the same KMS key that was used to encrypt
it, and then sends the decrypted (plaintext) data key to the node.

6. The node uses the base64-encoded version of the plaintext data key as the password to unlock
the LUKS key.

Encryption context

Each Amazon service integrated with Amazon KMS can specify an encryption context when the
service uses Amazon KMS to generate data keys or to encrypt or decrypt data. Encryption context
is additional authenticated information that Amazon KMS uses to check for data integrity. When
a service specifies encryption context for an encryption operation, it must specify the same
encryption context for the corresponding decryption operation or decryption will fail. Encryption
context is also written to Amazon CloudTrail log files, which can help you understand why a specific
KMS key was used.

The following section explain the encryption context that is used in each Amazon EMR encryption
scenario that uses a KMS key.

Encryption context for EMRFS encryption with SSE-KMS

With SSE-KMS, the Amazon EMR cluster sends data to Amazon S3, and then Amazon S3 uses a
KMS key to encrypt the data before saving it to an S3 bucket. In this case, Amazon S3 uses the

Encryption context 1045

https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-awskms-keys
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-awskms-keys
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

Amazon Resource Name (ARN) of the S3 object as encryption context with each GenerateDataKey
and Decrypt request that it sends to Amazon KMS. The following example shows a JSON
representation of the encryption context that Amazon S3 uses.

{ "aws:s3:arn" : "arn:aws:s3:::S3_bucket_name/S3_object_key" }

Encryption context for EMRFS encryption with CSE-KMS

With CSE-KMS, the Amazon EMR cluster uses a KMS key to encrypt data before sending it to
Amazon S3 for storage. In this case, the cluster uses the Amazon Resource Name (ARN) of the
KMS key as encryption context with each GenerateDataKey and Decrypt request that it sends to
Amazon KMS. The following example shows a JSON representation of the encryption context that
the cluster uses.

{ "kms_cmk_id" : "arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef" }

Encryption context for local disk encryption with LUKS

When an Amazon EMR cluster uses local disk encryption with LUKS, the cluster nodes do not
specify encryption context with the GenerateDataKey and Decrypt requests that they send to
Amazon KMS.

How Amazon Redshift uses Amazon KMS

This topic discusses how Amazon Redshift uses Amazon KMS to encrypt data.

Topics

• Amazon Redshift encryption

• Encryption context

Amazon Redshift encryption

An Amazon Redshift data warehouse is a collection of computing resources called nodes, which are
organized into a group called a cluster. Each cluster runs an Amazon Redshift engine and contains
one or more databases.

Amazon Redshift 1046

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

Amazon Redshift uses a four-tier, key-based architecture for encryption. The architecture consists
of data encryption keys, a database key, a cluster key, and a root key. You can use an Amazon KMS
key as the root key.

Data encryption keys encrypt data blocks in the cluster. Each data block is assigned a randomly-
generated AES-256 key. These keys are encrypted by using the database key for the cluster.

The database key encrypts data encryption keys in the cluster. The database key is a randomly-
generated AES-256 key. It is stored on disk in a separate network from the Amazon Redshift cluster
and passed to the cluster across a secure channel.

The cluster key encrypts the database key for the Amazon Redshift cluster. You can use Amazon
KMS, Amazon CloudHSM, or an external hardware security module (HSM) to manage the cluster
key. See the Amazon Redshift Database Encryption documentation for more details.

You can request encryption by checking the appropriate box in the Amazon Redshift console.
You can specify a customer managed key by choosing one from the list that appears below the
encryption box. If you do not specify a customer managed key, Amazon Redshift uses the Amazon
managed key for Amazon Redshift under your account.

Important

Amazon Redshift supports only symmetric encryption KMS keys. You cannot use an
asymmetric KMS key in an Amazon Redshift encryption workflow. For help determining
whether a KMS key is symmetric or asymmetric, see Identify different key types.

Encryption context

Each service that is integrated with Amazon KMS specifies an encryption context when requesting
data keys, encrypting, and decrypting. The encryption context is additional authenticated data
(AAD) that Amazon KMS uses to check for data integrity. That is, when an encryption context is
specified for an encryption operation, the service also specifies it for the decryption operation
or decryption will not succeed. Amazon Redshift uses the cluster ID and the creation time for
the encryption context. In the requestParameters field of a CloudTrail log file, the encryption
context will look similar to this.

"encryptionContext": {

Encryption context 1047

https://docs.amazonaws.cn/redshift/latest/mgmt/working-with-db-encryption.html

Amazon Key Management Service Developer Guide

 "aws:redshift:arn": "arn:aws:redshift:region:account_ID:cluster:cluster_name",
 "aws:redshift:createtime": "20150206T1832Z"
},

You can search on the cluster name in your CloudTrail logs to understand what operations were
performed by using an Amazon KMS key (KMS key). The operations include cluster encryption,
cluster decryption, and generating data keys.

Encryption context 1048

Amazon Key Management Service Developer Guide

Amazon KMS Reference

The following reference material provide useful information about using and managing KMS keys.

• Key type reference. Lists the type of KMS key that supports each Amazon KMS API operation.

To find: Can I enable and disable an RSA signing KMS key?

• Key state table. Shows how the key state of a KMS key affects its use in Amazon KMS API
operations.

To find: Can I change the alias of a KMS key that is pending deletion?

• Amazon KMSAPI permissions reference. Provides information about the permissions required
for each Amazon KMS API operation.

To find: Can I run GetKeyPolicy on a key in a different Amazon account? Can I allow
kms:Decrypt permission in an IAM policy?

• ViaService reference. Lists the Amazon services that support the kms:ViaService condition
key.

To find: Can I use the kms:ViaService condition key to allow a permission only when it
comes from Amazon ElastiCache? What about Amazon Neptune?

• Amazon KMS pricing. Lists and explains the price of KMS keys.

To find: How much does it cost to use my asymmetric keys?

• Amazon KMS request quotas. Lists the per-second quotas for Amazon KMS API requests in each
account and Region.

To find: How many Decrypt requests can I run in each second? How many Decrypt requests can I
run on KMS keys in my custom key store?

• Amazon KMS resource quotas. Lists the quotas on Amazon KMS resources.

To find: How many KMS key can I have in each Region of my account? How many aliases can I
have on each KMS key?

• Amazon services integrated with Amazon KMS. Lists the Amazon services that use KMS keys to
protect the resources that they create, store, and manage.

To find: Does Amazon Connect use KMS keys to protect my Connect resources?

1049

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html
http://www.amazonaws.cn/kms/pricing/
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
http://www.amazonaws.cn/kms/features/#AWS_Service_Integration

Amazon Key Management Service Developer Guide

Key states of Amazon KMS keys

An Amazon KMS key always has a key state. Operations on the KMS key and its environment
can change the key state. The key state can change either transiently, or until another operation
changes its key state. These operations are done either asynchronously, or by an API call.

The table in this section shows how key states affect calls to Amazon KMS API operations. As a
result of its key state, an operation on a KMS key is expected to succeed (#), fail (X), or succeed only
under certain conditions (?). The result often differs for KMS keys with imported key material.

This table includes only the API operations that use an existing KMS key. Other operations, such as
CreateKey and ListKeys, are omitted.

Topics

• Key states and KMS key types

• Key state table

Key states and KMS key types

The type of the KMS key determines the key states it can have.

• All KMS keys can be in the Enabled, Disabled, and PendingDeletion states.

• Most KMS keys are created in the Enabled state. Keys with imported key material are created in
the PendingImport state.

• The PendingImport state applies only to KMS keys with imported key material. When any key
material for an imported key is deleted or it expires, then the state changes from Enabled to
PendingImport.

• The Unavailable state applies only to a KMS key in a custom key store. A KMS key in an
Amazon CloudHSM key store is Unavailable when the custom key store is intentionally
disconnected from its Amazon CloudHSM cluster. A KMS key in an external key store is
Unavailable when the custom key store is intentionally disconnected from its external key
store proxy. You can view and manage unavailable KMS keys, but you cannot use them in
cryptographic operations.

The key state of a KMS key in a custom key store is not affected by changes to its backing key.
A KMS key in a Amazon CloudHSM key store is not affected by changes to its associated key
material in the Amazon CloudHSM cluster. A KMS key in an external key store is not affected by

Key state reference 1050

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html

Amazon Key Management Service Developer Guide

changes to its external key in an external key manager. If the backing key is disabled or deleted,
the KMS key state doesn't change, but cryptographic operations using the KMS key fail.

• The Creating, Updating, and PendingReplicaDeletion key states apply only to multi-
Region keys.

• A multi-Region replica key is in the transient Creating key state while it is being created.
This process might still be in progress when the ReplicateKey operation completes. When the
replicate process completes, the replica key is in the Enabled or PendingImport state.

• Multi-Region keys are in the transient Updating key state while the primary Region is being
updated. This process might still be in progress when the UpdatePrimaryRegion operation
completes. When the update process completes, the primary and replica keys resume the
Enabled key state.

• When you schedule deletion of a multi-Region primary key that has replica keys, the primary
key is in the PendingReplicaDeletion state until all of its replica keys are deleted. Then its
key state changes to PendingDeletion. For details, see Deleting multi-Region keys.

Key state table

The following table shows how the key state of a KMS key affects Amazon KMS operations.

The descriptions of the numbered footnotes ([n]) are at the end of this topic.

Note

You might need to scroll horizontally or vertically to see all of the data in this table.

API Enabled Disabled Pending
deletion

Pending
replica
deletion

Pending
import

Unavailab
le

Creating Updating

CancelKey
Deletion

[4] [4] [4] [4], [13] [4] [4]

Key state table 1051

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html

Amazon Key Management Service Developer Guide

API Enabled Disabled Pending
deletion

Pending
replica
deletion

Pending
import

Unavailab
le

Creating Updating

CreateAli
as

[3]

CreateGra
nt

[1] [2] or [3] [5] [14]

Decrypt

[1] [2] or [3] [5] [11] [14]

DeleteAli
as

DeleteImp
ortedKeyM
aterial [9] [9] [9]

N/A

[14] [15]

DeriveSha
redSecret

[1] [2] or [3] [5]

N/A

[14]

DescribeK
ey

DisableKe
y

[3] [5] [12] [14] [15]

Key state table 1052

Amazon Key Management Service Developer Guide

API Enabled Disabled Pending
deletion

Pending
replica
deletion

Pending
import

Unavailab
le

Creating Updating

DisableKe
yRotation

[7] [1] or [7] [3] or [7] [6] [7] [14] [7]

EnableKey

[3] [5] [12] [14] [15]

EnableKey
Rotation

[7] [1] or [7] [3] or [7] [6] [7] [14] [7]

Encrypt

[1] [2] or [3] [5] [11] [14]

GenerateD
ataKey

[1] [2] or [3] [5] [11] [14]

GenerateD
ataKeyPai
r

[1] [2] or [3] [5] [7] [14]

GenerateD
ataKeyPai
rWithoutP
laintext

[1] [2] or [3] [5] [7] [14]

Key state table 1053

Amazon Key Management Service Developer Guide

API Enabled Disabled Pending
deletion

Pending
replica
deletion

Pending
import

Unavailab
le

Creating Updating

GenerateD
ataKeyWit
houtPlain
text

[1] [2] or [3] [5] [11] [14]

GenerateM
ac

[1] [2] or [3] [5]

N/A

[14]

GetKeyPol
icy

GetKeyRot
ationStat
us

[7] [7] [7] [6] [7] [7] [7]

GetParame
tersForIm
port

[9] [9] [8] or [9] [9] [14] [15]

GetPublic
Key

[2] or [3]

N/A

[14]

ImportKey
Material

[9] [9] [9] [9] [14]

Key state table 1054

Amazon Key Management Service Developer Guide

API Enabled Disabled Pending
deletion

Pending
replica
deletion

Pending
import

Unavailab
le

Creating Updating

ListAlias
es

ListGrant
s

ListKeyPo
licies

ListKeyRo
tations

[7] [7] [7] [6] [7] [7] [7]

ListResou
rceTags

PutKeyPol
icy

ReEncrypt

[1] [2] or [3] [5] [11] [14]

Replicate
Key

[1] [2] or [3] [5]

N/A

[14] [15]

RetireGra
nt

Key state table 1055

Amazon Key Management Service Developer Guide

API Enabled Disabled Pending
deletion

Pending
replica
deletion

Pending
import

Unavailab
le

Creating Updating

RevokeGra
nt

RotateKey
OnDemand

[7] [1] or [7] [3] or [7] [5] [7] [14] [7]

ScheduleK
eyDeletio
n

[3] [15]

Sign

[1] [2] or [3] [5]

N/A

[14]

TagResour
ce

[3]

UntagReso
urce

[3]

UpdateAli
as

[10]

Key state table 1056

Amazon Key Management Service Developer Guide

API Enabled Disabled Pending
deletion

Pending
replica
deletion

Pending
import

Unavailab
le

Creating Updating

UpdateKey
Descripti
on

[3]

UpdatePri
maryRegio
n

[1] [2] or [3] [5]

N/A

[14]

Verify

[1] [2] or [3] [5]

N/A

[14]

VerifyMac

[1] [2] or [3] [5]

N/A

[14]

Table Details

• [1] DisabledException: <key ARN> is disabled.

• [2] DisabledException: <key ARN> is pending deletion (or pending replica
deletion).

• [3] KMSInvalidStateException: <key ARN> is pending deletion (or pending
replica deletion).

• [4] KMSInvalidStateException: <key ARN> is not pending deletion (or
pending replica deletion).

• [5] KMSInvalidStateException: <key ARN> is pending import because no key
material has ever been imported or one of the imported key materials is
deleted or expired.

Key state table 1057

Amazon Key Management Service Developer Guide

• [6] UnsupportedOperationException: <key ARN> origin is EXTERNAL which is
not valid for this operation.

• [7] If the KMS key is in a custom key store: UnsupportedOperationException.

• [8] If the KMS key has imported key material: KMSInvalidStateException

• [9] If the KMS key cannot have imported key material: UnsupportedOperationException.

• [10] If the source KMS key is pending deletion, the command succeeds. If the destination KMS
key is pending deletion, the command fails with error: KMSInvalidStateException : <key
ARN> is pending deletion.

• [11] KMSInvalidStateException: <key ARN> is unavailable. You cannot perform
this operation on an unavailable KMS key.

• [12] The operation succeeds, but the key state of the KMS key does not change until it becomes
available.

• [13] While a KMS key in a custom key store is pending deletion, its key state remains
PendingDeletion even if the KMS key becomes unavailable. This allows you to cancel deletion
of the KMS key at any time during the waiting period.

• [14] KMSInvalidStateException: <key ARN> is creating. Amazon KMS throws this
exception while it is replicating a multi-Region key (ReplicateKey).

• [15] KMSInvalidStateException: <key ARN> is updating. Amazon KMS
throws this exception while it is updating the primary Region of a multi-Region key
(UpdatePrimaryRegion).

Key type reference

Amazon KMS supports different features for different types of KMS keys. For example, you can only
use symmetric encryption KMS keys to generate symmetric data keys and asymmetric data key
pairs. Also, importing key material and automatic key rotation are supported only for symmetric
encryption KMS keys, and you can create only symmetric encryption KMS keys in a custom key
store.

This reference includes two tables.

• The Key type table lists the Amazon KMS operations that are valid for symmetric encryption KMS
keys, asymmetric KMS keys, and HMAC KMS keys.

• The Special features table lists the Amazon KMS operations that are valid for multi-Region KMS
keys, KMS keys with imported key material, and KMS keys in custom key stores.

Key type reference 1058

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairs.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairs.html

Amazon Key Management Service Developer Guide

Key type table

You might need to scroll horizontally or vertically to see all of the data in this table.

Amazon KMS API
operation

Symmetric
encryptio
n KMS
keys

HMAC
KMS
keys

Asymmetri
c KMS
keys
(ENCRYPT_
DECRYPT)

Asymmetric KMS
keys (SIGN_VER
IFY)

Asymmetric KMS
keys (KEY_AGRE
EMENT)

CancelKeyDeletion Yes Yes Yes Yes Yes

CreateAlias Yes Yes Yes Yes Yes

CreateGrant Yes Yes Yes Yes Yes

CreateKey Yes Yes Yes Yes Yes

Decrypt Yes No Yes No No

DeleteAlias Yes Yes Yes Yes Yes

DeleteImp
ortedKeyMaterial

Valid only on
KMS keys with
imported key
material (Origin
is EXTERNAL).

Yes Yes Yes Yes Yes

DeriveSha
redSecret

No No No No Yes

DescribeKey Yes Yes Yes Yes Yes

DisableKey Yes Yes Yes Yes Yes

DisableKe
yRotation

Yes No No No No

Key type table 1059

https://docs.amazonaws.cn/kms/latest/APIReference/API_CancelKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKeyRotation.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKeyRotation.html

Amazon Key Management Service Developer Guide

Amazon KMS API
operation

Symmetric
encryptio
n KMS
keys

HMAC
KMS
keys

Asymmetri
c KMS
keys
(ENCRYPT_
DECRYPT)

Asymmetric KMS
keys (SIGN_VER
IFY)

Asymmetric KMS
keys (KEY_AGRE
EMENT)

Valid
only on
KMS
keys
with
Amazon
KMS
key
material
(Origin
is
AWS_KMS).

EnableKey Yes Yes Yes Yes Yes

EnableKeyRotation Yes

Valid
only on
KMS
keys
with
Amazon
KMS
key
material
(Origin
is
AWS_KMS).

No No No No

Encrypt Yes No Yes No No

Key type table 1060

https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKeyRotation.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html

Amazon Key Management Service Developer Guide

Amazon KMS API
operation

Symmetric
encryptio
n KMS
keys

HMAC
KMS
keys

Asymmetri
c KMS
keys
(ENCRYPT_
DECRYPT)

Asymmetric KMS
keys (SIGN_VER
IFY)

Asymmetric KMS
keys (KEY_AGRE
EMENT)

GenerateDataKey Yes No No No No

GenerateD
ataKeyPair

Generates an
asymmetric data
key pair that is
protected by
a symmetric
encryption KMS
key.

Yes
Not
valid
on KMS
keys in
custom
key
stores.

No No No No

GenerateD
ataKeyPai
rWithoutPlaintext

Generates an
asymmetric data
key pair that is
protected by
a symmetric
encryption KMS
key.

Yes

Not
valid
on KMS
keys in
custom
key
stores.

No No No No

GenerateD
ataKeyWit
houtPlaintext

Yes No No No No

GenerateMac No Yes No No No

GetKeyPolicy Yes Yes Yes Yes Yes

Key type table 1061

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html

Amazon Key Management Service Developer Guide

Amazon KMS API
operation

Symmetric
encryptio
n KMS
keys

HMAC
KMS
keys

Asymmetri
c KMS
keys
(ENCRYPT_
DECRYPT)

Asymmetric KMS
keys (SIGN_VER
IFY)

Asymmetric KMS
keys (KEY_AGRE
EMENT)

GetKeyRot
ationStatus

Yes Yes

(KeyRotati
onEnabled

 will
always
be
false.)

Yes

(KeyRotati
onEnabled

 will
always
be
false.)

Yes

(KeyRotati
onEnabled will
always be false.)

Yes

(KeyRotati
onEnabled will
always be false.)

GetParame
tersForImport

Valid only on
KMS keys with
imported key
material (Origin
is EXTERNAL).

Yes Yes Yes Yes Yes

GetPublicKey No No Yes Yes Yes

ImportKeyMaterial

Valid only on
KMS keys with
imported key
material (Origin
is EXTERNAL).

Yes Yes Yes Yes Yes

ListAliases Yes Yes Yes Yes Yes

ListGrants Yes Yes Yes Yes Yes

ListKeyPolicies Yes Yes Yes Yes Yes

Key type table 1062

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyPolicies.html

Amazon Key Management Service Developer Guide

Amazon KMS API
operation

Symmetric
encryptio
n KMS
keys

HMAC
KMS
keys

Asymmetri
c KMS
keys
(ENCRYPT_
DECRYPT)

Asymmetric KMS
keys (SIGN_VER
IFY)

Asymmetric KMS
keys (KEY_AGRE
EMENT)

ListKeyRotations Yes Yes

(The
Rotations

 field
will
always
be
null or
empty.)

Yes

(The
Rotations

 field
will
always
be
null or
empty.)

Yes

(The Rotations
field will always be
null or empty.)

Yes

(The Rotations
field will always be
null or empty.)

ListResourceTags Yes Yes Yes Yes Yes

ListRetirableGrants Yes Yes Yes Yes Yes

PutKeyPolicy Yes Yes Yes Yes Yes

ReEncrypt Yes No Yes No No

ReplicateKey

- Valid only on
multi-Region keys

Yes Yes Yes Yes Yes

RetireGrant Yes Yes Yes Yes Yes

RevokeGrant Yes Yes Yes Yes Yes

Key type table 1063

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListRetirableGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html

Amazon Key Management Service Developer Guide

Amazon KMS API
operation

Symmetric
encryptio
n KMS
keys

HMAC
KMS
keys

Asymmetri
c KMS
keys
(ENCRYPT_
DECRYPT)

Asymmetric KMS
keys (SIGN_VER
IFY)

Asymmetric KMS
keys (KEY_AGRE
EMENT)

RotateKey
OnDemand

Yes

Valid
only on
customer-
managed,
symmetric
encryptio
n KMS
keys
with
AWS_KMS
or
EXTERNAL
origin.

No No No No

ScheduleK
eyDeletion

Yes Yes Yes Yes Yes

Sign No No No Yes No

TagResource Yes Yes Yes Yes Yes

UntagResource Yes Yes Yes Yes Yes

Key type table 1064

https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UntagResource.html

Amazon Key Management Service Developer Guide

Amazon KMS API
operation

Symmetric
encryptio
n KMS
keys

HMAC
KMS
keys

Asymmetri
c KMS
keys
(ENCRYPT_
DECRYPT)

Asymmetric KMS
keys (SIGN_VER
IFY)

Asymmetric KMS
keys (KEY_AGRE
EMENT)

UpdateAlias

The current KMS
key and the new
KMS key must be
the same type
(both symmetric
or both asymmetri
c or both HMAC)
and they must
have the same key
usage.

Yes Yes Yes Yes Yes

UpdateKey
Description

Yes Yes Yes Yes Yes

UpdateRep
licaRegion

- Valid only on
multi-Region keys

Yes Yes Yes Yes Yes

Verify No No No Yes No

VerifyMac No Yes No No No

Special features table

This table shows the Amazon KMS API operations that are supported on each type of special-
purpose key.

While reading this table, be aware of the following interactions:

Special features table 1065

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateReplicaRegion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateReplicaRegion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html

Amazon Key Management Service Developer Guide

• Multi-Region keys:

• Multi-Region keys can be symmetric encryption KMS keys, asymmetric KMS keys, HMAC KMS
keys, and KMS keys with imported key material.

• You cannot create multi-Region keys in a custom key store.

• Imported key material

• You can import key material for symmetric encryption KMS keys, asymmetric KMS keys, and
HMAC KMS keys.

• You can create multi-Region keys with imported key material.

• You cannot create keys with imported key material in a custom key store.

• Automatic key rotation (EnableKeyRotation, DisableKeyRotation) is not supported for
KMS keys with imported key material.

• On-demand key rotation (RotateKeyOnDemand) is supported for single-Region, symmetric
encryption KMS keys with imported key material.

• Custom key stores

• Custom key stores support only symmetric encryption KMS keys.

• Symmetric operations on asymmetric key pairs (GenerateDataKeyPair,
GenerateDataKeyPairWithoutPlaintext) are not supported on KMS keys in custom key
stores.

• Automatic key rotation (EnableKeyRotation, DisableKeyRotation) is not supported on
KMS keys in custom key stores.

• You cannot create multi-Region keys in custom key stores.

You might need to scroll horizontally or vertically to see all of the data in this table.

Amazon KMS API operation Multi-Region
keys

Imported key
material

KMS keys in
a custom key
store

CancelKeyDeletion

CreateAlias

Special features table 1066

https://docs.amazonaws.cn/kms/latest/APIReference/API_CancelKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html

Amazon Key Management Service Developer Guide

Amazon KMS API operation Multi-Region
keys

Imported key
material

KMS keys in
a custom key
store

CreateGrant

CreateKey

You can use CreateKey to create
a multi-Region primary key, a KMS
key with imported key material, or
a KMS key in a custom key store. To
create a multi-Region replica key,
use ReplicateKey .

Decrypt

Valid only when
KeyUsage is
ENCRYPT_D
ECRYPT

DeleteAlias

DeleteImportedKeyMaterial

Valid only
for keys with
imported
key material
(Origin is
EXTERNAL)

Special features table 1067

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html

Amazon Key Management Service Developer Guide

Amazon KMS API operation Multi-Region
keys

Imported key
material

KMS keys in
a custom key
store

DeriveSharedSecret

Valid only when
KeyUsage is
KEY_AGREE
MENT)

Valid only when
KeyUsage is
KEY_AGREE
MENT)

DescribeKey

DisableKey

DisableKeyRotation

Valid only on
symmetric
encryptio
n keys with
Amazon KMS
key material
(Origin is
AWS_KMS).

EnableKey

Valid only on
symmetric
encryption KMS
keys

Special features table 1068

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKeyRotation.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKey.html

Amazon Key Management Service Developer Guide

Amazon KMS API operation Multi-Region
keys

Imported key
material

KMS keys in
a custom key
store

EnableKeyRotation

Valid only on
symmetric
encryptio
n keys with
Amazon KMS
key material
(Origin is
AWS_KMS).

Encrypt

Valid only when
KeyUsage is
ENCRYPT_D
ECRYPT

GenerateDataKey

Valid only on
symmetric
encryption KMS
keys

GenerateDataKeyPair

Valid only on
symmetric
encryption KMS
keys

Special features table 1069

https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKeyRotation.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html

Amazon Key Management Service Developer Guide

Amazon KMS API operation Multi-Region
keys

Imported key
material

KMS keys in
a custom key
store

GenerateDataKeyPairWithoutP
laintext

Valid only on
symmetric
encryption KMS
keys

GenerateDataKeyWithoutPlaintext

Valid only on
symmetric
encryption KMS
keys

GenerateMac

Valid only on HMAC KMS keys

GetKeyPolicy

GetKeyRotationStatus

(KeyRotati
onEnabled
will always be
false.)

Special features table 1070

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html

Amazon Key Management Service Developer Guide

Amazon KMS API operation Multi-Region
keys

Imported key
material

KMS keys in
a custom key
store

GetParametersForImport

Valid only
for keys with
imported
key material
(Origin is
EXTERNAL).

GetPublicKey

Valid only for asymmetric KMS keys.

ImportKeyMaterial

Valid only
for keys with
imported
key material
(Origin is
EXTERNAL).

ListAliases

ListGrants

ListKeyPolicies

Special features table 1071

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyPolicies.html

Amazon Key Management Service Developer Guide

Amazon KMS API operation Multi-Region
keys

Imported key
material

KMS keys in
a custom key
store

ListKeyRotations

Valid only on
symmetric
encryption keys
with AWS_KMS
origin.

Valid only on
single-Region
symmetric
encryption keys.

ListResourceTags

ListRetirableGrants

PutKeyPolicy

ReEncrypt

Valid only when
KeyUsage is
ENCRYPT_D
ECRYPT

ReplicateKey

Valid only on
multi-Region
primary keys.

Valid only on
multi-Region
primary keys.

RetireGrant

RevokeGrant

Special features table 1072

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListRetirableGrants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html

Amazon Key Management Service Developer Guide

Amazon KMS API operation Multi-Region
keys

Imported key
material

KMS keys in
a custom key
store

RotateKeyOnDemand

Valid only on
symmetric
encryption keys
with AWS_KMS
origin.

Valid only on
single-Region
symmetric
encryption keys.

ScheduleKeyDeletion

Sign

Valid only on when KeyUsage is
SIGN_VERIFY .

TagResource

UntagResource

UpdateAlias

- The current KMS key and the new
KMS key must be the same type
(both symmetric or both asymmetri
c or both HMAC) and they must have
the same key usage.

UpdateKeyDescription

Special features table 1073

https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateKeyDescription.html

Amazon Key Management Service Developer Guide

Amazon KMS API operation Multi-Region
keys

Imported key
material

KMS keys in
a custom key
store

UpdateReplicaRegion

Valid only on
multi-Region
keys.

Verify

Valid only when KeyUsage is
SIGN_VERIFY .

VerifyMac

Valid only on HMAC KMS keys

Key spec reference

When you create an asymmetric KMS key or an HMAC KMS key, you select its key spec. The key
spec, which is a property of every Amazon KMS key, represents the cryptographic configuration of
your KMS key. You choose the key spec when you create the KMS key, and you cannot change it. If
you've selected the wrong key spec, delete the KMS key, and create a new one.

Note

The key spec for a KMS key was known as a "customer master key spec." The
CustomerMasterKeySpec parameter of the CreateKey operation is deprecated. Instead,
use the KeySpec parameter. The response of the CreateKey and DescribeKey operations
includes a KeySpec and CustomerMasterKeySpec member with the same value.

The key spec determines whether the KMS key is symmetric or asymmetric, the type of key
material in the KMS key, and the encryption algorithms, signing algorithms, or message
authentication code (MAC) algorithms that Amazon KMS supports for the KMS key. The key spec

Key spec reference 1074

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateReplicaRegion.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html

Amazon Key Management Service Developer Guide

that you choose is typically determined by your use case and regulatory requirements. However,
cryptographic operations on KMS keys with different key specs are priced differently and are
subject to different quotas. For pricing details, see Amazon Key Management Service Pricing. For
information about request quotas, see Request quotas.

To limit the key specs that principals can use when creating KMS keys, use the kms:KeySpec
condition key. You can also use the kms:KeySpec condition key to allow principals to call Amazon
KMS operations only on KMS keys with a particular key spec. For example, you can deny permission
to schedule deletion of any KMS key with an RSA_4096 key spec.

Amazon KMS supports the following key specs for KMS keys:

Symmetric encryption key spec (default)

• SYMMETRIC_DEFAULT

RSA key specs (encryption and decryption -or- signing and verification)

• RSA_2048

• RSA_3072

• RSA_4096

Elliptic curve key specs

• Asymmetric NIST-recommended elliptic curve key pairs (signing and verification -or- deriving
shared secrets)

• ECC_NIST_P256 (secp256r1)

• ECC_NIST_P384 (secp384r1)

• ECC_NIST_P521 (secp521r1)

• Other asymmetric elliptic curve key pairs (signing and verification)

• ECC_SECG_P256K1 (secp256k1), commonly used for cryptocurrency.

SM2 key spec (encryption and decryption -or- signing and verification -or- deriving shared secrets)

• SM2 (China Regions only)

HMAC key specs

• HMAC_224

• HMAC_256

• HMAC_384

• HMAC_512

Key spec reference 1075

http://www.amazonaws.cn/kms/pricing/
https://datatracker.ietf.org/doc/html/rfc5753/
https://en.bitcoin.it/wiki/Secp256k1

Amazon Key Management Service Developer Guide

ML-DSA key specs

• ML_DSA_44

• ML_DSA_65

• ML_DSA_87

SYMMETRIC_DEFAULT key spec

The default key spec, SYMMETRIC_DEFAULT, is the key spec for symmetric encryption KMS keys.
When you select the Symmetric key type and the Encrypt and decrypt key usage in the Amazon
KMS console, it selects the SYMMETRIC_DEFAULT key spec. In the CreateKey operation, if you don't
specify a KeySpec value, SYMMETRIC_DEFAULT is selected. If you don't have a reason to use a
different key spec, SYMMETRIC_DEFAULT is a good choice.

SYMMETRIC_DEFAULT represents AES-256-GCM, a symmetric algorithm based on Advanced
Encryption Standard (AES) in Galois Counter Mode (GCM) with 256-bit keys, an industry
standard for secure encryption. The ciphertext that this algorithm generates supports additional
authenticated data (AAD), such as an encryption context, and GCM provides an additional integrity
check on the ciphertext.

Data encrypted under AES-256-GCM is protected now and in the future. Cryptographers consider
this algorithm to be quantum resistant. Theoretical future, large-scale quantum computing attacks
on ciphertexts created under 256-bit AES-GCM keys reduce the effective security of the key to 128
bits. But, this security level is sufficient to make brute force attacks on Amazon KMS ciphertexts
infeasible.

The only exception in China Regions, where SYMMETRIC_DEFAULT represents a 128-bit symmetric
key that uses SM4 encryption. You can only create a 128-bit SM4 key within China Regions. You
cannot create a 256-bit AES-GCM KMS key in China Regions.

You can use a symmetric encryption KMS key in Amazon KMS to encrypt, decrypt, and re-encrypt
data, and to protect generated data keys and data key pairs. Amazon services that are integrated
with Amazon KMS use symmetric encryption KMS keys to encrypt your data at rest. You can import
your own key material into a symmetric encryption KMS key and create symmetric encryption
KMS keys in custom key stores. For a table comparing the operations that you can perform on
symmetric and asymmetric KMS keys, see Comparing Symmetric and Asymmetric KMS keys.

You can use a symmetric encryption KMS key in Amazon KMS to encrypt, decrypt, and re-encrypt
data, and generate data keys and data key pairs. You can create multi-Region symmetric encryption

SYMMETRIC_DEFAULT key spec 1076

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf

Amazon Key Management Service Developer Guide

KMS keys, import your own key material into a symmetric encryption KMS key, and create
symmetric encryption KMS keys in custom key stores. For a table comparing the operations that
you can perform on KMS keys of different types, see Key type reference.

RSA key specs

When you use an RSA key spec, Amazon KMS creates an asymmetric KMS key with an RSA key pair.
The private key never leaves Amazon KMS unencrypted. You can use the public key within Amazon
KMS, or download the public key for use outside of Amazon KMS.

Warning

When you encrypt data outside of Amazon KMS, be sure that you can decrypt your
ciphertext. If you use the public key from a KMS key that has been deleted from Amazon
KMS, the public key from a KMS key configured for signing and verification, or an
encryption algorithm that is not supported by the KMS key, the data is unrecoverable.

In Amazon KMS, you can use asymmetric KMS keys with RSA key pairs for encryption and
decryption, or signing and verification, but not both. This property, known as key usage, is
determined separately from the key spec, but you should make that decision before you select a
key spec.

Amazon KMS supports the following RSA key specs for encryption and decryption or signing and
verification:

• RSA_2048

• RSA_3072

• RSA_4096

RSA key specs differ by the length of the RSA key in bits. The RSA key spec that you choose might
be determined by your security standards or the requirements of your task. In general, use the
largest key that is practical and affordable for your task. Cryptographic operations on KMS keys
with different RSA key specs are priced differently. For information about Amazon KMS pricing,
see Amazon Key Management Service Pricing. For information about request quotas, see Request
quotas.

RSA key specs 1077

http://www.amazonaws.cn/kms/pricing/

Amazon Key Management Service Developer Guide

RSA key specs for encryption and decryption

When an RSA asymmetric KMS key is used for encryption and decryption, you encrypt with the
public key and decrypt with the private key. When you call the Encrypt operation in Amazon
KMS for an RSA KMS key, Amazon KMS uses the public key in the RSA key pair and the encryption
algorithm you specify to encrypt your data. To decrypt the ciphertext, call the Decrypt operation
and specify the same KMS key and encryption algorithm. Amazon KMS then uses the private key in
the RSA key pair to decrypt your data.

You can also download the public key and use it to encrypt data outside of Amazon KMS. Be sure
to use an encryption algorithm that Amazon KMS supports for RSA KMS keys. To decrypt the
ciphertext, call the Decrypt function with the same KMS key and encryption algorithm.

Amazon KMS supports two encryption algorithms for KMS keys with RSA key specs. These
algorithms, which are defined in PKCS #1 v2.2, differ in the hash function they use internally. In
Amazon KMS, the RSAES_OAEP algorithms always use the same hash function for both hashing
purposes and for the mask generation function (MGF1). You are required to specify an encryption
algorithm when you call the Encrypt and Decrypt operations. You can choose a different algorithm
for each request.

Supported encryption algorithms for RSA key specs

Encryption algorithm Algorithm description

RSAES_OAEP_SHA_1 PKCS #1 v2.2, Section 7.1. RSA encryption
with OAEP Padding using SHA-1 for both
the hash and in the MGF1 mask generation
function along with an empty label.

RSAES_OAEP_SHA_256 PKCS #1, Section 7.1. RSA encryption with
OAEP Padding using SHA-256 for both the
hash and in the MGF1 mask generation
function along with an empty label.

You cannot configure a KMS key to use a particular encryption algorithm. However, you can use the
kms:EncryptionAlgorithm policy condition to specify the encryption algorithms that principals are
allowed to use with the KMS key.

RSA key specs 1078

https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017#appendix-B.2
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon Key Management Service Developer Guide

To get the encryption algorithms for a KMS key, view the cryptographic configuration of the KMS
key in the Amazon KMS console or use the DescribeKey operation. Amazon KMS also provides the
key spec and encryption algorithms when you download your public key, either in the Amazon KMS
console or by using the GetPublicKey operation.

You might choose an RSA key spec based on the length of the plaintext data that you can encrypt
in each request. The following table shows the maximum size, in bytes, of the plaintext that
you can encrypt in a single call to the Encrypt operation. The values differ with the key spec and
encryption algorithm. To compare, you can use a symmetric encryption KMS key to encrypt up to
4096 bytes at one time.

To compute the maximum plaintext length in bytes for these algorithms, use the following
formula: (key_size_in_bits / 8) - (2 * hash_length_in_bits/8) - 2. For example, for
RSA_2048 with SHA-256, the maximum plaintext size in bytes is (2048/8) - (2 * 256/8) -2 = 190.

Maximum plaintext size (in bytes) in an Encrypt operation

 Encryption algorithm

Key spec RSAES_OAEP_SHA_1 RSAES_OAEP_SHA_256

RSA_2048 214 190

RSA_3072 342 318

RSA_4096 470 446

RSA key specs for signing and verification

When an RSA asymmetric KMS key is used for signing and verification, you generate the signature
for a message with the private key and verify the signature with the public key.

When you call the Sign operation in Amazon KMS for an asymmetric KMS key, Amazon KMS uses
the private key in the RSA key pair, the message, and the signing algorithm you specify, to generate
a signature. To verify the signature, call the Verify operation. Specify the signature, plus the same
KMS key, message, and signing algorithm. Amazon KMS then uses the public key in the RSA key
pair to verify the signature. You can also download the public key and use it to verify the signature
outside of Amazon KMS.

RSA key specs 1079

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html

Amazon Key Management Service Developer Guide

Amazon KMS supports the following signing algorithms for all KMS keys with an RSA key spec.
You are required to specify a signing algorithm when you call the Sign and Verify operations. You
can choose a different algorithm for each request. When signing with RSA key pairs, RSASSA-
PSS algorithms are preferred. We include RSASSA-PKCS1-v1_5 algorithms for compatibility with
existing applications.

Supported signing algorithms for RSA key specs

Signing algorithm Algorithm description

RSASSA_PSS_SHA_256 PKCS #1 v2.2, Section 8.1, RSA signature with
PSS padding using SHA-256 for both the
message digest and the MGF1 mask generatio
n function along with a 256-bit salt

RSASSA_PSS_SHA_384 PKCS #1 v2.2, Section 8.1, RSA signature with
PSS padding using SHA-384 for both the
message digest and the MGF1 mask generatio
n function along with a 384-bit salt

RSASSA_PSS_SHA_512 PKCS #1 v2.2, Section 8.1, RSA signature with
PSS padding using SHA-512 for both the
message digest and the MGF1 mask generatio
n function along with a 512-bit salt

RSASSA_PKCS1_V1_5_SHA_256 PKCS #1 v2.2, Section 8.2, RSA signature with
PKCS #1v1.5 Padding and SHA-256

RSASSA_PKCS1_V1_5_SHA_384 PKCS #1 v2.2, Section 8.2, RSA signature with
PKCS #1v1.5 Padding and SHA-384

RSASSA_PKCS1_V1_5_SHA_512 PKCS #1 v2.2, Section 8.2, RSA signature with
PKCS #1v1.5 Padding and SHA-512

You cannot configure a KMS key to use particular signing algorithms. However, you can use the
kms:SigningAlgorithm policy condition to specify the signing algorithms that principals are allowed
to use with the KMS key.

RSA key specs 1080

https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html

Amazon Key Management Service Developer Guide

To get the signing algorithms for a KMS key, view the cryptographic configuration of the KMS key
in the Amazon KMS console or by using the DescribeKey operation. Amazon KMS also provides the
key spec and signing algorithms when you download your public key, either in the Amazon KMS
console or by using the GetPublicKey operation.

Elliptic curve key specs

When you use an elliptic curve (ECC) key spec, Amazon KMS creates an asymmetric KMS key with
an ECC key pair for signing and verification or deriving shared secrets (but not both). The private
key that generates signatures or derives shared secrets never leaves Amazon KMS unencrypted.
You can use the public key to verify signatures within Amazon KMS, or download the public key for
use outside of Amazon KMS.

Amazon KMS supports the following ECC key specs for asymmetric KMS keys.

• Asymmetric NIST-recommended elliptic curve key pairs (signing and verification -or- deriving
shared secrets)

• ECC_NIST_P256 (secp256r1)

• ECC_NIST_P384 (secp384r1)

• ECC_NIST_P521 (secp521r1)

• Other asymmetric elliptic curve key pairs (signing and verification)

• ECC_SECG_P256K1 (secp256k1), commonly used for cryptocurrencies.

The ECC key spec that you choose might be determined by your security standards or the
requirements of your task. In general, use the curve with the most points that is practical and
affordable for your task.

If you're creating an asymmetric KMS key to derive shared secrets, use one of the NIST-
recommended elliptic curve key specs. The only supported key agreement algorithm for deriving
shared secrets is the Elliptic Curve Cryptography Cofactor Diffie-Hellman Primitive (ECDH). For an
example of how to derive shared secrets offline, see the section called “Deriving shared secrets
offline”.

If you're creating an asymmetric KMS key to use with cryptocurrencies, use the ECC_SECG_P256K1
key spec. You can also use this key spec for other purposes, but it is required for Bitcoin, and other
cryptocurrencies.

Elliptic curve key specs 1081

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://en.bitcoin.it/wiki/Secp256k1
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf#page=60

Amazon Key Management Service Developer Guide

KMS keys with different ECC key specs are priced differently and are subject to different request
quotas. For information about Amazon KMS pricing, see Amazon Key Management Service Pricing.
For information about request quotas, see Request quotas.

The following table shows the signing algorithms that Amazon KMS supports for each of the ECC
key specs. You cannot configure a KMS key to use particular signing algorithms. However, you can
use the kms:SigningAlgorithm policy condition to specify the signing algorithms that principals are
allowed to use with the KMS key.

Supported signing algorithms for ECC key specs

Key spec Signing algorithm Algorithm description

ECC_NIST_P256 ECDSA_SHA_256 NIST FIPS 186-4, Section 6.4,
ECDSA signature using the
curve specified by the key
and SHA-256 for the message
digest.

ECC_NIST_P384 ECDSA_SHA_384 NIST FIPS 186-4, Section 6.4,
ECDSA signature using the
curve specified by the key
and SHA-384 for the message
digest.

ECC_NIST_P521 ECDSA_SHA_512 NIST FIPS 186-4, Section 6.4,
ECDSA signature using the
curve specified by the key
and SHA-512 for the message
digest.

ECC_SECG_P256K1 ECDSA_SHA_256 NIST FIPS 186-4, Section 6.4,
ECDSA signature using the
curve specified by the key
and SHA-256 for the message
digest.

Elliptic curve key specs 1082

http://www.amazonaws.cn/kms/pricing/

Amazon Key Management Service Developer Guide

Key specs for HMAC KMS keys

Amazon KMS supports symmetric HMAC keys in varying lengths. The key spec that you select can
depend on your security, regulatory, or business requirements. The length of the key determines
the MAC algorithm that is used in GenerateMac and VerifyMac operations. In general, longer keys
are more secure. Use the longest key that is practical for your use case.

HMAC key spec MAC algorithm

HMAC_224 HMAC_SHA_224

HMAC_256 HMAC_SHA_256

HMAC_384 HMAC_SHA_384

HMAC_512 HMAC_SHA_512

ML-DSA key specs

An ML-DSA key is a cryptographic key used in the Module-Lattice-Based Digital Signature
Algorithm (ML-DSA), which is designed for post-quantum cryptography. This algorithm is part
of the NIST (National Institute of Standards and Technology) standardization effort, specifically
outlined in Federal Information Processing Standards (FIPS) 204.

ML-DSA keys are used in a public-private key pair system. The private key is used for signing data,
while the public key is used for verifying the signature. This system ensures the authenticity,
integrity, and non-repudiation of digital messages or documents, even in the face of potential
quantum computer threats.

When you create a key with the ML-DSA key spec, Amazon KMS creates an asymmetric KMS key
with a ML-DSA key pair for signing and verification. The private key that generates signatures never
leaves Amazon KMS unencrypted. You can use the public key to verify signatures within Amazon
KMS, or download the public key for use outside of Amazon KMS.

Amazon KMS supports the following ML-DSA key specs for asymmetric KMS keys:

• ML_DSA_44

• ML_DSA_65

Key specs for HMAC KMS keys 1083

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html
https://csrc.nist.gov/pubs/fips/204/final
https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/kms/latest/developerguide/importing-keys-get-public-key-and-token.html

Amazon Key Management Service Developer Guide

• ML_DSA_87

Amazon KMS supports the ML_DSA_SHAKE_256 signing algorithm for all of the ML-DSA key specs.

SM2 key spec (China Regions only)

The SM2 key spec is an elliptic curve key spec defined within the GM/T series of specifications
published by China's Office of State Commercial Cryptography Administration (OSCCA). The SM2
key spec is available only in China Regions. When you use the SM2 key spec, Amazon KMS creates
an asymmetric KMS key with an SM2 key pair. You can use your SM2 key pair within Amazon KMS,
or download the public key for use outside of Amazon KMS. For more information, see the section
called “Offline verification with SM2 key pairs (China Regions only)”.

Each KMS key can have only one key usage. You can use an SM2 KMS key for signing and
verification, encryption and decryption, or deriving shared secrets. You must specify the key usage
when you create the KMS key, and you cannot change it after the key is created.

If you're creating an asymmetric KMS key to derive shared secrets, use the SM2 key spec. The only
supported key agreement algorithm for deriving shared secrets is the Elliptic Curve Cryptography
Cofactor Diffie-Hellman Primitive (ECDH).

Amazon KMS supports the following SM2 encryption and signing algorithms:

• SM2PKE encryption algorithm

SM2PKE is an elliptic curve based encryption algorithm defined by OSCCA in GM/T
0003.4-2012.

• SM2DSA signing algorithm

SM2DSA is an elliptic curve based signing algorithm defined by OSCCA in GM/T 0003.2-2012.
SM2DSA requires a distinguishing ID that is hashed with the SM3 hashing algorithm and
then combined with the message, or message digest, that you passed to Amazon KMS. This
concatenated value is then hashed and signed by Amazon KMS.

Amazon KMS permissions

This table is designed to help you understand Amazon KMS permissions so you can control access
to your Amazon KMS resources. Definitions of the column headings appear below the table.

SM2 key spec (China Regions only) 1084

https://www.oscca.gov.cn/
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf#page=60
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf#page=60

Amazon Key Management Service Developer Guide

You can also learn about Amazon KMS permissions in the Actions, resources, and condition keys for
Amazon Key Management Service topic of the Service Authorization Reference. However, that topic
doesn't list all of the condition keys that you can use to refine each permission.

For more information on which Amazon KMS operations are valid for symmetric encryption KMS
keys, asymmetric KMS keys, and HMAC KMS keys, see the Key type reference.

Note

You might have to scroll horizontally or vertically to see all of the data in the table.

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

CancelKeyDeletion

kms:CancelKeyDelet
ion

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

ConnectCustomKeyStore IAM policy No * kms:CallerAccount

Permissions reference 1085

https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskeymanagementservice.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskeymanagementservice.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CancelKeyDeletion.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_ConnectCustomKeyStore.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

kms:ConnectCustomK
eyStore

IAM policy
(for the
alias)

No Alias None (when controlling
access to the alias)

CreateAlias

kms:CreateAlias

To use this operation, the
caller needs kms:Creat
eAlias permission on
two resources:

• The alias (in an IAM
policy)

• The KMS key (in a key
policy)

For details, see Controlli
ng access to aliases.

Key policy
(for the
KMS key)

No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

CreateCustomKeyStore

kms:CreateCustomKe
yStore

IAM policy No * kms:CallerAccount

Permissions reference 1086

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateAlias.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateCustomKeyStore.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

CreateGrant

kms:CreateGrant

Key policy Yes KMS key Encryption context
conditions:

kms:EncryptionCont
ext:context-key

kms:EncryptionCont
extKeys

Grant conditions:

kms:GrantConstraintType

kms:GranteePrincipal

kms:GrantIsForAWSR
esource

kms:GrantOperations

kms:RetiringPrincipal

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

Permissions reference 1087

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

CreateKey

kms:CreateKey

IAM policy No * kms:BypassPolicyLo
ckoutSafetyCheck

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ViaService

aws:RequestTag/tag-
key (Amazon global
condition key)

aws:ResourceTag/tag-
key (Amazon global
condition key)

aws:TagKeys (Amazon
global condition key)

Permissions reference 1088

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateKey.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

Decrypt

kms:Decrypt

Key policy Yes KMS key Conditions for cryptogra
phic operations

kms:EncryptionAlgo
rithm

kms:RequestAlias

Encryption context
conditions:

kms:EncryptionCont
ext:context-key

kms:EncryptionCont
extKeys

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

Permissions reference 1089

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

kms:ViaService

IAM policy
(for the
alias)

No Alias None (when controlling
access to the alias)

DeleteAlias

kms:DeleteAlias

To use this operation, the
caller needs kms:Delet
eAlias permission on
two resources:

• The alias (in an IAM
policy)

• The KMS key (in a key
policy)

For details, see Controlli
ng access to aliases.

Key policy
(for the
KMS key)

No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

DeleteCustomKeyStore

kms:DeleteCustomKe
yStore

IAM policy No * kms:CallerAccount

Permissions reference 1090

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteAlias.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteCustomKeyStore.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

DeleteImportedKeyM
aterial

kms:DeleteImported
KeyMaterial

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1091

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

DeriveSharedSecret

kms:DeriveSharedSe
cret

Key policy Yes KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService
Conditions for cryptogra
phic operations:

kms:KeyAgreementAl
gorithm

DescribeCustomKeyS
tores

kms:DescribeCustom
KeyStores

IAM policy No * kms:CallerAccount

Permissions reference 1092

https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeCustomKeyStores.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

DescribeKey

kms:DescribeKey

Key policy Yes KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Other conditions:

kms:RequestAlias

Permissions reference 1093

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

DisableKey

kms:DisableKey

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1094

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKey.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

DisableKeyRotation

kms:DisableKeyRota
tion

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

DisconnectCustomKe
yStore

kms:DisconnectCust
omKeyStore

IAM policy No * kms:CallerAccount

Permissions reference 1095

https://docs.amazonaws.cn/kms/latest/APIReference/API_DisableKeyRotation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DisconnectCustomKeyStore.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

EnableKey

kms:EnableKey

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1096

https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKey.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

EnableKeyRotation

kms:EnableKeyRotat
ion

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Automatic key rotation
conditions:

kms:RotationPeriod
InDays

Permissions reference 1097

https://docs.amazonaws.cn/kms/latest/APIReference/API_EnableKeyRotation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

Encrypt

kms:Encrypt

Key policy Yes KMS key Conditions for cryptogra
phic operations

kms:EncryptionAlgo
rithm

kms:RequestAlias

Encryption context
conditions:

kms:EncryptionCont
ext:context-key

kms:EncryptionCont
extKeys

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

Permissions reference 1098

https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

kms:ViaService

Permissions reference 1099

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

GenerateDataKey

kms:GenerateDataKe
y

Key policy Yes KMS key Conditions for cryptogra
phic operations

kms:EncryptionAlgo
rithm

kms:RequestAlias

Encryption context
conditions:

kms:EncryptionCont
ext:context-key

kms:EncryptionCont
extKeys

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

Permissions reference 1100

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

kms:ViaService

Permissions reference 1101

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

GenerateDataKeyPair

kms:GenerateDataKe
yPair

Key policy Yes KMS key

Generates
an
asymmetri
c data key
pair that is
protected
by a
symmetric
encryption
KMS key.

Conditions for data key
pairs:

kms:DataKeyPairSpec

Conditions for cryptogra
phic operations

kms:EncryptionAlgo
rithm

kms:RequestAlias

Encryption context
conditions:

kms:EncryptionCont
ext:context-key

kms:EncryptionCont
extKeys

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

Permissions reference 1102

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPair.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1103

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

GenerateDataKeyPai
rWithoutPlaintext

kms:GenerateDataKe
yPairWith
outPlaintext

Key policy Yes KMS key

Generates
an
asymmetri
c data key
pair that is
protected
by a
symmetric
encryption
KMS key.

Conditions for data key
pairs:

kms:DataKeyPairSpec

Conditions for cryptogra
phic operations

kms:EncryptionAlgo
rithm

kms:RequestAlias

Encryption context
conditions:

kms:EncryptionCont
ext:context-key

kms:EncryptionCont
extKeys

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

Permissions reference 1104

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1105

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

GenerateDataKeyWit
houtPlaintext

kms:GenerateDataKe
yWithoutPlaintext

Key policy Yes KMS key Conditions for cryptogra
phic operations

kms:EncryptionAlgo
rithm

kms:RequestAlias

Encryption context
conditions:

kms:EncryptionCont
ext:context-key

kms:EncryptionCont
extKeys

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

Permissions reference 1106

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

kms:ViaService

GenerateMac

kms:GenerateMac

Key policy Yes KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService
Conditions for cryptogra
phic operations:

kms:MacAlgorithm

kms:RequestAlias

GenerateRandom

kms:GenerateRandom

IAM policy N/A * None

Permissions reference 1107

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateMac.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateRandom.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

GetKeyPolicy

kms:GetKeyPolicy

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1108

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

GetKeyRotationStatus

kms:GetKeyRotation
Status

Key policy Yes KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1109

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetKeyRotationStatus.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

GetParametersForImport

kms:GetParametersF
orImport

Key policy No KMS key kms:WrappingAlgorithm

kms:WrappingKeySpec

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1110

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

GetPublicKey

kms:GetPublicKey

Key policy Yes KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Other conditions:

kms:RequestAlias

Permissions reference 1111

https://docs.amazonaws.cn/kms/latest/APIReference/API_GetPublicKey.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

ImportKeyMaterial

kms:ImportKeyMater
ial

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Other conditions:
kms:ExpirationModel

kms:ValidTo

ListAliases

kms:ListAliases

IAM policy No * None

Permissions reference 1112

https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListAliases.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

ListGrants

kms:ListGrants

Key policy Yes KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Other conditions:

kms:GrantIsForAWSR
esource

Permissions reference 1113

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

ListKeyPolicies

kms:ListKeyPolicie
s

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1114

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyPolicies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

ListKeyRotations

kms:ListKeyRotatio
ns

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

ListKeys

kms:ListKeys

IAM policy No * None

Permissions reference 1115

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeyRotations.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

ListResourceTags

kms:ListResourceTa
gs

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

ListRetirableGrants

kms:ListRetirableG
rants

IAM policy The
specified
principal
must be in
the local
account,
but the
operation
returns
grants
in all
accounts.

* None

Permissions reference 1116

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListResourceTags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListRetirableGrants.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

PutKeyPolicy

kms:PutKeyPolicy

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Other conditions:

kms:BypassPolicyLo
ckoutSafetyCheck

Permissions reference 1117

https://docs.amazonaws.cn/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

ReEncrypt

kms:ReEncryptFrom

kms:ReEncryptTo

To use this operation, the
caller needs permission
on two KMS keys:

• kms:ReEnc
ryptFrom on the
KMS key used to
decrypt

• kms:ReEncryptTo
on the KMS key used
to encrypt

Key policy Yes KMS key Conditions for cryptogra
phic operations

kms:EncryptionAlgo
rithm

kms:RequestAlias

Encryption context
conditions:

kms:EncryptionCont
ext:context-key

kms:EncryptionCont
extKeys

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

Permissions reference 1118

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

kms:ViaService

Other conditions:

kms:ReEncryptOnSam
eKey

ReplicateKey

kms:ReplicateKey

To use this operation
, the caller needs the
following permissions:

• kms:ReplicateKey
on the multi-Region
primary key

• kms:CreateKey in
an IAM policy in the
replica Region

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Other conditions:

kms:ReplicaRegion

Permissions reference 1119

https://docs.amazonaws.cn/kms/latest/APIReference/API_ReplicateKey.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

RetireGrant

kms:RetireGrant

Permission to retire a
grant is determined
primarily by the grant. A
policy alone cannot allow
access to this operation
. For more information,
see Retiring and revoking
grants.

IAM policy

(This
permissio
n is not
effective
in a key
policy.)

Yes KMS key Encryption context
conditions:

kms:EncryptionCont
ext:context-key

kms:EncryptionCont
extKeys

Grant conditions:

kms:GrantConstraintType

Conditions for KMS key
operations:

kms:CallerAccount

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1120

https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

RevokeGrant

kms:RevokeGrant

Key policy Yes KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Other conditions:

kms:GrantIsForAWSR
esource

Permissions reference 1121

https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

RotateKeyOnDemand

kms:RotateKeyOnDem
and

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1122

https://docs.amazonaws.cn/kms/latest/APIReference/API_RotateKeyOnDemand.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

ScheduleKeyDeletion

kms:ScheduleKeyDel
etion

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1123

https://docs.amazonaws.cn/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

Sign

kms:Sign

Key policy Yes KMS key Conditions for signing
and verification:

kms:MessageType
kms:RequestAlias

kms:SigningAlgorithm

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1124

https://docs.amazonaws.cn/kms/latest/APIReference/API_Sign.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

TagResource

kms:TagResource

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Conditions for tagging:

aws:RequestTag/tag-
key (Amazon global
condition key)

aws:TagKeys (Amazon
global condition key)

Permissions reference 1125

https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

UntagResource

kms:UntagResource

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Conditions for tagging:

aws:RequestTag/tag-
key (Amazon global
condition key)

aws:TagKeys (Amazon
global condition key)

Permissions reference 1126

https://docs.amazonaws.cn/kms/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

IAM policy
(for the
alias)

No Alias None (when controlling
access to the alias)

UpdateAlias

kms:UpdateAlias

To use this operation, the
caller needs kms:Updat
eAlias permission on
three resources:

• The alias

• The currently associate
d KMS key

• The newly associated
KMS key

For details, see Controlli
ng access to aliases.

Key policy
(for the
KMS keys)

No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

UpdateCustomKeyStore

kms:UpdateCustomKe
yStore

IAM policy No * kms:CallerAccount

Permissions reference 1127

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateCustomKeyStore.html

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

UpdateKeyDescription

kms:UpdateKeyDescr
iption

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1128

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

UpdatePrimaryRegion

kms:UpdatePrimaryR
egion

To use this operation, the
caller needs kms:Updat
ePrimaryRegion
permission on both the
multi-Region primary
key that will become
a replica key and the
multi-Region replica key
that will become the
primary key.

Key policy No KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Other conditions

kms:PrimaryRegion

Permissions reference 1129

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdatePrimaryRegion.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

Verify

kms:Verify

Key policy Yes KMS key Conditions for signing
and verification:

kms:MessageType
kms:RequestAlias

kms:SigningAlgorithm

Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService

Permissions reference 1130

https://docs.amazonaws.cn/kms/latest/APIReference/API_Verify.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Actions and permissions Policy
type

Cross-acc
ount use

Resources
(for IAM
policies)

Amazon KMS condition
keys

VerifyMac

kms:VerifyMac

Key policy Yes KMS key Conditions for KMS key
operations:

kms:CallerAccount

kms:KeySpec

kms:KeyUsage

kms:KeyOrigin

kms:MultiRegion

kms:MultiRegionKeyType

kms:ResourceAliases

aws:ResourceTag/tag-
key (Amazon global
condition key)

kms:ViaService
Conditions for cryptogra
phic operations:

kms:MacAlgorithm

kms:RequestAlias

Column descriptions

The columns in this table provide the following information:

• Actions and permissions lists each Amazon KMS API operation and the permission that allows
the operation. You specify the operation in Action element of a policy statement.

• Policy type indicates whether the permission can be used in a key policy or IAM policy.

Column descriptions 1131

https://docs.amazonaws.cn/kms/latest/APIReference/API_VerifyMac.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon Key Management Service Developer Guide

Key policy means that you can specify the permission in the key policy. When the key policy
contains the policy statement that enables IAM policies, you can specify the permission in an IAM
policy.

IAM policy means that you can specify the permission only in an IAM policy.

• Cross-account use shows the operations that authorized users can perform on resources in a
different Amazon Web Services account.

A value of Yes means that principals can perform the operation on resources in a different
Amazon Web Services account.

A value of No means that principals can perform the operation only on resources in their own
Amazon Web Services account.

If you give a principal in a different account a permission that can't be used on a cross-account
resource, the permission is not effective. For example, if you give a principal in a different
account kms:TagResource permission to a KMS key in your account, their attempts to tag the
KMS key in your account will fail.

• Resources lists the Amazon KMS resources to which the permissions apply. Amazon KMS
supports two resource types: a KMS key and an alias. In a key policy, the value of the Resource
element is always *, which indicates the KMS key to which the key policy is attached.

Use the following values to represent an Amazon KMS resource in an IAM policy.

KMS key

When the resource is a KMS key, use its key ARN. For help, see the section called “Find the key
ID and key ARN”.

arn:Amazon_partition_name:kms:Amazon_Region:Amazon_account_ID:key/key_ID

For example:

arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Alias

When the resource is an alias, use its alias ARN. For help, see the section called “Find the alias
name and alias ARN”.

arn:Amazon_partition_name:kms:Amazon_region:Amazon_account_ID:alias/alias_name

Column descriptions 1132

https://docs.amazonaws.cn/kms/latest/APIReference/API_TagResource.html

Amazon Key Management Service Developer Guide

For example:

arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

* (asterisk)

When the permission doesn't apply to a particular resource (KMS key or alias), use an asterisk
(*).

In an IAM policy for an Amazon KMS permission, an asterisk in the Resource element
indicates all Amazon KMS resources (KMS keys and aliases). You can also use an asterisk in the
Resource element when the Amazon KMS permission doesn't apply to any particular KMS
keys or aliases. For example, when allowing or denying kms:CreateKey or kms:ListKeys
permission, you must set the Resource element to *.

• Amazon KMS condition keys lists the Amazon KMS condition keys that you can use to control
access to the operation. You specify conditions in a policy's Condition element. For more
information, see Amazon KMS condition keys. This column also includes Amazon global
condition keys that are supported by Amazon KMS, but not by all Amazon services.

Amazon KMS internal operations

Amazon Key Management Service (Amazon KMS) provides cryptographic keys and operations
secured by FIPS 140-3 Security Level 3 validated hardware security modules (HSM) scaled for the
cloud. Amazon KMS keys and functionality are used by multiple Amazon cloud services, and you
can use them to protect data in your applications. This technical guide provides details on the
cryptographic operations that are run within Amazon when you use Amazon KMS.

Amazon KMS internals are required to scale and secure HSMs for a globally distributed key
management service.

Topics

• Domains and domain state

• Internal communication security

• Replication process for multi-Region keys

• Durability protection

Amazon KMS internal operations 1133

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4884

Amazon Key Management Service Developer Guide

Domains and domain state

A cooperative collection of trusted internal Amazon KMS entities within an Amazon Web Services
Region is referred to as a domain. A domain includes a set of trusted entities, a set of rules, and a
set of secret keys, called domain keys. The domain keys are shared among HSMs that are members
of the domain. A domain state consists of the following fields.

Name

A domain name to identify this domain.

Members

A list of HSMs that are members of the domain, including their public signing key and public
agreement keys.

Operators

A list of entities, public signing keys, and a role (Amazon KMS operator or service host) that
represents the operators of this service.

Rules

A list of quorum rules for each command that must be satisfied to run a command on the HSM.

Domain keys

A list of domain keys (symmetric keys) currently in use within the domain.

The full domain state is available only on the HSM. The domain state is synchronized between HSM
domain members as an exported domain token.

Domain keys

All the HSMs in a domain share a set of domain keys, {DKr }. These keys are shared through a
domain state export routine. The exported domain state can be imported into any HSM that is a
member of the domain.

The set of domain keys, {DKr }, always includes one active domain key, and several
deactivated domain keys. Domain keys are rotated daily to ensure that Amazon complies with
Recommendation for Key Management - Part 1. During domain key rotation, all existing KMS keys
encrypted under the outgoing domain key are re-encrypted under the new active domain key. The
active domain key is used to encrypt any new EKTs. The expired domain keys can be used only

Domains and domain state 1134

https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final

Amazon Key Management Service Developer Guide

to decrypt previously encrypted EKTs for a number of days equivalent to the number of recently
rotated domain keys.

Exported domain tokens

There is a regular need to synchronize state between domain participants. This is accomplished
through exporting the domain state whenever a change is made to the domain. The domain state
is exported as an exported domain token.

Name

A domain name to identify this domain.

Members

A list of HSMs that are members of the domain, including their signing and agreement public
keys.

Operators

A list of entities, public signing keys, and a role that represents the operators of this service.

Rules

A list of quorum rules for each command that must be satisfied to run a command on an HSM
domain member.

Encrypted domain keys

Envelope-encrypted domain keys. The domain keys are encrypted by the signing member for
each of the members listed above, enveloped to their public agreement key.

Signature

A signature on the domain state produced by an HSM, necessarily a member of the domain that
exported the domain state.

The exported domain token forms the fundamental source of trust for entities operating within the
domain.

Managing domain states

The domain state is managed through quorum-authenticated commands. These changes include
modifying the list of trusted participants in the domain, modifying the quorum rules for running

Domains and domain state 1135

Amazon Key Management Service Developer Guide

HSM commands, and periodically rotating the domain keys. These commands are authenticated on
a per-command basis as opposed to authenticated session operations, as shown in the following
image.

In its initialized and operational state, an HSM contains a set of self-generated asymmetric identity
keys, a signing key pair, and a key-establishment key pair. Through a manual process, an Amazon
KMS operator can establish an initial domain to be created on a first HSM in a Region. This initial
domain consists of a full domain state as defined previously in this topic. It is installed through a
join command to each of the defined HSM members in the domain.

After an HSM has joined an initial domain, it is bound to the rules that are defined in that domain.
These rules govern the commands that use customer cryptographic keys or make changes to the
host or domain state. The authenticated session API operations that use your cryptographic keys
have been defined earlier.

The foregoing image depicts how a domain state gets modified. The process consists of four steps:

1. A quorum-based command is sent to an HSM to modify the domain.

2. A new domain state is generated and exported as a new exported domain token. The state on
the HSM is not modified, meaning that the change is not enacted on the HSM.

3. A second command is sent to each of the HSMs in the newly exported domain token to update
their domain state with the new domain token.

4. The HSMs listed in the new exported domain token can authenticate the command and the
domain token. They can also unpack the domain keys to update the domain state on all HSMs in
the domain.

Domains and domain state 1136

Amazon Key Management Service Developer Guide

HSMs do not communicate directly with one another. Instead, a quorum of operators requests a
change to the domain state that results in a new exported domain token. A service host member of
the domain is used to distribute the new domain state to every HSM in the domain.

The leaving and joining of a domain are done through the HSM management functions. The
modification of the domain state is done through the domain management functions.

Leave domain

Causes an HSM to leave a domain, deleting all remnants and keys of that domain from memory.

Join domain

Causes an HSM to join a new domain or update its current domain state to the new domain
state. The existing domain is used as source of the initial set of rules to authenticate this
message.

Create domain

Causes a new domain to be created on an HSM. Returns a first domain token that can be
distributed to member HSMs of the domain.

Modify operators

Adds or removes operators from the list of authorized operators and their roles in the domain.

Modify members

Adds or removes an HSM from the list of authorized HSMs in the domain.

Modify rules

Modifies the set of quorum rules that are required to run commands on an HSM.

Rotate domain keys

Causes a new domain key to be created and marked as the active domain key. This moves
the existing active key to a deactivated key and removes the oldest deactivated key from the
domain state.

Internal communication security

Commands between the service hosts or Amazon KMS operators and the HSMs are secured
through two mechanisms depicted in Authenticated sessions: a quorum-signed request method
and an authenticated session using an HSM-service host protocol.

Internal communication security 1137

Amazon Key Management Service Developer Guide

The quorum-signed commands are designed so that no single operator can modify the critical
security protections that the HSMs provide. The commands that run over the authenticated
sessions help ensure that only authorized service operators can perform operations involving KMS
keys. All customer-bound secret information is secured across the Amazon infrastructure.

Key establishment

To secure internal communications, Amazon KMS uses two different key establishment methods.
The first is defined as C(1, 2, ECC DH) in Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography. This scheme has an initiator with a static signing
key. The initiator generates and signs an ephemeral elliptic curve Diffie-Hellman (ECDH) key,
intended for a recipient with a static ECDH agreement key. This method uses one ephemeral key
and two static keys using ECDH. That is the derivation of the label C(1, 2, ECC DH). This method is
sometimes called one-pass ECDH.

The second key establishment method is C(2, 2, ECC, DH). In this scheme, both parties have a
static signing key, and they generate, sign, and exchange an ephemeral ECDH key. This method
uses two static keys and two ephemeral keys, each using ECDH. That is the derivation of the label
C(2, 2, ECC, DH). This method is sometimes called ECDH ephemeral or ECDHE. All ECDH keys are
generated on the curve secp384r1 (NIST-P384).

HSM security boundary

The inner security boundary of Amazon KMS is the HSM. The HSM has a proprietary interface and
no other active physical interfaces in its operational state. An operational HSM is provisioned
during initialization with the necessary cryptographic keys to establish its role in the domain.
Sensitive cryptographic materials of the HSM are only stored in volatile memory and erased when
the HSM moves out of the operational state, including intended or unintended shutdowns or
resets.

The HSM API operations are authenticated either by individual commands or over a mutually
authenticated confidential session established by a service host.

Quorum-signed commands

Quorum-signed commands are issued by operators to HSMs. This section describes how quorum-
based commands are created, signed, and authenticated. These rules are fairly simple. For
example, command Foo requires two members from role Bar to be authenticated. There are three
steps in the creation and verification of a quorum-based command. The first step is the initial

Internal communication security 1138

https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final

Amazon Key Management Service Developer Guide

command creation; the second is the submission to additional operators to sign; and the third is
the verification and execution.

For the purpose of introducing the concepts, assume that there is an authentic set of operator's
public keys and roles {QOSs}, and a set of quorum-rules QR = {Commandi, Rule{i, t}} where each Rule
is a set of roles and minimum number N {Rolet, Nt}. For a command to satisfy the quorum rule, the
command dataset must be signed by a set of operators listed in {QOSs} such that they meet one of
the rules listed for that command. As mentioned earlier, the set of quorum rules and operators are
stored in the domain state and the exported domain token.

In practice, an initial signer signs the command Sig1 = Sign(dOp1, Command) . A second operator
also signs the command Sig2 = Sign(dOp2, Command) . The doubly signed message is sent to an
HSM for execution. The HSM performs the following:

1. For each signature, it extracts the signer's public key from the domain state and verifies the
signature on the command.

2. It verifies that the set of signers satisfies a rule for the command.

Authenticated sessions

Your key operations run between the externally facing Amazon KMS hosts and the HSMs. These
commands pertain to the creation and use of cryptographic keys and secure random number
generation. The commands run over a session-authenticated channel between the service hosts
and the HSMs. In addition to the need for authenticity, these sessions require confidentiality.
Commands running over these sessions include the returning of cleartext data keys and decrypted
messages intended for you. To ensure that these sessions cannot be subverted through man-in-
the-middle attacks, sessions are authenticated.

This protocol performs a mutually authenticated ECDHE key agreement between the HSM and the
service host. The exchange is initiated by the service host and completed by the HSM. The HSM
also returns a session key (SK) encrypted by the negotiated key and an exported key token that
contains the session key. The exported key token contains a validity period, after which the service
host must renegotiate a session key.

A service host is a member of the domain and has an identity-signing key pair (dHOSi, QHOSi)
and an authentic copy of the HSMs' identity public keys. It uses its set of identity-signing keys to
securely negotiate a session key that can be used between the service host and any HSM in the

Internal communication security 1139

Amazon Key Management Service Developer Guide

domain. The exported key tokens have a validity period associated with them, after which a new
key must be negotiated.

The process begins with the service host recognition that it requires a session key to send and
receive sensitive communication flows between itself and an HSM member of the domain.

1. A service host generates an ECDH ephemeral key pair (d1, Q1) and signs it with its identity key
Sig1 = Sign(dOS,Q1).

2. The HSM verifies the signature on the received public key using its current domain token
and creates an ECDH ephemeral key pair (d2, Q2). It then completes the ECDH-key-exchange
according to Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography to form a negotiated 256-bit AES-GCM key. The HSM generates a
fresh 256-bit AES-GCM session key. It encrypts the session key with the negotiated key to form
the encrypted session key (ESK). It also encrypts the session key under the domain key as an
exported key token EKT. Finally, it signs a return value with its identity key pair Sig2 = Sign(dHSK,
(Q2, ESK, EKT)).

3. The service host verifies the signature on the received keys using its current domain token. The
service host then completes the ECDH key exchange according to Recommendation for Pair-Wise
Key Establishment Schemes Using Discrete Logarithm Cryptography. It next decrypts the ESK to
obtain the session key SK.

During the validity period in the EKT, the service host can use the negotiated session key SK to
send envelope-encrypted commands to the HSM. Every service-host-initiated command over this
authenticated session includes the EKT. The HSM responds using the same negotiated session key
SK.

Replication process for multi-Region keys

Amazon KMS uses a cross-Region replication mechanism to copy the key material in a KMS key
from an HSM in one Amazon Web Services Region to an HSM in a different Amazon Web Services
Region. For this mechanism to work, the KMS key that is being replicated must be a multi-Region

Replication process for multi-Region keys 1140

https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final

Amazon Key Management Service Developer Guide

key. When replicating a KMS key from one Region to another, the HSMs in the Regions cannot
communicate directly, because they're in isolated networks. Instead, the messages exchanged
during the cross-Region replication are delivered by a proxy service.

During cross-Region replication, every message generated by an Amazon KMS HSM is
cryptographically signed using a replication signing key. Replication signing keys (RSKs) are ECDSA
keys on the NIST P-384 curve. Every Region owns at least one RSK, and the public component of
each RSK is shared with every other Region in the same Amazon partition.

The cross-Region replication process to copy key material from Region A to Region B works as
follows:

1. The HSM in Region B generates an ephemeral ECDH key on the NIST P-384 curve, Replication
Agreement Key B (RAKB). The public component of RAKB is sent to an HSM in Region A by the
proxy service.

2. The HSM in Region A receives the public component of RAKB and then generates another
ephemeral ECDH key on the NIST P-384 curve, Replication Agreement Key A (RAKA). The HSM
runs the ECDH key establishment scheme on RAKA and the public component of RAKB, and
derives a symmetric key from the output, the Replication Wrapping Key (RWK). The RWK is used
to encrypt the key material of the multi-Region KMS key that is being replicated.

3. The public component of RAKA and the key material encrypted with the RWK are sent to the
HSM in Region B through the proxy service.

4. The HSM in Region B receives the public component of RAKA and the key material encrypted
using the RWK. The HSM derives by RWK by running the ECDH key establishment scheme on
RAKB and the public component of RAKA.

5. The HSM in Region B use the RWK to decrypt the key material from Region A.

Durability protection

Additional service durability for keys generated by the service is provided by the use of offline
HSMs, multiple nonvolatile storage of exported domain tokens, and redundant storage of
encrypted KMS keys. The offline HSMs are members of the existing domains. With the exception
of not being online and participating in the regular domain operations, the offline HSMs appear
identically in the domain state as the existing HSM members.

The durability design is intended to protect all KMS keys in a Region should Amazon experience a
wide-scale loss of either the online HSMs or the set of KMS keys stored within our primary storage

Durability protection 1141

Amazon Key Management Service Developer Guide

system. Amazon KMS keys with imported key material are not included under the durability
protections afforded other KMS keys. In the event of a Regionwide failure in Amazon KMS,
imported key material may need to be reimported into a KMS key.

The offline HSMs, and the credentials to access them, are stored in safes within monitored safe
rooms in multiple independent geographical locations. Each safe requires at least one Amazon
security officer and one Amazon KMS operator, from two independent teams in Amazon, to obtain
these materials. The use of these materials is governed by internal policy requiring a quorum of
Amazon KMS operators to be present.

Durability protection 1142

Amazon Key Management Service Developer Guide

Document history

This topic describes significant updates to the Amazon Key Management Service Developer Guide.

Topics

• Recent updates

• Earlier updates

Recent updates

The following table describes significant changes to this documentation since January 2018. In
addition to major changes listed here, we also update the documentation frequently to improve
the descriptions and examples, and to address the feedback that you send to us. To be notified
about significant changes, subscribe to the RSS feed.

You might need to scroll horizontally or vertically to see all of the data in this table.

Change Description Date

Dual-stack support Amazon KMS supports dual-
stack.

June 18, 2025

Feature update Adds support for Module-
Lattice Digital Signature
Algorithm (ML-DSA) post-
quantum cryptographic
signatures.

June 13, 2025

Imported key rotation You can perform on-demand
rotation of symmetric-
encryption KMS keys with
imported key material
(EXTERNAL origin).

June 5, 2025

Feature update Added support for multi-
Region KMS keys in China
Regions.

November 21, 2024

Recent updates 1143

https://docs.amazonaws.cn/kms/latest/developerguide/ipv6-kms.html
https://docs.amazonaws.cn/kms/latest/developerguide/mldsa.html
https://docs.amazonaws.cn/kms/latest/developerguide/list-rotations.html
https://docs.amazonaws.cn/kms/latest/developerguide/multi-region-keys-overview

Amazon Key Management Service Developer Guide

Amazon managed policy
update

Updated the AWSKeyMan
agementServiceMult
iRegionKeysServiceRolePolic
y service-linked role by
adding a statement ID (Sid)
to the managed policy with
policy version v2.

November 21, 2024

Quota change Increased the default request
rate for ImportKeyMaterial
and DeleteImportedKeyM
aterial requests.

July 23, 2024

Quota change Increased the default
cryptographic operations
request rate for symmetric
encryption KMS keys, RSA
KMS keys, and ECC and SM2
KMS keys.

July 8, 2024

New feature Added new KeyUsage type
KEY_AGREEMENT for NIST-
recommended elliptic curve
(ECC) and SM2 (China Regions
only) KMS keys and added
support to derive shared
secrets.

June 13, 2024

Updates to key rotation Added support for custom
rotation periods for automatic
key rotations, on-demand key
rotations, and visibility into
your key material rotations.

April 12, 2024

Recent updates 1144

https://docs.amazonaws.cn/kms/latest/developerguide/multi-region-auth-slr
https://docs.amazonaws.cn/kms/latest/developerguide/multi-region-auth-slr
https://docs.amazonaws.cn/kms/latest/developerguide/requests-per-second.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.amazonaws.cn/kms/latest/developerguide/requests-per-second.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.amazonaws.cn/kms/latest/developerguide/rotate-keys.html

Amazon Key Management Service Developer Guide

Updates to managed policy Added new permissions to
AWSKeyManagementSe
rviceCustomKeyStor
esServiceRolePolicy
that allow Amazon KMS to
monitor changes in the VPC
that contains your Amazon
CloudHSM cluster so that
Amazon KMS can provide
clear error messages in the
case of failures.

November 10, 2023

Feature update Added support for the
DryRun API parameter.

July 5, 2023

Feature update Added support for importing
key material for all types of
Amazon KMS keys, except
custom key stores.

June 5, 2023

Feature update Updates to Amazon KMS APIs
for Nitro Enclaves

March 10, 2023

Feature update The RSAES_PKCS1_V1_5
wrapping algorithm is
deprecated. Amazon KMS
will end all support for
RSAES_PKCS1_V1_5 by
October 1, 2023 pursuant
to cryptographic key
management guidance from
the National Institute of
Standards and Technolog
y (NIST). We recommend
that you begin using a
different wrapping algorithm
immediately.

February 28, 2023

Recent updates 1145

https://docs.amazonaws.cn/kms/latest/developerguide/authorize-key-store.html#about-key-store-slr
https://docs.amazonaws.cn/kms/latest/developerguide/testing-permissions.html
https://docs.amazonaws.cn/kms/latest/developerguide/importing-keys.html
https://docs.amazonaws.cn/kms/latest/developerguide/services-nitro-enclaves.html
https://docs.amazonaws.cn/kms/latest/developerguide/importing-keys-get-public-key-and-token.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

Amazon Key Management Service Developer Guide

Feature update Added support for External
key stores, a feature that lets
you protect your Amazon
resources using cryptographic
keys outside of Amazon.

November 29, 2022

Quota change Increased the Amazon KMS
keys resource quota to
100,000 KMS keys in each
account and Region.

July 8, 2022

Feature update Added support for HMAC KMS
keys in more Amazon Web
Services Regions

July 8, 2022

New topic Added the Resilience in
Amazon Key Management
Service topic to the Security
chapter of the Amazon KMS
Developer Guide.

June 14, 2022

New feature Added support for Amazon
KMS keys and API operation
s that generate and verify
HMAC codes.

April 19, 2022

Documentation change Replace the term customer
master key (CMK) with
Amazon KMS key and KMS
key.

August 30, 2021

Recent updates 1146

https://docs.amazonaws.cn/kms/latest/developerguide/keystore-external.html
https://docs.amazonaws.cn/kms/latest/developerguide/limits.html
https://docs.amazonaws.cn/kms/latest/developerguide/hmac.html
https://docs.amazonaws.cn/kms/latest/developerguide/disaster-recovery-resiliency.html
https://docs.amazonaws.cn/kms/latest/developerguide/disaster-recovery-resiliency.html
https://docs.amazonaws.cn/kms/latest/developerguide/disaster-recovery-resiliency.html
https://docs.amazonaws.cn/kms/latest/developerguide/disaster-recovery-resiliency.html
https://docs.amazonaws.cn/kms/latest/developerguide/hmac.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#key-types

Amazon Key Management Service Developer Guide

New feature Added support for multi-Reg
ion keys, a set of interoper
able KMS keys in different
Regions that have the same
key ID and key material.
You can use multi-Region
keys to encrypt data in one
Region and decrypt data in a
different Region.

June 8, 2021

New feature Added support for attribute
based access control (ABAC).
You can use tags and aliases
to control access to your
Amazon KMS keys.

December 17, 2020

New feature Added support for VPC
endpoint policies.

July 9, 2020

New content Explains the security
properties of Amazon KMS.

June 18, 2020

New feature Added support for asymmetri
c Amazon KMS keys and
asymmetric data keys.

November 25, 2019

Updated feature You can view the key policy of
Amazon managed keys in the
Amazon KMS console. This
feature used to be limited to
customer managed keys.

November 15, 2019

New feature Explains how to use hybrid
post-quantum key exchange
algorithms in TLS for your
calls to Amazon KMS.

November 4, 2019

Recent updates 1147

https://docs.amazonaws.cn/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.amazonaws.cn/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.amazonaws.cn/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.amazonaws.cn/kms/latest/developerguide/abac.html
https://docs.amazonaws.cn/kms/latest/developerguide/kms-vpc-endpoint.html#vpce-policy
https://docs.amazonaws.cn/kms/latest/developerguide/kms-security.html
https://docs.amazonaws.cn/kms/latest/developerguide/symmetric-asymmetric.html
https://docs.amazonaws.cn/kms/latest/developerguide/key-policy-viewing.html
https://docs.amazonaws.cn/kms/latest/developerguide/pqtls.html
https://docs.amazonaws.cn/kms/latest/developerguide/pqtls.html
https://docs.amazonaws.cn/kms/latest/developerguide/pqtls.html

Amazon Key Management Service Developer Guide

Quota change Increased the resource quotas
for some APIs that manage
KMS keys.

September 18, 2019

Quota change Changed the resource quotas
for KMS keys, aliases, and
grants per KMS key.

March 27, 2019

Quota change Changed the shared per-
second request quota for
cryptographic operations that
use Amazon KMS keys in a
custom key store.

March 7, 2019

New feature Explains how to create and
manage Amazon KMS custom
key stores. Each key store
is backed by an Amazon
CloudHSM cluster that you
own and control.

November 26, 2018

New console Explains how to use the new
Amazon KMS console, which
is independent of the IAM
console. The original console,
and instructions for using it,
will remain available for a
brief period to give you time
to familiarize yourself with
the new console.

November 7, 2018

Quota change Changed the shared request
quota for use of Amazon KMS
keys.

August 21, 2018

Recent updates 1148

https://docs.amazonaws.cn/kms/latest/developerguide/limits.html
https://docs.amazonaws.cn/kms/latest/developerguide/limits.html
https://docs.amazonaws.cn/kms/latest/developerguide/limits.html#rps-key-stores
https://docs.amazonaws.cn/kms/latest/developerguide/custom-key-store-overview.html
https://docs.amazonaws.cn/kms/latest/developerguide/custom-key-store-overview.html
https://docs.amazonaws.cn/kms/latest/developerguide/custom-key-store-overview.html
https://docs.amazonaws.cn/kms/latest/developerguide/create-keys.html#create-keys-console
https://docs.amazonaws.cn/kms/latest/developerguide/limits.html#requests-per-second
https://docs.amazonaws.cn/kms/latest/developerguide/limits.html#requests-per-second
https://docs.amazonaws.cn/kms/latest/developerguide/limits.html#requests-per-second

Amazon Key Management Service Developer Guide

New content Explains how Amazon Secrets
Manager uses Amazon KMS
keys to encrypt the secret
value in a secret.

July 13, 2018

New content Explains how DynamoDB uses
Amazon KMS Amazon KMS
keys to support its server-side
encryption option.

May 23, 2018

New feature Explains how to use a private
endpoint in your VPC to
connect directly to Amazon
KMS, instead of connecting
over the internet.

January 22, 2018

Earlier updates

The following table describes the important changes to the Amazon Key Management Service
Developer Guide prior to 2018.

You might need to scroll horizontally or vertically to see all of the data in this table.

Change Description Date

New content Added documentation about
Tags in Amazon KMS.

February 15, 2017

New content Added documentation about
Monitor Amazon KMS keys
and Monitor KMS keys with
Amazon CloudWatch.

August 31, 2016

New content Added documentation about
Imported key material.

August 11, 2016

New content Added the following
documentation: IAM policies,

July 5, 2016

Earlier updates 1149

https://docs.amazonaws.cn/kms/latest/developerguide/services-secrets-manager.html
https://docs.amazonaws.cn/kms/latest/developerguide/services-secrets-manager.html
https://docs.amazonaws.cn/kms/latest/developerguide/services-secrets-manager.html
https://docs.amazonaws.cn/kms/latest/developerguide/kms-vpc-endpoint.html
https://docs.amazonaws.cn/kms/latest/developerguide/kms-vpc-endpoint.html
https://docs.amazonaws.cn/kms/latest/developerguide/kms-vpc-endpoint.html

Amazon Key Management Service Developer Guide

Change Description Date

Permissions reference, and
Condition keys.

Update Updated portions of the
documentation in the KMS
key access and permissions
chapter.

July 5, 2016

Update Updated the Quotas page to
reflect new default quotas.

May 31, 2016

Update Updated the Quotas page to
reflect new default quotas,
and updated the grant token
documentation to improve
clarity and accuracy.

April 11, 2016

New content Added documentation
about Allowing multiple IAM
principals to access a KMS
key and Using the IP address
condition.

February 17, 2016

Update Updated the Key policies in
Amazon KMS and Change a
key policy pages to improve
clarity and accuracy.

February 17, 2016

Update Updated the Managing KMS
keys topic pages to improve
clarity.

January 5, 2016

New content Added documentation about
CloudTrail.

November 18, 2015

New content Added instructions for
Change a key policy.

November 18, 2015

Earlier updates 1150

Amazon Key Management Service Developer Guide

Change Description Date

Update Updated the documenta
tion about How Amazon
Relational Database Service
uses Amazon KMS.

November 18, 2015

New content Added documentation about
Amazon WorkSpaces.

November 6, 2015

Update Updated the Key policies in
Amazon KMS page to improve
clarity.

October 22, 2015

New content Added documentation about
Delete an Amazon KMS
key, including supporting
documentation about Create
an alarm and Determine past
usage of a KMS key.

October 15, 2015

New content Added documentation
about Determining access to
Amazon KMS keys.

October 15, 2015

New content Added documentation about
Key states of Amazon KMS
keys.

October 15, 2015

New content Added documentation about
Amazon Simple Email Service.

October 1, 2015

Update Updated the Quotas page
to explain the new request
quotas.

August 31, 2015

Earlier updates 1151

Amazon Key Management Service Developer Guide

Change Description Date

New content Added information about the
charges for using Amazon
KMS. See Amazon KMS
Pricing.

August 14, 2015

New content Added request quotas to the
Amazon KMS Quotas.

June 11, 2015

New content Added a new Java code
sample demonstrating use of
the UpdateAlias operation
.

June 1, 2015

Update Moved the Amazon Key
Management Service regions
table to the Amazon Web
Services General Reference.

May 29, 2015

New content Added documentation about
How Amazon EMR uses
Amazon KMS.

January 28, 2015

New content Added documentation about
Amazon WorkMail.

January 28, 2015

New content Added documentation about
How Amazon Relationa
l Database Service uses
Amazon KMS.

January 6, 2015

New content Added documentation about
Amazon Elastic Transcoder.

November 24, 2014

New guide Introduced the Amazon
Key Management Service
Developer Guide.

November 12, 2014

Earlier updates 1152

https://docs.amazonaws.cn/kms/latest/APIReference/API_UpdateAlias.html
https://docs.amazonaws.cn/general/latest/gr/rande.html#kms_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#kms_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#kms_region

	Amazon Key Management Service
	Table of Contents
	Amazon Key Management Service
	Why use Amazon KMS?
	Amazon KMS in Amazon Web Services Regions
	Amazon KMS pricing
	Amazon KMS service level agreement

	Accessing Amazon Key Management Service
	Amazon Web Services Management Console
	Permissions required to use the Amazon KMS console

	Amazon Command Line Interface
	Amazon KMS REST API
	Amazon SDKs
	Using this service with an Amazon SDK
	Amazon Encryption SDK
	Amazon KMS eventual consistency
	Using hybrid post-quantum TLS with Amazon KMS
	About hybrid post-quantum key exchange in TLS
	Using hybrid post-quantum TLS with Amazon KMS
	Configure hybrid post-quantum TLS
	Test your hybrid post-quantum TLS configuration

	Learn more about post-quantum TLS in Amazon KMS

	Connect to Amazon KMS through a VPC endpoint
	Create a VPC endpoint for Amazon KMS
	Connect to an Amazon KMS VPC endpoint
	Use VPC endpoints to control access to Amazon KMS resources
	Logging Amazon KMS requests that use a VPC endpoint

	Dual-stack endpoint support
	Features not available over IPv6

	Amazon KMS concepts
	Introduction to Amazon KMS
	Amazon KMS design goals

	Amazon KMS keys
	Customer managed keys
	Amazon managed keys
	Amazon owned keys
	Amazon KMS key hierarchy
	Key identifiers (KeyId)
	Asymmetric keys in Amazon KMS
	HMAC keys in Amazon KMS
	ML-DSA keys in Amazon KMS
	Multi-Region keys in Amazon KMS
	Terminology and concepts
	Multi-Region key
	Primary key
	Replica key
	Replicate
	Shared properties

	Security considerations for multi-Region keys
	How multi-Region keys work

	Importing key material for Amazon KMS keys
	Special considerations for imported key material
	Protecting imported key material

	KMS keys in a CloudHSM key store
	KMS keys in external key stores

	Amazon KMS cryptography essentials
	Entropy and random number generation
	Symmetric key operations (encryption only)
	Asymmetric key operations (encryption, digital signing and signature verification)
	Key derivation functions
	Amazon KMS internal use of digital signatures
	Envelope encryption
	Cryptographic operations

	KMS key access and permissions
	KMS key policies
	KMS key grants
	Key policies in Amazon KMS
	Creating a key policy
	Key policy format
	Elements in a key policy
	Example key policy

	Default key policy
	Allows access to the Amazon Web Services account and enables IAM policies
	Allows key administrators to administer the KMS key
	Allows key users to use the KMS key
	Allows key users to use a KMS key for cryptographic operations
	Allows key users to use the KMS key with Amazon services

	View a key policies
	Using the Amazon KMS console
	Using the Amazon KMS API

	Change a key policy
	How to change a key policy
	Using the Amazon Web Services Management Console default view
	Using the Amazon Web Services Management Console policy view
	Using the Amazon KMS API

	Permissions for Amazon services in key policies

	Using IAM policies with Amazon KMS
	Allowing multiple IAM principals to access a KMS key
	Best practices for IAM policies
	Specifying KMS keys in IAM policy statements
	IAM policy examples
	Allow a user to view KMS keys in the Amazon KMS console
	Allow a user to create KMS keys
	Allow a user to encrypt and decrypt with any KMS key in a specific Amazon Web Services account
	Allow a user to encrypt and decrypt with any KMS key in a specific Amazon Web Services account and Region
	Allow a user to encrypt and decrypt with specific KMS keys
	Prevent a user from disabling or deleting any KMS keys

	Resource control policies in Amazon KMS
	Grants in Amazon KMS
	Grant concepts
	Best practices for Amazon KMS grants
	Controlling access to grants
	Creating grants
	Creating a grant
	Using grant constraints

	Granting CreateGrant permission

	Viewing grants
	Using a grant token
	Retiring and revoking grants

	Condition keys for Amazon KMS
	Amazon global condition keys
	Using the IP address condition in policies with Amazon KMS permissions
	Using VPC endpoint conditions in policies with Amazon KMS permissions
	Using IPv6 addresses in IAM and Amazon KMS key policies

	Amazon KMS condition keys
	kms:BypassPolicyLockoutSafetyCheck
	kms:CallerAccount
	kms:CustomerMasterKeySpec (deprecated)
	kms:CustomerMasterKeyUsage (deprecated)
	kms:DataKeyPairSpec
	kms:EncryptionAlgorithm
	kms:EncryptionContext:context-key
	Using multiple encryption context pairs
	Case sensitivity of the encryption context condition
	Using variables in an encryption context condition

	kms:EncryptionContextKeys
	kms:ExpirationModel
	kms:GrantConstraintType
	kms:GrantIsForAWSResource
	kms:GrantOperations
	kms:GranteePrincipal
	kms:KeyAgreementAlgorithm
	kms:KeyOrigin
	kms:KeySpec
	kms:KeyUsage
	kms:MacAlgorithm
	kms:MessageType
	kms:MultiRegion
	kms:MultiRegionKeyType
	kms:PrimaryRegion
	kms:ReEncryptOnSameKey
	kms:RequestAlias
	kms:ResourceAliases
	kms:ReplicaRegion
	kms:RetiringPrincipal
	kms:RotationPeriodInDays
	kms:ScheduleKeyDeletionPendingWindowInDays
	kms:SigningAlgorithm
	kms:ValidTo
	kms:ViaService
	Services that support the kms:ViaService condition key

	kms:WrappingAlgorithm
	kms:WrappingKeySpec

	Amazon KMS condition keys for Amazon Nitro Enclaves
	kms:RecipientAttestation:ImageSha384
	kms:RecipientAttestation:PCR<PCR_ID>

	Least-privilege permissions
	Implementing least privileged permissions
	Using encryption context condition keys
	Using aws:SourceArn or aws:SourceAccount condition keys

	ABAC for Amazon KMS
	ABAC condition keys for Amazon KMS
	Tags or aliases?
	Troubleshooting ABAC for Amazon KMS
	Access changed due to tag change
	Access change due to alias change
	Access denied due to alias quota
	Delayed authorization change
	Failed requests due to alias updates

	RBAC for Amazon KMS
	Allowing users in other accounts to use a KMS key
	Step 1: Add a key policy statement in the local account
	Step 2: Add IAM policies in the external account
	Allowing use of external KMS keys with Amazon Web Services services
	Using KMS keys in other accounts

	Control access to multi-Region keys
	Authorization basics for multi-Region keys
	Authorizing multi-Region key administrators and users
	Creating a primary key
	Replicating keys
	Updating the primary Region
	Using and managing multi-Region keys

	Determining access to Amazon KMS keys
	Examining the key policy
	Examining IAM policies
	Examining IAM policies with the IAM policy simulator
	Examining IAM policies with the IAM API

	Examining grants

	Encryption context
	Encryption context rules
	Encryption context in policies
	Encryption context in grants
	Logging encryption context
	Storing encryption context

	Testing your permissions
	What is the DryRun parameter?
	Specifying DryRun with the API

	Troubleshooting Amazon KMS permissions
	Example 1: User is denied access to a KMS key in their Amazon Web Services account
	Example 2: User assumes role with permission to use a KMS key in a different Amazon Web Services account

	Amazon KMS access control glossary
	Authentication
	Authorization
	Authenticating with identities
	Amazon Web Services account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Other policy types
	Multiple policy types

	Amazon KMS resources

	Create a KMS key
	Permissions for creating KMS keys
	Choosing what type of KMS key to create
	Create a symmetric encryption KMS key
	Using the Amazon KMS console
	Using the Amazon KMS API

	Create an asymmetric KMS key
	Using the Amazon KMS console
	Using the Amazon KMS API

	Create an HMAC KMS key
	Using the Amazon KMS console
	Using the Amazon KMS API

	Create multi-Region primary keys
	Using the Amazon KMS console
	Using the Amazon KMS API

	Create multi-Region replica keys
	Step 1: Choose replica Regions
	Step 2: Create replica keys
	Using the Amazon KMS console
	Using the Amazon KMS API

	Create a KMS key with imported key material
	Permissions for importing key material
	Requirements for imported key material
	Step 1: Create an Amazon KMS key without key material
	Creating a KMS key with no key material (console)
	Creating a KMS key with no key material (Amazon KMS API)

	Step 2: Download the wrapping public key and import token
	Select a wrapping public key spec
	Select a wrapping algorithm
	Downloading the wrapping public key and import token (console)
	Downloading the wrapping public key and import token (Amazon KMS API)

	Step 3: Encrypt the key material
	Generate key material for testing
	Examples of encrypting key material with OpenSSL

	Step 4: Import the key material
	Setting an expiration time (optional)
	Set key material description
	Reimport key material
	Import new key material
	Import key material (console)
	Import key material (Amazon KMS API)

	Create a KMS key in an Amazon CloudHSM key store
	Create a new KMS key in your CloudHSM key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	Create a KMS key in external key stores
	Requirements for a KMS key in an external key store
	Create a new KMS key in your external key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	Identify and view keys
	Find the key ID and key ARN
	Using the Amazon KMS console
	Using the Amazon KMS API

	Access and list KMS key details
	Using the Amazon KMS console
	Using the Amazon KMS API

	Identify different key types
	Identify asymmetric KMS keys
	Identify HMAC KMS keys
	Identify multi-Region KMS keys
	Identify KMS keys with imported key material
	Identify KMS keys in Amazon CloudHSM key stores
	Identify KMS keys in external key stores

	Customize your console view
	Sort and filter your KMS keys
	Suggested KMS key table filters

	Customize your KMS key tables
	Suggested KMS key table configurations

	Find KMS keys and key material in an Amazon CloudHSM key store
	Find the KMS keys in an Amazon CloudHSM key store
	To find the KMS keys in an Amazon CloudHSM key store (console)
	To find the KMS keys in an Amazon CloudHSM key store (API)

	Find all keys for an Amazon CloudHSM key store
	Find the KMS key for an Amazon CloudHSM key
	Identify the KMS key associated with a key reference
	Identify the KMS key associated with a backing key ID

	Find the Amazon CloudHSM key for a KMS key

	Enable and disable keys
	Using the Amazon KMS console
	Using the Amazon KMS API

	Rotate Amazon KMS keys
	Why rotate KMS keys?
	How key rotation works
	Enable automatic key rotation
	Using the Amazon KMS console
	Using the Amazon KMS API

	Disable automatic key rotation
	Using the Amazon KMS console
	Using the Amazon KMS API

	Perform on-demand key rotation
	Initiating on-demand key rotation (console)
	Initiating on-demand key rotation (Amazon KMS API)

	List rotations and key materials
	List rotations and key materials (console)
	List rotations and key materials (Amazon KMS API)

	Rotate keys manually
	Change the primary key in a set of multi-Region keys
	Update the primary Region
	Using the Amazon KMS console
	Using the Amazon KMS API

	Delete an Amazon KMS key
	About the waiting period
	Special considerations
	Control access to key deletion
	Allow key administrators to schedule and cancel key deletion
	Using the Amazon KMS console
	Using the Amazon KMS API

	Schedule key deletion
	
	Using the Amazon KMS console
	Using the Amazon KMS API

	Cancel key deletion
	Using the Amazon KMS console
	Using the Amazon KMS API

	Create an alarm that detects use of a KMS key pending deletion
	Determine past usage of a KMS key
	Examine KMS key permissions to determine the scope of potential usage
	Examine Amazon CloudTrail logs to determine actual usage

	Delete imported key material
	Using the Amazon KMS console
	Using the Amazon KMS API

	Generate data keys
	Create a data key
	How cryptographic operations with data keys work
	Encrypt data with a data key
	Decrypt data with a data key

	How unusable KMS keys affect data keys

	Generate data key pairs
	Create a data key pair
	How cryptographic operations with data key pairs work
	Encrypt data with a data key pair
	Decrypt data with a data key pair
	Sign messages with a data key pair
	Verify a signature with a data key pair
	Derive a shared secret with data key pairs

	Perform offline operations with public keys
	Special considerations for downloading public keys
	Download public key
	Using the Amazon KMS console
	Using the Amazon KMS API

	Example offline operations
	Deriving shared secrets offline
	Offline verification with ML-DSA key pairs
	Message size less than 4KB
	Message size more than 4KB

	Offline verification with SM2 key pairs (China Regions only)
	SM2OfflineOperationHelper class

	Monitor Amazon KMS keys
	Monitoring tools
	Automated monitoring tools
	Manual monitoring tools

	Logging Amazon KMS API calls with Amazon CloudTrail
	Finding Amazon KMS log entries in CloudTrail
	Excluding Amazon KMS events from a trail
	Examples of Amazon KMS log entries
	CancelKeyDeletion
	ConnectCustomKeyStore
	CreateAlias
	CreateCustomKeyStore
	CreateGrant
	CreateKey
	Decrypt
	Decrypt with a standard symmetric encryption key
	Decrypt failure with a standard symmetric encryption key
	Decrypt with a KMS key in an Amazon CloudHSM key store
	Decrypt with a KMS key in an external key store
	Decrypt failure with a KMS key in an external key store

	DeleteAlias
	DeleteCustomKeyStore
	DeleteExpiredKeyMaterial
	DeleteImportedKeyMaterial
	DeleteKey
	DescribeCustomKeyStores
	DescribeKey
	DisableKey
	DisableKeyRotation
	DisconnectCustomKeyStore
	EnableKey
	EnableKeyRotation
	Encrypt
	GenerateDataKey
	GenerateDataKeyPair
	GenerateDataKeyPairWithoutPlaintext
	GenerateDataKeyWithoutPlaintext
	GenerateMac
	GenerateRandom
	GetKeyPolicy
	GetKeyRotationStatus
	GetParametersForImport
	ImportKeyMaterial
	ListAliases
	ListGrants
	ListKeyRotations
	PutKeyPolicy
	ReEncrypt
	ReplicateKey
	RetireGrant
	RevokeGrant
	RotateKey
	RotateKeyOnDemand
	ScheduleKeyDeletion
	Sign
	SynchronizeMultiRegionKey
	TagResource
	UntagResource
	UpdateAlias
	UpdateCustomKeyStore
	UpdateKeyDescription
	UpdatePrimaryRegion
	VerifyMac
	Verify
	Amazon EC2 example one
	Amazon EC2 example two

	Monitor KMS keys with Amazon CloudWatch
	Amazon KMS metrics and dimensions
	SuccessfulRequest
	SecondsUntilKeyMaterialExpiration
	CloudHSMKeyStoreThrottle
	ExternalKeyStoreThrottle
	XksProxyCertificateDaysToExpire
	XksProxyCredentialAge
	XksProxyErrors
	XksExternalKeyManagerStates
	XksProxyLatency

	Create a CloudWatch alarm for expiration of imported key material
	Create CloudWatch alarms for external key stores
	Create an alarm for certificate expiration
	Create an alarm for response timeout
	Create an alarm for retryable errors
	Create an alarm for non-retryable errors

	Monitor KMS keys with Amazon EventBridge
	KMS CMK Rotation
	KMS Imported Key Material Expiration
	KMS CMK Deletion

	Aliases in Amazon KMS
	How aliases work
	Controlling access to aliases
	kms:CreateAlias
	kms:ListAliases
	kms:UpdateAlias
	kms:DeleteAlias
	Limiting alias permissions

	Create aliases
	Using the Amazon KMS console
	Using the Amazon KMS API

	Find the alias name and alias ARN for a KMS key
	Using the Amazon KMS console
	Using the Amazon KMS API

	Update aliases
	Delete an alias
	Using the Amazon KMS console
	Using the Amazon KMS API

	Use aliases to control access to KMS keys
	kms:RequestAlias
	kms:ResourceAliases

	Learn how to use aliases in your applications
	Find aliases in Amazon CloudTrail logs

	Tags in Amazon KMS
	Controlling access to tags
	Tag permissions in policies
	Limiting tag permissions

	Add tags to a KMS key
	Add tags while creating a KMS key
	Using the Amazon KMS console
	Using the Amazon KMS API

	Add tags to existing KMS keys
	Using the Amazon KMS console
	Using the Amazon KMS API

	Edit tags associated with a KMS key
	Using the Amazon KMS console
	Using the Amazon KMS API

	Remove tags associated with a KMS key
	Using the Amazon KMS console
	Using the Amazon KMS API

	View tags associated with a KMS key
	Using the Amazon KMS console
	Using the Amazon KMS API

	Use tags to control access to KMS keys

	Key stores
	Amazon KMS standard key store
	Amazon KMS standard key store with imported key material
	Amazon KMS custom key stores
	Amazon CloudHSM key store
	External key store

	Amazon CloudHSM key stores
	Amazon CloudHSM key store concepts
	Amazon CloudHSM key store
	Amazon CloudHSM cluster
	kmsuser Crypto user
	KMS keys in an Amazon CloudHSM key store

	Control access to your Amazon CloudHSM key store
	Create an Amazon CloudHSM key store
	Assemble the prerequisites
	Create a new Amazon CloudHSM key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	View an Amazon CloudHSM key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	Edit Amazon CloudHSM key store settings
	Edit your key store settings
	Using the Amazon KMS console
	Using the Amazon KMS API

	Connect an Amazon CloudHSM key store
	Connect and reconnect to your Amazon CloudHSM key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	Disconnect an Amazon CloudHSM key store
	Disconnect your Amazon CloudHSM key store
	Disconnect using the Amazon KMS console
	Disconnect using the Amazon KMS API

	Delete an Amazon CloudHSM key store
	Delete your Amazon CloudHSM key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	Troubleshooting a custom key store
	How to fix unavailable KMS keys
	How to fix a failing KMS key
	How to fix a connection failure
	How to respond to a cryptographic operation failure
	How to fix invalid kmsuser credentials
	How to delete orphaned key material
	How to recover deleted key material for a KMS key
	How to log in as kmsuser
	How to disconnect and log in
	How to log out and reconnect

	External key stores
	External key store concepts
	External key store
	External key manager
	External key
	External key store proxy
	External key store proxy connectivity
	External key store proxy authentication credential
	Proxy APIs
	Double encryption

	How external key stores work
	Control access to your external key store
	Authorizing external key store managers
	Authorizing users of KMS keys in external key stores
	Authorizing Amazon KMS to communicate with your external key store proxy
	External key store proxy authorization (optional)
	mTLS authentication (optional)

	Choose an external key store proxy connectivity option
	Public endpoint connectivity
	VPC endpoint service connectivity
	Configure VPC endpoint service connectivity
	Requirements for VPC endpoint service connectivity
	Step 1: Create an Amazon VPC and subnets
	Requirements for your Amazon VPC
	Creating an Amazon VPC for your external key store
	Connecting the VPC to the external key manager

	Step 2: Create a target group
	Step 3: Create a network load balancer
	Step 4: Create a VPC endpoint service
	Step 5: Verify your private DNS name domain
	Step 6: Authorize Amazon KMS to connect to the VPC endpoint service

	Create an external key store
	Assemble the prerequisites
	External key manager
	External key store proxy
	Proxy authentication credential
	Proxy connectivity
	Proxy URI endpoint
	Proxy URI path
	VPC endpoint service
	Proxy configuration file

	Create a new external key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	Edit external key store properties
	Edit your external key store's properties
	Using the Amazon KMS console
	Using the Amazon KMS API
	Change the name of the external key store
	Change the proxy authentication credential
	Change the proxy URI path
	Change to VPC endpoint service connectivity
	Change to public endpoint connectivity

	View external key stores
	External key store properties
	Custom key store properties
	External key store configuration properties

	View your external key store properties
	Using the Amazon KMS console
	Using the Amazon KMS API

	Monitor external key stores
	Viewing the graphs
	View data point details
	Modify the time range
	Zoom in on graphs
	Enlarge a graph
	View graphs in the Amazon CloudWatch console

	Interpreting the graphs
	Total requests
	Reliability
	Latency
	Top 5 exceptions
	Certificate days to expire

	Connect and disconnect external key stores
	Connection state
	Connect an external key store
	Connect and reconnect to your external key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	Disconnect an external key store
	Disconnect your external key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	Delete an external key store
	Using the Amazon KMS console
	Using the Amazon KMS API

	Troubleshooting external key stores
	Troubleshooting tools for external key stores
	Configuration errors
	General configuration errors
	VPC endpoint service connectivity configuration errors

	External key store connection errors
	Connection error codes for external key stores

	Latency and timeout errors
	Authentication credential errors
	Key state errors
	Decryption errors
	External key errors
	CreateKey errors for the external key
	Cryptographic operation errors for the external key

	Proxy issues
	Proxy authorization issues

	Security of Amazon Key Management Service
	Data protection in Amazon Key Management Service
	Protecting key material
	Protecting key material generated in Amazon KMS
	Protecting key material generated outside of Amazon KMS

	Data encryption
	Encryption at rest
	Encryption in transit

	Internetwork traffic privacy

	Identity and access management for Amazon Key Management Service
	Amazon managed policies for Amazon Key Management Service
	Amazon managed policy: AWSKeyManagementServicePowerUser
	Amazon managed policy: AWSServiceRoleForKeyManagementServiceCustomKeyStores
	Amazon managed policy: AWSServiceRoleForKeyManagementServiceMultiRegionKeys
	Amazon KMS updates to Amazon managed policies

	Using service-linked roles for Amazon KMS
	Authorizing Amazon KMS to manage Amazon CloudHSM and Amazon EC2 resources
	About the Amazon KMS service-linked role
	Create the service-linked role
	Edit the service-linked role description
	Delete the service-linked role

	Authorizing Amazon KMS to synchronize multi-Region keys
	About the service-linked role for multi-Region keys
	Create the service-linked role
	Edit the service-linked role description
	Delete the service-linked role

	Logging and monitoring in Amazon Key Management Service
	Compliance validation for Amazon Key Management Service
	Compliance and security documents
	Learn more

	Resilience in Amazon Key Management Service
	Regional isolation
	Multi-tenant design
	Resilience best practices in Amazon KMS

	Infrastructure security in Amazon Key Management Service
	Isolation of Physical Hosts

	Quotas
	Resource quotas
	Amazon KMS keys: 100,000
	Aliases per KMS key: 50
	Grants per KMS key: 50,000
	Custom key stores resource quota: 10
	On-demand rotation: 10

	Request quotas
	Request quotas for each Amazon KMS API operation
	Applying request quotas
	Shared quotas for cryptographic operations
	API requests made on your behalf
	Cross-account requests
	Custom key store request quotas

	Throttling Amazon KMS requests

	Code examples for Amazon KMS using Amazon SDKs
	Hello Amazon Key Management Service
	Basic examples for Amazon KMS using Amazon SDKs
	Hello Amazon Key Management Service
	Learn the basics of Amazon KMS with an Amazon SDK
	Actions for Amazon KMS using Amazon SDKs
	Use CreateAlias with an Amazon SDK or CLI
	Use CreateGrant with an Amazon SDK or CLI
	Use CreateKey with an Amazon SDK or CLI
	Use Decrypt with an Amazon SDK or CLI
	Use DeleteAlias with an Amazon SDK or CLI
	Use DescribeKey with an Amazon SDK or CLI
	Use DisableKey with an Amazon SDK or CLI
	Use EnableKey with an Amazon SDK or CLI
	Use EnableKeyRotation with an Amazon SDK or CLI
	Use Encrypt with an Amazon SDK or CLI
	Use GenerateDataKey with an Amazon SDK or CLI
	Use GenerateDataKeyWithoutPlaintext with an Amazon SDK or CLI
	Use GenerateRandom with an Amazon SDK or CLI
	Use GetKeyPolicy with an Amazon SDK or CLI
	Use ListAliases with an Amazon SDK or CLI
	Use ListGrants with an Amazon SDK or CLI
	Use ListKeyPolicies with an Amazon SDK or CLI
	Use ListKeys with an Amazon SDK or CLI
	Use PutKeyPolicy with an Amazon SDK or CLI
	Use ReEncrypt with an Amazon SDK or CLI
	Use RetireGrant with an Amazon SDK or CLI
	Use RevokeGrant with an Amazon SDK or CLI
	Use ScheduleKeyDeletion with an Amazon SDK or CLI
	Use Sign with an Amazon SDK or CLI
	Use TagResource with an Amazon SDK or CLI
	Use UpdateAlias with an Amazon SDK or CLI
	Use Verify with an Amazon SDK or CLI

	Scenarios for Amazon KMS using Amazon SDKs
	Work with DynamoDB table encryption using Amazon Command Line Interface v2

	Cryptographic attestation for Amazon Nitro Enclaves
	How to call Amazon KMS APIs for a Nitro enclave
	Monitoring requests for Nitro enclaves
	Decrypt (for an enclave)
	GenerateDataKey (for an enclave)
	GenerateDataKeyPair (for an enclave)
	GenerateRandom (for an enclave)

	Using Amazon KMS encryption with Amazon services
	How Amazon Elastic Block Store (Amazon EBS) uses Amazon KMS
	Amazon EBS encryption
	Using KMS keys and data keys
	Amazon EBS encryption context
	Detecting Amazon EBS failures
	Using Amazon CloudFormation to create encrypted Amazon EBS volumes

	How Amazon EMR uses Amazon KMS
	Encrypting data on the EMR file system (EMRFS)
	Process for encrypting data on EMRFS with SSE-KMS
	Process for encrypting data on EMRFS with CSE-KMS

	Encrypting data on the storage volumes of cluster nodes
	Encryption context
	Encryption context for EMRFS encryption with SSE-KMS
	Encryption context for EMRFS encryption with CSE-KMS
	Encryption context for local disk encryption with LUKS

	How Amazon Redshift uses Amazon KMS
	Amazon Redshift encryption
	Encryption context

	Amazon KMS Reference
	Key states of Amazon KMS keys
	Key states and KMS key types
	Key state table

	Key type reference
	Key type table
	Special features table

	Key spec reference
	SYMMETRIC_DEFAULT key spec
	RSA key specs
	RSA key specs for encryption and decryption
	RSA key specs for signing and verification

	Elliptic curve key specs
	Key specs for HMAC KMS keys
	ML-DSA key specs
	SM2 key spec (China Regions only)

	Amazon KMS permissions
	Column descriptions

	Amazon KMS internal operations
	Domains and domain state
	Domain keys
	Exported domain tokens
	Managing domain states

	Internal communication security
	Key establishment
	HSM security boundary
	Quorum-signed commands
	Authenticated sessions

	Replication process for multi-Region keys
	Durability protection

	Document history
	Recent updates
	Earlier updates

