
Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink: Managed Service for Apache Flink
Developer Guide

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Table of Contents

... xv
What is Managed Service for Apache Flink? .. 1

Choosing Managed Service for Apache Flink or Managed Service for Apache Flink Studio 1
Choosing which Apache Flink APIs to use in Managed Service for Apache Flink 3

Choosing a Flink API .. 3
Getting started with streaming data applications .. 5

How it works .. 6
Programming your Apache Flink application ... 6

DataStream API ... 6
Table API ... 7

Creating your Managed Service for Apache Flink application .. 7
Creating applications ... 8

Building your Managed Service for Apache Flink application code .. 8
Creating your Managed Service for Apache Flink application ... 10
Starting your Managed Service for Apache Flink application ... 11
Verifying your Managed Service for Apache Flink application .. 11

Running applications ... 12
Application and job status .. 12
Batch workloads .. 14

Application resources .. 14
Managed Service for Apache Flink application resources .. 14
Apache Flink application resources ... 14

DataStream API .. 15
DataStream API connectors .. 16
DataStream API operators .. 30
DataStream API timestamps .. 31

Table API .. 31
Table API connectors ... 32
Table API time attributes .. 33

Using Python ... 34
Programming an application .. 34
Creating an application ... 37
Monitoring .. 38

Runtime properties .. 40

iii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Working with runtime properties in the console ... 40
Working with runtime properties in the CLI ... 41
Accessing runtime properties in a Managed Service for Apache Flink application 44

Fault tolerance .. 45
Configuring Checkpointing ... 45
Checkpointing API examples .. 46

Snapshots ... 49
Automatic snapshot creation ... 50
Restoring from a snapshot that contains incompatible state data .. 50
Snapshot API examples ... 51

In-place version upgrades .. 54
Upgrading applications using in-place version upgrades for Apache Flink 55
Upgrading your application to a new Apache Flink version .. 56
Rollback ... 61
General best practices and recommendations .. 62
Precautions and known issues ... 62

Scaling .. 63
Configuring application parallelism and ParallelismPerKPU ... 64
Allocating Kinesis Processing Units ... 64
Updating your application's parallelism ... 65
Automatic scaling ... 67

Tagging ... 68
Adding tags when an application is created ... 69
Adding or u tags for an existing application .. 70
Listing tags for an application ... 70
Removing tags from an application ... 70

Using CloudFormation with Managed Service for Apache Flink .. 71
Before you begin .. 71
Writing a Lambda function ... 71
Creating a Lambda role ... 73
Invoking the Lambda function ... 74
Invoking the Lambda function ... 74

Apache Flink Dashboard ... 80
Accessing your application's Apache Flink Dashboard .. 81

Release versions ... 82
Amazon Managed Service for Apache Flink 1.18 (recommended) ... 82

iv

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 84
Components ... 84
Bug fixes ... 85
Known issues .. 85

Amazon Managed Service for Apache Flink 1.15 .. 85
Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 84
Components ... 84

Earlier versions .. 88
Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions 89
Building applications with Apache Flink 1.8.2 .. 90
Building applications with Apache Flink 1.6.2 .. 91
Upgrading applications .. 92
Available connectors in Apache Flink 1.6.2 and 1.8.2 ... 92
Getting Started: Flink 1.13.2 .. 93
Getting Started: Flink 1.11.1 ... 116
Getting started: Flink 1.8.2 .. 141
Getting started: Flink 1.6.2 .. 164
Legacy examples ... 186

Studio notebooks .. 356
Creating a Studio notebook .. 357
Interactive analysis of streaming data .. 358

Flink interpreters .. 359
Apache Flink table environment variables .. 360

Deploying as an application with durable state .. 360
Scala/Python criteria ... 362
SQL criteria .. 362

IAM permissions ... 362
Connectors and dependencies .. 363

Default connectors ... 363
Dependencies and custom connectors ... 365

User-defined functions ... 366
Considerations with user-defined functions ... 367

Enabling checkpointing .. 368
Setting the checkpointing interval ... 368
Setting the checkpointing type ... 369

Working with Amazon Glue ... 369

v

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Table properties .. 369
Examples and tutorials ... 372

Creating a Studio notebook tutorial .. 372
Deploying as an application with durable state tutorial .. 392
Examples ... 395

Troubleshooting ... 407
Stopping a stuck application ... 407
Deploying as an application with durable state in a VPC with no internet access 407
Deploy-as-app size and build time reduction .. 408
Canceling jobs ... 410
Restarting the Apache Flink interpreter .. 411

Appendix: Creating custom IAM policies ... 412
Amazon Glue ... 412
CloudWatch Logs .. 413
Kinesis streams .. 414
Amazon MSK clusters .. 416

Getting started (DataStream API) .. 417
Application Components .. 141
Prerequisites .. 418
Step 1: Set Up an Account .. 418

Sign up for an Amazon Web Services account ... 94
Secure IAM users ... 95
Grant programmatic access .. 419
Next Step .. 420

Step 2: Set Up the Amazon CLI .. 420
Next step .. 422

Step 3: Create an application .. 422
Create two Amazon Kinesis data streams ... 422
Write sample records to the input stream .. 423
Download and examine the Apache Flink streaming Java code ... 424
Compile the application code .. 425
Upload the Apache Flink streaming Java code .. 426
Create and run the Managed Service for Apache Flink application ... 427
Next step .. 438

Step 4: Clean Up .. 439
Delete your Managed Service for Apache Flink application .. 439

vi

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Kinesis data streams .. 439
Delete your Amazon S3 object and bucket .. 439
Delete your IAM resources .. 440
Delete your CloudWatch resources ... 440
Next Step .. 440

Step 5: Next steps ... 440
Getting started (Table API) ... 442

Application Components .. 442
Prerequisites .. 443
Create an Application ... 443

Create dependent resources ... 443
Write samplerRecords to the input stream ... 445
Download and examine the Apache Flink streaming Java code ... 446
Compile the application code .. 448
Upload the Apache Flink streaming Java code .. 449
Create and run the Managed Service for Apache Flink application ... 449
Next step .. 454

Clean Up .. 454
Delete your Managed Service for Apache Flink application .. 454
Delete your Amazon MSK cluster ... 454
Delete your VPC .. 455
Delete your Amazon S3 objects and bucket ... 455
Delete your IAM resources .. 455
Delete your CloudWatch resources ... 456
Next step .. 456

Next steps .. 456
Getting started (Python) ... 457

Getting started with Pyflink - The Python Interpreter for Apache | Amazon Web Services 457
Application Components .. 457
Prerequisites .. 458
Create an Application ... 458

Create dependent resources ... 459
Write sample records to the input stream .. 460
Create and examine the Apache Flink streaming Python code .. 461
Adding third-party dependencies to Python apps .. 463
Upload the Apache Flink streaming Python code ... 464

vii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the Managed Service for Apache Flink application ... 466
Next step .. 470

Clean Up .. 471
Delete your Managed Service for Apache Flink application .. 471
Delete your Kinesis data streams .. 471
Delete your Amazon S3 objects and bucket ... 471
Delete your IAM resources .. 472
Delete your CloudWatch resources ... 472

Getting started (Scala) .. 473
Create dependent resources .. 473
Write sample records to the input stream ... 474
Download and examine the application code ... 476
Compile and upload the application code ... 477
Create and run the application (console) ... 478

Create the Application ... 478
Configure the application ... 479
Edit the IAM policy ... 481
Run the application .. 482
Stop the application .. 483

Create and run the application (CLI) ... 483
Create a permissions policy .. 483
Create an IAM policy ... 485
Create the application ... 486
Start the application .. 487
Stop the application .. 352
Add a CloudWatch logging option ... 352
Update environment properties .. 352
Update the application code .. 353

Clean Up .. 491
Delete your Managed Service for Apache Flink application .. 491
Delete your Kinesis data streams .. 491
Delete your Amazon S3 object and bucket .. 492
Delete your IAM resources .. 492
Delete your CloudWatch resources ... 492

Using Apache Beam ... 493
Using Apache Beam with Managed Service for Apache Flink .. 493

viii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Beam capabilities ... 493
Creating an application using Apache Beam ... 494

Create dependent resources ... 494
Write sample records to the input stream .. 495
Download and examine the application code .. 496
Compile the application code .. 497
Upload the Apache Flink streaming Java code .. 498
Create and run the Managed Service for Apache Flink application ... 498
Clean Up ... 502
Next steps .. 503

Training workshops, labs, and solution implementations .. 504
Developing Apache Flink applications locally before deploying to Managed Service for
Apache Flink for Apache Flink .. 504
Event detection with Managed Service for Apache Flink Studio ... 504
Amazon Streaming Data Solution .. 505
Clickstream Lab .. 505
Custom Scaling ... 505
CloudWatch Dashboard .. 506
Amazon MSK ... 506
More Managed Service for Apache Flink solutions on GitHub ... 506

Utilities ... 507
Snapshot manager ... 507
Benchmarking ... 507

Examples .. 508
Java examples ... 508
Python examples .. 510

.. 510

.. 511
Scala examples ... 511

Security .. 513
Data protection .. 514

Data Encryption .. 514
Identity and Access Management .. 515

Audience ... 515
Authenticating with identities ... 516
Managing access using policies ... 519

ix

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

How Amazon Managed Service for Apache Flink works with IAM ... 521
Identity-based policy examples ... 528
Troubleshooting .. 531
Cross-service confused deputy prevention ... 533

Monitoring ... 535
Compliance validation .. 535

FedRAMP .. 536
Resilience ... 536

Disaster recovery .. 537
Versioning ... 537

Infrastructure security ... 538
Security best practices .. 538

Implement least privilege access .. 538
Use IAM roles to access other Amazon services .. 538
Implement server-side encryption in dependent resources .. 539
Use CloudTrail to monitor API calls ... 539

Logging and monitoring ... 540
Logging .. 541

Querying Logs with CloudWatch Logs Insights ... 541
Monitoring ... 541
Setting up logging ... 543

Setting up CloudWatch logging using the console ... 543
Setting up CloudWatch logging using the CLI ... 544
Application monitoring levels .. 549
Logging best practices .. 550
Logging troubleshooting .. 550
Next step .. 551

Analyzing logs .. 551
Run a sample query ... 551
Example queries .. 552

Metrics and dimensions in Managed Service for Apache Flink .. 555
Application metrics .. 556
Kinesis Data Streams connector metrics ... 583
Amazon MSK connector metrics ... 584
Apache Zeppelin metrics ... 586
Viewing CloudWatch metrics ... 587

x

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metrics ... 588
Custom metrics ... 589
Alarms ... 593

Writing custom messages .. 605
Write to CloudWatch logs using Log4J ... 605
Write to CloudWatch logs using SLF4J .. 606

Using Amazon CloudTrail ... 607
Managed Service for Apache Flink information in CloudTrail ... 608
Understanding Managed Service for Apache Flink log file entries .. 609

Performance ... 611
Troubleshooting performance ... 611

The data path .. 611
Performance troubleshooting solutions .. 612

Performance best practices ... 614
Manage scaling properly ... 614
Monitor external dependency resource usage ... 616
Run your Apache Flink application locally .. 616

Monitoring performance .. 617
Performance monitoring using CloudWatch metrics .. 617
Performance monitoring using CloudWatch logs and alarms ... 617

Quota .. 618
Maintenance ... 620

Set a UUID for all operators ... 622
Production readiness ... 623

Load testing applications ... 623
Max parallelism .. 623
Set a UUID for all operators ... 624

Best practices ... 625
Fault tolerance: checkpoints and savepoints ... 625
Unsupported connector versions .. 626
Performance and parallelism .. 626
Setting per-operator parallelism .. 627
Logging .. 627
Coding .. 628
Managing credentials .. 628
Reading from sources with few shards/partitions .. 629

xi

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Studio notebook refresh interval ... 629
Studio notebook optimum performance .. 629
How watermark strategies and idle shards affect time windows .. 630

Summary .. 631
Example .. 632

Set a UUID for all operators ... 641
Add ServiceResourceTransformer to the Maven shade plugin ... 641

Apache Flink stateful functions .. 643
Apache Flink application template .. 643
Location of the module configuration .. 644

Flink settings ... 645
Apache Flink configuration .. 645
State backend ... 645
Checkpointing ... 646
Savepointing ... 647
Heap sizes .. 648
Buffer debloating ... 648
Modifiable Flink configuration properties .. 648

Fault tolerance .. 648
Checkpoints and state backends ... 648
Checkpointing .. 649
RocksDB native metrics ... 649
Advanced state backends options ... 650
Full TaskManager options ... 650
Memory configuration ... 651
RPC / Akka ... 651
Client ... 652
Advanced cluster options .. 652
Filesystem configurations ... 652
Advanced fault tolerance options ... 652
Memory configuration ... 651
Metrics ... 652
Advanced options for the REST endpoint and client .. 652
Advanced SSL security options .. 653
Advanced scheduling options .. 653
Advanced options for Flink web UI .. 653

xii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Viewing configured Flink properties .. 653
Using an Amazon VPC ... 654

Amazon VPC concepts .. 654
VPC application permissions ... 655

Permissions policy for accessing an Amazon VPC ... 655
Internet and service access .. 656

Related information ... 658
VPC API .. 658

Create application .. 658
AddApplicationVpcConfiguration .. 659
DeleteApplicationVpcConfiguration .. 659
Update application ... 660

Example: Using a VPC ... 660
Troubleshooting ... 661

Development troubleshooting .. 661
Hudi configuration best practices ... 661
Apache Flink Flame Graphs .. 662
Credential provider issue with EFO connector 1.15.2 ... 662
Applications with unsupported Kinesis connectors ... 662
Compile error: "Could not resolve dependencies for project" ... 665
Invalid choice: "kinesisanalyticsv2" ... 666
UpdateApplication action isn't reloading application code ... 666
S3 StreamingFileSink FileNotFoundExceptions .. 666
FlinkKafkaConsumer issue with stop with savepoint .. 668
Flink 1.15 Async Sink Deadlock ... 668
Amazon Kinesis data streams source processing out of order during re-sharding 678

Runtime troubleshooting ... 678
Troubleshooting tools .. 679
Application issues ... 679
Application is restarting .. 684
Throughput is Too Slow .. 687
Unbounded state growth ... 688
I/O bound operators .. 689
Upstream or source throttling from a Kinesis data stream ... 689
Checkpoints .. 690
Checkpointing Timing Out ... 696

xiii

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Checkpoint Failure (Beam) .. 698
Backpressure .. 700
Data skew ... 701
State skew .. 701
Integrating with resources in different regions .. 702

Document history .. 703
API example code .. 709

AddApplicationCloudWatchLoggingOption .. 710
AddApplicationInput .. 710
AddApplicationInputProcessingConfiguration ... 711
AddApplicationOutput .. 712
AddApplicationReferenceDataSource ... 712
AddApplicationVpcConfiguration .. 713
CreateApplication ... 713
CreateApplicationSnapshot .. 715
DeleteApplication ... 715
DeleteApplicationCloudWatchLoggingOption ... 715
DeleteApplicationInputProcessingConfiguration ... 715
DeleteApplicationOutput .. 716
DeleteApplicationReferenceDataSource .. 716
DeleteApplicationSnapshot .. 716
DeleteApplicationVpcConfiguration ... 717
DescribeApplication ... 717
DescribeApplicationSnapshot .. 717
DiscoverInputSchema .. 717
ListApplications .. 718
ListApplicationSnapshots ... 718
StartApplication ... 719
StopApplication .. 719
UpdateApplication ... 719

API Reference ... 721
.. 722

xiv

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon Managed Service for Apache Flink was previously known as Amazon Kinesis Data Analytics
for Apache Flink.

xv

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

What is Amazon Managed Service for Apache Flink?

With Amazon Managed Service for Apache Flink, you can use Java, Scala, Python, or SQL to process
and analyze streaming data. The service enables you to author and run code against streaming
sources and static sources to perform time-series analytics, feed real-time dashboards, and metrics.

You can build applications with the language of your choice in Managed Service for Apache Flink
using open-source libraries based on Apache Flink. Apache Flink is a popular framework and engine
for processing data streams.

Managed Service for Apache Flink provides the underlying infrastructure for your Apache Flink
applications. It handles core capabilities like provisioning compute resources, AZ failover resilience,
parallel computation, automatic scaling, and application backups (implemented as checkpoints and
snapshots). You can use the high-level Flink programming features (such as operators, functions,
sources, and sinks) in the same way that you use them when hosting the Flink infrastructure
yourself.

Choosing Managed Service for Apache Flink or Managed
Service for Apache Flink Studio

You have two options for running your Flink jobs with Amazon Managed Service for Apache Flink.
With Managed Service for Apache Flink, you build Flink applications in Java, Scala, or Python (and
embedded SQL) using an IDE of your choice and the Apache Flink Datastream or Table APIs. With
Managed Service for Apache Flink Studio, you can interactively query data streams in real time and
easily build and run stream processing applications using standard SQL, Python, and Scala.

You can select which method that best suits your use case. If you are unsure, this section will offer
high level guidance to help you.

Choosing Managed Service for Apache Flink or Managed Service for Apache Flink Studio 1

https://flink.apache.org/
https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html
https://docs.amazonaws.cn/managed-flink/latest/java/how-notebook.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Before deciding on whether to use Amazon Managed Service for Apache Flink or Amazon Managed
Service for Apache Flink Studio you should consider your use case.

If you plan to operate a long running application that will undertake workloads such as Streaming
ETL or Continuous Applications, you should consider using Managed Service for Apache Flink. This
is because you are able to create your Flink application using the Flink APIs directly in the IDE of
your choice. Developing locally with your IDE also ensures you can leverage software development
lifecycle (SDLC) common processes and tooling such as code versioning in Git, CI/CD automation,
or unit testing.

If you are interested in ad-hoc data exploration, want to query streaming data interactively, or
create private real-time dashboards, Managed Service for Apache Flink Studio will help you meet
these goals in just a few clicks. Users familiar with SQL can consider deploying a long-running
application from Studio directly.

Choosing Managed Service for Apache Flink or Managed Service for Apache Flink Studio 2

https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html
https://docs.amazonaws.cn/managed-flink/latest/java/how-notebook.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

You can promote your Studio notebook to a long-running application. However, if you want
to integrate with your SDLC tools such as code versioning on Git and CI/CD automation, or
techniques such as unit-testing, we recommend Managed Service for Apache Flink using
the IDE of your choice.

Choosing which Apache Flink APIs to use in Managed Service
for Apache Flink

You can build applications using Java, Python, and Scala in Managed Service for Apache Flink using
Apache Flink APIs in an IDE of your choice. You can find guidance on how to build applications
using the Flink Datastream and Table API in the documentation. You can select the language you
create your Flink application in and the APIs you use to best meet the needs of your application
and operations. If you are unsure, this section provides high level guidance to help you.

Choosing a Flink API

The Apache Flink APIs have differing levels of abstraction that may effect how you decide to
build your application. They are expressive and flexible and can be used together to build your
application. You do not have to use only one Flink API. You can learn more about the Flink APIs in
the Apache Flink documentation.

Flink offers four levels of API abstraction: Flink SQL, Table API, DataStream API, and Process
Function, which is used in conjunction with the DataStream API. These are all supported in Amazon
Managed Service for Apache Flink. It is advisable to start with a higher level of abstraction where
possible, however some Flink features are only available with the Datastream API where you can
create your application in Java, Python, or Scala. You should consider using the Datastream API if:

• You require fine-grained control over state

• You want to leverage the ability to call an external database or endpoint asynchronously (for
example for inference)

• You want to use custom timers

Choosing which Apache Flink APIs to use in Managed Service for Apache Flink 3

https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/overview/#flinks-apis
https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Choosing a language with the DataStream API:

• SQL can be embedded in any Flink application, regardless the programming language
chosen.

• If you are if planning to use the DataStream API, not all connectors are supported in
Python.

• If you need low-latency/high-throughput you should consider Java/Scala regardless the
API.

• If you plan to use Async IO in the Process Functions API you will need to use Java.

The choice of the API can also impact your ability to evolve the application logic without
having to reset the state. This depends on a specific feature, the ability to set UID on
operators, that is only available in the DataStream API for both Java and Python. For more
information, see Set UUIDs For All Operators in the Apache Flink Documentation.

Choosing a Flink API 4

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/production_ready/#set-uuids-for-all-operators

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Getting started with streaming data applications

You can start by creating a Managed Service for Apache Flink application that continuously reads
and processes streaming data. Then, author your code using your IDE of choice, and test it with live
streaming data. You can also configure destinations where you want Managed Service for Apache
Flink to send the results.

To get started, we recommend that you read the following sections:

• Managed Service for Apache Flink: How it works

• Getting started with Amazon Managed Service for Apache Flink (DataStream API)

Altenatively, you can start by creating a Managed Service for Apache Flink Studio notebook
that allows you to interactively query data streams in real time, and easily build and run stream
processing applications using standard SQL, Python, and Scala. With a few clicks in the Amazon
Web Services Management Console, you can launch a serverless notebook to query data streams
and get results in seconds. To get started, we recommend that you read the following sections:

• Using a Studio notebook with Managed Service for Apache Flink

• Creating a Studio notebook

Getting started with streaming data applications 5

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink: How it works

Managed Service for Apache Flink is a fully managed Amazon service that enables you to use an
Apache Flink application to process streaming data.

Programming your Apache Flink application

An Apache Flink application is a Java or Scala application that is created with the Apache Flink
framework. You author and build your Apache Flink application locally.

Applications primarily use either the DataStream API or the Table API. The other Apache Flink
APIs are also available for you to use, but they are less commonly used in building streaming
applications.

The features of the two APIs are as follows:

DataStream API

The Apache Flink DataStream API programming model is based on two components:

• Data stream: The structured representation of a continuous flow of data records.

• Transformation operator: Takes one or more data streams as input, and produces one or more
data streams as output.

Applications created with the DataStream API do the following:

• Read data from a Data Source (such as a Kinesis stream or Amazon MSK topic).

• Apply transformations to the data, such as filtering, aggregation, or enrichment.

• Write the transformed data to a Data Sink.

Applications that use the DataStream API can be written in Java or Scala, and can read from a
Kinesis data stream, a Amazon MSK topic, or a custom source.

Your application processes data by using a connector. Apache Flink uses the following types of
connectors:

• Source: A connector used to read external data.

Programming your Apache Flink application 6

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/datastream_api.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Sink: A connector used to write to external locations.

• Operator: A connector used to process data within the application.

A typical application consists of at least one data stream with a source, a data stream with one or
more operators, and at least one data sink.

For more information about using the DataStream API, see DataStream API.

Table API

The Apache Flink Table API programming model is based on the following components:

• Table Environment: An interface to underlying data that you use to create and host one or more
tables.

• Table: An object providing access to a SQL table or view.

• Table Source: Used to read data from an external source, such as an Amazon MSK topic.

• Table Function: A SQL query or API call used to transform data.

• Table Sink: Used to write data to an external location, such as an Amazon S3 bucket.

Applications created with the Table API do the following:

• Create a TableEnvironment by connecting to a Table Source.

• Create a table in the TableEnvironment using either SQL queries or Table API functions.

• Run a query on the table using either Table API or SQL

• Apply transformations on the results of the query using Table Functions or SQL queries.

• Write the query or function results to a Table Sink.

Applications that use the Table API can be written in Java or Scala, and can query data using either
API calls or SQL queries.

For more information about using the Table API, see Table API.

Creating your Managed Service for Apache Flink application

Managed Service for Apache Flink is an Amazon service that creates an environment for hosting
your Apache Flink application and provides it with the following settings::

Table API 7

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Runtime properties: Parameters that you can provide to your application. You can change these
parameters without recompiling your application code.

• Fault tolerance: How your application recovers from interrupts and restarts.

• Logging and monitoring: How your application logs events to CloudWatch Logs.

• Scaling: How your application provisions computing resources.

You create your Managed Service for Apache Flink application using either the console or the
Amazon CLI. To get started creating a Managed Service for Apache Flink application, see Getting
started (DataStream API).

Creating a Managed Service for Apache Flink application

This topic contains information about creating a Managed Service for Apache Flink.

This topic contains the following sections:

• Building your Managed Service for Apache Flink application code

• Creating your Managed Service for Apache Flink application

• Starting your Managed Service for Apache Flink application

• Verifying your Managed Service for Apache Flink application

Building your Managed Service for Apache Flink application code

This section describes the components you use to build the application code for your Managed
Service for Apache Flink application.

We recommend that you use the latest supported version of Apache Flink for your application
code. The latest version of Apache Flink that Managed Service for Apache Flink supports is 1.18.1.
For information about upgrading Managed Service for Apache Flink applications, see Upgrading
applications.

You build your application code using Apache Maven. An Apache Maven project uses a pom.xml file
to specify the versions of components that it uses.

Creating applications 8

https://maven.apache.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Managed Service for Apache Flink supports JAR files up to 512 MB in size. If you use a JAR
file larger than this, your application will fail to start.

Use the following component versions for Managed Service for Apache Flink applications:

Component Version

Java 11 (recommended)

Scala Beginning with version 1.15, Flink is Scala-
agnostic. You can use the version you prefer.
Scala 3.3 (LTS) works with Managed Service
for Apache Flink 1.18 runtime.

Managed Service for Apache Flink Runtime
(aws-kinesisanalytics-runtime)

1.2.0

Amazon Kinesis Connector (flink-connector-k
inesis)

4.2-1.18

Amazon Kinesis Connector (flink-connector-k
inesis-streams) [Sink]

4.2-1.18

Apache Beam (Beam applications only) As of March 1, 2024, there is no compatible
Apache Flink Runner for Flink 1.18. See Flink
Version Compatibility.

Applications can now use the Java API from any Scala version. You must bundle the Scala standard
library of your choice into your Scala applications.

For an example of a pom.xml file for a Managed Service for Apache Flink application that uses
Apache Flink version 1.18.1, see the Managed Service for Apache Flink Getting Started Application.

For information about creating a Managed Service for Apache Flink application that uses Apache
Beam, see Using Apache Beam.

Building your Managed Service for Apache Flink application code 9

https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-aws-kinesis-streams/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-aws-kinesis-streams/4.2.0-1.18
https://aws.amazon.com/developer/language/python/
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/main/java/GettingStarted/pom.xml

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Specifying your application's Apache Flink version

When using Managed Service for Apache Flink Runtime version 1.1.0 and later, you specify the
version of Apache Flink that your application uses when you compile your application. You provide
the version of Apache Flink with the -Dflink.version parameter as follows:

mvn package -Dflink.version=1.18.1

For building applications with older versions of Apache Flink, see Earlier versions.

Creating your Managed Service for Apache Flink application

Once you have built your application code, you do the following to create your Managed Service
for Apache Flink application:

• Upload your Application code: Upload your application code to an Amazon S3 bucket. You
specify the S3 bucket name and object name of your application code when you create your
application. For a tutorial that shows how to upload your application code, see the section called
“Upload the Apache Flink streaming Java code” in the Getting started (DataStream API) tutorial.

• Create your Managed Service for Apache Flink application: Use one of the following methods
to create your Managed Service for Apache Flink application:

• Create your Managed Service for Apache Flink application using the Amazon console: You
can create and configure your application using the Amazon console.

When you create your application using the console, your application's dependent resources
(such as CloudWatch Logs streams, IAM roles, and IAM policies) are created for you.

When you create your application using the console, you specify what version of Apache Flink
your application uses by selecting it from the pull-down on the Managed Service for Apache
Flink - Create application page.

For a tutorial about how to use the console to create an application, see the section called
“Create and run the application (Console)” in the Getting started (DataStream API) tutorial.

• Create your Managed Service for Apache Flink application using the Amazon CLI: You can
create and configure your application using the Amazon CLI.

When you create your application using the CLI, you must also create your application's
dependent resources (such as CloudWatch Logs streams, IAM roles, and IAM policies) manually.

Creating your Managed Service for Apache Flink application 10

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

When you create your application using the CLI, you specify what version of Apache Flink your
application uses by using the RuntimeEnvironment parameter of the CreateApplication
action.

For a tutorial about how to use the CLI to create an application, see the section called “Create
and Run an Application Using the CLI” in the Getting started (DataStream API) tutorial.

Note

You can change the RuntimeEnvironment of an existing application. To learn how, see
In-place version upgrades for Apache Flink.

Starting your Managed Service for Apache Flink application

After you have built your application code, uploaded it to S3, and created your Managed Service for
Apache Flink application, you then start your application. Starting a Managed Service for Apache
Flink application typically takes several minutes.

Use one of the following methods to start your application:

• Start your Managed Service for Apache Flink application using the Amazon console: You can
run your application by choosing Run on your application's page in the Amazon console.

• Start your Managed Service for Apache Flink application using the Amazon API: You can run
your application using the StartApplication action.

Verifying your Managed Service for Apache Flink application

You can verify that your application is working in the following ways:

• Using CloudWatch Logs: You can use CloudWatch Logs and CloudWatch Logs Insights to verify
that your application is running properly. For information about using CloudWatch Logs with
your Managed Service for Apache Flink application, see Logging and monitoring.

• Using CloudWatch Metrics: You can use CloudWatch Metrics to monitor your application's
activity, or activity in the resources your application uses for input or output (such as Kinesis
streams, Firehose streams, or Amazon S3 buckets.) For more information about CloudWatch
metrics, see Working with Metrics in the Amazon CloudWatch User Guide.

Starting your Managed Service for Apache Flink application 11

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Monitoring Output Locations: If your application writes output to a location (such as an Amazon
S3 bucket or database), you can monitor that location for written data.

Running a Managed Service for Apache Flink application

This topic contains information about running a Managed Service for Apache Flink.

When you run your Managed Service for Apache Flink application, the service creates an Apache
Flink job. An Apache Flink job is the execution lifecycle of your Managed Service for Apache Flink
application. The execution of the job, and the resources it uses, are managed by the Job Manager.
The Job Manager separates the execution of the application into tasks. Each task is managed
by a Task Manager. When you monitor your application's performance, you can examine the
performance of each Task Manager, or of the Job Manager as a whole.

For information about Apache Flink jobs, see Jobs and Scheduling in the Apache Flink
Documentation.

Application and job status

Both your application and the application's job have a current execution status:

• Application status: Your application has a current status that describes its phase of execution.
Application statuses include the following:

• Steady application statuses: Your application typically stays in these statuses until you make a
status change:

• READY: A new or stopped application is in the READY status until you run it.

• RUNNING: An application that has successfully started is in the RUNNING status.

• Transient application statuses: An application in these statuses is typically in the process of
transitioning to another status. If an application stays in a transient status for a length of time,
you can stop the application using the StopApplication action with the Force parameter set to
true. These statuses include the following:

• STARTING: Occurs after the StartApplication action. The application is transitioning from
the READY to the RUNNING status.

• STOPPING: Occurs after the StopApplication action. The application is transitioning from
the RUNNING to the READY status.

Running applications 12

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/job_scheduling/
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• DELETING: Occurs after the DeleteApplication action. The application is in the process of
being deleted.

• UPDATING: Occurs after the UpdateApplication action. The application is updating, and will
transition back to the RUNNING or READY status.

• AUTOSCALING: The application has the AutoScalingEnabled property of the
ParallelismConfiguration set to true, and the service is increasing the parallelism of the
application. When the application is in this status, the only valid API action you can use is
the StopApplication action with the Force parameter set to true. For information about
automatic scaling, see Automatic scaling.

• FORCE_STOPPING: Occurs after the StopApplication action is called with the Force
parameter set to true. The application is in the process of being force stopped. The
application transitions from the STARTING, UPDATING, STOPPING, or AUTOSCALING status
to the READY status.

• ROLLING_BACK: Occurs after the RollbackApplication action is called. The application is in
the process of being rolled back to a previous version. The application transitions from the
UPDATING or AUTOSCALING status to the RUNNING status.

• MAINTENANCE: Occurs while Managed Service for Apache Flink applies patches to your
application. For more information, see Maintenance.

You can check your application's status using the console, or by using the DescribeApplication
action.

• Job status: When your application is in the RUNNING status, your job has a status that describes
its current execution phase. A job starts in the CREATED status, and then proceeds to the
RUNNING status when it has started. If error conditions occur, your application enters the
following status:

• For applications using Apache Flink 1.11 and later, your application enters the RESTARTING
status.

• For applications using Apache Flink 1.8 and prior, your application enters the FAILING status.

The application then proceeds to either the RESTARTING or FAILED status, depending on
whether the job can be restarted.

You can check the job's status by examining your application's CloudWatch log for status
changes.

Application and job status 13

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DeleteApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ParallelismConfiguration.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ParallelismConfiguration.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_RollbackApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DescribeApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Batch workloads

Managed Service for Apache Flink supports running Apache Flink batch workloads. In a batch
job, when an Apache Flink job gets to the FINISHED status, Managed Service for Apache Flink
application status is set to READY. For more information about Flink job statuses, see Jobs and
Scheduling.

Application resources

This section describes the system resources that your application uses. Understanding how
Managed Service for Apache Flink provisions and uses resources will help you design, create, and
maintain a performant and stable Managed Service for Apache Flink application.

Managed Service for Apache Flink application resources

Managed Service for Apache Flink is an Amazon service that creates an environment for hosting
your Apache Flink application. The Managed Service for Apache Flink service provides resources
using units called Kinesis Processing Units (KPUs).

One KPU represents the following system resources:

• One CPU core

• 4 GB of memory, of which one GB is native memory and three GB are heap memory

• 50 GB of disk space

KPUs run applications in distinct execution units called tasks and subtasks. You can think of a
subtask as the equivalent of a thread.

The number of KPUs available to an application is equal to the application's Parallelism setting,
divided by the application's ParallelismPerKPU setting.

For more information about application parallelism, see Scaling.

Apache Flink application resources

The Apache Flink environment allocates resources for your application using units called task slots.
When Managed Service for Apache Flink allocates resources for your application, it assigns one or
more Apache Flink task slots to a single KPU. The number of slots assigned to a single KPU is equal

Batch workloads 14

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/job_scheduling/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/job_scheduling/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

to your application's ParallelismPerKPU setting. For more information about task slots, see Job
Scheduling in the Apache Flink Documentation.

Operator parallelism

You can set the maximum number of subtasks that an operator can use. This value is called
Operator Parallelism. By default, the parallelism of each operator in your application is equal to
the application's parallelism. This means that by default, each operator in your application can use
all of the available subtasks in the application if needed.

You can set the parallelism of the operators in your application using the setParallelism
method. Using this method, you can control the number of subtasks each operator can use at one
time.

For more information about operators, see Operators in the Apache Flink Documentation.

Operator chaining

Normally, each operator uses a separate subtask to execute, but if several operators always execute
in sequence, the runtime can assign them all to the same task. This process is called Operator
Chaining.

Several sequential operators can be chained into a single task if they all operate on the same data.
The following are some of the criteria needed for this to be true:

• The operators do 1-to-1 simple forwarding.

• The operators all have the same operator parallelism.

When your application chains operators into a single subtask, it conserves system resources,
because the service doesn't need to perform network operations and allocate subtasks for each
operator. To determine if your application is using operator chaining, look at the job graph in the
Managed Service for Apache Flink console. Each vertex in the application represents one or more
operators. The graph shows operators that have been chained as a single vertex.

DataStream API

Your Apache Flink application uses the Apache Flink DataStream API to transform data in a data
stream.

This section contains the following topics:

DataStream API 15

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/job_scheduling/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/internals/job_scheduling/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/operators/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/datastream_api.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Using connectors to move data in Managed Service for Apache Flink with the DataStream
API: These components move data between your application and external data sources and
destinations.

• Transforming data using operators in Managed Service for Apache Flink with the DataStream
API: These components transform or group data elements within your application.

• Tracking events in Managed Service for Apache Flink using the DataStream API: This topic
describes how Managed Service for Apache Flink tracks events when using the DataStream API.

Using connectors to move data in Managed Service for Apache Flink
with the DataStream API

In the Amazon Managed Service for Apache Flink DataStream API, connectors are software
components that move data into and out of a Managed Service for Apache Flink application.
Connectors are flexible integrations that enable you to read from files and directories. Connectors
consist of complete modules for interacting with Amazon services and third-party systems.

Types of connectors include the following:

• Sources: Provide data to your application from a Kinesis data stream, file, or other data source.

• Sinks: Send data from your application to a Kinesis data stream, Firehose stream, or other data
destination.

• Asynchronous I/O: Provides asynchronous access to a data source (such as a database) to enrich
stream events.

Available connectors

The Apache Flink framework contains connectors for accessing data from a variety of sources.
For information about connectors available in the Apache Flink framework, see Connectors in the
Apache Flink documentation.

Warning

If you have applications running on Flink 1.6, 1.8, 1.11 or 1.13 and would like to run in
Middle East (UAE), Asia Pacific (Hyderabad), Israel (Tel Aviv), Europe (Zurich), Middle East
(UAE), Asia Pacific (Melbourne) or Asia Pacific (Jakarta) Regions you may need to rebuild
your application archive with an updated connector or upgrade to Flink 1.18.

DataStream API connectors 16

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/connectors/
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink connectors are stored in their own open source repositories. If you're
upgrading to version 1.18 or later, you must to update your dependencies. To access the
respository for Apache Flink Amazon connectors, see flink-connector-aws.
Following are recommended guidelines:

Connector upgrades

Flink
version

Connector used Resolutio
n

1.15EFO When
upgrading
to Amazon
Managed
Service for
Apache
Flink
version
1.15, make
sure that
you are
using
the most
recent EFO
connector.
That must
be any
version
1.15.3
or later.
For more
informati
on, see:

FLINK-293
24.

DataStream API connectors 17

https://github.com/apache/flink-connector-aws
https://issues.apache.org/jira/browse/FLINK-29324
https://issues.apache.org/jira/browse/FLINK-29324

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink
version

Connector used Resolutio
n

1.15Amazon Data Firehose Sink When
upgrading
to Amazon
Managed
Service for
Apache
Flink
version
1.15, make
sure that
you are
using
the most
recent
Amazon
Data
Firehose
Sink.

Amazon
Data
Firehose
Sink

DataStream API connectors 18

https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink
version

Connector used Resolutio
n

1.15Kafka connectors When
upgrading
to Amazon
Managed
Service for
Apache
Flink
version
1.15, make
sure that
you are
using
the most
recent
Kafka
connector
APIs.
Apache
Flink has
deprecate
d
FlinkKafk
aConsumer
 and
FlinkKafk
aProducer.
These APIs
for the
Kafka sink
cannot
commit to
Kafka for
Flink 1.15.

DataStream API connectors 19

https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-consumer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-consumer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-consumer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-producer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-producer

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink
version

Connector used Resolutio
n

Make sure
that you
are using
KafkaSour
ce and
KafkaSink.

1.6
-
1.13

Firehose Your
applicati
on
depends
on an
outdated
version of
Firehose
connector
that is
not aware
of newer
Amazon
Regions.
Rebuild
your
applicati
on archive
with
Firehose
connector
version
2.1.0.

v2.1.0

DataStream API connectors 20

https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-source
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-source
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-sink
https://github.com/aws/aws-kinesisanalytics-flink-connectors/releases/tag/2.1.0

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink
version

Connector used Resolutio
n

1.8Kinesis Your
applicati
on
depends
on an
outdated
version
of Flink
Kinesis
connector
that is
not aware
of newer
Amazon
Regions.
Rebuild
your
applicati
on archive
with Flink
Kinesis
connector
 version
1.6.1.

https://
github.co
m/awslab
s/amazon
-kinesis-
connector-
flink/tree/
1.6.1

DataStream API connectors 21

https://github.com/awslabs/amazon-kinesis-connector-flink/tree/1.6.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/1.6.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/1.6.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/1.6.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/1.6.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/1.6.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/1.6.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/1.6.1

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink
version

Connector used Resolutio
n

1.11Kinesis Your
applicati
on
depends
on an
outdated
version
of Flink
Kinesis
connector
that is
not aware
of newer
Amazon
Regions.
Rebuild
your
applicati
on archive
with Flink
Kinesis
connector
 version
2.4.1.

https://
github.co
m/awslab
s/amazon
-kinesis-
connector-
flink/tree/
2.4.1

DataStream API connectors 22

https://github.com/awslabs/amazon-kinesis-connector-flink/tree/2.4.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/2.4.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/2.4.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/2.4.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/2.4.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/2.4.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/2.4.1
https://github.com/awslabs/amazon-kinesis-connector-flink/tree/2.4.1

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink
version

Connector used Resolutio
n

1.6
and
1.13

Kinesis Your
applicati
on
depends
on an
outdated
version
of Flink
Kinesis
connector
that is
not aware
of newer
Amazon
Regions.
Unfortuna
tely, Flink
no longer
releases
patches
or bug
fixes for
1.6/1.13
connector
s. We
suggest
updating
to Flink
1.15 by
rebuildin
g your
applicati
on archive

DataStream API connectors 23

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink
version

Connector used Resolutio
n

with Flink
1.15.

Adding streaming data sources to Managed Service for Apache Flink

Apache Flink provides connectors for reading from files, sockets, collections, and custom sources.
In your application code, you use an Apache Flink source to receive data from a stream. This section
describes the sources that are available for Amazon services

Kinesis data streams

The FlinkKinesisConsumer source provides streaming data to your application from an Amazon
Kinesis data stream.

Creating a FlinkKinesisConsumer

The following code example demonstrates creating a FlinkKinesisConsumer:

Properties inputProperties = new Properties();
inputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);
inputProperties.setProperty(ConsumerConfigConstants.STREAM_INITIAL_POSITION, "LATEST");

DataStream<string> input = env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

For more information about using a FlinkKinesisConsumer, see Download and examine the
Apache Flink streaming Java code.

Creating a FlinkKinesisConsumer that uses an EFO consumer

The FlinkKinesisConsumer now supports Enhanced Fan-Out (EFO).

If a Kinesis consumer uses EFO, the Kinesis Data Streams service gives it its own dedicated
bandwidth, rather than having the consumer share the fixed bandwidth of the stream with the
other consumers reading from the stream.

DataStream API connectors 24

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/datastream_api.html#data-sources
https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/connectors/datastream/kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information about using EFO with the Kinesis consumer, see FLIP-128: Enhanced Fan Out
for Amazon Kinesis Consumers.

You enable the EFO consumer by setting the following parameters on the Kinesis consumer:

• RECORD_PUBLISHER_TYPE: Set this parameter to EFO for your application to use an EFO
consumer to access the Kinesis Data Stream data.

• EFO_CONSUMER_NAME: Set this parameter to a string value that is unique among the
consumers of this stream. Re-using a consumer name in the same Kinesis Data Stream will cause
the previous consumer using that name to be terminated.

To configure a FlinkKinesisConsumer to use EFO, add the following parameters to the
consumer:

consumerConfig.putIfAbsent(RECORD_PUBLISHER_TYPE, "EFO");
consumerConfig.putIfAbsent(EFO_CONSUMER_NAME, "basic-efo-flink-app");

For an example of a Managed Service for Apache Flink application that uses an EFO consumer, see
EFO Consumer.

Amazon MSK

The KafkaSource source provides streaming data to your application from an Amazon MSK topic.

Creating a KafkaSource

The following code example demonstrates creating a KafkaSource:

KafkaSource<String> source = KafkaSource.<String>builder()
 .setBootstrapServers(brokers)
 .setTopics("input-topic")
 .setGroupId("my-group")
 .setStartingOffsets(OffsetsInitializer.earliest())
 .setValueOnlyDeserializer(new SimpleStringSchema())
 .build();

env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");

For more information about using a KafkaSource, see MSK Replication.

DataStream API connectors 25

https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers
https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Writing data using sinks in Managed Service for Apache Flink

In your application code, you use an Apache Flink sink to write data from an Apache Flink stream to
an Amazon service, such as Kinesis Data Streams.

Apache Flink provides sinks for files, sockets, and custom sinks. The following sinks are available
for Amazon:

Kinesis data streams

Apache Flink provides information about the Kinesis Data Streams Connector in the Apache Flink
documentation.

For an example of an application that uses a Kinesis data stream for input and output, see Getting
started (DataStream API).

Amazon S3

You can use the Apache Flink StreamingFileSink to write objects to an Amazon S3 bucket.

For an example about how to write objects to S3, see the section called “S3 Sink”.

Firehose

The FlinkKinesisFirehoseProducer is a reliable, scalable Apache Flink sink for storing
application output using the Firehose service. This section describes how to set up a Maven project
to create and use a FlinkKinesisFirehoseProducer.

Topics

• Creating a FlinkKinesisFirehoseProducer

• FlinkKinesisFirehoseProducer Code Example

Creating a FlinkKinesisFirehoseProducer

The following code example demonstrates creating a FlinkKinesisFirehoseProducer:

Properties outputProperties = new Properties();
outputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);

DataStream API connectors 26

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/overview/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/datastream/kinesis/
https://docs.amazonaws.cn/firehose/latest/dev/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

FlinkKinesisFirehoseProducer<String> sink = new
 FlinkKinesisFirehoseProducer<>(outputStreamName, new SimpleStringSchema(),
 outputProperties);

FlinkKinesisFirehoseProducer Code Example

The following code example demonstrates how to create and configure a
FlinkKinesisFirehoseProducer and send data from an Apache Flink data stream to the
Firehose service.

package com.amazonaws.services.kinesisanalytics;

import
 com.amazonaws.services.kinesisanalytics.flink.connectors.config.ProducerConfigConstants;
import
 com.amazonaws.services.kinesisanalytics.flink.connectors.producer.FlinkKinesisFirehoseProducer;
import com.amazonaws.services.kinesisanalytics.runtime.KinesisAnalyticsRuntime;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisProducer;

import org.apache.flink.streaming.connectors.kinesis.config.ConsumerConfigConstants;

import java.io.IOException;
import java.util.Map;
import java.util.Properties;

public class StreamingJob {

 private static final String region = "us-east-1";
 private static final String inputStreamName = "ExampleInputStream";
 private static final String outputStreamName = "ExampleOutputStream";

 private static DataStream<String>
 createSourceFromStaticConfig(StreamExecutionEnvironment env) {
 Properties inputProperties = new Properties();
 inputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);
 inputProperties.setProperty(ConsumerConfigConstants.STREAM_INITIAL_POSITION,
 "LATEST");

DataStream API connectors 27

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 return env.addSource(new FlinkKinesisConsumer<>(inputStreamName, new
 SimpleStringSchema(), inputProperties));
 }

 private static DataStream<String>
 createSourceFromApplicationProperties(StreamExecutionEnvironment env)
 throws IOException {
 Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();
 return env.addSource(new FlinkKinesisConsumer<>(inputStreamName, new
 SimpleStringSchema(),
 applicationProperties.get("ConsumerConfigProperties")));
 }

 private static FlinkKinesisFirehoseProducer<String>
 createFirehoseSinkFromStaticConfig() {
 /*
 * com.amazonaws.services.kinesisanalytics.flink.connectors.config.
 * ProducerConfigConstants
 * lists of all of the properties that firehose sink can be configured with.
 */

 Properties outputProperties = new Properties();
 outputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);

 FlinkKinesisFirehoseProducer<String> sink = new
 FlinkKinesisFirehoseProducer<>(outputStreamName,
 new SimpleStringSchema(), outputProperties);
 ProducerConfigConstants config = new ProducerConfigConstants();
 return sink;
 }

 private static FlinkKinesisFirehoseProducer<String>
 createFirehoseSinkFromApplicationProperties() throws IOException {
 /*
 * com.amazonaws.services.kinesisanalytics.flink.connectors.config.
 * ProducerConfigConstants
 * lists of all of the properties that firehose sink can be configured with.
 */

 Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();
 FlinkKinesisFirehoseProducer<String> sink = new
 FlinkKinesisFirehoseProducer<>(outputStreamName,

DataStream API connectors 28

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 new SimpleStringSchema(),
 applicationProperties.get("ProducerConfigProperties"));
 return sink;
 }

 public static void main(String[] args) throws Exception {
 // set up the streaming execution environment
 final StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();

 /*
 * if you would like to use runtime configuration properties, uncomment the
 * lines below
 * DataStream<String> input = createSourceFromApplicationProperties(env);
 */

 DataStream<String> input = createSourceFromStaticConfig(env);

 // Kinesis Firehose sink
 input.addSink(createFirehoseSinkFromStaticConfig());

 // If you would like to use runtime configuration properties, uncomment the
 // lines below
 // input.addSink(createFirehoseSinkFromApplicationProperties());

 env.execute("Flink Streaming Java API Skeleton");
 }
}

For a complete tutorial about how to use the Firehose sink, see the section called “Firehose sink”.

Using Asynchronous I/O in Managed Service for Apache Flink

An Asynchronous I/O operator enriches stream data using an external data source such as a
database. Managed Service for Apache Flink enriches the stream events asynchronously so that
requests can be batched for greater efficiency.

For more information, see Asynchronous I/O in the Apache Flink Documentation.

DataStream API connectors 29

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/operators/asyncio/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Transforming data using operators in Managed Service for Apache Flink
with the DataStream API

To transform incoming data in a Managed Service for Apache Flink, you use an Apache Flink
operator. An Apache Flink operator transforms one or more data streams into a new data stream.
The new data stream contains modified data from the original data stream. Apache Flink provides
more than 25 pre-built stream processing operators. For more information, see Operators in the
Apache Flink Documentation.

This topic contains the following sections:

• Transform operators

• Aggregation operators

Transform operators

The following is an example of a simple text transformation on one of the fields of a JSON data
stream.

This code creates a transformed data stream. The new data stream has the same data as the
original stream, with the string " Company" appended to the contents of the TICKER field.

DataStream<ObjectNode> output = input.map(
 new MapFunction<ObjectNode, ObjectNode>() {
 @Override
 public ObjectNode map(ObjectNode value) throws Exception {
 return value.put("TICKER", value.get("TICKER").asText() + " Company");
 }
 }
);

Aggregation operators

The following is an example of an aggregation operator. The code creates an aggregated data
stream. The operator creates a 5-second tumbling window and returns the sum of the PRICE
values for the records in the window with the same TICKER value.

DataStream<ObjectNode> output = input.keyBy(node -> node.get("TICKER").asText())
 .window(TumblingProcessingTimeWindows.of(Time.seconds(5)))
 .reduce((node1, node2) -> {

DataStream API operators 30

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/operators/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 double priceTotal = node1.get("PRICE").asDouble() +
 node2.get("PRICE").asDouble();
 node1.replace("PRICE", JsonNodeFactory.instance.numberNode(priceTotal));
 return node1;
});

For more code examples, see Examples.

Tracking events in Managed Service for Apache Flink using the
DataStream API

Managed Service for Apache Flink tracks events using the following timestamps:

• Processing Time: Refers to the system time of the machine that is executing the respective
operation.

• Event Time: Refers to the time that each individual event occurred on its producing device.

• Ingestion Time: Refers to the time that events enter the Managed Service for Apache Flink
service.

You set the time used by the streaming environment using setStreamTimeCharacteristic.

env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

For more information about timestamps, see Generating Watermarks in the Apache Flink
documentation.

Table API

Your Apache Flink application uses the Apache Flink Table API to interact with data in a stream
using a relational model. You use the Table API to access data using Table sources, and then use
Table functions to transform and filter table data. You can transform and filter tabular data using
either API functions or SQL commands.

This section contains the following topics:

• Table API connectors: These components move data between your application and external data
sources and destinations.

DataStream API timestamps 31

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/event-time/generating_watermarks/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/table/tableapi/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Table API time attributes: This topic describes how Managed Service for Apache Flink tracks
events when using the Table API.

Table API connectors

In the Apache Flink programming model, connectors are components that your application uses to
read or write data from external sources, such as other Amazon services.

With the Apache Flink Table API, you can use the following types of connectors:

• Table API sources: You use Table API source connectors to create tables within your
TableEnvironment using either API calls or SQL queries.

• Table API sinks: You use SQL commands to write table data to external sources such as an
Amazon MSK topic or an Amazon S3 bucket.

Table API sources

You create a table source from a data stream. The following code creates a table from an Amazon
MSK topic:

//create the table
 final FlinkKafkaConsumer<StockRecord> consumer = new
 FlinkKafkaConsumer<StockRecord>(kafkaTopic, new KafkaEventDeserializationSchema(),
 kafkaProperties);
 consumer.setStartFromEarliest();
 //Obtain stream
 DataStream<StockRecord> events = env.addSource(consumer);

 Table table = streamTableEnvironment.fromDataStream(events);

For more information about table sources, see Table & SQL Connectors in the Apache Flink
Documentation.

Table API sinks

To write table data to a sink, you create the sink in SQL, and then run the SQL-based sink on the
StreamTableEnvironment object.

The following code example demonstrates how to write table data to an Amazon S3 sink:

Table API connectors 32

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

final String s3Sink = "CREATE TABLE sink_table (" +
 "event_time TIMESTAMP," +
 "ticker STRING," +
 "price DOUBLE," +
 "dt STRING," +
 "hr STRING" +
 ")" +
 " PARTITIONED BY (ticker,dt,hr)" +
 " WITH" +
 "(" +
 " 'connector' = 'filesystem'," +
 " 'path' = '" + s3Path + "'," +
 " 'format' = 'json'" +
 ") ";

 //send to s3
 streamTableEnvironment.executeSql(s3Sink);
 filteredTable.executeInsert("sink_table");

You can use the format parameter to control what format Managed Service for Apache Flink uses
to write the output to the sink. For information about formats, see Formats in the Apache Flink
documentation.

For more information about table sinks, see Table & Connectors in the Apache Flink
Documentation.

User-defined sources and sinks

You can use existing Apache Kafka connectors for sending data to and from other Amazon services,
such as Amazon MSK and Amazon S3. For interacting with other data sources and destinations, you
can define your own sources and sinks. For more information, see User-defined Sources and Sinks
in the Apache Flink Documentation.

Table API time attributes

Each record in a data stream has several timestamps that define when events related to the record
occurred:

• Event Time: A user-defined timestamp that defines when the event that created the record
occurred.

• Ingestion Time: The time when your application retrieved the record from the data stream.

Table API time attributes 33

https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/table/overview/
https://ci.apache.org/projects/flink/flink-docs-stable/
https://ci.apache.org/projects/flink/flink-docs-stable/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/connectors/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/table/sourcessinks/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Processing Time: The time when your application processed the record.

When the Apache Flink Table API creates windows based on record times, you define which of
these timestamps it uses by using the setStreamTimeCharacteristic method.

For more information about using timestamps with the Table API, see Time Attributes and Timely
Stream Processing in the Apache Flink Documentation.

Using Python with Managed Service for Apache Flink

Note

If you are developing Python Flink application on a new Mac with Apple Silicon chip, you
may encounter some known issues with Python dependencies of PyFlink 1.15. In this case
we recommend running the Python interpreter in Docker. For step-by-step instructions, see
PyFlink 1.15 development on Apple Silicon Mac.

Apache Flink version 1.18.1 includes support for creating applications using Python version 3.8,
using the Flink Python Docs. You create a Managed Service for Apache Flink application using
Python by doing the following:

• Create your Python application code as a text file with a main method.

• Bundle your application code file and any Python or Java dependencies into a zip file, and upload
it to an Amazon S3 bucket.

• Create your Managed Service for Apache Flink application, specifying your Amazon S3 code
location, application properties, and application settings.

At a high level, the Python Table API is a wrapper around the Java Table API. For information about
the Python Table API, see the Table API Tutorial in the Apache Flink Documentation.

Programming your Managed Service for Apache Flink for Python
application

You code your Managed Service for Apache Flink for Python application using the Apache Flink
Python Table API. The Apache Flink engine translates Python Table API statements (running in the
Python VM) into Java Table API statements (running in the Java VM).

Using Python 34

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/table/concepts/time_attributes/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/table/concepts/time_attributes/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/table/concepts/time_attributes/
https://issues.apache.org/jira/browse/FLINK-26981
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/LocalDevelopmentOnAppleSilicon
https://nightlies.apache.org/flink/flink-docs-release-1.18/api/python/
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/python/table_api_tutorial/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You use the Python Table API by doing the following:

• Create a reference to the StreamTableEnvironment.

• Create table objects from your source streaming data by executing queries on the
StreamTableEnvironment reference.

• Execute queries on your table objects to create output tables.

• Write your output tables to your destinations using a StatementSet.

To get started using the Python Table API in Managed Service for Apache Flink, see Getting started
with Amazon Managed Service for Apache Flink for Python.

Reading and writing streaming data

To read and write streaming data, you execute SQL queries on the table environment.

Creating a table

The following code example demonstrates a user-defined function that creates a SQL query. The
SQL query creates a table that interacts with a Kinesis stream:

def create_table(table_name, stream_name, region, stream_initpos):
 return """ CREATE TABLE {0} (
 `record_id` VARCHAR(64) NOT NULL,
 `event_time` BIGINT NOT NULL,
 `record_number` BIGINT NOT NULL,
 `num_retries` BIGINT NOT NULL,
 `verified` BOOLEAN NOT NULL
)
 PARTITIONED BY (record_id)
 WITH (
 'connector' = 'kinesis',
 'stream' = '{1}',
 'aws.region' = '{2}',
 'scan.stream.initpos' = '{3}',
 'sink.partitioner-field-delimiter' = ';',
 'sink.producer.collection-max-count' = '100',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
) """.format(table_name, stream_name, region, stream_initpos)

Programming an application 35

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Reading streaming data

The following code example demonstrates how to use preceding CreateTableSQL query on a
table environment reference to read data:

 table_env.execute_sql(create_table(input_table, input_stream, input_region,
 stream_initpos))

Writing streaming data

The following code example demonstrates how to use the SQL query from the CreateTable
example to create an output table reference, and how to use a StatementSet to interact with the
tables to write data to a destination Kinesis stream:

 table_result = table_env.execute_sql("INSERT INTO {0} SELECT * FROM {1}"
 .format(output_table_name, input_table_name))

Reading runtime properties

You can use runtime properties to configure your application without changing your application
code.

You specify application properties for your application the same way as with a Managed Service for
Apache Flink for Java application. You can specify runtime properties in the following ways:

• Using the CreateApplication action.

• Using the UpdateApplication action.

• Configuring your application by using the console.

You retrieve application properties in code by reading a json file called
application_properties.json that the Managed Service for Apache Flink runtime creates.

The following code example demonstrates reading application properties from the
application_properties.json file:

file_path = '/etc/flink/application_properties.json'
 if os.path.isfile(file_path):
 with open(file_path, 'r') as file:
 contents = file.read()

Programming an application 36

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 properties = json.loads(contents)

The following user-defined function code example demonstrates reading a property group from
the application properties object: retrieves:

def property_map(properties, property_group_id):
 for prop in props:
 if prop["PropertyGroupId"] == property_group_id:
 return prop["PropertyMap"]

The following code example demonstrates reading a property called INPUT_STREAM_KEY from a
property group that the previous example returns:

input_stream = input_property_map[INPUT_STREAM_KEY]

Creating your application's code package

Once you have created your Python application, you bundle your code file and dependencies into a
zip file.

Your zip file must contain a python script with a main method, and can optionally contain the
following:

• Additional Python code files

• User-defined Java code in JAR files

• Java libraries in JAR files

Note

Your application zip file must contain all of the dependencies for your application. You can't
reference libraries from other sources for your application.

Creating your Managed Service for Apache Flink Python application

Specifying your code files

Once you have created your application's code package, you upload it to an Amazon S3 bucket. You
then create your application using either the console or the CreateApplication action.

Creating an application 37

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

When you create your application using the CreateApplication action, you specify the
code files and archives in your zip file using a special application property group called
kinesis.analytics.flink.run.options. You can define the following types files:

• python: A text file containing a Python main method.

• jarfile: A Java JAR file containing Java user-defined functions.

• pyFiles: A Python resource file containing resources to be used by the application.

• pyArchives: A zip file containing resource files for the application.

For more information about Apache Flink Python code file types, see Command-Line Interface in
the Apache Flink Documentation.

Note

Managed Service for Apache Flink does not support the pyModule, pyExecutable, or
pyRequirements file types. All of the code, requirements, and dependencies must be in
your zip file. You can't specify dependencies to be installed using pip.

The following example json snippet demonstrates how to specify file locations within your
application's zip file:

"ApplicationConfiguration": {
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "kinesis.analytics.flink.run.options",
 "PropertyMap": {
 "python": "MyApplication/main.py",
 "jarfile": "MyApplication/lib/myJarFile.jar",
 "pyFiles": "MyApplication/lib/myDependentFile.py",
 "pyArchives": "MyApplication/lib/myArchive.zip"
 }
 },

Monitoring your Python Managed Service for Apache Flink application

You use your application's CloudWatch log to monitor your Managed Service for Apache Flink
Python application.

Monitoring 38

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/cli/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink logs the following messages for Python applications:

• Messages written to the console using print() in the application's main method.

• Messages sent in user-defined functions using the logging package. The following code
example demonstrates writing to the application log from a user-defined function:

import logging

@udf(input_types=[DataTypes.BIGINT()], result_type=DataTypes.BIGINT())
def doNothingUdf(i):
 logging.info("Got {} in the doNothingUdf".format(str(i)))
 return i

• Error messages thrown by the application.

If the application throws an exception in the main function, it will appear in your application's
logs.

The following example demonstrates a log entry for an exception thrown from Python code:

2021-03-15 16:21:20.000 --------------------------- Python Process Started

2021-03-15 16:21:21.000 Traceback (most recent call last):
2021-03-15 16:21:21.000 " File ""/tmp/flink-
web-6118109b-1cd2-439c-9dcd-218874197fa9/flink-web-upload/4390b233-75cb-4205-
a532-441a2de83db3_code/PythonKinesisSink/PythonUdfUndeclared.py"", line 101, in
 <module>"
2021-03-15 16:21:21.000 main()
2021-03-15 16:21:21.000 " File ""/tmp/flink-
web-6118109b-1cd2-439c-9dcd-218874197fa9/flink-web-upload/4390b233-75cb-4205-
a532-441a2de83db3_code/PythonKinesisSink/PythonUdfUndeclared.py"", line 54, in main"
2021-03-15 16:21:21.000 " table_env.register_function(""doNothingUdf"",
 doNothingUdf)"
2021-03-15 16:21:21.000 NameError: name 'doNothingUdf' is not defined
2021-03-15 16:21:21.000 --------------------------- Python Process Exited

2021-03-15 16:21:21.000 Run python process failed
2021-03-15 16:21:21.000 Error occurred when trying to start the job

Monitoring 39

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Due to performance issues, we recommend that you only use custom log messages during
application development.

Querying logs with CloudWatch Insights

The following CloudWatch Insights query searches for logs created by the Python entrypoint while
executing the main function of your application:

fields @timestamp, message
| sort @timestamp asc
| filter logger like /PythonDriver/
| limit 1000

Runtime properties in Managed Service for Apache Flink

You can use runtime properties to configure your application without recompiling your application
code.

This topic contains the following sections:

• Working with runtime properties in the console

• Working with runtime properties in the CLI

• Accessing runtime properties in a Managed Service for Apache Flink application

Working with runtime properties in the console

You can add, update, or remove runtime properties from your Managed Service for Apache Flink
application using the Amazon Web Services Management Console.

Note

If you are using an earlier supported version of Apache Flink and want to upgrade your
existing applications to Apache Flink 1.18.1, you can do so using in-place Apache Flink
version upgrades. With in-place version upgrades, you retain application traceability
against a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags,

Runtime properties 40

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink configurations, and more. You can use this feature in RUNNING and READY state. For
more information, see In-place version upgrades for Apache Flink.

Update Runtime Properties for a Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. Choose your Managed Service for Apache Flink application. Choose Application details.

3. On the page for your application, choose Configure.

4. Expand the Properties section.

5. Use the controls in the Properties section to define a property group with key-value pairs. Use
these controls to add, update, or remove property groups and runtime properties.

6. Choose Update.

Working with runtime properties in the CLI

You can add, update, or remove runtime properties using the Amazon CLI.

This section includes example requests for API actions for configuring runtime properties for an
application. For information about how to use a JSON file for input for an API action, see Managed
Service for Apache Flink API example code.

Note

Replace the sample account ID (012345678901) in the examples following with your
account ID.

Adding runtime properties when creating an application

The following example request for the CreateApplication action adds two runtime property
groups (ProducerConfigProperties and ConsumerConfigProperties) when you create an
application:

{
 "ApplicationName": "MyApplication",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_18",

Working with runtime properties in the CLI 41

https://docs.amazonaws.cn/cli
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "java-getting-started-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

Adding and updating runtime properties in an existing application

The following example request for the UpdateApplication action adds or updates runtime
properties for an existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 2,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [

Working with runtime properties in the CLI 42

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

Note

If you use a key that has no corresponding runtime property in a property group, Managed
Service for Apache Flink adds the key-value pair as a new property. If you use a key for an
existing runtime property in a property group, Managed Service for Apache Flink updates
the property value.

Removing runtime properties

The following example request for the UpdateApplication action removes all runtime
properties and property groups from an existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 3,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": []
 }
 }
}

Working with runtime properties in the CLI 43

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Important

If you omit an existing property group or an existing property key in a property group, that
property group or property is removed.

Accessing runtime properties in a Managed Service for Apache Flink
application

You retrieve runtime properties in your Java application code using the static
KinesisAnalyticsRuntime.getApplicationProperties() method, which returns a
Map<String, Properties> object.

The following Java code example retrieves runtime properties for your application:

 Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();

You retrieve a property group (as a Java.Util.Properties object) as follows:

Properties consumerProperties = applicationProperties.get("ConsumerConfigProperties");

You typically configure an Apache Flink source or sink by passing in the Properties object
without needing to retrieve the individual properties. The following code example demonstrates
how to create an Flink source by passing in a Properties object retrieved from runtime
properties:

private static FlinkKinesisProducer<String> createSinkFromApplicationProperties()
 throws IOException {
 Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();
 FlinkKinesisProducer<String> sink = new FlinkKinesisProducer<String>(new
 SimpleStringSchema(),
 applicationProperties.get("ProducerConfigProperties"));

 sink.setDefaultStream(outputStreamName);
 sink.setDefaultPartition("0");
 return sink;
}

Accessing runtime properties in a Managed Service for Apache Flink application 44

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For code examples, see Managed Service for Apache Flink: Examples.

Implementing fault tolerance in Managed Service for Apache
Flink

Checkpointing is the method that is used for implementing fault tolerance in Amazon Managed
Service for Apache Flink. A checkpoint is an up-to-date backup of a running application that is used
to recover immediately from an unexpected application disruption or failover.

For details on checkpointing in Apache Flink applications, see Checkpoints in the Apache Flink
Documentation.

A snapshot is a manually created and managed backup of application state. Snapshots let you
restore your application to a previous state by calling UpdateApplication. For more information,
see Managing application backups using snapshots.

If checkpointing is enabled for your application, then the service provides fault tolerance by
creating and loading backups of application data in the event of unexpected application restarts.
These unexpected application restarts could be caused by unexpected job restarts, instance
failures, etc. This gives the application the same semantics as failure-free execution during these
restarts.

If snapshots are enabled for the application, and configured using the application's
ApplicationRestoreConfiguration, then the service provides exactly-once processing semantics
during application updates, or during service-related scaling or maintenance.

Configuring checkpointing in Managed Service for Apache Flink

You can configure your application's checkpointing behavior. You can define whether it persists the
checkpointing state, how often it saves its state to checkpoints, and the minimum interval between
the end of one checkpoint operation and the beginning of another.

You configure the following settings using the CreateApplication or UpdateApplication API
operations:

• CheckpointingEnabled — Indicates whether checkpointing is enabled in the application.

• CheckpointInterval — Contains the time in milliseconds between checkpoint (persistence)
operations.

Fault tolerance 45

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/state/checkpoints/
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_ApplicationRestoreConfiguration.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• ConfigurationType — Set this value to DEFAULT to use the default checkpointing behavior.
Set this value to CUSTOM to configure other values.

Note

The default checkpoint behavior is as follows:

• CheckpointingEnabled: true

• CheckpointInterval: 60000

• MinPauseBetweenCheckpoints: 5000
If ConfigurationType is set to DEFAULT, the preceding values will be used, even if they
are set to other values using either using the Amazon Command Line Interface, or by
setting the values in the application code.

Note

For Flink 1.15 onward, Managed Service for Apache Flink will use stop-with-
savepoint during Automatic Snapshot Creation, that is, application update, scaling or
stopping.

• MinPauseBetweenCheckpoints — The minimum time in milliseconds between the
end of one checkpoint operation and the start of another. Setting this value prevents the
application from checkpointing continuously when a checkpoint operation takes longer than the
CheckpointInterval.

Checkpointing API examples

This section includes example requests for API actions for configuring checkpointing for an
application. For information about how to use a JSON file for input for an API action, see Managed
Service for Apache Flink API example code.

Configure checkpointing for a new application

The following example request for the CreateApplication action configures checkpointing
when you are creating an application:

{

Checkpointing API examples 46

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationName": "MyApplication",
 "RuntimeEnvironment":"FLINK-1_18",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::mybucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "FlinkApplicationConfiguration": {
 "CheckpointConfiguration": {
 "CheckpointingEnabled": "true",
 "CheckpointInterval": 20000,
 "ConfigurationType": "CUSTOM",
 "MinPauseBetweenCheckpoints": 10000
 }
 }
}

Disable checkpointing for a new application

The following example request for the CreateApplication action disables checkpointing when
you are creating an application:

{
 "ApplicationName": "MyApplication",
 "RuntimeEnvironment":"FLINK-1_18",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::mybucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "FlinkApplicationConfiguration": {
 "CheckpointConfiguration": {
 "CheckpointingEnabled": "false"

Checkpointing API examples 47

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 }
}

Configure checkpointing for an existing application

The following example request for the UpdateApplication action configures checkpointing for
an existing application:

{
 "ApplicationName": "MyApplication",
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "CheckpointConfigurationUpdate": {
 "CheckpointingEnabledUpdate": true,
 "CheckpointIntervalUpdate": 20000,
 "ConfigurationTypeUpdate": "CUSTOM",
 "MinPauseBetweenCheckpointsUpdate": 10000
 }
 }
 }
}

Disable checkpointing for an existing application

The following example request for the UpdateApplication action disables checkpointing for an
existing application:

{
 "ApplicationName": "MyApplication",
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "CheckpointConfigurationUpdate": {
 "CheckpointingEnabledUpdate": false,
 "CheckpointIntervalUpdate": 20000,
 "ConfigurationTypeUpdate": "CUSTOM",
 "MinPauseBetweenCheckpointsUpdate": 10000
 }
 }
 }
}

Checkpointing API examples 48

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managing application backups using snapshots

A snapshot is the Managed Service for Apache Flink implementation of an Apache Flink Savepoint.
A snapshot is a user- or service-triggered, created, and managed backup of the application state.
For information about Apache Flink Savepoints, see Savepoints in the Apache Flink Documentation.
Using snapshots, you can restart an application from a particular snapshot of the application state.

Note

We recommend that your application create a snapshot several times a day to restart
properly with correct state data. The correct frequency for your snapshots depends on your
application's business logic. Taking frequent snapshots lets you recover more recent data,
but increases cost and requires more system resources.

In Managed Service for Apache Flink, you manage snapshots using the following API actions:

• CreateApplicationSnapshot

• DeleteApplicationSnapshot

• DescribeApplicationSnapshot

• ListApplicationSnapshots

For the per-application limit on the number of snapshots, see Quota. If your application
reaches the limit on snapshots, then manually creating a snapshot fails with a
LimitExceededException.

Managed Service for Apache Flink never deletes snapshots. You must manually delete your
snapshots using the DeleteApplicationSnapshot action.

To load a saved snapshot of application state when starting an application, use the
ApplicationRestoreConfiguration parameter of the StartApplication or
UpdateApplication action.

This topic contains the following sections:

• Automatic snapshot creation

• Restoring from a snapshot that contains incompatible state data

Snapshots 49

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/state/savepoints/
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplicationSnapshot.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DescribeApplicationSnapshot.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_ApplicationRestoreConfiguration.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Snapshot API examples

Automatic snapshot creation

If SnapshotsEnabled is set to true in the ApplicationSnapshotConfiguration for the application,
Managed Service for Apache Flink automatically creates and uses snapshots when the application
is updated, scaled, or stopped to provide exactly-once processing semantics.

Note

Setting ApplicationSnapshotConfiguration::SnapshotsEnabled to false will
lead to data loss during application updates.

Note

Managed Service for Apache Flink triggers intermediate savepoints during snapshot
creation. For Flink version 1.15 or greater, intermediate savepoints no longer commit any
side effects. See Triggering savepoints.

Automatically created snapshots have the following qualities:

• The snapshot is managed by the service, but you can see the snapshot using the
ListApplicationSnapshots action. Automatically created snapshots count against your snapshot
limit.

• If your application exceeds the snapshot limit, manually created snapshots will fail, but the
Managed Service for Apache Flink service will still successfully create snapshots when the
application is updated, scaled, or stopped. You must manually delete snapshots using the
DeleteApplicationSnapshot action before creating more snapshots manually.

Restoring from a snapshot that contains incompatible state data

Because snapshots contain information about operators, restoring state data from a snapshot
for an operator that has changed since the previous application version may have unexpected
results. An application will fault if it attempts to restore state data from a snapshot that does not

Automatic snapshot creation 50

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ApplicationSnapshotConfiguration.html
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/savepoints/#triggering-savepoints
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DeleteApplicationSnapshot.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

correspond to the current operator. The faulted application will be stuck in either the STOPPING or
UPDATING state.

To allow an application to restore from a snapshot that contains incompatible state data, set
the AllowNonRestoredState parameter of the FlinkRunConfiguration to true using the
UpdateApplication action.

You will see the following behavior when an application is restored from an obsolete snapshot:

• Operator added: If a new operator is added, the savepoint has no state data for the new
operator. No fault will occur, and it is not necessary to set AllowNonRestoredState.

• Operator deleted: If an existing operator is deleted, the savepoint has state data for the missing
operator. A fault will occur unless AllowNonRestoredState is set to true.

• Operator modified: If compatible changes are made, such as changing a parameter's type to a
compatible type, the application can restore from the obsolete snapshot. For more information
about restoring from snapshots, see Savepoints in the Apache Flink Documentation. An
application that uses Apache Flink version 1.8 or later can possibly be restored from a snapshot
with a different schema. An application that uses Apache Flink version 1.6 cannot be restored.
For two-phase-commit sinks, we recommend using system snapshot (SwS) instead of user-
created snapshot (CreateApplicationSnapshot).

For Flink, Managed Service for Apache Flink triggers intermediate savepoints during snapshot
creation. For Flink 1.15 onward, intermediate savepoints no longer commit any side effects. See
Triggering Savepoints.

If you need to resume an application that is incompatible with existing savepoint data, we
recommend that you skip restoring from the snapshot by setting the ApplicationRestoreType
parameter of the StartApplication action to SKIP_RESTORE_FROM_SNAPSHOT.

For more information about how Apache Flink deals with incompatible state data, see State
Schema Evolution in the Apache Flink Documentation.

Snapshot API examples

This section includes example requests for API actions for using snapshots with an application.
For information about how to use a JSON file for input for an API action, see Managed Service for
Apache Flink API example code.

Snapshot API examples 51

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_FlinkRunConfiguration.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/state/savepoints/
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/savepoints/#triggering-savepoints
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StartApplication.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/stream/state/schema_evolution.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/stream/state/schema_evolution.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Enable snapshots for an application

The following example request for the UpdateApplication action enables snapshots for an
application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationSnapshotConfigurationUpdate": {
 "SnapshotsEnabledUpdate": "true"
 }
 }
}

Create a snapshot

The following example request for the CreateApplicationSnapshot action creates a snapshot
of the current application state:

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MyCustomSnapshot"
}

List snapshots for an application

The following example request for the ListApplicationSnapshots action lists the first 50
snapshots for the current application state:

{
 "ApplicationName": "MyApplication",
 "Limit": 50
}

List details for an application snapshot

The following example request for the DescribeApplicationSnapshot action lists details for a
specific application snapshot:

Snapshot API examples 52

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplicationSnapshot.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplicationSnapshot.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MyCustomSnapshot"
}

Delete a snapshot

The following example request for the DeleteApplicationSnapshot action deletes a
previously saved snapshot. You can get the SnapshotCreationTimestamp value using either
ListApplicationSnapshots or DeleteApplicationSnapshot:

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MyCustomSnapshot",
 "SnapshotCreationTimestamp": 12345678901.0,
}

Restart an application using a named snapshot

The following example request for the StartApplication action starts the application using the
saved state from a specific snapshot:

{
 "ApplicationName": "MyApplication",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_CUSTOM_SNAPSHOT",
 "SnapshotName": "MyCustomSnapshot"
 }
 }
}

Restart an application using the most recent snapshot

The following example request for the StartApplication action starts the application using the
most recent snapshot:

{
 "ApplicationName": "MyApplication",

Snapshot API examples 53

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_ListApplicationSnapshots.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

Restart an application using no snapshot

The following example request for the StartApplication action starts the application without
loading application state, even if a snapshot is present:

{
 "ApplicationName": "MyApplication",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "SKIP_RESTORE_FROM_SNAPSHOT"
 }
 }
}

In-place version upgrades for Apache Flink

With in-place version upgrades for Apache Flink, you retain application traceability against a single
ARN across Apache Flink versions. This includes snapshots, logs, metrics, tags, Flink configurations,
resource limit increases, VPCs, and more. You can perform in-place version upgrades for Apache
Flink to upgrade existing applications to a new Flink version in Amazon Managed Service for
Apache Flink. To perform this task, you can use the Amazon CLI, Amazon CloudFormation, Amazon
SDK, or the Amazon Web Services Management Console.

Note

You can't use in-place version upgrades for Apache Flink with Amazon Managed Service for
Apache Flink Studio.

This topic contains the following sections:

• Upgrading applications using in-place version upgrades for Apache Flink

In-place version upgrades 54

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Upgrading your application to a new Apache Flink version

• Rollback

• General best practices and recommendations

• Precautions and known issues

Upgrading applications using in-place version upgrades for Apache
Flink

Before you begin, we recommend that you watch this video: In-Place Version Upgrades.

To perform in-place version upgrades for Apache Flink, you can use the Amazon CLI, Amazon
CloudFormation, Amazon SDK, or the Amazon Web Services Management Console. You can use
this feature with any existing applications that you use with Managed Service for Apache Flink in a
READY or RUNNING state. It uses the UpdateApplication API to add the ability to change the Flink
runtime.

Before upgrading: Updating your Apache Flink application

When you write your Flink applications, you bundle them with their dependencies into an
application JAR and upload the JAR to your Amazon S3 bucket. From there, Amazon Managed
Service for Apache Flink runs the job in the new Flink runtime that you've selected. You might have
to update your applications to achieve compatibility with the Flink runtime you want to upgrade
to. There can be inconsistencies between Flink versions that cause the version upgrade to fail. Most
commonly, this will be with connectors for sources (ingress) or destinations (sinks, egress) and
Scala dependencies. Flink 1.15 and later versions in Managed Service for Apache Flink are Scala-
agnostic, and your JAR must contain the version of Scala you plan to use.

To update your application

1. Read the advice from the Flink community on upgrading applications with state. See
Upgrading Applications and Flink Versions.

2. Read the list of knowing issues and limitations. See Precautions and known issues.

3. Update your dependencies and test your applications locally. These dependencies typically are:

1. The Flink runtime and API.

2. Connectors recommended for the new Flink runtime. You can find these on Release versions
for the specific runtime you want to update to.

Upgrading applications using in-place version upgrades for Apache Flink 55

https://www.youtube.com/watch?v=f1qGGdaP2XI
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/
https://docs.amazonaws.cn/managed-flink/latest/java/release-version-list.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Scala – Apache Flink is Scala-agnostic starting with and including Flink 1.15. You must
include the Scala dependencies you want to use in your application JAR.

4. Build a new application JAR on zipfile and upload it to Amazon S3. We recommend that you
use a different name from the previous JAR/zipfile. If you need to roll back, you will use this
information.

5. If you are running stateful applications, we strongly recommend that you take a snapshot of
your current application. This lets you roll back statefully if you encounter issues during or
after the upgrade.

Upgrading your application to a new Apache Flink version

You can upgrade your Flink application by using the UpdateApplication action.

You can call the UpdateApplication API in multiple ways:

• Use the existing Configuration workflow on the Amazon Web Services Management Console.

• Go to your app page on the Amazon Web Services Management Console.

• Choose Configure.

• Select the new runtime and the snapshot that you want to start from, also known as restore
configuration. Use the latest setting as the restore configuration to start the app from the
latest snapshot. Point to the new upgraded application JAR/zip on Amazon S3.

• Use the Amazon CLI update-application action.

• Use Amazon CloudFormation (CFN).

• Update the RuntimeEnvironment field. Previously, Amazon CloudFormation deleted the
application and created a new one, causing your snapshots and other app history to be lost.
Now Amazon CloudFormation updates your RuntimeEnvironment in place and does not delete
your application.

• Use the Amazon SDK.

• Consult the SDK documentation for the programming language of your choice. See
UpdateApplication.

You can perform the upgrade while the application is in RUNNING state or while the application
is stopped in READY state. Amazon Managed Service for Apache Flink validates to verify
the compatibility between the original runtime version and the target runtime version. This

Upgrading your application to a new Apache Flink version 56

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/kinesisanalyticsv2/update-application.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisanalyticsv2-application.html#cfn-kinesisanalyticsv2-application-runtimeenvironment
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

compatibility check runs when you perform UpdateApplication while in RUNNING state or at the
next StartApplication if you upgrade while in READY state.

Upgrading an application in RUNNING state

The following example shows upgrading an app in RUNNING state named UpgradeTest to Flink
1.18 in US East (N. Virginia) using the Amazon CLI and starting the upgraded app from the latest
snapshot.

aws --region us-east-1 kinesisanalyticsv2 update-application \
--application-name UpgradeTest --runtime-environment-update "FLINK-1_18" \
--application-configuration-update '{"ApplicationCodeConfigurationUpdate": '\
'{"CodeContentUpdate": {"S3ContentLocationUpdate": '\
'{"FileKeyUpdate": "flink_1_18_app.jar"}}}}' \
 --run-configuration-update '{"ApplicationRestoreConfiguration": '\
 '{"ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"}}' \
 --current-application-version-id ${current_application_version}

• If you enabled service snapshots and want to continue the application from the latest snapshot,
Amazon Managed Service for Apache Flink verifies that the current RUNNING application's
runtime is compatible with the selected target runtime.

• If you have specified a snapshot from which to continue the target runtime, Amazon Managed
Service for Apache Flink verifies that the target runtime is compatible with the specified
snapshot. If the compatibility check fails, your update request is rejected and your application
remains untouched in the RUNNING state.

• If you choose to start your application without a snapshot, Amazon Managed Service for Apache
Flink doesn't run any compatibility checks.

• If your upgraded application fails or gets stuck in a transitive UPDATING state, follow the
instructions in the Rollback section to return to the healthy state.

Process flow for running state applications

Upgrading your application to a new Apache Flink version 57

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upgrading your application to a new Apache Flink version 58

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upgrading an application in READY state

The following example shows upgrading an app in READY state named UpgradeTest to Flink
1.18 in US East (N. Virginia) using the Amazon CLI. There is no specified snapshot to start the
app because the application is not running. You can specify a snapshot when you issue the start
application request.

aws --region us-east-1 kinesisanalyticsv2 update-application \
--application-name UpgradeTest --runtime-environment-update "FLINK-1_18" \
--application-configuration-update '{"ApplicationCodeConfigurationUpdate": '\
'{"CodeContentUpdate": {"S3ContentLocationUpdate": '\
'{"FileKeyUpdate": "flink_1_18_app.jar"}}}}' \
 --current-application-version-id ${current_application_version}

• You can update the runtime of your applications in READY state to any Flink version. Amazon
Managed Service for Apache Flink does not run any checks until you start your application.

• Amazon Managed Service for Apache Flink only runs compatibility checks against the snapshot
you selected to start the app. These are basic compatibility checks following the Flink
Compatibility Table. They only check the Flink version with which the snapshot was taken and
the Flink version you are targeting. If the Flink runtime of the selected snapshot is incompatible
with the app's new runtime, the start request might be rejected.

Process flow for ready state applications

Upgrading your application to a new Apache Flink version 59

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/#compatibility-table
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/#compatibility-table

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upgrading your application to a new Apache Flink version 60

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Rollback

If you have issues with your application or find inconsistencies in your application code between
Flink versions, you can roll back using the Amazon CLI, Amazon CloudFormation, Amazon SDK, or
the Amazon Web Services Management Console. The following examples show what rolling back
looks like in different failure scenarios.

Runtime upgrade succeeded, the application is in RUNNING state, but the job is
failing and continuously restarting

Assume you are trying to upgrade a stateful application named TestApplication from Flink
1.15 to Flink 1.18 in US East (N. Virginia). However, the upgraded Flink 1.18 application is failing to
start or is constantly restarting, even though the application is in RUNNING state. This is a common
failure scenario. To avoid further downtime, we recommend that you roll back your application
immediately to the previous running version (Flink 1.15), and diagnose the issue later.

To roll back the application to the previous running version, use the rollback-application Amazon
CLI command or the RollbackApplication API action. This API action rolls back the changes you've
made that resulted in the latest version. Then it restarts your application using the latest successful
snapshot.

We strongly recommend that you take a snapshot with your existing app before you attempt to
upgrade. This will help to avoid data loss or having to reprocess data.

In this failure scenario, Amazon CloudFormation will not roll back the application for you. You must
update the CloudFormation template to point to the previous runtime and to the previous code
to force CloudFormation to update the application. Otherwise, CloudFormation assumes that your
application has been updated when it transitions to the RUNNING state.

Rolling back an application that is stuck in UPDATING

If your application gets stuck in the UPDATING or AUTOSCALING state after an upgrade attempt,
Amazon Managed Service for Apache Flink offers the rollback-applications Amazon CLI command,
or the RollbackApplications API action that can roll back the application to the version before the
stuck UPDATING or AUTOSCALING state. This API rolls back the changes that you’ve made that
caused the application to get stuck in UPDATING or AUTOSCALING transitive state.

Rollback 61

https://docs.amazonaws.cn/cli/latest/reference/kinesisanalyticsv2/rollback-application.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_RollbackApplication.html
https://docs.amazonaws.cn/cli/latest/reference/kinesisanalyticsv2/rollback-application.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_RollbackApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

General best practices and recommendations

• Test the new job/runtime without state on a non-production environment before attempting a
production upgrade.

• Consider testing the stateful upgrade with a non-production application first.

• Make sure that your new job graph has a compatible state with the snapshot you will be using to
start your upgraded application.

• Make sure that the types stored in operator states stay the same. If the type has changed,
Apache Flink can't restore the operator state.

• Make sure that the Operator IDs you set using the uid method remain the same. Apache Flink
has a strong recommendation for assigning unique IDs to operators. For more information, see
Assigning Operator IDs in the Apache Flink documentation.

If you don't assign IDs to your operators, Flink automatically generates them. In that case, they
might depend on the program structure and, if changed, can cause compatibility issues. Flink
uses Operator IDs to match state in snapshot to operator. Changing Operator IDs results in the
application not starting, or state stored in the snapshot being dropped, and the new operator
starting without state.

• Don't change the key used to store the keyed state.

• Don't modify the input type of stateful operators like window or join. This implicitly changes
the type of the internal state of the operator, causing a state incompatibility.

Precautions and known issues

• As of Flink 1.15, Apache Flink doesn't include Scala in the runtime. You must include the version
of Scala you want to use and other Scala dependencies in your code JAR/zip when upgrading
to Flink 1.15 or later. For more information, see Amazon Managed Service for Apache Flink for
Apache Flink 1.15.2 release.

• If your application uses Scala and you are upgrading it from Flink 1.11 or earlier (Scala 2.11)
to Flink 1.13 (Scala 2.12), make sure that your code uses Scala 2.12. Otherwise, your Flink 1.13
application may fail to find Scala 2.11 classes in the Flink 1.13 runtime.

• If you are using Flink 1.13 or earlier with FlinkKinesisProducer and upgrading to Flink
1.15 or later, for a stateful upgrade you must continue to use FlinkKinesisProducer in
Flink 1.15 or later, instead of the newer KinesisStreamsSink. However, if you already have a
custom uid set on your sink, you should be able to switch to KinesisStreamsSink because

General best practices and recommendations 62

https://nightlies.apache.org/flink/flink-docs-master/docs/ops/state/savepoints/#assigning-operator-ids
https://docs.amazonaws.cn/managed-flink/latest/java/flink-1-15-2.html
https://docs.amazonaws.cn/managed-flink/latest/java/flink-1-15-2.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

FlinkKinesisProducer doesn't keep state. Flink will treat it as the same operator because a
custom uid is set.

• If you are using Flink 1.11 or earlier and using the amazon-kinesis-connector-flink
connector for EFO support, you must take extra steps for a stateful upgrade to Flink 1.13 or
later. This is because of the change in the package name of the connector. For more information,
see amazon-kinesis-connector-flink.

The amazon-kinesis-connector-flink connector for Flink 1.11 and earlier uses the
packaging software.amazon.kinesis, whereas the Kinesis connector for Flink 1.13 and later
uses org.apache.flink.streaming.connectors.kinesis. Use this tool to support your
migration: amazon-kinesis-connector-flink-state-migrator.

• If you are updating your runtime from Flink 1.13 or later to Flink 1.11 or earlier, and if your app
uses the HashMap state backend, your application will continuously fail.

• Flink 1.6 states are not compatible with Flink 1.18. The API rejects your request if you try to
upgrade from 1.6 to 1.18 and later with state. You can upgrade to 1.8, 1.11, 1.13 and 1.15 and
take a snapshot, and then upgrade to 1.18 and later. For more information, see Upgrading
Applications and Flink Versions in the Apache Flink documentation.

• If you are using the Table API, Apache Flink doesn't guarantee state compatibility between
Flink versions. For more information, see Stateful Upgrades and Evolution in the Apache Flink
documentation.

Application scaling in Managed Service for Apache Flink

You can configure the parallel execution of tasks and the allocation of resources for Amazon
Managed Service for Apache Flink to implement scaling. For information about how Apache Flink
schedules parallel instances of tasks, see Parallel Execution in the Apache Flink Documentation.

Topics

• Configuring application parallelism and ParallelismPerKPU

• Allocating Kinesis Processing Units

• Updating your application's parallelism

• Automatic scaling

Scaling 63

https://github.com/awslabs/amazon-kinesis-connector-flink
https://github.com/awslabs/amazon-kinesis-connector-flink-state-migrator
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/
https://nightlies.apache.org/flink/flink-docs-master/docs/ops/upgrading/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/concepts/overview/#stateful-upgrades-and-evolution
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/execution/parallel/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Configuring application parallelism and ParallelismPerKPU

You configure the parallel execution for your Managed Service for Apache Flink application
tasks (such as reading from a source or executing an operator) using the following
ParallelismConfiguration properties:

• Parallelism — Use this property to set the default Apache Flink application parallelism. All
operators, sources, and sinks execute with this parallelism unless they are overridden in the
application code. The default is 1, and the default maximum is 256.

• ParallelismPerKPU — Use this property to set the number of parallel tasks that can be
scheduled per Kinesis Processing Unit (KPU) of your application. The default is 1, and the
maximum is 8. For applications that have blocking operations (for example, I/O), a higher value
of ParallelismPerKPU leads to full utilization of KPU resources.

Note

The limit for Parallelism is equal to ParallelismPerKPU times the limit for KPUs
(which has a default of 64). The KPUs limit can be increased by requesting a limit increase.
For instructions on how to request a limit increase, see "To request a limit increase" in
Service Quotas.

For information about setting task parallelism for a specific operator, see Setting the Parallelism:
Operator in the Apache Flink Documentation.

Allocating Kinesis Processing Units

Managed Service for Apache Flink provisions capacity as KPUs. A single KPU provides you with 1
vCPU and 4 GB of memory. For every KPU allocated, 50 GB of running application storage is also
provided.

Managed Service for Apache Flink calculates the KPUs that are needed to run your application
using the Parallelism and ParallelismPerKPU properties, as follows:

Allocated KPUs for the application = Parallelism/ParallelismPerKPU

Managed Service for Apache Flink quickly gives your applications resources in response to
spikes in throughput or processing activity. It removes resources from your application gradually

Configuring application parallelism and ParallelismPerKPU 64

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ApplicationConfiguration.html
https://docs.amazonaws.cn/general/latest/gr/aws_service_limits.html
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/execution/parallel/#operator-level
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/execution/parallel/#operator-level

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

after the activity spike has passed. To disable the automatic allocation of resources, set the
AutoScalingEnabled value to false, as described later in Updating your application's
parallelism.

The default limit for KPUs for your application is 64. For instructions on how to request an increase
to this limit, see "To request a limit increase" in Service Quotas.

Note

An additional KPU is charged for orchestrations purposes. For more information, see
Managed Service for Apache Flink pricing.

Updating your application's parallelism

This section contains sample requests for API actions that set an application's parallelism. For more
examples and instructions for how to use request blocks with API actions, see Managed Service for
Apache Flink API example code.

The following example request for the CreateApplication action sets parallelism when you are
creating an application:

{
 "ApplicationName": "string",
 "RuntimeEnvironment":"FLINK-1_18",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::mybucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "CodeContentType":"ZIPFILE"
 },
 "FlinkApplicationConfiguration": {
 "ParallelismConfiguration": {
 "AutoScalingEnabled": "true",
 "ConfigurationType": "CUSTOM",

Updating your application's parallelism 65

https://docs.amazonaws.cn/general/latest/gr/aws_service_limits.html
https://www.amazonaws.cn/kinesis/data-analytics/pricing/
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Parallelism": 4,
 "ParallelismPerKPU": 4
 }
 }
 }
}

The following example request for the UpdateApplication action sets parallelism for an existing
application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "ParallelismConfigurationUpdate": {
 "AutoScalingEnabledUpdate": "true",
 "ConfigurationTypeUpdate": "CUSTOM",
 "ParallelismPerKPUUpdate": 4,
 "ParallelismUpdate": 4
 }
 }
 }
}

The following example request for the UpdateApplication action disables parallelism for an
existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "ParallelismConfigurationUpdate": {
 "AutoScalingEnabledUpdate": "false"
 }
 }
 }
}

Updating your application's parallelism 66

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Automatic scaling

Managed Service for Apache Flink elastically scales your application’s parallelism to accommodate
the data throughput of your source and your operator complexity for most scenarios. Managed
Service for Apache Flink monitors the resource (CPU) usage of your application, and elastically
scales your application's parallelism up or down accordingly:

• Your application scales up (increases parallelism) if CloudWatch metric maximum
containerCPUUtilization is larger than 75 percent or above for 15 minutes. That means
the ScaleUp action is triggered when there are 15 consecutive datapoints with 1 minute period
equal to or over 75 percent.

• Your application scales down (decreases parallelism) when your CPU usage remains below
10 percent for six hours. That means the ScaleDown action is triggered when there are 360
consecutive datapoints with 1 minute period less than 10 percent.

Note

Max of containerCPUUtilization over 1 minute period can be referenced to find the
correlation with a datapoint used for Scaling action, but it’s not necessary to reflect the
exact moment when the action is triggered.

Managed Service for Apache Flink will not reduce your application's CurrentParallelism value
to less than your application's Parallelism setting.

When the Managed Service for Apache Flink service is scaling your application, it will be in the
AUTOSCALING status. You can check your current application status using the DescribeApplication
or ListApplications actions. While the service is scaling your application, the only valid API action
you can use is StopApplication with the Force parameter set to true.

You can use the AutoScalingEnabled property (part of FlinkApplicationConfiguration)
to enable or disable auto scaling behavior. Your Amazon account is charged for KPUs that Managed
Service for Apache Flink provisions which is a function of your application's parallelism and
parallelismPerKPU settings. An activity spike increases your Managed Service for Apache Flink
costs.

For information about pricing, see Amazon Managed Service for Apache Flink pricing.

Automatic scaling 67

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DescribeApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ListApplications.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ListApplications.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_FlinkApplicationConfiguration.html
http://www.amazonaws.cn/kinesis/data-analytics/pricing/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note the following about application scaling:

• Automatic scaling is enabled by default.

• Scaling doesn't apply to Studio notebooks. However, if you deploy a Studio notebook as an
application with durable state, then scaling will apply to the deployed application.

• Your application has a default limit of 64 KPUs. For more information, see Quota.

• When autoscaling updates application parallelism, the application experiences downtime. To
avoid this downtime, do the following:

• Disable automatic scaling

• Configure your application's parallelism and parallelismPerKPU with the
UpdateApplication action. For more information about setting your application's parallelism
settings, see the section called “Updating your application's parallelism” following.

• Periodically monitor your application's resource usage to verify that your application has the
correct parallelism settings for its workload. For information about monitoring allocation
resource usage, see the section called “Metrics and dimensions in Managed Service for Apache
Flink”.

maxParallelism considerations

• Autoscale logic will prevent scaling a Flink job to a parallelism that will cause interference with
the job and operator maxParallelism. For example, if a simple job with only a source and a
sink where the source has maxParallelism 16 and the sink has 8, we will not autoscale the
job to above 8.

• If maxParallelism is not set for a job, Flink will default to 128. Therefore, if you think that a
job will need to run at a higher parallelism than 128, you will have to set that number for your
application.

• If you expect to see your job autoscale but are not seeing it, ensure your maxParallelism
values allow for it.

For additional information, see Enhanced monitoring and automatic scaling for Apache Flink

For an example, see kda-flink-app-autoscaling.

Using tagging

Tagging 68

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://aws.amazon.com/blogs/big-data/enhanced-monitoring-and-automatic-scaling-for-apache-flink/
https://github.com/aws-samples/kda-flink-app-autoscaling

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This section describes how to add key-value metadata tags to Managed Service for Apache Flink
applications. These tags can be used for the following purposes:

• Determining billing for individual Managed Service for Apache Flink applications. For more
information, see Using Cost Allocation Tags in the Billing and Cost Management Guide.

• Controlling access to application resources based on tags. For more information, see Controlling
Access Using Tags in the Amazon Identity and Access Management User Guide.

• User-defined purposes. You can define application functionality based on the presence of user
tags.

Note the following information about tagging:

• The maximum number of application tags includes system tags. The maximum number of user-
defined application tags is 50.

• If an action includes a tag list that has duplicate Key values, the service throws an
InvalidArgumentException.

This topic contains the following sections:

• Adding tags when an application is created

• Adding or u tags for an existing application

• Listing tags for an application

• Removing tags from an application

Adding tags when an application is created

You add tags when creating an application using the tags parameter of the CreateApplication
action.

The following example request shows the Tags node for a CreateApplication request:

"Tags": [
 {
 "Key": "Key1",
 "Value": "Value1"
 },
 {
 "Key": "Key2",

Adding tags when an application is created 69

https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Value": "Value2"
 }
]

Adding or u tags for an existing application

You add tags to an application using the TagResource action. You cannot add tags to an application
using the UpdateApplication action.

To update an existing tag, add a tag with the same key of the existing tag.

The following example request for the TagResource action adds new tags or updates existing
tags:

{
 "ResourceARN": "string",
 "Tags": [
 {
 "Key": "NewTagKey",
 "Value": "NewTagValue"
 },
 {
 "Key": "ExistingKeyOfTagToUpdate",
 "Value": "NewValueForExistingTag"
 }
]
}

Listing tags for an application

To list existing tags, you use the ListTagsForResource action.

The following example request for the ListTagsForResource action lists tags for an application:

{
 "ResourceARN": "arn:aws:kinesisanalyticsus-west-2:012345678901:application/
MyApplication"
}

Removing tags from an application

To remove tags from an application, you use the UntagResource action.

Adding or u tags for an existing application 70

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_TagResource.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ListTagsForResource.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UntagResource.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The following example request for the UntagResource action removess tags from an application:

{
 "ResourceARN": "arn:aws:kinesisanalyticsus-west-2:012345678901:application/
MyApplication",
 "TagKeys": ["KeyOfFirstTagToRemove", "KeyOfSecondTagToRemove"]
}

Using CloudFormation with Managed Service for Apache Flink

The following exercises shows how to start a Flink application created via Amazon CloudFormation
using a Lambda function in the same stack.

Before you begin

Before you begin this exercise, follow the steps on creating a Flink application using Amazon
CloudFormation at AWS::KinesisAnalytics::Application.

Writing a Lambda function

To start a Flink application after creation or update, we use the kinesisanalyticsv2 start-application
API. The call will be triggered by an Amazon CloudFormation event after Flink application creation.
We’ll discuss how to set up the stack to trigger the Lambda function later in this exercise, but first
we focus on the Lambda function declaration and its code. We use Python3.8 runtime in this
example.

StartApplicationLambda:
 Type: AWS::Lambda::Function
 DependsOn: StartApplicationLambdaRole
 Properties:
 Description: Starts an application when invoked.
 Runtime: python3.8
 Role: !GetAtt StartApplicationLambdaRole.Arn
 Handler: index.lambda_handler
 Timeout: 30
 Code:
 ZipFile: |
 import logging
 import cfnresponse
 import boto3

Using CloudFormation with Managed Service for Apache Flink 71

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-kinesis-analyticsapplication.html
https://docs.amazonaws.cn/cli/latest/reference/kinesisanalyticsv2/start-application.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 logger = logging.getLogger()
 logger.setLevel(logging.INFO)

 def lambda_handler(event, context):
 logger.info('Incoming CFN event {}'.format(event))

 try:
 application_name = event['ResourceProperties']['ApplicationName']

 # filter out events other than Create or Update,
 # you can also omit Update in order to start an application on Create
 only.
 if event['RequestType'] not in ["Create", "Update"]:
 logger.info('No-op for Application {} because CFN RequestType {} is
 filtered'.format(application_name, event['RequestType']))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

 return

 # use kinesisanalyticsv2 API to start an application.
 client_kda = boto3.client('kinesisanalyticsv2',
 region_name=event['ResourceProperties']['Region'])

 # get application status.
 describe_response =
 client_kda.describe_application(ApplicationName=application_name)
 application_status = describe_response['ApplicationDetail']
['ApplicationStatus']

 # an application can be started from 'READY' status only.
 if application_status != 'READY':
 logger.info('No-op for Application {} because ApplicationStatus {} is
 filtered'.format(application_name, application_status))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

 return

 # create RunConfiguration.
 run_configuration = {
 'ApplicationRestoreConfiguration': {
 'ApplicationRestoreType': 'RESTORE_FROM_LATEST_SNAPSHOT',
 }
 }

Writing a Lambda function 72

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 logger.info('RunConfiguration for Application {}:
 {}'.format(application_name, run_configuration))

 # this call doesn't wait for an application to transfer to 'RUNNING'
 state.
 client_kda.start_application(ApplicationName=application_name,
 RunConfiguration=run_configuration)

 logger.info('Started Application: {}'.format(application_name))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})
 except Exception as err:
 logger.error(err)
 cfnresponse.send(event,context, cfnresponse.FAILED, {"Data": str(err)})

In the preceding code, Lambda processes incoming Amazon CloudFormation events, filters out
everything besides Create and Update, gets the application state and start it if the state is
READY. To get the application state, you must create the Lambda role, as shown following.

Creating a Lambda role

You create a role for Lambda to successfully “talk” to the application and write logs. This role uses
default managed policies, but you might want to narrow it down to using custom policies.

StartApplicationLambdaRole:
 Type: AWS::IAM::Role
 DependsOn: TestFlinkApplication
 Properties:
 Description: A role for lambda to use while interacting with an application.
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - lambda.amazonaws.com
 Action:
 - sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/Amazonmanaged-flinkFullAccess
 - arn:aws:iam::aws:policy/CloudWatchLogsFullAccess
 Path: /

Creating a Lambda role 73

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note that the Lambda resources will be created after creation of the Flink application in the same
stack because they depend on it.

Invoking the Lambda function

Now all that is left is to invoke the Lambda function. You do this by using a custom resource.

StartApplicationLambdaInvoke:
 Description: Invokes StartApplicationLambda to start an application.
 Type: AWS::CloudFormation::CustomResource
 DependsOn: StartApplicationLambda
 Version: "1.0"
 Properties:
 ServiceToken: !GetAtt StartApplicationLambda.Arn
 Region: !Ref AWS::Region
 ApplicationName: !Ref TestFlinkApplication

This is all you need to start your Flink application using Lambda. You are now ready to create your
own stack or use the full example below to see how all those steps work in practice.

Full example

The following example is a slightly extended version of the previous steps with an additional
RunConfiguration adjusting done via template parameters. This is a working stack for you to
try. Be sure to read the accompanying notes:

stack.yaml

Description: 'kinesisanalyticsv2 CloudFormation Test Application'
Parameters:
 ApplicationRestoreType:
 Description: ApplicationRestoreConfiguration option, can
 be SKIP_RESTORE_FROM_SNAPSHOT, RESTORE_FROM_LATEST_SNAPSHOT or
 RESTORE_FROM_CUSTOM_SNAPSHOT.
 Type: String
 Default: SKIP_RESTORE_FROM_SNAPSHOT
 AllowedValues: [SKIP_RESTORE_FROM_SNAPSHOT, RESTORE_FROM_LATEST_SNAPSHOT,
 RESTORE_FROM_CUSTOM_SNAPSHOT]
 SnapshotName:
 Description: ApplicationRestoreConfiguration option, name of a snapshot to restore
 to, used with RESTORE_FROM_CUSTOM_SNAPSHOT ApplicationRestoreType.
 Type: String

Invoking the Lambda function 74

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-cfn-customresource.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 Default: ''
 AllowNonRestoredState:
 Description: FlinkRunConfiguration option, can be true or false.
 Default: true
 Type: String
 AllowedValues: [true, false]
 CodeContentBucketArn:
 Description: ARN of a bucket with application code.
 Type: String
 CodeContentFileKey:
 Description: A jar filename with an application code inside a bucket.
 Type: String
Conditions:
 IsSnapshotNameEmpty: !Equals [!Ref SnapshotName, '']
Resources:
 TestServiceExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - kinesisanlaytics.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonKinesisFullAccess
 - arn:aws:iam::aws:policy/AmazonS3FullAccess
 Path: /
 InputKinesisStream:
 Type: AWS::Kinesis::Stream
 Properties:
 ShardCount: 1
 OutputKinesisStream:
 Type: AWS::Kinesis::Stream
 Properties:
 ShardCount: 1
 TestFlinkApplication:
 Type: 'AWS::kinesisanalyticsv2::Application'
 Properties:
 ApplicationName: 'CFNTestFlinkApplication'
 ApplicationDescription: 'Test Flink Application'
 RuntimeEnvironment: 'FLINK-1_18'

Invoking the Lambda function 75

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 ServiceExecutionRole: !GetAtt TestServiceExecutionRole.Arn
 ApplicationConfiguration:
 EnvironmentProperties:
 PropertyGroups:
 - PropertyGroupId: 'KinesisStreams'
 PropertyMap:
 INPUT_STREAM_NAME: !Ref InputKinesisStream
 OUTPUT_STREAM_NAME: !Ref OutputKinesisStream
 AWS_REGION: !Ref AWS::Region
 FlinkApplicationConfiguration:
 CheckpointConfiguration:
 ConfigurationType: 'CUSTOM'
 CheckpointingEnabled: True
 CheckpointInterval: 1500
 MinPauseBetweenCheckpoints: 500
 MonitoringConfiguration:
 ConfigurationType: 'CUSTOM'
 MetricsLevel: 'APPLICATION'
 LogLevel: 'INFO'
 ParallelismConfiguration:
 ConfigurationType: 'CUSTOM'
 Parallelism: 1
 ParallelismPerKPU: 1
 AutoScalingEnabled: True
 ApplicationSnapshotConfiguration:
 SnapshotsEnabled: True
 ApplicationCodeConfiguration:
 CodeContent:
 S3ContentLocation:
 BucketARN: !Ref CodeContentBucketArn
 FileKey: !Ref CodeContentFileKey
 CodeContentType: 'ZIPFILE'
 StartApplicationLambdaRole:
 Type: AWS::IAM::Role
 DependsOn: TestFlinkApplication
 Properties:
 Description: A role for lambda to use while interacting with an application.
 AssumeRolePolicyDocument:
 Version: '2012-10-17'
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - lambda.amazonaws.com

Invoking the Lambda function 76

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 Action:
 - sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/Amazonmanaged-flinkFullAccess
 - arn:aws:iam::aws:policy/CloudWatchLogsFullAccess
 Path: /
 StartApplicationLambda:
 Type: AWS::Lambda::Function
 DependsOn: StartApplicationLambdaRole
 Properties:
 Description: Starts an application when invoked.
 Runtime: python3.8
 Role: !GetAtt StartApplicationLambdaRole.Arn
 Handler: index.lambda_handler
 Timeout: 30
 Code:
 ZipFile: |
 import logging
 import cfnresponse
 import boto3

 logger = logging.getLogger()
 logger.setLevel(logging.INFO)

 def lambda_handler(event, context):
 logger.info('Incoming CFN event {}'.format(event))

 try:
 application_name = event['ResourceProperties']['ApplicationName']

 # filter out events other than Create or Update,
 # you can also omit Update in order to start an application on Create
 only.
 if event['RequestType'] not in ["Create", "Update"]:
 logger.info('No-op for Application {} because CFN RequestType {} is
 filtered'.format(application_name, event['RequestType']))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

 return

 # use kinesisanalyticsv2 API to start an application.
 client_kda = boto3.client('kinesisanalyticsv2',
 region_name=event['ResourceProperties']['Region'])

Invoking the Lambda function 77

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 # get application status.
 describe_response =
 client_kda.describe_application(ApplicationName=application_name)
 application_status = describe_response['ApplicationDetail']
['ApplicationStatus']

 # an application can be started from 'READY' status only.
 if application_status != 'READY':
 logger.info('No-op for Application {} because ApplicationStatus {} is
 filtered'.format(application_name, application_status))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})

 return

 # create RunConfiguration from passed parameters.
 run_configuration = {
 'FlinkRunConfiguration': {
 'AllowNonRestoredState': event['ResourceProperties']
['AllowNonRestoredState'] == 'true'
 },
 'ApplicationRestoreConfiguration': {
 'ApplicationRestoreType': event['ResourceProperties']
['ApplicationRestoreType'],
 }
 }

 # add SnapshotName to RunConfiguration if specified.
 if event['ResourceProperties']['SnapshotName'] != '':
 run_configuration['ApplicationRestoreConfiguration']['SnapshotName'] =
 event['ResourceProperties']['SnapshotName']

 logger.info('RunConfiguration for Application {}:
 {}'.format(application_name, run_configuration))

 # this call doesn't wait for an application to transfer to 'RUNNING'
 state.
 client_kda.start_application(ApplicationName=application_name,
 RunConfiguration=run_configuration)

 logger.info('Started Application: {}'.format(application_name))
 cfnresponse.send(event, context, cfnresponse.SUCCESS, {})
 except Exception as err:
 logger.error(err)
 cfnresponse.send(event,context, cfnresponse.FAILED, {"Data": str(err)})

Invoking the Lambda function 78

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 StartApplicationLambdaInvoke:
 Description: Invokes StartApplicationLambda to start an application.
 Type: AWS::CloudFormation::CustomResource
 DependsOn: StartApplicationLambda
 Version: "1.0"
 Properties:
 ServiceToken: !GetAtt StartApplicationLambda.Arn
 Region: !Ref AWS::Region
 ApplicationName: !Ref TestFlinkApplication
 ApplicationRestoreType: !Ref ApplicationRestoreType
 SnapshotName: !Ref SnapshotName
 AllowNonRestoredState: !Ref AllowNonRestoredState

Again, you might want to adjust the roles for Lambda as well as an application itself.

Before creating the stack above, don’t forget to specify your parameters.

parameters.json

[
 {
 "ParameterKey": "CodeContentBucketArn",
 "ParameterValue": "YOUR_BUCKET_ARN"
 },
 {
 "ParameterKey": "CodeContentFileKey",
 "ParameterValue": "YOUR_JAR"
 },
 {
 "ParameterKey": "ApplicationRestoreType",
 "ParameterValue": "SKIP_RESTORE_FROM_SNAPSHOT"
 },
 {
 "ParameterKey": "AllowNonRestoredState",
 "ParameterValue": "true"
 }
]

Replace YOUR_BUCKET_ARN and YOUR_JAR with your specific requirements. You can follow this
guide to create an Amazon S3 bucket and an application jar.

Now create the stack (replace YOUR_REGION with a region of your choice, e.g. us-east-1):

Invoking the Lambda function 79

https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws cloudformation create-stack --region YOUR_REGION --template-body "file://
stack.yaml" --parameters "file://parameters.json" --stack-name "TestManaged Service for
 Apache FlinkStack" --capabilities CAPABILITY_NAMED_IAM

You can now navigate to https://console.aws.amazon.com/cloudformation and view the progress.
Once created you should see your Flink application in Starting state. It may take a few minutes
until it will start Running.

For more information, see the following:

• Four ways to retrieve any Amazon service property using Amazon CloudFormation (Part 1 of 3).

• Walkthrough: Looking up Amazon Machine Image IDs.

Using the Apache Flink Dashboard with Managed Service for
Apache Flink

You can use your application's Apache Flink Dashboard to monitor your Managed Service for
Apache Flink application's health. Your application's dashboard shows the following information:

• Resources in use, including Task Managers and Task Slots.

• Information about Jobs, including those that are running, completed, canceled, and failed.

For information about Apache Flink Task Managers, Task Slots, and Jobs, see Apache Flink
Architecture on the Apache Flink website.

Note the following about using the Apache Flink Dashboard with Managed Service for Apache Flink
applications:

• The Apache Flink Dashboard for Managed Service for Apache Flink applications is read-only. You
can't make changes to your Managed Service for Apache Flink application using the Apache Flink
Dashboard.

• The Apache Flink Dashboard is not compatible with Microsoft Internet Explorer.

Apache Flink Dashboard 80

https://console.aws.amazon.com/cloudformation
https://aws.amazon.com/blogs/mt/four-ways-to-retrieve-any-aws-service-property-using-aws-cloudformation-part-1/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/walkthrough-custom-resources-lambda-lookup-amiids.html
https://flink.apache.org/what-is-flink/flink-architecture/
https://flink.apache.org/what-is-flink/flink-architecture/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Accessing your application's Apache Flink Dashboard

You can access your application's Apache Flink Dashboard either through the Managed Service for
Apache Flink console, or by requesting a secure URL endpoint using the CLI.

Accessing your application's Apache Flink Dashboard using the Managed Service
for Apache Flink console

To access your application's Apache Flink Dashboard from the console, choose Apache Flink
Dashboard on your application's page.

Note

When you open the dashboard from the Managed Service for Apache Flink console, the
URL that the console generates will be valid for 12 hours.

Accessing your application's Apache Flink Dashboard using the Managed Service
for Apache Flink CLI

You can use the Managed Service for Apache Flink CLI to generate a URL to access your application
dashboard. The URL that you generate is valid for a specified amount of time.

Note

If you don't access the generated URL within three minutes, it will no longer be valid.

You generate your dashboard URL using the CreateApplicationPresignedUrl action. You specify the
following parameters for the action:

• The application name

• The time in seconds that the URL will be valid

• You specify FLINK_DASHBOARD_URL as the URL type.

Accessing your application's Apache Flink Dashboard 81

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplicationPresignedUrl.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Release versions

This topic contains information about the features supported and component versions
recommended for the each release of Managed Service for Apache Flink.

Topics

• Amazon Managed Service for Apache Flink 1.18 (recommended version)

• Amazon Managed Service for Apache Flink 1.15

• Earlier version information for Managed Service for Apache Flink

Amazon Managed Service for Apache Flink 1.18 (recommended
version)

Managed Service for Apache Flink now supports Apache Flink version 1.18.1. Learn about the key
new features and changes introduced with Managed Service for Apache Flink support of Apache
Flink 1.18.1.

Note

If you are using an earlier supported version of Apache Flink and want to upgrade your
existing applications to Apache Flink 1.18.1, you can do so using in-place Apache Flink
version upgrades. With in-place version upgrades, you retain application traceability
against a single ARN across Apache Flink versions, including snapshots, logs, metrics, tags,
Flink configurations, and more. You can use this feature in RUNNING and READY state. For
more information, see In-place version upgrades for Apache Flink.

Supported Features Description Apache Flink documentation
reference

Opensearch connector This connector includes a sink
that provides at-least-once
guarantees.

github: Opensearch
Connector

Amazon Managed Service for Apache Flink 1.18 (recommended) 82

https://github.com/apache/flink-connector-opensearch/blob/main/docs/content/docs/connectors/datastream/opensearch.md
https://github.com/apache/flink-connector-opensearch/blob/main/docs/content/docs/connectors/datastream/opensearch.md

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Supported Features Description Apache Flink documentation
reference

Amazon DynamoDB
connector

This connector includes a sink
that provides at-least-once
guarantees.

Amazon DynamoDB Sink

MongoDB connector This connector includes a
source and sink that provide
at-least-once guarantees.

MongoDB Connector

Decouple Hive with Flink
planner

You can use the Hive dialect
directly without the extra JAR
swapping.

FLINK-26603: Decouple Hive
with Flink planner

Disable WAL in RocksDBWr
iteBatchWrapper by default

This provides faster recovery
times.

FLINK-32326: Disable WAL in
RocksDBWriteBatchWrapper
by default

Improve the watermark
aggregation performance
when enabling the watermark
alignment

Improves the watermark
aggregation performance
when enabling the watermark
alignment, and adds the
related benchmark.

FLINK-32524: Watermark
aggregation performance

Make watermark alignment
ready for production use

Removes risk of large jobs
overloading JobManager

FLINK-32548: Make
watermark alignment ready

Configurable RateLimit
ingStratey for Async Sink

RateLimitingStrategy lets
you configure the decision of
what to scale, when to scale,
and how much to scale.

FLIP-242: Introduce configura
ble RateLimitingStrategy for
Async Sink

Bulk fetch table and column
statistics

Improved query performance. FLIP-247: Bulk fetch of table
and column statistics for
given partitions

Amazon Managed Service for Apache Flink 1.18 (recommended) 83

https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/mongodb/
https://issues.apache.org/jira/browse/FLINK-26603
https://issues.apache.org/jira/browse/FLINK-26603
https://issues.apache.org/jira/browse/FLINK-32326
https://issues.apache.org/jira/browse/FLINK-32326
https://issues.apache.org/jira/browse/FLINK-32326
https://issues.apache.org/jira/browse/FLINK-32420
https://issues.apache.org/jira/browse/FLINK-32420
https://issues.apache.org/jira/browse/FLINK-32548
https://issues.apache.org/jira/browse/FLINK-32548
https://cwiki.apache.org/confluence/display/FLINK/FLIP-242%3A+Introduce+configurable+RateLimitingStrategy+for+Async+Sink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-242%3A+Introduce+configurable+RateLimitingStrategy+for+Async+Sink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-242%3A+Introduce+configurable+RateLimitingStrategy+for+Async+Sink
https://cwiki.apache.org/confluence/display/FLINK/FLIP-247%3A+Bulk+fetch+of+table+and+column+statistics+for+given+partitions
https://cwiki.apache.org/confluence/display/FLINK/FLIP-247%3A+Bulk+fetch+of+table+and+column+statistics+for+given+partitions
https://cwiki.apache.org/confluence/display/FLINK/FLIP-247%3A+Bulk+fetch+of+table+and+column+statistics+for+given+partitions

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For the Apache Flink 1.18.1 release documentation, see Apache Flink 1.18.1 Release
Announcement.

Changes in Amazon Managed Service for Apache Flink with Apache
Flink 1.18

Akka replaced with Pekko

Apache Flink replaced Akka with Pekko in Apache Flink 1.18. This change is fully supported in
Managed Service for Apache Flink from Apache Flink 1.18.1 and later. You don't need to modify
your applications as a result of this change. For more information, see FLINK-32468: Replace Akka
by Pekko.

Support PyFlink Runtime execution in Thread Mode

This Apache Flink change introduces a new execution mode for the Pyflink Runtime framework,
Process Mode. Process Mode can now execute Python user-defined functions in the same thread
instead of a separate process.

Components

Component Version

Java 11 (recommended)

Scala Since version 1.15, Flink is Scala-agnostic. For
reference, MSF Flink 1.18 has been verified
against Scala 3.3 (LTS).

Managed Service for Apache Flink Flink
Runtime (aws-kinesisanalytics-runtime)

1.2.0

Amazon Kinesis Connector (flink-connector-k
inesis)[Source]

4.2.0-1.18

Amazon Kinesis Connector (flink-connector-k
inesis)[Sink]

4.2.0-1.18

Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 84

https://flink.apache.org/2024/01/19/apache-flink-1.18.1-release-announcement/
https://flink.apache.org/2024/01/19/apache-flink-1.18.1-release-announcement/
https://issues.apache.org/jira/browse/FLINK-32468
https://issues.apache.org/jira/browse/FLINK-32468
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-aws-kinesis-streams/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-aws-kinesis-streams/4.2.0-1.18

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Apache Beam (Beam applications only) As of March 1, 2024, there is no compatible
Apache Flink Runner for Flink 1.18. For more
information, see Flink Version Compatibility.

Bug fixes

State compression in Apache Flink 1.18.1

Apache Flink offers optional compression (default: off) for all checkpoints and savepoints. Apache
Flink identified a bug in Flink 1.18.1 where the operator state couldn't be properly restored when
snapshot compression was enabled. This could result in either data loss or inability to restore from
checkpoint. For more information, see FLINK-34063: When snapshot compression is enabled,
rescaling of a source operator leads to some splits getting lost.

To resolve this, Amazon Managed Service for Apache Flink has backported the fix that will be
included in future versions of Apache Flink. For more information, see github: Always flush
compression buffers.

Known issues

Apache Beam

There is no compatible Apache Flink Runner for Flink 1.18 in Apache Beam. For more information,
see Flink Version Compatibility.

Amazon Managed Service for Apache Flink Studio

Studio uses Apache Zeppelin notebooks to provide a single-interface development experience
for developing, debugging code, and running Apache Flink stream processing applications. An
upgrade is required to Zeppelin’s Flink Interpreter to enable support of Flink 1.18. This work is
scheduled with the Zeppelin community and we will update these notes when it is complete. You
can continue to use Flink 1.15 with Amazon Managed Service for Apache Flink Studio. For more
information, see Creating a Studio notebook.

Amazon Managed Service for Apache Flink 1.15

Managed Service for Apache Flink supports the following new features in Apache 1.15.2:

Bug fixes 85

https://aws.amazon.com/developer/language/python/
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://issues.apache.org/jira/browse/FLINK-34063
https://issues.apache.org/jira/browse/FLINK-34063
https://github.com/apache/flink/pull/24079
https://github.com/apache/flink/pull/24079
https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://docs.amazonaws.cn/managed-flink/latest/java/how-zeppelin-creating.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Feature Description Apache FLIP reference

Async Sink An Amazon contributed
framework for building async
destinations that allows
developers to build custom
Amazon connectors with less
than half the previous effort.
For more information, see The
Generic Asynchronous Base
Sink.

FLIP-171: Async Sink.

Kinesis Data Firehose Sink Amazon has contributed
a new Amazon Kinesis
Firehose Sink using the Async
framework.

Amazon Kinesis Data Firehose
Sink.

Stop with Savepoint Stop with Savepoint ensures
a clean stop operation, most
importantly supporting
exactly-once semantics for
customers that rely on them.

FLIP-34: Terminate/Suspend
Job with Savepoint.

Scala Decoupling Users can now leverage the
Java API from any Scala
version, including Scala
3. Customers will need to
bundle the Scala standard
library of their choice in their
Scala applications.

FLIP-28: Long-term goal of
making flink-table Scala-free.

Scala See Scala decoupling above FLIP-28: Long-term goal of
making flink-table Scala-free.

Unified Connector Metrics Flink has defined standard
metrics for jobs, tasks and
operators. Managed Service
for Apache Flink will continue

FLIP-33: Standardize
Connector Metrics and
FLIP-179: Expose Standardi
zed Operator Metrics.

Amazon Managed Service for Apache Flink 1.15 86

https://flink.apache.org/2022/05/06/async-sink-base.html
https://flink.apache.org/2022/05/06/async-sink-base.html
https://flink.apache.org/2022/05/06/async-sink-base.html
https://cwiki.apache.org/confluence/display/FLINK/FLIP-171%3A+Async+Sink
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=103090212
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=103090212
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://cwiki.apache.org/confluence/display/FLINK/FLIP-28%3A+Long-term+goal+of+making+flink-table+Scala-free
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/ops/metrics/
https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/ops/metrics/
https://cwiki.apache.org/confluence/display/FLINK/FLIP-33%3A+Standardize+Connector+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-33%3A+Standardize+Connector+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-179%3A+Expose+Standardized+Operator+Metrics
https://cwiki.apache.org/confluence/display/FLINK/FLIP-179%3A+Expose+Standardized+Operator+Metrics

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Feature Description Apache FLIP reference

to support sink and source
metrics and in 1.15 introduce
numRestarts in parallel
with fullRestarts for
Availability Metrics.

Checkpointing finished tasks This feature is enabled by
default in Flink 1.15 and
makes it possible to continue
performing checkpoints even
if parts of the job graph have
finished processing all data,
which might happen if it
contains bounded (batch)
sources.

FLIP-147: Support Checkpoin
ts After Tasks Finished.

Changes in Amazon Managed Service for Apache Flink with Apache
Flink 1.15

Studio notebooks

Managed Service for Apache Flink Studio now supports Apache Flink 1.15. Managed Service for
Apache Flink Studio utilizes Apache Zeppelin notebooks to provide a single-interface development
experience for developing, debugging code, and running Apache Flink stream processing
applications. You can learn more about Managed Service for Apache Flink Studio and how to get
started at Using a Studio notebook with Managed Service for Apache Flink.

EFO connector

When upgrading to Managed Service for Apache Flink version 1.15, ensure that you are using the
most recent EFO Connector, that is any version 1.15.3 or newer. For more information as to why,
see FLINK-29324.

Scala Decoupling

Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15 87

https://cwiki.apache.org/confluence/display/FLINK/FLIP-147%3A+Support+Checkpoints+After+Tasks+Finished
https://cwiki.apache.org/confluence/display/FLINK/FLIP-147%3A+Support+Checkpoints+After+Tasks+Finished
https://issues.apache.org/jira/browse/FLINK-29324

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Starting with Flink 1.15.2, you will need to bundle the Scala standard library of your choice in your
Scala applications.

Kinesis Data Firehose Sink

When upgrading to Managed Service for Apache Flink version 1.15, ensure that you are using the
most recent Amazon Kinesis Data Firehose Sink.

Kafka Connectors

When upgrading to Amazon Managed Service for Apache Flink for Apache Flink version 1.15,
ensure that you are using the most recent Kafka connector APIs. Apache Flink has deprecated
FlinkKafkaConsumer and FlinkKafkaProducer These APIs for the Kafka sink cannot commit to Kafka
for Flink 1.15. Ensure you are using KafkaSource and KafkaSink.

Components

Component Version

Java 11 (recommended)

Scala 2.12

Managed Service for Apache Flink Flink
Runtime (aws-kinesisanalytics-runtime)

1.2.0

Amazon Kinesis Connector (flink-connector-k
inesis)

1.15.4

Apache Beam (Beam applications only) 2.33.0, with Jackson version 2.12.2

Earlier version information for Managed Service for Apache
Flink

Note

This topic contains information about using Managed Service for Apache Flink with older
versions of Apache Flink. We recommend that you use Apache Flink version 1.18.1. For

Components 88

https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/connectors/datastream/firehose/
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-consumer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-producer
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-source
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-sink
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/1.15.4
https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kinesis/1.15.4
https://aws.amazon.com/developer/language/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

more information, see Amazon Managed Service for Apache Flink 1.18 (recommended
version).

Versions 1.15.2, 1.13.2, 1.11.1, 1.8.2 and 1.6.2 of Apache Flink are supported by Managed Service
for Apache Flink, but are no longer supported by the Apache Flink community.

This topic contains the following sections:

• Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions

• Building applications with Apache Flink 1.8.2

• Building applications with Apache Flink 1.6.2

• Upgrading applications

• Available connectors in Apache Flink 1.6.2 and 1.8.2

• Getting started: Flink 1.13.2

• Getting started: Flink 1.11.1

• Getting started: Flink 1.8.2

• Getting started: Flink 1.6.2

• Earlier version (legacy) examples for Managed Service for Apache Flink

Using the Apache Flink Kinesis Streams connector with previous
Apache Flink versions

The Apache Flink Kinesis Streams connector was not included in Apache Flink prior to version
1.11. In order for your application to use the Apache Flink Kinesis connector with previous
versions of Apache Flink, you must download, compile, and install the version of Apache Flink that
your application uses. This connector is used to consume data from a Kinesis stream used as an
application source, or to write data to a Kinesis stream used for application output.

Note

Ensure that you are building the connector with KPL version 0.14.0 or higher.

To download and install the Apache Flink version 1.8.2 source code, do the following:

Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions 89

https://mvnrepository.com/artifact/com.amazonaws/amazon-kinesis-producer/0.14.0

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Ensure that you have Apache Maven installed, and your JAVA_HOME environment variable
points to a JDK rather than a JRE. You can test your Apache Maven install with the following
command:

mvn -version

2. Download the Apache Flink version 1.8.2 source code:

wget https://archive.apache.org/dist/flink/flink-1.8.2/flink-1.8.2-src.tgz

3. Uncompress the Apache Flink source code:

tar -xvf flink-1.8.2-src.tgz

4. Change to the Apache Flink source code directory:

cd flink-1.8.2

5. Compile and install Apache Flink:

mvn clean install -Pinclude-kinesis -DskipTests

Note

If you are compiling Flink on Microsoft Windows, you need to add the -
Drat.skip=true parameter.

Building applications with Apache Flink 1.8.2

This section contains information about components that you use for building Managed Service for
Apache Flink applications that work with Apache Flink 1.8.2.

Use the following component versions for Managed Service for Apache Flink applications:

Component Version

Java 1.8 (recommended)

Building applications with Apache Flink 1.8.2 90

https://maven.apache.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Apache Flink 1.8.2

Managed Service for Apache Flink for Flink
Runtime (aws-kinesisanalytics-runtime)

1.0.1

Managed Service for Apache Flink Flink
Connectors (aws-kinesisanalytics-flink)

1.0.1

Apache Maven 3.1

To compile an application using Apache Flink 1.8.2, run Maven with the following parameter:

mvn package -Dflink.version=1.8.2

For an example of a pom.xml file for a Managed Service for Apache Flink application that uses
Apache Flink version 1.8.2, see the Managed Service for Apache Flink 1.8.2 Getting Started
Application.

For information about how to build and use application code for a Managed Service for Apache
Flink application, see Creating applications.

Building applications with Apache Flink 1.6.2

This section contains information about components that you use for building Managed Service for
Apache Flink applications that work with Apache Flink 1.6.2.

Use the following component versions for Managed Service for Apache Flink applications:

Component Version

Java 1.8 (recommended)

Amazon Java SDK 1.11.379

Apache Flink 1.6.2

Building applications with Apache Flink 1.6.2 91

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_8/pom.xml
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_8/pom.xml

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Component Version

Managed Service for Apache Flink for Flink
Runtime (aws-kinesisanalytics-runtime)

1.0.1

Managed Service for Apache Flink Flink
Connectors (aws-kinesisanalytics-flink)

1.0.1

Apache Maven 3.1

Apache Beam Not supported with Apache Flink 1.6.2.

Note

When using Managed Service for Apache Flink Runtime version 1.0.1, you specify the
version of Apache Flink in your pom.xml file rather than using the -Dflink.version
parameter when compiling your application code.

For an example of a pom.xml file for a Managed Service for Apache Flink application that uses
Apache Flink version 1.6.2, see the Managed Service for Apache Flink 1.6.2 Getting Started
Application.

For information about how to build and use application code for a Managed Service for Apache
Flink application, see Creating applications.

Upgrading applications

To upgrade the Apache Flink version of an Amazon Managed Service for Apache Flink application,
use the in-place Apache Flink version upgrade feature using the Amazon CLI, Amazon SDK, Amazon
CloudFormation, or the Amazon Web Services Management Console. For more information, see In-
place version upgrades for Apache Flink.

You can use this feature with any existing applications you use with Amazon Managed Service for
Apache Flink in READY or RUNNING state.

Available connectors in Apache Flink 1.6.2 and 1.8.2

The Apache Flink framework contains connectors for accessing data from a variety of sources.

Upgrading applications 92

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_6/pom.xml
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/blob/master/GettingStarted_1_6/pom.xml

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For information about connectors available in the Apache Flink 1.6.2 framework, see Connectors
(1.6.2) in the Apache Flink documentation (1.6.2).

• For information about connectors available in the Apache Flink 1.8.2 framework, see Connectors
(1.8.2) in the Apache Flink documentation (1.8.2).

Getting started: Flink 1.13.2

This section introduces you to the fundamental concepts of Managed Service for Apache Flink and
the DataStream API. It describes the available options for creating and testing your applications. It
also provides instructions for installing the necessary tools to complete the tutorials in this guide
and to create your first application.

Topics

• Components of a Managed Service for Apache Flink application

• Prerequisites for completing the exercises

• Step 1: Set up an Amazon account and create an administrator user

• Next step

• Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

• Step 3: Create and run a Managed Service for Apache Flink application

• Step 4: Clean up Amazon resources

• Step 5: Next steps

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Sources.

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see DataStream API operators.

Getting Started: Flink 1.13.2 93

https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Sinks.

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Java Development Kit (JDK) version 11. Set the JAVA_HOME environment variable to point to
your JDK install location.

• We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

• Git client. Install the Git client if you haven't already.

• Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Step 1: Set up an Amazon account and create an administrator user.

Step 1: Set up an Amazon account and create an administrator user

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Getting Started: Flink 1.13.2 94

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
http://www.amazonaws.cn/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Grant programmatic access

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web
Services Management Console. The Amazon APIs and the Amazon Command Line Interface require
access keys. Whenever possible, create temporary credentials that consist of an access key ID, a
secret access key, and a security token that indicates when the credentials expire.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

IAM Use short-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Using temporary credentials
with Amazon resources in the
IAM User Guide.

Getting Started: Flink 1.13.2 95

http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Managing access keys for IAM
users in the IAM User Guide.

Next step

Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

Next step

Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

In this step, you download and configure the Amazon CLI to use with Managed Service for Apache
Flink.

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the Amazon CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the Amazon Command Line Interface in
the Amazon Command Line Interface User Guide. To check the version of the Amazon CLI,
run the following command:

aws --version

Getting Started: Flink 1.13.2 96

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/cli/latest/userguide/installing.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The exercises in this tutorial require the following Amazon CLI version or later:

aws-cli/1.16.63

To set up the Amazon CLI

1. Download and configure the Amazon CLI. For instructions, see the following topics in the
Amazon Command Line Interface User Guide:

• Installing the Amazon Command Line Interface

• Configuring the Amazon CLI

2. Add a named profile for the administrator user in the Amazon CLI config file. You use this
profile when executing the Amazon CLI commands. For more information about named
profiles, see Named Profiles in the Amazon Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available Amazon Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an Amazon account and the Amazon CLI, you can try the next exercise, in which
you configure a sample application and test the end-to-end setup.

Getting Started: Flink 1.13.2 97

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-multiple-profiles.html
https://docs.amazonaws.cn/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

• Create two Amazon Kinesis data streams

• Write sample records to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Next step

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following Amazon CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (Amazon CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream Amazon CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Getting Started: Flink 1.13.2 98

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3
 STREAM_NAME = "ExampleInputStream"
 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}
 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")
 if __name__ == '__main__':

Getting Started: Flink 1.13.2 99

http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Later in the tutorial, you run the stock.py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/GettingStarted
directory.

Note the following about the application code:

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Runtime properties.

Getting Started: Flink 1.13.2 100

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package -Dflink.version=1.13.2

• Use your development environment. See your development environment documentation for
details.

Note

The provided source code relies on libraries from Java 11.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the Amazon CLI, you specify your
code content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

Getting Started: Flink 1.13.2 101

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To upload the application code

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose Create bucket.

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the Amazon CLI.

Note

When you create the application using the console, your Amazon Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the Amazon CLI, you create these resources separately.

Topics

• Create and run the application (console)

• Create and run the application (Amazon CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Getting Started: Flink 1.13.2 102

https://console.amazonaws.cn/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create the Application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink version 1.13.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

Getting Started: Flink 1.13.2 103

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-java-
apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [

Getting Started: Flink 1.13.2 104

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

flink.inputstream.
initpos

LATEST

ProducerConfigProp
erties

aws.region us-west-2

Getting Started: Flink 1.13.2 105

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

ProducerConfigProp
erties

AggregationEnabled false

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

6. For CloudWatch logging, select the Enable check box.

7. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Getting Started: Flink 1.13.2 106

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the application (Amazon CLI)

In this section, you use the Amazon CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 Amazon CLI
command to create and interact with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",

Getting Started: Flink 1.13.2 107

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Note

To access other Amazon services, you can use the Amazon SDK for Java. Managed Service
for Apache Flink automatically sets the credentials required by the SDK to those of the
service execution IAM role that is associated with your application. No additional steps are
needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

Getting Started: Flink 1.13.2 108

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose Amazon Service. Under Choose the service
that will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a permissions policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix

Getting Started: Flink 1.13.2 109

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

Getting Started: Flink 1.13.2 110

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the Application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the Application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "test"

Getting Started: Flink 1.13.2 111

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch Logging Option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Setting up
logging”.

Update Environment Properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }

Getting Started: Flink 1.13.2 112

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the Application Code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication Amazon CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {

Getting Started: Flink 1.13.2 113

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Next step

Step 4: Clean up Amazon resources

Step 4: Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

• Next step

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

Getting Started: Flink 1.13.2 114

https://console.amazonaws.cn/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Next step

Step 5: Next steps

Getting Started: Flink 1.13.2 115

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Step 5: Next steps

Now that you've created and run a basic Managed Service for Apache Flink application, see the
following resources for more advanced Managed Service for Apache Flink solutions.

• The Amazon Streaming Data Solution for Amazon Kinesis: The Amazon Streaming Data
Solution for Amazon Kinesis automatically configures the Amazon services necessary to easily
capture, store, process, and deliver streaming data. The solution provides multiple options for
solving streaming data use cases. The Managed Service for Apache Flink option provides an
end-to-end streaming ETL example demonstrating a real-world application that runs analytical
operations on simulated New York taxi data. The solution sets up all necessary Amazon resources
such as IAM roles and policies, a CloudWatch dashboard, and CloudWatch alarms.

• Amazon Streaming Data Solution for Amazon MSK: The Amazon Streaming Data Solution for
Amazon MSK provides Amazon CloudFormation templates where data flows through producers,
streaming storage, consumers, and destinations.

• Clickstream Lab with Apache Flink and Apache Kafka: An end to end lab for clickstream use
cases using Amazon Managed Streaming for Apache Kafka for streaming storage and Managed
Service for Apache Flink for Apache Flink applications for stream processing.

• Amazon Managed Service for Apache Flink Workshop: In this workshop, you build an end-to-
end streaming architecture to ingest, analyze, and visualize streaming data in near real-time. You
set out to improve the operations of a taxi company in New York City. You analyze the telemetry
data of a taxi fleet in New York City in near real-time to optimize their fleet operations.

• Learn Flink: Hands On Training: Offical introductory Apache Flink training that gets you started
writing scalable streaming ETL, analytics, and event-driven applications.

Note

Be aware that Managed Service for Apache Flink does not support the Apache Flink
version (1.12) used in this training. You can use Flink 1.15.2 in Flink Managed Service for
Apache Flink.

Getting started: Flink 1.11.1

This topic contains a version of the Getting started (DataStream API) Tutorial that uses Apache
Flink 1.11.1.

Getting Started: Flink 1.11.1 116

https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-kinesis/
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/
https://amazonmsk-labs.workshop.aws/en/mskkdaflinklab.html
https://catalog.workshops.aws/managed-flink
https://ci.apache.org/projects/flink/flink-docs-master/learn-flink/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This section introduces you to the fundamental concepts of Managed Service for Apache Flink and
the DataStream API. It describes the available options for creating and testing your applications. It
also provides instructions for installing the necessary tools to complete the tutorials in this guide
and to create your first application.

Topics

• Components of a Managed Service for Apache Flink application

• Prerequisites for completing the exercises

• Step 1: Set up an Amazon account and create an administrator user

• Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

• Step 3: Create and run a Managed Service for Apache Flink application

• Step 4: Clean up Amazon resources

• Step 5: Next steps

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

An Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Sources.

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see DataStream API operators.

• Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Sinks.

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the

Getting Started: Flink 1.11.1 117

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Java Development Kit (JDK) version 11. Set the JAVA_HOME environment variable to point to
your JDK install location.

• We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

• Git client. Install the Git client if you haven't already.

• Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Step 1: Set up an Amazon account and create an administrator user.

Step 1: Set up an Amazon account and create an administrator user

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

Getting Started: Flink 1.11.1 118

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/earlier-gs-1_11-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Grant programmatic access

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web
Services Management Console. The Amazon APIs and the Amazon Command Line Interface require
access keys. Whenever possible, create temporary credentials that consist of an access key ID, a
secret access key, and a security token that indicates when the credentials expire.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

IAM Use short-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Using temporary credentials
with Amazon resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Managing access keys for IAM
users in the IAM User Guide.

Getting Started: Flink 1.11.1 119

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Next step

Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

In this step, you download and configure the Amazon CLI to use with Managed Service for Apache
Flink.

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the Amazon CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the Amazon Command Line Interface in
the Amazon Command Line Interface User Guide. To check the version of the Amazon CLI,
run the following command:

aws --version

The exercises in this tutorial require the following Amazon CLI version or later:

aws-cli/1.16.63

To set up the Amazon CLI

1. Download and configure the Amazon CLI. For instructions, see the following topics in the
Amazon Command Line Interface User Guide:

• Installing the Amazon Command Line Interface

• Configuring the Amazon CLI

2. Add a named profile for the administrator user in the Amazon CLI config file. You use this
profile when executing the Amazon CLI commands. For more information about named
profiles, see Named Profiles in the Amazon Command Line Interface User Guide.

Getting Started: Flink 1.11.1 120

https://docs.amazonaws.cn/cli/latest/userguide/installing.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-earlier-gs-1_11.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-multiple-profiles.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available Amazon Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an Amazon account and the Amazon CLI, you can try the next exercise, in which
you configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

• Create two Amazon Kinesis data streams

• Write sample records to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

Getting Started: Flink 1.11.1 121

https://docs.amazonaws.cn/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Create and run the Managed Service for Apache Flink application

• Next step

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following Amazon CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (Amazon CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream Amazon CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Getting Started: Flink 1.11.1 122

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

2. Later in the tutorial, you run the stock.py script to send data to the application.

$ python stock.py

Getting Started: Flink 1.11.1 123

https://aws.amazon.com/sdk-for-python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/GettingStarted
directory.

Note the following about the application code:

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

Getting Started: Flink 1.11.1 124

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package -Dflink.version=1.11.3

• Use your development environment. See your development environment documentation for
details.

Note

The provided source code relies on libraries from Java 11. Ensure that your project's
Java version is 11.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the Amazon CLI, you specify your
code content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose Create bucket.

Getting Started: Flink 1.11.1 125

https://console.amazonaws.cn/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the Amazon CLI.

Note

When you create the application using the console, your Amazon Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the Amazon CLI, you create these resources separately.

Topics

• Create and run the application (console)

• Create and run the application (Amazon CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

Getting Started: Flink 1.11.1 126

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink version 1.11 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [

Getting Started: Flink 1.11.1 127

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-java-
apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },

Getting Started: Flink 1.11.1 128

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, for Group ID, enter ProducerConfigProperties.

5. Enter the following application properties and values:

Group ID Key Value

ProducerConfigProp
erties

flink.inputstream.
initpos

LATEST

ProducerConfigProp
erties

aws.region us-west-2

Getting Started: Flink 1.11.1 129

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

ProducerConfigProp
erties

AggregationEnabled false

6. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

7. For CloudWatch logging, select the Enable check box.

8. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Getting Started: Flink 1.11.1 130

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the application (Amazon CLI)

In this section, you use the Amazon CLI to create and run the Managed Service for Apache Flink
application. a Managed Service for Apache Flink uses the kinesisanalyticsv2 Amazon CLI
command to create and interact with Managed Service for Apache Flink applications.

Create a Permissions Policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",

Getting Started: Flink 1.11.1 131

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Note

To access other Amazon services, you can use the Amazon SDK for Java. Managed Service
for Apache Flink automatically sets the credentials required by the SDK to those of the
service execution IAM role that is associated with your application. No additional steps are
needed.

Create an IAM Role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

Getting Started: Flink 1.11.1 132

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose Amazon Service. Under Choose the service
that will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a Permissions Policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix

Getting Started: Flink 1.11.1 133

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_11",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

Getting Started: Flink 1.11.1 134

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{

Getting Started: Flink 1.11.1 135

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationName": "test"
}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Setting up
logging”.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"

Getting Started: Flink 1.11.1 136

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication Amazon CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {

Getting Started: Flink 1.11.1 137

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Next step

Step 4: Clean up Amazon resources

Step 4: Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete rour IAM resources

• Delete your CloudWatch resources

• Next step

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

Getting Started: Flink 1.11.1 138

https://console.amazonaws.cn/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete rour IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Next step

Step 5: Next steps

Getting Started: Flink 1.11.1 139

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Step 5: Next steps

Now that you've created and run a basic Managed Service for Apache Flink application, see the
following resources for more advanced Managed Service for Apache Flink solutions.

• The Amazon Streaming Data Solution for Amazon Kinesis: The Amazon Streaming Data
Solution for Amazon Kinesis automatically configures the Amazon services necessary to easily
capture, store, process, and deliver streaming data. The solution provides multiple options for
solving streaming data use cases. The Managed Service for Apache Flink option provides an
end-to-end streaming ETL example demonstrating a real-world application that runs analytical
operations on simulated New York taxi data. The solution sets up all necessary Amazon resources
such as IAM roles and policies, a CloudWatch dashboard, and CloudWatch alarms.

• Amazon Streaming Data Solution for Amazon MSK: The Amazon Streaming Data Solution for
Amazon MSK provides Amazon CloudFormation templates where data flows through producers,
streaming storage, consumers, and destinations.

• Clickstream Lab with Apache Flink and Apache Kafka: An end to end lab for clickstream use
cases using Amazon Managed Streaming for Apache Kafka for streaming storage and Managed
Service for Apache Flink for Apache Flink applications for stream processing.

• Amazon Managed Service for Apache Flink Workshop: In this workshop, you build an end-to-
end streaming architecture to ingest, analyze, and visualize streaming data in near real-time. You
set out to improve the operations of a taxi company in New York City. You analyze the telemetry
data of a taxi fleet in New York City in near real-time to optimize their fleet operations.

• Learn Flink: Hands On Training: Offical introductory Apache Flink training that gets you started
writing scalable streaming ETL, analytics, and event-driven applications.

Note

Be aware that Managed Service for Apache Flink does not support the Apache Flink
version (1.12) used in this training. You can use Flink 1.15.2 in Flink Managed Service for
Apache Flink.

• Apache Flink Code Examples: A GitHub repository of a wide variety of Apache Flink application
examples.

Getting Started: Flink 1.11.1 140

https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-kinesis/
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/
https://amazonmsk-labs.workshop.aws/en/mskkdaflinklab.html
https://catalog.workshops.aws/managed-flink
https://ci.apache.org/projects/flink/flink-docs-master/learn-flink/
https://github.com/apache/flink/tree/master/flink-examples/flink-examples-streaming/src/main/java/org/apache/flink/streaming/examples

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Getting started: Flink 1.8.2

This topic contains a version of the Getting started (DataStream API) Tutorial that uses Apache
Flink 1.8.2.

Topics

• Components of Managed Service for Apache Flink application

• Prerequisites for completing the exercises

• Step 1: Set up an Amazon account and create an administrator user

• Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

• Step 3: Create and run a Managed Service for Apache Flink application

• Step 4: Clean up Amazon resources

Components of Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

An Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Sources.

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see DataStream API operators.

• Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Sinks.

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Getting started: Flink 1.8.2 141

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Java Development Kit (JDK) version 8. Set the JAVA_HOME environment variable to point to your
JDK install location.

• To use the Apache Flink Kinesis connector in this tutorial, you must download and install Apache
Flink. For details, see Using the Apache Flink Kinesis Streams connector with previous Apache
Flink versions.

• We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

• Git client. Install the Git client if you haven't already.

• Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Step 1: Set up an Amazon account and create an administrator user.

Step 1: Set up an Amazon account and create an administrator user

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Getting started: Flink 1.8.2 142

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Grant programmatic access

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web
Services Management Console. The Amazon APIs and the Amazon Command Line Interface require
access keys. Whenever possible, create temporary credentials that consist of an access key ID, a
secret access key, and a security token that indicates when the credentials expire.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

IAM Use short-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Using temporary credentials
with Amazon resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests

Following the instructions in
Managing access keys for IAM
users in the IAM User Guide.

Getting started: Flink 1.8.2 143

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

In this step, you download and configure the Amazon CLI to use with Managed Service for Apache
Flink.

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the Amazon CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the Amazon Command Line Interface in
the Amazon Command Line Interface User Guide. To check the version of the Amazon CLI,
run the following command:

aws --version

The exercises in this tutorial require the following Amazon CLI version or later:

aws-cli/1.16.63

To set up the Amazon CLI

1. Download and configure the Amazon CLI. For instructions, see the following topics in the
Amazon Command Line Interface User Guide:

• Installing the Amazon Command Line Interface

Getting started: Flink 1.8.2 144

https://docs.amazonaws.cn/cli/latest/userguide/installing.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-set-up.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Configuring the Amazon CLI

2. Add a named profile for the administrator user in the Amazon CLI config file. You use this
profile when executing the Amazon CLI commands. For more information about named
profiles, see Named Profiles in the Amazon Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available Regions, see Regions and Endpoints in the Amazon Web Services General
Reference.

Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Amazon Region, change the Region in the code and commands for this
tutorial to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an Amazon account and the Amazon CLI, you can try the next exercise, in which
you configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

• Create two Amazon Kinesis data streams

• Write sample records to the input stream

Getting started: Flink 1.8.2 145

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-multiple-profiles.html
https://docs.amazonaws.cn/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Next step

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following Amazon CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (Amazon CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream Amazon CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Getting started: Flink 1.8.2 146

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

2. Later in the tutorial, you run the stock.py script to send data to the application.

Getting started: Flink 1.8.2 147

http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/
GettingStarted_1_8 directory.

Note the following about the application code:

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Runtime properties.

Getting started: Flink 1.8.2 148

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

Note

In order to use the Kinesis connector with versions of Apache Flink prior to 1.11, you
need to download, build, and install Apache Maven. For more information, see the
section called “Using the Apache Flink Kinesis Streams connector with previous Apache
Flink versions”.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package -Dflink.version=1.8.2

• Use your development environment. See your development environment documentation for
details.

Note

The provided source code relies on libraries from Java 1.8. Ensure that your project's
Java version is 1.8.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the Amazon CLI, you specify your
code content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

Getting started: Flink 1.8.2 149

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose Create bucket.

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the Amazon CLI.

Note

When you create the application using the console, your Amazon Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the Amazon CLI, you create these resources separately.

Topics

Getting started: Flink 1.8.2 150

https://console.amazonaws.cn/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Create and run the application (console)

• Create and run the application (Amazon CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink 1.8 (Recommended Version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

Getting started: Flink 1.8.2 151

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-java-
apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]

Getting started: Flink 1.8.2 152

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following application properties and values:

Getting started: Flink 1.8.2 153

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

ProducerConfigProp
erties

flink.inputstream.
initpos

LATEST

ProducerConfigProp
erties

aws.region us-west-2

ProducerConfigProp
erties

AggregationEnabled false

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

6. For CloudWatch logging, select the Enable check box.

7. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

1. On the MyApplication page, choose Run. Confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Getting started: Flink 1.8.2 154

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (Amazon CLI)

In this section, you use the Amazon CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 Amazon CLI
command to create and interact with Managed Service for Apache Flink applications.

Create a Permissions Policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [

Getting started: Flink 1.8.2 155

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Note

To access other Amazon services, you can use the Amazon SDK for Java. Managed Service
for Apache Flink automatically sets the credentials required by the SDK to those of the
service execution IAM role that is associated with your application. No additional steps are
needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants

Getting started: Flink 1.8.2 156

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose Amazon Service. Under Choose the service
that will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a Permissions Policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

Getting started: Flink 1.8.2 157

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_8",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }

Getting started: Flink 1.8.2 158

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

Getting started: Flink 1.8.2 159

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "test"
}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Setting up
logging”.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",

Getting started: Flink 1.8.2 160

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication Amazon CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications

Getting started: Flink 1.8.2 161

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Next step

Step 4: Clean up Amazon resources

Step 4: Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

Getting started: Flink 1.8.2 162

https://console.amazonaws.cn/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Choose Configure.

4. In the Snapshots section, choose Disable and then choose Update.

5. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

Getting started: Flink 1.8.2 163

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Getting started: Flink 1.6.2

This topic contains a version of the Getting started (DataStream API) Tutorial that uses Apache
Flink 1.6.2.

Topics

• Components of a Managed Service for Apache Flink application

• Prerequisites for completing the exercises

• Step 1: Set up an Amazon account and create an administrator user

• Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

• Step 3: Create and run a Managed Service for Apache Flink application

• Step 4: Clean up Amazon resources

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

a Managed Service for Apache Flink has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Sources.

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see DataStream API operators.

• Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Sinks.

Getting started: Flink 1.6.2 164

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

After you create, compile, and package your application, you upload the code package to an
Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Java Development Kit (JDK) version 8. Set the JAVA_HOME environment variable to point to your
JDK install location.

• We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

• Git Client. Install the Git client if you haven't already.

• Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Step 1: Set up an Amazon account and create an administrator user.

Step 1: Set up an Amazon account and create an administrator user

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Getting started: Flink 1.6.2 165

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Grant programmatic access

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web
Services Management Console. The Amazon APIs and the Amazon Command Line Interface require
access keys. Whenever possible, create temporary credentials that consist of an access key ID, a
secret access key, and a security token that indicates when the credentials expire.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

IAM Use short-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Using temporary credentials
with Amazon resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests

Following the instructions in
Managing access keys for IAM
users in the IAM User Guide.

Getting started: Flink 1.6.2 166

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

In this step, you download and configure the Amazon CLI to use with a Managed Service for
Apache Flink.

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the Amazon CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the Amazon Command Line Interface in
the Amazon Command Line Interface User Guide. To check the version of the Amazon CLI,
run the following command:

aws --version

The exercises in this tutorial require the following Amazon CLI version or later:

aws-cli/1.16.63

To set up the Amazon CLI

1. Download and configure the Amazon CLI. For instructions, see the following topics in the
Amazon Command Line Interface User Guide:

• Installing the Amazon Command Line Interface

Getting started: Flink 1.6.2 167

https://docs.amazonaws.cn/cli/latest/userguide/installing.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-set-up.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Configuring the Amazon CLI

2. Add a named profile for the administrator user in the Amazon CLI config file. You use this
profile when executing the Amazon CLI commands. For more information about named
profiles, see Named Profiles in the Amazon Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available Amazon Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

aws help

After you set up an Amazon account and the Amazon CLI, you can try the next exercise, in which
you configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

• Create two Amazon Kinesis data streams

• Write sample records to the input stream

Getting started: Flink 1.6.2 168

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-multiple-profiles.html
https://docs.amazonaws.cn/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following Amazon CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (Amazon CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream Amazon CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Getting started: Flink 1.6.2 169

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

2. Later in the tutorial, you run the stock.py script to send data to the application.

$ python stock.py

Getting started: Flink 1.6.2 170

http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/
GettingStarted_1_6 directory.

Note the following about the application code:

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the a Managed Service for Apache Flink libraries.

• The BasicStreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

Getting started: Flink 1.6.2 171

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

In order to use the Kinesis connector with versions of Apache Flink prior to 1.11, you
need to download the source code for the connector and build it as described in the
Apache Flink documentation.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package

Note

The -Dflink.version parameter is not required for Managed Service for Apache
Flink Runtime version 1.0.1; it is only required for version 1.1.0 and later. For more
information, see the section called “Specifying your application's Apache Flink
version”.

• Use your development environment. See your development environment documentation for
details.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the Amazon CLI, you specify your
code content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Getting started: Flink 1.6.2 172

https://ci.apache.org/projects/flink/flink-docs-release-1.6/dev/connectors/kinesis.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose Create bucket.

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. In the Set permissions step, keep the settings as they are. Choose Next.

10. In the Set properties step, keep the settings as they are. Choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the Amazon CLI.

Note

When you create the application using the console, your Amazon Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the Amazon CLI, you create these resources separately.

Topics

• Create and run the application (console)

• Create and run the application (Amazon CLI)

Getting started: Flink 1.6.2 173

https://console.amazonaws.cn/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.8.2 or 1.6.2.

• Change the version pulldown to Apache Flink 1.6.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

Getting started: Flink 1.6.2 174

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/java-getting-started-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },

Getting started: Flink 1.6.2 175

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter java-getting-started-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following application properties and values:

Getting started: Flink 1.6.2 176

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

ProducerConfigProp
erties

flink.inputstream.
initpos

LATEST

ProducerConfigProp
erties

aws.region us-west-2

ProducerConfigProp
erties

AggregationEnabled false

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

6. For CloudWatch logging, select the Enable check box.

7. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

1. On the MyApplication page, choose Run. Confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Getting started: Flink 1.6.2 177

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the application (Amazon CLI)

In this section, you use the Amazon CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 Amazon CLI
command to create and interact with Managed Service for Apache Flink applications.

Create a permissions policy

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]

Getting started: Flink 1.6.2 178

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Note

To access other Amazon services, you can use the Amazon SDK for Java. Managed Service
for Apache Flink automatically sets the credentials required by the SDK to those of the
service execution IAM role that is associated with your application. No additional steps are
needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

Getting started: Flink 1.6.2 179

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose Amazon Service. Under Choose the service
that will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a permissions policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Getting started: Flink 1.6.2 180

https://console.amazonaws.cn/iam/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_6",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "java-getting-started-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

Getting started: Flink 1.6.2 181

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

Getting started: Flink 1.6.2 182

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "test"
}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Setting up
logging”.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {

Getting started: Flink 1.6.2 183

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication Amazon CLI action.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "java-getting-started-1.0.jar"
 }

Getting started: Flink 1.6.2 184

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 }
 }
}

Step 4: Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. Choose Configure.

4. In the Snapshots section, choose Disable and then choose Update.

5. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Getting started: Flink 1.6.2 185

https://console.amazonaws.cn/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Earlier version (legacy) examples for Managed Service for Apache Flink

Note

For current examples, see Examples.

This section provides examples of creating and working with applications in Managed Service for
Apache Flink. They include example code and step-by-step instructions to help you create Managed
Service for Apache Flink applications and test your results.

Legacy examples 186

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Before you explore these examples, we recommend that you first review the following:

• How it works

• Getting started (DataStream API)

Note

These examples assume that you are using the US West (Oregon) Region (us-west-2). If
you are using a different Region, update your application code, commands, and IAM roles
appropriately.

Topics

• DataStream API examples

• Python examples

• Scala examples

DataStream API examples

The following examples demonstrate how to create applications using the Apache Flink
DataStream API.

Topics

• Example: Tumbling window

• Example: Sliding window

• Example: Writing to an Amazon S3 bucket

• Tutorial: Using a Managed Service for Apache Flink application to replicate data from one topic
in an MSK cluster to another in a VPC

• Example: Use an EFO consumer with a Kinesis data stream

• Example: Writing to Firehose

• Example: Read from a Kinesis stream in a different account

• Tutorial: Using a custom truststore with Amazon MSK

Legacy examples 187

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Example: Tumbling window

Note

For current examples, see Examples.

In this exercise, you create a Managed Service for Apache Flink application that aggregates
data using a tumbling window. Aggregration is enabled by default in Flink. To disable it, use the
following:

sink.producer.aggregation-enabled' = 'false'

Note

To set up required prerequisites for this exercise, first complete the Getting started
(DataStream API) exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up Amazon resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

Legacy examples 188

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)

Legacy examples 189

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html
http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/TumblingWindow
directory.

The application code is located in the TumblingWindowStreamingJob.java file. Note the
following about the application code:

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Add the following import statement:

Legacy examples 190

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

import
 org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows; //
flink 1.13 onward

• The application uses the timeWindow operator to find the count of values for each stock symbol
over a 5-second tumbling window. The following code creates the operator and sends the
aggregated data to a new Kinesis Data Streams sink:

input.flatMap(new Tokenizer()) // Tokenizer for generating words
 .keyBy(0) // Logically partition the stream for each word

 .window(TumblingProcessingTimeWindows.of(Time.seconds(5))) //
Flink 1.13 onward
 .sum(1) // Sum the number of words per partition
 .map(value -> value.f0 + "," + value.f1.toString() + "\n")
 .addSink(createSinkFromStaticConfig());

Compile the application code

To compile the application, do the following:

1. Install Java and Maven if you haven't already. For more information, see Prerequisites in the
Getting started (DataStream API) tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Legacy examples 191

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Legacy examples 192

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/aws-kinesis-analytics-java-
apps-1.0.jar"
]
 },
 {

Legacy examples 193

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

Legacy examples 194

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

5. For CloudWatch logging, select the Enable check box.

6. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Run the application

1. On the MyApplication page, choose Run. Leave the Run without snapshot option selected,
and confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Tumbling
Window tutorial.

Legacy examples 195

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

Legacy examples 196

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Sliding window

Note

For current examples, see Examples.

Note

To set up required prerequisites for this exercise, first complete the Getting started
(DataStream API) exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up Amazon resources

Legacy examples 197

https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream).

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():

Legacy examples 198

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html
http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 return {
 "EVENT_TIME": datetime.datetime.now().isoformat(),
 "TICKER": random.choice(["AAPL", "AMZN", "MSFT", "INTC", "TBV"]),
 "PRICE": round(random.random() * 100, 2),
 }

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name, Data=json.dumps(data),
 PartitionKey="partitionkey"
)

if __name__ == "__main__":
 generate(STREAM_NAME, boto3.client("kinesis"))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/SlidingWindow
directory.

Legacy examples 199

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The application code is located in the SlidingWindowStreamingJobWithParallelism.java
file. Note the following about the application code:

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• The application uses the timeWindow operator to find the minimum value for each stock symbol
over a 10-second window that slides by 5 seconds. The following code creates the operator and
sends the aggregated data to a new Kinesis Data Streams sink:

• Add the following import statement:

import
 org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows; //
flink 1.13 onward

• The application uses the timeWindow operator to find the count of values for each stock symbol
over a 5-second tumbling window. The following code creates the operator and sends the
aggregated data to a new Kinesis Data Streams sink:

input.flatMap(new Tokenizer()) // Tokenizer for generating words
 .keyBy(0) // Logically partition the stream for each word

 .window(TumblingProcessingTimeWindows.of(Time.seconds(5))) //Flink 1.13 onward
 .sum(1) // Sum the number of words per partition
 .map(value -> value.f0 + "," + value.f1.toString() + "\n")
 .addSink(createSinkFromStaticConfig());

Compile the application code

To compile the application, do the following:

1. Install Java and Maven if you haven't already. For more information, see Prerequisites in the
Getting started (DataStream API) tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Legacy examples 200

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket that you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and then choose
Upload.

2. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

Legacy examples 201

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/aws-kinesis-analytics-java-
apps-1.0.jar"

Legacy examples 202

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Legacy examples 203

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

5. For CloudWatch logging, select the Enable check box.

6. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Configure the application parallelism

This application example uses parallel execution of tasks. The following application code sets the
parallelism of the min operator:

.setParallelism(3) // Set parallelism for the min operator

The application parallelism can't be greater than the provisioned parallelism, which has a default of
1. To increase your application's parallelism, use the following Amazon CLI action:

Legacy examples 204

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 update-application
 --application-name MyApplication
 --current-application-version-id <VersionId>
 --application-configuration-update "{\"FlinkApplicationConfigurationUpdate
\": { \"ParallelismConfigurationUpdate\": {\"ParallelismUpdate\": 5,
 \"ConfigurationTypeUpdate\": \"CUSTOM\" }}}"

You can retrieve the current application version ID using the DescribeApplication or
ListApplications actions.

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Sliding Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Legacy examples 205

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DescribeApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ListApplications.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Legacy examples 206

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Example: Writing to an Amazon S3 bucket

In this exercise, you create a Managed Service for Apache Flink that has a Kinesis data stream
as a source and an Amazon S3 bucket as a sink. Using the sink, you can verify the output of the
application in the Amazon S3 console.

Note

To set up required prerequisites for this exercise, first complete the Getting started
(DataStream API) exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Modify the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Verify the application output

• Optional: Customize the source and sink

• Clean up Amazon resources

Create dependent resources

Before you create a Managed Service for Apache Flink for this exercise, you create the following
dependent resources:

• A Kinesis data stream (ExampleInputStream).

• An Amazon S3 bucket to store the application's code and output (ka-app-code-<username>)

Legacy examples 207

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Managed Service for Apache Flink cannot write data to Amazon S3 with server-side
encryption enabled on Managed Service for Apache Flink.

You can create the Kinesis stream and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>. Create two folders (code and data) in the Amazon S3 bucket.

The application creates the following CloudWatch resources if they don't already exist:

• A log group called /AWS/KinesisAnalytics-java/MyApplication.

• A log stream called kinesis-analytics-log-stream.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

Legacy examples 208

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html
http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/S3Sink directory.

Legacy examples 209

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The application code is located in the S3StreamingSinkJob.java file. Note the following about
the application code:

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• You need to add the following import statement:

import
 org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;

• The application uses an Apache Flink S3 sink to write to Amazon S3.

The sink reads messages in a tumbling window, encodes messages into S3 bucket objects, and
sends the encoded objects to the S3 sink. The following code encodes objects for sending to
Amazon S3:

input.map(value -> { // Parse the JSON
 JsonNode jsonNode = jsonParser.readValue(value, JsonNode.class);
 return new Tuple2<>(jsonNode.get("ticker").toString(), 1);
 }).returns(Types.TUPLE(Types.STRING, Types.INT))
 .keyBy(v -> v.f0) // Logically partition the stream for each word
 .window(TumblingProcessingTimeWindows.of(Time.minutes(1)))
 .sum(1) // Count the appearances by ticker per partition
 .map(value -> value.f0 + " count: " + value.f1.toString() + "\n")
 .addSink(createS3SinkFromStaticConfig());

Note

The application uses a Flink StreamingFileSink object to write to Amazon S3. For more
information about the StreamingFileSink, see StreamingFileSink in the Apache Flink
documentation.

Modify the application code

In this section, you modify the application code to write output to your Amazon S3 bucket.

Legacy examples 210

https://nightlies.apache.org/flink/flink-docs-release-1.13/dev/connectors/streamfile_sink.html
https://nightlies.apache.org/flink/flink-docs-release-1.13/
https://nightlies.apache.org/flink/flink-docs-release-1.13/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the following line with your user name to specify the application's output location:

private static final String s3SinkPath = "s3a://ka-app-code-<username>/data";

Compile the application code

To compile the application, do the following:

1. Install Java and Maven if you haven't already. For more information, see Prerequisites in the
Getting started (DataStream API) tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Note

The provided source code relies on libraries from Java 11.

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, navigate to the code
folder, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Legacy examples 211

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application.
Your application uses this role and policy to access its dependent resources. These IAM
resources are named using your application name and Region as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

• Leave the version as Apache Flink version 1.15.2 (Recommended version).

6. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

7. Choose Create application.

Note

When you create a Managed Service for Apache Flink using the console, you have the
option of having an IAM role and policy created for your application. Your application uses
this role and policy to access its dependent resources. These IAM resources are named using
your application name and Region as follows:

Legacy examples 212

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data stream.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID. Replace <username> with your user name.

{
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:Abort*",
 "s3:DeleteObject*",
 "s3:GetObject*",
 "s3:GetBucket*",
 "s3:List*",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-<username>",
 "arn:aws:s3:::ka-app-code-<username>/*"
]
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:*"

Legacy examples 213

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

]
 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:%LOG_GROUP_PLACEHOLDER
%:log-stream:*"
]
 },
 {
 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:region:account-id:log-group:%LOG_GROUP_PLACEHOLDER
%:log-stream:%LOG_STREAM_PLACEHOLDER%"
]
 }
 ,
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },

]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

Legacy examples 214

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Path to Amazon S3 object, enter code/aws-kinesis-analytics-java-
apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

5. For CloudWatch logging, select the Enable check box.

6. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Run the application

1. On the MyApplication page, choose Run. Leave the Run without snapshot option selected,
and confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

Verify the application output

In the Amazon S3 console, open the data folder in your S3 bucket.

After a few minutes, objects containing aggregated data from the application will appear.

Note

Aggregration is enabled by default in Flink. To disable it, use the following:

Legacy examples 215

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

sink.producer.aggregation-enabled' = 'false'

Optional: Customize the source and sink

In this section, you customize settings on the source and sink objects.

Note

After changing the code sections described in the sections following, do the following to
reload the application code:

• Repeat the steps in the the section called “Compile the application code” section to
compile the updated application code.

• Repeat the steps in the the section called “Upload the Apache Flink streaming Java code”
section to upload the updated application code.

• On the application's page in the console, choose Configure and then choose Update to
reload the updated application code into your application.

This section contains the following sections:

• Configure data partitioning

• Configure read frequency

• Configure write buffering

Configure data partitioning

In this section, you configure the names of the folders that the streaming file sink creates in the S3
bucket. You do this by adding a bucket assigner to the streaming file sink.

To customize the folder names created in the S3 bucket, do the following:

1. Add the following import statements to the beginning of the S3StreamingSinkJob.java
file:

import
 org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;

Legacy examples 216

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

import
 org.apache.flink.streaming.api.functions.sink.filesystem.bucketassigners.DateTimeBucketAssigner;

2. Update the createS3SinkFromStaticConfig() method in the code to look like the
following:

private static StreamingFileSink<String> createS3SinkFromStaticConfig() {

 final StreamingFileSink<String> sink = StreamingFileSink
 .forRowFormat(new Path(s3SinkPath), new
 SimpleStringEncoder<String>("UTF-8"))
 .withBucketAssigner(new DateTimeBucketAssigner("yyyy-MM-dd--HH"))
 .withRollingPolicy(DefaultRollingPolicy.create().build())
 .build();
 return sink;
}

The preceding code example uses the DateTimeBucketAssigner with a custom date format to
create folders in the S3 bucket. The DateTimeBucketAssigner uses the current system time
to create bucket names. If you want to create a custom bucket assigner to further customize the
created folder names, you can create a class that implements BucketAssigner. You implement your
custom logic by using the getBucketId method.

A custom implementation of BucketAssigner can use the Context parameter to obtain more
information about a record in order to determine its destination folder.

Configure read frequency

In this section, you configure the frequency of reads on the source stream.

The Kinesis Streams consumer reads from the source stream five times per second by default.
This frequency will cause issues if there is more than one client reading from the stream, or if
the application needs to retry reading a record. You can avoid these issues by setting the read
frequency of the consumer.

To set the read frequency of the Kinesis consumer, you set the
SHARD_GETRECORDS_INTERVAL_MILLIS setting.

The following code example sets the SHARD_GETRECORDS_INTERVAL_MILLIS setting to one
second:

Legacy examples 217

https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/streaming/api/functions/sink/filesystem/BucketAssigner.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/streaming/api/functions/sink/filesystem/BucketAssigner.Context.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

kinesisConsumerConfig.setProperty(ConsumerConfigConstants.SHARD_GETRECORDS_INTERVAL_MILLIS,
 "1000");

Configure write buffering

In this section, you configure the write frequency and other settings of the sink.

By default, the application writes to the destination bucket every minute. You can change this
interval and other settings by configuring the DefaultRollingPolicy object.

Note

The Apache Flink streaming file sink writes to its output bucket every time the application
creates a checkpoint. The application creates a checkpoint every minute by default. To
increase the write interval of the S3 sink, you must also increase the checkpoint interval.

To configure the DefaultRollingPolicy object, do the following:

1. Increase the application's CheckpointInterval setting. The following input for the
UpdateApplication action sets the checkpoint interval to 10 minutes:

{
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "CheckpointConfigurationUpdate": {
 "ConfigurationTypeUpdate" : "CUSTOM",
 "CheckpointIntervalUpdate": 600000
 }
 }
 },
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 5
}

To use the preceding code, specify the current application version. You can retrieve the
application version by using the ListApplications action.

2. Add the following import statement to the beginning of the S3StreamingSinkJob.java
file:

Legacy examples 218

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ListApplications.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

import java.util.concurrent.TimeUnit;

3. Update the createS3SinkFromStaticConfig method in the S3StreamingSinkJob.java
file to look like the following:

private static StreamingFileSink<String> createS3SinkFromStaticConfig() {

 final StreamingFileSink<String> sink = StreamingFileSink
 .forRowFormat(new Path(s3SinkPath), new
 SimpleStringEncoder<String>("UTF-8"))
 .withBucketAssigner(new DateTimeBucketAssigner("yyyy-MM-dd--HH"))
 .withRollingPolicy(
 DefaultRollingPolicy.create()
 .withRolloverInterval(TimeUnit.MINUTES.toMillis(8))
 .withInactivityInterval(TimeUnit.MINUTES.toMillis(5))
 .withMaxPartSize(1024 * 1024 * 1024)
 .build())
 .build();
 return sink;
 }

The preceding code example sets the frequency of writes to the Amazon S3 bucket to 8
minutes.

For more information about configuring the Apache Flink streaming file sink, see Row-encoded
Formats in the Apache Flink documentation.

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources that you created in the Amazon
S3 tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data stream

• Delete your Amazon S3 objects and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Legacy examples 219

https://nightlies.apache.org/flink/flink-docs-release-1.13/dev/connectors/streamfile_sink.html#row-encoded-formats
https://nightlies.apache.org/flink/flink-docs-release-1.13/dev/connectors/streamfile_sink.html#row-encoded-formats
https://nightlies.apache.org/flink/flink-docs-release-1.13/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. On the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data stream

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. On the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Delete your Amazon S3 objects and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. On the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. On the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. On the navigation bar, choose Logs.

Legacy examples 220

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Tutorial: Using a Managed Service for Apache Flink application to replicate data from one topic
in an MSK cluster to another in a VPC

Note

For current examples, see Examples.

The following tutorial demonstrates how to create an Amazon VPC with an Amazon MSK cluster
and two topics, and how to create a Managed Service for Apache Flink application that reads from
one Amazon MSK topic and writes to another.

Note

To set up required prerequisites for this exercise, first complete the Getting started
(DataStream API) exercise.

This tutorial contains the following sections:

• Create an Amazon VPC with an Amazon MSK cluster

• Create the application code

• Upload the Apache Flink streaming Java code

• Create the application

• Configure the application

• Run the application

• Test the application

Create an Amazon VPC with an Amazon MSK cluster

To create a sample VPC and Amazon MSK cluster to access from a Managed Service for Apache
Flink application, follow the Getting Started Using Amazon MSK tutorial.

When completing the tutorial, note the following:

Legacy examples 221

https://docs.amazonaws.cn/msk/latest/developerguide/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• In Step 3: Create a Topic, repeat the kafka-topics.sh --create command to create a
destination topic named AWSKafkaTutorialTopicDestination:

bin/kafka-topics.sh --create --zookeeper ZooKeeperConnectionString --replication-
factor 3 --partitions 1 --topic AmazonKafkaTutorialTopicDestination

• Record the bootstrap server list for your cluster. You can get the list of bootstrap servers with the
following command (replace ClusterArn with the ARN of your MSK cluster):

aws kafka get-bootstrap-brokers --region us-west-2 --cluster-arn ClusterArn
{...
 "BootstrapBrokerStringTls": "b-2.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-1.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-3.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094"
}

• When following the steps in the tutorials, be sure to use your selected Amazon Region in your
code, commands, and console entries.

Create the application code

In this section, you'll download and compile the application JAR file. We recommend using Java 11.

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. The application code is located in the amazon-kinesis-data-analytics-java-
examples/KafkaConnectors/KafkaGettingStartedJob.java file. You can examine the
code to familiarize yourself with the structure of Managed Service for Apache Flink application
code.

4. Use either the command-line Maven tool or your preferred development environment to
create the JAR file. To compile the JAR file using the command-line Maven tool, enter the
following:

Legacy examples 222

https://docs.amazonaws.cn/msk/latest/developerguide/create-topic.html
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

mvn package -Dflink.version=1.15.3

If the build is successful, the following file is created:

target/KafkaGettingStartedJob-1.0.jar

Note

The provided source code relies on libraries from Java 11. If you are using a
development environment,

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Getting started (DataStream API) tutorial.

Note

If you deleted the Amazon S3 bucket from the Getting Started tutorial, follow the the
section called “Upload the Apache Flink streaming Java code” step again.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the
KafkaGettingStartedJob-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink.

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

Legacy examples 223

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink version 1.15.2.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter KafkaGettingStartedJob-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

Note

When you specify application resources using the console (such as CloudWatch Logs
or an Amazon VPC), the console modifies your application execution role to grant
permission to access those resources.

4. Under Properties, choose Add Group. Enter the following properties:

Legacy examples 224

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

KafkaSource topic AmazonKafkaTutorialTopic

KafkaSource bootstrap.servers The bootstrap server
list you saved
previously

KafkaSource security.protocol SSL

KafkaSource ssl.truststore.location /usr/lib/jvm/java-11-
amazon-corretto/lib/secu
rity/cacerts

KafkaSource ssl.truststore.password changeit

Note

The ssl.truststore.password for the default certificate is "changeit"; you do not need to
change this value if you are using the default certificate.

Choose Add Group again. Enter the following properties:

Group ID Key Value

KafkaSink topic AmazonKafkaTutoria
lTopicDestination

KafkaSink bootstrap.servers The bootstrap server
list you saved
previously

KafkaSink security.protocol SSL

Legacy examples 225

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

KafkaSink ssl.truststore.location /usr/lib/jvm/java-11-
amazon-corretto/lib/secu
rity/cacerts

KafkaSink ssl.truststore.password changeit

KafkaSink transaction.timeout.ms 1000

The application code reads the above application properties to configure the source and sink
used to interact with your VPC and Amazon MSK cluster. For more information about using
properties, see Runtime properties.

5. Under Snapshots, choose Disable. This will make it easier to update the application without
loading invalid application state data.

6. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

7. For CloudWatch logging, choose the Enable check box.

8. In the Virtual Private Cloud (VPC) section, choose the VPC to associate with your application.
Choose the subnets and security group associated with your VPC that you want the application
to use to access VPC resources.

9. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application.

Legacy examples 226

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Test the application

In this section, you write records to the source topic. The application reads records from the source
topic and writes them to the destination topic. You verify the application is working by writing
records to the source topic and reading records from the destination topic.

To write and read records from the topics, follow the steps in Step 6: Produce and Consume Data in
the Getting Started Using Amazon MSK tutorial.

To read from the destination topic, use the destination topic name instead of the source topic in
your second connection to the cluster:

bin/kafka-console-consumer.sh --bootstrap-server BootstrapBrokerString --
consumer.config client.properties --topic AmazonKafkaTutorialTopicDestination --from-
beginning

If no records appear in the destination topic, see the Cannot access resources in a VPC section in
the Troubleshooting topic.

Example: Use an EFO consumer with a Kinesis data stream

Note

For current examples, see Examples.

In this exercise, you create a Managed Service for Apache Flink application that reads from a
Kinesis data stream using an Enhanced Fan-Out (EFO) consumer. If a Kinesis consumer uses EFO,
the Kinesis Data Streams service gives it its own dedicated bandwidth, rather than having the
consumer share the fixed bandwidth of the stream with the other consumers reading from the
stream.

For more information about using EFO with the Kinesis consumer, see FLIP-128: Enhanced Fan Out
for Kinesis Consumers.

Legacy examples 227

https://docs.amazonaws.cn/msk/latest/developerguide/produce-consume.html
https://docs.amazonaws.cn/msk/latest/developerguide/getting-started.html
https://docs.amazonaws.cn/streams/latest/dev/enhanced-consumers.html
https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers
https://cwiki.apache.org/confluence/display/FLINK/FLIP-128%3A+Enhanced+Fan+Out+for+AWS+Kinesis+Consumers

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The application you create in this example uses Amazon Kinesis connector (flink-connector-kinesis)
1.15.3.

Note

To set up required prerequisites for this exercise, first complete the Getting started
(DataStream API) exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up Amazon resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Legacy examples 228

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

Legacy examples 229

http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/EfoConsumer
directory.

The application code is located in the EfoApplication.java file. Note the following about the
application code:

• You enable the EFO consumer by setting the following parameters on the Kinesis consumer:

• RECORD_PUBLISHER_TYPE: Set this parameter to EFO for your application to use an EFO
consumer to access the Kinesis Data Stream data.

• EFO_CONSUMER_NAME: Set this parameter to a string value that is unique among the
consumers of this stream. Re-using a consumer name in the same Kinesis Data Stream will
cause the previous consumer using that name to be terminated.

• The following code example demonstrates how to assign values to the consumer configuration
properties to use an EFO consumer to read from the source stream:

consumerConfig.putIfAbsent(RECORD_PUBLISHER_TYPE, "EFO");
consumerConfig.putIfAbsent(EFO_CONSUMER_NAME, "basic-efo-flink-app");

Compile the application code

To compile the application, do the following:

Legacy examples 230

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Install Java and Maven if you haven't already. For more information, see Prerequisites in the
Getting started (DataStream API) tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.15.3

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

Legacy examples 231

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

Note

These permissions grant the application the ability to access the EFO consumer.

Legacy examples 232

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/aws-kinesis-analytics-java-
apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {

Legacy examples 233

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "AllStreams",
 "Effect": "Allow",
 "Action": [
 "kinesis:ListShards",
 "kinesis:ListStreamConsumers",
 "kinesis:DescribeStreamSummary"
],
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/*"
 },
 {
 "Sid": "Stream",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:RegisterStreamConsumer",
 "kinesis:DeregisterStreamConsumer"
],
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 },
 {
 "Sid": "Consumer",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStreamConsumer",
 "kinesis:SubscribeToShard"
],
 "Resource": [
 "arn:aws:kinesis:us-west-2:012345678901:stream/ExampleInputStream/
consumer/my-efo-flink-app",
 "arn:aws:kinesis:us-west-2:012345678901:stream/ExampleInputStream/
consumer/my-efo-flink-app:*"
]
 }
]
}

Legacy examples 234

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Create Group.

5. Enter the following application properties and values:

Group ID Key Value

ConsumerConfigProp
erties

flink.stream.recor
dpublisher

EFO

ConsumerConfigProp
erties

flink.stream.efo.c
onsumername

basic-efo-flink-app

ConsumerConfigProp
erties

INPUT_STREAM ExampleInputStream

ConsumerConfigProp
erties

flink.inputstream.
initpos

LATEST

ConsumerConfigProp
erties

AWS_REGION us-west-2

6. Under Properties, choose Create Group.

7. Enter the following application properties and values:

Group ID Key Value

ProducerConfigProp
erties

OUTPUT_STREAM ExampleOutputStream

Legacy examples 235

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

ProducerConfigProp
erties

AWS_REGION us-west-2

ProducerConfigProp
erties

AggregationEnabled false

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, select the Enable check box.

10. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

You can also check the Kinesis Data Streams console, in the data stream's Enhanced fan-out tab,
for the name of your consumer (basic-efo-flink-app).

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the efo Window
tutorial.

Legacy examples 236

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete Your Amazon S3 Object and Bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete Your Amazon S3 Object and Bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

Legacy examples 237

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Writing to Firehose

Note

For current examples, see Examples.

In this exercise, you create a Managed Service for Apache Flink application that has a Kinesis data
stream as a source and a Firehose stream as a sink. Using the sink, you can verify the output of the
application in an Amazon S3 bucket.

Note

To set up required prerequisites for this exercise, first complete the Getting started
(DataStream API) exercise.

This section contains the following steps:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

Legacy examples 238

https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up Amazon resources

Create dependent resources

Before you create a Managed Service for Apache Flink for this exercise, you create the following
dependent resources:

• A Kinesis data stream (ExampleInputStream)

• A Firehose stream that the application writes output to (ExampleDeliveryStream).

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis stream, Amazon S3 buckets, and Firehose stream using the console. For
instructions for creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream.

• Creating an Amazon Kinesis Data Firehose Delivery Stream in the Amazon Data Firehose
Developer Guide. Name your Firehose stream ExampleDeliveryStream. When you create the
Firehose stream, also create the Firehose stream's S3 destination and IAM role.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

Legacy examples 239

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/firehose/latest/dev/basic-create.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html
http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository with the following command:

Legacy examples 240

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/FirehoseSink
directory.

The application code is located in the FirehoseSinkStreamingJob.java file. Note the
following about the application code:

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• The application uses a Firehose sink to write data to a Firehose stream. The following snippet
creates the Firehose sink:

private static KinesisFirehoseSink<String> createFirehoseSinkFromStaticConfig() {
 Properties sinkProperties = new Properties();
 sinkProperties.setProperty(AWS_REGION, region);

 return KinesisFirehoseSink.<String>builder()
 .setFirehoseClientProperties(sinkProperties)
 .setSerializationSchema(new SimpleStringSchema())
 .setDeliveryStreamName(outputDeliveryStreamName)
 .build();
 }

Compile the application code

To compile the application, do the following:

1. Install Java and Maven if you haven't already. For more information, see Prerequisites in the
Getting started (DataStream API) tutorial.

2. In order to use the Kinesis connector for the following application, you need to download,
build, and install Apache Maven. For more information, see the section called “Using the
Apache Flink Kinesis Streams connector with previous Apache Flink versions”.

3. Compile the application with the following command:

Legacy examples 241

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

mvn package -Dflink.version=1.15.3

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/aws-kinesis-analytics-
java-apps-1.0.jar).

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket that you created in the
Create dependent resources section.

To upload the application code

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. In the console, choose the ka-app-code-<username> bucket, and then choose Upload.

3. In the Select files step, choose Add files. Navigate to the java-getting-started-1.0.jar
file that you created in the previous step.

4. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the Amazon CLI.

Note

When you create the application using the console, your Amazon Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the Amazon CLI, you create these resources separately.

Topics

Legacy examples 242

https://console.amazonaws.cn/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Create and run the application (console)

• Create and run the application (Amazon CLI)

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create the application using the console, you have the option of having an IAM
role and policy created for your application. The application uses this role and policy to
access its dependent resources. These IAM resources are named using your application
name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Legacy examples 243

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data stream and Firehose stream.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace all the
instances of the sample account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/java-getting-started-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [

Legacy examples 244

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteDeliveryStream",
 "Effect": "Allow",
 "Action": "firehose:*",
 "Resource": "arn:aws:firehose:us-west-2:012345678901:deliverystream/
ExampleDeliveryStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter java-getting-started-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

Legacy examples 245

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

5. For CloudWatch logging, select the Enable check box.

6. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

On the MyApplication page, choose Stop. Confirm the action.

Update the application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Note

To update the application's code on the console, you must either change the object name
of the JAR, use a different S3 bucket, or use the Amazon CLI as described in the the section
called “Update the application code” section. If the file name or the bucket does not
change, the application code is not reloaded when you choose Update on the Configure
page.

Legacy examples 246

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the application (Amazon CLI)

In this section, you use the Amazon CLI to create and run the Managed Service for Apache Flink
application.

Create a permissions policy

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you will use to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteDeliveryStream",
 "Effect": "Allow",

Legacy examples 247

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": "firehose:*",
 "Resource": "arn:aws:firehose:us-west-2:012345678901:deliverystream/
ExampleDeliveryStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Note

To access other Amazon services, you can use the Amazon SDK for Java. Managed Service
for Apache Flink automatically sets the credentials required by the SDK to those of the
service execution IAM role that is associated with your application. No additional steps are
needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream if it doesn't have permissions. You
grant these permissions via an IAM role. Each IAM role has two policies attached. The trust policy
grants Managed Service for Apache Flink permission to assume the role. The permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose Amazon Service. Under Choose the service
that will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

Legacy examples 248

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a permissions policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application will use to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
with the suffix that you chose in the the section called “Create dependent resources” section
(ka-app-code-<username>.) Replace the sample account ID (012345678901) in the service
execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_15",

Legacy examples 249

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "java-getting-started-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 }
 }
 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

Legacy examples 250

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "test"
}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Setting up
logging”.

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication Amazon CLI action.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name.

Legacy examples 251

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
you chose in the the section called “Create dependent resources” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "java-getting-started-1.0.jar"
 }
 }
 }
 }
}

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data stream

• Delete your Firehose stream

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. In the Managed Service for Apache Flink panel, choose MyApplication.

Legacy examples 252

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Choose Configure.

4. In the Snapshots section, choose Disable and then choose Update.

5. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data stream

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Delete your Firehose stream

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Firehose panel, choose ExampleDeliveryStream.

3. In the ExampleDeliveryStream page, choose Delete Firehose stream and then confirm the
deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

4. If you created an Amazon S3 bucket for your Firehose stream's destination, delete that bucket
too.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

Legacy examples 253

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6. If you created a new policy for your Firehose stream, delete that policy too.

7. In the navigation bar, choose Roles.

8. Choose the kinesis-analytics-MyApplication-us-west-2 role.

9. Choose Delete role and then confirm the deletion.

10. If you created a new role for your Firehose stream, delete that role too.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Read from a Kinesis stream in a different account

Note

For current examples, see Examples.

This example demonstrates how to create an Managed Service for Apache Flink application that
reads data from a Kinesis stream in a different account. In this example, you will use one account
for the source Kinesis stream, and a second account for the Managed Service for Apache Flink
application and sink Kinesis stream.

This topic contains the following sections:

• Prerequisites

• Setup

• Create source Kinesis stream

• Create and update IAM roles and policies

• Update the Python script

• Update the Java application

• Build, upload, and run the application

Legacy examples 254

https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Prerequisites

• In this tutorial, you modify the Getting Started example to read data from a Kinesis stream in a
different account. Complete the Getting started (DataStream API) tutorial before proceeding.

• You need two Amazon accounts to complete this tutorial: one for the source stream, and one for
the application and the sink stream. Use the Amazon account you used for the Getting Started
tutorial for the application and sink stream. Use a different Amazon account for the source
stream.

Setup

You will access your two Amazon accounts by using named profiles. Modify your Amazon
credentials and configuration files to include two profiles that contain the region and connection
information for your two accounts.

The following example credential file contains two named profiles, ka-source-stream-
account-profile and ka-sink-stream-account-profile. Use the account you used for the
Getting Started tutorial for the sink stream account.

[ka-source-stream-account-profile]
aws_access_key_id=AKIAIOSFODNN7EXAMPLE
aws_secret_access_key=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

[ka-sink-stream-account-profile]
aws_access_key_id=AKIAI44QH8DHBEXAMPLE
aws_secret_access_key=je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY

The following example configuration file contains the same named profiles with region and output
format information.

[profile ka-source-stream-account-profile]
region=us-west-2
output=json

[profile ka-sink-stream-account-profile]
region=us-west-2
output=json

Legacy examples 255

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

This tutorial does not use the ka-sink-stream-account-profile. It is included as an
example of how to access two different Amazon accounts using profiles.

For more information on using named profiles with the Amazon CLI, see Named Profiles in the
Amazon Command Line Interface documentation.

Create source Kinesis stream

In this section, you will create the Kinesis stream in the source account.

Enter the following command to create the Kinesis stream that the application will use for input.
Note that the --profile parameter specifies which account profile to use.

$ aws kinesis create-stream \
--stream-name SourceAccountExampleInputStream \
--shard-count 1 \
--profile ka-source-stream-account-profile

Create and update IAM roles and policies

To allow object access across Amazon accounts, you create an IAM role and policy in the source
account. Then, you modify the IAM policy in the sink account. For information about creating IAM
roles and policies, see the following topics in the Amazon Identity and Access Management User
Guide:

• Creating IAM Roles

• Creating IAM Policies

Sink account roles and policies

1. Edit the kinesis-analytics-service-MyApplication-us-west-2 policy from the
Getting Started tutorial. This policy allows the role in the source account to be assumed in
order to read the source stream.

Legacy examples 256

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-profiles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you use the console to create your application, the console creates a policy
called kinesis-analytics-service-<application name>-<application
region>, and a role called kinesisanalytics-<application
name>-<application region>.

Add the highlighted section below to the policy. Replace the sample account ID
(SOURCE01234567) with the ID of the account you will use for the source stream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeRoleInSourceAccount",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::SOURCE01234567:role/KA-Source-Stream-Role"
 },
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-java-
apps-1.0.jar"
]
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:SINK012345678:log-group:*"
]

Legacy examples 257

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:SINK012345678:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:SINK012345678:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 }
]
}

2. Open the kinesis-analytics-MyApplication-us-west-2 role, and make a note of its
Amazon Resource Name (ARN). You will need it in the next section. The role ARN looks like the
following.

arn:aws:iam::SINK012345678:role/service-role/kinesis-analytics-MyApplication-us-
west-2

Source account roles and policies

1. Create a policy in the source account called KA-Source-Stream-Policy. Use the following
JSON for the policy. Replace the sample account number with the account number of the
source account.

{
 "Version": "2012-10-17",

Legacy examples 258

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Statement": [
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream",
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",
 "kinesis:ListShards"
],
 "Resource":
 "arn:aws:kinesis:us-west-2:SOURCE123456784:stream/
SourceAccountExampleInputStream"
 }
]
}

2. Create a role in the source account called MF-Source-Stream-Role. Do the following to
create the role using the Managed Flink use case:

1. In the IAM Management Console, choose Create Role.

2. On the Create Role page, choose Amazon Service. In the service list, choose Kinesis.

3. In the Select your use case section, choose Managed Service for Apache Flink.

4. Choose Next: Permissions.

5. Add the KA-Source-Stream-Policy permissions policy you created in the previous step.
Choose Next:Tags.

6. Choose Next: Review.

7. Name the role KA-Source-Stream-Role. Your application will use this role to access the
source stream.

3. Add the kinesis-analytics-MyApplication-us-west-2 ARN from the sink account to
the trust relationship of the KA-Source-Stream-Role role in the source account:

1. Open the KA-Source-Stream-Role in the IAM console.

2. Choose the Trust Relationships tab.

3. Choose Edit trust relationship.

4. Use the following code for the trust relationship. Replace the sample account ID
(SINK012345678) with your sink account ID.

Legacy examples 259

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::SINK012345678:role/service-role/kinesis-analytics-
MyApplication-us-west-2"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Update the Python script

In this section, you update the Python script that generates sample data to use the source account
profile.

Update the stock.py script with the following highlighted changes.

import json
import boto3
import random
import datetime
import os

os.environ['AWS_PROFILE'] ='ka-source-stream-account-profile'
os.environ['AWS_DEFAULT_REGION'] = 'us-west-2'

kinesis = boto3.client('kinesis')
def getReferrer():
 data = {}
 now = datetime.datetime.now()
 str_now = now.isoformat()
 data['event_time'] = str_now
 data['ticker'] = random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV'])
 price = random.random() * 100
 data['price'] = round(price, 2)
 return data

Legacy examples 260

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

while True:
 data = json.dumps(getReferrer())
 print(data)
 kinesis.put_record(
 StreamName="SourceAccountExampleInputStream",
 Data=data,
 PartitionKey="partitionkey")

Update the Java application

In this section, you update the Java application code to assume the source account role when
reading from the source stream.

Make the following changes to the BasicStreamingJob.java file. Replace the example source
account number (SOURCE01234567) with your source account number.

package com.amazonaws.services.managed-flink;

import com.amazonaws.services.managed-flink.runtime.KinesisAnalyticsRuntime;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer;
import org.apache.flink.streaming.connectors.kinesis.FlinkKinesisProducer;
import org.apache.flink.streaming.connectors.kinesis.config.ConsumerConfigConstants;
import org.apache.flink.streaming.connectors.kinesis.config.AWSConfigConstants;

import java.io.IOException;
import java.util.Map;
import java.util.Properties;

 /**
 * A basic Managed Service for Apache Flink for Java application with Kinesis data
 streams
 * as source and sink.
 */
public class BasicStreamingJob {
 private static final String region = "us-west-2";
 private static final String inputStreamName = "SourceAccountExampleInputStream";
 private static final String outputStreamName = ExampleOutputStream;
 private static final String roleArn = "arn:aws:iam::SOURCE01234567:role/KA-Source-
Stream-Role";

Legacy examples 261

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 private static final String roleSessionName = "ksassumedrolesession";

 private static DataStream<String>
 createSourceFromStaticConfig(StreamExecutionEnvironment env) {
 Properties inputProperties = new Properties();
 inputProperties.setProperty(AWSConfigConstants.AWS_CREDENTIALS_PROVIDER,
 "ASSUME_ROLE");
 inputProperties.setProperty(AWSConfigConstants.AWS_ROLE_ARN, roleArn);
 inputProperties.setProperty(AWSConfigConstants.AWS_ROLE_SESSION_NAME,
 roleSessionName);
 inputProperties.setProperty(ConsumerConfigConstants.AWS_REGION, region);
 inputProperties.setProperty(ConsumerConfigConstants.STREAM_INITIAL_POSITION,
 "LATEST");

 return env.addSource(new FlinkKinesisConsumer<>(inputStreamName, new
 SimpleStringSchema(), inputProperties));
 }

 private static KinesisStreamsSink<String> createSinkFromStaticConfig() {
 Properties outputProperties = new Properties();
 outputProperties.setProperty(AWSConfigConstants.AWS_REGION, region);

 return KinesisStreamsSink.<String>builder()
 .setKinesisClientProperties(outputProperties)
 .setSerializationSchema(new SimpleStringSchema())
 .setStreamName(outputProperties.getProperty("OUTPUT_STREAM",
 "ExampleOutputStream"))
 .setPartitionKeyGenerator(element ->
 String.valueOf(element.hashCode()))
 .build();
 }

 public static void main(String[] args) throws Exception {
 // set up the streaming execution environment
 final StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();

 DataStream<String> input = createSourceFromStaticConfig(env);

 input.addSink(createSinkFromStaticConfig());

 env.execute("Flink Streaming Java API Skeleton");
 }

Legacy examples 262

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

Build, upload, and run the application

Do the following to update and run the application:

1. Build the application again by running the following command in the directory with the
pom.xml file.

mvn package -Dflink.version=1.15.3

2. Delete the previous JAR file from your Amazon Simple Storage Service (Amazon S3) bucket,
and then upload the new aws-kinesis-analytics-java-apps-1.0.jar file to the S3
bucket.

3. In the application's page in the Managed Service for Apache Flink console, choose Configure,
Update to reload the application JAR file.

4. Run the stock.py script to send data to the source stream.

python stock.py

The application now reads data from the Kinesis stream in the other account.

You can verify that the application is working by checking the PutRecords.Bytes metric of
the ExampleOutputStream stream. If there is activity in the output stream, the application is
functioning properly.

Tutorial: Using a custom truststore with Amazon MSK

Note

For current examples, see Examples.

Current data source APIs

If you are using the current data source APIs, your application can leverage the Amazon MSK Config
Providers utility described here. This allows your KafkaSource function to access your keystore and
truststore for mutual TLS in Amazon S3.

Legacy examples 263

https://github.com/aws-samples/msk-config-providers

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

...
// define names of config providers:
builder.setProperty("config.providers", "secretsmanager,s3import");

// provide implementation classes for each provider:
builder.setProperty("config.providers.secretsmanager.class",
 "com.amazonaws.kafka.config.providers.SecretsManagerConfigProvider");
builder.setProperty("config.providers.s3import.class",
 "com.amazonaws.kafka.config.providers.S3ImportConfigProvider");

String region = appProperties.get(Helpers.S3_BUCKET_REGION_KEY).toString();
String keystoreS3Bucket = appProperties.get(Helpers.KEYSTORE_S3_BUCKET_KEY).toString();
String keystoreS3Path = appProperties.get(Helpers.KEYSTORE_S3_PATH_KEY).toString();
String truststoreS3Bucket =
 appProperties.get(Helpers.TRUSTSTORE_S3_BUCKET_KEY).toString();
String truststoreS3Path = appProperties.get(Helpers.TRUSTSTORE_S3_PATH_KEY).toString();
String keystorePassSecret =
 appProperties.get(Helpers.KEYSTORE_PASS_SECRET_KEY).toString();
String keystorePassSecretField =
 appProperties.get(Helpers.KEYSTORE_PASS_SECRET_FIELD_KEY).toString();

// region, etc..
builder.setProperty("config.providers.s3import.param.region", region);

// properties
builder.setProperty("ssl.truststore.location", "${s3import:" + region + ":" +
 truststoreS3Bucket + "/" + truststoreS3Path + "}");
builder.setProperty("ssl.keystore.type", "PKCS12");
builder.setProperty("ssl.keystore.location", "${s3import:" + region + ":" +
 keystoreS3Bucket + "/" + keystoreS3Path + "}");
builder.setProperty("ssl.keystore.password", "${secretsmanager:" + keystorePassSecret +
 ":" + keystorePassSecretField + "}");
builder.setProperty("ssl.key.password", "${secretsmanager:" + keystorePassSecret + ":"
 + keystorePassSecretField + "}");
...

More details and a walkthrough can be found here.

Legacy SourceFunction APIs

If you are using the legacy SourceFunction APIs, your application will use custom serialization and
deserialization schemas that override the open method to load the custom truststore. This makes
the truststore available to the application after the application restarts or replaces threads.

Legacy examples 264

https://github.com/aws-samples/amazon-kinesisanalytics-examples/tree/master/CustomKeystoreWithConfigProviders

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The custom truststore is retrieved and stored using the following code:

public static void initializeKafkaTruststore() {
 ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
 URL inputUrl = classLoader.getResource("kafka.client.truststore.jks");
 File dest = new File("/tmp/kafka.client.truststore.jks");

 try {
 FileUtils.copyURLToFile(inputUrl, dest);
 } catch (Exception ex) {
 throw new FlinkRuntimeException("Failed to initialize Kakfa truststore", ex);
 }
}

Note

Apache Flink requires the truststore to be in .

Note

To set up the required prerequisites for this exercise, first complete the Getting started
(DataStream API) exercise.

The following tutorial demonstrates how to securely connect (encryption in transit) to a Kafka
Cluster that uses server certificates issued by a custom, private or even self-hosted Certificate
Authority (CA).

For connecting any Kafka Client securely over TLS to a Kafka Cluster, the Kafka Client (like the
example Flink application) must trust the complete chain of trust presented by the Kafka Cluster's
server certificates (from the Issuing CA up to the Root-Level CA). As an example for a custom
truststore, we will use an Amazon MSK cluster with Mutual TLS (MTLS) Authentication enabled.
This implies that the MSK cluster nodes use server certificates that are issued by an Amazon
Certificate Manager Private Certificate Authority (ACM Private CA) that is private to your account
and Region and therefore not trusted by the default truststore of the Java Virtual Machine (JVM)
executing the Flink application.

Legacy examples 265

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

• A keystore is used to store private key and identity certificates an application should
present to both server or client for verification.

• A truststore is used to store certificates from Certified Authorities (CA) that verify the
certificate presented by the server in an SSL connection.

You can also use the technique in this tutorial for interactions between a Managed Service for
Apache Flink application and other Apache Kafka sources, such as:

• A custom Apache Kafka cluster hosted in Amazon (Amazon EC2 or Amazon EKS)

• A Confluent Kafka cluster hosted in Amazon

• An on-premises Kafka cluster accessed through Amazon Direct Connect or VPN

This tutorial contains the following sections:

• Create a VPC with an Amazon MSK cluster

• Create a custom truststore and apply it to your cluster

• Create the application code

• Upload the Apache Flink streaming Java code

• Create the application

• Configure the application

• Run the application

• Test the application

Create a VPC with an Amazon MSK cluster

To create a sample VPC and Amazon MSK cluster to access from a Managed Service for Apache
Flink application, follow the Getting Started Using Amazon MSK tutorial.

When completing the tutorial, also do the following:

• In Step 3: Create a Topic, repeat the kafka-topics.sh --create command to create a
destination topic named AmazonKafkaTutorialTopicDestination:

Legacy examples 266

https://aws.amazon.com/ec2/
https://aws.amazon.com/eks/
https://www.confluent.io
https://aws.amazon.com/directconnect/
https://docs.amazonaws.cn/msk/latest/developerguide/getting-started.html
https://docs.amazonaws.cn/msk/latest/developerguide/create-topic.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

bin/kafka-topics.sh --create --bootstrap-server ZooKeeperConnectionString --
replication-factor 3 --partitions 1 --topic AWSKafkaTutorialTopicDestination

Note

If the kafka-topics.sh command returns a ZooKeeperClientTimeoutException,
verify that the Kafka cluster's security group has an inbound rule to allow all traffic from
the client instance's private IP address.

• Record the bootstrap server list for your cluster. You can get the list of bootstrap servers with the
following command (replace ClusterArn with the ARN of your MSK cluster):

aws kafka get-bootstrap-brokers --region us-west-2 --cluster-arn ClusterArn
{...
 "BootstrapBrokerStringTls": "b-2.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-1.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-3.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094"
}

• When following the steps in this tutorial and the prerequisite tutorials, be sure to use your
selected Amazon Region in your code, commands, and console entries.

Create a custom truststore and apply it to your cluster

In this section, you create a custom certificate authority (CA), use it to generate a custom
truststore, and apply it to your MSK cluster.

To create and apply your custom truststore, follow the Client Authentication tutorial in the Amazon
Managed Streaming for Apache Kafka Developer Guide.

Create the application code

In this section, you download and compile the application JAR file.

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

Legacy examples 267

https://docs.amazonaws.cn/msk/latest/developerguide/msk-authentication.html
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. The application code is located in the amazon-kinesis-data-analytics-java-
examples/CustomKeystore. You can examine the code to familiarize yourself with the
structure of Managed Service for Apache Flink code.

4. Use either the command line Maven tool or your preferred development environment to create
the JAR file. To compile the JAR file using the command line Maven tool, enter the following:

mvn package -Dflink.version=1.15.3

If the build is successful, the following file is created:

target/flink-app-1.0-SNAPSHOT.jar

Note

The provided source code relies on libraries from Java 11.

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket that you created in the
Getting started (DataStream API) tutorial.

Note

If you deleted the Amazon S3 bucket from the Getting Started tutorial, follow the the
section called “Upload the Apache Flink streaming Java code” step again.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the flink-app-1.0-SNAPSHOT.jar
file that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Legacy examples 268

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink version 1.15.2.

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink using the console, you have the
option of having an IAM role and policy created for your application. Your application uses
this role and policy to access its dependent resources. These IAM resources are named using
your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter flink-app-1.0-SNAPSHOT.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

Legacy examples 269

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you specify application resources using the console (such as logs or a VPC), the
console modifies your application execution role to grant permission to access those
resources.

4. Under Properties, choose Add Group. Enter the following properties:

Group ID Key Value

KafkaSource topic AmazonKafkaTutorialTopic

KafkaSource bootstrap.servers The bootstrap server
list you saved
previously

KafkaSource security.protocol SSL

KafkaSource ssl.truststore.location /usr/lib/jvm/java-11-
amazon-corretto/lib/secu
rity/cacerts

KafkaSource ssl.truststore.password changeit

Note

The ssl.truststore.password for the default certificate is "changeit"—you don't need to
change this value if you're using the default certificate.

Choose Add Group again. Enter the following properties:

Group ID Key Value

KafkaSink topic AmazonKafkaTutoria
lTopicDestination

Legacy examples 270

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

KafkaSink bootstrap.servers The bootstrap server
list you saved
previously

KafkaSink security.protocol SSL

KafkaSink ssl.truststore.location /usr/lib/jvm/java-11-
amazon-corretto/lib/secu
rity/cacerts

KafkaSink ssl.truststore.password changeit

KafkaSink transaction.timeout.ms 1000

The application code reads the above application properties to configure the source and sink
used to interact with your VPC and Amazon MSK cluster. For more information about using
properties, see Runtime properties.

5. Under Snapshots, choose Disable. This will make it easier to update the application without
loading invalid application state data.

6. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

7. For CloudWatch logging, choose the Enable check box.

8. In the Virtual Private Cloud (VPC) section, choose the VPC to associate with your application.
Choose the subnets and security group associated with your VPC that you want the application
to use to access VPC resources.

9. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Legacy examples 271

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This log stream is used to monitor the application.

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Test the application

In this section, you write records to the source topic. The application reads records from the source
topic and writes them to the destination topic. You verify that the application is working by writing
records to the source topic and reading records from the destination topic.

To write and read records from the topics, follow the steps in Step 6: Produce and Consume Data in
the Getting Started Using Amazon MSK tutorial.

To read from the destination topic, use the destination topic name instead of the source topic in
your second connection to the cluster:

bin/kafka-console-consumer.sh --bootstrap-server BootstrapBrokerString --
consumer.config client.properties --topic AmazonKafkaTutorialTopicDestination --from-
beginning

If no records appear in the destination topic, see the Cannot access resources in a VPC section in
the Troubleshooting topic.

Python examples

The following examples demonstrate how to create applications using Python with the Apache
Flink Table API.

Topics

• Example: Creating a tumbling window in Python

• Example: Creating a sliding window in Python

• Example: Send streaming data to Amazon S3 in Python

Legacy examples 272

https://docs.amazonaws.cn/msk/latest/developerguide/produce-consume.html
https://docs.amazonaws.cn/msk/latest/developerguide/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Example: Creating a tumbling window in Python

Note

For current examples, see Examples.

In this exercise, you create a Python Managed Service for Apache Flink application that aggregates
data using a tumbling window.

Note

To set up required prerequisites for this exercise, first complete the Getting started
(Python) exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compress and upload the Apache Flink streaming Python code

• Create and run the Managed Service for Apache Flink application

• Clean up Amazon resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

Legacy examples 273

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

Note

The Python script in this section uses the Amazon CLI. You must configure your Amazon CLI
to use your account credentials and default region. To configure your Amazon CLI, enter the
following:

aws configure

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

Legacy examples 274

https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html
http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/python/
TumblingWindow directory.

The application code is located in the tumbling-windows.py file. Note the following about the
application code:

• The application uses a Kinesis table source to read from the source stream. The following snippet
calls the create_table function to create the Kinesis table source:

Legacy examples 275

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

table_env.execute_sql(
 create_input_table(input_table_name, input_stream, input_region,
 stream_initpos)
)

The create_table function uses a SQL command to create a table that is backed by the
streaming source:

def create_input_table(table_name, stream_name, region, stream_initpos):
 return """ CREATE TABLE {0} (
 ticker VARCHAR(6),
 price DOUBLE,
 event_time TIMESTAMP(3),
 WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
)
 PARTITIONED BY (ticker)
 WITH (
 'connector' = 'kinesis',
 'stream' = '{1}',
 'aws.region' = '{2}',
 'scan.stream.initpos' = '{3}',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
) """.format(table_name, stream_name, region, stream_initpos)

• The application uses the Tumble operator to aggregate records within a specified tumbling
window, and return the aggregated records as a table object:

tumbling_window_table = (
 input_table.window(
 Tumble.over("10.seconds").on("event_time").alias("ten_second_window")
)
 .group_by("ticker, ten_second_window")
 .select("ticker, price.min as price, to_string(ten_second_window.end) as
 event_time")

• The application uses the Kinesis Flink connector, from the flink-sql-connector-
kinesis-1.15.2.jar .

Legacy examples 276

https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2
https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Compress and upload the Apache Flink streaming Python code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. Use your preferred compression application to compress the tumbling-windows.py and
flink-sql-connector-kinesis-1.15.2.jar files. Name the archive myapp.zip.

2. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

3. In the Select files step, choose Add files. Navigate to the myapp.zip file that you created in
the previous step.

4. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Legacy examples 277

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter myapp.zip.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Group ID Key Value

consumer.config.0 input.stream.name ExampleInputStream

consumer.config.0 aws.region us-west-2

consumer.config.0 scan.stream.initpos LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following:

Legacy examples 278

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

producer.config.0 output.stream.name ExampleOutputStream

producer.config.0 aws.region us-west-2

producer.config.0 shard.count 1

8. Under Properties, choose Add group again. For Group ID, enter
kinesis.analytics.flink.run.options. This special property group tells your
application where to find its code resources. For more information, see Specifying your code
files.

9. Enter the following:

Group ID Key Value

kinesis.analytics.
flink.run.options

python tumbling-windows.py

kinesis.analytics.
flink.run.options

jarfile flink-sql-connecto
r-kinesis-1.15.2.j
ar

10. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

11. For CloudWatch logging, select the Enable check box.

12. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Legacy examples 279

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/myapp.zip"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {

Legacy examples 280

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Legacy examples 281

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Tumbling
Window tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Legacy examples 282

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Creating a sliding window in Python

Note

For current examples, see Examples.

Note

To set up required prerequisites for this exercise, first complete the Getting started
(Python) exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

Legacy examples 283

https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Download and examine the application code

• Compress and upload the Apache Flink streaming Python code

• Create and run the Managed Service for Apache Flink application

• Clean up Amazon resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

Note

The Python script in this section uses the Amazon CLI. You must configure your Amazon CLI
to use your account credentials and default region. To configure your Amazon CLI, enter the
following:

Legacy examples 284

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html
http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws configure

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Legacy examples 285

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/>amazon-kinesis-data-analytics-java-
examples

3. Navigate to the amazon-kinesis-data-analytics-java-examples/python/
SlidingWindow directory.

The application code is located in the sliding-windows.py file. Note the following about the
application code:

• The application uses a Kinesis table source to read from the source stream. The following snippet
calls the create_input_table function to create the Kinesis table source:

table_env.execute_sql(
 create_input_table(input_table_name, input_stream, input_region,
 stream_initpos)
)

The create_input_table function uses a SQL command to create a table that is backed by
the streaming source:

def create_input_table(table_name, stream_name, region, stream_initpos):
 return """ CREATE TABLE {0} (
 ticker VARCHAR(6),
 price DOUBLE,
 event_time TIMESTAMP(3),
 WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
)
 PARTITIONED BY (ticker)
 WITH (
 'connector' = 'kinesis',
 'stream' = '{1}',
 'aws.region' = '{2}',

Legacy examples 286

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 'scan.stream.initpos' = '{3}',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
) """.format(table_name, stream_name, region, stream_initpos)
 }

• The application uses the Slide operator to aggregate records within a specified sliding window,
and return the aggregated records as a table object:

sliding_window_table = (
 input_table
 .window(
 Slide.over("10.seconds")
 .every("5.seconds")
 .on("event_time")
 .alias("ten_second_window")
)
 .group_by("ticker, ten_second_window")
 .select("ticker, price.min as price, to_string(ten_second_window.end) as
 event_time")
)

• The application uses the Kinesis Flink connector, from the flink-sql-connector-kinesis-1.15.2.jar
file.

Compress and upload the Apache Flink streaming Python code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

This section describes how to package your Python application.

1. Use your preferred compression application to compress the sliding-windows.py and
flink-sql-connector-kinesis-1.15.2.jar files. Name the archive myapp.zip.

2. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

3. In the Select files step, choose Add files. Navigate to the myapp.zip file that you created in
the previous step.

4. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Legacy examples 287

https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

Legacy examples 288

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter myapp.zip.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following application properties and values:

Group ID Key Value

consumer.config.0 input.stream.name ExampleInputStream

consumer.config.0 aws.region us-west-2

consumer.config.0 scan.stream.initpos LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following application properties and values:

Group ID Key Value

producer.config.0 output.stream.name ExampleOutputStream

producer.config.0 aws.region us-west-2

producer.config.0 shard.count 1

8. Under Properties, choose Add group again. For Group ID, enter
kinesis.analytics.flink.run.options. This special property group tells your
application where to find its code resources. For more information, see Specifying your code
files.

9. Enter the following application properties and values:

Legacy examples 289

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

kinesis.analytics.
flink.run.options

python sliding-windows.py

kinesis.analytics.
flink.run.options

jarfile flink-sql-connecto
r-kinesis_1.15.2.j
ar

10. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

11. For CloudWatch logging, select the Enable check box.

12. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

Legacy examples 290

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/myapp.zip"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",

Legacy examples 291

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Sliding Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

Legacy examples 292

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

Legacy examples 293

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

4. Choose Delete Log Group and then confirm the deletion.

Example: Send streaming data to Amazon S3 in Python

Note

For current examples, see Examples.

In this exercise, you create a Python Managed Service for Apache Flink application that streams
data to an Amazon Simple Storage Service sink.

Note

To set up required prerequisites for this exercise, first complete the Getting started
(Python) exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compress and upload the Apache Flink streaming Python code

• Create and run the Managed Service for Apache Flink application

• Clean up Amazon resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• A Kinesis data stream (ExampleInputStream)

• An Amazon S3 bucket to store the application's code and output (ka-app-code-<username>)

Legacy examples 294

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Managed Service for Apache Flink cannot write data to Amazon S3 with server-side
encryption enabled on Managed Service for Apache Flink.

You can create the Kinesis stream and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data stream ExampleInputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

Note

The Python script in this section uses the Amazon CLI. You must configure your Amazon CLI
to use your account credentials and default region. To configure your Amazon CLI, enter the
following:

aws configure

1. Create a file named stock.py with the following contents:

Legacy examples 295

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html
http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

Legacy examples 296

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/python/S3Sink
directory.

The application code is located in the streaming-file-sink.py file. Note the following about
the application code:

• The application uses a Kinesis table source to read from the source stream. The following snippet
calls the create_source_table function to create the Kinesis table source:

table_env.execute_sql(
 create_source_table(input_table_name, input_stream, input_region,
 stream_initpos)
)

The create_source_table function uses a SQL command to create a table that is backed by
the streaming source

import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,

Legacy examples 297

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

• The application uses the filesystem connector to send records to an Amazon S3 bucket:

def create_sink_table(table_name, bucket_name):
 return """ CREATE TABLE {0} (
 ticker VARCHAR(6),
 price DOUBLE,
 event_time VARCHAR(64)
)
 PARTITIONED BY (ticker)
 WITH (
 'connector'='filesystem',
 'path'='s3a://{1}/',
 'format'='json',
 'sink.partition-commit.policy.kind'='success-file',
 'sink.partition-commit.delay' = '1 min'
) """.format(table_name, bucket_name)

• The application uses the Kinesis Flink connector, from the flink-sql-connector-kinesis-1.15.2.jar
file.

Compress and upload the Apache Flink streaming Python code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. Use your preferred compression application to compress the streaming-file-sink.py and
flink-sql-connector-kinesis-1.15.2.jar files. Name the archive myapp.zip.

2. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

3. In the Select files step, choose Add files. Navigate to the myapp.zip file that you created in
the previous step.

4. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Legacy examples 298

https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2
https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/1.15.2

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

1. On the MyApplication page, choose Configure.

Legacy examples 299

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter myapp.zip.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following application properties and values:

Group ID Key Value

consumer.config.0 input.stream.name ExampleInputStream

consumer.config.0 aws.region us-west-2

consumer.config.0 scan.stream.initpos LATEST

Choose Save.

6. Under Properties, choose Add group again. For Group ID, enter
kinesis.analytics.flink.run.options. This special property group tells your
application where to find its code resources. For more information, see Specifying your code
files.

7. Enter the following application properties and values:

Group ID Key Value

kinesis.analytics.
flink.run.options

python streaming-file-sin
k.py

kinesis.analytics.
flink.run.options

jarfile S3Sink/lib/flink-s
ql-connector-kines
is-1.15.2.jar

8. Under Properties, choose Add group again. For Group ID, enter sink.config.0. This special
property group tells your application where to find its code resources. For more information,
see Specifying your code files.

Legacy examples 300

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

9. Enter the following application properties and values: (replace bucket-name with the actual
name of your Amazon S3 bucket.)

Group ID Key Value

sink.config.0 output.bucket.name bucket-name

10. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

11. For CloudWatch logging, select the Enable check box.

12. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [

Legacy examples 301

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/myapp.zip"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },

Legacy examples 302

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 {
 "Sid": "WriteObjects",
 "Effect": "Allow",
 "Action": [
 "s3:Abort*",
 "s3:DeleteObject*",
 "s3:GetObject*",
 "s3:GetBucket*",
 "s3:List*",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-<username>",
 "arn:aws:s3:::ka-app-code-<username>/*"
]
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Sliding Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data stream

• Delete your Amazon S3 objects and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Legacy examples 303

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data stream

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

Delete your Amazon S3 objects and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

Legacy examples 304

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Scala examples

The following examples demonstrate how to create applications using Scala with Apache Flink.

Topics

• Example: Creating a tumbling window in Scala

• Example: Creating a sliding window in Scala

• Example: Send streaming data to Amazon S3 in Scala

Example: Creating a tumbling window in Scala

Note

For current examples, see Examples.

Note

Starting from version 1.15 Flink is Scala free. Applications can now use the Java API from
any Scala version. Flink still uses Scala in a few key components internally but doesn't
expose Scala into the user code classloader. Because of that, users need to add Scala
dependencies into their jar-archives.
For more information about Scala changes in Flink 1.15, see Scala Free in One Fifteen.

In this exercise, you will create a simple streaming application which uses Scala 3.2.0 and Flink's
Java DataStream API. The application reads data from Kinesis stream, aggregates it using sliding
windows and writes results to output Kinesis stream.

Note

To set up required prerequisites for this exercise, first complete the Getting Started (Scala)
exercise.

Legacy examples 305

https://flink.apache.org/2022/02/22/scala-free.html
https://docs.amazonaws.cn/managed-flink/latest/java/examples-gs-scala.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This topic contains the following sections:

• Download and examine the application code

• Compile and upload the application code

• Create and run the application (console)

• Create and run the application (CLI)

• Update the application code

• Clean up Amazon resources

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/scala/
TumblingWindow directory.

Note the following about the application code:

• A build.sbt file contains information about the application's configuration and dependencies,
including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.scala file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

private def createSource: FlinkKinesisConsumer[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val inputProperties = applicationProperties.get("ConsumerConfigProperties")

 new FlinkKinesisConsumer[String](inputProperties.getProperty(streamNameKey,
 defaultInputStreamName),
 new SimpleStringSchema, inputProperties)

Legacy examples 306

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

The application also uses a Kinesis sink to write into the result stream. The following snippet
creates the Kinesis sink:

private def createSink: KinesisStreamsSink[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val outputProperties = applicationProperties.get("ProducerConfigProperties")

 KinesisStreamsSink.builder[String]
 .setKinesisClientProperties(outputProperties)
 .setSerializationSchema(new SimpleStringSchema)
 .setStreamName(outputProperties.getProperty(streamNameKey,
 defaultOutputStreamName))
 .setPartitionKeyGenerator((element: String) => String.valueOf(element.hashCode))
 .build
}

• The application uses the window operator to find the count of values for each stock symbol
over a 5-seconds tumbling window. The following code creates the operator and sends the
aggregated data to a new Kinesis Data Streams sink:

environment.addSource(createSource)
 .map { value =>
 val jsonNode = jsonParser.readValue(value, classOf[JsonNode])
 new Tuple2[String, Int](jsonNode.get("ticker").toString, 1)
 }
 .returns(Types.TUPLE(Types.STRING, Types.INT))
 .keyBy(v => v.f0) // Logically partition the stream for each ticker
 .window(TumblingProcessingTimeWindows.of(Time.seconds(10)))
 .sum(1) // Sum the number of tickers per partition
 .map { value => value.f0 + "," + value.f1.toString + "\n" }
 .sinkTo(createSink)

• The application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using dynamic application properties.
Runtime application's properties are read to configure the connectors. For more information
about runtime properties, see Runtime Properties.

Legacy examples 307

https://docs.aws.amazon.com/managed-flink/latest/java/how-properties.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Compile and upload the application code

In this section, you compile and upload your application code to an Amazon S3 bucket.

Compile the Application Code

Use the SBT build tool to build the Scala code for the application. To install SBT, see Install sbt with
cs setup. You also need to install the Java Development Kit (JDK). See Prerequisites for Completing
the Exercises.

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code with SBT:

sbt assembly

2. If the application compiles successfully, the following file is created:

target/scala-3.2.0/tumbling-window-scala-1.0.jar

Upload the Apache Flink Streaming Scala Code

In this section, you create an Amazon S3 bucket and upload your application code.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In Configure options, keep the settings as they are, and choose Next.

5. In Set permissions, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. Choose the ka-app-code-<username> bucket, and then choose Upload.

8. In the Select files step, choose Add files. Navigate to the tumbling-window-
scala-1.0.jar file that you created in the previous step.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Legacy examples 308

https://www.scala-sbt.org/
https://www.scala-sbt.org/download.html
https://www.scala-sbt.org/download.html
https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My Scala test app.

• For Runtime, choose Apache Flink.

• Leave the version as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

Legacy examples 309

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter tumbling-window-scala-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Group ID Key Value

ConsumerConfigProp
erties

input.stream.name ExampleInputStream

ConsumerConfigProp
erties

aws.region us-west-2

ConsumerConfigProp
erties

flink.stream.initp
os

LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

output.stream.name ExampleOutputStream

ProducerConfigProp
erties

aws.region us-west-2

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, choose the Enable check box.

10. Choose Update.

Legacy examples 310

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/tumbling-window-scala-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",

Legacy examples 311

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]

Legacy examples 312

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Create and run the application (CLI)

In this section, you use the Amazon Command Line Interface to create and run the Managed
Service for Apache Flink application. Use the kinesisanalyticsv2 Amazon CLI command to create
and interact with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on the
sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID. The MF-stream-rw-role service execution role should
be tailored to the customer-specfic role.

{
 "ApplicationName": "tumbling_window",

Legacy examples 313

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationDescription": "Scala tumbling window application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "tumbling-window-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Legacy examples 314

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, choose Roles and then Create Role.

3. Under Select type of trusted identity, choose Amazon Service

4. Under Choose the service that will use this role, choose Kinesis.

5. Under Select your use case, choose Managed Service for Apache Flink.

6. Choose Next: Permissions.

7. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

8. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role

9. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, Create a
Permissions Policy.

a. On the Summary page, choose the Permissions tab.

Legacy examples 315

https://console.amazonaws.cn/iam/
https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the application

Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account ID
(012345678901) in the service execution role with your account ID. The ServiceExecutionRole
should include the IAM user role you created in the previous section.

"ApplicationName": "tumbling_window",
 "ApplicationDescription": "Scala getting started application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "tumbling-window-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"

Legacy examples 316

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Execute the CreateApplication with the following request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "tumbling_window",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

Legacy examples 317

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "tumbling_window"
}

2. Execute the StopApplication action with the preceding request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see Setting Up Application
Logging.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for the
application without recompiling the application code. In this example, you change the Region of
the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

Legacy examples 318

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-flink/latest/java/cloudwatch-logs.html
https://docs.amazonaws.cn/managed-flink/latest/java/cloudwatch-logs.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{"ApplicationName": "tumbling_window",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication CLI action.

Legacy examples 319

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the Create dependent resources section.

{
 "ApplicationName": "tumbling_window",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "tumbling-window-scala-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the tumbling
Window tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

Legacy examples 320

https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

Legacy examples 321

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Creating a sliding window in Scala

Note

For current examples, see Examples.

Note

Starting from version 1.15 Flink is Scala free. Applications can now use the Java API from
any Scala version. Flink still uses Scala in a few key components internally but doesn't
expose Scala into the user code classloader. Because of that, users need to add Scala
dependencies into their jar-archives.
For more information about Scala changes in Flink 1.15, see Scala Free in One Fifteen.

In this exercise, you will create a simple streaming application which uses Scala 3.2.0 and Flink's
Java DataStream API. The application reads data from Kinesis stream, aggregates it using sliding
windows and writes results to output Kinesis stream.

Note

To set up required prerequisites for this exercise, first complete the Getting Started (Scala)
exercise.

Legacy examples 322

https://console.amazonaws.cn/cloudwatch/
https://flink.apache.org/2022/02/22/scala-free.html
https://docs.amazonaws.cn/managed-flink/latest/java/examples-gs-scala.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This topic contains the following sections:

• Download and examine the application code

• Compile and upload the application code

• Create and run the application (console)

• Create and run the application (CLI)

• Update the application code

• Clean up Amazon resources

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/scala/
SlidingWindow directory.

Note the following about the application code:

• A build.sbt file contains information about the application's configuration and dependencies,
including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.scala file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

private def createSource: FlinkKinesisConsumer[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val inputProperties = applicationProperties.get("ConsumerConfigProperties")

 new FlinkKinesisConsumer[String](inputProperties.getProperty(streamNameKey,
 defaultInputStreamName),
 new SimpleStringSchema, inputProperties)

Legacy examples 323

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

The application also uses a Kinesis sink to write into the result stream. The following snippet
creates the Kinesis sink:

private def createSink: KinesisStreamsSink[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val outputProperties = applicationProperties.get("ProducerConfigProperties")

 KinesisStreamsSink.builder[String]
 .setKinesisClientProperties(outputProperties)
 .setSerializationSchema(new SimpleStringSchema)
 .setStreamName(outputProperties.getProperty(streamNameKey,
 defaultOutputStreamName))
 .setPartitionKeyGenerator((element: String) => String.valueOf(element.hashCode))
 .build
}

• The application uses the window operator to find the count of values for each stock symbol
over a 10-seconds window that slides by 5 seconds. The following code creates the operator and
sends the aggregated data to a new Kinesis Data Streams sink:

environment.addSource(createSource)
 .map { value =>
 val jsonNode = jsonParser.readValue(value, classOf[JsonNode])
 new Tuple2[String, Double](jsonNode.get("ticker").toString,
 jsonNode.get("price").asDouble)
 }
 .returns(Types.TUPLE(Types.STRING, Types.DOUBLE))
 .keyBy(v => v.f0) // Logically partition the stream for each word
 .window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5)))
 .min(1) // Calculate minimum price per ticker over the window
 .map { value => value.f0 + String.format(",%.2f", value.f1) + "\n" }
 .sinkTo(createSink)

• The application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using dynamic application properties.
Runtime application's properties are read to configure the connectors. For more information
about runtime properties, see Runtime Properties.

Legacy examples 324

https://docs.aws.amazon.com/managed-flink/latest/java/how-properties.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Compile and upload the application code

In this section, you compile and upload your application code to an Amazon S3 bucket.

Compile the Application Code

Use the SBT build tool to build the Scala code for the application. To install SBT, see Install sbt with
cs setup. You also need to install the Java Development Kit (JDK). See Prerequisites for Completing
the Exercises.

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code with SBT:

sbt assembly

2. If the application compiles successfully, the following file is created:

target/scala-3.2.0/sliding-window-scala-1.0.jar

Upload the Apache Flink Streaming Scala Code

In this section, you create an Amazon S3 bucket and upload your application code.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In Configure options, keep the settings as they are, and choose Next.

5. In Set permissions, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. Choose the ka-app-code-<username> bucket, and then choose Upload.

8. In the Select files step, choose Add files. Navigate to the sliding-window-scala-1.0.jar
file that you created in the previous step.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Legacy examples 325

https://www.scala-sbt.org/
https://www.scala-sbt.org/download.html
https://www.scala-sbt.org/download.html
https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My Scala test app.

• For Runtime, choose Apache Flink.

• Leave the version as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

Legacy examples 326

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter sliding-window-scala-1.0.jar..

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Group ID Key Value

ConsumerConfigProp
erties

input.stream.name ExampleInputStream

ConsumerConfigProp
erties

aws.region us-west-2

ConsumerConfigProp
erties

flink.stream.initp
os

LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

output.stream.name ExampleOutputStream

ProducerConfigProp
erties

aws.region us-west-2

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, choose the Enable check box.

10. Choose Update.

Legacy examples 327

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/sliding-window-scala-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",

Legacy examples 328

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]

Legacy examples 329

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Create and run the application (CLI)

In this section, you use the Amazon Command Line Interface to create and run the Managed
Service for Apache Flink application. Use the kinesisanalyticsv2 Amazon CLI command to create
and interact with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on the
sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{
 "ApplicationName": "sliding_window",

Legacy examples 330

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationDescription": "Scala sliding window application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "sliding-window-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Legacy examples 331

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, choose Roles and then Create Role.

3. Under Select type of trusted identity, choose Amazon Service

4. Under Choose the service that will use this role, choose Kinesis.

5. Under Select your use case, choose Managed Service for Apache Flink.

6. Choose Next: Permissions.

7. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

8. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role

9. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, Create a
Permissions Policy.

a. On the Summary page, choose the Permissions tab.

Legacy examples 332

https://console.amazonaws.cn/iam/
https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the application

Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account ID
(012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "sliding_window",
 "ApplicationDescription": "Scala sliding_window application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "sliding-window-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"

Legacy examples 333

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Execute the CreateApplication with the following request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "sliding_window",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

Legacy examples 334

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "sliding_window"
}

2. Execute the StopApplication action with the preceding request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see Setting Up Application
Logging.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for the
application without recompiling the application code. In this example, you change the Region of
the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

Legacy examples 335

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-flink/latest/java/cloudwatch-logs.html
https://docs.amazonaws.cn/managed-flink/latest/java/cloudwatch-logs.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{"ApplicationName": "sliding_window",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication CLI action.

Legacy examples 336

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the Create dependent resources section.

{
 "ApplicationName": "sliding_window",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the sliding Window
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

Legacy examples 337

https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

Legacy examples 338

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Example: Send streaming data to Amazon S3 in Scala

Note

For current examples, see Examples.

Note

Starting from version 1.15 Flink is Scala free. Applications can now use the Java API from
any Scala version. Flink still uses Scala in a few key components internally but doesn't
expose Scala into the user code classloader. Because of that, users need to add Scala
dependencies into their jar-archives.
For more information about Scala changes in Flink 1.15, see Scala Free in One Fifteen.

In this exercise, you will create a simple streaming application which uses Scala 3.2.0 and Flink's
Java DataStream API. The application reads data from Kinesis stream, aggregates it using sliding
windows and writes results to S3.

Note

To set up required prerequisites for this exercise, first complete the Getting Started (Scala)
exercise. You only need to create an additional folder data/ in the Amazon S3 bucket ka-
app-code-<username>.

Legacy examples 339

https://console.amazonaws.cn/cloudwatch/
https://flink.apache.org/2022/02/22/scala-free.html
https://docs.amazonaws.cn/managed-flink/latest/java/examples-gs-scala.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This topic contains the following sections:

• Download and examine the application code

• Compile and upload the application code

• Create and run the application (console)

• Create and run the application (CLI)

• Update the application code

• Clean up Amazon resources

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/scala/S3Sink
directory.

Note the following about the application code:

• A build.sbt file contains information about the application's configuration and dependencies,
including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.scala file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

private def createSource: FlinkKinesisConsumer[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val inputProperties = applicationProperties.get("ConsumerConfigProperties")

 new FlinkKinesisConsumer[String](inputProperties.getProperty(streamNameKey,
 defaultInputStreamName),
 new SimpleStringSchema, inputProperties)

Legacy examples 340

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

The application also uses a StreamingFileSink to write to an Amazon S3 bucket:`

def createSink: StreamingFileSink[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val s3SinkPath =
 applicationProperties.get("ProducerConfigProperties").getProperty("s3.sink.path")

 StreamingFileSink
 .forRowFormat(new Path(s3SinkPath), new SimpleStringEncoder[String]("UTF-8"))
 .build()
}

• The application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using dynamic application properties.
Runtime application's properties are read to configure the connectors. For more information
about runtime properties, see Runtime Properties.

Compile and upload the application code

In this section, you compile and upload your application code to an Amazon S3 bucket.

Compile the Application Code

Use the SBT build tool to build the Scala code for the application. To install SBT, see Install sbt with
cs setup. You also need to install the Java Development Kit (JDK). See Prerequisites for Completing
the Exercises.

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code with SBT:

sbt assembly

2. If the application compiles successfully, the following file is created:

target/scala-3.2.0/s3-sink-scala-1.0.jar

Legacy examples 341

https://docs.aws.amazon.com/managed-flink/latest/java/how-properties.html
https://www.scala-sbt.org/
https://www.scala-sbt.org/download.html
https://www.scala-sbt.org/download.html
https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html#setting-up-prerequisites
https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html#setting-up-prerequisites

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upload the Apache Flink Streaming Scala Code

In this section, you create an Amazon S3 bucket and upload your application code.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In Configure options, keep the settings as they are, and choose Next.

5. In Set permissions, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. Choose the ka-app-code-<username> bucket, and then choose Upload.

8. In the Select files step, choose Add files. Navigate to the s3-sink-scala-1.0.jar file that
you created in the previous step.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Legacy examples 342

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter s3-sink-scala-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Group ID Key Value

ConsumerConfigProp
erties

input.stream.name ExampleInputStream

ConsumerConfigProp
erties

aws.region us-west-2

ConsumerConfigProp
erties

flink.stream.initp
os

LATEST

Legacy examples 343

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Choose Save.

6. Under Properties, choose Add group.

7. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

s3.sink.path s3a://ka-app-code-
<user-name> /data

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, choose the Enable check box.

10. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

Legacy examples 344

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:Abort*",
 "s3:DeleteObject*",
 "s3:GetObject*",
 "s3:GetBucket*",
 "s3:List*",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-<username>",
 "arn:aws:s3:::ka-app-code-<username>/*"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",

Legacy examples 345

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Create and run the application (CLI)

In this section, you use the Amazon Command Line Interface to create and run the Managed
Service for Apache Flink application. Use the kinesisanalyticsv2 Amazon CLI command to create
and interact with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

Legacy examples 346

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on the
sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/getting-started-scala-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [

Legacy examples 347

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-analytics/
MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-analytics/
MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants

Legacy examples 348

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, choose Roles and then Create Role.

3. Under Select type of trusted identity, choose Amazon Service

4. Under Choose the service that will use this role, choose Kinesis.

5. Under Select your use case, choose Managed Service for Apache Flink.

6. Choose Next: Permissions.

7. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

8. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role

9. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, Create a
Permissions Policy.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

Legacy examples 349

https://console.amazonaws.cn/iam/
https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the application

Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account ID
(012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "s3_sink",
 "ApplicationDescription": "Scala tumbling window application",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "s3-sink-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "s3.sink.path" : "s3a://ka-app-code-<username>/data"
 }

Legacy examples 350

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Execute the CreateApplication with the following request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{{
 "ApplicationName": "s3_sink",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Legacy examples 351

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "s3_sink"
}

2. Execute the StopApplication action with the preceding request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see Setting Up Application
Logging.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for the
application without recompiling the application code. In this example, you change the Region of
the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "s3_sink",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {

Legacy examples 352

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-flink/latest/java/cloudwatch-logs.html
https://docs.amazonaws.cn/managed-flink/latest/java/cloudwatch-logs.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "s3.sink.path" : "s3a://ka-app-code-<username>/data"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current

Legacy examples 353

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the Create dependent resources section.

{
 "ApplicationName": "s3_sink",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "s3-sink-scala-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Tumbling
Window tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Legacy examples 354

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Legacy examples 355

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Using a Studio notebook with Managed Service for
Apache Flink

Studio notebooks for Managed Service for Apache Flink allows you to interactively query data
streams in real time, and easily build and run stream processing applications using standard
SQL, Python, and Scala. With a few clicks in the Amazon Management console, you can launch a
serverless notebook to query data streams and get results in seconds.

A notebook is a web-based development environment. With notebooks, you get a simple
interactive development experience combined with the advanced capabilities provided by Apache
Flink. Studio notebooks uses notebooks powered by Apache Zeppelin, and uses Apache Flink as
the stream processing engine. Studio notebooks seamlessly combines these technologies to make
advanced analytics on data streams accessible to developers of all skill sets.

Apache Zeppelin provides your Studio notebooks with a complete suite of analytics tools, including
the following:

• Data Visualization

• Exporting data to files

• Controlling the output format for easier analysis

To get started using Managed Service for Apache Flink and Apache Zeppelin, see Creating a
Studio notebook tutorial. For more information about Apache Zeppelin, see the Apache Zeppelin
documentation.

With a notebook, you model queries using the Apache Flink Table API & SQL in SQL, Python, or
Scala, or DataStream API in Scala. With a few clicks, you can then promote the Studio notebook
to a continuously-running, non-interactive, Managed Service for Apache Flink stream-processing
application for your production workloads.

This topic contains the following sections:

• Creating a Studio notebook

• Interactive analysis of streaming data

• Deploying as an application with durable state

• IAM permissions for Studio notebooks

356

https://zeppelin.apache.org/
https://flink.apache.org/
http://zeppelin.apache.org
http://zeppelin.apache.org
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/datastream_api.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Connectors and dependencies

• User-defined functions

• Enabling checkpointing

• Working with Amazon Glue

• Examples and tutorials

• Troubleshooting

• Appendix: Creating custom IAM policies

Creating a Studio notebook

A Studio notebook contains queries or programs written in SQL, Python, or Scala that runs on
streaming data and returns analytic results. You create your application using either the console or
the CLI, and provide queries for analyzing the data from your data source.

Your application has the following components:

• A data source, such as an Amazon MSK cluster, a Kinesis data stream, or an Amazon S3 bucket.

• An Amazon Glue database. This database contains tables, which store your data source and
destination schemas and endpoints. For more information, see Working with Amazon Glue.

• Your application code. Your code implements your analytics query or program.

• Your application settings and runtime properties. For information about application settings
and runtime properties, see the following topics in the Developer Guide for Apache Flink
Applications:

• Application Parallelism and Scaling: You use your application's Parallelism setting to control
the number of queries that your application can execute simultaneously. Your queries can also
take advantage of increased parallelism if they have multiple paths of execution, such as in the
following circumstances:

• When processing multiple shards of a Kinesis data stream

• When partitioning data using the KeyBy operator.

• When using multiple window operators

For more information about application scaling, see Application Scaling in Managed Service
for Apache Flink for Apache Flink.

Creating a Studio notebook 357

https://docs.aws.amazon.com/managed-flink/latest/java/what-is.html
https://docs.aws.amazon.com/managed-flink/latest/java/what-is.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-scaling.html
https://docs.aws.amazon.com/managed-flink/latest/java/how-scaling.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Logging and Monitoring: For information about application logging and monitoring, see
Logging and Monitoring in Amazon Managed Service for Apache Flink for Apache Flink.

• Your application uses checkpoints and savepoints for fault tolerance. Checkpoints and
savepoints are not enabled by default for Studio notebooks.

You can create your Studio notebook using either the Amazon Web Services Management Console
or the Amazon CLI.

When creating the application from the console, you have the following options:

• In the Amazon MSK console choose your cluster, then choose Process data in real time.

• In the Kinesis Data Streams console choose your data stream, then on the Applications tab
choose Process data in real time.

• In the Managed Service for Apache Flink console choose the Studio tab, then choose Create
Studio notebook.

For a tutorial, see Event Detection with Managed Service for Apache Flink.

For an example of a more advanced Studio notebook solution, see Apache Flink on Amazon
Managed Service for Apache Flink Studio.

Interactive analysis of streaming data

You use a serverless notebook powered by Apache Zeppelin to interact with your streaming data.
Your notebook can have multiple notes, and each note can have one or more paragraphs where
you can write your code.

The following example SQL query shows how to retrieve data from a data source:

%flink.ssql(type=update)
select * from stock;

For more examples of Flink Streaming SQL queries, see Examples and tutorials following, and
Queries in the Apache Flink documentation.

You can use Flink SQL queries in the Studio notebook to query streaming data. You may also
use Python (Table API) and Scala (Table and Datastream APIs) to write programs to query your

Interactive analysis of streaming data 358

https://docs.aws.amazon.com/managed-flink/latest/java/monitoring-overview.html
https://docs.aws.amazon.com/managed-flink/latest/java/monitoring-overview.html
https://catalog.us-east-1.prod.workshops.aws/workshops/2b03e299-c30f-4144-b452-483356cc5267/en-US
https://streaming-analytics.workshop.aws/flink-on-kda-studio/
https://streaming-analytics.workshop.aws/flink-on-kda-studio/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/sql/queries.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

streaming data interactively. You can view the results of your queries or programs, update them in
seconds, and re-run them to view updated results.

Flink interpreters

You specify which language Managed Service for Apache Flink uses to run your application by using
an interpreter. You can use the following interpreters with Managed Service for Apache Flink:

Name Class Description

%flink FlinkInterpreter Creates ExecutionEnvironme
nt/StreamExecution
Environment/BatchTableEnvir
onment/StreamTable
Environment and provides a
Scala environment

%flink.pyflink PyFlinkInterpreter Provides a python environme
nt

%flink.ipyflink IPyFlinkInterpreter Provides an ipython
environment

%flink.ssql FlinkStreamSqlInterpreter Provides a stream sql
environment

%flink.bsql FlinkBatchSqlInterpreter Provides a batch sql
environment

For more information about Flink interpreters, see Flink interpreter for Apache Zeppelin.

If you are using %flink.pyflink or %flink.ipyflink as your interpreters, you will need to use
the ZeppelinContext to visualize the results within the notebook.

For more PyFlink specific examples, see Query your data streams interactively using Managed
Service for Apache Flink Studio and Python.

Flink interpreters 359

https://zeppelin.apache.org/docs/0.9.0/interpreter/flink.html
https://aws.amazon.com/blogs/big-data/query-your-data-streams-interactively-using-kinesis-data-analytics-studio-and-python/
https://aws.amazon.com/blogs/big-data/query-your-data-streams-interactively-using-kinesis-data-analytics-studio-and-python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink table environment variables

Apache Zeppelin provides access to table environment resources using environment variables.

You access Scala table environment resources with the following variables:

Variable Resource

senv StreamExecutionEnvironment

stenv StreamTableEnvironment for blink
planner

You access Python table environment resources with the following variables:

Variable Resource

s_env StreamExecutionEnvironment

st_env StreamTableEnvironment for blink
planner

For more information about using table environments, see Create a TableEnvironment in the
Apache Flink documentation.

Deploying as an application with durable state

You can build your code and export it to Amazon S3. You can promote the code that you wrote
in your note to a continuously running stream processing application. There are two modes of
running an Apache Flink application on Managed Service for Apache Flink: With a Studio notebook,
you have the ability to develop your code interactively, view results of your code in real time,
and visualize it within your note. After you deploy a note to run in streaming mode, Managed
Service for Apache Flink creates an application for you that runs continuously, reads data from
your sources, writes to your destinations, maintains long-running application state, and autoscales
automatically based on the throughput of your source streams.

Apache Flink table environment variables 360

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/common.html#create-a-tableenvironment
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The S3 bucket to which you export your application code must be in the same Region as
your Studio notebook.

You can only deploy a note from your Studio notebook if it meets the following criteria:

• Paragraphs must be ordered sequentially. When you deploy your application, all paragraphs
within a note will be executed sequentially (left-to-right, top-to-bottom) as they appear in your
note. You can check this order by choosing Run All Paragraphs in your note.

• Your code is a combination of Python and SQL or Scala and SQL. We do not support Python and
Scala together at this time for deploy-as-application.

• Your note should have only the following interpreters: %flink, %flink.ssql,
%flink.pyflink, %flink.ipyflink, %md.

• The use of the Zeppelin context object z is not supported. Methods that return nothing will do
nothing except log a warning. Other methods will raise Python exceptions or fail to compile in
Scala.

• A note must result in a single Apache Flink job.

• Notes with dynamic forms are unsupported for deploying as an application.

• %md (Markdown) paragraphs will be skipped in deploying as an application, as these are
expected to contain human-readable documentation that is unsuitable for running as part of the
resulting application.

• Paragraphs disabled for running within Zeppelin will be skipped in deploying as an application.
Even if a disabled paragraph uses an incompatible interpreter, for example, %flink.ipyflink
in a note with %flink and %flink.ssql interpreters, it will be skipped while deploying the
note as an application, and will not result in an error.

• There must be at least one paragraph present with source code (Flink SQL, PyFlink or Flink Scala)
that is enabled for running for the application deployment to succeed.

• Setting parallelism in the interpreter directive within a paragraph (e.g.
%flink.ssql(parallelism=32)) will be ignored in applications deployed from a note.
Instead, you can update the deployed application through the Amazon Web Services
Management Console, Amazon Command Line Interface or Amazon API to change the
Parallelism and/or ParallelismPerKPU settings according to the level of parallelism your
application requires, or you can enable autoscaling for your deployed application.

Deploying as an application with durable state 361

https://zeppelin.apache.org/docs/0.9.0/usage/other_features/zeppelin_context.html
https://zeppelin.apache.org/docs/0.9.0/usage/dynamic_form/intro.html
https://zeppelin.apache.org/docs/0.9.0/interpreter/markdown.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• If you are deploying as an application with durable state your VPC must have internet access. If
your VPC does not have internet access, see Deploying as an application with durable state in a
VPC with no internet access.

Scala/Python criteria

• In your Scala or Python code, use the Blink planner (senv, stenv for Scala; s_env, st_env
for Python) and not the older "Flink" planner (stenv_2 for Scala, st_env_2 for Python). The
Apache Flink project recommends the use of the Blink planner for production use cases, and this
is the default planner in Zeppelin and in Flink.

• Your Python paragraphs must not use shell invocations/assignments using ! or IPython magic
commands like %timeit or %conda in notes meant to be deployed as applications.

• You can't use Scala case classes as parameters of functions passed to higher-order dataflow
operators like map and filter. For information about Scala case classes, see CASE CLASSES in
the Scala documentation.

SQL criteria

• Simple SELECT statements are not permitted, as there’s nowhere equivalent to a paragraph’s
output section where the data can be delivered.

• In any given paragraph, DDL statements (USE, CREATE, ALTER, DROP, SET, RESET) must precede
DML (INSERT) statements. This is because DML statements in a paragraph must be submitted
together as a single Flink job.

• There should be at most one paragraph that has DML statements in it. This is because, for the
deploy-as-application feature, we only support submitting a single job to Flink.

For more information and an example, see Translate, redact and analyze streaming data using
SQL functions with Amazon Managed Service for Apache Flink, Amazon Translate, and Amazon
Comprehend.

IAM permissions for Studio notebooks

Managed Service for Apache Flink creates an IAM role for you when you create a Studio notebook
through the Amazon Web Services Management Console. It also associates with that role a policy
that allows the following access:

Scala/Python criteria 362

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/#dependency-structure
https://ipython.readthedocs.io/en/stable/interactive/python-ipython-diff.html#shell-assignment
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://docs.scala-lang.org/overviews/scala-book/case-classes.html
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesisanalytics-MyApplicatioamazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesisanalytics-MyApplicatioamazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesisanalytics-MyApplicatioamazon-translate-and-amazon-comprehend/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Service Access

CloudWatch Logs List

Amazon EC2 List

Amazon Glue Read, Write

Managed Service for Apache Flink Read

Managed Service for Apache Flink V2 Read

Amazon S3 Read, Write

Connectors and dependencies

Connectors enable you to read and write data across various technologies. Managed Service for
Apache Flink bundles three default connectors with your Studio notebook. You can also use custom
connectors. For more information about connectors, see Table & SQL Connectors in the Apache
Flink documentation.

Default connectors

If you use the Amazon Web Services Management Console to create your Studio notebook,
Managed Service for Apache Flink includes the following custom connectors by default: flink-
sql-connector-flink, flink-connector-kafka_2.12 and aws-msk-iam-auth. To create
a Studio notebook through the console without these custom connectors, choose the Create with
custom settings option. Then, when you get to the Configurations page, clear the checkboxes next
to the two connectors.

If you use the CreateApplication API to create your Studio notebook, the flink-sql-connector-
flink and flink-connector-kafka connectors aren't included by default. To add them, specify
them as a MavenRefernce in the CustomArtifactsConfiguration data type as shown in the
following examples.

The aws-msk-iam-auth connector is the connector to use with Amazon MSK that includes the
feature to automatically authenticate with IAM.

Connectors and dependencies 363

https://ci.apache.org/projects/flink/flink-docs-release-1.13/docs/connectors/table/overview/
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The connector versions shown in the following example are the only versions that we
support.

For the Kinesis connector:

"CustomArtifactsConfiguration": [{
"ArtifactType": "DEPENDENCY_JAR",
 "MavenReference": {
"GroupId": "org.apache.flink",

 "ArtifactId": "flink-sql-connector-kinesis",
 "Version": "1.15.4"

 }
}]

For authenticating with AWS MSK through AWS IAM:

"CustomArtifactsConfiguration": [{
"ArtifactType": "DEPENDENCY_JAR",
 "MavenReference": {
"GroupId": "software.amazon.msk",
 "ArtifactId": "aws-msk-iam-auth",
 "Version": "1.1.6"
 }
}]

For the Apache Kafka connector:

"CustomArtifactsConfiguration": [{
"ArtifactType": "DEPENDENCY_JAR",
 "MavenReference": {
"GroupId": "org.apache.flink",

 "ArtifactId": "flink-connector-kafka",
 "Version": "1.15.4"

 }
}]

Default connectors 364

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To add these connectors to an existing notebook, use the UpdateApplication API operation and
specify them as a MavenReference in the CustomArtifactsConfigurationUpdate data type.

Note

You can set failOnError to true for the flink-sql-connector-kinesis connector in
the table API.

Dependencies and custom connectors

To use the Amazon Web Services Management Console to add a dependency or a custom
connector to your Studio notebook, follow these steps:

1. Upload your custom connector's file to Amazon S3.

2. In the Amazon Web Services Management Console, choose the Custom create option for
creating your Studio notebook.

3. Follow the Studio notebook creation workflow until you get to the Configurations step.

4. In the Custom connectors section, choose Add custom connector.

5. Specify the Amazon S3 location of the dependency or the custom connector.

6. Choose Save changes.

To add a dependency JAR or a custom connector when you create a new Studio notebook using
the CreateApplication API, specify the Amazon S3 location of the dependency JAR or the custom
connector in the CustomArtifactsConfiguration data type. To add a dependency or a
custom connector to an existing Studio notebook, invoke the UpdateApplication API operation
and specify the Amazon S3 location of the dependency JAR or the custom connector in the
CustomArtifactsConfigurationUpdate data type.

Note

When you include a dependency or a custom connector, you must also include all its
transitive dependencies that aren't bundled within it.

Dependencies and custom connectors 365

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

User-defined functions

User-defined functions (UDFs) are extension points that allow you to call frequently-used logic or
custom logic that can't be expressed otherwise in queries. You can use Python or a JVM language
like Java or Scala to implement your UDFs in paragraphs inside your Studio notebook. You can also
add to your Studio notebook external JAR files that contain UDFs implemented in a JVM language.

When implementing JARs that register abstract classes that subclass UserDefinedFunction
(or your own abstract classes), use provided scope in Apache Maven, compileOnly dependency
declarations in Gradle, provided scope in SBT, or an equivalent directive in your UDF project build
configuration. This allows the UDF source code to compile against the Flink APIs, but the Flink
API classes are not themselves included in the build artifacts. Refer to this pom from the UDF jar
example which adheres to such prerequisite on a Maven project.

Note

For an example setup, see Translate, redact and analyze streaming data using SQL
functions with Amazon Managed Service for Apache Flink, Amazon Translate, and Amazon
Comprehend on the Amazon Machine Learning Blog.

To use the console to add UDF JAR files to your Studio notebook, follow these steps:

1. Upload your UDF JAR file to Amazon S3.

2. In the Amazon Web Services Management Console, choose the Custom create option for
creating your Studio notebook.

3. Follow the Studio notebook creation workflow until you get to the Configurations step.

4. In the User-defined functions section, choose Add user-defined function.

5. Specify the Amazon S3 location of the JAR file or the ZIP file that has the implementation of
your UDF.

6. Choose Save changes.

To add a UDF JAR when you create a new Studio notebook using the CreateApplication API, specify
the JAR location in the CustomArtifactConfiguration data type. To add a UDF JAR to an
existing Studio notebook, invoke the UpdateApplication API operation and specify the JAR location

User-defined functions 366

https://github.com/aws-samples/kinesis-udfs-textanalytics/blob/ec27108faa48f1a4c5d173ed3a2ef4565b58b5b5/kinesis-udfs-textanalytics-linear/pom.xml#L47
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

in the CustomArtifactsConfigurationUpdate data type. Alternatively, you can use the
Amazon Web Services Management Console to add UDF JAR files to you Studio notebook.

Considerations with user-defined functions

• Managed Service for Apache Flink Studio uses the Apache Zeppelin terminology wherein a
notebook is a Zeppelin instance that can contain multiple notes. Each note can then contain
multiple paragraphs. With Managed Service for Apache Flink Studio the interpreter process is
shared across all the notes in the notebook. So if you perform an explicit function registration
using createTemporarySystemFunction in one note, the same can be referenced as-is in another
note of same notebook.

The Deploy as application operation however works on an individual note and not all notes in
the notebook. When you perform deploy as application, only active note's contents are used to
generate the application. Any explicit function registration performed in other notebooks are
not part of the generated application dependencies. Additionally, during Deploy as application
option an implicit function registration occurs by converting the main class name of JAR to a
lowercase string.

For example, if TextAnalyticsUDF is the main class for UDF JAR, then an implicit registration
will result in function name textanalyticsudf. So if an explicit function registration in note
1 of Studio occurs like the following, then all other notes in that notebook (say note 2) can refer
the function by name myNewFuncNameForClass because of the shared interpreter:

stenv.createTemporarySystemFunction("myNewFuncNameForClass", new
TextAnalyticsUDF())

However during deploy as application operation on note 2, this explicit registration will not be
included in the dependencies and hence the deployed application will not perform as expected.
Because of the implicit registration, by default all references to this function is expected to be
with textanalyticsudf and not myNewFuncNameForClass.

If there is a need for custom function name registration then note 2 itself is expected to contain
another paragraph to perform another explicit registration as follows:

%flink(parallelism=l)
import com.amazonaws.kinesis.udf.textanalytics.TextAnalyticsUDF
re-register the JAR for UDF with custom name
stenv.createTemporarySystemFunction("myNewFuncNameForClass", new TextAnalyticsUDF())

Considerations with user-defined functions 367

https://zeppelin.apache.org/docs/0.9.0/quickstart/explore_ui.html
https://nightlies.apache.org/flink/flink-docs-master/api/java/org/apache/flink/table/api/TableEnvironment.html#createTemporarySystemFunction-java.lang.String-java.lang.Class-

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

%flink. ssql(type=update, parallelism=1)
INSERT INTO
 table2
SELECT
 myNewFuncNameForClass(column_name)
FROM
 table1
;

• If your UDF JAR includes Flink SDKs, then configure your Java project so that the UDF source
code can compile against the Flink SDKs, but the Flink SDK classes are not themselves included
in the build artifact, for example the JAR.

You can use provided scope in Apache Maven, compileOnly dependency declarations in
Gradle, provided scope in SBT, or equivalent directive in their UDF project build configuration.
You can refer to this pom from the UDF jar example, which adheres to such a prerequisite on
a maven project. For a complete step-by-step tutorial, see this Translate, redact and analyze
streaming data using SQL functions with Amazon Managed Service for Apache Flink, Amazon
Translate, and Amazon Comprehend.

Enabling checkpointing

You enable checkpointing by using environment settings. For information about checkpointing, see
Fault Tolerance in the Managed Service for Apache Flink Developer Guide.

Setting the checkpointing interval

The following Scala code example sets your application's checkpoint interval to one minute:

// start a checkpoint every 1 minute
stenv.enableCheckpointing(60000)

The following Python code example sets your application's checkpoint interval to one minute:

st_env.get_config().get_configuration().set_string(
 "execution.checkpointing.interval", "1min"
)

Enabling checkpointing 368

https://github.com/aws-samples/kinesis-udfs-textanalytics/blob/ec27108faa48f1a4c5d173ed3a2ef4565b58b5b5/kinesis-udfs-textanalytics-linear/pom.xml#L47
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-redact-and-analyze-streaming-data-using-sql-functions-with-amazon-kinesis-data-analytics-amazon-translate-and-amazon-comprehend/
https://docs.amazonaws.cn/managed-flink/latest/java/how-fault.html
https://docs.amazonaws.cn/managed-flink/latest/java/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Setting the checkpointing type

The following Scala code example sets your application's checkpoint mode to EXACTLY_ONCE (the
default):

// set mode to exactly-once (this is the default)
stenv.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)

The following Python code example sets your application's checkpoint mode to EXACTLY_ONCE
(the default):

st_env.get_config().get_configuration().set_string(
 "execution.checkpointing.mode", "EXACTLY_ONCE"
)

Working with Amazon Glue

Your Studio notebook stores and gets information about its data sources and sinks from Amazon
Glue. When you create your Studio notebook, you specify the Amazon Glue database that contains
your connection information. When you access your data sources and sinks, you specify Amazon
Glue tables contained in the database. Your Amazon Glue tables provide access to the Amazon
Glue connections that define the locations, schemas, and parameters of your data sources and
destinations.

Studio notebooks use table properties to store application-specific data. For more information, see
Table properties.

For an example of how to set up a Amazon Glue connection, database, and table for use with
Studio notebooks, see Create an Amazon Glue database in the Creating a Studio notebook tutorial
tutorial.

Table properties

In addition to data fields, your Amazon Glue tables provide other information to your Studio
notebook using table properties. Managed Service for Apache Flink uses the following Amazon
Glue table properties:

• Using Apache Flink time values: These properties define how Managed Service for Apache Flink
emits Apache Flink internal data processing time values.

Setting the checkpointing type 369

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Using Flink connector and format properties: These properties provide information about your
data streams.

To add a property to an Amazon Glue table, do the following:

1. Sign in to the Amazon Web Services Management Console and open the Amazon Glue console
at https://console.amazonaws.cn/glue/.

2. From the list of tables, choose the table that your application uses to store its data connection
information. Choose Action, Edit table details.

3. Under Table Properties, enter managed-flink.proctime for key and user_action_time
for Value.

Using Apache Flink time values

Apache Flink provides time values that describe when stream processing events occured, such as
Processing Time and Event Time. To include these values in your application output, you define
properties on your Amazon Glue table that tell the Managed Service for Apache Flink runtime to
emit these values into the specified fields.

The keys and values you use in your table properties are as follows:

Timestamp Type Key Value

Processing Time managed-flink.proctime The column name that
Amazon Glue will use to
expose the value. This column
name does not correspond to
an existing table column.

Event Time managed-flink.rowtime The column name that
Amazon Glue will use to
expose the value. This column
name corresponds to an
existing table column.

Table properties 370

https://console.amazonaws.cn/glue/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#processing-time
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#processing-time
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#event-time
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#processing-time
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/streaming/time_attributes.html#event-time

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Timestamp Type Key Value

managed-flink.wate
rmark.column_na
me .milliseconds

The watermark interval in
milliseconds

Using Flink connector and format properties

You provide information about your data sources to your application's Flink connectors using
Amazon Glue table properties. Some examples of the properties that Managed Service for Apache
Flink uses for connectors are as follows:

Connector Type Key Value

format The format used to deseriali
ze and serialize Kafka
messages, e.g. json or csv.

Kafka

scan.startup.mode The startup mode for
the Kafka consumer, e.g.
earliest-offset or
timestamp .

format The format used to deseriali
ze and serialize Kinesis data
stream records, e.g. json or
csv.

Kinesis

aws.region The Amazon region where
the stream is defined.

format The format used to deseriali
ze and serialize files, e.g.
json or csv.

S3 (Filesystem)

path The Amazon S3 path, e.g.
s3://mybucket/ .

Table properties 371

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/connectors/kafka.html#connector-options
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/kinesis.html#connector-options
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/connectors/filesystem.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information about other connectors besides Kinesis and Apache Kafka, see your
connector's documentation.

Examples and tutorials

Topics

• Tutorial: Creating a Studio notebook in Managed Service for Apache Flink

• Tutorial: Deploying as an application with durable state

• Examples

Tutorial: Creating a Studio notebook in Managed Service for Apache
Flink

The following tutorial demonstrates how to create a Studio notebook that reads data from a
Kinesis Data Stream or an Amazon MSK cluster.

This tutorial contains the following sections:

• Setup

• Create an Amazon Glue database

• Next steps

• Creating a Studio notebook with Kinesis Data Streams

• Creating a Studio notebook with Amazon MSK

• Cleaning up your application and dependent resources

Setup

Ensure that your Amazon CLI is version 2 or later. To install the latest Amazon CLI, see Installing,
updating, and uninstalling the Amazon CLI version 2.

Create an Amazon Glue database

Your Studio notebook uses an Amazon Glue database for metadata about your Amazon MSK data
source.

Examples and tutorials 372

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.amazonaws.cn/glue/latest/dg/what-is-glue.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create an Amazon Glue Database

1. Open the Amazon Glue console at https://console.aws.amazon.com/glue/.

2. Choose Add database. In the Add database window, enter default for Database name.
Choose Create.

Next steps

With this tutorial, you can create a Studio notebook that uses either Kinesis Data Streams or
Amazon MSK:

• Kinesis Data Streams : With Kinesis Data Streams, you quickly create an application that uses a
Kinesis data stream as a source. You only need to create a Kinesis data stream as a dependent
resource.

• Amazon MSK : With Amazon MSK, you create an application that uses a Amazon MSK cluster as a
source. You need to create an Amazon VPC, an Amazon EC2 client instance, and an Amazon MSK
cluster as dependent resources.

Creating a Studio notebook with Kinesis Data Streams

This tutorial describes how to create a Studio notebook that uses a Kinesis data stream as a source.

This tutorial contains the following sections:

• Setup

• Create an Amazon Glue table

• Create a Studio notebook with Kinesis Data Streams

• Send data to your Kinesis data stream

• Test your Studio notebook

Setup

Before you create a Studio notebook, create a Kinesis data stream (ExampleInputStream). Your
application uses this stream for the application source.

You can create this stream using either the Amazon Kinesis console or the following Amazon CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis

Creating a Studio notebook tutorial 373

https://console.aws.amazon.com/glue/
https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Data Streams Developer Guide. Name the stream ExampleInputStream and set the Number of
open shards to 1.

To create the stream (ExampleInputStream) using the Amazon CLI, use the following Amazon
Kinesis create-stream Amazon CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-east-1 \
--profile adminuser

Create an Amazon Glue table

Your Studio notebook uses an Amazon Glue database for metadata about your Kinesis Data
Streams data source.

Note

You can either manually create the database first or you can let Managed Service for
Apache Flink create it for you when you create the notebook. Similarly, you can either
manually create the table as described in this section, or you can use the create table
connector code for Managed Service for Apache Flink in your notebook within Apache
Zeppelin to create your table via a DDL statement. You can then check in Amazon Glue to
make sure the table was correctly created.

Create a Table

1. Sign in to the Amazon Web Services Management Console and open the Amazon Glue console
at https://console.amazonaws.cn/glue/.

2. If you don't already have a Amazon Glue database, choose Databases from the left navigation
bar. Choose Add Database. In the Add database window, enter default for Database name.
Choose Create.

3. In the left navigation bar, choose Tables. In the Tables page, choose Add tables, Add table
manually.

4. In the Set up your table's properties page, enter stock for the Table name. Make sure you
select the database you created previously. Choose Next.

Creating a Studio notebook tutorial 374

https://docs.amazonaws.cn/glue/latest/dg/what-is-glue.html
https://console.amazonaws.cn/glue/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

5. In the Add a data store page, choose Kinesis. For the Stream name, enter
ExampleInputStream. For Kinesis source URL, choose enter https://kinesis.us-
east-1.amazonaws.com. If you copy and paste the Kinesis source URL, be sure to delete any
leading or trailing spaces. Choose Next.

6. In the Classification page, choose JSON. Choose Next.

7. In the Define a Schema page, choose Add Column to add a column. Add columns with the
following properties:

Column name Data type

ticker string

price double

Choose Next.

8. On the next page, verify your settings, and choose Finish.

9. Choose your newly created table from the list of tables.

10. Choose Edit table and add a property with the key managed-flink.proctime and the value
proctime.

11. Choose Apply.

Create a Studio notebook with Kinesis Data Streams

Now that you have created the resources your application uses, you create your Studio notebook.

To create your application, you can use either the Amazon Web Services Management Console
or the Amazon CLI.

• Create a Studio notebook using the Amazon Web Services Management Console

• Create a Studio notebook using the Amazon CLI

Create a Studio notebook using the Amazon Web Services Management Console

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
managed-flink/home?region=us-east-1#/applications/dashboard.

Creating a Studio notebook tutorial 375

https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard
https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. In the Managed Service for Apache Flink applications page, choose the Studio tab. Choose
Create Studio notebook.

Note

You can also create a Studio notebook from the Amazon MSK or Kinesis Data Streams
consoles by selecting your input Amazon MSK cluster or Kinesis data stream, and
choosing Process data in real time.

3. In the Create Studio notebook page, provide the following information:

• Enter MyNotebook for the name of the notebook.

• Choose default for Amazon Glue database.

Choose Create Studio notebook.

4. In the MyNotebook page, choose Run. Wait for the Status to show Running. Charges apply
when the notebook is running.

Create a Studio notebook using the Amazon CLI

To create your Studio notebook using the Amazon CLI, do the following:

1. Verify your account ID. You need this value to create your application.

2. Create the role arn:aws:iam::AccountID:role/ZeppelinRole and add the following
permissions to the auto-created role by console.

"kinesis:GetShardIterator",

"kinesis:GetRecords",

"kinesis:ListShards"

3. Create a file called create.json with the following contents. Replace the placeholder values
with your information.

{
 "ApplicationName": "MyNotebook",
 "RuntimeEnvironment": "ZEPPELIN-FLINK-3_0",
 "ApplicationMode": "INTERACTIVE",

Creating a Studio notebook tutorial 376

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ServiceExecutionRole": "arn:aws:iam::AccountID:role/ZeppelinRole",
 "ApplicationConfiguration": {
 "ApplicationSnapshotConfiguration": {
 "SnapshotsEnabled": false
 },
 "ZeppelinApplicationConfiguration": {
 "CatalogConfiguration": {
 "GlueDataCatalogConfiguration": {
 "DatabaseARN": "arn:aws:glue:us-east-1:AccountID:database/
default"
 }
 }
 }
 }
}

4. Run the following command to create your application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create.json

5. When the command completes, you see output that shows the details for your new Studio
notebook. The following is an example of the output.

{
 "ApplicationDetail": {
 "ApplicationARN": "arn:aws:kinesisanalyticsus-
east-1:012345678901:application/MyNotebook",
 "ApplicationName": "MyNotebook",
 "RuntimeEnvironment": "ZEPPELIN-FLINK-3_0",
 "ApplicationMode": "INTERACTIVE",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/ZeppelinRole",
...

6. Run the following command to start your application. Replace the sample value with your
account ID.

aws kinesisanalyticsv2 start-application --application-arn
 arn:aws:kinesisanalyticsus-east-1:012345678901:application/MyNotebook\

Send data to your Kinesis data stream

To send test data to your Kinesis data stream, do the following:

Creating a Studio notebook tutorial 377

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

1. Open the Kinesis Data Generator.

2. Choose Create a Cognito User with CloudFormation.

3. The Amazon CloudFormation console opens with the Kinesis Data Generator template. Choose
Next.

4. In the Specify stack details page, enter a username and password for your Cognito user.
Choose Next.

5. In the Configure stack options page, choose Next.

6. In the Review Kinesis-Data-Generator-Cognito-User page, choose the I acknowledge that
Amazon CloudFormation might create IAM resources. checkbox. Choose Create Stack.

7. Wait for the Amazon CloudFormation stack to finish being created. After the stack is complete,
open the Kinesis-Data-Generator-Cognito-User stack in the Amazon CloudFormation console,
and choose the Outputs tab. Open the URL listed for the KinesisDataGeneratorUrl output
value.

8. In the Amazon Kinesis Data Generator page, log in with the credentials you created in step 4.

9. On the next page, provide the following values:

Region us-east-1

Stream/Firehose stream ExampleInputStream

Records per second 1

For Record Template, paste the following code:

{
 "ticker": "{{random.arrayElement(
 ["AMZN","MSFT","GOOG"]
)}}",
 "price": {{random.number(
 {
 "min":10,
 "max":150
 }
)}}
}

10. Choose Send data.

Creating a Studio notebook tutorial 378

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

11. The generator will send data to your Kinesis data stream.

Leave the generator running while you complete the next section.

Test your Studio notebook

In this section, you use your Studio notebook to query data from your Kinesis data stream.

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
managed-flink/home?region=us-east-1#/applications/dashboard.

2. On the Managed Service for Apache Flink applications page, choose the Studio notebook
tab. Choose MyNotebook.

3. In the MyNotebook page, choose Open in Apache Zeppelin.

The Apache Zeppelin interface opens in a new tab.

4. In the Welcome to Zeppelin! page, choose Zeppelin Note.

5. In the Zeppelin Note page, enter the following query into a new note:

%flink.ssql(type=update)
select * from stock

Choose the run icon.

After a short time, the note displays data from the Kinesis data stream.

To open the Apache Flink Dashboard for your application to view operational aspects, choose
FLINK JOB. For more information about the Flink Dashboard, see Apache Flink Dashboard in the
Managed Service for Apache Flink Developer Guide.

For more examples of Flink Streaming SQL queries, see Queries in the Apache Flink documentation.

Creating a Studio notebook with Amazon MSK

This tutorial describes how to create a Studio notebook that uses an Amazon MSK cluster as a
source.

This tutorial contains the following sections:

• Setup

Creating a Studio notebook tutorial 379

https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard
https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard
https://docs.amazonaws.cn/managed-flink/latest/java/how-dashboard.html
https://docs.amazonaws.cn/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/sql/queries.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Add a NAT gateway to your VPC

• Create an Amazon Glue connection and table

• Create a Studio notebook with Amazon MSK

• Send data to your Amazon MSK cluster

• Test your Studio notebook

Setup

For this tutorial, you need an Amazon MSK cluster that allows plaintext access. If you don't have
an Amazon MSK cluster set up already, follow the Getting Started Using Amazon MSK tutorial to
create an Amazon VPC, an Amazon MSK cluster, a topic, and an Amazon EC2 client instance.

When following the tutorial, do the following:

• In Step 3: Create an Amazon MSK Cluster, on step 4, change the ClientBroker value from TLS
to PLAINTEXT.

Add a NAT gateway to your VPC

If you created an Amazon MSK cluster by following the Getting Started Using Amazon MSK
tutorial, or if your existing Amazon VPC does not already have a NAT gateway for its private
subnets, you must add a NAT Gateway to your Amazon VPC. The following diagram shows the
architecture.

Creating a Studio notebook tutorial 380

https://docs.amazonaws.cn/msk/latest/developerguide/getting-started.html
https://docs.amazonaws.cn/msk/latest/developerguide/create-cluster.html
https://docs.amazonaws.cn/msk/latest/developerguide/getting-started.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To create a NAT gateway for your Amazon VPC, do the following:

1. Open the Amazon VPC console at https://console.amazonaws.cn/vpc/.

2. Choose NAT Gateways from the left navigation bar.

3. On the NAT Gateways page, choose Create NAT Gateway.

4. On the Create NAT Gateway page, provide the following values:

Creating a Studio notebook tutorial 381

https://console.amazonaws.cn/vpc/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Name - optional ZeppelinGateway

Subnet AmazonKafkaTutorialSubnet1

Elastic IP allocation ID Choose an available Elastic IP. If there are no
Elastic IPs available, choose Allocate Elastic
IP, and then choose the Elasic IP that the
console creates.

Choose Create NAT Gateway.

5. On the left navigation bar, choose Route Tables.

6. Choose Create Route Table.

7. On the Create route table page, provide the following information:

• Name tag: ZeppelinRouteTable

• VPC: Choose your VPC (e.g. AmazonKafkaTutorialVPC).

Choose Create.

8. In the list of route tables, choose ZeppelinRouteTable. Choose the Routes tab, and choose
Edit routes.

9. In the Edit Routes page, choose Add route.

10. In the For Destination, enter 0.0.0.0/0. For Target, choose NAT Gateway,
ZeppelinGateway. Choose Save Routes. Choose Close.

11. On the Route Tables page, with ZeppelinRouteTable selected, choose the Subnet associations
tab. Choose Edit subnet associations.

12. In the Edit subnet associations page, choose AmazonKafkaTutorialSubnet2 and
AmazonKafkaTutorialSubnet3. Choose Save.

Create an Amazon Glue connection and table

Your Studio notebook uses an Amazon Glue database for metadata about your Amazon MSK data
source. In this section, you create an Amazon Glue connection that describes how to access your

Creating a Studio notebook tutorial 382

https://docs.amazonaws.cn/glue/latest/dg/what-is-glue.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon MSK cluster, and an Amazon Glue table that describes how to present the data in your
data source to clients such as your Studio notebook.

Create a Connection

1. Sign in to the Amazon Web Services Management Console and open the Amazon Glue console
at https://console.amazonaws.cn/glue/.

2. If you don't already have a Amazon Glue database, choose Databases from the left navigation
bar. Choose Add Database. In the Add database window, enter default for Database name.
Choose Create.

3. Choose Connections from the left navigation bar. Choose Add Connection.

4. In the Add Connection window, provide the following values:

• For Connection name, enter ZeppelinConnection.

• For Connection type, choose Kafka.

• For Kafka bootstrap server URLs, provide the bootstrap broker string for your cluster. You
can get the bootstrap brokers from either the MSK console, or by entering the following CLI
command:

aws kafka get-bootstrap-brokers --region us-east-1 --cluster-arn ClusterArn

• Uncheck the Require SSL connection checkbox.

Choose Next.

5. In the VPC page, provide the following values:

• For VPC, choose the name of your VPC (e.g. AmazonKafkaTutorialVPC.)

• For Subnet, choose AmazonKafkaTutorialSubnet2.

• For Security groups, choose all available groups.

Choose Next.

6. In the Connection properties / Connection access page, choose Finish.

Creating a Studio notebook tutorial 383

https://console.amazonaws.cn/glue/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create a Table

Note

You can either manually create the table as described in the following steps, or you can use
the create table connector code for Managed Service for Apache Flink in your notebook
within Apache Zeppelin to create your table via a DDL statement. You can then check in
Amazon Glue to make sure the table was correctly created.

1. In the left navigation bar, choose Tables. In the Tables page, choose Add tables, Add table
manually.

2. In the Set up your table's properties page, enter stock for the Table name. Make sure you
select the database you created previously. Choose Next.

3. In the Add a data store page, choose Kafka. For the Topic name, enter your topic name (e.g.
AmazonKafkaTutorialTopic). For Connection, choose ZeppelinConnection.

4. In the Classification page, choose JSON. Choose Next.

5. In the Define a Schema page, choose Add Column to add a column. Add columns with the
following properties:

Column name Data type

ticker string

price double

Choose Next.

6. On the next page, verify your settings, and choose Finish.

7. Choose your newly created table from the list of tables.

8. Choose Edit table and add a property with the key managed-flink.proctime and the value
proctime.

9. Choose Apply.

Creating a Studio notebook tutorial 384

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create a Studio notebook with Amazon MSK

Now that you have created the resources your application uses, you create your Studio notebook.

You can create your application using either the Amazon Web Services Management Console or
the Amazon CLI.

• Create a Studio notebook using the Amazon Web Services Management Console

• Create a Studio notebook using the Amazon CLI

Note

You can also create a Studio notebook from the Amazon MSK console by choosing an
existing cluster, then choosing Process data in real time.

Create a Studio notebook using the Amazon Web Services Management Console

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
managed-flink/home?region=us-east-1#/applications/dashboard.

2. In the Managed Service for Apache Flink applications page, choose the Studio tab. Choose
Create Studio notebook.

Note

To create a Studio notebook from the Amazon MSK or Kinesis Data Streams consoles,
select your input Amazon MSK cluster or Kinesis data stream, then choose Process
data in real time.

3. In the Create Studio notebook page, provide the following information:

• Enter MyNotebook for Studio notebook Name.

• Choose default for Amazon Glue database.

Choose Create Studio notebook.

4. In the MyNotebook page, choose the Configuration tab. In the Networking section, choose
Edit.

Creating a Studio notebook tutorial 385

https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard
https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

5. In the Edit networking for MyNotebook page, choose VPC configuration based on Amazon
MSK cluster. Choose your Amazon MSK cluster for Amazon MSK Cluster. Choose Save
changes.

6. In the MyNotebook page, choose Run. Wait for the Status to show Running.

Create a Studio notebook using the Amazon CLI

To create your Studio notebook by using the Amazon CLI, do the following:

1. Verify that you have the following information. You need these values to create your
application.

• Your account ID.

• The subnet IDs and security group ID for the Amazon VPC that contains your Amazon MSK
cluster.

2. Create a file called create.json with the following contents. Replace the placeholder values
with your information.

{
 "ApplicationName": "MyNotebook",
 "RuntimeEnvironment": "ZEPPELIN-FLINK-3_0",
 "ApplicationMode": "INTERACTIVE",
 "ServiceExecutionRole": "arn:aws:iam::AccountID:role/ZeppelinRole",
 "ApplicationConfiguration": {
 "ApplicationSnapshotConfiguration": {
 "SnapshotsEnabled": false
 },
 "VpcConfigurations": [
 {
 "SubnetIds": [
 "SubnetID 1",
 "SubnetID 2",
 "SubnetID 3"
],
 "SecurityGroupIds": [
 "VPC Security Group ID"
]
 }
],
 "ZeppelinApplicationConfiguration": {

Creating a Studio notebook tutorial 386

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "CatalogConfiguration": {
 "GlueDataCatalogConfiguration": {
 "DatabaseARN": "arn:aws:glue:us-east-1:AccountID:database/
default"
 }
 }
 }
 }
}

3. Run the following command to create your application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create.json

4. When the command completes, you should see output similar to the following, showing the
details for your new Studio notebook:

{
 "ApplicationDetail": {
 "ApplicationARN": "arn:aws:kinesisanalyticsus-
east-1:012345678901:application/MyNotebook",
 "ApplicationName": "MyNotebook",
 "RuntimeEnvironment": "ZEPPELIN-FLINK-3_0",
 "ApplicationMode": "INTERACTIVE",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/ZeppelinRole",
...

5. Run the following command to start your application. Replace the sample value with your
account ID.

aws kinesisanalyticsv2 start-application --application-arn
 arn:aws:kinesisanalyticsus-east-1:012345678901:application/MyNotebook\

Send data to your Amazon MSK cluster

In this section, you run a Python script in your Amazon EC2 client to send data to your Amazon
MSK data source.

1. Connect to your Amazon EC2 client.

2. Run the following commands to install Python version 3, Pip, and the Kafka for Python
package, and confirm the actions:

Creating a Studio notebook tutorial 387

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

sudo yum install python37
curl -O https://bootstrap.pypa.io/get-pip.py
python3 get-pip.py --user
pip install kafka-python

3. Configure the Amazon CLI on your client machine by entering the following command:

aws configure

Provide your account credentials, and us-east-1 for the region.

4. Create a file called stock.py with the following contents. Replace the sample value with your
Amazon MSK cluster's Bootstrap Brokers string, and update the topic name if your topic is not
AmazonKafkaTutorialTopic:

from kafka import KafkaProducer
import json
import random
from datetime import datetime

BROKERS = "<<Bootstrap Broker List>>"
producer = KafkaProducer(
 bootstrap_servers=BROKERS,
 value_serializer=lambda v: json.dumps(v).encode('utf-8'),
 retry_backoff_ms=500,
 request_timeout_ms=20000,
 security_protocol='PLAINTEXT')

def getStock():
 data = {}
 now = datetime.now()
 str_now = now.strftime("%Y-%m-%d %H:%M:%S")
 data['event_time'] = str_now
 data['ticker'] = random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV'])
 price = random.random() * 100
 data['price'] = round(price, 2)
 return data

while True:
 data =getStock()

Creating a Studio notebook tutorial 388

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 # print(data)
 try:
 future = producer.send("AWSKafkaTutorialTopic", value=data)
 producer.flush()
 record_metadata = future.get(timeout=10)
 print("sent event to Kafka! topic {} partition {} offset
 {}".format(record_metadata.topic, record_metadata.partition,
 record_metadata.offset))
 except Exception as e:
 print(e.with_traceback())

5. Run the script with the following command:

$ python3 stock.py

6. Leave the script running while you complete the following section.

Test your Studio notebook

In this section, you use your Studio notebook to query data from your Amazon MSK cluster.

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/
managed-flink/home?region=us-east-1#/applications/dashboard.

2. On the Managed Service for Apache Flink applications page, choose the Studio notebook
tab. Choose MyNotebook.

3. In the MyNotebook page, choose Open in Apache Zeppelin.

The Apache Zeppelin interface opens in a new tab.

4. In the Welcome to Zeppelin! page, choose Zeppelin new note.

5. In the Zeppelin Note page, enter the following query into a new note:

%flink.ssql(type=update)
select * from stock

Choose the run icon.

The application displays data from the Amazon MSK cluster.

Creating a Studio notebook tutorial 389

https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard
https://console.aws.amazon.com/managed-flink/home?region=us-east-1#/applications/dashboard

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To open the Apache Flink Dashboard for your application to view operational aspects, choose
FLINK JOB. For more information about the Flink Dashboard, see Apache Flink Dashboard in the
Managed Service for Apache Flink Developer Guide.

For more examples of Flink Streaming SQL queries, see Queries in the Apache Flink documentation.

Cleaning up your application and dependent resources

Delete your Studio notebook

1. Open the Managed Service for Apache Flink console.

2. Choose MyNotebook.

3. Choose Actions, then Delete.

Delete your Amazon Glue database and connection

1. Open the Amazon Glue console at https://console.amazonaws.cn/glue/.

2. Choose Databases from the left navigation bar. Check the checkbox next to Default to select
it. Choose Action, Delete Database. Confirm your selection.

3. Choose Connections from the left navigation bar. Check the checkbox next to
ZeppelinConnection to select it. Choose Action, Delete Connection. Confirm your selection.

Delete your IAM role and policy

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Roles from the left navigation bar.

3. Use the search bar to search for the ZeppelinRole role.

4. Choose the ZeppelinRole role. Choose Delete Role. Confirm the deletion.

Delete your CloudWatch log group

The console creates a CloudWatch Logs group and log stream for you when you create your
application using the console. You do not have a log group and stream if you created your
application using the Amazon CLI.

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. Choose Log groups from the left navigation bar.

Creating a Studio notebook tutorial 390

https://docs.amazonaws.cn/managed-flink/latest/java/how-dashboard.html
https://docs.amazonaws.cn/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/sql/queries.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://console.amazonaws.cn/glue/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Choose the /AWS/KinesisAnalytics/MyNotebook log group.

4. Choose Actions, Delete log group(s). Confirm the deletion.

Clean up Kinesis Data Streams resources

To delete your Kinesis stream, open the Kinesis Data Streams console, select your Kinesis stream,
and choose Actions, Delete.

Clean up MSK resources

Follow the steps in this section if you created an Amazon MSK cluster for this tutorial. This section
has directions for cleaning up your Amazon EC2 client instance, Amazon VPC, and Amazon MSK
cluster.

Delete your Amazon MSK cluster

Follow these steps if you created an Amazon MSK cluster for this tutorial.

1. Open the Amazon MSK console at https://console.amazonaws.cn/msk/home?region=us-
east-1#/home/.

2. Choose AmazonKafkaTutorialCluster. Choose Delete. Enter delete in the window that
appears, and confirm your selection.

Terminate your client instance

Follow these steps if you created an Amazon EC2 client instance for this tutorial.

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

2. Choose Instances from the left navigation bar.

3. Choose the checkbox next to ZeppelinClient to select it.

4. Choose Instance State, Terminate Instance.

Delete your Amazon VPC

Follow these steps if you created an Amazon VPC for this tutorial.

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

2. Choose Network Interfaces from the left navigation bar.

Creating a Studio notebook tutorial 391

https://console.amazonaws.cn/msk/home?region=us-east-1#/home/
https://console.amazonaws.cn/msk/home?region=us-east-1#/home/
https://console.amazonaws.cn/ec2/
https://console.amazonaws.cn/ec2/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

3. Enter your VPC ID in the search bar and press enter to search.

4. Select the checkbox in the table header to select all the displayed network interfaces.

5. Choose Actions, Detach. In the window that appears, choose Enable under Force detachment.
Choose Detach, and wait for all of the network interfaces to reach the Available status.

6. Select the checkbox in the table header to select all the displayed network interfaces again.

7. Choose Actions, Delete. Confirm the action.

8. Open the Amazon VPC console at https://console.amazonaws.cn/vpc/.

9. Select AmazonKafkaTutorialVPC. Choose Actions, Delete VPC. Enter delete and confirm the
deletion.

Tutorial: Deploying as an application with durable state

The following tutorial demonstrates how to deploy a Studio notebook as a Managed Service for
Apache Flink application with durable state.

This tutorial contains the following sections:

• Setup

• Deploy an application with durable state using the Amazon Web Services Management Console

• Deploy an application with durable state using the Amazon CLI

Setup

Create a new Studio notebook by following the Creating a Studio notebook tutorial, using either
Kinesis Data Streams or Amazon MSK. Name the Studio notebook ExampleTestDeploy.

Deploy an application with durable state using the Amazon Web Services
Management Console

1. Add an S3 bucket location where you want the packaged code to be stored under Application
code location - optional in the console. This enables the steps to deploy and run your
application directly from the notebook.

2. Add required permissions to the application role to enable the role you are using to read and
write to an Amazon S3 bucket, and to launch a Managed Service for Apache Flink application:

• AmazonS3FullAccess

Deploying as an application with durable state tutorial 392

https://console.amazonaws.cn/vpc/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Amazonmanaged-flinkFullAccess

• Access to your sources, destinations, and VPCs as applicable. For more information, see IAM
permissions for Studio notebooks.

3. Use the following sample code:

%flink.ssql(type=update)
CREATE TABLE exampleoutput (
 'ticket' VARCHAR,
 'price' DOUBLE
)
WITH (
 'connector' = 'kinesis',
 'stream' = 'ExampleOutputStream',
 'aws.region' = 'us-east-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json'
);

INSERT INTO exampleoutput SELECT ticker, price FROM exampleinputstream

4. With this feature launch, you will see a new dropdown on the right top corner of each note in
your notebook with the name of the notebook. You can do the following:

• View the Studio notebook settings in the Amazon Web Services Management Console.

• Build your Zeppelin Note and export it to Amazon S3. At this point, provide a name for
your application and choose Build and Export. You will get a notification when the export
completes.

• If you need to, you can view and run any additional tests on the executable in Amazon S3.

• Once the build is complete, you will be able to deploy your code as a Kinesis streaming
application with durable state and autoscaling.

• Use the dropdown and choose Deploy Zeppelin Note as Kinesis streaming application.
Review the application name and choose Deploy via Amazon Console.

• This will lead you to the Amazon Web Services Management Console page for creating a
Managed Service for Apache Flink application. Note that application name, parallelism,
code location, default Glue DB, VPC (if applicable) and IAM roles have been pre-populated.
Validate that the IAM roles have the required permissions to your sources and destinations.
Snapshots are enabled by default for durable application state management.

• Choose create application.

Deploying as an application with durable state tutorial 393

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• You can choose configure and modify any settings, and choose Run to start your streaming
application.

Deploy an application with durable state using the Amazon CLI

To deploy an application using the Amazon CLI, you must update your Amazon CLI to use the
service model provided with your Beta 2 information. For information about how to use the
updated service model, see Setup.

The following example code creates a new Studio notebook:

aws kinesisanalyticsv2 create-application \
 --application-name <app-name> \
 --runtime-environment ZEPPELIN-FLINK-3_0 \
 --application-mode INTERACTIVE \
 --service-execution-role <iam-role>
 --application-configuration '{
 "ZeppelinApplicationConfiguration": {
 "CatalogConfiguration": {
 "GlueDataCatalogConfiguration": {
 "DatabaseARN": "arn:aws:glue:us-east-1:<account>:database/<glue-database-
name>"
 }
 }
 },
 "FlinkApplicationConfiguration": {
 "ParallelismConfiguration": {
 "ConfigurationType": "CUSTOM",
 "Parallelism": 4,
 "ParallelismPerKPU": 4
 }
 },
 "DeployAsApplicationConfiguration": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::<s3bucket>",
 "BasePath": "/something/"
 }
 },
 "VpcConfigurations": [
 {
 "SecurityGroupIds": [
 "<security-group>"

Deploying as an application with durable state tutorial 394

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

],
 "SubnetIds": [
 "<subnet-1>",
 "<subnet-2>"
]
 }
]
 }' \
 --region us-east-1

The following code example starts a Studio notebook:

aws kinesisanalyticsv2 start-application \
 --application-name <app-name> \
 --region us-east-1 \
 --no-verify-ssl

The following code returns the URL for an application's Apache Zeppelin notebook page:

aws kinesisanalyticsv2 create-application-presigned-url \
 --application-name <app-name> \
 --url-type ZEPPELIN_UI_URL \

 --region us-east-1 \
 --no-verify-ssl

Examples

The following example queries demonstrate how to analyze data using window queries in a
Studio notebook.

• Creating tables with Amazon MSK/Apache Kafka

• Creating tables with Kinesis

• Tumbling window

• Sliding window

• Interactive SQL

• BlackHole SQL connector

• Data generator

• Interactive Scala

Examples 395

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Interactive Python

• Interactive Python, SQL, and Scala

• Cross-account Kinesis data stream

For information about Apache Flink SQL query settings, see Flink on Zeppelin Notebooks for
Interactive Data Analysis.

To view your application in the Apache Flink dashboard, choose FLINK JOB in your application's
Zeppelin Note page.

For more information about window queries, see Windows in the Apache Flink documentation.

For more examples of Apache Flink Streaming SQL queries, see Queries in the Apache Flink
documentation.

Creating tables with Amazon MSK/Apache Kafka

You can use the Amazon MSK Flink connector with Managed Service for Apache Flink Studio to
authenticate your connection with Plaintext, SSL, or IAM authentication. Create your tables using
the specific properties per your requirements.

-- Plaintext connection

CREATE TABLE your_table (
 `column1` STRING,
 `column2` BIGINT
) WITH (
 'connector' = 'kafka',
 'topic' = 'your_topic',
 'properties.bootstrap.servers' = '<bootstrap servers>',
 'scan.startup.mode' = 'earliest-offset',
 'format' = 'json'
);

-- SSL connection

CREATE TABLE your_table (
 `column1` STRING,
 `column2` BIGINT
) WITH (
 'connector' = 'kafka',

Examples 396

https://flink.apache.org/ecosystem/2020/06/23/flink-on-zeppelin-part2.html
https://flink.apache.org/ecosystem/2020/06/23/flink-on-zeppelin-part2.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/stream/operators/windows.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/sql/queries.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 'topic' = 'your_topic',
 'properties.bootstrap.servers' = '<bootstrap servers>',
 'properties.security.protocol' = 'SSL',
 'properties.ssl.truststore.location' = '/usr/lib/jvm/java-11-amazon-corretto/lib/
security/cacerts',
 'properties.ssl.truststore.password' = 'changeit',
 'properties.group.id' = 'myGroup',
 'scan.startup.mode' = 'earliest-offset',
 'format' = 'json'
);

-- IAM connection (or for MSK Serverless)

CREATE TABLE your_table (
 `column1` STRING,
 `column2` BIGINT
) WITH (
 'connector' = 'kafka',
 'topic' = 'your_topic',
 'properties.bootstrap.servers' = '<bootstrap servers>',
 'properties.security.protocol' = 'SASL_SSL',
 'properties.sasl.mechanism' = 'AWS_MSK_IAM',
 'properties.sasl.jaas.config' = 'software.amazon.msk.auth.iam.IAMLoginModule
 required;',
 'properties.sasl.client.callback.handler.class' =
 'software.amazon.msk.auth.iam.IAMClientCallbackHandler',
 'properties.group.id' = 'myGroup',
 'scan.startup.mode' = 'earliest-offset',
 'format' = 'json'
);

You can combine these with other properties at Apache Kafka SQL Connector.

Creating tables with Kinesis

In the following example, you create a table using Kinesis:

CREATE TABLE KinesisTable (
 `column1` BIGINT,
 `column2` BIGINT,
 `column3` BIGINT,
 `column4` STRING,
 `ts` TIMESTAMP(3)

Examples 397

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/connectors/table/kafka/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

)
PARTITIONED BY (column1, column2)
WITH (
 'connector' = 'kinesis',
 'stream' = 'test_stream',
 'aws.region' = '<region>',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'csv'
);

For more information on other properties you can use, see Amazon Kinesis Data Streams SQL
Connector.

Tumbling window

The following Flink Streaming SQL query selects the highest price in each five-second tumbling
window from the ZeppelinTopic table:

%flink.ssql(type=update)
SELECT TUMBLE_END(event_time, INTERVAL '5' SECOND) as winend, MAX(price) as
 five_second_high, ticker
FROM ZeppelinTopic
GROUP BY ticker, TUMBLE(event_time, INTERVAL '5' SECOND)

Sliding window

The following Apache Flink Streaming SQL query selects the highest price in each five-second
sliding window from the ZeppelinTopic table:

%flink.ssql(type=update)
SELECT HOP_END(event_time, INTERVAL '3' SECOND, INTERVAL '5' SECOND) AS winend,
 MAX(price) AS sliding_five_second_max
FROM ZeppelinTopic//or your table name in Amazon Glue
GROUP BY HOP(event_time, INTERVAL '3' SECOND, INTERVAL '5' SECOND)

Interactive SQL

This example prints the max of event time and processing time and the sum of values from the
key-values table. Ensure that you have the sample data generation script from the the section
called “Data generator” running. To try other SQL queries such as filtering and joins in your Studio
notebook, see the Apache Flink documentation: Queries in the Apache Flink documentation.

Examples 398

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/connectors/table/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/connectors/table/kinesis/
https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/sql/queries.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

%flink.ssql(type=single, parallelism=4, refreshInterval=1000, template=<h1>{2}</h1>
 records seen until <h1>Processing Time: {1}</h1> and <h1>Event Time: {0}</h1>)

-- An interactive query prints how many records from the `key-value-stream` we have
 seen so far, along with the current processing and event time.
SELECT
 MAX(`et`) as `et`,
 MAX(`pt`) as `pt`,
 SUM(`value`) as `sum`
FROM
 `key-values`

%flink.ssql(type=update, parallelism=4, refreshInterval=1000)

-- An interactive tumbling window query that displays the number of records observed
 per (event time) second.
-- Browse through the chart views to see different visualizations of the streaming
 result.
SELECT
 TUMBLE_START(`et`, INTERVAL '1' SECONDS) as `window`,
 `key`,
 SUM(`value`) as `sum`
FROM
 `key-values`
GROUP BY
 TUMBLE(`et`, INTERVAL '1' SECONDS),
 `key`;

BlackHole SQL connector

The BlackHole SQL connector doesn't require that you create a Kinesis data stream or an Amazon
MSK cluster to test your queries. For information about the BlackHole SQL connector, see
BlackHole SQL Connector in the Apache Flink documentation. In this example, the default catalog
is an in-memory catalog.

%flink.ssql

CREATE TABLE default_catalog.default_database.blackhole_table (
 `key` BIGINT,
 `value` BIGINT,
 `et` TIMESTAMP(3)

Examples 399

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/connectors/blackhole.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

) WITH (
 'connector' = 'blackhole'
)

%flink.ssql(parallelism=1)

INSERT INTO `test-target`
SELECT
 `key`,
 `value`,
 `et`
FROM
 `test-source`
WHERE
 `key` > 3

%flink.ssql(parallelism=2)

INSERT INTO `default_catalog`.`default_database`.`blackhole_table`
SELECT
 `key`,
 `value`,
 `et`
FROM
 `test-target`
WHERE
 `key` > 7

Data generator

This example uses Scala to generate sample data. You can use this sample data to test various
queries. Use the create table statement to create the key-values table.

import org.apache.flink.streaming.api.functions.source.datagen.DataGeneratorSource
import org.apache.flink.streaming.api.functions.source.datagen.RandomGenerator
import org.apache.flink.streaming.api.scala.DataStream

import java.sql.Timestamp

// ad-hoc convenience methods to be defined on Table
implicit class TableOps[T](table: DataStream[T]) {
 def asView(name: String): DataStream[T] = {

Examples 400

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 if (stenv.listTemporaryViews.contains(name)) {
 stenv.dropTemporaryView("`" + name + "`")
 }
 stenv.createTemporaryView("`" + name + "`", table)
 return table;
 }
}

%flink(parallelism=4)
val stream = senv
 .addSource(new DataGeneratorSource(RandomGenerator.intGenerator(1, 10), 1000))
 .map(key => (key, 1, new Timestamp(System.currentTimeMillis)))
 .asView("key-values-data-generator")

%flink.ssql(parallelism=4)
-- no need to define the paragraph type with explicit parallelism (such as
 "%flink.ssql(parallelism=2)")
-- in this case the INSERT query will inherit the parallelism of the of the above
 paragraph
INSERT INTO `key-values`
SELECT
 `_1` as `key`,
 `_2` as `value`,
 `_3` as `et`
FROM
 `key-values-data-generator`

Interactive Scala

This is the Scala translation of the the section called “Interactive SQL”. For more Scala examples,
see Table API in the Apache Flink documentation.

%flink
import org.apache.flink.api.scala._
import org.apache.flink.table.api._
import org.apache.flink.table.api.bridge.scala._

// ad-hoc convenience methods to be defined on Table
implicit class TableOps(table: Table) {
 def asView(name: String): Table = {
 if (stenv.listTemporaryViews.contains(name)) {
 stenv.dropTemporaryView(name)

Examples 401

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/tableApi.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 stenv.createTemporaryView(name, table)
 return table;
 }
}

%flink(parallelism=4)

// A view that computes many records from the `key-values` we have seen so far, along
 with the current processing and event time.
val query01 = stenv
 .from("`key-values`")
 .select(
 $"et".max().as("et"),
 $"pt".max().as("pt"),
 $"value".sum().as("sum")
).asView("query01")

%flink.ssql(type=single, parallelism=16, refreshInterval=1000, template=<h1>{2}</h1>
 records seen until <h1>Processing Time: {1}</h1> and <h1>Event Time: {0}</h1>)

-- An interactive query prints the query01 output.
SELECT * FROM query01

%flink(parallelism=4)

// An tumbling window view that displays the number of records observed per (event
 time) second.
val query02 = stenv
 .from("`key-values`")
 .window(Tumble over 1.seconds on $"et" as $"w")
 .groupBy($"w", $"key")
 .select(
 $"w".start.as("window"),
 $"key",
 $"value".sum().as("sum")
).asView("query02")

%flink.ssql(type=update, parallelism=4, refreshInterval=1000)

-- An interactive query prints the query02 output.

Examples 402

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

-- Browse through the chart views to see different visualizations of the streaming
 result.
SELECT * FROM `query02`

Interactive Python

This is the Python translation of the the section called “Interactive SQL”. For more Python
examples, see Table API in the Apache Flink documentation.

%flink.pyflink
from pyflink.table.table import Table

def as_view(table, name):
 if (name in st_env.list_temporary_views()):
 st_env.drop_temporary_view(name)
 st_env.create_temporary_view(name, table)
 return table

Table.as_view = as_view

%flink.pyflink(parallelism=16)

A view that computes many records from the `key-values` we have seen so far, along
 with the current processing and event time
st_env \
 .from_path("`keyvalues`") \
 .select(", ".join([
 "max(et) as et",
 "max(pt) as pt",
 "sum(value) as sum"
])) \
 .as_view("query01")

%flink.ssql(type=single, parallelism=16, refreshInterval=1000, template=<h1>{2}</h1>
 records seen until <h1>Processing Time: {1}</h1> and <h1>Event Time: {0}</h1>)

-- An interactive query prints the query01 output.
SELECT * FROM query01

%flink.pyflink(parallelism=16)

Examples 403

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/table/tableApi.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

A view that computes many records from the `key-values` we have seen so far, along
 with the current processing and event time
st_env \
 .from_path("`key-values`") \
 .window(Tumble.over("1.seconds").on("et").alias("w")) \
 .group_by("w, key") \
 .select(", ".join([
 "w.start as window",
 "key",
 "sum(value) as sum"
])) \
 .as_view("query02")

%flink.ssql(type=update, parallelism=16, refreshInterval=1000)

-- An interactive query prints the query02 output.
-- Browse through the chart views to see different visualizations of the streaming
 result.
SELECT * FROM `query02`

Interactive Python, SQL, and Scala

You can use any combination of SQL, Python, and Scala in your notebook for interactive analysis.
In a Studio notebook that you plan to deploy as an application with durable state, you can use a
combination of SQL and Scala. This example shows you the sections that are ignored and those
that get deployed in the application with durable state.

%flink.ssql
CREATE TABLE `default_catalog`.`default_database`.`my-test-source` (
 `key` BIGINT NOT NULL,
 `value` BIGINT NOT NULL,
 `et` TIMESTAMP(3) NOT NULL,
 `pt` AS PROCTIME(),
 WATERMARK FOR `et` AS `et` - INTERVAL '5' SECOND
)
WITH (
 'connector' = 'kinesis',
 'stream' = 'kda-notebook-example-test-source-stream',
 'aws.region' = 'eu-west-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'

Examples 404

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

)

%flink.ssql
CREATE TABLE `default_catalog`.`default_database`.`my-test-target` (
 `key` BIGINT NOT NULL,
 `value` BIGINT NOT NULL,
 `et` TIMESTAMP(3) NOT NULL,
 `pt` AS PROCTIME(),
 WATERMARK FOR `et` AS `et` - INTERVAL '5' SECOND
)
WITH (
 'connector' = 'kinesis',
 'stream' = 'kda-notebook-example-test-target-stream',
 'aws.region' = 'eu-west-1',
 'scan.stream.initpos' = 'LATEST',
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
)

%flink()

// ad-hoc convenience methods to be defined on Table
implicit class TableOps(table: Table) {
 def asView(name: String): Table = {
 if (stenv.listTemporaryViews.contains(name)) {
 stenv.dropTemporaryView(name)
 }
 stenv.createTemporaryView(name, table)
 return table;
 }
}

%flink(parallelism=1)
val table = stenv
 .from("`default_catalog`.`default_database`.`my-test-source`")
 .select($"key", $"value", $"et")
 .filter($"key" > 10)
 .asView("query01")

%flink.ssql(parallelism=1)

Examples 405

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

-- forward data
INSERT INTO `default_catalog`.`default_database`.`my-test-target`
SELECT * FROM `query01`

%flink.ssql(type=update, parallelism=1, refreshInterval=1000)

-- forward data to local stream (ignored when deployed as application)
SELECT * FROM `query01`

%flink

// tell me the meaning of life (ignored when deployed as application!)
print("42!")

Cross-account Kinesis data stream

To use a Kinesis data stream that's in an account other than the account that has
your Studio notebook, create a service execution role in the account where your
Studio notebook is running and a role trust policy in the account that has the data
stream. Use aws.credentials.provider, aws.credentials.role.arn, and
aws.credentials.role.sessionName in the Kinesis connector in your create table DDL
statement to create a table against the data stream.

Use the following service execution role for the Studio notebook account.

{
 "Sid": "AllowNotebookToAssumeRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole"
 "Resource": "*"
}

Use the AmazonKinesisFullAccess policy and the following role trust policy for the data
stream account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Examples 406

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "AWS": "arn:aws:iam::<accountID>:root"
 },
 "Action": "sts:AssumeRole",
 "Condition": {}
 }
]
}

Use the following paragraph for the create table statement.

%flink.ssql
CREATE TABLE test1 (
name VARCHAR,
age BIGINT
) WITH (
'connector' = 'kinesis',
'stream' = 'stream-assume-role-test',
'aws.region' = 'us-east-1',
'aws.credentials.provider' = 'ASSUME_ROLE',
'aws.credentials.role.arn' = 'arn:aws:iam::<accountID>:role/stream-assume-role-test-
role',
'aws.credentials.role.sessionName' = 'stream-assume-role-test-session',
'scan.stream.initpos' = 'TRIM_HORIZON',
'format' = 'json'
)

Troubleshooting

This section contains troubleshooting information for Studio notebooks.

Stopping a stuck application

To stop an application that is stuck in a transient state, call the StopApplication action with the
Force parameter set to true. For more information, see Running Applications in the Managed
Service for Apache Flink Developer Guide.

Deploying as an application with durable state in a VPC with no
internet access

The Managed Service for Apache Flink Studio deploy-as-application function does not support VPC
applications without internet access. We recommend that you build your application in Studio, and

Troubleshooting 407

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-flink/latest/java/how-running-apps.html
https://docs.amazonaws.cn/managed-flink/latest/java/
https://docs.amazonaws.cn/managed-flink/latest/java/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

then use Managed Service for Apache Flink to manually create a Flink application and select the zip
file you built in your Notebook.

The following steps outline this approach:

1. Build and export your Studio application to Amazon S3. This should be a zip file.

2. Create a Managed Service for Apache Flink application manually with code path referencing
the zip file location in Amazon S3. In addition, you will need to configure the application with
the following env variables (2 groupID, 3 var in total):

3. kinesis.analytics.flink.run.options

a. python: source/note.py

b. jarfile: lib/PythonApplicationDependencies.jar

4. managed.deploy_as_app.options

• DatabaseARN: <glue database ARN (Amazon Resource Name)>

5. You may need to give permissions to the Managed Service for Apache Flink Studio and
Managed Service for Apache Flink IAM roles for the services your application uses. You can use
the same IAM role for both apps.

Deploy-as-app size and build time reduction

Studio deploy-as-app for Python applications packages everything available in the Python
environment because we cannot determine which libraries you need. This may result in a larger-
than necessary deploy-as-app size. The following procedure demonstrates how to reduce the size
of the deploy-as-app Python application size by uninstalling dependencies.

If you’re building a Python application with deploy-as-app feature from Studio, you might consider
removing pre-installed Python packages from the system if your applications are not depending
on. This will not only help to reduce the final artifact size to avoid breaching the service limit for
application size, but also improve the build time of applications with the deploy-as-app feature.

You can execute following command to list out all installed Python packages with their respective
installed size and selectively remove packages with significant size.

%flink.pyflink

Deploy-as-app size and build time reduction 408

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

!pip list --format freeze | awk -F = {'print $1'} | xargs pip show | grep -E
 'Location:|Name:' | cut -d ' ' -f 2 | paste -d ' ' - - | awk '{gsub("-","_",$1); print
 $2 "/" tolower($1)}' | xargs du -sh 2> /dev/null | sort -hr

Note

apache-beam is required by Flink Python to operate. You should never remove this
package and its dependencies.

Following is the list of pre-install Python packages in Studio V2 which can be considered for
removal:

scipy
statsmodels
plotnine
seaborn
llvmlite
bokeh
pandas
matplotlib
botocore
boto3
numba

To remove a Python package from Zeppelin notebook:

1. Check if your application depends on the package, or any of its consuming packages, before
removing it. You can identify dependants of a package using pipdeptree.

2. Executing following command to remove a package:

%flink.pyflink
!pip uninstall -y <package-to-remove>

3. If you need to retrieve a package which you removed by mistake, executing the following
command:

%flink.pyflink
!pip install <package-to-install>

Deploy-as-app size and build time reduction 409

https://pypi.org/project/pipdeptree/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Example Example: Remove scipy package before deploying your Python application with
deploy-as-app feature.

1. Use pipdeptree to discover all scipy consumers and verify if you can safely remove scipy.

• Install the tool through notebook:

%flink.pyflink
!pip install pipdeptree

• Get reversed dependency tree of scipy by running:

%flink.pyflink
!pip -r -p scipy

You should see output similar to the following (condensed for brevity):

...
--
scipy==1.8.0
plotnine==0.5.1 [requires: scipy>=1.0.0]
seaborn==0.9.0 [requires: scipy>=0.14.0]
statsmodels==0.12.2 [requires: scipy>=1.1]
 ### plotnine==0.5.1 [requires: statsmodels>=0.8.0]

2. Carefully inspect the usage of seaborn, statsmodels and plotnine in your applications. If
your applications do not depend on any of scipy, seaborn, statemodels, or plotnine, you
can remove all of these packages, or only ones which your applications don’t need.

3. Remove the package by running:

!pip uninstall -y scipy plotnine seaborn statemodels

Canceling jobs

This section shows you how to cancel Apache Flink jobs that you can't get to from Apache Zeppelin.
If you want to cancel such a job, go to the Apache Flink dashboard, copy the job ID, then use it in
one of the following examples.

To cancel a single job:

Canceling jobs 410

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

%flink.pyflink
import requests

requests.patch("https://zeppelin-flink:8082/jobs/[job_id]", verify=False)

To cancel all running jobs:

%flink.pyflink
import requests

r = requests.get("https://zeppelin-flink:8082/jobs", verify=False)
jobs = r.json()['jobs']

for job in jobs:
 if (job["status"] == "RUNNING"):
 print(requests.patch("https://zeppelin-flink:8082/jobs/{}".format(job["id"]),
 verify=False))

To cancel all jobs:

%flink.pyflink
import requests

r = requests.get("https://zeppelin-flink:8082/jobs", verify=False)
jobs = r.json()['jobs']

for job in jobs:
 requests.patch("https://zeppelin-flink:8082/jobs/{}".format(job["id"]),
 verify=False)

Restarting the Apache Flink interpreter

To restart the Apache Flink interpreter within your Studio notebook

1. Choose Configuration near the top right corner of the screen.

2. Choose Interpreter.

3. Choose restart and then OK.

Restarting the Apache Flink interpreter 411

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Appendix: Creating custom IAM policies

You normally use managed IAM policies to allow your application to access dependent resources.
If you need finer control over your application's permissions, you can use a custom IAM policy. This
section contains examples of custom IAM policies.

Note

In the following policy examples, replace the placeholder text with your application's
values.

This topic contains the following sections:

• Amazon Glue

• CloudWatch Logs

• Kinesis streams

• Amazon MSK clusters

Amazon Glue

The following example policy grants permissions to access a Amazon Glue database.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "GlueTable",
 "Effect": "Allow",
 "Action": [
 "glue:GetConnection",
 "glue:GetTable",
 "glue:GetTables",
 "glue:GetDatabase",
 "glue:CreateTable",
 "glue:UpdateTable"
],
 "Resource": [
 "arn:aws:glue:<region>:<accountId>:connection/*",
 "arn:aws:glue:<region>:<accountId>:table/<database-name>/*",

Appendix: Creating custom IAM policies 412

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "arn:aws:glue:<region>:<accountId>:database/<database-name>",
 "arn:aws:glue:<region>:<accountId>:database/hive",
 "arn:aws:glue:<region>:<accountId>:catalog"
]
 },
 {
 "Sid": "GlueDatabase",
 "Effect": "Allow",
 "Action": "glue:GetDatabases",
 "Resource": "*"
 }
]
}

CloudWatch Logs

The following policy grants permissions to access CloudWatch Logs:

{
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:<region>:<accountId>:log-group:*"
]
 },
 {
 "Sid": "ListCloudwatchLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "<logGroupArn>:log-stream:*"
]
 },
 {
 "Sid": "PutCloudwatchLogs",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"

CloudWatch Logs 413

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

],
 "Resource": [
 "<logStreamArn>"
]
 }

Note

If you create your application using the console, the console adds the necessary policies to
access CloudWatch Logs to your application role.

Kinesis streams

Your application can use a Kinesis Stream for a source or a destination. Your application needs read
permissions to read from a source stream, and write permissions to write to a destination stream.

The following policy grants permissions to read from a Kinesis Stream used as a source:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KinesisShardDiscovery",
 "Effect": "Allow",
 "Action": "kinesis:ListShards",
 "Resource": "*"
 },
 {
 "Sid": "KinesisShardConsumption",
 "Effect": "Allow",
 "Action": [
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:DescribeStream",
 "kinesis:DescribeStreamSummary",
 "kinesis:RegisterStreamConsumer",
 "kinesis:DeregisterStreamConsumer"
],
 "Resource": "arn:aws:kinesis:<region>:<accountId>:stream/<stream-name>"
 },
 {

Kinesis streams 414

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "KinesisEfoConsumer",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStreamConsumer",
 "kinesis:SubscribeToShard"
],
 "Resource": "arn:aws:kinesis:<region>:<account>:stream/<stream-name>/consumer/*"
 }
]
}

The following policy grants permissions to write to a Kinesis Stream used as a destination:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KinesisStreamSink",
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord",
 "kinesis:PutRecords",
 "kinesis:DescribeStreamSummary",
 "kinesis:DescribeStream"
],
 "Resource": "arn:aws:kinesis:<region>:<accountId>:stream/<stream-name>"
 }
]
}

If your application accesses an encypted Kinesis stream, you must grant additional permissions to
access the stream and the stream's encryption key.

The following policy grants permissions to access an encrypted source stream and the stream's
encryption key:

{
 "Sid": "ReadEncryptedKinesisStreamSource",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],

Kinesis streams 415

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Resource": [
 "<inputStreamKeyArn>"
]
 }
 ,

The following policy grants permissions to access an encrypted destination stream and the stream's
encryption key:

{
 "Sid": "WriteEncryptedKinesisStreamSink",
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey"
],
 "Resource": [
 "<outputStreamKeyArn>"
]
 }

Amazon MSK clusters

To grant access to an Amazon MSK cluster, you grant access to the cluster's VPC. For policy
examples for accessing an Amazon VPC, see VPC Application Permissions.

Amazon MSK clusters 416

https://docs.aws.amazon.com/managed-flink/latest/java/vpc-permissions.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Getting started with Amazon Managed Service for
Apache Flink (DataStream API)

This section introduces you to the fundamental concepts of Managed Service for Apache Flink and
the DataStream API. It describes the available options for creating and testing your applications. It
also provides instructions for installing the necessary tools to complete the tutorials in this guide
and to create your first application.

Topics

• Components of the Managed Service for Apache Flink application

• Prerequisites for completing the exercises

• Step 1: Set up an Amazon account and create an administrator user

• Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

• Step 3: Create and run a Managed Service for Apache Flink application

• Step 4: Clean up Amazon resources

• Step 5: Next steps

Components of the Managed Service for Apache Flink
application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

An Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Source: The application consumes data by using a source. A source connector reads data from a
Kinesis data stream, an Amazon S3 bucket, etc. For more information, see Sources.

• Operators: The application processes data by using one or more operators. An operator can
transform, enrich, or aggregate data. For more information, see DataStream API operators.

Application Components 417

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Sink: The application produces data to external sources by using sinks. A sink connector
writes data to a Kinesis data stream, a Firehose stream, an Amazon S3 bucket, etc. For more
information, see Sinks.

After you create, compile, and package your application code, you upload the code package to
an Amazon Simple Storage Service (Amazon S3) bucket. You then create a Managed Service for
Apache Flink application. You pass in the code package location, a Kinesis data stream as the
streaming data source, and typically a streaming or file location that receives the application's
processed data.

Prerequisites for completing the exercises

To complete the steps in this guide, you must have the following:

• Java Development Kit (JDK) version 11. Set the JAVA_HOME environment variable to point to
your JDK install location.

• We recommend that you use a development environment (such as Eclipse Java Neon or IntelliJ
Idea) to develop and compile your application.

• Git client. Install the Git client if you haven't already.

• Apache Maven Compiler Plugin. Maven must be in your working path. To test your Apache Maven
installation, enter the following:

$ mvn -version

To get started, go to Step 1: Set up an Amazon account and create an administrator user.

Step 1: Set up an Amazon account and create an administrator
user

Before you use Managed Service for Apache Flink for the first time, complete the following tasks:

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

Prerequisites 418

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
http://www.eclipse.org/downloads/packages/release/neon/3
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://maven.apache.org/plugins/maven-compiler-plugin/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Grant programmatic access

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web
Services Management Console. The Amazon APIs and the Amazon Command Line Interface require
access keys. Whenever possible, create temporary credentials that consist of an access key ID, a
secret access key, and a security token that indicates when the credentials expire.

To grant users programmatic access, choose one of the following options.

Secure IAM users 419

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Which user needs
programmatic access?

To By

IAM Use short-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Using temporary credentials
with Amazon resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Managing access keys for IAM
users in the IAM User Guide.

Next Step

Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

Step 2: Set up the Amazon Command Line Interface (Amazon
CLI)

In this step, you download and configure the Amazon CLI to use with Managed Service for Apache
Flink.

Note

The getting started exercises in this guide assume that you are using administrator
credentials (adminuser) in your account to perform the operations.

Note

If you already have the Amazon CLI installed, you might need to upgrade to get the latest
functionality. For more information, see Installing the Amazon Command Line Interface in

Next Step 420

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/cli/latest/userguide/installing.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

the Amazon Command Line Interface User Guide. To check the version of the Amazon CLI,
run the following command:

aws --version

The exercises in this tutorial require the following Amazon CLI version or later:

aws-cli/1.16.63

To set up the Amazon CLI

1. Download and configure the Amazon CLI. For instructions, see the following topics in the
Amazon Command Line Interface User Guide:

• Installing the Amazon Command Line Interface

• Configuring the Amazon CLI

2. Add a named profile for the administrator user in the Amazon CLI config file. You use this
profile when executing the Amazon CLI commands. For more information about named
profiles, see Named Profiles in the Amazon Command Line Interface User Guide.

[profile adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available Amazon Regions, see Regions and Endpoints in the Amazon Web Services
General Reference.

Note

The example code and commands in this tutorial use the US West (Oregon) Region. To
use a different Region, change the Region in the code and commands for this tutorial
to the Region you want to use.

3. Verify the setup by entering the following help command at the command prompt:

Step 2: Set Up the Amazon CLI 421

https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-multiple-profiles.html
https://docs.amazonaws.cn/general/latest/gr/rande.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

aws help

After you set up an Amazon account and the Amazon CLI, you can try the next exercise, in which
you configure a sample application and test the end-to-end setup.

Next step

Step 3: Create and run a Managed Service for Apache Flink application

Step 3: Create and run a Managed Service for Apache Flink
application

In this exercise, you create a Managed Service for Apache Flink application with data streams as a
source and a sink.

This section contains the following steps:

• Create two Amazon Kinesis data streams

• Write sample records to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Next step

Create two Amazon Kinesis data streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following Amazon CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

Next step 422

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To create the data streams (Amazon CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream Amazon CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named stock.py with the following contents:

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

Write sample records to the input stream 423

http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Later in the tutorial, you run the stock.py script to send data to the application.

$ python stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-managed-service-for-apache-flink-
examples.git

2. Navigate to the amazon-managed-service-for-apache-flink-examples/tree/main/
java/GettingStarted directory.

Note the following about the application code:

Download and examine the Apache Flink streaming Java code 424

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

return env.addSource(new FlinkKinesisConsumer<>(inputStreamName,
 new SimpleStringSchema(), inputProperties));

• Your application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using static properties. To use dynamic
application properties, use the createSourceFromApplicationProperties and
createSinkFromApplicationProperties methods to create the connectors. These methods
read the application's properties to configure the connectors.

For more information about runtime properties, see Runtime properties.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package -Dflink.version=1.18.1

• Use your development environment. See your development environment documentation for
details.

Compile the application code 425

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

The provided source code relies on libraries from Java 11.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the Amazon CLI, you specify your
code content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon Simple Storage Service (Amazon S3) bucket and upload your
application code.

To upload the application code

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose Create bucket.

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Upload the Apache Flink streaming Java code 426

https://console.amazonaws.cn/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create and run the Managed Service for Apache Flink application

You can create and run a Managed Service for Apache Flink application using either the console or
the Amazon CLI.

Note

When you create the application using the console, your Amazon Identity and Access
Management (IAM) and Amazon CloudWatch Logs resources are created for you. When you
create the application using the Amazon CLI, you create these resources separately.

Topics

• Create and run the application (Console)

• Create and run the Application (Amazon CLI)

Create and run the application (Console)

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Create and run the Managed Service for Apache Flink application 427

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/aws-kinesis-analytics-java-
apps-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",

Create and run the Managed Service for Apache Flink application 428

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]

Create and run the Managed Service for Apache Flink application 429

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

Configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, for Group ID, enter ProducerConfigProperties.

5. Enter the following application properties and values:

Group ID Key Value

ProducerConfigProp
erties

flink.inputstream.
initpos

LATEST

ProducerConfigProp
erties

aws.region us-west-2

ProducerConfigProp
erties

AggregationEnabled false

6. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

7. For CloudWatch logging, select the Enable check box.

8. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

Create and run the Managed Service for Apache Flink application 430

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Log stream: kinesis-analytics-log-stream

Run the Application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the Application

On the MyApplication page, choose Stop. Confirm the action.

Update the Application

Using the console, you can update application settings such as application properties, monitoring
settings, and the location or file name of the application JAR. You can also reload the application
JAR from the Amazon S3 bucket if you need to update the application code.

On the MyApplication page, choose Configure. Update the application settings and choose
Update.

Create and run the Application (Amazon CLI)

In this section, you use the Amazon CLI to create and run the Managed Service for Apache Flink
application. Managed Service for Apache Flink uses the kinesisanalyticsv2 Amazon CLI
command to create and interact with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on
the sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Create and run the Managed Service for Apache Flink application 431

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": ["arn:aws:s3:::ka-app-code-username",
 "arn:aws:s3:::ka-app-code-username/*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Create and run the Managed Service for Apache Flink application 432

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

To access other Amazon services, you can use the Amazon SDK for Java. Managed Service
for Apache Flink automatically sets the credentials required by the SDK to those of the
service execution IAM role that is associated with your application. No additional steps are
needed.

Create an IAM role

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, choose Roles, Create Role.

3. Under Select type of trusted identity, choose Amazon Service. Under Choose the service
that will use this role, choose Kinesis. Under Select your use case, choose Kinesis Analytics.

Choose Next: Permissions.

4. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

5. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role.

6. Attach the permissions policy to the role.

Create and run the Managed Service for Apache Flink application 433

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, the section
called “Create a permissions policy”.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the Managed Service for Apache Flink application

1. Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account
ID (012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "test",
 "ApplicationDescription": "my java test app",
 "RuntimeEnvironment": "FLINK-1_18",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",
 "FileKey": "aws-kinesis-analytics-java-apps-1.0.jar"

Create and run the Managed Service for Apache Flink application 434

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the CreateApplication action with the preceding request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://
create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

To start the application

1. Save the following JSON code to a file named start_request.json.

{

Create and run the Managed Service for Apache Flink application 435

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationName": "test",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "test"
}

2. Execute the StopApplication action with the following request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Add a CloudWatch logging option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see the section called “Setting up
logging”.

Create and run the Managed Service for Apache Flink application 436

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for
the application without recompiling the application code. In this example, you change the Region
of the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{"ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "flink.stream.initpos" : "LATEST",
 "aws.region" : "us-west-2",
 "AggregationEnabled" : "false"
 }
 },
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2"
 }
 }
]
 }
 }
}

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Create and run the Managed Service for Apache Flink application 437

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication Amazon CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the the section called “Create two Amazon Kinesis data streams” section.

{
 "ApplicationName": "test",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-username",
 "FileKeyUpdate": "aws-kinesis-analytics-java-apps-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }
 }
 }
 }
}

Next step

Step 4: Clean up Amazon resources

Next step 438

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Step 4: Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Getting Started
tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

• Next Step

Delete your Managed Service for Apache Flink application

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Step 4: Clean Up 439

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Next Step

Step 5: Next steps

Step 5: Next steps

Now that you've created and run a basic Managed Service for Apache Flink application, see the
following resources for more advanced Managed Service for Apache Flink solutions.

• The Amazon Streaming Data Solution for Amazon Kinesis: The Amazon Streaming Data
Solution for Amazon Kinesis automatically configures the Amazon services necessary to easily
capture, store, process, and deliver streaming data. The solution provides multiple options for
solving streaming data use cases. The Managed Service for Apache Flink option provides an
end-to-end streaming ETL example demonstrating a real-world application that runs analytical
operations on simulated New York taxi data. The solution sets up all necessary Amazon resources
such as IAM roles and policies, a CloudWatch dashboard, and CloudWatch alarms.

Delete your IAM resources 440

https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-kinesis/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Amazon Streaming Data Solution for Amazon MSK: The Amazon Streaming Data Solution for
Amazon MSK provides Amazon CloudFormation templates where data flows through producers,
streaming storage, consumers, and destinations.

• Clickstream Lab with Apache Flink and Apache Kafka: An end to end lab for clickstream use
cases using Amazon Managed Streaming for Apache Kafka for streaming storage and Managed
Service for Apache Flink for Apache Flink applications for stream processing.

• Amazon Managed Service for Apache Flink Workshop: In this workshop, you build an end-to-
end streaming architecture to ingest, analyze, and visualize streaming data in near real-time. You
set out to improve the operations of a taxi company in New York City. You analyze the telemetry
data of a taxi fleet in New York City in near real-time to optimize their fleet operations.

• Managed Service for Apache Flink: Examples: This section of this Developer Guide provides
examples of creating and working with applications in Managed Service for Apache Flink. They
include example code and step-by-step instructions to help you create Managed Service for
Apache Flink applications and test your results.

• Learn Flink: Hands On Training: Offical introductory Apache Flink training that gets you started
writing scalable streaming ETL, analytics, and event-driven applications.

Step 5: Next steps 441

https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/
https://amazonmsk-labs.workshop.aws/en/mskkdaflinklab.html
https://catalog.workshops.aws/managed-flink
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/learn-flink/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Getting started with Amazon Managed Service for
Apache Flink (Table API)

This section introduces you to the fundamental concepts of Managed Service for Apache Flink and
the Table API. It describes the available options for creating and testing your applications. It also
provides instructions for installing the necessary tools to complete the tutorials in this guide and to
create your first application.

Topics

• Components of the Managed Service for Apache Flink application

• Prerequisites

• Create and run a Managed Service for Apache Flink application

• Clean up Amazon resources

• Next steps

Components of the Managed Service for Apache Flink
application

To process data, your Managed Service for Apache Flink application uses a Java/Apache Maven or
Scala application that processes input and produces output using the Apache Flink runtime.

Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Table Source: The application consumes data by using a source. A source connector reads data
from a Kinesis data stream, an Amazon MSK topic, or similar. For more information, see Table API
sources.

• Functions: The application processes data by using one or more functions. A function can
transform, enrich, or aggregate data.

• Sink: The application produces data to external sources by using sinks. A sink connector writes
data to a Kinesis data stream, a Firehose Firehose stream, an Amazon MSK topic, an Amazon S3
bucket, and so on. For more information, see Table API sinks.

Application Components 442

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

After you create, compile, and package your application code, you upload the code package to
an Amazon S3 bucket. You then create a Managed Service for Apache Flink application. You pass
in the code package location, an Amazon MSK topic as the streaming data source, and typically a
streaming or file location that receives the application's processed data.

Prerequisites

Before starting this tutorial, complete the first two steps of the Getting started with Amazon
Managed Service for Apache Flink (DataStream API):

• Step 1: Set up an Amazon account and create an administrator user

• Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

To get started, seeCreate an Application.

Create and run a Managed Service for Apache Flink application

In this exercise, you create a Managed Service for Apache Flink application with an Amazon MSK
topic as a source and an Amazon S3 bucket as a sink.

This section contains the following steps.

• Create dependent resources

• Write samplerRecords to the input stream

• Download and examine the Apache Flink streaming Java code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Next step

Create dependent resources

Before you create a Managed Service for Apache Flink for this exercise, you create the following
dependent resources:

• A virtual private cloud (VPC) based on Amazon VPC and an Amazon MSK cluster

Prerequisites 443

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• An Amazon S3 bucket to store the application's code and output (ka-app-code-<username>)

Create a VPC and an Amazon MSK cluster

To create a VPC and Amazon MSK cluster to access from your Managed Service for Apache Flink
application, follow the Getting Started Using Amazon MSK tutorial.

When completing the tutorial, note the following:

• Record the bootstrap server list for your cluster. You can get the list of bootstrap servers with the
following command, replacing ClusterArn with the Amazon Resource Name (ARN) of your MSK
cluster:

aws kafka get-bootstrap-brokers --region us-west-2 --cluster-arn ClusterArn
{...
 "BootstrapBrokerStringTls": "b-2.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-1.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094,b-3.awskafkatutorialcluste.t79r6y.c4.kafka.us-
west-2.amazonaws.com:9094"
}

• When following the steps in the tutorials, be sure to use your selected Amazon Region in your
code, commands, and console entries.

Create an Amazon S3 bucket

You can create the Amazon S3 bucket using the console. For instructions for creating this resource,
see the following topics:

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Other resources

When you create your application, Managed Service for Apache Flink creates the following Amazon
CloudWatch resources if they don't already exist:

• A log group called /AWS/KinesisAnalytics-java/MyApplication.

Create dependent resources 444

https://docs.amazonaws.cn/msk/latest/developerguide/gs-table.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• A log stream called kinesis-analytics-log-stream.

Write samplerRecords to the input stream

In this section, you use a Python script to write sample records to the Amazon MSK topic for the
application to process.

1. Connect to the client instance you created in Step 4: Create a Client Machine of the Getting
Started Using Amazon MSK tutorial.

2. Install Python3, Pip, and the Kafka Python library:

$ sudo yum install python37
$ curl -O https://bootstrap.pypa.io/get-pip.py
$ python3 get-pip.py --user
$ pip install kafka-python

3. Create a file named stock.py with the following contents. Replace the BROKERS value with
your bootstrap broker list you recorded previously.

from kafka import KafkaProducer
import json
import random
from datetime import datetime

BROKERS = "b-1.stocks.8e6izk.c12.kafka.us-
east-1.amazonaws.com:9092,b-2.stocks.8e6izk.c12.kafka.us-east-1.amazonaws.com:9092"
BROKERS = "localhost:9092"
producer = KafkaProducer(
 bootstrap_servers=BROKERS,
 value_serializer=lambda v: json.dumps(v).encode('utf-8'),
 key_serializer=str.encode,
 retry_backoff_ms=500,
 request_timeout_ms=20000,
 security_protocol='PLAINTEXT')

def getReferrer():
 data = {}
 now = datetime.now()
 str_now = now.strftime("%Y-%m-%d %H:%M:%S")
 data['event_time'] = str_now

Write samplerRecords to the input stream 445

https://docs.amazonaws.cn/msk/latest/developerguide/create-client-machine.html
https://docs.amazonaws.cn/msk/latest/developerguide/gs-table.html
https://docs.amazonaws.cn/msk/latest/developerguide/gs-table.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 data['ticker'] = random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV'])
 price = random.random() * 100
 data['price'] = round(price, 2)
 return data

while True:
 data =getReferrer()
 # print(data)
 try:
 future = producer.send("stocktopic", value=data,key=data['ticker'])
 producer.flush()
 record_metadata = future.get(timeout=10)
 print("sent event to Kafka! topic {} partition {} offset
 {}".format(record_metadata.topic, record_metadata.partition,
 record_metadata.offset))
 except Exception as e:
 print(e.with_traceback())

4. Later in the tutorial, you run the stock.py script to send data to the application.

$ python3 stock.py

Download and examine the Apache Flink streaming Java code

The Java application code for this example is available from GitHub.

To download the Java application code

1. Clone the remote repository using the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

2. Navigate to the amazon-kinesis-data-analytics-java-examples/
GettingStartedTable directory.

Note the following about the application code:

• A Project Object Model (pom.xml) file contains information about the application's configuration
and dependencies, including the Managed Service for Apache Flink libraries.

Download and examine the Apache Flink streaming Java code 446

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• The StreamingJob.java file contains the main method that defines the application's
functionality.

• The application uses a FlinkKafkaConsumer to read from the Amazon MSK topic. The
following snippet creates a FlinkKafkaConsumer object:

final FlinkKafkaConsumer<StockRecord> consumer = new
 FlinkKafkaConsumer<StockRecord>(kafkaTopic, new KafkaEventDeserializationSchema(),
 kafkaProps);

• Your application creates source and sink connectors to access external resources using
StreamExecutionEnvironment and TableEnvironment objects.

• The application creates source and sink connectors using dynamic application properties, so you
can specify your application parameters (such as your S3 bucket) without recompiling the code.

//read the parameters from the Managed Service for Apache Flink environment
Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();
Properties flinkProperties = null;

String kafkaTopic = parameter.get("kafka-topic", "AWSKafkaTutorialTopic");
String brokers = parameter.get("brokers", "");
String s3Path = parameter.get("s3Path", "");

if (applicationProperties != null) {
 flinkProperties = applicationProperties.get("FlinkApplicationProperties");
}

if (flinkProperties != null) {
 kafkaTopic = flinkProperties.get("kafka-topic").toString();
 brokers = flinkProperties.get("brokers").toString();
 s3Path = flinkProperties.get("s3Path").toString();
}

For more information about runtime properties, see Runtime properties.

Note

When building your application, we strongly advise creating and running the Managed
Service for Apache Flink application in the same Region as the Amazon MSK cluster. This

Download and examine the Apache Flink streaming Java code 447

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

is because the Flink Kafka connector is by default optimized for low latency environment.
If you need to consume from a cross Region Kafka cluster, consider increasing the
configuration value for receive.buffer.byte, such as 2097152.
For more information, see Custom MSK configurations.

Compile the application code

In this section, you use the Apache Maven compiler to create the Java code for the application. For
information about installing Apache Maven and the Java Development Kit (JDK), see Prerequisites
for completing the exercises.

To compile the application code

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code in one of two ways:

• Use the command-line Maven tool. Create your JAR file by running the following command
in the directory that contains the pom.xml file:

mvn package -Dflink.version=1.18.1

• Use your development environment. See your development environment documentation for
details.

Note

The provided source code relies on libraries from Java 11.

You can either upload your package as a JAR file, or you can compress your package and
upload it as a ZIP file. If you create your application using the Amazon CLI, you specify your
code content type (JAR or ZIP).

2. If there are errors while compiling, verify that your JAVA_HOME environment variable is
correctly set.

If the application compiles successfully, the following file is created:

Compile the application code 448

https://docs.amazonaws.cn/msk/latest/developerguide/msk-configuration-properties.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

target/aws-kinesis-analytics-java-apps-1.0.jar

Upload the Apache Flink streaming Java code

In this section, you create an Amazon S3 bucket and upload your application code.

To upload the application code

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose Create bucket.

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In the Configure options step, keep the settings as they are, and choose Next.

5. In the Set permissions step, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

8. In the Select files step, choose Add files. Navigate to the aws-kinesis-analytics-java-
apps-1.0.jar file that you created in the previous step. Choose Next.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

Upload the Apache Flink streaming Java code 449

https://console.amazonaws.cn/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Keep the version as Apache Flink version 1.18.1 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3",
 "Effect": "Allow",
 "Action": [
 "s3:Abort*",
 "s3:DeleteObject*",
 "s3:GetObject*",

Create and run the Managed Service for Apache Flink application 450

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "s3:GetBucket*",
 "s3:List*",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-<username>",
 "arn:aws:s3:::ka-app-code-<username>/*"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 }
]

Create and run the Managed Service for Apache Flink application 451

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter aws-kinesis-analytics-java-apps-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Create group.

5. Enter the following:

Group ID Key Value

FlinkApplicationPr
operties

kafka-topic AWSKafkaTutorialTo
pic

FlinkApplicationPr
operties

brokers Your Amazon MSK
cluster's Bootstrap
Brokers list

FlinkApplicationPr
operties

s3Path ka-app-co
de- <username>

FlinkApplicationPr
operties

security.protocol SSL

FlinkApplicationPr
operties

ssl.truststore.loc
ation

/usr/lib/jvm/java-
11-amazon-corretto
/lib/security/cace
rts

Create and run the Managed Service for Apache Flink application 452

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

FlinkApplicationPr
operties

ssl.truststore.pas
sword

changeit

6. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

7. For CloudWatch logging, select the Enable check box.

8. In the Virtual Private Cloud (VPC) section, choose VPC configuration based on Amazon MSK
cluster. Choose AWSKafkaTutorialCluster.

9. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Run the application

Use the following procedure to run the application.

To run the application

1. On the MyApplication page, choose Run. Confirm the action.

2. When the application is running, refresh the page. The console shows the Application graph.

3. From your Amazon EC2 client, run the Python script you created previously to write records to
the Amazon MSK cluster for your application to process:

$ python3 stock.py

Create and run the Managed Service for Apache Flink application 453

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Next step

Clean up Amazon resources

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Getting Started
(Table API) tutorial.

This topic contains the following sections.

• Delete your Managed Service for Apache Flink application

• Delete your Amazon MSK cluster

• Delete your VPC

• Delete your Amazon S3 objects and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

• Next step

Delete your Managed Service for Apache Flink application

Use the following procedure to delete the application.

To delete the application

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. On the application page, choose Delete and then confirm the deletion.

Delete your Amazon MSK cluster

To delete your Amazon MSK cluster, follow Step 8: Delete the Amazon MSK Cluster in the Amazon
Managed Streaming for Apache Kafka Developer Guide.

Next step 454

https://console.amazonaws.cn/kinesis
https://docs.amazonaws.cn/msk/latest/developerguide/delete-cluster.html
https://docs.amazonaws.cn/msk/latest/developerguide/what-is-msk.html
https://docs.amazonaws.cn/msk/latest/developerguide/what-is-msk.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your VPC

To delete your Amazon VPC, do the following:

• Open the Amazon VPC console.

• Choose your VPC.

• For Actions, choose Delete VPC.

Delete your Amazon S3 objects and bucket

Use the following procedure to delete your S3 objects and bucket.

To delete your S3 objects and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

Use the following procedure to delete your IAM resources.

To delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your VPC 455

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your CloudWatch resources

Use the following procedure to delete your CloudWatch resources.

To delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Next step

Next steps

Next steps

Now that you've created and run a Managed Service for Apache Flink application that uses the
Table API, see Step 5: Next steps in the Getting started with Amazon Managed Service for Apache
Flink (DataStream API).

Delete your CloudWatch resources 456

https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Getting started with Amazon Managed Service for
Apache Flink for Python

This section introduces you to the fundamental concepts of a Managed Service for Apache Flink
using Python and the Table API. It describes the available options for creating and testing your
applications. It also provides instructions for installing the necessary tools to complete the tutorials
in this guide and to create your first application.

Topics

• Getting started with Pyflink - The Python Interpreter for Apache | Amazon Web Services

• Components of a Managed Service for Apache Flink application

• Prerequisites

• Create and run a Managed Service for Apache Flink for Python application

• Clean up Amazon resources

Getting started with Pyflink - The Python Interpreter for
Apache | Amazon Web Services

Before you begin, we encourage you to watch the following video:

Getting started with Pyflink - The Python Interpreter for Apache | Amazon Web Services

Components of a Managed Service for Apache Flink application

To process data, your Managed Service for Apache Flink application uses a Python application that
processes input and produces output using the Apache Flink runtime.

Managed Service for Apache Flink application has the following components:

• Runtime properties: You can use runtime properties to configure your application without
recompiling your application code.

• Table Source: The application consumes data by using a source. A source connector reads data
from a Kinesis data stream, an Amazon MSK topic, or similar. For more information, see Table API
sources.

Getting started with Pyflink - The Python Interpreter for Apache | Amazon Web Services 457

https://www.youtube.com/embed/00JgwB5vJps

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Functions: The application processes data by using one or more functions. A function can
transform, enrich, or aggregate data.

• Sink: The application produces data to external sources by using sinks. A sink connector writes
data to a Kinesis data stream, a Firehose Firehose stream, an Amazon MSK topic, an Amazon S3
bucket, and so on. For more information, see Table API sinks.

After you create and package your application code, you upload the code package to an Amazon
S3 bucket. You then create a Managed Service for Apache Flink application. You pass in the code
package location, a streaming data source, and typically a streaming or file location that receives
the application's processed data.

Prerequisites

Before starting this tutorial, complete the first two steps of the Getting started with Amazon
Managed Service for Apache Flink (DataStream API):

• Step 1: Set up an Amazon account and create an administrator user

• Step 2: Set up the Amazon Command Line Interface (Amazon CLI)

To get started, see Create an Application.

Create and run a Managed Service for Apache Flink for Python
application

In this exercise, you create a Managed Service for Apache Flink application for Python application
with a Kinesis stream as a source and a sink.

This section contains the following steps.

• Create dependent resources

• Write sample records to the input stream

• Create and examine the Apache Flink streaming Python code

• Adding third-party dependencies to Python apps

• Upload the Apache Flink streaming Python code

• Create and run the Managed Service for Apache Flink application

Prerequisites 458

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Next step

Create dependent resources

Before you create a Managed Service for Apache Flink for this exercise, you create the following
dependent resources:

• Two Kinesis streams for input and output.

• An Amazon S3 bucket to store the application's code and output (ka-app-code-<username>)

Create two Kinesis streams

Before you create a Managed Service for Apache Flink application for this exercise, create two
Kinesis data streams (ExampleInputStream and ExampleOutputStream). Your application uses
these streams for the application source and destination streams.

You can create these streams using either the Amazon Kinesis console or the following Amazon CLI
command. For console instructions, see Creating and Updating Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

To create the data streams (Amazon CLI)

1. To create the first stream (ExampleInputStream), use the following Amazon Kinesis
create-stream Amazon CLI command.

$ aws kinesis create-stream \
--stream-name ExampleInputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

2. To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

$ aws kinesis create-stream \
--stream-name ExampleOutputStream \
--shard-count 1 \
--region us-west-2 \
--profile adminuser

Create dependent resources 459

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Create an Amazon S3 bucket

You can create the Amazon S3 bucket using the console. For instructions for creating this resource,
see the following topics:

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Other resources

When you create your application, Managed Service for Apache Flink creates the following Amazon
CloudWatch resources if they don't already exist:

• A log group called /AWS/KinesisAnalytics-java/MyApplication.

• A log stream called kinesis-analytics-log-stream.

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

Note

The Python script in this section uses the Amazon CLI. You must configure your Amazon CLI
to use your account credentials and default region. To configure your Amazon CLI, enter the
following:

aws configure

1. Create a file named stock.py with the following contents:

Write sample records to the input stream 460

https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html
http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 import datetime
 import json
 import random
 import boto3

 STREAM_NAME = "ExampleInputStream"

 def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

 def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

 if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Create and examine the Apache Flink streaming Python code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

Create and examine the Apache Flink streaming Python code 461

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/python/
GettingStarted directory.

The application code is located in the getting_started.py file. Note the following about the
application code:

• The application uses a Kinesis table source to read from the source stream. The following snippet
calls the create_table function to create the Kinesis table source:

table_env.execute_sql(
 create_table(output_table_name, output_stream, output_region)

The create_table function uses a SQL command to create a table that is backed by the
streaming source:

def create_table(table_name, stream_name, region, stream_initpos = None):
 init_pos = "\n'scan.stream.initpos' = '{0}',".format(stream_initpos) if
 stream_initpos is not None else ''

 return """ CREATE TABLE {0} (
 ticker VARCHAR(6),
 price DOUBLE,
 event_time TIMESTAMP(3),
 WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
)
 PARTITIONED BY (ticker)
 WITH (
 'connector' = 'kinesis',
 'stream' = '{1}',
 'aws.region' = '{2}',{3}
 'format' = 'json',
 'json.timestamp-format.standard' = 'ISO-8601'
) """.format(table_name, stream_name, region, init_pos)
 }

• The application creates two tables, then writes the contents of one table to the other.

Create and examine the Apache Flink streaming Python code 462

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 # 2. Creates a source table from a Kinesis Data Stream
 table_env.execute_sql(
 create_table(input_table_name, input_stream, input_region)
)

 # 3. Creates a sink table writing to a Kinesis Data Stream
 table_env.execute_sql(
 create_table(output_table_name, output_stream, output_region, stream_initpos)
)

 # 4. Inserts the source table data into the sink table
 table_result = table_env.execute_sql("INSERT INTO {0} SELECT * FROM {1}"
 .format(output_table_name, input_table_name))

• The application uses the Flink connector, from the flink- sql-connector-kinesis_2.12/1.15.2 file.

Adding third-party dependencies to Python apps

When using third-party python packages (such as boto3), you will need to add their transitive
dependencies and the properties required to target these dependencies. At a high level, for PyPi
dependencies, you can copy the files and folders that are located within your python environments
site-packages folder to a create a directory structure like below:

PythonPackages
README.md
python-packages.py
#
####my_deps
 ####boto3
 # # session.py
 # # utils.py
 # # ...
 #
 ####botocore
 # # args.py
 # # auth.py
 # ...
 ####mynonpypimodule
 # # mymodulefile1.py

Adding third-party dependencies to Python apps 463

https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/4.2.0-1.18
https://aws.amazon.com/sdk-for-python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 # # mymodulefile2.py
 ...
####lib
flink-sql-connector-kinesis-4.2.0-1.18.jar
...
...

To add the the boto3 as a third-party dependency:

1. Create a standalone Python environment (conda or similar) on your local machine with the
required dependencies.

2. Note the initial list of packages in that environment's site_packages folder.

3. pip-install all required dependencies for your app.

4. Note the packages that were added to the site_packages folder after step 3 above. These
are the folders you need to include in your package (under the my_deps folder), organized as
shown above. This will allow you to capture a diff of the packages between steps 2 and 3 to
identify the right package dependencies for your application.

5. Supply my_deps/ as an argument for the pyFiles property in the
kinesis.analytics.flink.run.options property group as described below for
the jarfiles property. Flink also allows you to specify Python dependencies using the
add_python_file function, but it's important to keep in mind that you only need to specify one
or the other – not both.

Note

You don't have to name the folder my_deps. The important part is registering the
dependencies using either pyFiles or add_python_file. An example can be found at
How to use boto3 within pyFlink.

Upload the Apache Flink streaming Python code

In this section, you create an Amazon S3 bucket and upload your application code.

Upload the Apache Flink streaming Python code 464

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/python/dependency_management/#python-dependencies
https://github.com/aws-samples/pyflink-getting-started/tree/main/packaging

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To upload the application code using the console:

1. Use your preferred compression application to compress the getting-started.py and
Flink SQL connector files. Name the archive myapp.zip. If you include the outer folder in
your archive, you must include this in the path with the code in your configuration file(s):
GettingStarted/getting-started.py.

2. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

3. Choose Create bucket.

4. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

5. In the Configure options step, keep the settings as they are, and choose Next.

6. In the Set permissions step, keep the settings as they are, and choose Next.

7. Choose Create bucket.

8. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

9. In the Select files step, choose Add files. Navigate to the myapp.zip file that you created in
the previous step. Choose Next.

10. You don't need to change any of the settings for the object, so choose Upload.

To upload the application code using the Amazon CLI:

Note

Do not use the compress features in Finder (macOS) or Windows Explorer (Windows) to
create the myapp.zip archive. This may result in invalid application code.

1. Use your preferred compression application to compress the streaming-file-sink.py and
Flink SQL connector files.

Note

Do not use the compress features in Finder (macOS) or Windows Explorer (Windows) to
create the myapp.zip archive. This may result in invalid application code.

2. Use your preferred compression application to compress the getting-started.py and
Flink SQL connector files. Name the archive myapp.zip. If you include the outer folder in

Upload the Apache Flink streaming Python code 465

https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/4.2.0-1.18
https://console.amazonaws.cn/s3/
https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/4.2.0-1.18
https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kinesis/4.2.0-1.18

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

your archive, you must include this in the path with the code in your configuration file(s):
GettingStarted/getting-started.py.

3. Run the following command:

$ aws s3 --region aws region cp myapp.zip s3://ka-app-code-<username>

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Description, enter My java test app.

• For Runtime, choose Apache Flink.

• Leave the version as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

Create and run the Managed Service for Apache Flink application 466

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter myapp.zip.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Group ID Key Value

consumer.config.0 input.stream.name ExampleInputStream

consumer.config.0 aws.region us-west-2

consumer.config.0 scan.stream.initpos LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following:

Group ID Key Value

producer.config.0 output.stream.name ExampleOutputStream

producer.config.0 aws.region us-west-2

Create and run the Managed Service for Apache Flink application 467

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

producer.config.0 shard.count 1

8. Under Properties, choose Add group again. For Group ID, enter
flink.sql.connector.kinesis.options. This special property group tells your
application where to find its code resources. For more information, see Specifying your code
files.

9. Enter the following:

Group ID Key Value

kinesis.analytics.
flink.run.options

python getting-started.py

kinesis.analytics.
flink.run.options

jarfile flink-sql-connector-
kinesis-4.2.0-1.18.jar

10. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

11. For CloudWatch logging, choose the Enable check box.

12. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

Create and run the Managed Service for Apache Flink application 468

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/myapp.zip"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"

Create and run the Managed Service for Apache Flink application 469

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Next step

Clean up Amazon resources

Next step 470

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Getting Started
(Python) tutorial.

This topic contains the following sections.

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 objects and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

Use the following procedure to delete the application.

To delete the application

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Managed Service for Apache Flink panel, choose MyApplication.

3. On the application page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Delete your Amazon S3 objects and bucket

Use the following procedure to delete your S3 objects and bucket.

Clean Up 471

https://console.amazonaws.cn/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To delete your S3 objects and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

Use the following procedure to delete your IAM resources.

To delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

Use the following procedure to delete your CloudWatch resources.

To delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Delete your IAM resources 472

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Getting started (Scala)

Note

Starting from version 1.15, Flink is Scala free. Applications can now use the Java API
from any Scala version. Flink still uses Scala in a few key components internally, but
doesn't expose Scala into the user code classloader. Because of that, you must add Scala
dependencies into your JAR-archives.
For more information about Scala changes in Flink 1.15, see Scala Free in One Fifteen.

In this exercise, you create a Managed Service for Apache Flink application application for Scala
with a Kinesis stream as a source and a sink.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile and upload the application code

• Create and run the application (console)

• Create and run the application (CLI)

• Clean up Amazon resources

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis streams for input and output.

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

Create dependent resources 473

https://flink.apache.org/2022/02/22/scala-free.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

To create the data streams (Amazon CLI)

• To create the first stream (ExampleInputStream), use the following Amazon Kinesis create-
stream Amazon CLI command.

aws kinesis create-stream \
 --stream-name ExampleInputStream \
 --shard-count 1 \
 --region us-west-2 \
 --profile adminuser

• To create the second stream that the application uses to write output, run the same command,
changing the stream name to ExampleOutputStream.

aws kinesis create-stream \
 --stream-name ExampleOutputStream \
 --shard-count 1 \
 --region us-west-2 \
 --profile adminuser

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Other resources

When you create your application, Managed Service for Apache Flink creates the following Amazon
CloudWatch resources if they don't already exist:

• A log group called /AWS/KinesisAnalytics-java/MyApplication

• A log stream called kinesis-analytics-log-stream

Write sample records to the input stream

In this section, you use a Python script to write sample records to the stream for the application to
process.

Write sample records to the input stream 474

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

This section requires the Amazon SDK for Python (Boto).

Note

The Python script in this section uses the Amazon CLI. You must configure your Amazon CLI
to use your account credentials and default region. To configure your Amazon CLI, enter the
following:

aws configure

1. Create a file named stock.py with the following contents:

import datetime
import json
import random
import boto3

STREAM_NAME = "ExampleInputStream"

def get_data():
 return {
 'event_time': datetime.datetime.now().isoformat(),
 'ticker': random.choice(['AAPL', 'AMZN', 'MSFT', 'INTC', 'TBV']),
 'price': round(random.random() * 100, 2)}

def generate(stream_name, kinesis_client):
 while True:
 data = get_data()
 print(data)
 kinesis_client.put_record(
 StreamName=stream_name,
 Data=json.dumps(data),
 PartitionKey="partitionkey")

Write sample records to the input stream 475

http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

if __name__ == '__main__':
 generate(STREAM_NAME, boto3.client('kinesis', region_name='us-west-2'))

2. Run the stock.py script:

$ python stock.py

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Python application code for this example is available from GitHub. To download the
application code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/scala/
GettingStarted directory.

Note the following about the application code:

• A build.sbt file contains information about the application's configuration and dependencies,
including the Managed Service for Apache Flink libraries.

• The BasicStreamingJob.scala file contains the main method that defines the application's
functionality.

• The application uses a Kinesis source to read from the source stream. The following snippet
creates the Kinesis source:

private def createSource: FlinkKinesisConsumer[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val inputProperties = applicationProperties.get("ConsumerConfigProperties")

 new FlinkKinesisConsumer[String](inputProperties.getProperty(streamNameKey,
 defaultInputStreamName),
 new SimpleStringSchema, inputProperties)

Download and examine the application code 476

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

The application also uses a Kinesis sink to write into the result stream. The following snippet
creates the Kinesis sink:

private def createSink: KinesisStreamsSink[String] = {
 val applicationProperties = KinesisAnalyticsRuntime.getApplicationProperties
 val outputProperties = applicationProperties.get("ProducerConfigProperties")

 KinesisStreamsSink.builder[String]
 .setKinesisClientProperties(outputProperties)
 .setSerializationSchema(new SimpleStringSchema)
 .setStreamName(outputProperties.getProperty(streamNameKey,
 defaultOutputStreamName))
 .setPartitionKeyGenerator((element: String) => String.valueOf(element.hashCode))
 .build
}

• The application creates source and sink connectors to access external resources using a
StreamExecutionEnvironment object.

• The application creates source and sink connectors using dynamic application properties.
Runtime application's properties are read to configure the connectors. For more information
about runtime properties, see Runtime Properties.

Compile and upload the application code

In this section, you compile and upload your application code to the Amazon S3 bucket you created
in the Create dependent resources section.

Compile the Application Code

In this section, you use the SBT build tool to build the Scala code for the application. To install
SBT, see Install sbt with cs setup. You also need to install the Java Development Kit (JDK). See
Prerequisites for Completing the Exercises.

1. To use your application code, you compile and package it into a JAR file. You can compile and
package your code with SBT:

sbt assembly

Compile and upload the application code 477

https://docs.aws.amazon.com/managed-flink/latest/java/how-properties.html
https://www.scala-sbt.org/
https://www.scala-sbt.org/download.html
https://docs.amazonaws.cn/managed-flink/latest/java/getting-started.html#setting-up-prerequisites

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. If the application compiles successfully, the following file is created:

target/scala-3.2.0/getting-started-scala-1.0.jar

Upload the Apache Flink Streaming Scala Code

In this section, you create an Amazon S3 bucket and upload your application code.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Choose Create bucket

3. Enter ka-app-code-<username> in the Bucket name field. Add a suffix to the bucket name,
such as your user name, to make it globally unique. Choose Next.

4. In Configure options, keep the settings as they are, and choose Next.

5. In Set permissions, keep the settings as they are, and choose Next.

6. Choose Create bucket.

7. Choose the ka-app-code-<username> bucket, and then choose Upload.

8. In the Select files step, choose Add files. Navigate to the getting-started-
scala-1.0.jar file that you created in the previous step.

9. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the application (console)

Follow these steps to create, configure, update, and run the application using the console.

Create the Application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

Create and run the application (console) 478

https://console.aws.amazon.com/s3/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• For Description, enter My scala test app.

• For Runtime, choose Apache Flink.

• Keep the version as Apache Flink version 1.18.1 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesisanalytics-MyApplication-us-west-2

Configure the application

Use the following procedure to configure the application.

To configure the application

1. On the MyApplication page, choose Configure.

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter getting-started-scala-1.0.jar..

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Under Properties, choose Add group.

5. Enter the following:

Configure the application 479

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Group ID Key Value

ConsumerConfigProp
erties

input.stream.name ExampleInputStream

ConsumerConfigProp
erties

aws.region us-west-2

ConsumerConfigProp
erties

flink.stream.initp
os

LATEST

Choose Save.

6. Under Properties, choose Add group again.

7. Enter the following:

Group ID Key Value

ProducerConfigProp
erties

output.stream.name ExampleOutputStream

ProducerConfigProp
erties

aws.region us-west-2

8. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

9. For CloudWatch logging, choose the Enable check box.

10. Choose Update.

Note

When you choose to enable Amazon CloudWatch logging, Managed Service for Apache
Flink creates a log group and log stream for you. The names of these resources are as
follows:

• Log group: /aws/kinesis-analytics/MyApplication

Configure the application 480

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Log stream: kinesis-analytics-log-stream

Edit the IAM policy

Edit the IAM policy to add permissions to access the Amazon S3 bucket.

To edit the IAM policy to add S3 bucket permissions

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::ka-app-code-username/getting-started-scala-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {

Edit the IAM policy 481

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-
analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

Run the application 482

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Stop the application

To stop the application, on the MyApplication page, choose Stop. Confirm the action.

Create and run the application (CLI)

In this section, you use the Amazon Command Line Interface to create and run the Managed
Service for Apache Flink application. Use the kinesisanalyticsv2 Amazon CLI command to create
and interact with Managed Service for Apache Flink applications.

Create a permissions policy

Note

You must create a permissions policy and role for your application. If you do not create
these IAM resources, your application cannot access its data and log streams.

First, you create a permissions policy with two statements: one that grants permissions for the
read action on the source stream, and another that grants permissions for write actions on the
sink stream. You then attach the policy to an IAM role (which you create in the next section).
Thus, when Managed Service for Apache Flink assumes the role, the service has the necessary
permissions to read from the source stream and write to the sink stream.

Use the following code to create the AKReadSourceStreamWriteSinkStream permissions
policy. Replace username with the user name that you used to create the Amazon S3 bucket
to store the application code. Replace the account ID in the Amazon Resource Names (ARNs)
(012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [

Stop the application 483

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "arn:aws:s3:::ka-app-code-username/getting-started-scala-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "DescribeLogStreams",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-analytics/
MyApplication:log-stream:*"
]
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:/aws/kinesis-analytics/
MyApplication:log-stream:kinesis-analytics-log-stream"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",

Create a permissions policy 484

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

For step-by-step instructions to create a permissions policy, see Tutorial: Create and Attach Your
First Customer Managed Policy in the IAM User Guide.

Create an IAM policy

In this section, you create an IAM role that the Managed Service for Apache Flink application can
assume to read a source stream and write to the sink stream.

Managed Service for Apache Flink cannot access your stream without permissions. You grant
these permissions via an IAM role. Each IAM role has two policies attached. The trust policy grants
Managed Service for Apache Flink permission to assume the role, and the permissions policy
determines what Managed Service for Apache Flink can do after assuming the role.

You attach the permissions policy that you created in the preceding section to this role.

To create an IAM role

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation pane, choose Roles and then Create Role.

3. Under Select type of trusted identity, choose Amazon Service

4. Under Choose the service that will use this role, choose Kinesis.

5. Under Select your use case, choose Managed Service for Apache Flink.

6. Choose Next: Permissions.

7. On the Attach permissions policies page, choose Next: Review. You attach permissions
policies after you create the role.

8. On the Create role page, enter MF-stream-rw-role for the Role name. Choose Create role.

Now you have created a new IAM role called MF-stream-rw-role. Next, you update the trust
and permissions policies for the role

Create an IAM policy 485

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_managed-policies.html#part-two-create-policy
https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

9. Attach the permissions policy to the role.

Note

For this exercise, Managed Service for Apache Flink assumes this role for both reading
data from a Kinesis data stream (source) and writing output to another Kinesis data
stream. So you attach the policy that you created in the previous step, Create a
Permissions Policy.

a. On the Summary page, choose the Permissions tab.

b. Choose Attach Policies.

c. In the search box, enter AKReadSourceStreamWriteSinkStream (the policy that you
created in the previous section).

d. Choose the AKReadSourceStreamWriteSinkStream policy, and choose Attach policy.

You now have created the service execution role that your application uses to access resources.
Make a note of the ARN of the new role.

For step-by-step instructions for creating a role, see Creating an IAM Role (Console) in the IAM User
Guide.

Create the application

Save the following JSON code to a file named create_request.json. Replace the sample
role ARN with the ARN for the role that you created previously. Replace the bucket ARN suffix
(username) with the suffix that you chose in the previous section. Replace the sample account ID
(012345678901) in the service execution role with your account ID.

{
 "ApplicationName": "getting_started",
 "ApplicationDescription": "Scala getting started application",
 "RuntimeEnvironment": "FLINK-1_18",
 "ServiceExecutionRole": "arn:aws:iam::012345678901:role/MF-stream-rw-role",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation": {
 "BucketARN": "arn:aws:s3:::ka-app-code-username",

Create the application 486

https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.amazonaws.cn/managed-flink/latest/java/get-started-exercise.html#get-started-exercise-7-cli-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "FileKey": "getting-started-scala-1.0.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 },
 "EnvironmentProperties": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 },
 "CloudWatchLoggingOptions": [
 {
 "LogStreamARN": "arn:aws:logs:us-west-2:012345678901:log-
group:MyApplication:log-stream:kinesis-analytics-log-stream"
 }
]
}

Execute the CreateApplication with the following request to create the application:

aws kinesisanalyticsv2 create-application --cli-input-json file://create_request.json

The application is now created. You start the application in the next step.

Start the application

In this section, you use the StartApplication action to start the application.

Start the application 487

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StartApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To start the application

1. Save the following JSON code to a file named start_request.json.

{
 "ApplicationName": "getting_started",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

2. Execute the StartApplication action with the preceding request to start the application:

aws kinesisanalyticsv2 start-application --cli-input-json file://start_request.json

The application is now running. You can check the Managed Service for Apache Flink metrics on the
Amazon CloudWatch console to verify that the application is working.

Stop the application

In this section, you use the StopApplication action to stop the application.

To stop the application

1. Save the following JSON code to a file named stop_request.json.

{
 "ApplicationName": "s3_sink"
}

2. Execute the StopApplication action with the preceding request to stop the application:

aws kinesisanalyticsv2 stop-application --cli-input-json file://stop_request.json

The application is now stopped.

Stop the application 488

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Add a CloudWatch logging option

You can use the Amazon CLI to add an Amazon CloudWatch log stream to your application. For
information about using CloudWatch Logs with your application, see Setting Up Application
Logging.

Update environment properties

In this section, you use the UpdateApplication action to change the environment properties for the
application without recompiling the application code. In this example, you change the Region of
the source and destination streams.

To update environment properties for the application

1. Save the following JSON code to a file named update_properties_request.json.

{
 "ApplicationName": "getting_started",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "EnvironmentPropertyUpdates": {
 "PropertyGroups": [
 {
 "PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleInputStream",
 "flink.stream.initpos" : "LATEST"
 }
 },
 {
 "PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap" : {
 "aws.region" : "us-west-2",
 "stream.name" : "ExampleOutputStream"
 }
 }
]
 }
 }

Add a CloudWatch logging option 489

https://docs.amazonaws.cn/managed-flink/latest/java/cloudwatch-logs.html
https://docs.amazonaws.cn/managed-flink/latest/java/cloudwatch-logs.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Execute the UpdateApplication action with the preceding request to update environment
properties:

aws kinesisanalyticsv2 update-application --cli-input-json file://
update_properties_request.json

Update the application code

When you need to update your application code with a new version of your code package, you use
the UpdateApplication CLI action.

Note

To load a new version of the application code with the same file name, you must specify
the new object version. For more information about using Amazon S3 object versions, see
Enabling or Disabling Versioning.

To use the Amazon CLI, delete your previous code package from your Amazon S3 bucket, upload
the new version, and call UpdateApplication, specifying the same Amazon S3 bucket and object
name, and the new object version. The application will restart with the new code package.

The following sample request for the UpdateApplication action reloads the application code
and restarts the application. Update the CurrentApplicationVersionId to the current
application version. You can check the current application version using the ListApplications
or DescribeApplication actions. Update the bucket name suffix (<username>) with the suffix
that you chose in the Create dependent resources section.

{{
 "ApplicationName": "getting_started",
 "CurrentApplicationVersionId": 1,
 "ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {
 "BucketARNUpdate": "arn:aws:s3:::ka-app-code-<username>",
 "FileKeyUpdate": "getting-started-scala-1.0.jar",
 "ObjectVersionUpdate": "SAMPLEUehYngP87ex1nzYIGYgfhypvDU"
 }

Update the application code 490

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }
 }
 }
}

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Tumbling
Window tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Clean Up 491

https://console.amazonaws.cn/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Delete your Amazon S3 object and bucket 492

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Creating Managed Service for Apache Flink applications
with Apache Beam

Note

Apache Beam is not supported in Apache Flink version 1.18. For more information, see
Flink Version Compatibility in the Apache Beam Documentation.>

You can use the Apache Beam framework with your Managed Service for Apache Flink application
to process streaming data. Managed Service for Apache Flink applications that use Apache Beam
use Apache Flink runner to execute Beam pipelines.

For a tutorial about how to use Apache Beam in a Managed Service for Apache Flink application,
see Using CloudFormation with Managed Service for Apache Flink.

This topic contains the following sections:

• Using Apache Beam with Managed Service for Apache Flink

• Beam capabilities

• Creating an application using Apache Beam

Using Apache Beam with Managed Service for Apache Flink

Note the following about using the Apache Flink runner with Managed Service for Apache Flink:

• Apache Beam metrics are not viewable in the Managed Service for Apache Flink console.

• Apache Beam is only supported with Managed Service for Apache Flink applications that use
Apache Flink version 1.8 and above. Apache Beam is not supported with Managed Service for
Apache Flink applications that use Apache Flink version 1.6.

Beam capabilities

Managed Service for Apache Flink supports the same Apache Beam capabilties as the Apache Flink
runner. For information about what features are supported with the Apache Flink runner, see the
Beam Compatibility Matrix.

Using Apache Beam with Managed Service for Apache Flink 493

https://beam.apache.org/documentation/runners/flink/#flink-version-compatibility
https://beam.apache.org/
https://beam.apache.org/documentation/runners/flink/
https://beam.apache.org/documentation/runners/capability-matrix/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

We recommend that you test your Apache Flink application in the Managed Service for Apache
Flink service to verify that we support all the features that your application needs.

Creating an application using Apache Beam

In this exercise, you create a Managed Service for Apache Flink application that transforms data
using Apache Beam. Apache Beam is a programming model for processing streaming data. For
information about using Apache Beam with Managed Service for Apache Flink, see Using Apache
Beam.

Note

To set up required prerequisites for this exercise, first complete the Getting started
(DataStream API) exercise.

This topic contains the following sections:

• Create dependent resources

• Write sample records to the input stream

• Download and examine the application code

• Compile the application code

• Upload the Apache Flink streaming Java code

• Create and run the Managed Service for Apache Flink application

• Clean up Amazon resources

• Next steps

Create dependent resources

Before you create a Managed Service for Apache Flink application for this exercise, you create the
following dependent resources:

• Two Kinesis data streams (ExampleInputStream and ExampleOutputStream)

• An Amazon S3 bucket to store the application's code (ka-app-code-<username>)

Creating an application using Apache Beam 494

https://beam.apache.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can create the Kinesis streams and Amazon S3 bucket using the console. For instructions for
creating these resources, see the following topics:

• Creating and Updating Data Streams in the Amazon Kinesis Data Streams Developer Guide. Name
your data streams ExampleInputStream and ExampleOutputStream.

• How Do I Create an S3 Bucket? in the Amazon Simple Storage Service User Guide. Give the
Amazon S3 bucket a globally unique name by appending your login name, such as ka-app-
code-<username>.

Write sample records to the input stream

In this section, you use a Python script to write random strings to the stream for the application to
process.

Note

This section requires the Amazon SDK for Python (Boto).

1. Create a file named ping.py with the following contents:

import json
import boto3
import random

kinesis = boto3.client('kinesis')

while True:
 data = random.choice(['ping', 'telnet', 'ftp', 'tracert', 'netstat'])
 print(data)
 kinesis.put_record(
 StreamName="ExampleInputStream",
 Data=data,
 PartitionKey="partitionkey")

2. Run the ping.py script:

$ python ping.py

Write sample records to the input stream 495

https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/create-bucket.html
http://www.amazonaws.cn/developers/getting-started/python/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Keep the script running while completing the rest of the tutorial.

Download and examine the application code

The Java application code for this example is available from GitHub. To download the application
code, do the following:

1. Install the Git client if you haven't already. For more information, see Installing Git.

2. Clone the remote repository with the following command:

git clone https://github.com/aws-samples/amazon-kinesis-data-analytics-examples.git

3. Navigate to the amazon-kinesis-data-analytics-java-examples/Beam directory.

The application code is located in the BasicBeamStreamingJob.java file. Note the following
about the application code:

• The application uses the Apache Beam ParDo to process incoming records by invoking a custom
transform function called PingPongFn.

The code to invoke the PingPongFn function is as follows:

.apply("Pong transform",
 ParDo.of(new PingPongFn())

• Managed Service for Apache Flink applications that use Apache Beam require the following
components. If you don't include these components and versions in your pom.xml, your
application loads the incorrect versions from the environment dependencies, and since the
versions do not match, your application crashes at runtime.

<jackson.version>2.10.2</jackson.version>
...
<dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-jaxb-annotations</artifactId>
 <version>2.10.2</version>
</dependency>

Download and examine the application code 496

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://beam.apache.org/releases/javadoc/2.0.0/org/apache/beam/sdk/transforms/ParDo.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• The PingPongFn transform function passes the input data into the output stream, unless the
input data is ping, in which case it emits the string pong\n to the output stream.

The code of the transform function is as follows:

 private static class PingPongFn extends DoFn<KinesisRecord, byte[]> {
 private static final Logger LOG = LoggerFactory.getLogger(PingPongFn.class);

 @ProcessElement
 public void processElement(ProcessContext c) {
 String content = new String(c.element().getDataAsBytes(),
 StandardCharsets.UTF_8);
 if (content.trim().equalsIgnoreCase("ping")) {
 LOG.info("Ponged!");
 c.output("pong\n".getBytes(StandardCharsets.UTF_8));
 } else {
 LOG.info("No action for: " + content);
 c.output(c.element().getDataAsBytes());
 }
 }
}

Compile the application code

To compile the application, do the following:

1. Install Java and Maven if you haven't already. For more information, see Prerequisites in the
Getting started (DataStream API) tutorial.

2. Compile the application with the following command:

mvn package -Dflink.version=1.18.1 -Dflink.version.minor=1.8

Note

The provided source code relies on libraries from Java 11.

Compiling the application creates the application JAR file (target/basic-beam-app-1.0.jar).

Compile the application code 497

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Upload the Apache Flink streaming Java code

In this section, you upload your application code to the Amazon S3 bucket you created in the
Create dependent resources section.

1. In the Amazon S3 console, choose the ka-app-code-<username> bucket, and choose Upload.

2. In the Select files step, choose Add files. Navigate to the basic-beam-app-1.0.jar file
that you created in the previous step.

3. You don't need to change any of the settings for the object, so choose Upload.

Your application code is now stored in an Amazon S3 bucket where your application can access it.

Create and run the Managed Service for Apache Flink application

Follow these steps to create, configure, update, and run the application using the console.

Create the Application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. On the Managed Service for Apache Flink dashboard, choose Create analytics application.

3. On the Managed Service for Apache Flink - Create application page, provide the application
details as follows:

• For Application name, enter MyApplication.

• For Runtime, choose Apache Flink.

Note

Managed Service for Apache Flink uses Apache Flink version 1.15.2.

• Leave the version pulldown as Apache Flink version 1.15.2 (Recommended version).

4. For Access permissions, choose Create / update IAM role kinesis-analytics-
MyApplication-us-west-2.

5. Choose Create application.

Upload the Apache Flink streaming Java code 498

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

When you create a Managed Service for Apache Flink application using the console,
you have the option of having an IAM role and policy created for your application. Your
application uses this role and policy to access its dependent resources. These IAM resources
are named using your application name and Region as follows:

• Policy: kinesis-analytics-service-MyApplication-us-west-2

• Role: kinesis-analytics-MyApplication-us-west-2

Edit the IAM policy

Edit the IAM policy to add permissions to access the Kinesis data streams.

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. Choose Policies. Choose the kinesis-analytics-service-MyApplication-us-west-2
policy that the console created for you in the previous section.

3. On the Summary page, choose Edit policy. Choose the JSON tab.

4. Add the highlighted section of the following policy example to the policy. Replace the sample
account IDs (012345678901) with your account ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadCode",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "logs:DescribeLogGroups",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*",
 "arn:aws:s3:::ka-app-code-<username>/basic-beam-app-1.0.jar"
]
 },
 {
 "Sid": "DescribeLogStreams",

Create and run the Managed Service for Apache Flink application 499

https://console.amazonaws.cn/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Effect": "Allow",
 "Action": "logs:DescribeLogStreams",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:*"
 },
 {
 "Sid": "PutLogEvents",
 "Effect": "Allow",
 "Action": "logs:PutLogEvents",
 "Resource": "arn:aws:logs:us-west-2:012345678901:log-group:/aws/
kinesis-analytics/MyApplication:log-stream:kinesis-analytics-log-stream"
 },
 {
 "Sid": "ListCloudwatchLogGroups",
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:us-west-2:012345678901:log-group:*"
]
 },
 {
 "Sid": "ReadInputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleInputStream"
 },
 {
 "Sid": "WriteOutputStream",
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": "arn:aws:kinesis:us-west-2:012345678901:stream/
ExampleOutputStream"
 }
]
}

Configure the application

1. On the MyApplication page, choose Configure.

Create and run the Managed Service for Apache Flink application 500

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. On the Configure application page, provide the Code location:

• For Amazon S3 bucket, enter ka-app-code-<username>.

• For Path to Amazon S3 object, enter basic-beam-app-1.0.jar.

3. Under Access to application resources, for Access permissions, choose Create / update IAM
role kinesis-analytics-MyApplication-us-west-2.

4. Enter the following:

Group ID Key Value

BeamApplicationPro
perties

InputStreamName ExampleInputStream

BeamApplicationPro
perties

OutputStreamName ExampleOutputStream

BeamApplicationPro
perties

AwsRegion us-west-2

5. Under Monitoring, ensure that the Monitoring metrics level is set to Application.

6. For CloudWatch logging, select the Enable check box.

7. Choose Update.

Note

When you choose to enable CloudWatch logging, Managed Service for Apache Flink creates
a log group and log stream for you. The names of these resources are as follows:

• Log group: /aws/kinesis-analytics/MyApplication

• Log stream: kinesis-analytics-log-stream

This log stream is used to monitor the application. This is not the same log stream that the
application uses to send results.

Create and run the Managed Service for Apache Flink application 501

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Run the application

The Flink job graph can be viewed by running the application, opening the Apache Flink dashboard,
and choosing the desired Flink job.

You can check the Managed Service for Apache Flink metrics on the CloudWatch console to verify
that the application is working.

Clean up Amazon resources

This section includes procedures for cleaning up Amazon resources created in the Tumbling
Window tutorial.

This topic contains the following sections:

• Delete your Managed Service for Apache Flink application

• Delete your Kinesis data streams

• Delete your Amazon S3 object and bucket

• Delete your IAM resources

• Delete your CloudWatch resources

Delete your Managed Service for Apache Flink application

1. Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

2. in the Managed Service for Apache Flink panel, choose MyApplication.

3. In the application's page, choose Delete and then confirm the deletion.

Delete your Kinesis data streams

1. Open the Kinesis console at https://console.amazonaws.cn/kinesis.

2. In the Kinesis Data Streams panel, choose ExampleInputStream.

3. In the ExampleInputStream page, choose Delete Kinesis Stream and then confirm the
deletion.

4. In the Kinesis streams page, choose the ExampleOutputStream, choose Actions, choose
Delete, and then confirm the deletion.

Clean Up 502

https://console.amazonaws.cn/kinesis

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Delete your Amazon S3 object and bucket

1. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

2. Choose the ka-app-code-<username> bucket.

3. Choose Delete and then enter the bucket name to confirm deletion.

Delete your IAM resources

1. Open the IAM console at https://console.amazonaws.cn/iam/.

2. In the navigation bar, choose Policies.

3. In the filter control, enter kinesis.

4. Choose the kinesis-analytics-service-MyApplication-us-west-2 policy.

5. Choose Policy Actions and then choose Delete.

6. In the navigation bar, choose Roles.

7. Choose the kinesis-analytics-MyApplication-us-west-2 role.

8. Choose Delete role and then confirm the deletion.

Delete your CloudWatch resources

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation bar, choose Logs.

3. Choose the /aws/kinesis-analytics/MyApplication log group.

4. Choose Delete Log Group and then confirm the deletion.

Next steps

Now that you've created and run a basic Managed Service for Apache Flink application that
transforms data using Apache Beam, see the following application for an example of a more
advanced Managed Service for Apache Flink solution.

• Beam on Managed Service for Apache Flink Streaming Workshop: In this workshop, we explore
an end to end example that combines batch and streaming aspects in one uniform Apache Beam
pipeline.

Next steps 503

https://console.amazonaws.cn/s3/
https://console.amazonaws.cn/iam/
https://console.amazonaws.cn/cloudwatch/
https://streaming-analytics.workshop.aws/beam-on-kda/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Training workshops, labs, and solution implementations

The following end-to-end examples demonstrate advanced Managed Service for Apache Flink
solutions.

Topics

• Developing Apache Flink applications locally before deploying to Managed Service for Apache
Flink for Apache Flink

• Event detection with Managed Service for Apache Flink Studio

• Amazon Streaming data solution for Amazon Kinesis

• Clickstream lab with Apache Flink and Apache Kafka

• Custom scaling using Application Auto Scaling

• Amazon CloudWatch dashboard

• Amazon Streaming data solution for Amazon MSK

• More Managed Service for Apache Flink solutions on GitHub

Developing Apache Flink applications locally before deploying
to Managed Service for Apache Flink for Apache Flink

This workshop will show you the basics of getting up and started developing Apache Flink
applications locally with the long term goal of deploying to Managed Service for Apache Flink for
Apache Flink.

The solution can be found here: Starters Guide to Local Development with Apache Flink

Event detection with Managed Service for Apache Flink Studio

This workshop describes event detection with Managed Service for Apache Flink Studio and
deploying it as a Managed Service for Apache Flink application

The solution can be found here: Event Detection with Managed Service for Apache Flink for Apache
Flink

Developing Apache Flink applications locally before deploying to Managed Service for Apache Flink for
Apache Flink

504

https://catalog.us-east-1.prod.workshops.aws/workshops/429cec9e-3222-4943-82f7-1f45c45ed99a/en-US
https://catalog.us-east-1.prod.workshops.aws/workshops/2b03e299-c30f-4144-b452-483356cc5267/en-US
https://catalog.us-east-1.prod.workshops.aws/workshops/2b03e299-c30f-4144-b452-483356cc5267/en-US

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon Streaming data solution for Amazon Kinesis

The Amazon Streaming Data Solution for Amazon Kinesis automatically configures the Amazon
services necessary to easily capture, store, process, and deliver streaming data. The solution
provides multiple options for solving streaming data use cases. The Managed Service for
Apache Flink option provides an end-to-end streaming ETL example demonstrating a real-world
application that runs analytical operations on simulated New York taxi data.

Each solution includes the following components:

• An Amazon CloudFormation package to deploy the complete example.

• A CloudWatch dashboard for displaying application metrics.

• CloudWatch alarms on the most relevant application metrics.

• All necessary IAM roles and policies.

The solution can be found here: Streaming Data Solution for Amazon Kinesis

Clickstream lab with Apache Flink and Apache Kafka

An end to end lab for clickstream use cases using Amazon Managed Streaming for Apache Kafka
for streaming storage and Managed Service for Apache Flink for Apache Flink applications for
stream processing.

The solution can be found here: Clickstream Lab

Custom scaling using Application Auto Scaling

A sample that helps users automatically scale their Managed Service for Apache Flink applications
using Application Auto Scaling. This enables users to set up custom scaling policies and custom
scaling attributes.

The solutions can be found here:

• Managed Service for Apache Flink App Autoscaling

• Scheduled Scaling

Amazon Streaming Data Solution 505

https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-kinesis/
https://amazonmsk-labs.workshop.aws/en/mskkdaflinklab.html
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/infrastructure/AutoScaling
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/infrastructure/ScheduledScaling

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information on you can perform custom scaling, see Enable metric-based and scheduled
scaling for Amazon Managed Service for Apache Flink.

Amazon CloudWatch dashboard

A sample CloudWatch dashboard for monitoring Managed Service for Apache Flink applications.
The sample dashboard also includes a demo application to help with demonstrating the
functionality of the dashboard.

The solution can be found here: Managed Service for Apache Flink Metrics Dashboard

Amazon Streaming data solution for Amazon MSK

The Amazon Streaming Data Solution for Amazon MSK provides Amazon CloudFormation
templates where data flows through producers, streaming storage, consumers, and destinations.

The solution can be found here: Amazon Streaming Data Solution for Amazon MSK

More Managed Service for Apache Flink solutions on GitHub

The following end-to-end examples demonstrate advanced Managed Service for Apache Flink
solutions and are available on GitHub:

• Amazon Managed Service for Apache Flink Flink – Benchmarking Utility

• Snapshot Manager – Amazon Managed Service for Apache Flink for Apache Flink

• Streaming ETL with Apache Flink and Amazon Managed Service for Apache Flink

• Real-time sentiment analysis on customer feedback

CloudWatch Dashboard 506

https://aws.amazon.com/blogs/big-data/enable-metric-based-and-scheduled-scaling-for-amazon-managed-service-for-apache-flink/
https://aws.amazon.com/blogs/big-data/enable-metric-based-and-scheduled-scaling-for-amazon-managed-service-for-apache-flink/
https://github.com/aws-samples/kda-metrics-dashboard/tree/main/demo-apps
https://github.com/aws-samples/kda-metrics-dashboard
https://aws.amazon.com/solutions/implementations/aws-streaming-data-solution-for-amazon-msk/
https://github.com/aws-samples/amazon-kinesis-data-analytics-flink-benchmarking-utility
https://github.com/aws-samples/amazon-kinesis-data-analytics-snapshot-manager-for-flink
https://github.com/aws-samples/amazon-kinesisanalytics-MyApplicatiostreaming-etl
https://github.com/aws-samples/real-time-sentiment-flinksql-kdastudio

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Utilities

The following utilities can make using the Managed Service for Apache Flink service easier to use:

Topics

• Snapshot manager

• Benchmarking

Snapshot manager

It's a best practice for Flink Applications to regularly trigger savepoints/snapshots to allow for
more seamless failure recovery. Snapshot manager automates this task and offers the following
benefits:

• takes a new snapshot of a running Managed Service for Apache Flink for Apache Flink
Application

• gets a count of application snapshots

• checks if the count is more than the required number of snapshots

• deletes older snapshots that are older than the required number

For an example, see Snapshot manager.

Benchmarking

Managed Service for Apache Flink Flink Benchmarking Utility helps with capacity planning,
integration testing, and benchmarking of Managed Service for Apache Flink for Apache Flink
applications.

For an example, see Benchmarking

Snapshot manager 507

https://github.com/aws-samples/amazon-kinesis-data-analytics-snapshot-manager-for-flink
https://github.com/aws-samples/amazon-kinesis-data-analytics-flink-benchmarking-utility

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink: Examples

This section provides examples of creating and working with applications in Managed Service for
Apache Flink. They include example code and step-by-step instructions to help you create Managed
Service for Apache Flink applications and test your results.

Before you explore these examples, we recommend that you first review the following:

• How it works

• Getting started (DataStream API)

Note

These examples assume that you are using the US West (Oregon) Region (us-west-2). If
you are using a different Region, update your application code, commands, and IAM roles
appropriately.

Topics

• Java examples

• Python examples

• Scala examples

Java examples

The following examples demonstrate how to create applications written in Java.

Note

Most of the examples are designed to run both locally, on your development machine and
your IDE of choice, and on Amazon Managed Service for Apache Flink. They demonstrate
the mechanisms that you can use to pass application parameters, and how to set the
dependency correctly to run the application in both environments with no changes.

Java examples 508

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Getting started with the DataStream API

This example shows a simple application, reading from a Kinesis data stream and writing to a
another Kinesis data stream, using the DataStream API. The example demonstrates how to set
up the file with the correct dependencies, build the uber-JAR, and then parse the configuration
parameters, so you can run the application both locally, in your IDE, and on Amazon Managed
Service for Apache Flink.

Code example: GettingStarted

Getting started with the Table API and SQL

This example shows a simple application using the Table API and SQL. It demonstrates how to
integrate the DataStream API with the Table API or SQL in the same Java application. It also
demonstrates how to use the DataGen connector to generate random test data from within the
Flink application itself, not requiring an external data generator.

Complete example: GettingStartedTable

Using S3 sink (DataStream API)

This example demonstrates how to use the DataStream API's FileSink to write JSON files to an
S3 bucket.

Code example: S3Sink

Using a Kinesis source, standard or EFO consumers, and sink (DataStream API)

This example demonstrates how to configure a source consuming from a Kinesis data stream,
either using the standard consumer or EFO, and how to set up a sink to the Kinesis data stream.

Code example: KinesisConnectors

Using an Amazon Data Firehose sink (DataStream API)

This example shows how to send data to Amazon Data Firehose (formerly known as Kinesis Data
Firehose).

Code example: KinesisFirehoseSink

Java examples 509

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/GettingStarted
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/GettingStartedTable
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/S3Sink
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisConnectors
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisFirehoseSink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Using sliding and tumbling windows (DataStream API)

These two examples show how to implement aggregation over processing-time windows, sliding or
tumbling, usting the DataStream API.

Code examples:

• WindowingSliding

• WindowingTumbling

Using custom metrics

These two separate examples, RecordCount and WordCount show how to implement custom
metrics in the DataStream API and send them to CloudWatch metrics.

Code examples: CustomMetrics

Python examples

The following examples demonstrate how to create applications written in Python.

Note

Most of the examples are designed to run both locally, on your development machine and
your IDE of choice, and on Amazon Managed Service for Apache Flink. They demonstrate
the simple mechanism that you can use to pass application parameters, and how to set the
dependency correctly to run the application in both environments with no changes.

Project dependencies

Most PyFlink examples require one or more dependencies in form of JAR files, for example Flink
connectors, or Python 3rd-party libraries. These dependencies are not included in the examples
repository. You must downloaded them onto your machine before packing the application. Fore
more information about dependencies, see README: Packaging.

Refer to Flink documentation to find the link to download the correct version of the connector
you need. Always use the dependency for the Flink version that you are using. The following are
frequently used connector dependencies for Flink 1.18:

Python examples 510

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/KinesisFirehoseSink
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/WindowingTumbling
https://github.com/dzikosc/amazon-managed-service-for-apache-flink-examples/tree/main/java/CustomMetrics
https://github.com/aws-samples/pyflink-getting-started/tree/main/packaging

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Kinesis SQL connector

• Kafka SQL connector

• Amazon Data Firehose SQL connector

The following examples already contain the necessary code to set up the dependencies.

Examples

Getting started with PyFlink

This example demonstrates the basic structure of a PyFlink application using the Table API and
SQL. It also shows how to include a single JAR dependency in your PyFlink application. In this case
we are including the Kinesis SQL connector.

Code example: GettingStarted

Using tumbling and sliding windows

These two examples demonstrate the implementation of tumbling and sliding windows in event-
time, using the Table API. The examples also illustrate how to define a watermark on the source
table, used for the event-time windowing. Both examples also include the JAR dependency of the
Kinesis SQL connector.

Code examples:

• TumblingWindows

• SlidingWindows

Using an S3 sink

This example shows how to write your output to Amazon S3 as JSON files. You must enable
checkpointing for the S3 sink to write and rotate files to Amazon S3.

Code example: StreamingFileSink

Scala examples

The following examples demonstrate how to create applications using Scala with Apache Flink.

Scala examples 511

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/kinesis/#dependencies
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/kafka/#dependencies
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/table/firehose/#dependencies
https://github.com/dzikosc/amazon-managed-service-for-apache-flink-examples/tree/main/python/GettingStarted
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/TumblingWindows
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/SlidingWindows
https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/python/StreamingFileSink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Multi-step application

This example shows how to set up a Flink application in Scala. It demonstrates how to configure
the SBT project to include dependencies and build the uber-JAR.

Code example: GettingStarted

Scala examples 512

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/scala/GettingStarted

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Security in Amazon Managed Service for Apache Flink

Cloud security at Amazon is the highest priority. As an Amazon customer, you will benefit from a
data center and network architecture built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. The effectiveness of our security is regularly tested and verified by third-party auditors
as part of the Amazon compliance programs. To learn about the compliance programs that apply
to Managed Service for Apache Flink, see Amazon Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you
use. You are also responsible for other factors including the sensitivity of your data, your
organization’s requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Managed Service for Apache Flink. The following topics show you how to configure Managed
Service for Apache Flink to meet your security and compliance objectives. You'll also learn how
to use other Amazon services that can help you to monitor and secure your Managed Service for
Apache Flink resources.

Topics

• Data protection in Amazon Managed Service for Apache Flink

• Identity and Access Management for Amazon Managed Service for Apache Flink

• Monitoring Managed Service for Apache Flink

• Compliance validation for Amazon Managed Service for Apache Flink

• Resilience in Amazon Managed Service for Apache Flink

• Infrastructure security in Managed Service for Apache Flink

• Security best practices for Managed Service for Apache Flink

513

http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Data protection in Amazon Managed Service for Apache Flink

You can protect your data using tools that are provided by Amazon. Managed Service for Apache
Flink can work with services that support encrypting data, including Firehose, and Amazon S3.

Data encryption in Managed Service for Apache Flink

Encryption at rest

Note the following about encrypting data at rest with Managed Service for Apache Flink:

• You can encrypt data on the incoming Kinesis data stream using StartStreamEncryption. For
more information, see What Is Server-Side Encryption for Kinesis Data Streams?.

• Output data can be encrypted at rest using Firehose to store data in an encrypted Amazon
S3 bucket. You can specify the encryption key that your Amazon S3 bucket uses. For more
information, see Protecting Data Using Server-Side Encryption with KMS–Managed Keys (SSE-
KMS).

• Managed Service for Apache Flink can read from any streaming source, and write to any
streaming or database destination. Ensure that your sources and destinations encrypt all data in
transit and data at rest.

• Your application's code is encrypted at rest.

• Durable application storage is encrypted at rest.

• Running application storage is encrypted at rest.

Encryption in transit

Managed Service for Apache Flink encrypts all data in transit. Encryption in transit is enabled for all
Managed Service for Apache Flink applications and cannot be disabled.

Managed Service for Apache Flink encrypts data in transit in the following scenarios:

• Data in transit from Kinesis Data Streams to Managed Service for Apache Flink.

• Data in transit between internal components within Managed Service for Apache Flink.

• Data in transit between Managed Service for Apache Flink and Firehose.

Data protection 514

https://docs.amazonaws.cn/kinesis/latest/APIReference/API_StartStreamEncryption.html
https://docs.amazonaws.cn/streams/latest/dev/what-is-sse.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/UsingKMSEncryption.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Key management

Data encryption in Managed Service for Apache Flink uses service-managed keys. Customer-
managed keys are not supported.

Identity and Access Management for Amazon Managed Service
for Apache Flink

Amazon Identity and Access Management (IAM) is an Amazon Web Service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can
be authenticated (signed in) and authorized (have permissions) to use Managed Service for Apache
Flink resources. IAM is an Amazon Web Service that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Managed Service for Apache Flink works with IAM

• Identity-based policy examples for Amazon Managed Service for Apache Flink

• Troubleshooting Amazon Managed Service for Apache Flink identity and access

• Cross-service confused deputy prevention

Audience

How you use Amazon Identity and Access Management (IAM) differs, depending on the work that
you do in Managed Service for Apache Flink.

Service user – If you use the Managed Service for Apache Flink service to do your job, then
your administrator provides you with the credentials and permissions that you need. As you use
more Managed Service for Apache Flink features to do your work, you might need additional
permissions. Understanding how access is managed can help you request the right permissions
from your administrator. If you cannot access a feature in Managed Service for Apache Flink, see
Troubleshooting Amazon Managed Service for Apache Flink identity and access.

Identity and Access Management 515

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Service administrator – If you're in charge of Managed Service for Apache Flink resources at
your company, you probably have full access to Managed Service for Apache Flink. It's your job
to determine which Managed Service for Apache Flink features and resources your service users
should access. You must then submit requests to your IAM administrator to change the permissions
of your service users. Review the information on this page to understand the basic concepts of IAM.
To learn more about how your company can use IAM with Managed Service for Apache Flink, see
How Amazon Managed Service for Apache Flink works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Managed Service for Apache Flink. To view example
Managed Service for Apache Flink identity-based policies that you can use in IAM, see Identity-
based policy examples for Amazon Managed Service for Apache Flink.

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be
authenticated (signed in to Amazon) as the Amazon Web Services account root user, as an IAM user,
or by assuming an IAM role.

If you access Amazon programmatically, Amazon provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use Amazon tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing Amazon API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, Amazon recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Using multi-factor authentication
(MFA) in Amazon in the IAM User Guide.

Amazon Web Services account root user

When you create an Amazon Web Services account, you begin with one sign-in identity that has
complete access to all Amazon Web Services and resources in the account. This identity is called
the Amazon Web Services account root user and is accessed by signing in with the email address
and password that you used to create the account. We strongly recommend that you don't use the
root user for your everyday tasks. Safeguard your root user credentials and use them to perform
the tasks that only the root user can perform. For the complete list of tasks that require you to sign
in as the root user, see Tasks that require root user credentials in the IAM User Guide.

Authenticating with identities 516

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/root-user-tasks.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to
use federation with an identity provider to access Amazon Web Services by using temporary
credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the
Amazon Directory Service, or any user that accesses Amazon Web Services by using credentials
provided through an identity source. When federated identities access Amazon Web Services
accounts, they assume roles, and the roles provide temporary credentials.

IAM users and groups

An IAM user is an identity within your Amazon Web Services account that has specific permissions
for a single person or application. Where possible, we recommend relying on temporary credentials
instead of creating IAM users who have long-term credentials such as passwords and access keys.
However, if you have specific use cases that require long-term credentials with IAM users, we
recommend that you rotate access keys. For more information, see Rotate access keys regularly for
use cases that require long-term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your Amazon Web Services account that has specific permissions.
It is similar to an IAM user, but is not associated with a specific person. You can temporarily assume
an IAM role in the Amazon Web Services Management Console by switching roles. You can assume
a role by calling an Amazon CLI or Amazon API operation or by using a custom URL. For more
information about methods for using roles, see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

Authenticating with identities 517

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider in
the IAM User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some Amazon Web Services, you can attach a policy directly to a
resource (instead of using a role as a proxy). To learn the difference between roles and resource-
based policies for cross-account access, see How IAM roles differ from resource-based policies in
the IAM User Guide.

• Cross-service access – Some Amazon Web Services use features in other Amazon Web Services.
For example, when you make a call in a service, it's common for that service to run applications
in Amazon EC2 or store objects in Amazon S3. A service might do this using the calling principal's
permissions, using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
Amazon, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of
the principal calling an Amazon Web Service, combined with the requesting Amazon Web
Service to make requests to downstream services. FAS requests are only made when a service
receives a request that requires interactions with other Amazon Web Services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details
when making FAS requests, see Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an Amazon Web Service in
the IAM User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an Amazon
Web Service. The service can assume the role to perform an action on your behalf. Service-
linked roles appear in your Amazon Web Services account and are owned by the service. An
IAM administrator can view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making Amazon CLI or

Authenticating with identities 518

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon API requests. This is preferable to storing access keys within the EC2 instance. To assign
an Amazon role to an EC2 instance and make it available to all of its applications, you create
an instance profile that is attached to the instance. An instance profile contains the role and
enables programs that are running on the EC2 instance to get temporary credentials. For more
information, see Using an IAM role to grant permissions to applications running on Amazon EC2
instances in the IAM User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or
resources. A policy is an object in Amazon that, when associated with an identity or resource,
defines their permissions. Amazon evaluates these policies when a principal (user, root user, or role
session) makes a request. Permissions in the policies determine whether the request is allowed or
denied. Most policies are stored in Amazon as JSON documents. For more information about the
structure and contents of JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform
the operation. For example, suppose that you have a policy that allows the iam:GetRole action.
A user with that policy can get role information from the Amazon Web Services Management
Console, the Amazon CLI, or the Amazon API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Managing access using policies 519

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your Amazon Web Services
account. Managed policies include Amazon managed policies and customer managed policies. To
learn how to choose between a managed policy or an inline policy, see Choosing between managed
policies and inline policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services.

Resource-based policies are inline policies that are located in that service. You can't use Amazon
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, Amazon WAF, and Amazon VPC are examples of services that support ACLs. To learn
more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service
Developer Guide.

Other policy types

Amazon supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions

Managing access using policies 520

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/acl-overview.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in Amazon Organizations. Amazon Organizations
is a service for grouping and centrally managing multiple Amazon Web Services accounts that
your business owns. If you enable all features in an organization, then you can apply service
control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in
member accounts, including each Amazon Web Services account root user. For more information
about Organizations and SCPs, see How SCPs work in the Amazon Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how Amazon determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Managed Service for Apache Flink works with IAM

Before you use IAM to manage access to Managed Service for Apache Flink, learn what IAM
features are available to use with Managed Service for Apache Flink.

IAM features you can use with Amazon Managed Service for Apache Flink

IAM feature Managed Service for Apache Flink support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

How Amazon Managed Service for Apache Flink works with IAM 521

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

IAM feature Managed Service for Apache Flink support

Policy condition keys No

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles No

Service-linked roles No

To get a high-level view of how Managed Service for Apache Flink and other Amazon services work
with most IAM features, see Amazon services that work with IAM in the IAM User Guide.

Identity-based policies for Managed Service for Apache Flink

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Managed Service for Apache Flink

To view examples of Managed Service for Apache Flink identity-based policies, see Identity-based
policy examples for Amazon Managed Service for Apache Flink.

How Amazon Managed Service for Apache Flink works with IAM 522

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Resource-based policies within Managed Service for Apache Flink

Supports resource-based policies Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different Amazon Web Services accounts, an IAM administrator in the trusted account
must also grant the principal entity (user or role) permission to access the resource. They grant
permission by attaching an identity-based policy to the entity. However, if a resource-based policy
grants access to a principal in the same account, no additional identity-based policy is required. For
more information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Policy actions for Managed Service for Apache Flink

Supports policy actions Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated Amazon API
operation. There are some exceptions, such as permission-only actions that don't have a matching
API operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

How Amazon Managed Service for Apache Flink works with IAM 523

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To see a list of Managed Service for Apache Flink actions, see Actions Defined by Amazon Managed
Service for Apache Flink in the Service Authorization Reference.

Policy actions in Managed Service for Apache Flink use the following prefix before the action:

Kinesis Analytics

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "Kinesis Analytics:action1",
 "Kinesis Analytics:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "Kinesis Analytics:Describe*"

To view examples of Managed Service for Apache Flink identity-based policies, see Identity-based
policy examples for Amazon Managed Service for Apache Flink.

Policy resources for Managed Service for Apache Flink

Supports policy resources Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

How Amazon Managed Service for Apache Flink works with IAM 524

https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-actions-as-permissions
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-actions-as-permissions
https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

"Resource": "*"

To see a list of Managed Service for Apache Flink resource types and their ARNs, see Resources
Defined by Amazon Managed Service for Apache Flink in the Service Authorization Reference. To
learn with which actions you can specify the ARN of each resource, see Actions Defined by Amazon
Managed Service for Apache Flink.

To view examples of Managed Service for Apache Flink identity-based policies, see Identity-based
policy examples for Amazon Managed Service for Apache Flink.

Policy condition keys for Managed Service for Apache Flink

Supports service-specific policy condition keys Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, Amazon evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, Amazon evaluates the condition using a logical OR operation. All
of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

Amazon supports global condition keys and service-specific condition keys. To see all Amazon
global condition keys, see Amazon global condition context keys in the IAM User Guide.

To see a list of Managed Service for Apache Flink condition keys, see Condition Keys for Amazon
Managed Service for Apache Flink in the Service Authorization Reference. To learn with which

How Amazon Managed Service for Apache Flink works with IAM 525

https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-resources-for-iam-policies
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-resources-for-iam-policies
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-actions-as-permissions
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-policy-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-policy-keys

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

actions and resources you can use a condition key, see Actions Defined by Amazon Managed
Service for Apache Flink.

To view examples of Managed Service for Apache Flink identity-based policies, see Identity-based
policy examples for Amazon Managed Service for Apache Flink.

Access control lists (ACLs) in Managed Service for Apache Flink

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with Managed Service for Apache Flink

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In Amazon, these attributes are called tags. You can attach tags to IAM entities (users
or roles) and to many Amazon resources. Tagging entities and resources is the first step of ABAC.
Then you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

How Amazon Managed Service for Apache Flink works with IAM 526

https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-actions-as-permissions
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html#awskinesisanalytics-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Using Temporary credentials with Managed Service for Apache Flink

Supports temporary credentials Yes

Some Amazon Web Services don't work when you sign in using temporary credentials. For
additional information, including which Amazon Web Services work with temporary credentials,
see Amazon Web Services that work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the Amazon Web Services Management
Console using any method except a user name and password. For example, when you access
Amazon using your company's single sign-on (SSO) link, that process automatically creates
temporary credentials. You also automatically create temporary credentials when you sign in to the
console as a user and then switch roles. For more information about switching roles, see Switching
to a role (console) in the IAM User Guide.

You can manually create temporary credentials using the Amazon CLI or Amazon API. You can then
use those temporary credentials to access Amazon. Amazon recommends that you dynamically
generate temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Managed Service for Apache Flink

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in Amazon, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in
a different service. FAS uses the permissions of the principal calling an Amazon Web Service,
combined with the requesting Amazon Web Service to make requests to downstream services.
FAS requests are only made when a service receives a request that requires interactions with other
Amazon Web Services or resources to complete. In this case, you must have permissions to perform
both actions. For policy details when making FAS requests, see Forward access sessions.

Service roles for Managed Service for Apache Flink

Supports service roles Yes

How Amazon Managed Service for Apache Flink works with IAM 527

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an Amazon Web Service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Managed Service for Apache Flink
functionality. Edit service roles only when Managed Service for Apache Flink provides
guidance to do so.

Service-linked roles for Managed Service for Apache Flink

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an Amazon Web Service. The service
can assume the role to perform an action on your behalf. Service-linked roles appear in your
Amazon Web Services account and are owned by the service. An IAM administrator can view, but
not edit the permissions for service-linked roles.

For details about creating or managing service-linked roles, see Amazon services that work with
IAM. Find a service in the table that includes a Yes in the Service-linked role column. Choose the
Yes link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Managed Service for
Apache Flink

By default, users and roles don't have permission to create or modify Managed Service for Apache
Flink resources. They also can't perform tasks by using the Amazon Web Services Management
Console, Amazon Command Line Interface (Amazon CLI), or Amazon API. To grant users permission
to perform actions on the resources that they need, an IAM administrator can create IAM policies.
The administrator can then add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Managed Service for Apache Flink,
including the format of the ARNs for each of the resource types, see Actions, Resources, and

Identity-based policy examples 528

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Condition Keys for Amazon Managed Service for Apache Flink in the Service Authorization
Reference.

Topics

• Policy best practices

• Using the Managed Service for Apache Flink console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Managed Service
for Apache Flink resources in your account. These actions can incur costs for your Amazon Web
Services account. When you create or edit identity-based policies, follow these guidelines and
recommendations:

• Get started with Amazon managed policies and move toward least-privilege permissions
– To get started granting permissions to your users and workloads, use the Amazon managed
policies that grant permissions for many common use cases. They are available in your Amazon
Web Services account. We recommend that you reduce permissions further by defining Amazon
customer managed policies that are specific to your use cases. For more information, see Amazon
managed policies or Amazon managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition
to specify that all requests must be sent using SSL. You can also use conditions to grant access
to service actions if they are used through a specific Amazon Web Service, such as Amazon
CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM
User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and

Identity-based policy examples 529

https://docs.amazonaws.cn/service-authorization/latest/reference/list_awskinesisanalytics.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a
root user in your Amazon Web Services account, turn on MFA for additional security. To require
MFA when API operations are called, add MFA conditions to your policies. For more information,
see Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Managed Service for Apache Flink console

To access the Amazon Managed Service for Apache Flink console, you must have a minimum set of
permissions. These permissions must allow you to list and view details about the Managed Service
for Apache Flink resources in your Amazon Web Services account. If you create an identity-based
policy that is more restrictive than the minimum required permissions, the console won't function
as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to
the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API
operation that they're trying to perform.

To ensure that users and roles can still use the Managed Service for Apache Flink console, also
attach the Managed Service for Apache Flink ConsoleAccess or ReadOnly Amazon managed
policy to the entities. For more information, see Adding permissions to a user in the IAM User
Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the Amazon CLI or Amazon API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",

Identity-based policy examples 530

https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws-cn:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting Amazon Managed Service for Apache Flink identity
and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Managed Service for Apache Flink and IAM.

Topics

• I am not authorized to perform an action in Managed Service for Apache Flink

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my Amazon account to access my Managed Service for Apache
Flink resources

Troubleshooting 531

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

I am not authorized to perform an action in Managed Service for Apache Flink

If the Amazon Web Services Management Console tells you that you're not authorized to perform
an action, then you must contact your administrator for assistance. Your administrator is the
person that provided you with your user name and password.

The following example error occurs when the mateojackson user tries to use the console to view
details about a fictional my-example-widget resource but does not have the fictional Kinesis
Analytics:GetWidget permissions.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform:
 Kinesis Analytics:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the Kinesis Analytics:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Managed Service for Apache Flink.

Some Amazon Web Services allow you to pass an existing role to that service instead of creating a
new service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Managed Service for Apache Flink. However, the action requires the service
to have permissions that are granted by a service role. Mary does not have permissions to pass the
role to the service.

User: arn:aws-cn:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

Troubleshooting 532

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

I want to allow people outside of my Amazon account to access my Managed
Service for Apache Flink resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Managed Service for Apache Flink supports these features, see How Amazon
Managed Service for Apache Flink works with IAM.

• To learn how to provide access to your resources across Amazon Web Services accounts that you
own, see Providing access to an IAM user in another Amazon Web Services account that you own
in the IAM User Guide.

• To learn how to provide access to your resources to third-party Amazon Web Services accounts,
see Providing access to Amazon Web Services accounts owned by third parties in the IAM User
Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Cross-service confused deputy prevention

In Amazon, cross-service impersonation can occur when one service (the calling service) calls
another service (the called service). The calling service can be manipulated to act on another
customer's resources even though it shouldn't have the proper permissions, resulting in the
confused deputy problem.

To prevent confused deputies, Amazon provides tools that help you protect your data for all
services using service principals that have been given access to resources in your account. This
section focuses on cross-service confused deputy prevention specific to Managed Service for
Apache Flink however, you can learn more about this topic at The confused deputy problem section
of the IAM User Guide.

Cross-service confused deputy prevention 533

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

In the context of Managed Service for Apache Flink, we recommend using the aws:SourceArn and
aws:SourceAccount global condition context keys in your role trust policy to limit access to the role
to only those requests that are generated by expected resources.

Use aws:SourceArn if you want only one resource to be associated with the cross-service access.
Use aws:SourceAccount if you want to allow any resource in that account to be associated with
the cross-service use.

The value of aws:SourceArn must be the ARN of the resource used by
Managed Service for Apache Flink, which is specified with the following format:
arn:aws:kinesisanalytics:region:account:resource.

The recommended approach to the confused deputy problem is to use the aws:SourceArn global
condition context key with the full resource ARN.

If you don't know the full ARN of the resource or if you are specifying multiple resources, use
the aws:SourceArn key with wildcard characters (*) for the unknown portions of the ARN. For
example: arn:aws:kinesisanalytics::111122223333:*.

Policies of roles that you provide to Managed Service for Apache Flink as well as trust policies of
roles generated for you can make use of these keys.

In order to protect against the confused deputy problem, carry out the following steps:

To protect against the confused deputy problem

1. Sign in to the Amazon Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles and then choose the role you want to modify.

3. Choose Edit trust policy.

4. On the Edit trust policy page, replace the default JSON policy with a policy that uses one or
both of the aws:SourceArn and aws:SourceAccount global condition context keys. See
the following example policy:

5. Choose Update policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {

Cross-service confused deputy prevention 534

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "Effect":"Allow",
 "Principal":{
 "Service":"kinesisanalytics.amazonaws.com"
 },
 "Action":"sts:AssumeRole",
 "Condition":{
 "StringEquals":{
 "aws:SourceAccount":"Account ID"
 },
 "ArnEquals":{
 "aws:SourceArn":"arn:aws:kinesisanalytics:us-
east-1:123456789012:application/my-app"
 }
 }
 }
]
}

Monitoring Managed Service for Apache Flink

Managed Service for Apache Flink provides monitoring functionality for your applications. For
more information, see Logging and monitoring.

Compliance validation for Amazon Managed Service for Apache
Flink

Third-party auditors assess the security and compliance of Amazon Managed Service for Apache
Flink as part of multiple Amazon compliance programs. These include SOC, PCI, HIPAA, and others.

For a list of Amazon services in scope of specific compliance programs, see . For general
information, see Amazon Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Your compliance responsibility when using Managed Service for Apache Flink is determined
by the sensitivity of your data, your company's compliance objectives, and applicable laws
and regulations. If your use of Managed Service for Apache Flink is subject to compliance with
standards such as HIPAA or PCI, Amazon provides resources to help:

Monitoring 535

http://www.amazonaws.cn/compliance/programs/
https://docs.amazonaws.cn/artifact/latest/ug/downloading-documents.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on Amazon.

• Architecting for HIPAA Security and Compliance on Amazon Web Services. This whitepaper
describes how companies can use Amazon to create HIPAA-compliant applications.

• Amazon Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Amazon Config – This Amazon service assesses how well your resource configurations comply
with internal practices, industry guidelines, and regulations.

• Amazon Security Hub – This Amazon service provides a comprehensive view of your security
state within Amazon that helps you check your compliance with security industry standards and
best practices.

FedRAMP

The Amazon FedRAMP Compliance program includes Managed Service for Apache Flink as a
FedRAMP-authorized service. If you are a federal or commercial customer, you can use the service
to process and store sensitive workloads in the Amazon GovCloud (US) Region’s authorization
boundary with data up to the high impact level, as well as US East (N. Virginia), US East (Ohio), US
West (N. California), US West (Oregon) Regions with data up to a moderate level.

You can request access to the Amazon FedRAMP Security Packages through the FedRAMP PMO,
your Amazon Sales Account Manager, or you can download them through Amazon Artifact at
Amazon Artifact.

For more information, see FedRAMP.

Resilience in Amazon Managed Service for Apache Flink

The Amazon global infrastructure is built around Amazon Regions and Availability Zones. Amazon
Regions provide multiple physically separated and isolated Availability Zones, which are connected
with low-latency, high-throughput, and highly redundant networking. With Availability Zones,
you can design and operate applications and databases that automatically fail over between
Availability Zones without interruption. Availability Zones are more highly available, fault tolerant,
and scalable than traditional single or multiple data center infrastructures.

FedRAMP 536

http://www.amazonaws.cn/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.amazonaws.cn/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
http://www.amazonaws.cn/compliance/resources/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html
https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/artifact/
https://aws.amazon.com/compliance/fedramp/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information about Amazon Regions and Availability Zones, see Amazon Global
Infrastructure.

In addition to the Amazon global infrastructure, a Managed Service for Apache Flink offers several
features to help support your data resiliency and backup needs.

Disaster recovery

Managed Service for Apache Flink runs in a serverless mode, and takes care of host degradations,
Availability Zone availability, and other infrastructure related issues by performing automatic
migration. Managed Service for Apache Flink achieves this through multiple, redundant
mechanisms. Each Managed Service for Apache Flink application runs in a single-tenant Apache
Flink cluster. The Apache Flink cluster is run with the JobMananger in high availability mode using
Zookeeper across multiple availability zones. Managed Service for Apache Flink deploys Apache
Flink using Amazon EKS. Multiple Kubernetes pods are used in Amazon EKS for each Amazon
region across availability zones. In the event of a failure, Managed Service for Apache Flink first
tries to recover the application within the running Apache Flink cluster using your application’s
checkpoints, if available.

Managed Service for Apache Flink backs up application state using Checkpoints and Snapshots:

• Checkpoints are backups of application state that Managed Service for Apache Flink
automatically creates periodically and uses to restore from faults.

• Snapshots are backups of application state that you create and restore from manually.

For more information about checkpoints and snapshots, see Fault tolerance.

Versioning

Stored versions of application state are versioned as follows:

• Checkpoints are versioned automatically by the service. If the service uses a checkpoint to restart
the application, the latest checkpoint will be used.

• Savepoints are versioned using the SnapshotName parameter of the CreateApplicationSnapshot
action.

Managed Service for Apache Flink encrypts data stored in checkpoints and savepoints.

Disaster recovery 537

http://www.amazonaws.cn/about-aws/global-infrastructure/
http://www.amazonaws.cn/about-aws/global-infrastructure/
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplicationSnapshot.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Infrastructure security in Managed Service for Apache Flink

As a managed service, Managed Service for Apache Flink is protected by the Amazon global
network security procedures that are described in the Amazon Web Services: Overview of Security
Processes whitepaper.

You use Amazon published API calls to access Managed Service for Apache Flink through the
network. All API calls to Managed Service for Apache Flink are secured via Transport Layer Security
(TLS) and authenticated via IAM. Clients must support TLS 1.2 or later. Clients must also support
cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic
Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support
these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Security best practices for Managed Service for Apache Flink

Amazon Managed Service for Apache Flink provides a number of security features to consider as
you develop and implement your own security policies. The following best practices are general
guidelines and don’t represent a complete security solution. Because these best practices might not
be appropriate or sufficient for your environment, treat them as helpful considerations rather than
prescriptions.

Implement least privilege access

When granting permissions, you decide who is getting what permissions to which Managed Service
for Apache Flink resources. You enable specific actions that you want to allow on those resources.
Therefore you should grant only the permissions that are required to perform a task. Implementing
least privilege access is fundamental in reducing security risk and the impact that could result from
errors or malicious intent.

Use IAM roles to access other Amazon services

Your Managed Service for Apache Flink application must have valid credentials to access resources
in other services, such as Kinesis data streams, Firehose streams, or Amazon S3 buckets. You should
not store Amazon credentials directly in the application or in an Amazon S3 bucket. These are long-

Infrastructure security 538

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

term credentials that are not automatically rotated and could have a significant business impact if
they are compromised.

Instead, you should use an IAM role to manage temporary credentials for your application to access
other resources. When you use a role, you don't have to use long-term credentials to access other
resources.

For more information, see the following topics in the IAM User Guide:

• IAM Roles

• Common Scenarios for Roles: Users, Applications, and Services

Implement server-side encryption in dependent resources

Data at rest and data in transit is encrypted in Managed Service for Apache Flink, and this
encryption cannot be disabled. You should implement server-side encryption in your dependent
resources, such as Kinesis data streams, Firehose streams, and Amazon S3 buckets. For more
information on implementing server-side encryption in dependent resources, see Data protection.

Use CloudTrail to monitor API calls

Managed Service for Apache Flink is integrated with Amazon CloudTrail, a service that provides a
record of actions taken by a user, role, or an Amazon service in Managed Service for Apache Flink.

Using the information collected by CloudTrail, you can determine the request that was made to
Managed Service for Apache Flink, the IP address from which the request was made, who made the
request, when it was made, and additional details.

For more information, see the section called “Using Amazon CloudTrail”.

Implement server-side encryption in dependent resources 539

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Logging and monitoring in Amazon Managed Service for
Apache Flink

Monitoring is an important part of maintaining the reliability, availability, and performance of
Managed Service for Apache Flink applications. You should collect monitoring data from all of the
parts of your Amazon solution so that you can more easily debug a multipoint failure if one occurs.

Before you start monitoring Managed Service for Apache Flink, you should create a monitoring
plan that includes answers to the following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal Managed Service for Apache Flink performance
in your environment. You do this by measuring performance at various times and under different
load conditions. As you monitor Managed Service for Apache Flink, you can store historical
monitoring data. You can then compare it with current performance data, identify normal
performance patterns and performance anomalies, and devise methods to address issues.

Topics

• Logging

• Monitoring

• Setting up application logging

• Analyzing logs with CloudWatch Logs Insights

• Viewing metrics and dimensions in Managed Service for Apache Flink

• Writing custom messages to CloudWatch Logs

• Logging Managed Service for Apache Flink API calls with Amazon CloudTrail

540

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Logging

Logging is important for production applications to understand errors and failures. However,
the logging subsystem needs to collect and forward log entries to CloudWatch Logs While
some logging is fine and desirable, extensive logging can overload the service and cause the
Flink application to fall behind. Logging exceptions and warnings is certainly a good idea. But
you cannot generate a log message for each and every message that is processed by the Flink
application. Flink is optimized for high throughout and low latency, the logging subsystem is not.
In case it is really required to generate log output for every processed message, use an additional
DataStream inside the Flink application and a proper sink to send the data to Amazon S3 or
CloudWatch. Do not use the Java logging system for this purpose. Moreover, Managed Service
for Apache Flink’ Debug Monitoring Log Level setting generates a large amount of traffic,
which can create backpressure. You should only use it while actively investigating issues with the
application.

Querying logs with CloudWatch Logs Insights

CloudWatch Logs Insights is a powerful service to query log at scale. Customers should leverage
its capabilities to quickly search through logs to identify and mitigate errors during operational
events.

The following query looks for exceptions in all task manager logs and orders them according to the
time they occurred.

fields @timestamp, @message
| filter isPresent(throwableInformation.0) or isPresent(throwableInformation) or
 @message like /(Error|Exception)/
| sort @timestamp desc

For other useful queries, see Example Queries.

Monitoring

When running streaming applications in production, you set out to execute the application
continuously and indefinitely. It is crucial to implement monitoring and proper alarming of all
components not only the Flink application. Otherwise you risk to miss emerging problems early
on and only realize an operational event once it is fully unravelling and much harder to mitigate.
General things to monitor include:

Logging 541

https://docs.amazonaws.cn/managed-flink/latest/java/cloudwatch-logs-reading.html#cloudwatch-logs-reading-examples

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Is the source ingesting data?

• Is data read from the source (from the perspective of the source)?

• Is the Flink application receiving data?

• Is the Flink application able to keep up or is it falling behind?

• Is the Flink application persisting data into the sink (from the application perspective)?

• Is the sink receiving data?

More specific metrics should then be considered for the Flink application. This CloudWatch
dashboard provides a good starting point. For more information on what metrics to monitor for
production applications, see Using CloudWatch Alarms with Amazon Managed Service for Apache
Flink. These metrics include:

• records_lag_max and millisbehindLatest – If the application is consuming from Kinesis or Kafka,
these metrics indicate if the application is falling behind and needs to be scaled in order to
keep up with the current load. This is a good generic metric that is easy to track for all kinds of
applications. But it can only be used for reactive scaling, i.e., when the application has already
fallen behind.

• cpuUtilization and heapMemoryUtilization – These metrics give a good indication of the
overall resource utilization of the application and can be used for proactive scaling unless the
application is I/O bound.

• downtime – A downtime greater than zero indicates that the application has failed. If the value
is larger than 0, the application is not processing any data.

• lastCheckpointSize and lastCheckpointDuration – These metrics monitor how much data is
stored in state and how long it takes to take a checkpoint. If checkpoints grow or take long,
the application is continuously spending time on checkpointing and has less cycles for actual
processing. At some points, checkpoints may grow too large or take so long that they fail. In
addition to monitoring absolute values, customers should also considering monitoring the
change rate with RATE(lastCheckpointSize) and RATE(lastCheckpointDuration).

• numberOfFailedCheckpoints – This metric counts the number of failed checkpoints since
the application started. Depending on the application, it can be tolerable if checkpoints fail
occasionally. But if checkpoints are regularly failing, the application is likely unhealthy and needs
further attention. We recommend monitoring RATE(numberOfFailedCheckpoints) to alarm
on the gradient and not on absolute values.

Monitoring 542

https://github.com/aws-samples/kda-metrics-dashboard
https://github.com/aws-samples/kda-metrics-dashboard

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Setting up application logging

By adding an Amazon CloudWatch logging option to your Managed Service for Apache Flink
application, you can monitor for application events or configuration problems.

This topic describes how to configure your application to write application events to a CloudWatch
Logs stream. A CloudWatch logging option is a collection of application settings and permissions
that your application uses to configure the way it writes application events to CloudWatch Logs.
You can add and configure a CloudWatch logging option using either the Amazon Web Services
Management Console or the Amazon Command Line Interface (Amazon CLI).

Note the following about adding a CloudWatch logging option to your application:

• When you add a CloudWatch logging option using the console, Managed Service for Apache
Flink creates the CloudWatch log group and log stream for you and adds the permissions your
application needs to write to the log stream.

• When you add a CloudWatch logging option using the API, you must also create the application's
log group and log stream, and add the permissions your application needs to write to the log
stream.

This topic contains the following sections:

• Setting up CloudWatch logging using the console

• Setting up CloudWatch logging using the CLI

• Application monitoring levels

• Logging best practices

• Logging troubleshooting

• Next step

Setting up CloudWatch logging using the console

When you enable CloudWatch logging for your application in the console, a CloudWatch log group
and log stream is created for you. Also, your application's permissions policy is updated with
permissions to write to the stream.

Managed Service for Apache Flink creates a log group named using the following convention,
where ApplicationName is your application's name.

Setting up logging 543

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

/AWS/KinesisAnalytics/ApplicationName

Managed Service for Apache Flink creates a log stream in the new log group with the following
name.

kinesis-analytics-log-stream

You set the application monitoring metrics level and monitoring log level using the Monitoring log
level section of the Configure application page. For information about application log levels, see
the section called “Application monitoring levels”.

Setting up CloudWatch logging using the CLI

To add a CloudWatch logging option using the Amazon CLI, do the following:

• Create a CloudWatch log group and log stream.

• Add a logging option when you create an application by using the CreateApplication
action, or add a logging option to an existing application using the
AddApplicationCloudWatchLoggingOption action.

• Add permissions to your application's policy to write to the logs.

This section contains the following topics:

• Creating a CloudWatch log group and log stream

• Working with application CloudWatch logging options

• Adding permissions to write to the CloudWatch log stream

Creating a CloudWatch log group and log stream

You create a CloudWatch log group and stream using either the CloudWatch Logs console or the
API. For information about creating a CloudWatch log group and log stream, see Working with Log
Groups and Log Streams.

Working with application CloudWatch logging options

Use the following API actions to add a CloudWatch log option to a new or existing application or
change a log option for an existing application. For information about how to use a JSON file for
input for an API action, see Managed Service for Apache Flink API example code.

Setting up CloudWatch logging using the CLI 544

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationCloudWatchLoggingOption.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Adding a CloudWatch log option when creating an application

The following example demonstrates how to use the CreateApplication action to add
a CloudWatch log option when you create an application. In the example, replace Amazon
Resource Name (ARN) of the CloudWatch Log stream to add to the new
application with your own information. For more information about the action, see
CreateApplication.

{
 "ApplicationName": "test",
 "ApplicationDescription": "test-application-description",
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::123456789123:role/myrole",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration": {
 "CodeContent": {
 "S3ContentLocation":{
 "BucketARN": "arn:aws:s3:::mybucket",
 "FileKey": "myflink.jar"
 }
 },
 "CodeContentType": "ZIPFILE"
 }
 },
 "CloudWatchLoggingOptions": [{
 "LogStreamARN": "<Amazon Resource Name (ARN) of the CloudWatch log stream to add
 to the new application>"
 }]
}

Adding a CloudWatch log option to an existing application

The following example demonstrates how to use the
AddApplicationCloudWatchLoggingOption action to add a CloudWatch
log option to an existing application. In the example, replace each user input
placeholder with your own information. For more information about the action, see
AddApplicationCloudWatchLoggingOption.

{
 "ApplicationName": "<Name of the application to add the log option to>",
 "CloudWatchLoggingOption": {

Setting up CloudWatch logging using the CLI 545

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationCloudWatchLoggingOption.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "LogStreamARN": "<ARN of the log stream to add to the application>"
 },
 "CurrentApplicationVersionId": <Version of the application to add the log to>
}

Updating an existing CloudWatch log option

The following example demonstrates how to use the UpdateApplication action to modify an
existing CloudWatch log option. In the example, replace each user input placeholder with
your own information. For more information about the action, see UpdateApplication.

{
 "ApplicationName": "<Name of the application to update the log option for>",
 "CloudWatchLoggingOptionUpdates": [
 {
 "CloudWatchLoggingOptionId": "<ID of the logging option to modify>",
 "LogStreamARNUpdate": "<ARN of the new log stream to use>"
 }
],
 "CurrentApplicationVersionId": <ID of the application version to modify>
}

Deleting a CloudWatch log option from an application

The following example demonstrates how to use the
DeleteApplicationCloudWatchLoggingOption action to delete an existing CloudWatch log
option. In the example, replace each user input placeholder with your own information. For
more information about the action, see DeleteApplicationCloudWatchLoggingOption.

{
 "ApplicationName": "<Name of application to delete log option from>",
 "CloudWatchLoggingOptionId": "<ID of the application log option to delete>",
 "CurrentApplicationVersionId": <Version of the application to delete the log option
 from>
}

Setting up CloudWatch logging using the CLI 546

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationCloudWatchLoggingOption.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Setting the application logging level

To set the level of application logging, use the MonitoringConfiguration parameter of the
CreateApplication action or the MonitoringConfigurationUpdate parameter of the
UpdateApplication action.

For information about application log levels, see the section called “Application monitoring levels”.

Set the application logging level when creating an application

The following example request for the CreateApplication action sets the application log level
to INFO.

{
 "ApplicationName": "MyApplication",
 "ApplicationDescription": "My Application Description",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::mybucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "CodeContentType":"ZIPFILE"
 },
 "FlinkApplicationConfiguration":
 "MonitoringConfiguration": {
 "ConfigurationType": "CUSTOM",
 "LogLevel": "INFO"
 }
 },
 "RuntimeEnvironment": "FLINK-1_15",
 "ServiceExecutionRole": "arn:aws:iam::123456789123:role/myrole"
}

Update the application logging level

The following example request for the UpdateApplication action sets the application log level
to INFO.

{

Setting up CloudWatch logging using the CLI 547

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_MonitoringConfiguration.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_MonitoringConfigurationUpdate.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "MonitoringConfigurationUpdate": {
 "ConfigurationTypeUpdate": "CUSTOM",
 "LogLevelUpdate": "INFO"
 }
 }
 }
}

Adding permissions to write to the CloudWatch log stream

Managed Service for Apache Flink needs permissions to write misconfiguration errors to
CloudWatch. You can add these permissions to the Amazon Identity and Access Management (IAM)
role that Managed Service for Apache Flink assumes.

For more information about using an IAM role for Managed Service for Apache Flink, see Identity
and Access Management for Amazon Managed Service for Apache Flink.

Trust policy

To grant Managed Service for Apache Flink permissions to assume an IAM role, you can attach the
following trust policy to the service execution role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "kinesisanlaytics.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Permissions policy

To grant permissions to an application to write log events to CloudWatch from a Managed Service
for Apache Flink resource, you can use the following IAM permissions policy. Provide the correct
Amazon Resource Names (ARNs) for your log group and stream.

Setting up CloudWatch logging using the CLI 548

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt0123456789000",
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:my-log-group:log-
stream:my-log-stream*",
 "arn:aws:logs:us-east-1:123456789012:log-group:my-log-group:*",
 "arn:aws:logs:us-east-1:123456789012:log-group:*",
]
 }
]
}

Application monitoring levels

You control the generation of application log messages using the application's Monitoring Metrics
Level and Monitoring Log Level.

The application's monitoring metrics level controls the granularity of log messages. Monitoring
metrics levels are defined as follows:

• Application: Metrics are scoped to the entire application.

• Task: Metrics are scoped to each task. For information about tasks, see the section called
“Scaling”.

• Operator: Metrics are scoped to each operator. For information about operators, see the section
called “DataStream API operators”.

• Parallelism: Metrics are scoped to application parallelism. You can only set this metrics level
using the MonitoringConfigurationUpdate parameter of the UpdateApplication API. You cannot
set this metrics level using the console. For information about parallelism, see the section called
“Scaling”.

Application monitoring levels 549

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_MonitoringConfigurationUpdate.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The application's monitoring log level controls the verbosity of the application's log. Monitoring log
levels are defined as follows:

• Error: Potential catastrophic events of the application.

• Warn: Potentially harmful situations of the application.

• Info: Informational and transient failure events of the application. We recommend that you use
this logging level.

• Debug: Fine-grained informational events that are most useful to debug an application. Note:
Only use this level for temporary debugging purposes.

Logging best practices

We recommend that your application use the Info logging level. We recommend this level to
ensure that you see Apache Flink errors, which are logged at the Info level rather than the Error
level.

We recommend that you use the Debug level only temporarily while investigating application
issues. Switch back to the Info level when the issue is resolved. Using the Debug logging level will
significantly affect your application's performance.

Excessive logging can also significantly impact application performance. We recommend that
you do not write a log entry for every record processed, for example. Excessive logging can cause
severe bottlenecks in data processing and can lead to back pressure in reading data from the
sources.

Logging troubleshooting

If application logs are not being written to the log stream, verify the following:

• Verify that your application's IAM role and policies are correct. Your application's policy needs the
following permissions to access your log stream:

• logs:PutLogEvents

• logs:DescribeLogGroups

• logs:DescribeLogStreams

For more information, see the section called “Adding permissions to write to the CloudWatch log
stream”.

Logging best practices 550

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Verify that your application is running. To check your application's status, view your application's
page in the console, or use the DescribeApplication or ListApplications actions.

• Monitor CloudWatch metrics such as downtime to diagnose other application issues. For
information about reading CloudWatch metrics, see Metrics and dimensions in Managed Service
for Apache Flink.

Next step

After you have enabled CloudWatch logging in your application, you can use CloudWatch Logs
Insights to analyze your application logs. For more information, see the section called “Analyzing
logs”.

Analyzing logs with CloudWatch Logs Insights

After you've added a CloudWatch logging option to your application as described in the previous
section, you can use CloudWatch Logs Insights to query your log streams for specific events or
errors.

CloudWatch Logs Insights enables you to interactively search and analyze your log data in
CloudWatch Logs.

For information on getting started with CloudWatch Logs Insights, see Analyze Log Data with
CloudWatch Logs Insights.

Run a sample query

This section describes how to run a sample CloudWatch Logs Insights query.

Prerequisites

• Existing log groups and log streams set up in CloudWatch Logs.

• Existing logs stored in CloudWatch Logs.

If you use services such as Amazon CloudTrail, Amazon Route 53, or Amazon VPC, you've probably
already set up logs from those services to go to CloudWatch Logs. For more information about
sending logs to CloudWatch Logs, see Getting Started with CloudWatch Logs.

Next step 551

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DescribeApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ListApplications.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/CWL_GettingStarted.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Queries in CloudWatch Logs Insights return either a set of fields from log events, or the result of a
mathematical aggregation or other operation performed on log events. This section demonstrates
a query that returns a list of log events.

To run a CloudWatch Logs Insights sample query

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation pane, choose Insights.

3. The query editor near the top of the screen contains a default query that returns the 20 most
recent log events. Above the query editor, select a log group to query.

When you select a log group, CloudWatch Logs Insights automatically detects fields in the data
in the log group and displays them in Discovered fields in the right pane. It also displays a bar
graph of log events in this log group over time. This bar graph shows the distribution of events
in the log group that matches your query and time range, not just the events displayed in the
table.

4. Choose Run query.

The results of the query appear. In this example, the results are the most recent 20 log events
of any type.

5. To see all of the fields for one of the returned log events, choose the arrow to the left of that
log event.

For more information about how to run and modify CloudWatch Logs Insights queries, see Run and
Modify a Sample Query.

Example queries

This section contains CloudWatch Logs Insights example queries for analyzing Managed Service for
Apache Flink application logs. These queries search for several example error conditions, and serve
as templates for writing queries that find other error conditions.

Example queries 552

https://console.amazonaws.cn/cloudwatch/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_RunSampleQuery.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData_RunSampleQuery.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

Replace the Region (us-west-2), Account ID (012345678901) and application name
(YourApplication) in the following query examples with your application's Region and
your Account ID.

This topic contains the following sections:

• Analyze operations: Distribution of tasks

• Analyze operations: Change in parallelism

• Analyze errors: Access denied

• Analyze errors: Source or sink not found

• Analyze errors: Application task-related failures

Analyze operations: Distribution of tasks

The following CloudWatch Logs Insights query returns the number of tasks the Apache Flink Job
Manager distributes between Task Managers. You need to set the query's time frame to match
one job run so that the query doesn't return tasks from previous jobs. For more information about
Parallelism, see Scaling.

fields @timestamp, message
| filter message like /Deploying/
| parse message " to flink-taskmanager-*" as @tmid
| stats count(*) by @tmid
| sort @timestamp desc
| limit 2000

The following CloudWatch Logs Insights query returns the subtasks assigned to each Task Manager.
The total number of subtasks is the sum of every task's parallelism. Task parallelism is derived
from operator parallelism, and is the same as the application's parallelism by default, unless you
change it in code by specifying setParallelism. For more information about setting operator
parallelism, see Setting the Parallelism: Operator Level in the Apache Flink documentation.

fields @timestamp, @tmid, @subtask
| filter message like /Deploying/

Example queries 553

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/parallel.html#operator-level
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

| parse message "Deploying * to flink-taskmanager-*" as @subtask, @tmid
| sort @timestamp desc
| limit 2000

For more information about task scheduling, see Jobs and Scheduling in the Apache Flink
documentation.

Analyze operations: Change in parallelism

The following CloudWatch Logs Insights query returns changes to an application's parallelism (for
example, due to automatic scaling). This query also returns manual changes to the application's
parallelism. For more information about automatic scaling, see the section called “Automatic
scaling”.

fields @timestamp, @parallelism
| filter message like /property: parallelism.default, /
| parse message "default, *" as @parallelism
| sort @timestamp asc

Analyze errors: Access denied

The following CloudWatch Logs Insights query returns Access Denied logs.

fields @timestamp, @message, @messageType
| filter applicationARN like /arn:aws:kinesisanalyticsus-
west-2:012345678901:application\/YourApplication/
| filter @message like /AccessDenied/
| sort @timestamp desc

Analyze errors: Source or sink not found

The following CloudWatch Logs Insights query returns ResourceNotFound logs.
ResourceNotFound logs result if a Kinesis source or sink is not found.

fields @timestamp,@message
| filter applicationARN like /arn:aws:kinesisanalyticsus-
west-2:012345678901:application\/YourApplication/
| filter @message like /ResourceNotFoundException/
| sort @timestamp desc

Example queries 554

https://nightlies.apache.org/flink/flink-docs-release-1.15/internals/job_scheduling.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Analyze errors: Application task-related failures

The following CloudWatch Logs Insights query returns an application's task-related failure logs.
These logs result if an application's status switches from RUNNING to RESTARTING.

fields @timestamp,@message
| filter applicationARN like /arn:aws:kinesisanalyticsus-
west-2:012345678901:application\/YourApplication/
| filter @message like /switched from RUNNING to RESTARTING/
| sort @timestamp desc

For applications using Apache Flink version 1.8.2 and prior, task-related failures will result in the
application status switching from RUNNING to FAILED instead. When using Apache Flink 1.8.2 and
prior, use the following query to search for application task-related failures:

fields @timestamp,@message
| filter applicationARN like /arn:aws:kinesisanalyticsus-
west-2:012345678901:application\/YourApplication/
| filter @message like /switched from RUNNING to FAILED/
| sort @timestamp desc

Viewing metrics and dimensions in Managed Service for Apache
Flink

This topic contains the following sections:

• Application metrics

• Kinesis Data Streams connector metrics

• Amazon MSK connector metrics

• Apache Zeppelin metrics

• Viewing CloudWatch metrics

• Setting CloudWatch metrics reporting levels

• Using custom metrics with Amazon Managed Service for Apache Flink

• Using CloudWatch Alarms with Amazon Managed Service for Apache Flink

When your Managed Service for Apache Flink processes a data source, Managed Service for Apache
Flink reports the following metrics and dimensions to Amazon CloudWatch.

Metrics and dimensions in Managed Service for Apache Flink 555

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Application metrics

Metric Unit Description Level Usage Notes

backPress
uredTimeM
sPerSecon
d*

Milliseconds The time (in
milliseconds)
this task or
operator is
back pressured
per second.

Task, Operator,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

These metrics
can be useful
in identifying
bottlenecks in
an application.

busyTimeM
sPerSecon
d*

Milliseconds The time (in
milliseconds)
this task or
operator is
busy (neither
idle nor back
pressured)
per second.
Can be NaN,
if the value
could not be
calculated.

Task, Operator,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

These metrics
can be useful
in identifying
bottlenecks in
an application.

cpuUtiliz
ation

Percentage Overall
percentage of
CPU utilizati
on across task

Application You can use
this metric
to monitor
minimum,

Application metrics 556

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

managers. For
example, if
there are five
task managers,
Managed
Service for
Apache Flink
publishes five
samples of
this metric
per reporting
interval.

average, and
maximum CPU
utilization in
your applicati
on. The
CPUUtiliz
ation
metric only
accounts for
CPU usage of
the TaskManag
er JVM process
running inside
the container.

Application metrics 557

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

container
CPUUtiliz
ation

Percentage Overall
percentage of
CPU utilizati
on across
task manager
containers in
Flink applicati
on cluster. For
example, if
there are five
task managers,
correspon
dingly there
are five
TaskManag
er containers
and Managed
Service for
Apache Flink
publishes 2 *
five samples
of this metric
per 1 minute
reporting
interval.

Application It is calculated
per container
as:

Total CPU time
(in seconds)
consumed
by container
* 100 /
Container CPU
limit (in CPUs/
seconds)

The
CPUUtiliz
ation
metric only
accounts for
CPU usage of
the TaskManag
er JVM process
running inside
the container
. There
are other
component
s running
outside the
JVM within
the same
container. The
container
CPUUtiliz
ation metric
gives you a

Application metrics 558

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

more complete
picture,
including all
processes in
terms of CPU
exhaustion at
the container
and failures
resulting from
that.

Application metrics 559

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

container
MemoryUti
lization

Percentage Overall
percentage
of memory
utilization
across task
manager
containers in
Flink applicati
on cluster. For
example, if
there are five
task managers,
correspon
dingly there
are five
TaskManag
er containers
and Managed
Service for
Apache Flink
publishes 2 *
five samples
of this metric
per 1 minute
reporting
interval.

Application It is calculated
per container
as:

Container
memory usage
(bytes) * 100 /
Container
memory limit
as per pod
deployment
spec (in bytes)

The
HeapMemor
yUtilizat
ion and
ManagedMe
moryUtilz
ations
metrics only
account
for specific
memory
metrics like
Heap Memory
Usage of
TaskManag
er JVM or
Managed
Memory
(memory
usage outside
JVM for native
processes like

Application metrics 560

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

RocksDB State
Backend). The
container
MemoryUti
lization
metric gives
you a more
complete
picture by
including
the working
set memory,
which is
a better
tracker of
total memory
exhaustio
n. Upon its
exhaustion,
it will result
in Out of
Memory
Error for the
TaskManager
pod.

Application metrics 561

https://flink.apache.org/2021/01/18/rocksdb.html#:~:text=Conclusion-,The%20RocksDB%20state%20backend%20(i.e.%2C%20RocksDBStateBackend)%20is%20one%20of,with%20exactly%2Donce%20processing%20guarantees.
https://flink.apache.org/2021/01/18/rocksdb.html#:~:text=Conclusion-,The%20RocksDB%20state%20backend%20(i.e.%2C%20RocksDBStateBackend)%20is%20one%20of,with%20exactly%2Donce%20processing%20guarantees.

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

container
DiskUtili
zation

Percentage Overall
percentage of
disk utilizati
on across
task manager
containers in
Flink applicati
on cluster. For
example, if
there are five
task managers,
correspon
dingly there
are five
TaskManag
er containers
and Managed
Service for
Apache Flink
publishes 2 *
five samples
of this metric
per 1 minute
reporting
interval.

Application It is calculated
per container
as:

Disk usage in
bytes * 100 /
Disk Limit for
container in
bytes

For container
s, it represent
s utilization of
the filesystem
on which root
volume of the
container is set
up.

Application metrics 562

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

currentIn
putWaterm
ark

Milliseconds The last
watermark
this applicati
on/operator/
task/thread
has received

Application,
Operator, Task,
Parallelism

This record is
only emitted
for dimension
s with two
inputs. This is
the minimum
value of the
last received
watermarks.

currentOu
tputWater
mark

Milliseconds The last
watermark
this applicati
on/operator/
task/thread
has emitted

Application,
Operator, Task,
Parallelism

Application metrics 563

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

downtime Milliseconds For jobs
currently in
a failing/r
ecovering
situation, the
time elapsed
during this
outage.

Application This metric
measures the
time elapsed
while a job
is failing or
recovering.
This metric
returns 0 for
running jobs
and -1 for
completed
jobs. If this
metric is not
0 or -1, this
indicates that
the Apache
Flink job for
the application
failed to run.

Application metrics 564

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

fullResta
rts

Count The total
number of
times this
job has fully
restarted
since it was
submitted.
This metric
does not
measure
fine-grained
restarts.

Application You can use
this metric
to evaluate
general
applicati
on health.
Restarts
can occur
during internal
maintenance
by Managed
Service for
Apache Flink.
Restarts higher
than normal
can indicate a
problem with
the applicati
on.

Application metrics 565

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

heapMemor
yUtilizat
ion

Percentage Overall heap
memory
utilization
across task
managers. For
example, if
there are five
task managers,
Managed
Service for
Apache Flink
publishes five
samples of
this metric
per reporting
interval.

Application You can use
this metric
to monitor
minimum,
average, and
maximum
heap memory
utilization in
your applicati
on. The
HeapMemor
yUtilizat
ion only
accounts
for specific
memory
metrics like
Heap Memory
Usage of
TaskManager
JVM.

Application metrics 566

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

idleTimeM
sPerSecon
d*

Milliseconds The time (in
milliseconds)
this task or
operator is idle
(has no data
to process) per
second. Idle
time excludes
back pressured
time, so if the
task is back
pressured it is
not idle.

Task, Operator,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

These metrics
can be useful
in identifying
bottlenecks in
an application.

lastCheck
pointSize

Bytes The total size
of the last
checkpoint

Application You can use
this metric
to determine
running
applicati
on storage
utilization.

If this metric
is increasing
in value, this
may indicate
that there is
an issue with
your applicati
on, such as a
memory leak
or bottleneck.

Application metrics 567

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

lastCheck
pointDura
tion

Milliseconds The time
it took to
complete the
last checkpoint

Application This metric
measures the
time it took to
complete the
most recent
checkpoint.
If this metric
is increasing
in value, this
may indicate
that there is
an issue with
your applicati
on, such as a
memory leak
or bottlenec
k. In some
cases, you
can troublesh
oot this issue
by disabling
checkpointing.

Application metrics 568

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

managedMe
moryUsed*

Bytes The amount
of managed
memory
currently used.

Application,
Operator, Task,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

This relates
to memory
managed by
Flink outside
the Java heap.
It is used for
the RocksDB
state backend,
and is also
available to
applications.

Application metrics 569

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

managedMe
moryTotal
*

Bytes The total
amount of
managed
memory.

Application,
Operator, Task,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

This relates
to memory
managed by
Flink outside
the Java heap.
It is used for
the RocksDB
state backend,
and is also
available
to applicati
ons. The
ManagedMe
moryUtilz
ations
metric only
accounts
for specific
memory
metrics like
Managed
Memory
(memory
usage outside
JVM for native
processes like

Application metrics 570

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

RocksDB State
Backend)

managedMe
moryUtili
zation*

Percentage Derived by
managedMe
moryUsed/
managedMe
moryTotal

Application,
Operator, Task,
Parallelism

*Available
for Managed
Service for
Apache Flink
applications
running Flink
version 1.13
only.

This relates
to memory
managed by
Flink outside
the Java heap.
It is used for
the RocksDB
state backend,
and is also
available to
applications.

Application metrics 571

https://flink.apache.org/2021/01/18/rocksdb.html#:~:text=Conclusion-,The%20RocksDB%20state%20backend%20(i.e.%2C%20RocksDBStateBackend)%20is%20one%20of,with%20exactly%2Donce%20processing%20guarantees.
https://flink.apache.org/2021/01/18/rocksdb.html#:~:text=Conclusion-,The%20RocksDB%20state%20backend%20(i.e.%2C%20RocksDBStateBackend)%20is%20one%20of,with%20exactly%2Donce%20processing%20guarantees.

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numberOfF
ailedChec
kpoints

Count The number
of times
checkpointing
has failed.

Application You can use
this metric
to monitor
application
health and
progress.
 Checkpoints
may fail due
to application
problems, such
as throughput
or permissions
issues.

Application metrics 572

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numRecord
sIn*

Count The total
number of
records this
application,
operator,
or task has
received.

Application,
Operator, Task,
Parallelism

*To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 573

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The metric's
Level specifies
whether
this metric
measures the
total number
of records the
entire applicati
on, a specific
operator, or a
specific task
has received.

Application metrics 574

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numRecord
sInPerSec
ond*

Count/Second The total
number of
records this
application,
operator
or task has
received per
second.

Application,
Operator, Task,
Parallelism

*To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 575

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The metric's
Level specifies
whether
this metric
measures the
total number
of records the
entire applicati
on, a specific
operator, or a
specific task
has received
per second.

Application metrics 576

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numRecord
sOut*

Count The total
number of
records this
application,
operator
or task has
emitted.

Application,
Operator, Task,
Parallelism

*To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 577

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The metric's
Level specifies
whether
this metric
measures the
total number
of records the
entire applicati
on, a specific
operator, or a
specific task
has emitted.

Application metrics 578

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numLateRe
cordsDrop
ped*

Count Application,
Operator, Task,
Parallelism

 *To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 579

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The number
of records
this operator
or task has
dropped due
to arriving
late.

Application metrics 580

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

numRecord
sOutPerSe
cond*

Count/Second The total
number of
records this
application,
operator
or task has
emitted per
second.

Application,
Operator, Task,
Parallelism

*To apply
the SUM
statistic over
a period of
time (second/
minute):

• Select the
metric at
the correct
Level. If
you’re
tracking the
metric for
an Operator,
you need to
select the
correspon
ding
operator
metrics.

• As Managed
Service for
Apache
Flink takes
4 metric
snapshots
per minute,
the
following
metric math
should be
used: m1/4
where m1
is the SUM

Application metrics 581

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

statistic over
a period
(second/m
inute)

The metric's
Level specifies
whether
this metric
measures the
total number
of records the
entire applicati
on, a specific
operator, or a
specific task
has emitted
per second.

oldGenera
tionGCCou
nt

Count The total
number of
old garbage
collection
operation
s that have
occurred
across all task
managers.

Application

Application metrics 582

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

oldGenera
tionGCTim
e

Milliseconds The total
time spent
performing
old garbage
collection
operations.

Application You can use
this metric
to monitor
sum, average,
and maximum
garbage
collection
time.

threadCou
nt

Count The total
number of
live threads
used by the
application.

Application This metric
measures
the number
of threads
used by the
application
code. This is
not the same
as application
parallelism.

uptime Milliseconds The time that
the job has
been running
without
interruption.

Application You can use
this metric to
determine if a
job is running
successfully.
This metric
returns -1 for
completed
jobs.

Kinesis Data Streams connector metrics

Amazon emits all records for Kinesis Data Streams in addition to the following:

Kinesis Data Streams connector metrics 583

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

millisbeh
indLatest

Milliseconds The number of
milliseconds
the consumer
is behind the
head of the
stream, indicatin
g how far behind
current time the
consumer is.

Application
(for Stream),
Parallelism (for
ShardId)

• A value of
0 indicates
that record
processing
is caught up,
and there
are no new
records to
process at
this moment.
A particula
r shard's
metric can be
specified by
stream name
and shard id.

• A value of -1
indicates that
the service
has not yet
reported a
value for the
metric.

bytesRequ
estedPerF
etch

Bytes The bytes
requested in a
single call to
getRecords .

Application
(for Stream),
Parallelism (for
ShardId)

Amazon MSK connector metrics

Amazon emits all records for Amazon MSK in addition to the following:

Amazon MSK connector metrics 584

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

currentof
fsets

N/A The consumer'
s current read
offset, for
each partition
. A particula
r partition's
metric can be
specified by
topic name and
partition id.

Application (for
Topic), Paralleli
sm (for Partition
Id)

commitsFa
iled

N/A The total
number of offset
commit failures
to Kafka, if
offset committin
g and checkpoin
ting are enabled.

Application,
Operator, Task,
Parallelism

Committing
offsets back to
Kafka is only a
means to expose
consumer
progress, so a
commit failure
does not affect
the integrity of
Flink's checkpoin
ted partition
offsets.

commitsSu
cceeded

N/A The total
number of
successful offset
commits to
Kafka, if offset
committing and
checkpointing
are enabled.

Application,
Operator, Task,
Parallelism

committed
offsets

N/A The last
successfully

Application (for
Topic), Paralleli

Amazon MSK connector metrics 585

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Level Usage Notes

committed
offsets to
Kafka, for
each partition
. A particula
r partition's
metric can be
specified by
topic name and
partition id.

sm (for Partition
Id)

records_l
ag_max

Count The maximum
lag in terms
of number of
records for any
partition in this
window

Application,
Operator, Task,
Parallelism

bytes_con
sumed_rate

Bytes The average
number of bytes
consumed per
second for a
topic

Application,
Operator, Task,
Parallelism

Apache Zeppelin metrics

For Studio notebooks, Amazon emits the following metrics at the application level:
KPUs, cpuUtilization, heapMemoryUtilization, oldGenerationGCTime,
oldGenerationGCCount, and threadCount. In addition, it emits the metrics shown in the
following table, also at the application level.

Metric Unit Description Prometheus name

zeppelinC
puUtilization

Percentage Overall percentage
of CPU utilization in

process_c
pu_usage

Apache Zeppelin metrics 586

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Unit Description Prometheus name

the Apache Zeppelin
server.

zeppelinH
eapMemory
Utilization

Percentage Overall percentag
e of heap memory
utilization for the
Apache Zeppelin
server.

jvm_memor
y_used_bytes

zeppelinT
hreadCount

Count The total number of
live threads used by
the Apache Zeppelin
server.

jvm_threa
ds_live_t
hreads

zeppelinW
aitingJobs

Count The number of
queued Apache
Zeppelin jobs waiting
for a thread.

jetty_thr
eads_jobs

zeppelinS
erverUptime

Seconds The total time that
the server has been
up and running.

process_u
ptime_seconds

Viewing CloudWatch metrics

You can view CloudWatch metrics for your application using the Amazon CloudWatch console or
the Amazon CLI.

To view metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. In the CloudWatch Metrics by Category pane for Managed Service for Apache Flink, choose a
metrics category.

4. In the upper pane, scroll to view the full list of metrics.

Viewing CloudWatch metrics 587

https://console.amazonaws.cn/cloudwatch/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

To view metrics using the Amazon CLI

• At a command prompt, use the following command.

aws cloudwatch list-metrics --namespace "AWS/KinesisAnalytics" --region region

Setting CloudWatch metrics reporting levels

You can control the level of application metrics that your application creates. Managed Service for
Apache Flink supports the following metrics levels:

• Application: The application only reports the highest level of metrics for each application.
Managed Service for Apache Flink metrics are published at the Application level by default.

• Task: The application reports task-specific metric dimensions for metrics defined with the Task
metric reporting level, such as number of records in and out of the application per second.

• Operator: The application reports operator-specific metric dimensions for metrics defined with
the Operator metric reporting level, such as metrics for each filter or map operation.

• Parallelism: The application reports Task and Operator level metrics for each execution
thread. This reporting level is not recommended for applications with a Parallelism setting above
64 due to excessive costs.

Note

You should only use this metric level for troubleshooting because of the amount of
metric data that the service generates. You can only set this metric level using the CLI.
This metric level is not available in the console.

The default level is Application. The application reports metrics at the current level and all higher
levels. For example, if the reporting level is set to Operator, the application reports Application,
Task, and Operator metrics.

You set the CloudWatch metrics reporting level using the MonitoringConfiguration parameter
of the CreateApplication action, or the MonitoringConfigurationUpdate parameter of
the UpdateApplication action. The following example request for the UpdateApplication
action sets the CloudWatch metrics reporting level to Task:

Metrics 588

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "ApplicationConfigurationUpdate": {
 "FlinkApplicationConfigurationUpdate": {
 "MonitoringConfigurationUpdate": {
 "ConfigurationTypeUpdate": "CUSTOM",
 "MetricsLevelUpdate": "TASK"
 }
 }
 }
}

You can also configure the logging level using the LogLevel parameter of the
CreateApplication action or the LogLevelUpdate parameter of the UpdateApplication
action. You can use the following log levels:

• ERROR: Logs potentially recoverable error events.

• WARN: Logs warning events that might lead to an error.

• INFO: Logs informational events.

• DEBUG: Logs general debugging events.

For more information about Log4j logging levels, see Custom Log Levels in the Apache Log4j
documentation.

Using custom metrics with Amazon Managed Service for Apache Flink

Managed Service for Apache Flink exposes 19 metrics to CloudWatch, including metrics for
resource usage and throughput. In addition, you can create your own metrics to track application-
specific data, such as processing events or accessing external resources.

This topic contains the following sections:

• How it works

• Examples

• Viewing custom metrics

Custom metrics 589

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://logging.apache.org/log4j/2.x/manual/customloglevels.html
https://logging.apache.org/log4j/2.x/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

How it works

Custom metrics in Managed Service for Apache Flink use the Apache Flink metric system. Apache
Flink metrics have the following attributes:

• Type: A metric's type describes how it measures and reports data. Available Apache Flink metric
types include Count, Gauge, Histogram, and Meter. For more information about Apache Flink
metric types, see Metric Types.

Note

Amazon CloudWatch Metrics does not support the Histogram Apache Flink metric type.
CloudWatch can only display Apache Flink metrics of the Count, Gauge, and Meter types.

• Scope: A metric's scope consists of its identifier and a set of key-value pairs that indicate how the
metric will be reported to CloudWatch. A metric's identifier consists of the following:

• A system scope, which indicates the level at which the metric is reported (e.g. Operator).

• A user scope, that defines attributes such as user variables or the metric group names.
These attributes are defined using MetricGroup.addGroup(key, value) or
MetricGroup.addGroup(name).

For more information about metric scope, see Scope.

For more information about Apache Flink metrics, see Metrics in the Apache Flink documentation.

To create a custom metric in your Managed Service for Apache Flink, you can access the
Apache Flink metric system from any user function that extends RichFunction by calling
GetMetricGroup. This method returns a MetricGroup object you can use to create and register
custom metrics. Managed Service for Apache Flink reports all metrics created with the group
key KinesisAnalytics to CloudWatch. Custom metrics that you define have the following
characteristics:

• Your custom metric has a metric name and a group name. These names must consist of
alphanumeric characters.

• Attributes that you define in user scope (except for the KinesisAnalytics metric group) are
published as CloudWatch dimensions.

• Custom metrics are published at the Application level by default.

Custom metrics 590

https://nightlies.apache.org/flink/flink-docs-release-1.15/monitoring/metrics.html#metric-types
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/metrics/MetricGroup.html#addGroup-java.lang.String-java.lang.String-
https://ci.apache.org/projects/flink/flink-docs-master/api/java/org/apache/flink/metrics/MetricGroup.html#addGroup-java.lang.String-
https://nightlies.apache.org/flink/flink-docs-release-1.15/monitoring/metrics.html#scope
https://nightlies.apache.org/flink/flink-docs-release-1.15/monitoring/metrics.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/api/common/functions/RuntimeContext.html#getMetricGroup--
https://nightlies.apache.org/flink/flink-docs-release-1.15/api/java/org/apache/flink/metrics/MetricGroup.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Dimensions (Task/ Operator/ Parallelism) are added to the metric based on the application's
monitoring level. You set the application's monitoring level using the MonitoringConfiguration
parameter of the CreateApplication action, or the or MonitoringConfigurationUpdate parameter
of the UpdateApplication action.

Examples

The following code examples demonstrate how to create a mapping class the creates and
increments a custom metric, and how to implement the mapping class in your application by
adding it to a DataStream object.

Record count custom metric

The following code example demonstrates how to create a mapping class that creates a metric that
counts records in a data stream (the same functionality as the numRecordsIn metric):

 private static class NoOpMapperFunction extends RichMapFunction<String, String> {
 private transient int valueToExpose = 0;
 private final String customMetricName;

 public NoOpMapperFunction(final String customMetricName) {
 this.customMetricName = customMetricName;
 }

 @Override
 public void open(Configuration config) {
 getRuntimeContext().getMetricGroup()
 .addGroup("KinesisAnalytics")
 .addGroup("Program", "RecordCountApplication")
 .addGroup("NoOpMapperFunction")
 .gauge(customMetricName, (Gauge<Integer>) () -> valueToExpose);
 }

 @Override
 public String map(String value) throws Exception {
 valueToExpose++;
 return value;
 }
 }

Custom metrics 591

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_MonitoringConfiguration.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_MonitoringConfigurationUpdate.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

In the preceding example, the valueToExpose variable is incremented for each record that the
application processes.

After defining your mapping class, you then create an in-application stream that implements the
map:

DataStream<String> noopMapperFunctionAfterFilter =
 kinesisProcessed.map(new NoOpMapperFunction("FilteredRecords"));

For the complete code for this application, see Record Count Custom Metric Application.

Word count custom metric

The following code example demonstrates how to create a mapping class that creates a metric that
counts words in a data stream:

private static final class Tokenizer extends RichFlatMapFunction<String, Tuple2<String,
 Integer>> {

 private transient Counter counter;

 @Override
 public void open(Configuration config) {
 this.counter = getRuntimeContext().getMetricGroup()
 .addGroup("KinesisAnalytics")
 .addGroup("Service", "WordCountApplication")
 .addGroup("Tokenizer")
 .counter("TotalWords");
 }

 @Override
 public void flatMap(String value, Collector<Tuple2<String, Integer>>out) {
 // normalize and split the line
 String[] tokens = value.toLowerCase().split("\\W+");

 // emit the pairs
 for (String token : tokens) {
 if (token.length() > 0) {
 counter.inc();
 out.collect(new Tuple2<>(token, 1));
 }
 }
 }

Custom metrics 592

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/CustomMetrics/RecordCount

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 }

In the preceding example, the counter variable is incremented for each word that the application
processes.

After defining your mapping class, you then create an in-application stream that implements the
map:

// Split up the lines in pairs (2-tuples) containing: (word,1), and
// group by the tuple field "0" and sum up tuple field "1"
DataStream<Tuple2<String, Integer>> wordCountStream = input.flatMap(new
 Tokenizer()).keyBy(0).sum(1);

// Serialize the tuple to string format, and publish the output to kinesis sink
wordCountStream.map(tuple -> tuple.toString()).addSink(createSinkFromStaticConfig());

For the complete code for this application, see Word Count Custom Metric Application.

Viewing custom metrics

Custom metrics for your application appear in the CloudWatch Metrics console in the AWS/
KinesisAnalytics dashboard, under the Application metric group.

Using CloudWatch Alarms with Amazon Managed Service for Apache
Flink

Using Amazon CloudWatch metric alarms, you watch a CloudWatch metric over a time period
that you specify. The alarm performs one or more actions based on the value of the metric or
expression relative to a threshold over a number of time periods. An example of an action is
sending a notification to an Amazon Simple Notification Service (Amazon SNS) topic.

For more information about CloudWatch alarms, see Using Amazon CloudWatch Alarms.

Recommended Alarms

This section contains the recommended alarms for monitoring Managed Service for Apache Flink
applications.

The table describes the recommended alarms and has the following columns:

• Metric Expression: The metric or metric expression to test against the threshold.

Alarms 593

https://github.com/aws-samples/amazon-managed-service-for-apache-flink-examples/tree/main/java/CustomMetrics/WordCount
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Statistic: The statistic used to check the metric—for example, Average.

• Threshold: Using this alarm requires you to determine a threshold that defines the limit of
expected application performance. You need to determine this threshold by monitoring your
application under normal conditions.

• Description: Causes that might trigger this alarm, and possible solutions for the condition.

Metric Expression Statistic Threshold Description

downtime > 0 Average 0 A downtime greater
than zero indicates
that the applicati
on has failed. If the
value is larger than
0, the application is
not processing any
data. Recommend
ed for all applicati
ons. The Downtime
metric measures
the duration of an
outage. A downtime
greater than zero
indicates that the
application has failed.
For troubleshooting,
see Application is
restarting.

RATE (numberOf
FailedChe
ckpoints) > 0

Average 0 This metric counts
the number of failed
checkpoints since the
application started.
Depending on the
application, it can be
tolerable if checkpoin
ts fail occasionally.

Alarms 594

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

But if checkpoints are
regularly failing, the
application is likely
unhealthy and needs
further attention
. We recommend
monitoring
RATE(numberOfFaile
dCheckpoints)
to alarm on the
gradient and not
on absolute values.
Recommended for
all applications.
Use this metric to
monitor application
health and checkpoin
ting progress.
The application
saves state data to
checkpoints when it's
healthy. Checkpoin
ting can fail due
to timeouts if the
application isn't
making progress in
processing the input
data. For troublesh
ooting, see Checkpoin
ting is timing out.

Alarms 595

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

Operator.
numRecord
sOutPerSecond <
threshold

Average The minimum
number of records
emitted from the
application during
normal conditions.

Recommended for all
applications. Falling
below this threshold
can indicate that
the application isn't
making expected
progress on the
input data. For
troubleshooting, see
Throughput is Too
Slow.

Alarms 596

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

records_l
ag_max|mi
llisbehin
dLatest >
threshold

Maximum The maximum
expected latency
during normal
conditions.

If the application
is consuming from
Kinesis or Kafka,
these metrics indicate
if the application is
falling behind and
needs to be scaled
in order to keep up
with the current
load. This is a good
generic metric that
is easy to track for
all kinds of applicati
ons. But it can only
be used for reactive
scaling, i.e., when
the application has
already fallen behind.
Recommended for
all applications. Use
the records_l
ag_max metric
for a Kafka source,
or the millisbeh
indLatest for
a Kinesis stream
source. Rising above
this threshold can
indicate that the
application isn't
making expected
progress on the
input data. For
troubleshooting, see

Alarms 597

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

Throughput is Too
Slow.

Alarms 598

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

lastCheck
pointDuration >
threshold

Maximum The maximum
expected checkpoin
t duration during
normal conditions.

Monitors how much
data is stored in state
and how long it takes
to take a checkpoin
t. If checkpoints
grow or take long,
the application
is continuously
spending time on
checkpointing and
has less cycles for
actual processin
g. At some points,
checkpoints may
grow too large or
take so long that they
fail. In addition to
monitoring absolute
values, customers
should also consideri
ng monitoring
the change rate
with RATE(last
Checkpoin
tSize) and
RATE(last
Checkpoin
tDuration) .
If the lastCheck
pointDura
tion continuou
sly increases, rising
above this threshold
can indicate that

Alarms 599

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

the application isn't
making expected
progress on the input
data, or that there
are problems with
application health
such as backpressure.
For troubleshooting,
see Unbounded state
growth.

Alarms 600

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

lastCheck
pointSize >
threshold

Maximum The maximum
expected checkpoin
t size during normal
conditions.

Monitors how much
data is stored in state
and how long it takes
to take a checkpoin
t. If checkpoints
grow or take long,
the application
is continuously
spending time on
checkpointing and
has less cycles for
actual processin
g. At some points,
checkpoints may
grow too large or
take so long that they
fail. In addition to
monitoring absolute
values, customers
should also consideri
ng monitoring
the change rate
with RATE(last
Checkpoin
tSize) and
RATE(last
Checkpoin
tDuration) .
If the lastCheck
pointSize

 continuously
increases, rising
above this threshold
can indicate that

Alarms 601

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

the application is
accumulating state
data. If the state data
becomes too large,
the application can
run out of memory
when recovering
from a checkpoint,
or recovering from
a checkpoint might
take too long. For
troubleshooting, see
Unbounded state
growth.

heapMemor
yUtilization >
threshold

Maximum This gives a good
indication of the
overall resource
utilization of the
application and can
be used for proactive
scaling unless the
application is I/O
bound. The maximum
expected heapMemor
yUtilization
size during normal
conditions, with a
recommended value
of 90 percent.

You can use this
metric to monitor the
maximum memory
utilization of task
managers across the
application. If the
application reaches
this threshold, you
need to provision
more resources
. You do this by
enabling automatic
scaling or increasin
g the application
parallelism. For more
information about
increasing resources,
see Scaling.

Alarms 602

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

cpuUtilization >
threshold

Maximum This gives a good
indication of the
overall resource
utilization of the
application and can
be used for proactive
scaling unless the
application is I/O
bound. The maximum
expected cpuUtiliz
ation size during
normal conditions,
with a recommended
value of 80 percent.

You can use this
metric to monitor
the maximum CPU
utilization of task
managers across the
application. If the
application reaches
this threshold, you
need to provision
more resources
You do this by
enabling automatic
scaling or increasin
g the application
parallelism. For more
information about
increasing resources,
see Scaling.

threadsCount >
threshold

Maximum The maximum
expected threadsCo
unt size during
normal conditions.

You can use this
metric to watch for
thread leaks in task
managers across the
application. If this
metric reaches this
threshold, check your
application code for
threads being created
without being closed.

Alarms 603

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

(oldGarba
geCollect
ionTime *
100)/60_000
over 1 min
period') >
threshold

Maximum The maximum
expected oldGarbag
eCollecti
onTime duration.
We recommend
setting a threshold
such that typical
garbage collection
time is 60 percent
of the specified
threshold, but the
correct threshold for
your application will
vary.

If this metric is
continually increasin
g, this can indicate
that there is a
memory leak in task
managers across the
application.

RATE(oldG
arbageCol
lectionCount)
> threshold

Maximum The maximum
expected oldGarbag
eCollecti
onCount under
normal conditions.
The correct threshold
for your application
will vary.

If this metric is
continually increasin
g, this can indicate
that there is a
memory leak in task
managers across the
application.

Alarms 604

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Metric Expression Statistic Threshold Description

Operator.
currentOu
tputWatermark
- Operator.
currentIn
putWatermark >
threshold

Minimum The minimum
expected watermark
increment under
normal conditions.
The correct threshold
for your application
will vary.

If this metric is
continually increasin
g, this can indicate
that either the
application is
processing increasin
gly older events, or
that an upstream
subtask has not sent
a watermark in an
increasingly long
time.

Writing custom messages to CloudWatch Logs

You can write custom messages to your Managed Service for Apache Flink application's
CloudWatch log. You do this by using the Apache log4j library or the Simple Logging Facade
for Java (SLF4J) library.

Topics

• Write to CloudWatch logs using Log4J

• Write to CloudWatch logs using SLF4J

Write to CloudWatch logs using Log4J

1. Add the following dependencies to your application's pom.xml file:

<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.6.1</version>
</dependency>
<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>

Writing custom messages 605

https://logging.apache.org/log4j/
https://www.slf4j.org/
https://www.slf4j.org/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 <version>2.6.1</version>
</dependency>

2. Include the object from the library:

import org.apache.logging.log4j.Logger;

3. Instantiate the Logger object, passing in your application class:

private static final Logger log =
 LogManager.getLogger.getLogger(YourApplicationClass.class);

4. Write to the log using log.info. A large number of messages are written to the application
log. To make your custom messages easier to filter, use the INFO application log level.

log.info("This message will be written to the application's CloudWatch log");

The application writes a record to the log with a message similar to the following:

{
 "locationInformation": "com.amazonaws.services.managed-
flink.StreamingJob.main(StreamingJob.java:95)",
 "logger": "com.amazonaws.services.managed-flink.StreamingJob",
 "message": "This message will be written to the application's CloudWatch log",
 "threadName": "Flink-DispatcherRestEndpoint-thread-2",
 "applicationARN": "arn:aws:kinesisanalyticsus-east-1:123456789012:application/test",
 "applicationVersionId": "1", "messageSchemaVersion": "1",
 "messageType": "INFO"
}

Write to CloudWatch logs using SLF4J

1. Add the following dependency to your application's pom.xml file:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.7</version>
 <scope>runtime</scope>
</dependency>

Write to CloudWatch logs using SLF4J 606

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

2. Include the objects from the library:

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

3. Instantiate the Logger object, passing in your application class:

private static final Logger log =
 LoggerFactory.getLogger(YourApplicationClass.class);

4. Write to the log using log.info. A large number of messages are written to the application
log. To make your custom messages easier to filter, use the INFO application log level.

log.info("This message will be written to the application's CloudWatch log");

The application writes a record to the log with a message similar to the following:

{
 "locationInformation": "com.amazonaws.services.managed-
flink.StreamingJob.main(StreamingJob.java:95)",
 "logger": "com.amazonaws.services.managed-flink.StreamingJob",
 "message": "This message will be written to the application's CloudWatch log",
 "threadName": "Flink-DispatcherRestEndpoint-thread-2",
 "applicationARN": "arn:aws:kinesisanalyticsus-east-1:123456789012:application/test",
 "applicationVersionId": "1", "messageSchemaVersion": "1",
 "messageType": "INFO"
}

Logging Managed Service for Apache Flink API calls with
Amazon CloudTrail

Managed Service for Apache Flink is integrated with Amazon CloudTrail, a service that provides a
record of actions taken by a user, role, or an Amazon service in Managed Service for Apache Flink.
CloudTrail captures all API calls for Managed Service for Apache Flink as events. The calls captured
include calls from the Managed Service for Apache Flink console and code calls to the Managed
Service for Apache Flink API operations. If you create a trail, you can enable continuous delivery of
CloudTrail events to an Amazon S3 bucket, including events for Managed Service for Apache Flink.
If you don't configure a trail, you can still view the most recent events in the CloudTrail console in

Using Amazon CloudTrail 607

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Event history. Using the information collected by CloudTrail, you can determine the request that
was made to Managed Service for Apache Flink, the IP address from which the request was made,
who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

Managed Service for Apache Flink information in CloudTrail

CloudTrail is enabled on your Amazon account when you create the account. When activity occurs
in Managed Service for Apache Flink, that activity is recorded in a CloudTrail event along with other
Amazon service events in Event history. You can view, search, and download recent events in your
Amazon account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your Amazon account, including events for Managed Service for
Apache Flink, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket.
By default, when you create a trail in the console, the trail applies to all Amazon Regions. The trail
logs events from all Regions in the Amazon partition and delivers the log files to the Amazon S3
bucket that you specify. Additionally, you can configure other Amazon services to further analyze
and act upon the event data collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All Managed Service for Apache Flink actions are logged by CloudTrail and are documented in the
Managed Service for Apache Flink API reference. For example, calls to the CreateApplication
and UpdateApplication actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or Amazon Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon service.

Managed Service for Apache Flink information in CloudTrail 608

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information, see the CloudTrail userIdentity Element.

Understanding Managed Service for Apache Flink log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the
AddApplicationCloudWatchLoggingOption and DescribeApplication actions.

{
 "Records": [
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2019-03-07T01:19:47Z",
 "eventSource": "kinesisanlaytics.amazonaws.com",
 "eventName": "AddApplicationCloudWatchLoggingOption",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "applicationName": "cloudtrail-test",
 "currentApplicationVersionId": 1,
 "cloudWatchLoggingOption": {
 "logStreamARN": "arn:aws:logs:us-east-1:012345678910:log-
group:cloudtrail-test:log-stream:flink-cloudwatch"
 }
 },
 "responseElements": {
 "cloudWatchLoggingOptionDescriptions": [
 {
 "cloudWatchLoggingOptionId": "2.1",

Understanding Managed Service for Apache Flink log file entries 609

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "logStreamARN": "arn:aws:logs:us-east-1:012345678910:log-
group:cloudtrail-test:log-stream:flink-cloudwatch"
 }
],
 "applicationVersionId": 2,
 "applicationARN": "arn:aws:kinesisanalyticsus-
east-1:012345678910:application/cloudtrail-test"
 },
 "requestID": "18dfb315-4077-11e9-afd3-67f7af21e34f",
 "eventID": "d3c9e467-db1d-4cab-a628-c21258385124",
 "eventType": "AwsApiCall",
 "apiVersion": "2018-05-23",
 "recipientAccountId": "012345678910"
 },
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2019-03-12T02:40:48Z",
 "eventSource": "kinesisanlaytics.amazonaws.com",
 "eventName": "DescribeApplication",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "applicationName": "sample-app"
 },
 "responseElements": null,
 "requestID": "3e82dc3e-4470-11e9-9d01-e789c4e9a3ca",
 "eventID": "90ffe8e4-9e47-48c9-84e1-4f2d427d98a5",
 "eventType": "AwsApiCall",
 "apiVersion": "2018-05-23",
 "recipientAccountId": "012345678910"
 }
]
}

Understanding Managed Service for Apache Flink log file entries 610

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Tuning performance in Amazon Managed Service for
Apache Flink

This topic describes techniques to monitor and improve the performance of your Managed Service
for Apache Flink application.

Topics

• Troubleshooting performance

• Performance best practices

• Monitoring performance

Troubleshooting performance

This section contains a list of symptoms that you can check to diagnose and fix performance issues.

If your data source is a Kinesis stream, performance issues typically present as a high or increasing
millisbehindLatest metric. For other sources, you can check a similar metric that represents
lag in reading from the source.

The data path

When investigating a performance issue with your application, consider the entire path that your
data takes. The following application components may become performance bottlenecks and
create backpressure if they are not properly designed or provisioned:

• Data sources and destinations: Ensure that the external resources your application interacts
with are property provisioned for the throughput your application will experience.

• State data: Ensure that your application doesn't interact with the state store too frequently.

You can optimize the serializer your application is using. The default Kryo serializer can handle
any serializable type, but you can use a more performant serializer if your application only
stores data in POJO types. For information about Apache Flink serializers, see Data Types &
Serialization in the Apache Flink documentation.

• Operators: Ensure that the business logic implemented by your operators isn't too complicated,
or that you aren't creating or using resources with every record processed. Also ensure that your
application isn't creating sliding or tumbling windows too frequently.

Troubleshooting performance 611

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/fault-tolerance/serialization/types_serialization/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/fault-tolerance/serialization/types_serialization/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Performance troubleshooting solutions

This section contains potential solutions to performance issues.

Topics

• CloudWatch monitoring levels

• Application CPU metric

• Application parallelism

• Application logging

• Operator parallelism

• Application logic

• Application memory

CloudWatch monitoring levels

Verify that the CloudWatch Monitoring Levels are not set to too verbose a setting.

The Debug Monitoring Log Level setting generates a large amount of traffic, which can create
backpressure. You should only use it while actively investigating issues with the application.

If your application has a high Parallelism setting, using the Parallelism Monitoring Metrics
Level will similarly generate a large amount of traffic that can lead to backpressure. Only use this
metrics level when Parallelism for your application is low, or while investigating issues with the
application.

For more information, see Application monitoring levels.

Application CPU metric

Check the application's CPU metric. If this metric is above 75 percent, you can allow the application
to allocate more resources for itself by enabling auto scaling.

If auto scaling is enabled, the application allocates more resources if CPU usage is over 75 percent
for 15 minutes. For more information about scaling, see the Manage scaling properly section
following, and the Scaling.

Performance troubleshooting solutions 612

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

An application will only scale automatically in response to CPU usage. The application will
not auto scale in response to other system metrics, such as heapMemoryUtilization.
If your application has a high level of usage for other metrics, increase your application's
parallelism manually.

Application parallelism

Increase the application's parallelism. You update the application's parallelism using the
ParallelismConfigurationUpdate parameter of the UpdateApplication action.

The maximum KPUs for an application is 64 by default, and can be increased by requesting a limit
increase.

It is important to also assign parallelism to each operator based on its workload, rather than just
increasing application parallelism alone. See Operator parallelism following.

Application logging

Check if the application is logging an entry for every record being processed. Writing a log
entry for each record during times when the application has high throughput will cause severe
bottlenecks in data processing. To check for this condition, query your logs for log entries that your
application writes with every record it processes. For more information about reading application
logs, see the section called “Analyzing logs”.

Operator parallelism

Verify that your application's workload is distributed evenly among worker processes.

For information about tuning the workload of your application's operators, see Operator scaling.

Application logic

Examine your application logic for inefficient or non-performant operations, such as accessing an
external dependency (such as a database or a web service), accessing application state, etc. An
external dependency can also hinder performance if it is not performant or not reliably accessible,
which may lead to the external dependency returing HTTP 500 errors.

Performance troubleshooting solutions 613

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

If your application uses an external dependency to enrich or otherwise process incoming data,
consider using asynchronous IO instead. For more information, see Async I/O in the Apache Flink
documentation.

Application memory

Check your application for resource leaks. If your application is not properly disposing of
threads or memory, you might see the millisbehindLatest, CheckpointSize, and
CheckpointDurationmetric spiking or gradually increasing. This condition may also lead to task
manager or job manager failures.

Performance best practices

This section describes special considerations for designing an application for performance.

Manage scaling properly

This section contains information about managing application-level and operator-level scaling.

This section contains the following topics:

• Manage application scaling properly

• Manage operator scaling properly

Manage application scaling properly

You can use autoscaling to handle unexpected spikes in application activity. Your application's KPUs
will increase automatically if the following criteria are met:

• Autoscaling is enabled for the application.

• CPU usage remains above 75 percent for 15 minutes.

If autoscaling is enabled, but CPU usage does not remain at this threshold, the application will not
scale up KPUs. If you experience a spike in CPU usage that does not meet this threshold, or a spike
in a different usage metric such as heapMemoryUtilization, increase scaling manually to allow
your application to handle activity spikes.

Performance best practices 614

https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/asyncio.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Note

If the application has automatically added more resources through auto scaling, the
application will release the new resources after a period of inactivity. Downscaling
resources will temporarily affect performance.

For more information about scaling, see Scaling.

Manage operator scaling properly

You can improve your application's performance by verifying that your application's workload is
distributed evenly among worker processes, and that the operators in your application have the
system resources they need to be stable and performant.

You can set the parallelism for each operator in your application's code using the parallelism
setting. If you don't set the parallelism for an operator, it will use the application-level parallelism
setting. Operators that use the application-level parallelism setting can potentially use all of the
system resources available for the application, making the application unstable.

To best determine the parallelism for each operator, consider the operator's relative resource
requirements compared to the other operators in the application. Set operators that are more
resource-intensive to a higher operator parallelism setting than less resource-intensive operators.

The total operator parallelism for the application is the sum of the parallelism for all the operators
in the application. You tune the total operator parallelism for your application by determining the
best ratio between it and the total task slots available for your application. A typical stable ratio of
total operator parallelism to task slots is 4:1, that is, the application has one task slot available for
every four operator subtasks available. An application with more resource intensive operators may
need a ratio of 3:1 or 2:1, while an application with less resource-intensive operators may be stable
with a ratio of 10:1.

You can set the ratio for the operator using Runtime properties, so you can tune the operator's
parallelism without compiling and uploading your application code.

The following code example demonstrates how to set operator parallelism as a tunable ratio of the
current application parallelism:

Map<String, Properties> applicationProperties =
 KinesisAnalyticsRuntime.getApplicationProperties();

Manage scaling properly 615

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

operatorParallelism =
 StreamExecutionEnvironment.getParallelism() /
 Integer.getInteger(

 applicationProperties.get("OperatorProperties").getProperty("MyOperatorParallelismRatio")
);

For information about subtasks, task slots, and other application resources, see Application
resources.

To control the distribution of workload across your application's worker processes, use the
Parallelism setting and the KeyBy partition method. For more information, see the following
topics in the Apache Flink documentation:

• Parallel Execution

• DataStream Transformations

Monitor external dependency resource usage

If there is a performance bottleneck in a destination (such as Kinesis Streams, Firehose, DynamoDB
or OpenSearch Service), your application will experience backpressure. Verify that your external
dependencies are properly provisioned for your application throughput.

Note

Failures in other services can cause failures in your application. If you are seeing failures in
your application, check the CloudWatch logs for your destination services for failures.

Run your Apache Flink application locally

To troubleshoot memory issues, you can run your application in a local Flink installation. This will
give you access to debugging tools such as the stack trace and heap dumps that are not available
when running your application in Managed Service for Apache Flink.

For information about creating a local Flink installation, see Standalone in the Apache Flink
Documentation.

Monitor external dependency resource usage 616

https://ci.apache.org/projects/flink/flink-docs-release-1.8/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/parallel.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/#datastream-transformations
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/resource-providers/standalone/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Monitoring performance

This section describes tools for monitoring an application's performance.

Performance monitoring using CloudWatch metrics

You monitor your application's resource usage, throughput, checkpointing, and downtime using
CloudWatch metrics. For information about using CloudWatch metrics with your Managed Service
for Apache Flink application, see Metrics and dimensions in Managed Service for Apache Flink.

Performance monitoring using CloudWatch logs and alarms

You monitor error conditions that could potentially cause performance issues using CloudWatch
Logs.

Error conditions appear in log entries as Apache Flink job status changes from the RUNNING status
to the FAILED status.

You use CloudWatch alarms to create notifications for performance issues, such as resource use or
checkpoint metrics above a safe threshold, or unexpected application status changes.

For information about creating CloudWatch alarms for a Managed Service for Apache Flink
application, see Alarms.

Monitoring performance 617

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink and Studio notebook
quota

When working with Amazon Managed Service for Apache Flink, note the following quota:

• You can create up to 50 Managed Service for Apache Flink applications per Region in your
account. You can create a case to request additional applications via the service quota increase
form. For more information, see the Amazon Web Services Support Center.

For a list of Regions that support Managed Service for Apache Flink, see Managed Service for
Apache Flink Regions and Endpoints.

• The number of Kinesis processing units (KPU) is limited to 64 by default. For instructions on how
to request an increase to this quota, see To request a quota increase in Service Quotas. Make
sure you specify the application prefix to which the new KPU limit needs to be applied.

With Managed Service for Apache Flink, your Amazon account is charged for allocated resources,
rather than resources that your application uses. You are charged an hourly rate based on the
maximum number of KPUs that are used to run your stream-processing application. A single KPU
provides you with 1 vCPU and 4 GiB of memory. For each KPU, the service also provisions 50 GiB
of running application storage.

• You can create up to 1,000 Managed Service for Apache Flink Snapshots per application.

• You can assign up to 50 tags per application.

• The maximum size for an application JAR file is 512 MiB. If you exceed this quota, your
application will fail to start.

618

https://console.amazonaws.cn/support/home#/
https://docs.amazonaws.cn/general/latest/gr/rande.html#ka_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#ka_region
https://docs.amazonaws.cn/general/latest/gr/aws_service_limits.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For Studio notebooks, the following quotas apply. To request higher quotas, create a support case.

• websocketMessageSize = 5 MiB

• noteSize = 5 MiB

• noteCount = 1000

• Max cumulative UDF size = 100 MiB

• Max cumulative dependency jar size = 300 MiB

619

https://console.amazonaws.cn/support/home#/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink Maintenance

Managed Service for Apache Flink patches your applications periodically with operating-system
and container-image security updates to maintain compliance and meet Amazon security goals.
The following table lists the default time window during which Managed Service for Apache Flink
performs this type of maintenance. Maintenance for your application might happen at any time
during the time window that corresponds to your Region. Your application might experience a
downtime of 10 to 30 seconds during this maintenance process. However, the actual downtime
duration depends on the application state. For information on how to minimize the impact of this
downtime, see the section called “Fault tolerance: checkpoints and savepoints”.

To change the time window during which Managed Service for Apache Flink performs maintenance
on your application, use the UpdateApplicationMaintenanceConfiguration API.

Region Maintenance time window

Amazon GovCloud (US-West) 06:00–14:00 UTC

Amazon GovCloud (US-East) 03:00–11:00 UTC

US East (N. Virginia) 03:00–11:00 UTC

US East (Ohio) 03:00–11:00 UTC

US West (N. California) 06:00–14:00 UTC

US West (Oregon) 06:00–14:00 UTC

Asia Pacific (Hong Kong) 13:00–21:00 UTC

Asia Pacific (Mumbai) 16:30–00:30 UTC

Asia Pacific (Hyderabad) 16:30–00:30 UTC

Asia Pacific (Seoul) 13:00–21:00 UTC

Asia Pacific (Singapore) 14:00–22:00 UTC

Asia Pacific (Sydney) 12:00–20:00 UTC

620

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplicationMaintenanceConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Region Maintenance time window

Asia Pacific (Jakarta) 15:00–23:00 UTC

Asia Pacific (Tokyo) 13:00–21:00 UTC

Canada (Central) 03:00–11:00 UTC

China (Beijing) 13:00–21:00 UTC

China (Ningxia) 13:00–21:00 UTC

Europe (Frankfurt) 06:00–14:00 UTC

Europe (Zurich) 20:00–04:00 UTC

Europe (Ireland) 22:00–06:00 UTC

Europe (London) 22:00–06:00 UTC

Europe (Stockholm) 23:00–07:00 UTC

Europe (Milan) 21:00–05:00 UTC

Europe (Spain) 21:00–05:00 UTC

Africa (Cape Town) 20:00–04:00 UTC

Europe (Ireland) 22:00–06:00 UTC

Europe (London) 23:00–07:00 UTC

Europe (Paris) 23:00–07:00 UTC

Europe (Stockholm) 23:00–07:00 UTC

Middle East (Bahrain) 13:00–21:00 UTC

Middle East (UAE) 18:00–02:00 UTC

South America (São Paulo) 19:00–03:00 UTC

621

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Region Maintenance time window

Israel (Tel Aviv) 20:00–04:00 UTC

Set a UUID for all operators

When Managed Service for Apache Flink starts a Flink job for an application with a snapshot, the
Flink job can fail to start due to certain issues. One of them is operator ID mismatch. Flink expects
explicit, consistent operator IDs for Flink job graph operators. If not set explicitly, Flink auto-
generates an ID for the operators. This is because Flink uses these operator IDs to uniquely identify
the operators in a job graph and uses them to store the state of each operator in a savepoint.

The operator ID mismatch issue happens when Flink does not find a 1:1 mapping between the
operator IDs of a job graph and the operator IDs defined in a savepoint. This happens when
explicit consistent operator IDs are not set and Flink auto-generates operator IDs that may not be
consistent with every job graph creation. The likelihood of applications running into this issue is
high during maintenance runs. To avoid this, we recommend customers set UUID for all operators
in flink code. For more information, see the topic Set a UUID for all operators under Production
readiness.

Set a UUID for all operators 622

https://docs.amazonaws.cn/managed-flink/latest/java/production-readiness.html
https://docs.amazonaws.cn/managed-flink/latest/java/production-readiness.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Production readiness

This is a collection of important aspects of running production applications on Managed Service
for Apache Flink. It's not an exhaustive list, but rather the bare minimum of what you should pay
attention to before putting an application into production.

Load testing applications

Some problems with applications only manifest under heavy load. We have seen cases where
applications seemed healthy, yet an operational event substantially amplified the load on the
application. This can happen completely independent of the application itself. If the data source
or the data sink is unavailable for a couple of hours, the Flink application cannot make progress.
When that issue is fixed, there is a backlog of unprocessed data that has accumulated, which can
completely exhaust the available resources. The load can then amplify bugs or performance issues
that had not emerged before.

It is therefore essential that you run proper load tests for production applications. Questions that
should be answered during those load tests include:

• Is the application stable under sustained high load?

• Can the application still take a savepoint under peak load?

• How long does it take to process a backlog of 1 hour? And how long for 24 hours (depending on
the max retention of the data in the stream)?

• Does the throughput of the application increase when the application is scaled?

When consuming from a data stream, these scenarios can be simulated by producing into the
stream for some time. Then start the application and have it consume data from the beginning of
time. For example, use a start position of TRIM_HORIZON in the case of a Kinesis data stream.

Max parallelism

The max parallelism defines the maximum parallelism a stateful application can scale to. This is
defined when the state is first created and there is no way of scaling the operator beyond this
maximum without discarding the state.

Max parallelism is set when the state is first created.

Load testing applications 623

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

By default, Max parallelism is set to:

• 128, if parallelism <= 128

• MIN(nextPowerOfTwo(parallelism + (parallelism / 2)), 2^15): if parallelism >
128

If you are planning to scale your application > 128 parallelism, you should explicitly define the Max
parallelism.

You can define Max parallelism at level of application, with env.setMaxParallelism(x)
or single operator. Unless differently specified, all operators inherit the Max parallelism of the
application.

For more information, see Setting the Maximum Parallelism in the Apache Flink Documentation.

Set a UUID for all operators

A UUID is used in the operation in which Flink maps a savepoint back to an individual operator.
Setting a specific UUID for each operator gives a stable mapping for the savepoint process to
restore.

.map(...).uid("my-map-function")

For more information, see Production Readiness Checklist.

Set a UUID for all operators 624

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/execution/parallel/#setting-the-maximum-parallelism
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/production_ready/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Best Practices for Managed Service for Apache Flink

This section contains information and recommendations for developing stable, performant
Managed Service for Apache Flink applications.

Topics

• Fault tolerance: checkpoints and savepoints

• Unsupported connector versions

• Performance and parallelism

• Setting per-operator parallelism

• Logging

• Coding

• Managing credentials

• Reading from sources with few shards/partitions

• Studio notebook refresh interval

• Studio notebook optimum performance

• How watermark strategies and idle shards affect time windows

• Set a UUID for all operators

• Add ServiceResourceTransformer to the Maven shade plugin

Fault tolerance: checkpoints and savepoints

Use checkpoints and savepoints to implement fault tolerance in your a Managed Service for
Apache Flink application. Keep the following in mind when developing and maintaining your
application:

• We recommend that you leave checkpointing enabled for your application. Checkpointing
provides fault tolerance for your application during scheduled maintenance, as well as in case of
unexpected failures due to service issues, application dependency failures, and other issues. For
information about scheduled maintenance, see Maintenance.

• Set ApplicationSnapshotConfiguration::SnapshotsEnabled to false during application
development or troubleshooting. A snapshot is created during every application stop,

Fault tolerance: checkpoints and savepoints 625

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_ApplicationSnapshotConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

which may cause issues if the application is in an unhealthy state or isn't performant. Set
SnapshotsEnabled to true after the application is in production and is stable.

Note

We recommend that your application create a snapshot several times a day to restart
properly with correct state data. The correct frequency for your snapshots depends on
your application's business logic. Taking frequent snapshots allows you to recover more
recent data, but increases cost and requires more system resources.

For information about monitoring application downtime, see Metrics and dimensions in Managed
Service for Apache Flink.

For more information about implementing fault tolerance, see Fault tolerance.

Unsupported connector versions

From Apache Flink version 1.14 or later, Managed Service for Apache Flink automatically prevents
applications from starting or updating if they are using unsupported Kinesis connector versions
bundled into application JARs. When upgrading to Managed Service for Apache Flink version 1.15
or later, make sure that you are using the most recent Kinesis connector. This is any version equal
to or newer than version 1.15.2. All other versions are not supported by Managed Service for
Apache Flink because they might cause consistency issues or failures with the Stop with Savepoint
feature, preventing clean stop/update operations.

Performance and parallelism

Your application can scale to meet any throughput level by tuning your application parallelism, and
avoiding performance pitfalls. Keep the following in mind when developing and maintaining your
application:

• Verify that all of your application sources and sinks are sufficiently provisioned and are not
being throttled. If the sources and sinks are other Amazon services, monitor those services using
CloudWatch.

• For applications with very high parallelism, check if the high levels of parallelism are applied to
all operators in the application. By default, Apache Flink applies the same application parallelism

Unsupported connector versions 626

https://docs.amazonaws.cn/cloudwatch/?id=docs_gateway

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

for all operators in the application graph. This can lead to either provisioning issues on sources
or sinks, or bottlenecks in operator data processing. You can change the parallelism of each
operator in code with setParallelism.

• Understand the meaning of the parallelism settings for the operators in your application. If you
change the parallelism for an operator, you may not be able to restore the application from
a snapshot created when the operator had a parallelism that is incompatible with the current
settings. For more information about setting operator parallelism, see Set maximum parallelism
for operators explicitly.

For more information about implementing scaling, see Scaling.

Setting per-operator parallelism

By default, all operators have the parallelism set at application level. You can override the
parallelism of a single operator using the DataStream API using .setParallelism(x). You can
set an operator parallelism to any parallelism equal or lower than the application parallelism.

If possible, define the operator parallelism as a function of the application parallelism. This way,
the operator parallelism will vary with the application parallelism. If you are using autoscaling, for
example, all operators will vary their parallelism in the same proportion:

int appParallelism = env.getParallelism();
...
...ops.setParalleism(appParallelism/2);

In some cases, you may want to set the operator parallelism to a constant. For example, setting the
parallelism of a Kinesis Stream source to the number of shards. In these cases, you should consider
passing the operator parallelism as application configuration parameter, in order to change it
without changing the code, if you need, for example, to reshard the source stream.

Logging

You can monitor your application's performance and error conditions using CloudWatch Logs. Keep
the following in mind when configuring logging for your application:

• Enable CloudWatch logging for the application so that any runtime issues can be debugged.

Setting per-operator parallelism 627

https://nightlies.apache.org/flink/flink-docs-release-1.15/dev/parallel.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/ops/production_ready.html#set-maximum-parallelism-for-operators-explicitly
https://nightlies.apache.org/flink/flink-docs-release-1.15/ops/production_ready.html#set-maximum-parallelism-for-operators-explicitly

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Do not create a log entry for every record being processed in the application. This causes severe
bottlenecks during processing and might lead to backpressure in processing of data.

• Create CloudWatch alarms to notify you when your application is not running properly. For more
information, see Alarms

For more information about implementing logging, see Logging and monitoring.

Coding

You can make your application performant and stable by using recommended programming
practices. Keep the following in mind when writing application code:

• Do not use system.exit() in your application code, in either your application's main method
or in user-defined functions. If you want to shut down your application from within code, throw
an exception derived from Exception or RuntimeException, containing a message about
what went wrong with the application.

Note the following about how the service handles this exception:

• If the exception is thrown from your application's main method, the service will wrap it in a
ProgramInvocationException when the application transitions to the RUNNING status,
and the job manager will fail to submit the job.

• If the exception is thrown from a user-defined function, the job manager will fail the job and
restart it, and details of the exception will be written to the exception log.

• Consider shading your application JAR file and its included dependencies. Shading is
recommended when there are potential conflicts in package names between your application
and the Apache Flink runtime. If a conflict occurs, your application logs may contain an exception
of type java.util.concurrent.ExecutionException. For more information about shading
your application JAR file, see Apache Maven Shade Plugin.

Managing credentials

You should not bake any long-term credentials into production (or any other) applications. Long-
term credentials are likely checked into a version control system and can easily get lost. Instead,
you can associate a role to the Managed Service for Apache Flink application and grant privileges
to that role. The running Flink application can then pick up temporary credentials with the
respective privileges from the environment. In case authentication is needed for a service that

Coding 628

https://maven.apache.org/plugins/maven-shade-plugin/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

is not natively integrated with IAM, e.g., a database that requires a username and password for
authentication, you should consider storing secrets in Amazon Secrets Manager.

Many Amazon native services support authentication:

• Kinesis Data Streams – ProcessTaxiStream.java

• Amazon MSK – https://github.com/aws/aws-msk-iam-auth/#using-the-amazon-msk-library-for-
iam-authentication

• Amazon Elasticsearch Service – AmazonElasticsearchSink.java

• Amazon S3 – works out of the box on Managed Service for Apache Flink

Reading from sources with few shards/partitions

When reading from Apache Kafka or a Kinesis Data Stream, there may be a mismatch between
the parallelism of the stream (i.e., the number of partitions for Kafka and the number of shards
for Kinesis) and the parallelism of the application. With a naive design, the parallelism of an
application cannot scale beyond the parallelism of a stream: Each subtask of a source operator
can only read from 1 or more shards/partitions. That means for a stream with only 2 shards and
an application with a parallelism of 8, that only two subtasks are actually consuming from the
stream and 6 subtasks remain idle. This can substantially limit the throughput of the application, in
particular if the deserialization is expensive and carried out by the source (which is the default).

To mitigate this effect, you can either scale the stream. But that may not always be desirable or
possible. Alternatively, you can restructure the source so that it does not do any serialization and
just passes on the byte[]. You can then rebalance the data to distribute it evenly across all tasks
and then deserialize the data there. In this way, you can leverage all subtasks for the deserialization
and this potentially expensive operation is no longer bound by the number of shards/partitions of
the stream.

Studio notebook refresh interval

If you change the paragraph result refresh interval, set it to a value that is at least 1000
milliseconds.

Reading from sources with few shards/partitions 629

https://aws.amazon.com/secrets-manager/
hhttps://github.com/aws-samples/amazon-kinesis-data-analytics-taxi-consumer/blob/master/src/main/java/com/amazonaws/samples/kaja/taxi/consumer/ProcessTaxiStream.java#L90
https://github.com/aws/aws-msk-iam-auth/#using-the-amazon-msk-library-for-iam-authentication
https://github.com/aws/aws-msk-iam-auth/#using-the-amazon-msk-library-for-iam-authentication
https://github.com/aws-samples/amazon-kinesis-data-analytics-taxi-consumer/blob/master/src/main/java/com/amazonaws/samples/kaja/taxi/consumer/operators/AmazonElasticsearchSink.java
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/overview/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Studio notebook optimum performance

We tested with the following statement and got the best performance when events-per-
second multiplied by number-of-keys was under 25,000,000. This was for events-per-
second under 150,000.

SELECT key, sum(value) FROM key-values GROUP BY key

How watermark strategies and idle shards affect time windows

When reading events from Apache Kafka and Kinesis Data Streams, the source can set the event
time based on attributes of the stream. In case of Kinesis, the event time equals the approximate
arrival time of events. But setting event time at the source for events is not sufficient for a
Flink application to use event time. The source must also generate watermarks that propagate
information about event time from the source to all other operators. The Flink documentation has
a good overview of how that process works.

By default, the timestamp of an event read from Kinesis is set to the approximate arrival time
determined by Kinesis. An additional prerequisite for event time to work in the application is a
watermark strategy.

WatermarkStrategy<String> s = WatermarkStrategy
 .<String>forMonotonousTimestamps()
 .withIdleness(Duration.ofSeconds(...));

The watermark strategy is then applied to a DataStream with the
assignTimestampsAndWatermarks method. There are some useful build-in strategies:

• forMonotonousTimestamps() will just use the event time (approximate arrival time) and
periodically emit the maximum value as a watermark (for each specific subtask)

• forBoundedOutOfOrderness(Duration.ofSeconds(...)) similar to the previous strategy,
but will use the event time – duration for watermark generation.

This works, but there are a couple of caveats to be aware of. Watermarks are generated at a
subtask level and flow through the operator graph.

From the Flink documentation:

Studio notebook optimum performance 630

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/time/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/time/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Each parallel subtask of a source function usually generates its watermarks independently. These
watermarks define the event time at that particular parallel source.

As the watermarks flow through the streaming program, they advance the event time at the
operators where they arrive. Whenever an operator advances its event time, it generates a new
watermark downstream for its successor operators.

Some operators consume multiple input streams; a union, for example, or operators following a
keyBy(…) or partition(…) function. Such an operator’s current event time is the minimum of its input
streams' event times. As its input streams update their event times, so does the operator.

That means, if a source subtask is consuming from an idle shard, downstream operators do
not receive new watermarks from that subtask and hence processing stalls for all downstream
operators that use time windows. To avoid this, customers can add the withIdleness option to
the watermark strategy. With that option, an operator excludes the watermarks from idle upsteam
subtasks when computing the event time of the operator. Idle subtask therefor no longer block the
advancement of event time in downstream operators.

However, the idleness option with the build-in watermark strategies will not advance the event
time if no subtask is reading any event, i.e., there are no events in the stream. This becomes
particularly visible for test cases where a finite set of events is read from the stream. As event time
does not advance after the last event has been read, the last window (containing the last event)
will never close.

Summary

• the withIdleness setting will not generate new watermarks in case a shard is idle, it will
just exclude the last watermark sent by idle subtasks from the min watermark calculation in
downstream operators

• with the build-in watermark strategies the last open window will never close (unless new events
that advance the watermark will be sent, but that creates a new window that then remains open)

• even when the time is set by the Kinesis stream, late arriving events can still happen if one shard
is consumed faster than others (eg, during app initialization or when using TRIM_HORIZON
where all existing shards are consumed in parallel ignoring their parent/child relationship)

• the withIdleness settings of the watermark strategy seem to
deprecate the the Kinesis source specific settings for idle shards
(ConsumerConfigConstants.SHARD_IDLE_INTERVAL_MILLIS

Summary 631

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Example

The following application is reading from a stream and creating session windows based on event
time.

Properties consumerConfig = new Properties();
consumerConfig.put(AWSConfigConstants.AWS_REGION, "eu-west-1");
consumerConfig.put(ConsumerConfigConstants.STREAM_INITIAL_POSITION, "TRIM_HORIZON");

FlinkKinesisConsumer<String> consumer = new FlinkKinesisConsumer<>("...", new
 SimpleStringSchema(), consumerConfig);

WatermarkStrategy<String> s = WatermarkStrategy
 .<String>forMonotonousTimestamps()
 .withIdleness(Duration.ofSeconds(15));

env.addSource(consumer)
 .assignTimestampsAndWatermarks(s)
 .map(new MapFunction<String, Long>() {
 @Override
 public Long map(String s) throws Exception {
 return Long.parseLong(s);
 }
 })
 .keyBy(l -> 0l)
 .window(EventTimeSessionWindows.withGap(Time.seconds(10)))
 .process(new ProcessWindowFunction<Long, Object, Long, TimeWindow>() {
 @Override
 public void process(Long aLong, ProcessWindowFunction<Long, Object, Long,
 TimeWindow>.Context context, Iterable<Long>iterable, Collector<Object> collector)
 throws Exception {
 long count = StreamSupport.stream(iterable.spliterator(), false).count();
 long timestamp = context.currentWatermark();

 System.out.print("XXXXXXXXXXXXXX Window with " + count + " events");
 System.out.println("; Watermark: " + timestamp + ", " +
 Instant.ofEpochMilli(timestamp));

 for (Long l : iterable) {
 System.out.println(l);
 }
 }

Example 632

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 });

In the following example, 8 events are written to a 16 shard stream (the first 2 and the last event
happen to land in the same shard).

$ aws kinesis put-record --stream-name hp-16 --partition-key 1 --data MQ==
$ aws kinesis put-record --stream-name hp-16 --partition-key 2 --data Mg==
$ aws kinesis put-record --stream-name hp-16 --partition-key 3 --data Mw==
$ date

{
 "ShardId": "shardId-000000000012",
 "SequenceNumber": "49627894338614655560500811028721934184977530127978070210"
}
{
 "ShardId": "shardId-000000000012",
 "SequenceNumber": "49627894338614655560500811028795678659974022576354623682"
}
{
 "ShardId": "shardId-000000000014",
 "SequenceNumber": "49627894338659257050897872275134360684221592378842022114"
}
Wed Mar 23 11:19:57 CET 2022

$ sleep 10
$ aws kinesis put-record --stream-name hp-16 --partition-key 4 --data NA==
$ aws kinesis put-record --stream-name hp-16 --partition-key 5 --data NQ==
$ date

{
 "ShardId": "shardId-000000000010",
 "SequenceNumber": "49627894338570054070103749783042116732419934393936642210"
}
{
 "ShardId": "shardId-000000000014",
 "SequenceNumber": "49627894338659257050897872275659034489934342334017700066"
}
Wed Mar 23 11:20:10 CET 2022

$ sleep 10
$ aws kinesis put-record --stream-name hp-16 --partition-key 6 --data Ng==
$ date

Example 633

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ShardId": "shardId-000000000001",
 "SequenceNumber": "49627894338369347363316974173886988345467035365375213586"
}
Wed Mar 23 11:20:22 CET 2022

$ sleep 10
$ aws kinesis put-record --stream-name hp-16 --partition-key 7 --data Nw==
$ date

{
 "ShardId": "shardId-000000000008",
 "SequenceNumber": "49627894338525452579706688535878947299195189349725503618"
}
Wed Mar 23 11:20:34 CET 2022

$ sleep 60
$ aws kinesis put-record --stream-name hp-16 --partition-key 8 --data OA==
$ date

{
 "ShardId": "shardId-000000000012",
 "SequenceNumber": "49627894338614655560500811029600823255837371928900796610"
}
Wed Mar 23 11:21:27 CET 2022

This input should result in 5 session windows: event 1,2,3; event 4,5; event 6; event 7; event 8.
However, the program only yields the first 4 windows.

11:59:21,529 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 5 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000006,HashKeyRange: {StartingHashKey:
 127605887595351923798765477786913079296,EndingHashKey:
 148873535527910577765226390751398592511},SequenceNumberRange: {StartingSequenceNumber:
 49627894338480851089309627289524549239292625588395704418,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,530 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 5 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000006,HashKeyRange: {StartingHashKey:
 127605887595351923798765477786913079296,EndingHashKey:
 148873535527910577765226390751398592511},SequenceNumberRange: {StartingSequenceNumber:

Example 634

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 49627894338480851089309627289524549239292625588395704418,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,530 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 6 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000007,HashKeyRange: {StartingHashKey:
 148873535527910577765226390751398592512,EndingHashKey:
 170141183460469231731687303715884105727},SequenceNumberRange: {StartingSequenceNumber:
 49627894338503151834508157912666084957565273949901684850,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,530 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 6 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000010,HashKeyRange: {StartingHashKey:
 212676479325586539664609129644855132160,EndingHashKey:
 233944127258145193631070042609340645375},SequenceNumberRange: {StartingSequenceNumber:
 49627894338570054070103749782090692112383219034419626146,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,530 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 6 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000007,HashKeyRange: {StartingHashKey:
 148873535527910577765226390751398592512,EndingHashKey:
 170141183460469231731687303715884105727},SequenceNumberRange: {StartingSequenceNumber:
 49627894338503151834508157912666084957565273949901684850,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,531 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 4 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000005,HashKeyRange: {StartingHashKey:
 106338239662793269832304564822427566080,EndingHashKey:
 127605887595351923798765477786913079295},SequenceNumberRange: {StartingSequenceNumber:
 49627894338458550344111096666383013521019977226889723986,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 4 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000005,HashKeyRange: {StartingHashKey:
 106338239662793269832304564822427566080,EndingHashKey:
 127605887595351923798765477786913079295},SequenceNumberRange: {StartingSequenceNumber:
 49627894338458550344111096666383013521019977226889723986,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 3 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000004,HashKeyRange: {StartingHashKey:
 85070591730234615865843651857942052864,EndingHashKey:
 106338239662793269832304564822427566079},SequenceNumberRange: {StartingSequenceNumber:

Example 635

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 49627894338436249598912566043241477802747328865383743554,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 2 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000003,HashKeyRange: {StartingHashKey:
 63802943797675961899382738893456539648,EndingHashKey:
 85070591730234615865843651857942052863},SequenceNumberRange: {StartingSequenceNumber:
 49627894338413948853714035420099942084474680503877763122,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 3 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000015,HashKeyRange: {StartingHashKey:
 319014718988379809496913694467282698240,EndingHashKey:
 340282366920938463463374607431768211455},SequenceNumberRange: {StartingSequenceNumber:
 49627894338681557796096402897798370703746460841949528306,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 2 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000014,HashKeyRange: {StartingHashKey:
 297747071055821155530452781502797185024,EndingHashKey:
 319014718988379809496913694467282698239},SequenceNumberRange: {StartingSequenceNumber:
 49627894338659257050897872274656834985473812480443547874,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 3 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000004,HashKeyRange: {StartingHashKey:
 85070591730234615865843651857942052864,EndingHashKey:
 106338239662793269832304564822427566079},SequenceNumberRange: {StartingSequenceNumber:
 49627894338436249598912566043241477802747328865383743554,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,532 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 2 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000003,HashKeyRange: {StartingHashKey:
 63802943797675961899382738893456539648,EndingHashKey:
 85070591730234615865843651857942052863},SequenceNumberRange: {StartingSequenceNumber:
 49627894338413948853714035420099942084474680503877763122,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 0 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000001,HashKeyRange: {StartingHashKey:
 21267647932558653966460912964485513216,EndingHashKey:
 42535295865117307932921825928971026431},SequenceNumberRange: {StartingSequenceNumber:

Example 636

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 49627894338369347363316974173816870647929383780865802258,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 0 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000009,HashKeyRange: {StartingHashKey:
 191408831393027885698148216680369618944,EndingHashKey:
 212676479325586539664609129644855132159},SequenceNumberRange: {StartingSequenceNumber:
 49627894338547753324905219158949156394110570672913645714,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,532 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 7 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000000,HashKeyRange: {StartingHashKey: 0,EndingHashKey:
 21267647932558653966460912964485513215},SequenceNumberRange: {StartingSequenceNumber:
 49627894338347046618118443550675334929656735419359821826,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,533 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 0 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000012,HashKeyRange: {StartingHashKey:
 255211775190703847597530955573826158592,EndingHashKey:
 276479423123262501563991868538311671807},SequenceNumberRange: {StartingSequenceNumber:
 49627894338614655560500811028373763548928515757431587010,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,533 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 7 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000008,HashKeyRange: {StartingHashKey:
 170141183460469231731687303715884105728,EndingHashKey:
 191408831393027885698148216680369618943},SequenceNumberRange: {StartingSequenceNumber:
 49627894338525452579706688535807620675837922311407665282,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,533 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 0 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000001,HashKeyRange: {StartingHashKey:
 21267647932558653966460912964485513216,EndingHashKey:
 42535295865117307932921825928971026431},SequenceNumberRange: {StartingSequenceNumber:
 49627894338369347363316974173816870647929383780865802258,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,533 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 7 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000011,HashKeyRange: {StartingHashKey:
 233944127258145193631070042609340645376,EndingHashKey:
 255211775190703847597530955573826158591},SequenceNumberRange: {StartingSequenceNumber:
 49627894338592354815302280405232227830655867395925606578,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM

Example 637

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

11:59:21,533 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 7 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000000,HashKeyRange: {StartingHashKey: 0,EndingHashKey:
 21267647932558653966460912964485513215},SequenceNumberRange: {StartingSequenceNumber:
 49627894338347046618118443550675334929656735419359821826,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:21,568 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 1 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000002,HashKeyRange: {StartingHashKey:
 42535295865117307932921825928971026432,EndingHashKey:
 63802943797675961899382738893456539647},SequenceNumberRange: {StartingSequenceNumber:
 49627894338391648108515504796958406366202032142371782690,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,568 INFO org.apache.flink.streaming.connectors.kinesis.FlinkKinesisConsumer
 [] - Subtask 1 will be seeded with initial shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000013,HashKeyRange: {StartingHashKey:
 276479423123262501563991868538311671808,EndingHashKey:
 297747071055821155530452781502797185023},SequenceNumberRange: {StartingSequenceNumber:
 49627894338636956305699341651515299267201164118937567442,}}'}, starting state set as
 sequence number EARLIEST_SEQUENCE_NUM
11:59:21,568 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 1 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000002,HashKeyRange: {StartingHashKey:
 42535295865117307932921825928971026432,EndingHashKey:
 63802943797675961899382738893456539647},SequenceNumberRange: {StartingSequenceNumber:
 49627894338391648108515504796958406366202032142371782690,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 0
11:59:23,209 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 0 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000009,HashKeyRange: {StartingHashKey:
 191408831393027885698148216680369618944,EndingHashKey:
 212676479325586539664609129644855132159},SequenceNumberRange: {StartingSequenceNumber:
 49627894338547753324905219158949156394110570672913645714,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:23,244 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 6 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000010,HashKeyRange: {StartingHashKey:
 212676479325586539664609129644855132160,EndingHashKey:
 233944127258145193631070042609340645375},SequenceNumberRange: {StartingSequenceNumber:

Example 638

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 49627894338570054070103749782090692112383219034419626146,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
event: 6; timestamp: 1648030822428, 2022-03-23T10:20:22.428Z
11:59:23,377 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 3 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000015,HashKeyRange: {StartingHashKey:
 319014718988379809496913694467282698240,EndingHashKey:
 340282366920938463463374607431768211455},SequenceNumberRange: {StartingSequenceNumber:
 49627894338681557796096402897798370703746460841949528306,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:23,405 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 2 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000014,HashKeyRange: {StartingHashKey:
 297747071055821155530452781502797185024,EndingHashKey:
 319014718988379809496913694467282698239},SequenceNumberRange: {StartingSequenceNumber:
 49627894338659257050897872274656834985473812480443547874,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:23,581 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 7 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000008,HashKeyRange: {StartingHashKey:
 170141183460469231731687303715884105728,EndingHashKey:
 191408831393027885698148216680369618943},SequenceNumberRange: {StartingSequenceNumber:
 49627894338525452579706688535807620675837922311407665282,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:23,586 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 1 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000013,HashKeyRange: {StartingHashKey:
 276479423123262501563991868538311671808,EndingHashKey:
 297747071055821155530452781502797185023},SequenceNumberRange: {StartingSequenceNumber:
 49627894338636956305699341651515299267201164118937567442,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 1
11:59:24,790 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 0 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000012,HashKeyRange: {StartingHashKey:
 255211775190703847597530955573826158592,EndingHashKey:
 276479423123262501563991868538311671807},SequenceNumberRange: {StartingSequenceNumber:
 49627894338614655560500811028373763548928515757431587010,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 2
event: 4; timestamp: 1648030809282, 2022-03-23T10:20:09.282Z

Example 639

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

event: 3; timestamp: 1648030797697, 2022-03-23T10:19:57.697Z
event: 5; timestamp: 1648030810871, 2022-03-23T10:20:10.871Z
11:59:24,907 INFO
 org.apache.flink.streaming.connectors.kinesis.internals.KinesisDataFetcher [] -
 Subtask 7 will start consuming seeded shard StreamShardHandle{streamName='hp-16',
 shard='{ShardId: shardId-000000000011,HashKeyRange: {StartingHashKey:
 233944127258145193631070042609340645376,EndingHashKey:
 255211775190703847597530955573826158591},SequenceNumberRange: {StartingSequenceNumber:
 49627894338592354815302280405232227830655867395925606578,}}'} from sequence number
 EARLIEST_SEQUENCE_NUM with ShardConsumer 2
event: 7; timestamp: 1648030834105, 2022-03-23T10:20:34.105Z
event: 1; timestamp: 1648030794441, 2022-03-23T10:19:54.441Z
event: 2; timestamp: 1648030796122, 2022-03-23T10:19:56.122Z
event: 8; timestamp: 1648030887171, 2022-03-23T10:21:27.171Z
XXXXXXXXXXXXXX Window with 3 events; Watermark: 1648030809281, 2022-03-23T10:20:09.281Z
3
1
2
XXXXXXXXXXXXXX Window with 2 events; Watermark: 1648030834104, 2022-03-23T10:20:34.104Z
4
5
XXXXXXXXXXXXXX Window with 1 events; Watermark: 1648030834104, 2022-03-23T10:20:34.104Z
6
XXXXXXXXXXXXXX Window with 1 events; Watermark: 1648030887170, 2022-03-23T10:21:27.170Z
7

The output is only showing 4 windows (missing the last window containing event 8). This is due
to event time and the watermark strategy. The last window cannot close because the with the
per-built watermark strategies the time never advances beyond the time of the last event that
has been read from the stream. But for the window to close, time needs to advance more than 10
seconds after the last event. In this case the last watermark is 2022-03-23T10:21:27.170Z but in
order for the session window to close, a watermark 10s and 1ms later is required.

If the withIdleness option is removed from the watermark strategy, no session window will ever
close, because the the “global watermark” of the window operator cannot advance.

Note that when the Flink application starts (or if there is data skew), some shards
may be consumed faster than others. This can cause some watermarks to be emitted
too early from a subtask (the subtask may emit the watermark based on the content
of one shard without having consumed from the other shards it’s subscribed to).
Ways to mitigate are a different watermarking strategies that add a safety buffer

Example 640

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

(forBoundedOutOfOrderness(Duration.ofSeconds(30)) or explicitly allowing late arriving
events (allowedLateness(Time.minutes(5)).

Set a UUID for all operators

When Managed Service for Apache Flink starts a Flink job for an application with a snapshot, the
Flink job can fail to start due to certain issues. One of them is operator ID mismatch. Flink expects
explicit, consistent operator IDs for Flink job graph operators. If not set explicitly, Flink auto-
generates an ID for the operators. This is because Flink uses these operator IDs to uniquely identify
the operators in a job graph and uses them to store the state of each operator in a savepoint.

The operator ID mismatch issue happens when Flink does not find a 1:1 mapping between the
operator IDs of a job graph and the operator IDs defined in a savepoint. This happens when
explicit consistent operator IDs are not set and Flink auto-generates operator IDs that may not be
consistent with every job graph creation. The likelihood of applications running into this issue is
high during maintenance runs. To avoid this, we recommend customers set UUID for all operators
in flink code. For more information, see the topic Set a UUID for all operators under Production
readiness.

Add ServiceResourceTransformer to the Maven shade plugin

Flink uses Java’s Service Provider Interfaces (SPI) to load components such as connectors and
formats. Multiple Flink dependencies using SPI may cause clashes in the uber-jar and unexpected
application behaviours. It is recommended to add the ServiceResourceTransformer of the Maven
shade plugin, defined in the pom.xml

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <executions>
 <execution>
 <id>shade</id>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>

Set a UUID for all operators 641

https://docs.amazonaws.cn/managed-flink/latest/java/production-readiness.html
https://docs.amazonaws.cn/managed-flink/latest/java/production-readiness.html
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/table/overview/#transform-table-connectorformat-resources
https://maven.apache.org/plugins/maven-shade-plugin/examples/resource-transformers.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 <transformers combine.children="append">
 <!-- The service transformer is needed to merge META-
INF/services files -->
 <transformer
 implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
 <!-- ... -->
 </transformers>
 </configuration>
 </execution>
 </executions>
 </plugin>

Add ServiceResourceTransformer to the Maven shade plugin 642

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink stateful functions

Stateful Functions is an API that simplifies building distributed stateful applications. It’s based on
functions with persistent state that can interact dynamically with strong consistency guarantees.

A Stateful Functions application is basically just an Apache Flink Application and hence can be
deployed to Managed Service for Apache Flink. However, there are a couple of differences between
packaging Stateful Functions for a Kubernetes cluster and for Managed Service for Apache
Flink. The most important aspect of a Stateful Functions application is the module configuration
contains all necessary runtime information to configure the Stateful Functions runtime. This
configuration is usually packaged into a Stateful Functions specific container and deployed on
Kubernetes. But that is not possible with Managed Service for Apache Flink.

Following is an adaptation of the StateFun Python example for Managed Service for Apache Flink:

Apache Flink application template

Instead of using a customer container for the Stateful Functions runtime, customers can compile
a Flink application jar that just invokes the Stateful Functions runtime and contains the required
dependencies. For Flink 1.13, the required dependencies look similar to this:

<dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>statefun-flink-distribution</artifactId>
 <version>3.1.0</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 <exclusion>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 </exclusion>
 </exclusions>
</dependency>

And the main method of the Flink application to invoke the Stateful Function runtime looks like
this:

Apache Flink application template 643

https://nightlies.apache.org/flink/flink-statefun-docs-stable/
https://nightlies.apache.org/flink/flink-statefun-docs-master/docs/deployment/module/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

public static void main(String[] args) throws Exception {
 final StreamExecutionEnvironment env =
 StreamExecutionEnvironment.getExecutionEnvironment();

 StatefulFunctionsConfig stateFunConfig = StatefulFunctionsConfig.fromEnvironment(env);

 stateFunConfig.setProvider((StatefulFunctionsUniverseProvider) (classLoader,
 statefulFunctionsConfig) -> {
 Modules modules = Modules.loadFromClassPath();
 return modules.createStatefulFunctionsUniverse(stateFunConfig);
 });

 StatefulFunctionsJob.main(env, stateFunConfig);
}

Note that these components are generic and independent of the logic that is implemented in the
Stateful Function.

Location of the module configuration

The Stateful Functions module configuration needs to be included in the class path to be
discoverable for the Stateful Functions runtime. It's best to include it in the resources folder of the
Flink application and package it into the jar file.

Similar to a common Apache Flink application, you can then use maven to create an uber jar file
and deploy that on Managed Service for Apache Flink.

Location of the module configuration 644

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Apache Flink settings

Managed Service for Apache Flink is an implementation of the Apache Flink framework. Managed
Service for Apache Flink uses the default values described in this section. Some of these values can
be set by Managed Service for Apache Flink applications in code, and others cannot be changed.

This topic contains the following sections:

• Apache Flink configuration

• State backend

• Checkpointing

• Savepointing

• Heap sizes

• Buffer debloating

• Modifiable Flink configuration properties

• Viewing configured Flink properties

Apache Flink configuration

Managed Service for Apache Flink provides a default Flink configuration consisting of Apache
Flink-recommended values for most properties and a few based on common application profiles.
For more information about Flink configuration, see Configuration. Service-provided default
configuration works for most applications. However, if you need to tweak Flink configuration
properties to improve performance for certain applications with high parallelism, high memory and
state usage, or enable new debugging features in Apache Flink, you can change certain properties
by requesting a support case. For more information, see Amazon Support Center. You can check
the current configuration for your application using the Apache Flink Dashboard.

State backend

Managed Service for Apache Flink stores transient data in a state backend. Managed Service
for Apache Flink uses the RocksDBStateBackend. Calling setStateBackend to set a different
backend has no effect.

We enable the following features on the state backend:

Apache Flink configuration 645

https://nightlies.apache.org/flink/flink-docs-master/docs/deployment/config/
https://console.aws.amazon.com/support/home#/
https://docs.amazonaws.cn/managed-flink/latest/java/how-dashboard.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Incremental state backend snapshots

• Asynchronous state backend snapshots

• Local recovery of checkpoints

In Managed Service for Apache Flink, the
state.backend.rocksdb.ttl.compaction.filter.enabled configuration is enabled by
default. Using this filter, you can update your application code to enable the compaction cleanup
strategy. For more information, see State TTL in Flink 1.8.0 in the Apache Flink documentation.

For more information about state backends, see State Backends in the Apache Flink
documentation.

Checkpointing

Managed Service for Apache Flink uses a default checkpoint configuration
with the following values. Some of these vales can be changed. You must set
CheckpointConfiguration.ConfigurationType to CUSTOM for Managed Service for Apache Flink to
use modified checkpointing values.

Setting Can be modified? How Default Value

CheckpointingEnabl
ed

Modifiable Create Application

Update Application

Amazon CloudForm
ation

True

CheckpointInterval Modifiable Create Application

Update Application

Amazon CloudForm
ation

60000

MinPauseB
etweenCheckpoints

Modifiable Create Application

Update Application

5000

Checkpointing 646

https://flink.apache.org/2019/05/19/state-ttl.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/ops/state/state_backends.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CheckpointConfiguration.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_KinesisAnalyticsV2.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_KinesisAnalyticsV2.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_KinesisAnalyticsV2.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_KinesisAnalyticsV2.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Setting Can be modified? How Default Value

Amazon CloudForm
ation

Unaligned checkpoin
ts

Modifiable Support case False

Number of Concurren
t Checkpoints

Not Modifiable N/A 1

Checkpointing Mode Not Modifiable N/A Exactly Once

Checkpoint Retention
Policy

Not Modifiable N/A On Failure

Checkpoint Timeout Not Modifiable N/A 60 minutes

Max Checkpoints
Retained

Not Modifiable N/A 1

Restart Strategy Not Modifiable N/A Fixed Delay, with
infinite retries every
10 seconds.

Checkpoint and
Savepoint Location

Not Modifiable N/A We store durable
checkpoint and
savepoint data to a
service-owned S3
bucket.

State Backend
Memory Threshold

Not Modifiable N/A 1048576

Savepointing

By default, when restoring from a savepoint, the resume operation will try to map all state of the
savepoint back to the program you are restoring with. If you dropped an operator, by default,
restoring from a savepoint that has data that corresponds to the missing operator will fail. You

Savepointing 647

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_KinesisAnalyticsV2.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_KinesisAnalyticsV2.html
https://console.amazonaws.cn/support/home#/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

can allow the operation to succeed by setting the AllowNonRestoredState parameter of the
application's FlinkRunConfiguration to true. This will allow the resume operation to skip state that
cannot be mapped to the new program.

For more information, see Allowing Non-Restored State in the Apache Flink documentation.

Heap sizes

Managed Service for Apache Flink allocates each KPU 3 GiB of JVM heap, and reserves 1 GiB for
native code allocations. For information about increasing your application capacity, see the section
called “Scaling”.

For more information about JVM heap sizes, see Configuration in the Apache Flink documentation.

Buffer debloating

Buffer debloating can help applications with high backpressure. If your application experiences
failed checkpoints/savepoints, enabling this feature could be useful. To do this, request a support
case.

For more information, see The Buffer Debloating Mechanism in the Apache Flink documentation.

Modifiable Flink configuration properties

Following are Flink configuration settings you can modify using a support case. You can modify
more than one property at a time, and for multiple applications at the same time by specifying
the application prefix. If there are other Flink configuration properties outside this list you want to
modify, please specify the exact property in your case.

Fault tolerance

restart-strategy:

restart-strategy.fixed-delay.delay:

Checkpoints and state backends

state.backend:

Heap sizes 648

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_FlinkRunConfiguration.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/ops/state/savepoints.html#allowing-non-restored-state
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://nightlies.apache.org/flink/flink-docs-release-1.15/ops/config.html
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://console.amazonaws.cn/support/home#/
https://console.amazonaws.cn/support/home#/
https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/deployment/memory/network_mem_tuning/#the-buffer-debloating-mechanism
https://nightlies.apache.org/flink/flink-docs-release-1.15/
https://console.amazonaws.cn/support/home#/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

state.backend.fs.memory-threshold:

state.backend.incremental:

Checkpointing

execution.checkpointing.unaligned:

RocksDB native metrics

RocksDB Native Metrics are not shipped to CloudWatch. Once enabled, these metrics can be
accessed either from the Flink dashboard or the Flink REST API with custom tooling.

Managed Service for Apache Flink enables customers to access the latest Flink REST API (or the
supported version you are using) in read-only mode using the CreateApplicationPresignedUrl API.
This API is used by Flink’s own dashboard, but it can also be used by custom monitoring tools.

state.backend.rocksdb.compaction.style:

state.backend.rocksdb.memory.partitioned-index-filters:

state.backend.rocksdb.metrics.actual-delayed-write-rate:

state.backend.rocksdb.metrics.background-errors:

state.backend.rocksdb.metrics.block-cache-capacity:

state.backend.rocksdb.metrics.block-cache-pinned-usage:

state.backend.rocksdb.metrics.block-cache-usage:

state.backend.rocksdb.metrics.column-family-as-variable:

state.backend.rocksdb.metrics.compaction-pending:

state.backend.rocksdb.metrics.cur-size-active-mem-table:

state.backend.rocksdb.metrics.cur-size-all-mem-tables:

state.backend.rocksdb.metrics.estimate-live-data-size:

state.backend.rocksdb.metrics.estimate-num-keys:

Checkpointing 649

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/rest_api/
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplicationPresignedUrl.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

state.backend.rocksdb.metrics.estimate-pending-compaction-bytes:

state.backend.rocksdb.metrics.estimate-table-readers-mem:

state.backend.rocksdb.metrics.is-write-stopped:

state.backend.rocksdb.metrics.mem-table-flush-pending:

state.backend.rocksdb.metrics.num-deletes-active-mem-table:

state.backend.rocksdb.metrics.num-deletes-imm-mem-tables:

state.backend.rocksdb.metrics.num-entries-active-mem-table:

state.backend.rocksdb.metrics.num-entries-imm-mem-tables:

state.backend.rocksdb.metrics.num-immutable-mem-table:

state.backend.rocksdb.metrics.num-live-versions:

state.backend.rocksdb.metrics.num-running-compactions:

state.backend.rocksdb.metrics.num-running-flushes:

state.backend.rocksdb.metrics.num-snapshots:

state.backend.rocksdb.metrics.size-all-mem-tables:

state.backend.rocksdb.thread.num:

Advanced state backends options

state.storage.fs.memory-threshold:

Full TaskManager options

task.cancellation.timeout:

taskmanager.jvm-exit-on-oom:

taskmanager.numberOfTaskSlots:

taskmanager.slot.timeout:

Advanced state backends options 650

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

taskmanager.network.memory.fraction:

taskmanager.network.memory.max:

taskmanager.network.request-backoff.initial:

taskmanager.network.request-backoff.max:

taskmanager.network.memory.buffer-debloat.enabled:

taskmanager.network.memory.buffer-debloat.period:

taskmanager.network.memory.buffer-debloat.samples:

taskmanager.network.memory.buffer-debloat.threshold-percentages:

Memory configuration

taskmanager.memory.jvm-metaspace.size:

taskmanager.memory.jvm-overhead.fraction:

taskmanager.memory.jvm-overhead.max:

taskmanager.memory.managed.consumer-weights:

taskmanager.memory.managed.fraction:

taskmanager.memory.network.fraction:

taskmanager.memory.network.max:

taskmanager.memory.segment-size:

taskmanager.memory.task.off-heap.size:

RPC / Akka

akka.ask.timeout:

akka.client.timeout:

akka.framesize:

Memory configuration 651

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

akka.lookup.timeout:

akka.tcp.timeout:

Client

client.timeout:

Advanced cluster options

cluster.intercept-user-system-exit:

cluster.processes.halt-on-fatal-error:

Filesystem configurations

fs.s3.connection.maximum:

fs.s3a.connection.maximum:

fs.s3a.threads.max:

s3.upload.max.concurrent.uploads:

Advanced fault tolerance options

heartbeat.timeout:

jobmanager.execution.failover-strategy:

Memory configuration

jobmanager.memory.heap.size:

Metrics

metrics.latency.interval:

Advanced options for the REST endpoint and client

rest.flamegraph.enabled:

Client 652

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

rest.server.numThreads:

Advanced SSL security options

security.ssl.internal.handshake-timeout:

Advanced scheduling options

slot.request.timeout:

Advanced options for Flink web UI

web.timeout:

Viewing configured Flink properties

You can view Apache Flink properties you have configured yourself or requested to be modified
through a support case via the Apache Flink Dashboard and following these steps:

1. Go to the Flink Dashboard

2. Choose Job Manager in the left-hand side navigation pane.

3. Choose Configuration to view the list of Flink properties.

Advanced SSL security options 653

https://support.console.aws.amazon.com/support/home#/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Configuring Managed Service for Apache Flink to access
resources in an Amazon VPC

You can configure a Managed Service for Apache Flink application to connect to private subnets
in a virtual private cloud (VPC) in your account. Use Amazon Virtual Private Cloud (Amazon VPC)
to create a private network for resources such as databases, cache instances, or internal services.
Connect your application to the VPC to access private resources during execution.

This topic contains the following sections:

• Amazon VPC concepts

• VPC application permissions

• Internet and service access for a VPC-connected Managed Service for Apache Flink application

• Managed Service for Apache Flink VPC API

• Example: Using a VPC to access data in an Amazon MSK cluster

Amazon VPC concepts

Amazon VPC is the networking layer for Amazon EC2. If you're new to Amazon EC2, see What is
Amazon EC2? in the Amazon EC2 User Guide for Linux Instances to get a brief overview.

The following are the key concepts for VPCs:

• A virtual private cloud (VPC) is a virtual network dedicated to your Amazon account.

• A subnet is a range of IP addresses in your VPC.

• A route table contains a set of rules, called routes, that are used to determine where network
traffic is directed.

• An internet gateway is a horizontally scaled, redundant, and highly available VPC component
that allows communication between instances in your VPC and the internet. It therefore imposes
no availability risks or bandwidth constraints on your network traffic.

• A VPC endpoint enables you to privately connect your VPC to supported Amazon services and
VPC endpoint services powered by PrivateLink without requiring an internet gateway, NAT
device, VPN connection, or Amazon Direct Connect connection. Instances in your VPC do not
require public IP addresses to communicate with resources in the service. Traffic between your
VPC and the other service does not leave the Amazon network.

Amazon VPC concepts 654

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/concepts.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/concepts.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information about the Amazon VPC service, see the Amazon Virtual Private Cloud User
Guide.

Managed Service for Apache Flink creates elastic network interfaces in one of the subnets
provided in your VPC configuration for the application. The number of elastic network interfaces
created in your VPC subnets may vary, depending on the parallelism and parallelism per KPU of the
application. For more information about application scaling, see Scaling.

Note

VPC configurations are not supported for SQL applications.

Note

The Managed Service for Apache Flink service manages the checkpoint and snapshot state
for applications that have a VPC configuration.

VPC application permissions

This section describes the permission policies your application will need to work with your VPC.
For more information about using permissions policies, see Identity and Access Management for
Amazon Managed Service for Apache Flink.

The following permissions policy grants your application the necessary permissions to interact with
a VPC. To use this permission policy, add it to your application's execution role.

Permissions policy for accessing an Amazon VPC

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VPCReadOnlyPermissions",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets",

VPC application permissions 655

https://docs.amazonaws.cn/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.amazonaws.cn/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ec2:DescribeSecurityGroups",
 "ec2:DescribeDhcpOptions"
],
 "Resource": "*"
 },
 {
 "Sid": "ENIReadWritePermissions",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DeleteNetworkInterface"
],
 "Resource": "*"
 }

]
}

Note

When you specify application resources using the console (such as CloudWatch Logs or an
Amazon VPC), the console modifies your application execution role to grant permission to
access those resources. You only need to manually modify your application's execution role
if you create your application without using the console.

Internet and service access for a VPC-connected Managed
Service for Apache Flink application

By default, when you connect a Managed Service for Apache Flink application to a VPC in your
account, it does not have access to the internet unless the VPC provides access. If the application
needs internet access, the following need to be true:

• The Managed Service for Apache Flink application should only be configured with private
subnets.

• The VPC must contain a NAT gateway or instance in a public subnet.

Internet and service access 656

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• A route must exist for outbound traffic from the private subnets to the NAT gateway in a public
subnet.

Note

Several services offer VPC endpoints. You can use VPC endpoints to connect to Amazon
services from within a VPC without internet access.

Whether a subnet is public or private depends on its route table. Every route table has a default
route, which determines the next hop for packets that have a public destination.

• For a Private subnet: The default route points to a NAT gateway (nat-...) or NAT instance (eni-...).

• For a Public subnet: The default route points to an internet gateway (igw-...).

Once you configure your VPC with a public subnet (with a NAT) and one or more private subnets,
do the following to identify your private and public subnets:

• In the VPC console, from the navigation pane, choose Subnets.

• Select a subnet, and then choose the Route Table tab. Verify the default route:

• Public subnet: Destination: 0.0.0.0/0, Target: igw-…

• Private subnet: Destination: 0.0.0.0/0, Target: nat-… or eni-…

To associate the Managed Service for Apache Flink application with private subnets:

• Open the Managed Service for Apache Flink console at https://console.aws.amazon.com/flink

• On the Managed Service for Apache Flink applications page, choose your application, and
choose Application details.

• On the page for your application, choose Configure.

• In the VPC Connectivity section, choose the VPC to associate with your application. Choose the
subnets and security group associated with your VPC that you want the application to use to
access VPC resources.

• Choose Update.

Internet and service access 657

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Related information

Creating a VPC with Public and Private Subnets

NAT gateway basics

Managed Service for Apache Flink VPC API

Use the following Managed Service for Apache Flink API operations to manage VPCs for your
application. For information on using the Managed Service for Apache Flink API, see API example
code.

Create application

Use the CreateApplication action to add a VPC configuration to your application during creation.

The following example request code for the CreateApplication action includes a VPC
configuration when the application is created:

{
 "ApplicationName":"MyApplication",
 "ApplicationDescription":"My-Application-Description",
 "RuntimeEnvironment":"FLINK-1_15",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "ApplicationConfiguration": {
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::mybucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "CodeContentType":"ZIPFILE"
 },
 "FlinkApplicationConfiguration":{
 "ParallelismConfiguration":{
 "ConfigurationType":"CUSTOM",
 "Parallelism":2,
 "ParallelismPerKPU":1,
 "AutoScalingEnabled":true
 }

Related information 658

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Scenario2.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-basics
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 },
 "VpcConfigurations": [
 {
 "SecurityGroupIds": ["sg-0123456789abcdef0"],
 "SubnetIds": ["subnet-0123456789abcdef0"]
 }
]
 }
}

AddApplicationVpcConfiguration

Use the AddApplicationVpcConfiguration action to add a VPC configuration to your application
after it has been created.

The following example request code for the AddApplicationVpcConfiguration action adds a
VPC configuration to an existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9,
 "VpcConfiguration": {
 "SecurityGroupIds": ["sg-0123456789abcdef0"],
 "SubnetIds": ["subnet-0123456789abcdef0"]
 }
}

DeleteApplicationVpcConfiguration

Use the DeleteApplicationVpcConfiguration action to remove a VPC configuration from your
application.

The following example request code for the AddApplicationVpcConfiguration action
removes an existing VPC configuration from an application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9,
 "VpcConfigurationId": "1.1"
}

AddApplicationVpcConfiguration 659

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_AddApplicationVpcConfiguration.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DeleteApplicationVpcConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Update application

Use the UpdateApplication action to update all of an application's VPC configurations at once.

The following example request code for the UpdateApplication action updates all of the VPC
configurations for an application:

{
 "ApplicationConfigurationUpdate": {
 "VpcConfigurationUpdates": [
 {
 "SecurityGroupIdUpdates": ["sg-0123456789abcdef0"],
 "SubnetIdUpdates": ["subnet-0123456789abcdef0"],
 "VpcConfigurationId": "2.1"
 }
]
 },
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9
}

Example: Using a VPC to access data in an Amazon MSK cluster

For a complete tutorial about how to access data from an Amazon MSK Cluster in a VPC, see MSK
Replication.

Update application 660

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Troubleshooting Managed Service for Apache Flink

The following can help you troubleshoot problems that you might encounter with Amazon
Managed Service for Apache Flink.

Topics

• Development troubleshooting

• Runtime troubleshooting

Development troubleshooting

Topics

• Hudi configuration best practices

• Apache Flink Flame Graphs

• Credential provider issue with EFO connector 1.15.2

• Applications with unsupported Kinesis connectors

• Compile error: "Could not resolve dependencies for project"

• Invalid choice: "kinesisanalyticsv2"

• UpdateApplication action isn't reloading application code

• S3 StreamingFileSink FileNotFoundExceptions

• FlinkKafkaConsumer issue with stop with savepoint

• Flink 1.15 Async Sink Deadlock

• Amazon Kinesis data streams source processing out of order during re-sharding

Hudi configuration best practices

To run Hudi connectors on Managed Service for Apache Flink we recommend the following
configuration changes.

Disable hoodie.embed.timeline.server

Hudi connector on Flink sets up an embedded timeline (TM) server on the Flink jobmanager (JM)
to cache metadata to improve performance when job parallelism is high. We recommend that you

Development troubleshooting 661

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

disable this embedded server on Managed Service for Apache Flink because we disable non-Flink
communication between JM and TM.

If this server is enabled, Hudi writes will first attempt to connect to the embedded server on JM,
and then fall back to reading metadata from Amazon S3. This means that Hudi incurs a connection
timeout that delays Hudi writes and causes a performance impact on Managed Service for Apache
Flink.

Apache Flink Flame Graphs

Flame Graphs are enabled by default on applications in Managed Service for Apache Flink versions
that support it. Flame Graphs may affect application performance if you keep the graph open, as
mentioned in Flink documentation.

If you want to disable Flame Graphs for your application, create a case to request it to be disabled
for your application ARN. For more information, see the Amazon Support Center.

Credential provider issue with EFO connector 1.15.2

There is a known issue with Kinesis Data Streams EFO connector versions up to 1.15.2 where
the FlinkKinesisConsumer is not respecting Credential Provider configuration. Valid
configurations are being disregarded due to the issue, which results in the AUTO credential provider
being used. This can cause a problem using cross-account access to Kinesis using EFO connector.

To resolve this error please use EFO connector version 1.15.3 or higher.

Applications with unsupported Kinesis connectors

Managed Service for Apache Flink for Apache Flink version 1.15 or later will automatically reject
applications from starting or updating if they are using unsupported Kinesis Connector versions
(pre-version 1.15.2) bundled into application JARs or archives (ZIP).

Rejection error

You will see the following error when submitting create / update application calls through:

An error occurred (InvalidArgumentException) when calling the CreateApplication
 operation: An unsupported Kinesis connector version has been detected in the
 application. Please update flink-connector-kinesis to any version equal to or newer
 than 1.15.2.

Apache Flink Flame Graphs 662

https://nightlies.apache.org/flink/flink-docs-release-1.15//docs/ops/debugging/flame_graphs/
https://console.aws.amazon.com/support/home#/
https://issues.apache.org/jira/browse/FLINK-29205
https://docs.amazonaws.cn/managed-flink/latest/java/flink-1-15-2.html
https://docs.amazonaws.cn/managed-flink/latest/java/flink-1-15-2.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For more information refer to connector fix: https://issues.apache.org/jira/browse/
FLINK-23528

Steps to remediate

• Update the application’s dependency on flink-connector-kinesis. If you are using Maven
as your project’s build tool, follow Update a Maven dependency . If you are using Gradle, follow
Update a Gradle dependency .

• Repackage the application.

• Upload to an Amazon S3 bucket.

• Resubmit the create / update application request with the revised application just uploaded to
the Amazon S3 bucket.

• If you continue to see the same error message, re-check your application dependencies. If the
problem persists please create a support ticket.

Update a Maven dependency

1. Open the project’s pom.xml.

2. Find the project’s dependencies. They look like:

<project>

 ...

 <dependencies>

 ...

 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-kinesis</artifactId>
 </dependency>

 ...

 </dependencies>

 ...

Applications with unsupported Kinesis connectors 663

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

</project>

3. Update flink-connector-kinesis to a version that is equal to or newer than 1.15.2. For
instance:

<project>

 ...

 <dependencies>

 ...

 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-kinesis</artifactId>
 <version>1.15.2</version>
 </dependency>

 ...

 </dependencies>

 ...

</project>

Update a Gradle dependency

1. Open the project’s build.gradle (or build.gradle.kts for Kotlin applications).

2. Find the project’s dependencies. They look like:

...

dependencies {

 ...

 implementation("org.apache.flink:flink-connector-kinesis")

 ...

Applications with unsupported Kinesis connectors 664

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

...

3. Update flink-connector-kinesis to a version that is equal to or newer than 1.15.2. For
instance:

...

dependencies {

 ...

 implementation("org.apache.flink:flink-connector-kinesis:1.15.2")

 ...

}

...

Compile error: "Could not resolve dependencies for project"

In order to compile the Managed Service for Apache Flink sample applications, you must first
download and compile the Apache Flink Kinesis connector and add it to your local Maven
repository. If the connector hasn't been added to your repository, a compile error similar to the
following appears:

Could not resolve dependencies for project your project name: Failure to
 find org.apache.flink:flink-connector-kinesis_2.11:jar:1.8.2 in https://
repo.maven.apache.org/maven2 was cached in the local repository, resolution will not be
 reattempted until the update interval of central has elapsed or updates are forced

To resolve this error, you must download the Apache Flink source code (version 1.8.2 from https://
flink.apache.org/downloads.html) for the connector. For instructions about how to download,
compile, and install the Apache Flink source code, see the section called “Using the Apache Flink
Kinesis Streams connector with previous Apache Flink versions”.

Compile error: "Could not resolve dependencies for project" 665

https://flink.apache.org/downloads.html
https://flink.apache.org/downloads.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Invalid choice: "kinesisanalyticsv2"

To use v2 of the Managed Service for Apache Flink API, you need the latest version of the Amazon
Command Line Interface (Amazon CLI).

For information about upgrading the Amazon CLI, see Installing the Amazon Command Line
Interface in the Amazon Command Line Interface User Guide.

UpdateApplication action isn't reloading application code

The UpdateApplication action will not reload application code with the same file name if no S3
object version is specified. To reload application code with the same file name, enable versioning
on your S3 bucket, and specify the new object version using the ObjectVersionUpdate
parameter. For more information about enabling object versioning in an S3 bucket, see Enabling or
Disabling Versioning.

S3 StreamingFileSink FileNotFoundExceptions

Managed Service for Apache Flink applications can run into In-progress part file
FileNotFoundException when starting from snapshots if an In-progress part file referred to
by its savepoint is missing. When this failure mode occurs, the Managed Service for Apache Flink
application’s operator state is usually non-recoverable and must be restarted without snapshot
using SKIP_RESTORE_FROM_SNAPSHOT. See following example stacktrace:

java.io.FileNotFoundException: No such file or directory: s3://your-s3-bucket/pathj/
INSERT/2023/4/19/7/_part-2-1234_tmp_12345678-1234-1234-1234-123456789012
 at
 org.apache.hadoop.fs.s3a.S3AFileSystem.s3GetFileStatus(S3AFileSystem.java:2231)
 at
 org.apache.hadoop.fs.s3a.S3AFileSystem.innerGetFileStatus(S3AFileSystem.java:2149)
 at
 org.apache.hadoop.fs.s3a.S3AFileSystem.getFileStatus(S3AFileSystem.java:2088)
 at org.apache.hadoop.fs.s3a.S3AFileSystem.open(S3AFileSystem.java:699)
 at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:950)
 at
 org.apache.flink.fs.s3hadoop.HadoopS3AccessHelper.getObject(HadoopS3AccessHelper.java:98)
 at
 org.apache.flink.fs.s3.common.writer.S3RecoverableMultipartUploadFactory.recoverInProgressPart(S3RecoverableMultipartUploadFactory.java:97)
...

Invalid choice: "kinesisanalyticsv2" 666

https://docs.amazonaws.cn/cli/latest/userguide/installing.html
https://docs.amazonaws.cn/cli/latest/userguide/installing.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/enable-versioning.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flink StreamingFileSink writes records to filesystems supported by the File Systems. Given that
the incoming streams can be unbounded, data is organized into part files of finite size with new
files added as data is written. Part lifecycle and rollover policy determine the timing, size and the
naming of the part files.

During checkpointing and savepointing (snapshotting), all Pending files are renamed and
committed. However, In-progress part files are not committed but renamed and their reference is
kept within checkpoint or savepoint metadata to be used when restoring jobs. These In-progress
part files will eventually rollover to Pending, renamed and committed by a subsequent checkpoint
or savepoint.

Following are the root causes and mitigation for missing In-progress part file:

• Stale snapshot used to start the Managed Service for Apache Flink application – only the
latest system snapshot taken when an application is stopped or updated can be used to start a
Managed Service for Apache Flink application with Amazon S3 StreamingFileSink. To avoid this
class of failure, use the latest system snapshot.

• This happens for example when you pick a snapshot created using CreateSnapshot instead
of a system-triggered Snapshot during stop or update. The older snapshot’s savepoint keeps
an out-of-date reference to In-progress part file that has been renamed and committed by
subsequent checkpoint or savepoint.

• This can also happen when a system triggered snapshot from non-latest Stop/Update
event is picked. An example is an application with system snapshot disabled but has
RESTORE_FROM_LATEST_SNAPSHOT configured. Generally, Managed Service for Apache Flink
applications with Amazon S3 StreamingFileSink should always have system snapshot enabled
and RESTORE_FROM_LATEST_SNAPSHOT configured.

• In-progress part file removed – As the In-progress part file is located in an S3 bucket, it can be
removed by other components or actors which have access to the bucket.

• This can happen when you have stopped your app for too long and the In-progress part file
referred to by your app’s savepoint has been removed by S3 bucket MultiPartUpload lifecycle
policy. To avoid this class of failure, make sure that your S3 Bucket MPU lifecycle policy covers
a sufficiently large period for your use case.

• This can also happen when the In-progress part file has been removed manually or by another
one of your system’s components. To avoid this class of failure, please make sure that In-
progress part files are not removed by other actors or components.

S3 StreamingFileSink FileNotFoundExceptions 667

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/filesystems/overview/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-abort-incomplete-mpu-lifecycle-config.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Race condition where an automated checkpoint is triggered after savepoint – This affects
Managed Service for Apache Flink versions up to and including 1.13. This issue is fixed in
Managed Service for Apache Flink version 1.15. Migrate your application to the latest version
of Managed Service for Apache Flink to prevent recurrence. We also suggest migrating from
StreamingFileSink to FileSink.

• When applications are stopped or updated, Managed Service for Apache Flink triggers a
savepoint and stops the application in two steps. If an automated checkpoint triggers between
the two steps, the savepoint will be unusable as its In-progress part file would be renamed and
potentially committed.

FlinkKafkaConsumer issue with stop with savepoint

When using the legacy FlinkKafkaConsumer there is a possibility your application may get stuck in
UPDATING, STOPPING or SCALING, if you have system snapshots enabled. There is no published fix
available for this issue, therefore we recommend you upgrade to the new KafkaSource to mitigate
this issue.

If you are using the FlinkKafkaConsumer with snapshots enabled, there is a possibility when
the Flink job processes a stop with savepoint API request, the FlinkKafkaConsumer can fail
with a runtime error reporting a ClosedException. Under these conditions the Flink application
becomes stuck, manifesting as Failed Checkpoints.

Flink 1.15 Async Sink Deadlock

There is a known issue with Amazon connectors for Apache Flink implementing AsyncSink
interface. This affects applications using Flink 1.15 with the following connectors:

• For Java applications:

• KinesisStreamsSink – org.apache.flink:flink-connector-kinesis

• KinesisStreamsSink – org.apache.flink:flink-connector-aws-kinesis-streams

• KinesisFirehoseSink – org.apache.flink:flink-connector-aws-kinesis-firehose

• DynamoDbSink – org.apache.flink:flink-connector-dynamodb

• Flink SQL/TableAPI/Python applications:

• kinesis – org.apache.flink:flink-sql-connector-kinesis

• kinesis – org.apache.flink:flink-sql-connector-aws-kinesis-streams

FlinkKafkaConsumer issue with stop with savepoint 668

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/connectors/datastream/filesystem/#file-sink
https://issues.apache.org/jira/browse/FLINK-28758
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka/#kafka-source
https://issues.apache.org/jira/browse/FLINK-32230

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• firehose – org.apache.flink:flink-sql-connector-aws-kinesis-firehose

• dynamodb – org.apache.flink:flink-sql-connector-dynamodb

Affected applications will experience the following symptoms:

• Flink job is in RUNNING state, but not processing data;

• There are no job restarts;

• Checkpoints are timing out.

The issue is caused by a bug in Amazon SDK resulting in it not surfacing certain errors to the caller
when using the async HTTP client. This results in the sink waiting indefinitely for an “in-flight
request” to complete during a checkpoint flush operation.

This issue had been fixed in Amazon SDK starting from version 2.20.144.

Following are instructions on how to update affected connectors to use the new version of Amazon
SDK in your applications:

Topics

• Update Java applications

• Update Python applications

Update Java applications

Follow the procedures below to update Java applications:

flink-connector-kinesis

If the application uses flink-connector-kinesis:

Kinesis connector uses shading to package some dependencies, including the Amazon SDK, into
the connector jar. To update the Amazon SDK version, use the following procedure to replace these
shaded classes:

Maven

1. Add Kinesis connector and required Amazon SDK modules as project dependencies.

2. Configure maven-shade-plugin:

Flink 1.15 Async Sink Deadlock 669

https://github.com/aws/aws-sdk-java-v2/issues/4354

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

a. Add filter to exclude shaded Amazon SDK classes when copying content of the Kinesis
connector jar.

b. Add relocation rule to move updated Amazon SDK classes to package, expected by
Kinesis connector.

pom.xml

<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.apache.flink</groupId>
 <artifactId>flink-connector-kinesis</artifactId>
 <version>1.15.4</version>
 </dependency>

 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>kinesis</artifactId>
 <version>2.20.144</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>netty-nio-client</artifactId>
 <version>2.20.144</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sts</artifactId>
 <version>2.20.144</version>
 </dependency>
 ...
 </dependencies>
 ...
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

Flink 1.15 Async Sink Deadlock 670

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 <artifactId>maven-shade-plugin</artifactId>
 <version>3.1.1</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 ...
 <filters>
 ...
 <filter>
 <artifact>org.apache.flink:flink-connector-
kinesis</artifact>
 <excludes>
 <exclude>org/apache/flink/kinesis/
shaded/software/amazon/awssdk/**</exclude>
 <exclude>org/apache/flink/kinesis/
shaded/org/reactivestreams/**</exclude>
 <exclude>org/apache/flink/kinesis/
shaded/io/netty/**</exclude>
 <exclude>org/apache/flink/kinesis/
shaded/com/typesafe/netty/**</exclude>
 </excludes>
 </filter>
 ...
 </filters>
 <relocations>
 ...
 <relocation>
 <pattern>software.amazon.awssdk</pattern>

 <shadedPattern>org.apache.flink.kinesis.shaded.software.amazon.awssdk</
shadedPattern>
 </relocation>
 <relocation>
 <pattern>org.reactivestreams</pattern>

 <shadedPattern>org.apache.flink.kinesis.shaded.org.reactivestreams</
shadedPattern>
 </relocation>
 <relocation>
 <pattern>io.netty</pattern>

Flink 1.15 Async Sink Deadlock 671

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 <shadedPattern>org.apache.flink.kinesis.shaded.io.netty</shadedPattern>
 </relocation>
 <relocation>
 <pattern>com.typesafe.netty</pattern>

 <shadedPattern>org.apache.flink.kinesis.shaded.com.typesafe.netty</
shadedPattern>
 </relocation>
 ...
 </relocations>
 ...
 </configuration>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
 ...
 </build>
</project>

Gradle

1. Add Kinesis connector and required Amazon SDK modules as project dependencies.

2. Adjust shadowJar configuration:

a. Exclude shaded Amazon SDK classes when copying content of the Kinesis connector
jar.

b. Relocate updated Amazon SDK classes to a package expected by Kinesis connector.

build.gradle

...
dependencies {
 ...
 flinkShadowJar("org.apache.flink:flink-connector-kinesis:1.15.4")

 flinkShadowJar("software.amazon.awssdk:kinesis:2.20.144")
 flinkShadowJar("software.amazon.awssdk:sts:2.20.144")

Flink 1.15 Async Sink Deadlock 672

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 flinkShadowJar("software.amazon.awssdk:netty-nio-client:2.20.144")
 ...
}
...
shadowJar {
 configurations = [project.configurations.flinkShadowJar]

 exclude("org/apache/flink/kinesis/shaded/software/amazon/awssdk/**/*.class")
 exclude("org/apache/flink/kinesis/shaded/org/reactivestreams/**/*.class")
 exclude("org/apache/flink/kinesis/shaded/io/netty/**/*.class")
 exclude("org/apache/flink/kinesis/shaded/com/typesafe/netty/**/*.class")

 relocate("software.amazon.awssdk",
 "org.apache.flink.kinesis.shaded.software.amazon.awssdk")
 relocate("org.reactivestreams",
 "org.apache.flink.kinesis.shaded.org.reactivestreams")
 relocate("io.netty", "org.apache.flink.kinesis.shaded.io.netty")
 relocate("com.typesafe.netty",
 "org.apache.flink.kinesis.shaded.com.typesafe.netty")
}
...

Other affected connectors

If the application uses another affected connector:

In order to update the Amazon SDK version, the SDK version should be enforced in the project
build configuration.

Maven

Add Amazon SDK bill of materials (BOM) to the dependency management section of the
pom.xml file to enforce SDK version for the project.

pom.xml

<project>
 ...
 <dependencyManagement>
 <dependencies>
 ...
 <dependency>

Flink 1.15 Async Sink Deadlock 673

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 <groupId>software.amazon.awssdk</groupId>
 <artifactId>bom</artifactId>
 <version>2.20.144</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 ...
 </dependencies>
 </dependencyManagement>
 ...
</project>

Gradle

Add platform dependency on the Amazon SDK bill of materials (BOM) to enforce SDK version
for the project. This requires Gradle 5.0 or newer:

build.gradle

...
dependencies {
 ...
 flinkShadowJar(platform("software.amazon.awssdk:bom:2.20.144"))
 ...
}
...

Update Python applications

Python applications can use connectors in 2 different ways: packaging connectors and other Java
dependencies as part of single uber-jar, or use connector jar directly. To fix applications affected by
Async Sink deadlock:

• If the application uses an uber jar, follow the instructions for Update Java applications .

• To rebuild connector jars from source, use the following steps:

Building connectors from source:

Prerequisites, similar to Flink build requirements:

• Java 11

Flink 1.15 Async Sink Deadlock 674

https://nightlies.apache.org/flink/flink-docs-release-1.15/docs/flinkdev/building/#build-flink

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Maven 3.2.5

flink-sql-connector-kinesis

1. Download source code for Flink 1.15.4:

wget https://archive.apache.org/dist/flink/flink-1.15.4/flink-1.15.4-src.tgz

2. Uncompress source code:

tar -xvf flink-1.15.4-src.tgz

3. Navigate to kinesis connector directory

cd flink-1.15.4/flink-connectors/flink-connector-kinesis/

4. Compile and install connector jar, specifying required Amazon SDK version. To speed up build
use -DskipTests to skip test execution and -Dfast to skip additional source code checks:

mvn clean install -DskipTests -Dfast -Daws.sdkv2.version=2.20.144

5. Navigate to kinesis connector directory

cd ../flink-sql-connector-kinesis

6. Compile and install sql connector jar:

mvn clean install -DskipTests -Dfast

7. Resulting jar will be available at:

target/flink-sql-connector-kinesis-1.15.4.jar

flink-sql-connector-aws-kinesis-streams

1. Download source code for Flink 1.15.4:

wget https://archive.apache.org/dist/flink/flink-1.15.4/flink-1.15.4-src.tgz

2. Uncompress source code:

Flink 1.15 Async Sink Deadlock 675

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

tar -xvf flink-1.15.4-src.tgz

3. Navigate to kinesis connector directory

cd flink-1.15.4/flink-connectors/flink-connector-aws-kinesis-streams/

4. Compile and install connector jar, specifying required Amazon SDK version. To speed up build
use -DskipTests to skip test execution and -Dfast to skip additional source code checks:

mvn clean install -DskipTests -Dfast -Daws.sdk.version=2.20.144

5. Navigate to kinesis connector directory

cd ../flink-sql-connector-aws-kinesis-streams

6. Compile and install sql connector jar:

mvn clean install -DskipTests -Dfast

7. Resulting jar will be available at:

target/flink-sql-connector-aws-kinesis-streams-1.15.4.jar

flink-sql-connector-aws-kinesis-firehose

1. Download source code for Flink 1.15.4:

wget https://archive.apache.org/dist/flink/flink-1.15.4/flink-1.15.4-src.tgz

2. Uncompress source code:

tar -xvf flink-1.15.4-src.tgz

3. Navigate to connector directory

cd flink-1.15.4/flink-connectors/flink-connector-aws-kinesis-firehose/

4. Compile and install connector jar, specifying required Amazon SDK version. To speed up build
use -DskipTests to skip test execution and -Dfast to skip additional source code checks:

Flink 1.15 Async Sink Deadlock 676

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

mvn clean install -DskipTests -Dfast -Daws.sdk.version=2.20.144

5. Navigate to sql connector directory

cd ../flink-sql-connector-aws-kinesis-firehose

6. Compile and install sql connector jar:

mvn clean install -DskipTests -Dfast

7. Resulting jar will be available at:

target/flink-sql-connector-aws-kinesis-firehose-1.15.4.jar

flink-sql-connector-dynamodb

1. Download source code for Flink 1.15.4:

wget https://archive.apache.org/dist/flink/flink-connector-aws-3.0.0/flink-
connector-aws-3.0.0-src.tgz

2. Uncompress source code:

tar -xvf flink-connector-aws-3.0.0-src.tgz

3. Navigate to connector directory

cd flink-connector-aws-3.0.0

4. Compile and install connector jar, specifying required Amazon SDK version. To speed up build
use -DskipTests to skip test execution and -Dfast to skip additional source code checks:

mvn clean install -DskipTests -Dfast -Dflink.version=1.15.4 -
Daws.sdk.version=2.20.144

5. Resulting jar will be available at:

flink-sql-connector-dynamodb/target/flink-sql-connector-dynamodb-3.0.0.jar

Flink 1.15 Async Sink Deadlock 677

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Amazon Kinesis data streams source processing out of order during re-
sharding

The current FlinkKinesisConsumer implementation doesn’t provide strong ordering guarantees
between Kinesis shards. This may lead to out-of-order processing during re-sharding of
Kinesis Stream, in particular for Flink applications that experience processing lag. Under some
circumstances, for example windows operators based on event times, events might get discarded
because of the resulting lateness.

This is a known problem in Open Source Flink. Until connector fix is made available, ensure your
Flink applications are not falling behind Kinesis Data Streams during re-partitioning. By ensuring
that the processing delay is tolerated by your Flink apps, you can minimize the impact of out-of-
order processing and risk of data loss.

Runtime troubleshooting

This section contains information about diagnosing and fixing runtime issues with your Managed
Service for Apache Flink application.

Amazon Kinesis data streams source processing out of order during re-sharding 678

https://issues.apache.org/jira/browse/FLINK-6349

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Topics

• Troubleshooting tools

• Application issues

• Application is restarting

• Throughput is too slow

• Unbounded state growth

• I/O bound operators

• Upstream or source throttling from a Kinesis data stream

• Checkpoints

• Checkpointing is timing out

• Checkpoint failure for Apache Beam application

• Backpressure

• Data skew

• State skew

• Integrating with resources in different Regions

Troubleshooting tools

The primary tool for detecting application issues is CloudWatch alarms. Using CloudWatch alarms,
you can set thresholds for CloudWatch metrics that indicate error or bottleneck conditions in your
application. For information about recommended CloudWatch alarms, see Using CloudWatch
Alarms with Amazon Managed Service for Apache Flink.

Application issues

This section contains solutions for error conditions that you may encounter with your Managed
Service for Apache Flink application.

Topics

• Application is stuck in a transient status

• Snapshot creation fails

• Cannot access resources in a VPC

Troubleshooting tools 679

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Data is lost when writing to an Amazon S3 bucket

• Application is in the RUNNING status but isn't processing data

• Snapshot, application update, or application stop error:
InvalidApplicationConfigurationException

• java.nio.file.NoSuchFileException: /usr/local/openjdk-8/lib/security/cacerts

Application is stuck in a transient status

If your application stays in a transient status (STARTING, UPDATING, STOPPING, or AUTOSCALING),
you can stop your application by using the StopApplication action with the Force parameter set to
true. You can't force stop an application in the DELETING status. Alternatively, if the application
is in the UPDATING or AUTOSCALING status, you can roll it back to the previous running version.
When you roll back an application, it loads state data from the last successful snapshot. If the
application has no snapshots, Managed Service for Apache Flink rejects the rollback request. For
more information about rolling back an application, see RollbackApplication action.

Note

Force-stopping your application may lead to data loss or duplication. To prevent data loss
or duplicate processing of data during application restarts, we recommend you to take
frequent snapshots of your application.

Causes for stuck applications include the following:

• Application state is too large: Having an application state that is too large or too persistent
can cause the application to become stuck during a checkpoint or snapshot operation. Check
your application's lastCheckpointDuration and lastCheckpointSize metrics for steadily
increasing values or abnormally high values.

• Application code is too large: Verify that your application JAR file is smaller than 512 MB. JAR
files larger than 512 MB are not supported.

• Application snapshot creation fails: Managed Service for Apache Flink takes a snapshot of the
application during an UpdateApplication or StopApplication request. The service then
uses this snapshot state and restores the application using the updated application configuration
to provide exactly-once processing semantics.If automatic snapshot creation fails, see Snapshot
creation fails following.

Application issues 680

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_RollbackApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Restoring from a snapshot fails: If you remove or change an operator in an application update
and attempt to restore from a snapshot, the restore will fail by default if the snapshot contains
state data for the missing operator. In addition, the application will be stuck in either the
STOPPED or UPDATING status. To change this behavior and allow the restore to succeed, change
the AllowNonRestoredState parameter of the application's FlinkRunConfiguration to true. This
will allow the resume operation to skip state data that cannot be mapped to the new program.

• Application initialization taking longer: Managed Service for Apache Flink uses an internal
timeout of 5 minutes (soft setting) while waiting for a Flink job to start. If your job is failing to
start within this timeout, you will see a CloudWatch log as follows:

Flink job did not start within a total timeout of 5 minutes for application: %s under
 account: %s

If you encounter the above error, it means that your operations defined under Flink job’s main
method are taking more than 5 minutes, causing the Flink job creation to time out on the
Managed Service for Apache Flink end. We suggest you check the Flink JobManager logs as well
as your application code to see if this delay in the main method is expected. If not, you need to
take steps to address the issue so it completes in under 5 minutes.

You can check your application status using either the ListApplications or the
DescribeApplication actions.

Snapshot creation fails

The Managed Service for Apache Flink service can't take a snapshot under the following
circumstances:

• The application exceeded the snapshot limit. The limit for snapshots is 1,000. For more
information, see Snapshots.

• The application doesn't have permissions to access its source or sink.

• The application code isn't functioning properly.

• The application is experiencing other configuration issues.

If you get an exception while taking a snapshot during an application update or while
stopping the application, set the SnapshotsEnabled property of your application's
ApplicationSnapshotConfiguration to false and retry the request.

Application issues 681

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_FlinkRunConfiguration.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_ListApplications.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_ApplicationSnapshotConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Snapshots can fail if your application's operators are not properly provisioned. For information
about tuning operator performance, see Operator scaling.

After the application returns to a healthy state, we recommend that you set the application's
SnapshotsEnabled property to true.

Cannot access resources in a VPC

If your application uses a VPC running on Amazon VPC, do the following to verify that your
application has access to its resources:

• Check your CloudWatch logs for the following error. This error indicates that your application
cannot access resources in your VPC:

org.apache.kafka.common.errors.TimeoutException: Failed to update metadata after
 60000 ms.

If you see this error, verify that your route tables are set up correctly, and that your connectors
have the correct connection settings.

For information about setting up and analyzing CloudWatch logs, see Logging and monitoring.

Data is lost when writing to an Amazon S3 bucket

Some data loss might occur when writing output to an Amazon S3 bucket using Apache Flink
version 1.6.2. We recommend using the latest supported version of Apache Flink when using
Amazon S3 for output directly. To write to an Amazon S3 bucket using Apache Flink 1.6.2, we
recommend using Firehose. For more information about using Firehose with Managed Service for
Apache Flink, see Firehose sink.

Application is in the RUNNING status but isn't processing data

You can check your application status by using either the ListApplications or the
DescribeApplication actions. If your application enters the RUNNING status but isn't writing
data to your sink, you can troubleshoot the issue by adding an Amazon CloudWatch log stream to
your application. For more information, see Working with application CloudWatch logging options.
The log stream contains messages that you can use to troubleshoot application issues.

Application issues 682

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_ListApplications.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Snapshot, application update, or application stop error:
InvalidApplicationConfigurationException

An error similar to the following might occur during a snapshot operation, or during an operation
that creates a snapshot, such as updating or stopping an application:

An error occurred (InvalidApplicationConfigurationException) when calling the
 UpdateApplication operation:

Failed to take snapshot for the application xxxx at this moment. The application is
 currently experiencing downtime.
Please check the application's CloudWatch metrics or CloudWatch logs for any possible
 errors and retry the request.
You can also retry the request after disabling the snapshots in the Managed Service for
 Apache Flink console or by updating
the ApplicationSnapshotConfiguration through the Amazon SDK

This error occurs when the application is unable to create a snapshot.

If you encounter this error during a snapshot operation or an operation that creates a snapshot, do
the following:

• Disable snapshots for your application. You can do this either in the Managed Service for Apache
Flink console, or by using the SnapshotsEnabledUpdate parameter of the UpdateApplication
action.

• Investigate why snapshots cannot be created. For more information, see Application is stuck in a
transient status.

• Reenable snapshots when the application returns to a healthy state.

java.nio.file.NoSuchFileException: /usr/local/openjdk-8/lib/security/cacerts

The location of the SSL truststore was updated in a previous deployment. Use the following value
for the ssl.truststore.location parameter instead:

/usr/lib/jvm/java-11-amazon-corretto/lib/security/cacerts

Application issues 683

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Application is restarting

If your application is not healthy, its Apache Flink job continually fails and restarts. This section
describes symptoms and troubleshooting steps for this condition.

Symptoms

This condition can have the following symptoms:

• The FullRestarts metric is not zero. This metric represents the number of times the
application's job has restarted since you started the application.

• The Downtime metric is not zero. This metric represents the number of milliseconds that the
application is in the FAILING or RESTARTING status.

• The application log contains status changes to RESTARTING or FAILED. You can query your
application log for these status changes using the following CloudWatch Logs Insights query:
Analyze errors: Application task-related failures.

Causes and solutions

The following conditions may cause your application to become unstable and repeatedly restart:

• Operator is throwing an exception: If any exception in an operator in your application is
unhandled, the application fails over (by interpreting that the failure cannot be handled by
operator). The application restarts from the latest checkpoint to maintain "exactly-once"
processing semantics. As a result, Downtime is not zero during these restart periods. In order to
prevent this from happening, we recommend that you handle any retryable exceptions in the
application code.

You can investigate the causes of this condition by querying your application logs for changes
from your application's state from RUNNING to FAILED. For more information, see the section
called “Analyze errors: Application task-related failures”.

• Kinesis data streams are not properly provisioned: If a source or sink for
your application is a Kinesis data stream, check the metrics for the stream for
ReadProvisionedThroughputExceeded or WriteProvisionedThroughputExceeded
errors.

Application is restarting 684

https://docs.amazonaws.cn/streams/latest/dev/monitoring-with-cloudwatch.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

If you see these errors, you can increase the available throughput for the Kinesis stream by
increasing the stream's number of shards. For more information, see How do I change the
number of open shards in Kinesis Data Streams?.

• Other sources or sinks are not properly provisioned or available: Verify that your application is
correctly provisioning sources and sinks. Check that any sources or sinks used in the application
(such as other Amazon services, or external sources or destinations) are well provisioned, are not
experiencing read or write throttling, or are periodically unavailable.

If you are experiencing throughput-related issues with your dependent services, either increase
resources available to those services, or investigate the cause of any errors or unavailability.

• Operators are not properly provisioned: If the workload on the threads for one of the operators
in your application is not correctly distributed, the operator can become overloaded and the
application can crash. For information about tuning operator parallelism, see Manage operator
scaling properly.

• Application fails with DaemonException: This error appears in your application log if you are
using a version of Apache Flink prior to 1.11. You may need to upgrade to a later version of
Apache Flink so that a KPL version of 0.14 or later is used.

• Application fails with TimeoutException, FlinkException, or RemoteTransportException:
These errors may appear in your application log if your task managers are crashing. If your
application is overloaded, your task managers can experience CPU or memory resource pressure,
causing them to fail.

These errors may look like the following:

• java.util.concurrent.TimeoutException: The heartbeat of JobManager with
id xxx timed out

• org.apache.flink.util.FlinkException: The assigned slot xxx was removed

• org.apache.flink.runtime.io.network.netty.exception.RemoteTransportException:
Connection unexpectedly closed by remote task manager

To troubleshoot this condition, check the following:

• Check your CloudWatch metrics for unusual spikes in CPU or memory usage.

• Check your application for throughput issues. For more information, see Troubleshooting
performance.

• Examine your application log for unhandled exceptions that your application code is raising.

Application is restarting 685

https://aws.amazon.com/premiumsupport/knowledge-center/kinesis-data-streams-open-shards/
https://aws.amazon.com/premiumsupport/knowledge-center/kinesis-data-streams-open-shards/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Application fails with JaxbAnnotationModule Not Found error: This error occurs if your
application uses Apache Beam, but doesn't have the correct dependencies or dependency
versions. Managed Service for Apache Flink applications that use Apache Beam must use the
following versions of dependencies:

<jackson.version>2.10.2</jackson.version>
...
<dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-jaxb-annotations</artifactId>
 <version>2.10.2</version>
</dependency>

If you do not provide the correct version of jackson-module-jaxb-annotations as an
explicit dependency, your application loads it from the environment dependencies, and since the
versions do not match, the application crashes at runtime.

For more information about using Apache Beam with Managed Service for Apache Flink, see
Using CloudFormation with Managed Service for Apache Flink.

• Application fails with java.io.IOException: Insufficient number of network buffers

This happens when an application does not have enough memory allocated for network buffers.
Network buffers facilitate communication between subtasks. They are used to store records
before transmission over a network, and to store incoming data before dissecting it into records
and handing them to subtasks. The number of network buffers required scales directly with the
parallelism and complexity of your job graph. There are a number of approaches to mitigate this
issue:

• You can configure a lower parallelismPerKpu so that there is more memory allocated per-
subtask and network buffers. Note that lowering parallelismPerKpu will increase KPU and
therefore cost. To avoid this, you can keep the same amount of KPU by lowering parallelism by
the same factor.

• You can simplify your job graph by reducing the number of operators or chaining them so that
fewer buffers are needed.

• Otherwise, you can reach out to http://www.amazonaws.cn/support-plans/ for custom
network buffer configuration.

Application is restarting 686

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Throughput is too slow

If your application is not processing incoming streaming data quickly enough, it will perform
poorly and become unstable. This section describes symptoms and troubleshooting steps for this
condition.

Symptoms

This condition can have the following symptoms:

• If the data source for your application is a Kinesis stream, the stream's millisbehindLatest
metric continually increases.

• If the data source for your application is an Amazon MSK cluster, the cluster's consumer lag
metrics continually increase. For more information, see Consumer-Lag Monitoring in the
Amazon MSK Developer Guide.

• If the data source for your application is a different service or source, check any available
consumer lag metrics or data available.

Causes and solutions

There can be many causes for slow application throughput. If your application is not keeping up
with input, check the following:

• If throughput lag is spiking and then tapering off, check if the application is restarting. Your
application will stop processing input while it restarts, causing lag to spike. For information
about application failures, see Application is restarting.

• If throughput lag is consistent, check to see if your application is optimized for performance. For
information on optimizing your application's performance, see Troubleshooting performance.

• If throughput lag is not spiking but continuously increasing, and your application is optimized
for performance, you must increase your application resources. For information on increasing
application resources, see Scaling.

• If your application reads from a Kafka cluster in a different Region and FlinkKafkaConsumer
or KafkaSource are mostly idle (high idleTimeMsPerSecond or low CPUUtilization)
despite high consumer lag, you can increase the value for receive.buffer.byte, such as
2097152. For more information, see the high latency environment section in Custom MSK
configurations.

Throughput is Too Slow 687

https://docs.amazonaws.cn/msk/latest/developerguide/consumer-lag.html
https://docs.amazonaws.cn/msk/latest/developerguide/what-is-msk.html
https://docs.amazonaws.cn/msk/latest/developerguide/what-is-msk.html
https://docs.amazonaws.cn/msk/latest/developerguide/msk-configuration-properties.html
https://docs.amazonaws.cn/msk/latest/developerguide/msk-configuration-properties.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

For troubleshooting steps for slow throughput or consumer lag increasing in the application
source, see Troubleshooting performance.

Unbounded state growth

If your application is not properly disposing of outdated state information, it will continually
accumulate and lead to application performance or stability issues. This section describes
symptoms and troubleshooting steps for this condition.

Symptoms

This condition can have the following symptoms:

• The lastCheckpointDuration metric is gradually increasing or spiking.

• The lastCheckpointSize metric is gradually increasing or spiking.

Causes and solutions

The following conditions may cause your application to accumulate state data:

• Your application is retaining state data longer than it is needed.

• Your application uses window queries with too long a duration.

• You did not set TTL for your state data. For more information, see State Time-To-Live (TTL) in
the Apache Flink Documentation.

• You are running an application that depends on Apache Beam version 2.25.0 or newer. You can
opt out of the new version of the read transform by extending your BeamApplicationProperties
with the key experiments and value use_deprecated_read. For more information, see the
Apache Beam Documentation.

Sometimes applications are facing ever growing state size growth, which is not sustainable in the
long term (a Flink application runs indefinitely, after all). Sometimes, this can be traced back to
applications storing data in state and not aging out old information properly. But sometimes there
are just unreasonable expectations on what Flink can deliver. Applications can use aggregations
over large time windows spanning days or even weeks. Unless AggregateFunctions are used, which
allow incremental aggregations, Flink needs to keep the events of the entire window in state.

Moreover, when using process functions to implement custom operators, the application needs to
remove data from state that is no longer required for the business logic. In that case, state time-

Unbounded state growth 688

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/fault-tolerance/state/#state-time-to-live-ttl
https://docs.aws.amazon.com/managed-flink/latest/java/examples-beam.html#examples-beam-configure
https://beam.apache.org/blog/beam-2.25.0/#highlights
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/windows/#aggregatefunction
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/fault-tolerance/state/#state-time-to-live-ttl

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

to-live can be used to automatically age out data based on processing time. Managed Service for
Apache Flink is using incremental checkpoints and thus state ttl is based on RocksDB compaction.
You can only observe an actual reduction in state size (indicated by checkpoint size) after a
compaction operation occurs. In particular for checkpoint sizes below 200 MB, it's unlikely that
you observe any checkpoint size reduction as a result of state expiring. However, savepoints are
based on a clean copy of the state that does not contain old data, so you can trigger a snapshot in
Managed Service for Apache Flink to force the removal of outdated state.

For debugging purposes, it can make sense to disable incremental checkpoints to verify more
quickly that the checkpoint size actually decreases or stabilizes (and avoid the effect of compaction
in RocksBS). This requires a ticket to the service team, though.

I/O bound operators

It's best to avoid dependencies to external systems on the data path. It's often much more
performant to keep a reference data set in state rather than querying an external system to enrich
individual events. However, sometimes there are dependencies that cannot be easily moved to
state, e.g., if you want to enrich events with a machine learning model that is hosted on Amazon
Sagemaker.

Operators that are interfacing with external systems over the network can become a bottleneck
and cause backpressure. It is highly recommended to use AsyncIO to implement the functionality,
to reduce the wait time for individual calls and avoid the entire application slowing down.

Moreover, for applications with I/O bound operators it can also make sense to increase the
ParallelismPerKPU setting of the Managed Service for Apache Flink application. This configuration
describes the number of parallel subtasks an application can perform per Kinesis Processing Unit
(KPU). By increasing the value from the default of 1 to, say, 4, the application leverages the same
resources (and has the same cost) but can scale to 4 times the parallelism. This works well for I/O
bound applications, but it causes additional overhead for applications that are not I/O bound.

Upstream or source throttling from a Kinesis data stream

Symptom: The application is encountering LimitExceededExceptions from their upstream
source Kinesis data stream.

Potential Cause: The default setting for the Apache Flink library Kinesis connector is set to read
from the Kinesis data stream source with a very aggressive default setting for the maximum
number of records fetched per GetRecords call. Apache Flink is configured by default to fetch

I/O bound operators 689

https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/fault-tolerance/state/#state-time-to-live-ttl
https://github.com/facebook/rocksdb/wiki/Compaction
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/asyncio/
https://docs.aws.amazon.com/managed-flink/latest/apiv2/API_ParallelismConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

10,000 records per GetRecords call (this call is made by default every 200 ms), although the limit
per shard is only 1,000 records.

This default behavior can lead to throttling when attempting to consume from the Kinesis data
stream, which will affect the applications performance and stability.

You can confirm this by checking the CloudWatch ReadProvisionedThroughputExceeded
metric and seeing prolonged or sustained periods where this metric is greater than zero.

You can also see this in CloudWatch logs for your Amazon Managed Service for Apache Flink
application by observing continued LimitExceededException errors.

Resolution: You can do one of two things to resolve this scenario:

• Lower the default limit for the number of records fetched per GetRecords call

• Enable Adaptive Reads in your Amazon Managed Service for Apache Flink application. For more
information on the Adaptive Reads feature, see SHARD_USE_ADAPTIVE_READS

Checkpoints

Checkpoints are Flink’s mechanism to ensure that the state of an application is fault tolerant. The
mechanism allows Flink to recover the state of operators if the job fails and gives the application
the same semantics as failure-free execution. With Managed Service for Apache Flink, the state of
an application is stored in RocksDB, an embedded key/value store that keeps its working state on
disk. When a checkpoint is taken the state is also uploaded to Amazon S3 so even if the disk is lost
then the checkpoint can be used to restore the applications state.

For more information, see How does State Snapshotting Work?.

Checkpointing stages

For a checkpointing operator subtask in Flink there are 5 main stages:

• Waiting [Start Delay] – Flink uses checkpoint barriers that get inserted into the stream so time in
this stage is the time the operator waits for the checkpoint barrier to reach it.

• Alignment [Alignment Duration] – In this stage the subtask has reached one barrier but it’s
waiting for barriers from other input streams.

• Sync checkpointing [Sync Duration] – This stage is when the subtask actually snapshots the
state of the operator and blocks all other activity on the subtask.

Checkpoints 690

https://nightlies.apache.org/flink/flink-docs-release-1.10/api/java/org/apache/flink/streaming/connectors/kinesis/config/ConsumerConfigConstants.html#SHARD_USE_ADAPTIVE_READS
https://nightlies.apache.org/flink/flink-docs-master/docs/learn-flink/fault_tolerance/#how-does-state-snapshotting-work

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• Async checkpointing [Async Duration] – The majority of this stage is the subtask uploading the
state to Amazon S3. During this stage, the subtask is no longer blocked and can process records.

• Acknowledging – This is usually a short stage and is simply the subtask sending an
acknowledgement to the JobManager and also performing any commit messages (e.g. with
Kafka sinks).

Each of these stages (apart from Acknowledging) maps to a duration metric for checkpoints that is
available from the Flink WebUI, which can help isolate the cause of the long checkpoint.

To see an exact definition of each of the metrics available on checkpoints, go to History Tab.

Investigating

When investigating long checkpoint duration, the most important thing to determine is the
bottleneck for the checkpoint, i.e., what operator and subtask is taking the longest to checkpoint
and which stage of that subtask is taking an extended period of time. This can be determined
using the Flink WebUI under the jobs checkpoint task. Flink’s Web interface provides data and
information that helps to investigate checkpointing issues. For a full breakdown, see Monitoring
Checkpointing.

The first thing to look at is the End to End Duration of each operator in the Job graph to
determine which operator is taking long to checkpoint and warrants further investigation. Per the
Flink documentation, the definition of the duration is:

The duration from the trigger timestamp until the latest acknowledgement (or n/a if no
acknowledgement received yet). This end to end duration for a complete checkpoint is determined by
the last subtask that acknowledges the checkpoint. This time is usually larger than single subtasks
need to actually checkpoint the state.

The other durations for the checkpoint also gives more fine-grained information as to where the
time is being spent.

If the Sync Duration is high then this indicates something is happening during the snapshotting.
During this stage snapshotState() is called for classes that implement the snapshotState
interface; this can be user code so thread-dumps can be useful for investigating this.

A long Async Duration would suggest that a lot of time is being spent on uploading the state
to Amazon S3. This can occur if the state is large or if there is a lot of state files that are being

Checkpoints 691

https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/ops/monitoring/checkpoint_monitoring/#history-tab
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/ops/monitoring/checkpoint_monitoring/
https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/ops/monitoring/checkpoint_monitoring/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

uploaded. If this is the case it is worth investigating how state is being used by the application
and ensuring that the Flink native data structures are being used where possible (Using Keyed
State). Managed Service for Apache Flink configures Flink in such a way as to minimize the number
of Amazon S3 calls to ensure this doesn’t get too long. Following is an example of an operator's
checkpointing statistics. It shows that the Async Duration is relatively long compared to the
preceding operator checkpointing statistics.

The Start Delay being high would show that the majority of the time is being spent on waiting for
the checkpoint barrier to reach the operator. This indicates that the application is taking a while
to process records, meaning the barrier is flowing through the job graph slowly. This is usually the
case if the Job is backpressured or if an operator(s) is constantly busy. Following is an example of a
JobGraph where the second KeyedProcess operator is busy.

Checkpoints 692

https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/state/#using-keyed-state
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/state/#using-keyed-state

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

You can investigate what is taking so long by either using Flink Flame Graphs or TaskManager
thread dumps. Once the bottle-neck has been identified, it can be investigated further using either
Flame-graphs or thread-dumps.

Thread dumps

Thread dumps are another debugging tool that is at a slightly lower level than flame graphs. A
thread dump outputs the execution state of all threads at a point in time. Flink takes a JVM thread
dump, which is an execution state of all threads within the Flink process. The state of a thread is
presented by a stack trace of the thread as well as some additional information. Flame graphs are
actually built using multiple stack traces taken in quick succession. The graph is a visualisation
made from these traces that makes it easy to identify the common code paths.

"KeyedProcess (1/3)#0" prio=5 Id=1423 RUNNABLE
 at app//scala.collection.immutable.Range.foreachmVcsp(Range.scala:154)
 at $line33.$read$$iw$$iw$ExpensiveFunction.processElement(<console>>19)
 at $line33.$read$$iw$$iw$ExpensiveFunction.processElement(<console>:14)
 at app//
org.apache.flink.streaming.api.operators.KeyedProcessOperator.processElement(KeyedProcessOperator.java:83)
 at app//org.apache.flink.streaming.runtime.tasks.OneInputStreamTask
$StreamTaskNetworkOutput.emitRecord(OneInputStreamTask.java:205)
 at app//
org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.processElement(AbstractStreamTaskNetworkInput.java:134)
 at app//
org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.emitNext(AbstractStreamTaskNetworkInput.java:105)
 at app//
org.apache.flink.streaming.runtime.io.StreamOneInputProcessor.processInput(StreamOneInputProcessor.java:66)
 ...

Above is a snippet of a thread dump taken from the Flink UI for a single thread. The first line
contains some general information about this thread including:

• The thread name KeyedProcess (1/3)#0

• Priority of the thread prio=5

• A unique thread Id Id=1423

• Thread state RUNNABLE

The name of a thread usually gives information as to the general purpose of the thread. Operator
threads can be identified by their name since operator threads have the same name as the

Checkpoints 693

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

operator, as well as an indication of which subtask it is related to, e.g., the KeyedProcess (1/3)#0
thread is from the KeyedProcess operator and is from the 1st (out of 3) subtask.

Threads can be in one of a few states:

• NEW – The thread has been created but has not yet been processed

• RUNNABLE – The thread is execution on the CPU

• BLOCKED – The thread is waiting for another thread to release it’s lock

• WAITING – The thread is waiting by using a wait(), join(), or park() method

• TIMED_WAITING – The thread is waiting by using a sleep, wait, join or park method, but with a
maximum wait time.

Note

In Flink 1.13, the maximum depth of a single stacktrace in the thread dump is limited to 8.

Note

Thread dumps should be the last resort for debugging performance issues in a Flink
application as they can be challenging to read, require multiple samples to be taken and
manually analysed. If at all possible it is preferable to use flame graphs.

Thread dumps in Flink

In Flink, a thread dump can be taken by choosing the Task Managers option on the left navigation
bar of the Flink UI, selecting a specific task manager, and then navigating to the Thread Dump
tab. The thread dump can be downloaded, copied to your favorite text editor (or thread dump
analyzer), or analyzed directly inside the text view in the Flink Web UI (however, this last option can
be a bit clunky.

To determine which Task Manager to take a thread dump of the TaskManagers tab can be used
when a particular operator is chosen. This shows that the operator is running on different subtasks
of an operator and can run on different Task Managers.

Checkpoints 694

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

The dump will be comprised of multiple stack traces. However when investigating the dump the
ones related to an operator are the most important. These can easily be found since operator
threads have the same name as the operator, as well as an indication of which subtask it is related
to. For example the following stack trace is from the KeyedProcess operator and is the first subtask.

"KeyedProcess (1/3)#0" prio=5 Id=595 RUNNABLE
 at app//scala.collection.immutable.Range.foreachmVcsp(Range.scala:155)
 at $line360.$read$$iw$$iw$ExpensiveFunction.processElement(<console>:19)
 at $line360.$read$$iw$$iw$ExpensiveFunction.processElement(<console>:14)
 at app//
org.apache.flink.streaming.api.operators.KeyedProcessOperator.processElement(KeyedProcessOperator.java:83)
 at app//org.apache.flink.streaming.runtime.tasks.OneInputStreamTask
$StreamTaskNetworkOutput.emitRecord(OneInputStreamTask.java:205)
 at app//
org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.processElement(AbstractStreamTaskNetworkInput.java:134)
 at app//
org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput.emitNext(AbstractStreamTaskNetworkInput.java:105)
 at app//
org.apache.flink.streaming.runtime.io.StreamOneInputProcessor.processInput(StreamOneInputProcessor.java:66)
 ...

This can become confusing if there are multiple operators with the same name but we can name
operators to get around this. For example:

....

.process(new ExpensiveFunction).name("Expensive function")

Checkpoints 695

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Flame graphs

Flame graphs are a useful debugging tool that visualize the stack traces of the targeted code,
which allows the most frequent code paths to be identified. They are created by sampling stack
traces a number of times. The x-axis of a flame graph shows the different stack profiles, while
the y-axis shows the stack depth, and calls in the stack trace. A single rectangle in a flame graph
represents on stack frame, and the width of a frame shows how frequently it appears in the stacks.
For more details about flame graphs and how to use them, see Flame Graphs.

In Flink, the flame graph for an operator can be accessed via the Web UI by selecting an operator
and then choosing the FlameGraph tab. Once enough samples have been collected the flamegraph
will be displayed. Following is the FlameGraph for the ProcessFunction that was taking a lot of
time to checkpoint.

This is a very simple flame graph and shows that all the CPU time is being spent within a foreach
look within the processElement of the ExpensiveFunction operator. You also get the line number
to help determine where in the code execution is taking place.

Checkpointing is timing out

If your application is not optimized or properly provisioned, checkpoints can fail. This section
describes symptoms and troubleshooting steps for this condition.

Symptoms

If checkpoints fail for your application, the numberOfFailedCheckpoints will be greater than
zero.

Checkpointing Timing Out 696

https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/ops/debugging/flame_graphs/
https://www.brendangregg.com/flamegraphs.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Checkpoints can fail due to either direct failures, such as application errors, or due to transient
failures, such as running out of application resources. Check your application logs and metrics for
the following symptoms:

• Errors in your code.

• Errors accessing your application's dependent services.

• Errors serializing data. If the default serializer can't serialize your application data, the
application will fail. For information about using a custom serializer in your application, see 3rd
Party Serializers in the Apache Flink Documentation.

• Out of Memory errors.

• Spikes or steady increases in the following metrics:

• heapMemoryUtilization

• oldGenerationGCTime

• oldGenerationGCCount

• lastCheckpointSize

• lastCheckpointDuration

For more information about monitoring checkpoints, see Monitoring Checkpointing in the Apache
Flink Documentation.

Causes and solutions

Your application log error messages show the cause for direct failures. Transient failures can have
the following causes:

• Your application has insufficient KPU provisioning. For information about increasing application
provisioning, see Scaling.

• Your application state size is too large. You can monitor your application state size using the
lastCheckpointSize metric.

• Your application's state data is unequally distributed between keys. If your application uses the
KeyBy operator, ensure that your incoming data is being divided equally between keys. If most
of the data is being assigned to a single key, this creates a bottleneck that causes failures.

• Your application is experiencing memory or garbage collection backpressure. Monitor
your application's heapMemoryUtilization, oldGenerationGCTime, and
oldGenerationGCCount for spikes or steadily increasing values.

Checkpointing Timing Out 697

hhttps://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/fault-tolerance/serialization/third_party_serializers/
hhttps://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/fault-tolerance/serialization/third_party_serializers/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/ops/monitoring/checkpoint_monitoring/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Checkpoint failure for Apache Beam application

If your Beam application is configured with shutdownSourcesAfterIdleMs set to 0ms, checkpoints
can fail to trigger because tasks are in "FINISHED" state. This section describes symptoms and
resolution for this condition.

Symptom

Go to your Managed Service for Apache Flink application CloudWatch logs and check if the
following log message has been logged. The following log message indicates that checkpoint
failed to trigger as some tasks has been finished.

 {
 "locationInformation":
 "org.apache.flink.runtime.checkpoint.CheckpointCoordinator.onTriggerFailure(CheckpointCoordinator.java:888)",
 "logger": "org.apache.flink.runtime.checkpoint.CheckpointCoordinator",
 "message": "Failed to trigger checkpoint for job your job ID since some
 tasks of job your job ID has been finished, abort the checkpoint Failure reason: Not
 all required tasks are currently running.",
 "threadName": "Checkpoint Timer",
 "applicationARN": your application ARN,
 "applicationVersionId": "5",
 "messageSchemaVersion": "1",
 "messageType": "INFO"
 }

This can also be found on Flink dashboard where some tasks have entered "FINISHED" state, and
checkpointing is not possible anymore.

Checkpoint Failure (Beam) 698

https://beam.apache.org/documentation/runners/flink/#:~:text=shutdownSourcesAfterIdleMs

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Cause

shutdownSourcesAfterIdleMs is a Beam config variable that shuts down sources which have been
idle for the configured time of milliseconds. Once a source has been shut down, checkpointing is
not possible anymore. This could lead to checkpoint failure.

One of the causes for tasks entering "FINISHED" state is when shutdownSourcesAfterIdleMs is set
to 0ms, which means that tasks that are idle will be shutdown immediately.

Solution

To prevent tasks from entering "FINISHED" state immediately, set shutdownSourcesAfterIdleMs to
Long.MAX_VALUE. This can be done in two ways:

• Option 1: If your beam configuration is set in your Managed Service for Apache Flink application
configuration page, then you can add a new key value pair to set shutdpwnSourcesAfteridleMs as
follows:

• Option 2: If your beam configuration is set in your JAR file, then you can set
shutdownSourcesAfterIdleMs as follows:

 FlinkPipelineOptions options =
 PipelineOptionsFactory.create().as(FlinkPipelineOptions.class); // Initialize Beam
 Options object

 options.setShutdownSourcesAfterIdleMs(Long.MAX_VALUE); // set
 shutdownSourcesAfterIdleMs to Long.MAX_VALUE
 options.setRunner(FlinkRunner.class);

 Pipeline p = Pipeline.create(options); // attach specified
 options to Beam pipeline

Checkpoint Failure (Beam) 699

https://issues.apache.org/jira/browse/FLINK-2491

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Backpressure

Flink uses backpressure to adapt the processing speed of individual operators.

The operator can struggle to keep up processing the message volume it receives for many reasons.
The operation may require more CPU resources than the operator has available, The operator may
wait for I/O operations to complete. If an operator cannot process events fast enough, it build
backpressure in the upstream operators feeding into the slow operator. This causes the upstream
operators to slow down, which can further propagate the backpressure to the source and cause
the source to adapt to the overall throughput of the application by slowing down as well. You
can find a deeper description of backpressure and how it works at How Apache Flink™ handles
backpressure.

Knowing which operators in an applications are slow gives you crucial information to understand
the root cause of performance problems in the application. Backpressure information is exposed
through the Flink Dashboard. To identify the slow operator, look for the operator with a high
backpressure value that is closest to a sink (operator B in the following example). The operator
causing the slowness is then one of the downstream operators (operator C in the example). B could
process events faster, but is backpressured as it cannot forward the output to the actual slow
operator C.

A (backpressured 93%) -> B (backpressured 85%) -> C (backpressured 11%) -> D
 (backpressured 0%)

Once you have identified the slow operator, try to understand why it's slow. There could be a
myriad of reasons and sometimes it's not obvious what's wrong and can require days of debugging
and profiling to resolve. Following are some obvious and more common reasons, some of which are
further explained below:

• The operator is doing slow I/O, e.g., network calls (consider using AsyncIO instead).

• There is a skew in the data and one operator is receiving more events than others (verify by
looking at the number of messages in/out of individual subtasks (i.e., instances of the same
operator) in the Flink dashboard.

• It's a resource intensive operation (if there is no data skew consider scaling out for CPU/memory
bound work or increasing ParallelismPerKPU for I/O bound work)

• Extensive logging in the operator (reduce the logging to a minimum for production application
or consider sending debug output to a data stream instead).

Backpressure 700

https://www.ververica.com/blog/how-flink-handles-backpressure
https://www.ververica.com/blog/how-flink-handles-backpressure
https://nightlies.apache.org/flink/flink-docs-stable/docs/ops/monitoring/back_pressure/
https://nightlies.apache.org/flink/flink-docs-stable/docs/ops/monitoring/back_pressure/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Testing throughput with the Discarding Sink

The Discarding Sink simply disregards all events it receives while still executing the application (an
application without any sink fails to execute). This is very useful for throughput testing, profiling,
and to verify if the application is scaling properly. It's also a very pragmatic sanity check to verify if
the sinks are causing back pressure or the application (but just checking the backpressure metrics is
often easier and more straightforward).

By replacing all sinks of an application with a discarding sink and creating a mock source that
generates data that r esembles production data, you can measure the maximum throughput of the
application for a certain parallelism setting. You can then also increase the parallelism to verify
that the application scales properly and does not have a bottleneck that only emerges at higher
throughput (e.g., because of data skew).

Data skew

A Flink application is executed on a cluster in a distributed fashion. To scale out to multiple nodes,
Flink uses the concept of keyed streams, which essentially means that the events of a stream
are partitioned according to a specific key, e.g., customer id, and Flink can then process different
partitions on different nodes. Many of the Flink operators are then evaluated based on these
partitions, e.g., Keyed Windows, Process Functions and Async I/O.

Choosing a partition key often depends on the business logic. At the same time, many of the best
practices for, e.g., DynamoDB and Spark, equally apply to Flink, including:

• ensuring a high cardinality of partition keys

• avoiding skew in the event volume between partitions

You can identify skew in the partitions by comparing the records received/sent of subtasks
(i.e., instances of the same operator) in the Flink dashboard. In addition, Managed Service for
Apache Flink monitoring can be configured to expose metrics for numRecordsIn/Out and
numRecordsInPerSecond/OutPerSecond on a subtask level as well.

State skew

For stateful operators, i.e., operators that maintain state for their business logic such as windows,
data skew always leads to state skew. Some subtasks receive more events than others because
of the skew in the data and hence are also persisting more data in state. However, even for an

Data skew 701

https://nightlies.apache.org/flink/flink-docs-stable/api/java/org/apache/flink/streaming/api/functions/sink/DiscardingSink.html
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/windows/
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/process_function/
https://nightlies.apache.org/flink/flink-docs-stable/docs/dev/datastream/operators/asyncio/
https://aws.amazon.com/dynamodb/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

application that has evenly balanced partitions, there can be a skew in how much data is persisted
in state. For instance, for session windows, some users and sessions respectively may be much
longer than others. If the longer sessions happen to be part of the same partition, it can lead to an
imbalance of the state size kept by different subtasks of the same operator.

State skew not only increases more memory and disk resources required by individual subtasks,
it can also decrease the overall performance of the application. When an application is taking a
checkpoint or savepoint, the operator state is persisted to Amazon S3, to protect the state against
node or cluster failure. During this process (especially with exactly once semantics that are enabled
by default on Managed Service for Apache Flink), the processing stalls from an external perspective
until the checkpoint/savepoint has completed. If there is data skew, the time to complete the
operation can be bound by a single subtask that has accumulated a particularly high amount of
state. In extreme cases, taking checkpoints/savepoints can fail because of a single subtask not
being able to persist state.

So similar to data skew, state skew can substantially slow down an application.

To identify state skew, you can leverage the Flink dashboard. Find a recent checkpoint or savepoint
and compare the amount of data that has been stored for individual subtasks in the details.

Integrating with resources in different Regions

You can enable using StreamingFileSink to write to an Amazon S3 bucket in a different Region
from your Managed Service for Apache Flink application via a setting required for cross Region
replication in the Flink configuration. To do this, file a support ticket at Amazon Web Services
Support Center.

Integrating with resources in different regions 702

https://console.amazonaws.cn/support/home#/
https://console.amazonaws.cn/support/home#/

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Document history for Amazon Managed Service for
Apache Flink

The following table describes the important changes to the documentation since the last release of
Managed Service for Apache Flink.

• API version: 2018-05-23

• Latest documentation update: August 30, 2023

Change Description Date

Kinesis Data Analytics is now
known as Managed Service
for Apache Flink

There are no changes to the
service endpoints, APIs, the
Command Line Interface, IAM
access policies, CloudWatch
Metrics, or the Amazon Billing
dashboards. Your existing
applications will continue to
work as they did previousl
y. For more information, see
What Is Managed Service for
Apache Flink?

August 30, 2023

Support for Apache Flink
version 1.15.2

Managed Service for Apache
Flink now supports applicati
ons that use Apache Flink
version 1.15.2. Create Kinesis
Data Analytics applications
using the Apache Flink Table
API. For more information,
see Creating applications.

November 22, 2022

Support for Apache Flink
version 1.13.2

Managed Service for Apache
Flink now supports applicati
ons that use Apache Flink

October 13, 2021

703

https://docs.amazonaws.cn/managed-flink/latest/java/what-is.html
https://docs.amazonaws.cn/managed-flink/latest/java/what-is.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Change Description Date

version 1.13.2. Create Kinesis
Data Analytics applications
using the Apache Flink Table
API. For more information,
see Getting Started: Flink
1.13.2.

Support for Python Managed Service for Apache
Flink now supports applicati
ons that use Python with the
Apache Flink Table API & SQL.
For more information, see
Using Python.

March 25, 2021

Support for Apache Flink
1.11.1

Managed Service for Apache
Flink now supports applicati
ons that use Apache Flink
1.11.1. Create Kinesis Data
Analytics applications using
the Apache Flink Table API.
For more information, see
Creating applications.

November 19, 2020

Apache Flink Dashboard Use the Apache Flink
Dashboard to monitor
application health and
performance. For more
information, see Apache Flink
Dashboard.

November 19, 2020

EFO Consumer Create applications that use
an Enhanced Fan-Out (EFO)
consumer to read from a
Kinesis Data Stream. For
more information, see EFO
Consumer.

October 6, 2020

704

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Change Description Date

Apache Beam Create applications that use
Apache Beam to process
streaming data. For more
information, see Using
CloudFormation with
Managed Service for Apache
Flink.

September 15, 2020

Performance How to troubleshoot applicati
on performance issues, and
how to create a performan
t application. For more
information, see Performan
ce.

July 21, 2020

Custom Keystore How to access an Amazon
MSK cluster that uses
a custom keystore for
encryption in transit. For
more information, see
Custom Truststore.

June 10, 2020

CloudWatch Alarms Recommendations for
creating CloudWatch alarms
with Managed Service for
Apache Flink. For more
information, see Alarms.

June 5, 2020

New CloudWatch Metrics Managed Service for Apache
Flink now emits 22 metrics to
Amazon CloudWatch Metrics.
For more information, see
Metrics and dimensions in
Managed Service for Apache
Flink.

May 12, 2020

705

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Change Description Date

Custom CloudWatch Metrics Define application-specific
metrics and emit them to
Amazon CloudWatch Metrics.
For more information, see
Custom metrics.

May 12, 2020

Example: Read From a Kinesis
Stream in a Different Account

Learn how to access a
Kinesis stream in a different
Amazon account in your
Managed Service for Apache
Flink application. For more
information, see Cross-Acc
ount.

March 30, 2020

Support for Apache Flink
1.8.2

Managed Service for Apache
Flink now supports applicati
ons that use Apache Flink
1.8.2. Use the Flink Streaming
FileSink connector to write
output directly to S3. For
more information, see
Creating applications.

December 17, 2019

Managed Service for Apache
Flink VPC

Configure a Managed Service
for Apache Flink application
to connect to a virtual private
cloud. For more information,
see Using an Amazon VPC.

November 25, 2019

Managed Service for Apache
Flink Best Practices

Best practices for creating
and administering Managed
Service for Apache Flink
applications. For more
information, see Best
practices.

October 14, 2019

706

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Change Description Date

Analyze Managed Service for
Apache Flink Application Logs

Use CloudWatch Logs
Insights to monitor your
Managed Service for Apache
Flink application. For more
information, see Analyzing
logs.

June 26, 2019

Managed Service for Apache
Flink Application Runtime
Properties

Work with Runtime Propertie
s in Managed Service for
Apache Flink. For more
information, see Runtime
properties.

June 24, 2019

Tagging Managed Service for
Apache Flink Applications

Use application tagging to
determine per-application
costs, control access, or for
user-defined purposes. For
more information, see Using
tagging.

May 8, 2019

Logging Managed Service for
Apache Flink API Calls with
Amazon CloudTrail

Managed Service for Apache
Flink is integrated with
Amazon CloudTrail, a service
that provides a record of
actions taken by a user, role,
or an Amazon service in
Managed Service for Apache
Flink. For more information,
see Using Amazon CloudTrail.

March 22, 2019

707

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Change Description Date

Create an Application
(Firehose Sink)

Exercise to create a Managed
Service for Apache Flink
with an Amazon Kinesis data
stream as a source, and an
Amazon Data Firehose stream
as a sink. For more informati
on, see Firehose sink.

December 13, 2018

Public release This is the initial release
of the Managed Service for
Apache Flink Developer Guide
for Java Applications.

November 27, 2018

708

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink API example code

This topic contains example request blocks for Managed Service for Apache Flink actions.

To use JSON as the input for an action with the Amazon Command Line Interface (Amazon CLI),
save the request in a JSON file. Then pass the file name into the action using the --cli-input-
json parameter.

The following example demonstrates how to use a JSON file with an action.

$ aws kinesisanalyticsv2 start-application --cli-input-json file://start.json

For more information about using JSON with the Amazon CLI, see Generate CLI Skeleton and CLI
Input JSON Parameters in the Amazon Command Line Interface User Guide.

Topics

• AddApplicationCloudWatchLoggingOption

• AddApplicationInput

• AddApplicationInputProcessingConfiguration

• AddApplicationOutput

• AddApplicationReferenceDataSource

• AddApplicationVpcConfiguration

• CreateApplication

• CreateApplicationSnapshot

• DeleteApplication

• DeleteApplicationCloudWatchLoggingOption

• DeleteApplicationInputProcessingConfiguration

• DeleteApplicationOutput

• DeleteApplicationReferenceDataSource

• DeleteApplicationSnapshot

• DeleteApplicationVpcConfiguration

• DescribeApplication

• DescribeApplicationSnapshot

709

https://docs.amazonaws.cn/cli/latest/userguide/generate-cli-skeleton.html
https://docs.amazonaws.cn/cli/latest/userguide/generate-cli-skeleton.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

• DiscoverInputSchema

• ListApplications

• ListApplicationSnapshots

• StartApplication

• StopApplication

• UpdateApplication

AddApplicationCloudWatchLoggingOption

The following example request code for the AddApplicationCloudWatchLoggingOption action adds
an Amazon CloudWatch logging option to a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CloudWatchLoggingOption": {
 "LogStreamARN": "arn:aws:logs:us-east-1:123456789123:log-group:my-log-
group:log-stream:My-LogStream"
 },
 "CurrentApplicationVersionId": 2
}

AddApplicationInput

The following example request code for the AddApplicationInput action adds an application input
to a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 2,
 "Input": {
 "InputParallelism": {
 "Count": 2
 },
 "InputSchema": {
 "RecordColumns": [
 {
 "Mapping": "$.TICKER",
 "Name": "TICKER_SYMBOL",

AddApplicationCloudWatchLoggingOption 710

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationCloudWatchLoggingOption.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationInput.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "SqlType": "VARCHAR(50)"
 },
 {
 "SqlType": "REAL",
 "Name": "PRICE",
 "Mapping": "$.PRICE"
 }
],
 "RecordEncoding": "UTF-8",
 "RecordFormat": {
 "MappingParameters": {
 "JSONMappingParameters": {
 "RecordRowPath": "$"
 }
 },
 "RecordFormatType": "JSON"
 }
 },
 "KinesisStreamsInput": {
 "ResourceARN": "arn:aws:kinesis:us-east-1:012345678901:stream/
ExampleInputStream"
 }
 }
}

AddApplicationInputProcessingConfiguration

The following example request code for the AddApplicationInputProcessingConfiguration action
adds an application input processing configuration to a Managed Service for Apache Flink
application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 2,
 "InputId": "2.1",
 "InputProcessingConfiguration": {
 "InputLambdaProcessor": {
 "ResourceARN": "arn:aws:lambda:us-
east-1:012345678901:function:MyLambdaFunction"
 }
 }
}

AddApplicationInputProcessingConfiguration 711

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationInputProcessingConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

AddApplicationOutput

The following example request code for the AddApplicationOutput action adds a Kinesis data
stream as an application output to a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 2,
 "Output": {
 "DestinationSchema": {
 "RecordFormatType": "JSON"
 },
 "KinesisStreamsOutput": {
 "ResourceARN": "arn:aws:kinesis:us-east-1:012345678901:stream/
ExampleOutputStream"
 },
 "Name": "DESTINATION_SQL_STREAM"
 }
}

AddApplicationReferenceDataSource

The following example request code for the AddApplicationReferenceDataSource action adds a CSV
application reference data source to a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 5,
 "ReferenceDataSource": {
 "ReferenceSchema": {
 "RecordColumns": [
 {
 "Mapping": "$.TICKER",
 "Name": "TICKER",
 "SqlType": "VARCHAR(4)"
 },
 {
 "Mapping": "$.COMPANYNAME",
 "Name": "COMPANY_NAME",
 "SqlType": "VARCHAR(40)"
 },
],

AddApplicationOutput 712

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationOutput.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_AddApplicationReferenceDataSource.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "RecordEncoding": "UTF-8",
 "RecordFormat": {
 "MappingParameters": {
 "CSVMappingParameters": {
 "RecordColumnDelimiter": " ",
 "RecordRowDelimiter": "\r\n"
 }
 },
 "RecordFormatType": "CSV"
 }
 },
 "S3ReferenceDataSource": {
 "BucketARN": "arn:aws:s3:::MyS3Bucket",
 "FileKey": "TickerReference.csv"
 },
 "TableName": "string"
 }
}

AddApplicationVpcConfiguration

The following example request code for the AddApplicationVpcConfiguration action adds a VPC
configuration to an existing application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9,
 "VpcConfiguration": {
 "SecurityGroupIds": ["sg-0123456789abcdef0"],
 "SubnetIds": ["subnet-0123456789abcdef0"]
 }
}

CreateApplication

The following example request code for the CreateApplication action creates a Managed Service for
Apache Flink application:

{
 "ApplicationName":"MyApplication",

AddApplicationVpcConfiguration 713

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_AddApplicationVpcConfiguration.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ApplicationDescription":"My-Application-Description",
 "RuntimeEnvironment":"FLINK-1_15",
 "ServiceExecutionRole":"arn:aws:iam::123456789123:role/myrole",
 "CloudWatchLoggingOptions":[
 {
 "LogStreamARN":"arn:aws:logs:us-east-1:123456789123:log-group:my-log-group:log-
stream:My-LogStream"
 }
],
 "ApplicationConfiguration": {
 "EnvironmentProperties":
 {"PropertyGroups":
 [
 {"PropertyGroupId": "ConsumerConfigProperties",
 "PropertyMap":
 {"aws.region": "us-east-1",
 "flink.stream.initpos": "LATEST"}
 },
 {"PropertyGroupId": "ProducerConfigProperties",
 "PropertyMap":
 {"aws.region": "us-east-1"}
 },
]
 },
 "ApplicationCodeConfiguration":{
 "CodeContent":{
 "S3ContentLocation":{
 "BucketARN":"arn:aws:s3:::mybucket",
 "FileKey":"myflink.jar",
 "ObjectVersion":"AbCdEfGhIjKlMnOpQrStUvWxYz12345"
 }
 },
 "CodeContentType":"ZIPFILE"
 },
 "FlinkApplicationConfiguration":{
 "ParallelismConfiguration":{
 "ConfigurationType":"CUSTOM",
 "Parallelism":2,
 "ParallelismPerKPU":1,
 "AutoScalingEnabled":true
 }
 }
 }

CreateApplication 714

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

}

CreateApplicationSnapshot

The following example request code for the CreateApplicationSnapshot action creates a snapshot
of application state:

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MySnapshot"
}

DeleteApplication

The following example request code for the DeleteApplication action deletes a Managed Service
for Apache Flink application:

{"ApplicationName": "MyApplication",
"CreateTimestamp": 12345678912}

DeleteApplicationCloudWatchLoggingOption

The following example request code for the DeleteApplicationCloudWatchLoggingOption
action deletes an Amazon CloudWatch logging option from a Managed Service for Apache Flink
application:

{
 "ApplicationName": "MyApplication",
 "CloudWatchLoggingOptionId": "3.1"
 "CurrentApplicationVersionId": 3
}

DeleteApplicationInputProcessingConfiguration

The following example request code for the DeleteApplicationInputProcessingConfiguration action
removes an input processing configuration from a Managed Service for Apache Flink application:

CreateApplicationSnapshot 715

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_CreateApplicationSnapshot.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationCloudWatchLoggingOption.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationInputProcessingConfiguration.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "InputId": "2.1"
}

DeleteApplicationOutput

The following example request code for the DeleteApplicationOutput action removes an
application output from a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 4,
 "OutputId": "4.1"
}

DeleteApplicationReferenceDataSource

The following example request code for the DeleteApplicationReferenceDataSource action removes
an application reference data source from a Managed Service for Apache Flink application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 5,
 "ReferenceId": "5.1"
}

DeleteApplicationSnapshot

The following example request code for the DeleteApplicationSnapshot action deletes a snapshot
of application state:

{
 "ApplicationName": "MyApplication",
 "SnapshotCreationTimestamp": 12345678912,
 "SnapshotName": "MySnapshot"
}

DeleteApplicationOutput 716

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationOutput.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationReferenceDataSource.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DeleteApplicationSnapshot.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

DeleteApplicationVpcConfiguration

The following example request code for the DeleteApplicationVpcConfiguration action removes an
existing VPC configuration from an application:

{
 "ApplicationName": "MyApplication",
 "CurrentApplicationVersionId": 9,
 "VpcConfigurationId": "1.1"
}

DescribeApplication

The following example request code for the DescribeApplication action returns details about a
Managed Service for Apache Flink application:

{"ApplicationName": "MyApplication"}

DescribeApplicationSnapshot

The following example request code for the DescribeApplicationSnapshot action returns details
about a snapshot of application state:

{
 "ApplicationName": "MyApplication",
 "SnapshotName": "MySnapshot"
}

DiscoverInputSchema

The following example request code for the DiscoverInputSchema action generates a schema from
a streaming source:

{
 "InputProcessingConfiguration": {
 "InputLambdaProcessor": {

DeleteApplicationVpcConfiguration 717

https://docs.amazonaws.cn/managed-flink/latest/apiv2/API_DeleteApplicationVpcConfiguration.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DescribeApplicationSnapshot.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DiscoverInputSchema.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "ResourceARN": "arn:aws:lambda:us-
east-1:012345678901:function:MyLambdaFunction"
 }
 },
 "InputStartingPositionConfiguration": {
 "InputStartingPosition": "NOW"
 },
 "ResourceARN": "arn:aws:kinesis:us-east-1:012345678901:stream/ExampleInputStream",
 "S3Configuration": {
 "BucketARN": "string",
 "FileKey": "string"
 },
 "ServiceExecutionRole": "string"
}

The following example request code for the DiscoverInputSchema action generates a schema from
a reference source:

{
 "S3Configuration": {
 "BucketARN": "arn:aws:s3:::mybucket",
 "FileKey": "TickerReference.csv"
 },
 "ServiceExecutionRole": "arn:aws:iam::123456789123:role/myrole"
}

ListApplications

The following example request code for the ListApplications action returns a list of Managed
Service for Apache Flink applications in your account:

{
 "ExclusiveStartApplicationName": "MyApplication",
 "Limit": 50
}

ListApplicationSnapshots

The following example request code for the ListApplicationSnapshots action returns a list of
snapshots of application state:

ListApplications 718

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_DiscoverInputSchema.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_ListApplications.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_ListApplicationSnapshots.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

{"ApplicationName": "MyApplication",
 "Limit": 50,
 "NextToken": "aBcDeFgHiJkLmNoPqRsTuVwXyZ0123"
}

StartApplication

The following example request code for the StartApplication action starts a Managed Service for
Apache Flink application, and loads the application state from the latest snapshot (if any):

{
 "ApplicationName": "MyApplication",
 "RunConfiguration": {
 "ApplicationRestoreConfiguration": {
 "ApplicationRestoreType": "RESTORE_FROM_LATEST_SNAPSHOT"
 }
 }
}

StopApplication

The following example request code for the API_StopApplication action stops a Managed Service
for Apache Flink application:

{"ApplicationName": "MyApplication"}

UpdateApplication

The following example request code for the UpdateApplication action updates a Managed Service
for Apache Flink application to change the location of the application code:

{"ApplicationName": "MyApplication",
"CurrentApplicationVersionId": 1,
"ApplicationConfigurationUpdate": {
 "ApplicationCodeConfigurationUpdate": {
 "CodeContentTypeUpdate": "ZIPFILE",
 "CodeContentUpdate": {
 "S3ContentLocationUpdate": {

StartApplication 719

https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StartApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_StopApplication.html
https://docs.amazonaws.cn/managed-service-for-apache-flink/latest/apiv2/API_UpdateApplication.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

 "BucketARNUpdate": "arn:aws:s3:::my_new_bucket",
 "FileKeyUpdate": "my_new_code.zip",
 "ObjectVersionUpdate": "2"
 }
 }
 }
}

UpdateApplication 720

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

Managed Service for Apache Flink API Reference

For information about the APIs that Managed Service for Apache Flink provides, see Managed
Service for Apache Flink API Reference.

721

https://docs.amazonaws.cn/managed-flink/latest/apiv2/Welcome.html
https://docs.amazonaws.cn/managed-flink/latest/apiv2/Welcome.html

Managed Service for Apache Flink Managed Service for Apache Flink Developer Guide

This content was moved to Release versions. See Release versions.

722

	Managed Service for Apache Flink
	Table of Contents
	
	What is Amazon Managed Service for Apache Flink?
	Choosing Managed Service for Apache Flink or Managed Service for Apache Flink Studio
	Choosing which Apache Flink APIs to use in Managed Service for Apache Flink
	Choosing a Flink API

	Getting started with streaming data applications

	Managed Service for Apache Flink: How it works
	Programming your Apache Flink application
	DataStream API
	Table API

	Creating your Managed Service for Apache Flink application
	Creating a Managed Service for Apache Flink application
	Building your Managed Service for Apache Flink application code
	Specifying your application's Apache Flink version

	Creating your Managed Service for Apache Flink application
	Starting your Managed Service for Apache Flink application
	Verifying your Managed Service for Apache Flink application

	Running a Managed Service for Apache Flink application
	Application and job status
	Batch workloads

	Application resources
	Managed Service for Apache Flink application resources
	Apache Flink application resources
	Operator parallelism
	Operator chaining

	DataStream API
	Using connectors to move data in Managed Service for Apache Flink with the DataStream API
	Available connectors
	Adding streaming data sources to Managed Service for Apache Flink
	Kinesis data streams
	Creating a FlinkKinesisConsumer
	Creating a FlinkKinesisConsumer that uses an EFO consumer

	Amazon MSK
	Creating a KafkaSource

	Writing data using sinks in Managed Service for Apache Flink
	Kinesis data streams
	Amazon S3
	Firehose
	Creating a FlinkKinesisFirehoseProducer
	FlinkKinesisFirehoseProducer Code Example

	Using Asynchronous I/O in Managed Service for Apache Flink

	Transforming data using operators in Managed Service for Apache Flink with the DataStream API
	Transform operators
	Aggregation operators

	Tracking events in Managed Service for Apache Flink using the DataStream API

	Table API
	Table API connectors
	Table API sources
	Table API sinks
	User-defined sources and sinks

	Table API time attributes

	Using Python with Managed Service for Apache Flink
	Programming your Managed Service for Apache Flink for Python application
	Reading and writing streaming data
	Creating a table
	Reading streaming data
	Writing streaming data

	Reading runtime properties
	Creating your application's code package

	Creating your Managed Service for Apache Flink Python application
	Specifying your code files

	Monitoring your Python Managed Service for Apache Flink application
	Querying logs with CloudWatch Insights

	Runtime properties in Managed Service for Apache Flink
	Working with runtime properties in the console
	Working with runtime properties in the CLI
	Adding runtime properties when creating an application
	Adding and updating runtime properties in an existing application
	Removing runtime properties

	Accessing runtime properties in a Managed Service for Apache Flink application

	Implementing fault tolerance in Managed Service for Apache Flink
	Configuring checkpointing in Managed Service for Apache Flink
	Checkpointing API examples
	Configure checkpointing for a new application
	Disable checkpointing for a new application
	Configure checkpointing for an existing application
	Disable checkpointing for an existing application

	Managing application backups using snapshots
	Automatic snapshot creation
	Restoring from a snapshot that contains incompatible state data
	Snapshot API examples
	Enable snapshots for an application
	Create a snapshot
	List snapshots for an application
	List details for an application snapshot
	Delete a snapshot
	Restart an application using a named snapshot
	Restart an application using the most recent snapshot
	Restart an application using no snapshot

	In-place version upgrades for Apache Flink
	Upgrading applications using in-place version upgrades for Apache Flink
	Before upgrading: Updating your Apache Flink application

	Upgrading your application to a new Apache Flink version
	Upgrading an application in RUNNING state
	Upgrading an application in READY state

	Rollback
	Runtime upgrade succeeded, the application is in RUNNING state, but the job is failing and continuously restarting
	Rolling back an application that is stuck in UPDATING

	General best practices and recommendations
	Precautions and known issues

	Application scaling in Managed Service for Apache Flink
	Configuring application parallelism and ParallelismPerKPU
	Allocating Kinesis Processing Units
	Updating your application's parallelism
	Automatic scaling
	maxParallelism considerations

	Using tagging
	Adding tags when an application is created
	Adding or u tags for an existing application
	Listing tags for an application
	Removing tags from an application

	Using CloudFormation with Managed Service for Apache Flink
	Before you begin
	Writing a Lambda function
	Creating a Lambda role
	Invoking the Lambda function
	Full example

	Using the Apache Flink Dashboard with Managed Service for Apache Flink
	Accessing your application's Apache Flink Dashboard
	Accessing your application's Apache Flink Dashboard using the Managed Service for Apache Flink console
	Accessing your application's Apache Flink Dashboard using the Managed Service for Apache Flink CLI

	Release versions
	Amazon Managed Service for Apache Flink 1.18 (recommended version)
	Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.18
	Components
	Bug fixes
	Known issues

	Amazon Managed Service for Apache Flink 1.15
	Changes in Amazon Managed Service for Apache Flink with Apache Flink 1.15
	Components

	Earlier version information for Managed Service for Apache Flink
	Using the Apache Flink Kinesis Streams connector with previous Apache Flink versions
	Building applications with Apache Flink 1.8.2
	Building applications with Apache Flink 1.6.2
	Upgrading applications
	Available connectors in Apache Flink 1.6.2 and 1.8.2
	Getting started: Flink 1.13.2
	Components of a Managed Service for Apache Flink application
	Prerequisites for completing the exercises
	Step 1: Set up an Amazon account and create an administrator user
	Sign up for an Amazon Web Services account
	Secure IAM users
	Grant programmatic access
	Next step

	Next step
	Step 2: Set up the Amazon Command Line Interface (Amazon CLI)
	Next step

	Step 3: Create and run a Managed Service for Apache Flink application
	Create two Amazon Kinesis data streams
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the Application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (Amazon CLI)
	Create a permissions policy
	Create an IAM role
	Create the Managed Service for Apache Flink application
	Start the Application
	Stop the Application
	Add a CloudWatch Logging Option
	Update Environment Properties
	Update the Application Code

	Next step

	Step 4: Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources
	Next step

	Step 5: Next steps

	Getting started: Flink 1.11.1
	Components of a Managed Service for Apache Flink application
	Prerequisites for completing the exercises
	Step 1: Set up an Amazon account and create an administrator user
	Sign up for an Amazon Web Services account
	Secure IAM users
	Grant programmatic access
	Next step

	Step 2: Set up the Amazon Command Line Interface (Amazon CLI)
	Next step

	Step 3: Create and run a Managed Service for Apache Flink application
	Create two Amazon Kinesis data streams
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (Amazon CLI)
	Create a Permissions Policy
	Create an IAM Role
	Create the Managed Service for Apache Flink application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties
	Update the application code

	Next step

	Step 4: Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete rour IAM resources
	Delete your CloudWatch resources
	Next step

	Step 5: Next steps

	Getting started: Flink 1.8.2
	Components of Managed Service for Apache Flink application
	Prerequisites for completing the exercises
	Step 1: Set up an Amazon account and create an administrator user
	Sign up for an Amazon Web Services account
	Secure IAM users
	Grant programmatic access

	Step 2: Set up the Amazon Command Line Interface (Amazon CLI)
	Next step

	Step 3: Create and run a Managed Service for Apache Flink application
	Create two Amazon Kinesis data streams
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (Amazon CLI)
	Create a Permissions Policy
	Create an IAM role
	Create the Managed Service for Apache Flink application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties
	Update the application code

	Next step

	Step 4: Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Getting started: Flink 1.6.2
	Components of a Managed Service for Apache Flink application
	Prerequisites for completing the exercises
	Step 1: Set up an Amazon account and create an administrator user
	Sign up for an Amazon Web Services account
	Secure IAM users
	Grant programmatic access

	Step 2: Set up the Amazon Command Line Interface (Amazon CLI)
	Next step

	Step 3: Create and run a Managed Service for Apache Flink application
	Create two Amazon Kinesis data streams
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (Amazon CLI)
	Create a permissions policy
	Create an IAM role
	Create the Managed Service for Apache Flink application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties
	Update the application code

	Step 4: Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Earlier version (legacy) examples for Managed Service for Apache Flink
	DataStream API examples
	Example: Tumbling window
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Sliding window
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Configure the application parallelism
	Run the application

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Writing to an Amazon S3 bucket
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Modify the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application

	Verify the application output
	Optional: Customize the source and sink
	Configure data partitioning
	Configure read frequency
	Configure write buffering

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data stream
	Delete your Amazon S3 objects and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Tutorial: Using a Managed Service for Apache Flink application to replicate data from one topic in an MSK cluster to another in a VPC
	Create an Amazon VPC with an Amazon MSK cluster
	Create the application code
	Upload the Apache Flink streaming Java code
	Create the application
	Configure the application
	Run the application
	Test the application

	Example: Use an EFO consumer with a Kinesis data stream
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete Your Amazon S3 Object and Bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Writing to Firehose
	Create dependent resources
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (console)
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application
	Update the application

	Create and run the application (Amazon CLI)
	Create a permissions policy
	Create an IAM role
	Create the Managed Service for Apache Flink application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update the application code

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data stream
	Delete your Firehose stream
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Read from a Kinesis stream in a different account
	Prerequisites
	Setup
	Create source Kinesis stream
	Create and update IAM roles and policies
	Sink account roles and policies
	Source account roles and policies

	Update the Python script
	Update the Java application
	Build, upload, and run the application

	Tutorial: Using a custom truststore with Amazon MSK
	Current data source APIs
	Legacy SourceFunction APIs
	Create a VPC with an Amazon MSK cluster
	Create a custom truststore and apply it to your cluster
	Create the application code
	Upload the Apache Flink streaming Java code
	Create the application
	Configure the application
	Run the application
	Test the application

	Python examples
	Example: Creating a tumbling window in Python
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compress and upload the Apache Flink streaming Python code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Creating a sliding window in Python
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compress and upload the Apache Flink streaming Python code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Send streaming data to Amazon S3 in Python
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compress and upload the Apache Flink streaming Python code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data stream
	Delete your Amazon S3 objects and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Scala examples
	Example: Creating a tumbling window in Scala
	Download and examine the application code
	Compile and upload the application code
	Create and run the application (console)
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application
	Stop the application

	Create and run the application (CLI)
	Create a permissions policy
	Create an IAM role
	Create the application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties

	Update the application code
	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Creating a sliding window in Scala
	Download and examine the application code
	Compile and upload the application code
	Create and run the application (console)
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application
	Stop the application

	Create and run the application (CLI)
	Create a permissions policy
	Create an IAM role
	Create the application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties

	Update the application code
	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Example: Send streaming data to Amazon S3 in Scala
	Download and examine the application code
	Compile and upload the application code
	Create and run the application (console)
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application
	Stop the application

	Create and run the application (CLI)
	Create a permissions policy
	Create an IAM role
	Create the application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties

	Update the application code
	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Using a Studio notebook with Managed Service for Apache Flink
	Creating a Studio notebook
	Interactive analysis of streaming data
	Flink interpreters
	Apache Flink table environment variables

	Deploying as an application with durable state
	Scala/Python criteria
	SQL criteria

	IAM permissions for Studio notebooks
	Connectors and dependencies
	Default connectors
	Dependencies and custom connectors

	User-defined functions
	Considerations with user-defined functions

	Enabling checkpointing
	Setting the checkpointing interval
	Setting the checkpointing type

	Working with Amazon Glue
	Table properties
	Using Apache Flink time values
	Using Flink connector and format properties

	Examples and tutorials
	Tutorial: Creating a Studio notebook in Managed Service for Apache Flink
	Setup
	Create an Amazon Glue database
	Next steps
	Creating a Studio notebook with Kinesis Data Streams
	Setup
	Create an Amazon Glue table
	Create a Studio notebook with Kinesis Data Streams
	Create a Studio notebook using the Amazon Web Services Management Console
	Create a Studio notebook using the Amazon CLI

	Send data to your Kinesis data stream
	Test your Studio notebook

	Creating a Studio notebook with Amazon MSK
	Setup
	Add a NAT gateway to your VPC
	Create an Amazon Glue connection and table
	Create a Studio notebook with Amazon MSK
	Create a Studio notebook using the Amazon Web Services Management Console
	Create a Studio notebook using the Amazon CLI

	Send data to your Amazon MSK cluster
	Test your Studio notebook

	Cleaning up your application and dependent resources
	Delete your Studio notebook
	Delete your Amazon Glue database and connection
	Delete your IAM role and policy
	Delete your CloudWatch log group
	Clean up Kinesis Data Streams resources
	Clean up MSK resources
	Delete your Amazon MSK cluster
	Terminate your client instance
	Delete your Amazon VPC

	Tutorial: Deploying as an application with durable state
	Setup
	Deploy an application with durable state using the Amazon Web Services Management Console
	Deploy an application with durable state using the Amazon CLI

	Examples
	Creating tables with Amazon MSK/Apache Kafka
	Creating tables with Kinesis
	Tumbling window
	Sliding window
	Interactive SQL
	BlackHole SQL connector
	Data generator
	Interactive Scala
	Interactive Python
	Interactive Python, SQL, and Scala
	Cross-account Kinesis data stream

	Troubleshooting
	Stopping a stuck application
	Deploying as an application with durable state in a VPC with no internet access
	Deploy-as-app size and build time reduction
	Canceling jobs
	Restarting the Apache Flink interpreter

	Appendix: Creating custom IAM policies
	Amazon Glue
	CloudWatch Logs
	Kinesis streams
	Amazon MSK clusters

	Getting started with Amazon Managed Service for Apache Flink (DataStream API)
	Components of the Managed Service for Apache Flink application
	Prerequisites for completing the exercises
	Step 1: Set up an Amazon account and create an administrator user
	Sign up for an Amazon Web Services account
	Secure IAM users
	Grant programmatic access
	Next Step

	Step 2: Set up the Amazon Command Line Interface (Amazon CLI)
	Next step

	Step 3: Create and run a Managed Service for Apache Flink application
	Create two Amazon Kinesis data streams
	Write sample records to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create and run the application (Console)
	Create the application
	Edit the IAM policy
	Configure the application
	Run the Application
	Stop the Application
	Update the Application

	Create and run the Application (Amazon CLI)
	Create a permissions policy
	Create an IAM role
	Create the Managed Service for Apache Flink application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties
	Update the application code

	Next step

	Step 4: Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources
	Next Step

	Step 5: Next steps

	Getting started with Amazon Managed Service for Apache Flink (Table API)
	Components of the Managed Service for Apache Flink application
	Prerequisites
	Create and run a Managed Service for Apache Flink application
	Create dependent resources
	Create a VPC and an Amazon MSK cluster
	Create an Amazon S3 bucket
	Other resources

	Write samplerRecords to the input stream
	Download and examine the Apache Flink streaming Java code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Edit the IAM policy
	Configure the application
	Run the application
	Stop the application

	Next step

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Amazon MSK cluster
	Delete your VPC
	Delete your Amazon S3 objects and bucket
	Delete your IAM resources
	Delete your CloudWatch resources
	Next step

	Next steps

	Getting started with Amazon Managed Service for Apache Flink for Python
	Getting started with Pyflink - The Python Interpreter for Apache | Amazon Web Services
	Components of a Managed Service for Apache Flink application
	Prerequisites
	Create and run a Managed Service for Apache Flink for Python application
	Create dependent resources
	Create two Kinesis streams
	Create an Amazon S3 bucket
	Other resources

	Write sample records to the input stream
	Create and examine the Apache Flink streaming Python code
	Adding third-party dependencies to Python apps
	Upload the Apache Flink streaming Python code
	Create and run the Managed Service for Apache Flink application
	Create the application
	Configure the application
	Edit the IAM policy
	Run the application
	Stop the application

	Next step

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 objects and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Getting started (Scala)
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile and upload the application code
	Create and run the application (console)
	Create the Application
	Configure the application
	Edit the IAM policy
	Run the application
	Stop the application

	Create and run the application (CLI)
	Create a permissions policy
	Create an IAM policy
	Create the application
	Start the application
	Stop the application
	Add a CloudWatch logging option
	Update environment properties
	Update the application code

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Creating Managed Service for Apache Flink applications with Apache Beam
	Using Apache Beam with Managed Service for Apache Flink
	Beam capabilities
	Creating an application using Apache Beam
	Create dependent resources
	Write sample records to the input stream
	Download and examine the application code
	Compile the application code
	Upload the Apache Flink streaming Java code
	Create and run the Managed Service for Apache Flink application
	Create the Application
	Edit the IAM policy
	Configure the application
	Run the application

	Clean up Amazon resources
	Delete your Managed Service for Apache Flink application
	Delete your Kinesis data streams
	Delete your Amazon S3 object and bucket
	Delete your IAM resources
	Delete your CloudWatch resources

	Next steps

	Training workshops, labs, and solution implementations
	Developing Apache Flink applications locally before deploying to Managed Service for Apache Flink for Apache Flink
	Event detection with Managed Service for Apache Flink Studio
	Amazon Streaming data solution for Amazon Kinesis
	Clickstream lab with Apache Flink and Apache Kafka
	Custom scaling using Application Auto Scaling
	Amazon CloudWatch dashboard
	Amazon Streaming data solution for Amazon MSK
	More Managed Service for Apache Flink solutions on GitHub

	Utilities
	Snapshot manager
	Benchmarking

	Managed Service for Apache Flink: Examples
	Java examples
	Getting started with the DataStream API
	Getting started with the Table API and SQL
	Using S3 sink (DataStream API)
	Using a Kinesis source, standard or EFO consumers, and sink (DataStream API)
	Using an Amazon Data Firehose sink (DataStream API)
	Using sliding and tumbling windows (DataStream API)
	Using custom metrics

	Python examples
	
	
	Getting started with PyFlink
	Using tumbling and sliding windows
	Using an S3 sink

	Scala examples
	Multi-step application

	Security in Amazon Managed Service for Apache Flink
	Data protection in Amazon Managed Service for Apache Flink
	Data encryption in Managed Service for Apache Flink
	Encryption at rest
	Encryption in transit
	Key management

	Identity and Access Management for Amazon Managed Service for Apache Flink
	Audience
	Authenticating with identities
	Amazon Web Services account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Managed Service for Apache Flink works with IAM
	Identity-based policies for Managed Service for Apache Flink
	Identity-based policy examples for Managed Service for Apache Flink

	Resource-based policies within Managed Service for Apache Flink
	Policy actions for Managed Service for Apache Flink
	Policy resources for Managed Service for Apache Flink
	Policy condition keys for Managed Service for Apache Flink
	Access control lists (ACLs) in Managed Service for Apache Flink
	Attribute-based access control (ABAC) with Managed Service for Apache Flink
	Using Temporary credentials with Managed Service for Apache Flink
	Cross-service principal permissions for Managed Service for Apache Flink
	Service roles for Managed Service for Apache Flink
	Service-linked roles for Managed Service for Apache Flink

	Identity-based policy examples for Amazon Managed Service for Apache Flink
	Policy best practices
	Using the Managed Service for Apache Flink console
	Allow users to view their own permissions

	Troubleshooting Amazon Managed Service for Apache Flink identity and access
	I am not authorized to perform an action in Managed Service for Apache Flink
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my Amazon account to access my Managed Service for Apache Flink resources

	Cross-service confused deputy prevention

	Monitoring Managed Service for Apache Flink
	Compliance validation for Amazon Managed Service for Apache Flink
	FedRAMP

	Resilience in Amazon Managed Service for Apache Flink
	Disaster recovery
	Versioning

	Infrastructure security in Managed Service for Apache Flink
	Security best practices for Managed Service for Apache Flink
	Implement least privilege access
	Use IAM roles to access other Amazon services
	Implement server-side encryption in dependent resources
	Use CloudTrail to monitor API calls

	Logging and monitoring in Amazon Managed Service for Apache Flink
	Logging
	Querying logs with CloudWatch Logs Insights

	Monitoring
	Setting up application logging
	Setting up CloudWatch logging using the console
	Setting up CloudWatch logging using the CLI
	Creating a CloudWatch log group and log stream
	Working with application CloudWatch logging options
	Adding a CloudWatch log option when creating an application
	Adding a CloudWatch log option to an existing application
	Updating an existing CloudWatch log option
	Deleting a CloudWatch log option from an application
	Setting the application logging level
	Set the application logging level when creating an application
	Update the application logging level

	Adding permissions to write to the CloudWatch log stream
	Trust policy
	Permissions policy

	Application monitoring levels
	Logging best practices
	Logging troubleshooting
	Next step

	Analyzing logs with CloudWatch Logs Insights
	Run a sample query
	Example queries
	Analyze operations: Distribution of tasks
	Analyze operations: Change in parallelism
	Analyze errors: Access denied
	Analyze errors: Source or sink not found
	Analyze errors: Application task-related failures

	Viewing metrics and dimensions in Managed Service for Apache Flink
	Application metrics
	Kinesis Data Streams connector metrics
	Amazon MSK connector metrics
	Apache Zeppelin metrics
	Viewing CloudWatch metrics
	Setting CloudWatch metrics reporting levels
	Using custom metrics with Amazon Managed Service for Apache Flink
	How it works
	Examples
	Record count custom metric
	Word count custom metric

	Viewing custom metrics

	Using CloudWatch Alarms with Amazon Managed Service for Apache Flink
	Recommended Alarms

	Writing custom messages to CloudWatch Logs
	Write to CloudWatch logs using Log4J
	Write to CloudWatch logs using SLF4J

	Logging Managed Service for Apache Flink API calls with Amazon CloudTrail
	Managed Service for Apache Flink information in CloudTrail
	Understanding Managed Service for Apache Flink log file entries

	Tuning performance in Amazon Managed Service for Apache Flink
	Troubleshooting performance
	The data path
	Performance troubleshooting solutions
	CloudWatch monitoring levels
	Application CPU metric
	Application parallelism
	Application logging
	Operator parallelism
	Application logic
	Application memory

	Performance best practices
	Manage scaling properly
	Manage application scaling properly
	Manage operator scaling properly

	Monitor external dependency resource usage
	Run your Apache Flink application locally

	Monitoring performance
	Performance monitoring using CloudWatch metrics
	Performance monitoring using CloudWatch logs and alarms

	Managed Service for Apache Flink and Studio notebook quota
	Managed Service for Apache Flink Maintenance
	Set a UUID for all operators

	Production readiness
	Load testing applications
	Max parallelism
	Set a UUID for all operators

	Best Practices for Managed Service for Apache Flink
	Fault tolerance: checkpoints and savepoints
	Unsupported connector versions
	Performance and parallelism
	Setting per-operator parallelism
	Logging
	Coding
	Managing credentials
	Reading from sources with few shards/partitions
	Studio notebook refresh interval
	Studio notebook optimum performance
	How watermark strategies and idle shards affect time windows
	Summary
	Example

	Set a UUID for all operators
	Add ServiceResourceTransformer to the Maven shade plugin

	Apache Flink stateful functions
	Apache Flink application template
	Location of the module configuration

	Apache Flink settings
	Apache Flink configuration
	State backend
	Checkpointing
	Savepointing
	Heap sizes
	Buffer debloating
	Modifiable Flink configuration properties
	Fault tolerance
	Checkpoints and state backends
	Checkpointing
	RocksDB native metrics
	Advanced state backends options
	Full TaskManager options
	Memory configuration
	RPC / Akka
	Client
	Advanced cluster options
	Filesystem configurations
	Advanced fault tolerance options
	Memory configuration
	Metrics
	Advanced options for the REST endpoint and client
	Advanced SSL security options
	Advanced scheduling options
	Advanced options for Flink web UI

	Viewing configured Flink properties

	Configuring Managed Service for Apache Flink to access resources in an Amazon VPC
	Amazon VPC concepts
	VPC application permissions
	Permissions policy for accessing an Amazon VPC

	Internet and service access for a VPC-connected Managed Service for Apache Flink application
	Related information

	Managed Service for Apache Flink VPC API
	Create application
	AddApplicationVpcConfiguration
	DeleteApplicationVpcConfiguration
	Update application

	Example: Using a VPC to access data in an Amazon MSK cluster

	Troubleshooting Managed Service for Apache Flink
	Development troubleshooting
	Hudi configuration best practices
	Apache Flink Flame Graphs
	Credential provider issue with EFO connector 1.15.2
	Applications with unsupported Kinesis connectors
	Rejection error
	Steps to remediate
	Update a Maven dependency
	Update a Gradle dependency

	Compile error: "Could not resolve dependencies for project"
	Invalid choice: "kinesisanalyticsv2"
	UpdateApplication action isn't reloading application code
	S3 StreamingFileSink FileNotFoundExceptions
	FlinkKafkaConsumer issue with stop with savepoint
	Flink 1.15 Async Sink Deadlock
	Update Java applications
	flink-connector-kinesis
	Other affected connectors

	Update Python applications
	flink-sql-connector-kinesis
	flink-sql-connector-aws-kinesis-streams
	flink-sql-connector-aws-kinesis-firehose
	flink-sql-connector-dynamodb

	Amazon Kinesis data streams source processing out of order during re-sharding

	Runtime troubleshooting
	Troubleshooting tools
	Application issues
	Application is stuck in a transient status
	Snapshot creation fails
	Cannot access resources in a VPC
	Data is lost when writing to an Amazon S3 bucket
	Application is in the RUNNING status but isn't processing data
	Snapshot, application update, or application stop error: InvalidApplicationConfigurationException
	java.nio.file.NoSuchFileException: /usr/local/openjdk-8/lib/security/cacerts

	Application is restarting
	Symptoms
	Causes and solutions

	Throughput is too slow
	Symptoms
	Causes and solutions

	Unbounded state growth
	Symptoms
	Causes and solutions

	I/O bound operators
	Upstream or source throttling from a Kinesis data stream
	Checkpoints
	Checkpointing stages
	Investigating
	Thread dumps
	Thread dumps in Flink

	Flame graphs

	Checkpointing is timing out
	Symptoms
	Causes and solutions

	Checkpoint failure for Apache Beam application
	Symptom
	Cause
	Solution

	Backpressure
	Testing throughput with the Discarding Sink

	Data skew
	State skew
	Integrating with resources in different Regions

	Document history for Amazon Managed Service for Apache Flink
	Managed Service for Apache Flink API example code
	AddApplicationCloudWatchLoggingOption
	AddApplicationInput
	AddApplicationInputProcessingConfiguration
	AddApplicationOutput
	AddApplicationReferenceDataSource
	AddApplicationVpcConfiguration
	CreateApplication
	CreateApplicationSnapshot
	DeleteApplication
	DeleteApplicationCloudWatchLoggingOption
	DeleteApplicationInputProcessingConfiguration
	DeleteApplicationOutput
	DeleteApplicationReferenceDataSource
	DeleteApplicationSnapshot
	DeleteApplicationVpcConfiguration
	DescribeApplication
	DescribeApplicationSnapshot
	DiscoverInputSchema
	ListApplications
	ListApplicationSnapshots
	StartApplication
	StopApplication
	UpdateApplication

	Managed Service for Apache Flink API Reference
	

