I 58 =%
Migration Guide

Amazon Managed Workflows for Apache
Airflow

Amazon Managed Workflows for Apache Airflow Migration Guide

Amazon Managed Workflows for Apache Airflow: Migration Guide

Amazon Managed Workflows for Apache Airflow Migration Guide

Table of Contents

What is the migration gUIde?eeiiiiiiiiiiiiiiieennniiiiiiiiiiiiiineecessssiiiicieeesessssssssssssssssssssssssssssssssssses 1
NetWOrk arChit@CtUIEccccvrccrrrrrsnnernennnnnennennneeneneenieeiiiitiiiiiieieeseessne 2
AMAzoN MWAA COMPONENTS ..c..viiiiiiitirieeeesteeseessteesreesstessseessaessseesssesssaesssessseesssesssassssessssesssesssessssessseens 2
CONNECEIVITY ettt ettt et s it e s ae e st e s b e e st e s saeessae s aeessaessa s saesssaesssesssassssesssasssaesssesssaenssens 4
Key CONSIAEratioNS ...ccccieeeeeeeeiiiiiiieeiiiiineeensnnesissseeeeesssnsessass 5
AULNENTICALION ..ottt sttt st ettt s b e st e e s st et e e s sa b e e e sassastesassansensons 5
EXEQCULION TOLE .ttt ettt et s b sttt s b st s b et et saesbe b esaesabesaesassensanssnenes 5
Migrate to a new Amazon MWAA enVIFONMENTtccccciiiiiieeeeesneecsssssscesss 7
PrEIEGQUISITES ..ottt ettt ettt e st s s e e s e e e st e s b e s st e s ae e st e s aesssaesssaessaasssesassesssessstesssesssaessseessaens 7
Step one: Create @ NEW ENVIFONMENToiviiiiiiieiere ettt ssreeste e st e sssessseesssesssessssessseesssessseasssannns 7
Step two: Migrate your WOrkflOW rESOUICESccueeeeieieeeeeeeceeee ettt st 14
Step three: exporting the Metadata ... 15
Step four: importing the Metadata ...t 17
INEXE SEEPS eeeiiiiieteecteererct ettt st s e e st e s te s s e e st e e s e e s s ae s ssaesae e st essse s saesssassstasssessssesssessstesssessseesssassseenns 20
Migrate workloads from Amazon Data Pipeline to Amazon MWAAccccciiiiimnennnnennssssseccennns 21
ChooSiNg AMAZON MWAA ...ttt et et e st et esteste st e st s e e e et et e s e s tabessassessaessesaessansantansansenes 21
Architecture and CONCEPt MAPPING .oveoieieieieteecereeeee ettt ste e s e s e e e e s e saesae st essessassessaesnennans 22
EXample implemMENtAtioNs ...ttt e e e et ae st s aesae s e e e e e e saenenaanaans 24
PriCiNg COMPATISONoiiiiiiieiteiteectertee st cete st este s sre s s te s s e e stessseesssessseasssesssaesssassseesssessseesssassseesssesssaennses 24
RELALEA FESOUICESovevieiiiieieieetetr ettt ettt s et e s b st e s e s be st s e sba st e e e sabestesassensenassessassesessans 25

DOCUMENT HiSEOIY ..cciiiiiiieeeiieiiiiiiiiiiiinieeenneesiiiisieesiessass 26

Amazon Managed Workflows for Apache Airflow Migration Guide

What is the Amazon MWAA migration guide?

Amazon Managed Workflows for Apache Airflow is a managed orchestration service for Apache
Airflow that allows you to operate data pipelines in the cloud at scale. Amazon MWAA manages the

provisioning and ongoing maintenance of Apache Airflow so you no longer need to worry about
patching, scaling, or securing instances.

Amazon MWAA automatically scales the compute resources that execute tasks to provide
consistent performance on demand. Amazon MWAA secures your data by default. Your workloads
run in your own isolated and secure cloud environment using Amazon Virtual Private Cloud. This
ensures that data is automatically encrypted using Amazon Key Management Service.

Use this guide to migrate your self-managed Apache Airflow workflows to Amazon MWAA, or
upgrade an existing Amazon MWAA environment to a new Apache Airflow version. The migration
tutorial describes how you can create, or clone a new Amazon MWAA environment, migrate your
workflow resources, and transfer your workflow metadata and logs to your new environment.

Before you attempt the migration tutorial, we recommend reviewing the following topics.

« Network architecture

» Key considerations

https://airflow.apache.org/
https://airflow.apache.org/

Amazon Managed Workflows for Apache Airflow Migration Guide

Explore Amazon MWAA network architecture

The following section describes the main components that make up an Amazon MWAA
environment, and the set of Amazon services that each environment integrates with to manage its
resources, keep your data secure, and provide monitoring and visibility for your workflows.

Topics

« Amazon MWAA components

« Connectivity

Amazon MWAA components

Amazon MWAA environments consist of the following four main components:

1. Scheduler — Parses and monitors all of your DAGs, and queues tasks for execution when a DAG's
dependencies are met. Amazon MWAA deploys the scheduler as a Amazon Fargate cluster with
a minimum of 2 schedulers. You can increase the scheduler count up to five, depending on your
workload. For more information about Amazon MWAA environment classes, refer to Amazon
MWAA environment class.

2. Workers — One or more Fargate tasks that runs your scheduled tasks. The number of workers
for your environment is determined by a range between a minimum and maximum number
that you specify. Amazon MWAA starts auto-scaling workers when the number of queued and
running tasks is more than your existing workers can handle. When running and queued tasks
sum to zero for more than two minutes, Amazon MWAA scales back the number of workers to its
minimum. For more information about how Amazon MWAA handles auto-scaling workers, refer
to Amazon MWAA automatic scaling.

3. Web server — Runs the Apache Airflow web Ul. You can configure the web server with private
or public network access. In both cases, access to your Apache Airflow users is controlled by the
access control policy you define in Amazon Identity and Access Management (IAM). For more
information about configuring IAM access policies for your environment, refer to Accessing an
Amazon MWAA environment.

4. Database — Stores metadata about the Apache Airflow environment and your workflows,
including DAG run history. The database is a single-tenant Aurora PostgreSQL database
managed by Amazon, and accessible to the scheduler and worker Fargate containers through a
privately-secured Amazon VPC endpoint.

Amazon MWAA components 2

https://docs.amazonaws.cn/mwaa/latest/userguide/environment-class.html
https://docs.amazonaws.cn/mwaa/latest/userguide/environment-class.html
https://docs.amazonaws.cn/mwaa/latest/userguide/mwaa-autoscaling.html
https://docs.amazonaws.cn/mwaa/latest/userguide/vpc-vpe-access.html#vpc-vpe-about
https://docs.amazonaws.cn/mwaa/latest/userguide/vpc-vpe-access.html#vpc-vpe-about
https://docs.amazonaws.cn/mwaa/latest/userguide/access-policies.html
https://docs.amazonaws.cn/mwaa/latest/userguide/access-policies.html

Amazon Managed Workflows for Apache Airflow Migration Guide

Every Amazon MWAA environment also interacts with a set of Amazon services to handle a variety
of tasks, including storing and accessing DAGs and task dependencies, securing your data at rest,
and logging and monitoring you environment. The following diagram demonstrates the different
components of an Amazon MWAA environment.

Amazon MWAA Architecture

0O [o
Customer VPC Service VPC % 8
+
@ @ ————————————— Database; _ @ +
D D@ VPQE = ¢
Airflow Schedulers DB Proxy Meta Database
Base Worker Additional Worker(s)
D> sy P 2
D@ D@ D@ Private Public
Network %.ah) Network @)
Airflow Worker(s)
Airflow Web Server
& [N @ o & [l Y =
12 12 v
o

Amazon CloudWatch ~ Amazon Simple

Storage Service (S3)

Amazon Simple AWS Key Management
Queue Service Service

(@ Note

The service Amazon VPC is not a shared VPC. Amazon MWAA creates an Amazon owned
VPC for every environment you create.

« Amazon S3 — Amazon MWAA stores all of your workflow resources, such as DAGs, requirements,
and plugin files in an Amazon S3 bucket. For more information about creating the bucket as
part of environment creation, and uploading your Amazon MWAA resources, refer to Create an
Amazon S3 bucket for Amazon MWAA in the Amazon MWAA User Guide.

o Amazon SQS — Amazon MWAA uses Amazon SQS for queueing your workflow tasks with a
Celery executor.

« Amazon ECR — Amazon ECR hosts all Apache Airflow images. Amazon MWAA only supports
Amazon-managed Apache Airflow images.

Amazon MWAA components 3

https://docs.amazonaws.cn/mwaa/latest/userguide/mwaa-s3-bucket.html
https://docs.amazonaws.cn/mwaa/latest/userguide/mwaa-s3-bucket.html
https://airflow.apache.org/docs/apache-airflow/stable/executor/celery.html

Amazon Managed Workflows for Apache Airflow Migration Guide

« Amazon KMS — Amazon MWAA uses Amazon KMS to ensure your data is secure at rest. By
default, Amazon MWAA uses Amazon-managed Amazon KMS keys, but you can configure your

environment to use your own customer-managed Amazon KMS key. For more information about

using your own customer-managed Amazon KMS key, refer to Customer-managed keys for Data

Encryption in the Amazon MWAA User Guide.

o CloudWatch — Amazon MWAA integrates with CloudWatch and delivers Apache Airflow logs
and environment metrics to CloudWatch, allowing you to monitor your Amazon MWAA resources
and troubleshoot issues.

Connectivity

Your Amazon MWAA environment needs access to all Amazon services it integrates with. The
Amazon MWAA execution role controls how access is granted to Amazon MWAA to connect to

other Amazon services on your behalf. For network connectivity, you can either provide public
internet access to your Amazon VPC or create Amazon VPC endpoints. For more information on
configuring Amazon VPC endpoints (Amazon PrivateLink) for your environment, refer to Managing
access to VPC endpoints on Amazon MWAA in the Amazon MWAA User Guide.

Amazon MWAA installs requirements on the scheduler and worker. If your requirements are
sourced from a public PyPi repository, your environment needs connectivity to the internet to
download the required libraries. For private environments, you can either use a private PyPi
repository, or bundle the libraries in .whl files as custom plugins for your environment.

When you configure the Apache Airflow in private mode, the Apache Airflow Ul can only be

accessible to your Amazon VPC though Amazon VPC endpoints.

For more information about networking, refer to Networking in the Amazon MWAA User Guide.

Connectivity 4

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/mwaa/latest/userguide/custom-keys-certs.html
https://docs.amazonaws.cn/mwaa/latest/userguide/custom-keys-certs.html
https://docs.amazonaws.cn/mwaa/latest/userguide/mwaa-create-role.html
https://docs.amazonaws.cn/mwaa/latest/userguide/vpc-vpe-access.html
https://docs.amazonaws.cn/mwaa/latest/userguide/vpc-vpe-access.html
https://pypi.org/
https://docs.amazonaws.cn/mwaa/latest/userguide/best-practices-dependencies.html
https://docs.amazonaws.cn/mwaa/latest/userguide/vpc-vpe-access.html#vpc-vpe-about-private
https://docs.amazonaws.cn/mwaa/latest/userguide/networking.html

Amazon Managed Workflows for Apache Airflow Migration Guide

Key considerations for migrating to a new MWAA
environment

Learn more about key considerations, such as authentication and the Amazon MWAA execution
role, as you plan to migrate your Apache Airflow workloads to Amazon MWAA.

Topics

« Authentication

« Execution role

Authentication

Amazon MWAA uses Amazon Identity and Access Management (IAM) to control access to the
Apache Airflow Ul. You must create and manage IAM policies that grant your Apache Airflow users
permission to access the webserver and manage DAGs. You can manage both authentication and
authorization for Apache Airflow's default roles using IAM across different accounts.

You can further manage and restrict Apache Airflow users to access only a subset of your workflow
DAGs by creating custom Airflow roles and mapping them to your IAM principals. For more
information and a step-by-step tutorial, refer to Tutorial: Restricting an Amazon MWAA user's

access to a subset of DAGs.

You can also configure federated identities to access Amazon MWAA. For more information refer to
the following.

« Amazon MWAA environment with public access — Using Okta as an identity provider with

Amazon MWAA on the Amazon Compute Blog.

« Amazon MWAA environment with private access — Accessing a private Amazon MWAA

environment using federated identities.

Execution role

Amazon MWAA uses an execution role that grants permissions to your environment to access other
Amazon services. You can provide your workflow with access to Amazon services by adding the
relevant permissions to the role. If you choose the default option to create a new execution role

Authentication 5

https://airflow.apache.org/docs/apache-airflow/stable/security/access-control.html#default-roles
https://docs.amazonaws.cn/mwaa/latest/userguide/limit-access-to-dags.html
https://docs.amazonaws.cn/mwaa/latest/userguide/limit-access-to-dags.html
https://amazonaws-china.com/blogs/compute/using-okta-as-an-identity-provider-with-amazon-mwaa/
https://amazonaws-china.com/blogs/compute/using-okta-as-an-identity-provider-with-amazon-mwaa/
https://d1.awsstatic.com/whitepapers/accessing-a-private-amazon-mwaa-environment-using-federated-identities.pdf
https://d1.awsstatic.com/whitepapers/accessing-a-private-amazon-mwaa-environment-using-federated-identities.pdf

Amazon Managed Workflows for Apache Airflow Migration Guide

when you first create the environment, Amazon MWAA attaches the minimal permissions needed
to the role, except in the case of CloudWatch Logs for which Amazon MWAA adds all log groups
automatically.

Once the execution role is created, Amazon MWAA cannot manage its permission policies on your
behalf. To update the execution role, you must edit the policy to add and remove permissions
as needed. For example, you can integrate your Amazon MWAA environment with Amazon

Secrets Manager as a backend to securely store secrets and connection strings to use in your

Apache Airflow workflows. To do so, attach the following permission policy to your environment's
execution role.

JSON

{
"Version":"2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"secretsmanager:GetResourcePolicy",
"secretsmanager:GetSecretValue",
"secretsmanager:DescribeSecret",
"secretsmanager:ListSecretVersionlds"

1,

"Resource": "arn:aws-cn:secretsmanager:us-

east-1:111122223333:secret:*"
}I
{

"Effect": "Allow",

"Action": "secretsmanager:ListSecrets",

"Resource": "*"

}
]
}

Integrating with other Amazon services follows a similar pattern: you add the relevant permission
policy to your Amazon MWAA execution role, granting permission to Amazon MWAA to access
the service. For more information about managing the Amazon MWAA execution role, and to see
additional examples, visit Amazon MWAA execution role in the Amazon MWAA User Guide.

Execution role 6

https://docs.amazonaws.cn/mwaa/latest/userguide/connections-secrets-manager.html
https://docs.amazonaws.cn/mwaa/latest/userguide/connections-secrets-manager.html
https://docs.amazonaws.cn/mwaa/latest/userguide/mwaa-create-role.html

Amazon Managed Workflows for Apache Airflow Migration Guide

Migrate to a new Amazon MWAA environment

Explore the following steps to migrate your existing Apache Airflow workload to a new Amazon
MWAA environment. You can use these steps to migrate from an older version of Amazon MWAA
to a new version release, or migrate your self-managed Apache Airflow deployment to Amazon
MWAA. This tutorial assumes you are migrating from an existing Apache Airflow v1.10.12 to a new
Amazon MWAA running Apache Airflow v2.5.1, but you can use the same procedures to migrate
from, or to different Apache Airflow versions.

Topics

« Prerequisites
» Step one: Create a new Amazon MWAA environment running the latest supported Apache

Airflow version

» Step two: Migrate your workflow resources

« Step three: Exporting the metadata from your existing environment

« Step four: Importing the metadata to your new environment

» Next steps

Prerequisites

To be able to complete the steps and migrate your environment, you'll need the following:

« An Apache Airflow deployment. This can be a self-managed or existing Amazon MWAA
environment.

« Docker installed for your local operating system.

« Amazon Command Line Interface version 2 installed.

Step one: Create a new Amazon MWAA environment running
the latest supported Apache Airflow version

You can create an environment using the detailed steps in Getting started with Amazon MWAA
in the Amazon MWAA User Guide, or by using an Amazon CloudFormation template. If you're

migrating from an existing Amazon MWAA environment, and used an Amazon CloudFormation

Prerequisites 7

https://docs.docker.com/get-docker/
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install
https://docs.amazonaws.cn/mwaa/latest/userguide/get-started.html

Amazon Managed Workflows for Apache Airflow Migration Guide

template to create your old environment, you can change the AirflowVersion property to
specify the new version.

MwaaEnvironment:
Type: AWS::MWAA::Environment
DependsOn: MwaaExecutionPolicy
Properties:
Name: !Sub "${AWS::StackName}-MwaaEnvironment"
SourceBucketArn: !GetAtt EnvironmentBucket.Arn
ExecutionRoleArn: !GetAtt MwaaExecutionRole.Arn
AirflowVersion: 2.5.1
DagS3Path: dags
NetworkConfiguration:
SecurityGroupIds:
- !GetAtt SecurityGroup.GroupId
SubnetIds:
- IRef PrivateSubnetl
- IRef PrivateSubnet2
WebserverAccessMode: PUBLIC_ONLY
MaxWorkers: !Ref MaxWorkerNodes
LoggingConfiguration:
DagProcessinglLogs:
LogLevel: !Ref DagProcessinglLogs
Enabled: true
SchedulerlLogs:
LogLevel: !Ref SchedulerlLogslLevel
Enabled: true
TaskLogs:
LogLevel: !Ref TaskLogsLevel
Enabled: true
WorkerLogs:
LogLevel: !'Ref WorkerLogslLevel
Enabled: true
WebserverlLogs:
LogLevel: !Ref WebserverlLogslLevel
Enabled: true

Alternatively, if migrating from an existing Amazon MWAA environment, you can copy the
following Python script that uses the Amazon SDK for Python (Boto3) to clone your environment.

You can also download the script.

Step one: Create a new environment 8

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
../userguide/samples/clone_environment.zip

Amazon Managed Workflows for Apache Airflow Migration Guide

Python Script

This Python file uses the following encoding: utf-8
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: MIT-0

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from _ future__ import print_function

import argparse

import json

import socket

import time

import re

import sys

from datetime import timedelta

from datetime import datetime

import boto3

from botocore.exceptions import ClientError, ProfileNotFound

from boto3.session import Session

ENV_NAME = ""

REGION = ""

def verify_boto3(boto3_current_version):
check if boto3 version is valid, must be 1.17.80 and up
return true if all dependenceis are valid, false otherwise
valid_starting_version = '1.17.80'
if boto3_current_version == valid_starting_version:
return True

Step one: Create a new environment 9

Amazon Managed Workflows for Apache Airflow Migration Guide

verl boto3_current_version.split('."')

valid_starting_version.split('."')

for i in range(max(len(verl), len(ver2))):
numl = int(verl[i]) if i < len(verl) else O
num2 = int(ver2[i]) if i < len(ver2) else O
if numl > num2:

ver2

return True
elif numl < num2:
return False
return False

def get_account_id(env_info):
Given the environment metadata, fetch the account id from the
environment ARN

return env_info['Arn'].split(":")[4]

def validate_envname(env_name):

verify environment name doesn't have path to files or unexpected input
if re.match(r"~[a-zA-Z][0-9a-zA-Z-_]1*%$", env_name):
return env_name
raise argparse.ArgumentTypeError("%s is an invalid environment name value" %
env_name)

def validation_region(input_region):
verify environment name doesn't have path to files or unexpected input
REGION: example is us-east-1
session = Session()
mwaa_regions = session.get_available_regions('mwaa’')
if input_region in mwaa_regions:
return input_region
raise argparse.ArgumentTypeError("%s is an invalid REGION value" % input_region)

def validation_profile(profile_name):

Step one: Create a new environment 10

Amazon Managed Workflows for Apache Airflow Migration Guide

verify profile name doesn't have path to files or unexpected input
if re.match(r"~[a-zA-Z0-9]1*$%$", profile_name):
return profile_name
raise argparse.ArgumentTypeError("%s is an invalid profile name value"

)
)

profile_name)

def validation_version(version_name):

verify profile name doesn't have path to files or unexpected input
if re.match(xr"[1-2].\d.\d", version_name):

return version_name
raise argparse.ArgumentTypeError("%s is an invalid version name value"

[
©

version_name)

def validation_execution_role(execution_role_arn):

verify profile name doesn't have path to files or unexpected input

if re.match(r'(?i)\b((?:[a-z][\w-1+:(?:/{1,3}|[a-20-9%]) |www\d{0,3}[.]]|[a-z0-9.
\-1+[.1[a-21{2,43}/)(2:[M\s()<>T+|\C(C([M"\sO)<>T+] (N\(["\s () <>1+\))) *\))+ (?:\(([M\s () <>]+]
A\NCEMN\sO)<>1+\)))*N\) [[MN\s PONINI{Y; :\'""., <>?«»””*"])) ", execution_role_arn):

return execution_role_azrn
raise argparse.ArgumentTypeError("%s is an invalid execution role ARN"

)
)

execution_role_arn)

def create_new_env(env):

method to duplicate env

mwaa = boto3.client('mwaa', region_name=REGION)

print('Source Environment')
print(env)
if (env['AirflowVersion']=="1.10.12") and (VERSION=="2.2.2"):
if env['AirflowConfigurationOptions']
['secrets.backend']=='airflow.contrib.secrets.aws_secrets_manager.SecretsManagerBackend':
print('swapping',env['AirflowConfigurationOptions']['secrets.backend'])
env['AirflowConfigurationOptions']
['secrets.backend']="airflow.providers.amazon.aws.secrets.secrets_manager.SecretsManagerBackenc
env['LoggingConfiguration']['DagProcessinglLogs'].pop('CloudWatchLogGroupArn')
env['LoggingConfiguration']['SchedulerLogs'].pop('CloudWatchLogGroupArn')
env['LoggingConfiguration']['TaskLogs'].pop('CloudWatchLogGroupAzrn')

Step one: Create a new environment 11

Amazon Managed Workflows for Apache Airflow Migration Guide

def

env['LoggingConfiguration']['WebserverlLogs'].pop('CloudWatchLogGroupArn')
env['LoggingConfiguration']['WorkerLogs'].pop('CloudWatchLogGroupAzn')
env['AirflowVersion']=VERSION
env['ExecutionRoleArn']=EXECUTION_ROLE_ARN
env['Name']J=ENV_NAME_NEW
env.pop('Arn')
env.pop('CreatedAt')
env.pop('LastUpdate')
env.pop('ServiceRoleArn')
env.pop('Status')
env.pop('WebserverUrl')
if not env['Tags']:
env.pop('Tags')
print('Destination Environment')
print(env)

return mwaa.create_environment(**env)
get_mwaa_env(input_env_name):

https://boto3.amazonaws.com/vl/documentation/api/latest/reference/services/

mwaa.html#MWAA.Client.get_environment

def

#

mwaa = boto3.client('mwaa', region_name=REGION)

environment = mwaa.get_environment(
Name=input_env_name

Y['Environment']

return environment

print_err_msg(c_err):
'''short method to handle printing an error message if there is one'''
print('Error Message: {}'.format(c_err.response['Error']['Message']))
print('Request ID: {}'.format(c_err.response['ResponseMetadata']['RequestId']))

print('Http code: {}'.format(c_err.response['ResponseMetadata’]['HTTPStatusCode']))

Main

#

Usage:
python3 clone_environment.py --envname MySourceEnv --envnamenew MyDestEnv --region
us-west-2 --execution_role AmazonMWAA-MyDestEnv-ExecutionRole --version 2.2.2

#

based on https://github.com/awslabs/aws-support-tools/blob/master/MWAA/verify_env/
verify_env.py

Step one: Create a new environment 12

Amazon Managed Workflows for Apache Airflow Migration Guide

#
if __name__ == '_main__"':
if sys.version_info[0] < 3:
print("python2 detected, please use python3. Will try to run anyway")
if not verify_boto3(boto3.__version_):
print("boto3 version ", boto3._ version__, "is not valid for this script. Need
1.17.80 or higher")
print("please run pip install boto3 --upgrade --user")
sys.exit(1)
parser = argparse.ArgumentParser()
parser.add_argument('--envname', type=validate_envname, required=True, help="name
of the source MWAA environment")
parser.add_argument('--region', type=validation_region,
default=boto3.session.Session().region_name,
required=False, help="region, Ex: us-east-1")
parser.add_argument('--profile', type=validation_profile, default=None,
required=False, help="AWS CLI profile, Ex: dev")
parser.add_argument('--version', type=validation_version, default="2.2.2",
required=False, help="Airflow destination version, Ex: 2.2.2")
parser.add_argument('--execution_role', type=validation_execution_role,
default=None,
required=True, help="New environment execution role ARN, Ex:
arn:aws:iam::112233445566:r0le/service-role/AmazonMWAA-MyEnvironment-ExecutionRole")
parser.add_argument('--envnamenew', type=validate_envname, required=True,
help="name of the destination MWAA environment")

args, _ = parser.parse_known_args()
ENV_NAME = args.envname

REGION = args.region

PROFILE = args.profile

VERSION = args.version
EXECUTION_ROLE_ARN = args.execution_role
ENV_NAME_NEW = args.envnamenew

try:
print("PROFILE",PROFILE)
if PROFILE:
boto3.setup_default_session(profile_name=PROFILE)
env = get_mwaa_env(ENV_NAME)
response = create_new_env(env)
print(response)
except ClientError as client_error:
if client_error.response['Error']['Code'] == 'LimitExceededException':

Step one: Create a new environment 13

Amazon Managed Workflows for Apache Airflow Migration Guide

print_err_msg(client_error)
print('please retry the script')
elif client_error.response['Error']['Code'] in ['AccessDeniedException’,
'"NotAuthorized']:
print_err_msg(client_error)
print('please verify permissions used have permissions documented in

readme')
elif client_error.response['Error']['Code'] == 'InternalFailure':
print_err_msg(client_error)
print('please retry the script')
else:

print_err_msg(client_error)
except ProfileNotFound as profile_not_found:
print('profile', PROFILE, 'does not exist; check the profile name')
except IndexError as error:
print("Error:", error)

Step two: Migrate your workflow resources

Apache Airflow v2 is a major version release. If you are migrating from Apache Airflow v1, you must
prepare your workflow resources and verify the changes you make to your DAGs, requirements,

and plugins. To do so, we recommend configuring a bridge version of Apache Airflow on your

local operating system using Docker and the Amazon MWAA local runner. The Amazon MWAA

local runner provides a command line interface (CLI) utility that replicates an Amazon MWAA
environment locally.

Whenever you're changing Apache Airflow versions, ensure that you reference the correct - -

constraint URL in your requirements.txt.
To migrate your workflow resources

1. Create a fork of the aws-mwaa-local-runner repository, and clone a copy of the Amazon MWAA

local runner.

2. Checkout the v1.10.15 branch of the aws-mwaa-local-runner repository. Apache Airflow
released v1.10.15 as a bridge release to assist in migrating to Apache Airflow v2, and although
Amazon MWAA does not support v1.10.15, you can use the Amazon MWAA local runner to test
your resources.

3. Use the Amazon MWAA local runner CLI tool to build the Docker image and run Apache
Airflow locally. For more information, see the local runner README in the GitHub repository.

Step two: Migrate your workflow resources 14

https://github.com/aws/aws-mwaa-local-runner
https://docs.amazonaws.cn/mwaa/latest/userguide/working-dags-dependencies.html#working-dags-dependencies-test-create
https://docs.amazonaws.cn/mwaa/latest/userguide/working-dags-dependencies.html#working-dags-dependencies-test-create
https://github.com/aws/aws-mwaa-local-runner
https://github.com/aws/aws-mwaa-local-runner/tree/v1.10.15#readme

Amazon Managed Workflows for Apache Airflow Migration Guide

4. Using Apache Airflow running locally, follow the steps described in Upgrading from 1.10 to 2
in the Apache Airflow documentation website.

a. Toupdate your requirements.txt, follow the best practices we recommend in
Managing Python dependencies, in the Amazon MWAA User Guide.

b. If you have bundled your custom operators and sensors with your plugins for your
existing Apache Airflow v1.10.12 environment, move them to your DAG folder. For more
information on module management best practices for Apache Airflow v2+, refer to
Module Management in the Apache Airflow documentation website.

5. After you have made the required changes to your workflow resources, checkout the v2.5.1
branch of the aws-mwaa-local-runner repository, and test your updated workflow DAGs,
requirements, and custom plugins locally. If you're migrating to a different Apache Airflow
version, you can use the appropriate local runner branch for your version, instead.

6. After you have successfully tested your workflow resources, copy your DAGs,
requirements.txt, and plugins to the Amazon S3 bucket you configured with your new
Amazon MWAA environment.

Step three: Exporting the metadata from your existing
environment

Apache Airflow metadata tables such as dag, dag_tag, and dag_code automatically populate
when you copy the updated DAG files to your environment's Amazon S3 bucket and the scheduler
parses them. Permission related tables also populate automatically based on your IAM execution
role permission. You do not need to migrate them.

You can migrate data related to DAG history, variable, slot_pool, sla_miss, and if needed,
xcom, job, and 1log tables. Task instance log is stored in the CloudWatch Logs under the
airflow-{environment_name} log group. If you want to see the task instance logs for older
runs, those logs must be copied over to the new environment log group. We recommend that you
move only a few days worth of logs in order to reduce associated costs.

If you're migrating from an existing Amazon MWAA environment, there is no direct access to the
metadata database. You must run a DAG to export the metadata from your existing Amazon MWAA
environment to an Amazon S3 bucket of your choice. The following steps can also be used to
export Apache Airflow metadata if you're migrating from a self-managed environment.

Step three: exporting the metadata 15

https://airflow.apache.org/docs/apache-airflow/stable/upgrading-from-1-10/index.html
https://docs.amazonaws.cn/mwaa/latest/userguide/best-practices-dependencies.html
https://airflow.apache.org/docs/apache-airflow/stable/modules_management.html

Amazon Managed Workflows for Apache Airflow Migration Guide

After the data is exported, you can then run a DAG in your new environment to import the data.
During the export and the import process, all other DAGs are paused.

To export the metadata from your existing environment

1. Create an Amazon S3 bucket using the Amazon CLI to store the exported data. Replace the
UUID and region with your information.

aws s3api create-bucket \
--bucket mwaa-migration-{UUID}\
--region {region}

® Note

If you are migrating sensitive data, such as connections you store in variables, we
recommend that you enable default encryption for the Amazon S3 bucket.

® Note

Does not apply to migration from a self-managed environment.

Modify the execution role of the existing environment and add the following policy to grant
write access to the bucket you created in step one.

JSON

"Version":"2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"s3:PutObject*"
1,
"Resource": [
"arn:aws-cn:s3:::mwaa-migration-{UUID}/*"
]
}

Step three: exporting the metadata 16

https://docs.amazonaws.cn/AmazonS3/latest/userguide/default-bucket-encryption.html

Amazon Managed Workflows for Apache Airflow Migration Guide

1

3. Clone the amazon-mwaa-examples repository, and navigate to the metadata-migration

subdirectory for your migration scenario.

git clone https://github.com/aws-samples/amazon-mwaa-examples.git
cd amazon-mwaa-examples/usecases/metadata-migration/existing-version-new-version/

4. Inexport_data.py, replace the string value for S3_BUCKET with the Amazon S3 bucket you
created to store exported metadata.

S3_BUCKET = 'mwaa-migration-{UUID}'

5. Locate the requirements. txt file in the metadata-migration directory. If you already
have a requirements file for your existing environment, add the additional requirements
specified in requirements. txt to your file. If you do not have an existing requirements file,
you can simply use the one provided in the metadata-migration directory.

6. Copy export_data.py to the DAG directory of the Amazon S3 bucket associated with your
existing environment. If migrating from a self-managed environment, copy export_data.py
to your /dags folder.

7. Copy your updated requirements.txt to the Amazon S3 bucket associated with your
existing environment, then edit the environment to specify the new requirements. txt
version.

8. After the environment is updated, access the Apache Airflow Ul, unpause the db_export DAG,
and trigger the workflow to run.

9. Verify that the metadata is exported to data/migration/existing-version_to_new-
version/export/ inthe mwaa-migration-{UUID} Amazon S3 bucket, with each table in
it's own dedicated file.

Step four: Importing the metadata to your new environment

To import the metadata to your new environment
1. Inimport_data. py, replace the string values for the following with your information.

« For migration from an existing Amazon MWAA environment:

Step four: importing the metadata 17

https://github.com/aws-samples/amazon-mwaa-examples

Amazon Managed Workflows for Apache Airflow Migration Guide

S3_BUCKET = 'mwaa-migration-{UUID}'
OLD_ENV_NAME="'{old_environment_name}"'
NEW_ENV_NAME="'{new_environment_namel}'
TI_LOG_MAX_DAYS = {number_of_days}

MAX_DAYS controls how many days worth of log files the workflow copies over to the new
environment.

» For migration from a self-managed environment:

S3_BUCKET = 'mwaa-migration-{UUID}'
NEW_ENV_NAME="'{new_environment_namel}'

2. (Optional) import_data.py copies only failed task logs. If you want to copy all task logs,
modify the getDagTasks function, and remove ti.state = 'failed' asshown in the
following code snippet.

def getDagTasks():
session = settings.Session()
dagTasks = session.execute(f"select distinct ti.dag_id, ti.task_id,
date(r.execution_date) as ed \
from task_instance ti, dag_run r where r.execution_date > current_date -
{TI_LOG_MAX_DAYS} and \
ti.dag_id=r.dag_id and ti.run_id = r.run_id order by ti.dag_id,
date(r.execution_date);").fetchall()
return dagTasks

3. Modify the execution role of your new environment and add the following policy. The
permission policy allows Amazon MWAA to read from the Amazon S3 bucket where you
exported the Apache Airflow metadata, and to copy task instance logs from existing log
groups. Replace all placeholders with your information.

(® Note

If you are migrating from a self-managed environment, you must remove CloudWatch
Logs related permissions from the policy.

Step four: importing the metadata 18

Amazon Managed Workflows for Apache Airflow Migration Guide

JSON

"Version":"2012-10-17",
"Statement": [

{
"Effect": "Allow",

"Action": [
"logs:GetLogEvents",
"logs:DescribelLogStreams"

1,

"Resource": [
"arn:aws-cn:logs:us-east-1:111122223333:109g-

group:airflow-{old_environment_name}*"

]
},
{

"Effect": "Allow",

"Action": [
"s3:GetObject",
"s3:ListBucket"

1,

"Resource": [
"arn:aws-cn:s3:::mwaa-migration-{UUID}",
"arn:aws-cn:s3:::mwaa-migration-{UUID}/*"

]

}

4. Copy import_data.py to the DAG directory of the Amazon S3 bucket associated with your
new environment, then access the Apache Airflow Ul to unpause the db_import DAG and
trigger the workflow. The new DAG will appear in the Apache Airflow Ul in a few minutes.

5. After the DAG run completes, verify that your DAG run history is copied over by accessing each
individual DAG.

Step four: importing the metadata 19

Amazon Managed Workflows for Apache Airflow Migration Guide

Next steps

o For more information about available Amazon MWAA environment classes and capabilities, refer
to Amazon MWAA environment class in the Amazon MWAA User Guide.

« For more information about how Amazon MWAA handles autoscaling workers, refer to Amazon
MWAA automatic scaling in the Amazon MWAA User Guide.

e For more information about the Amazon MWAA REST API, refer to the Amazon MWAA REST API.

Next steps 20

https://docs.amazonaws.cn/mwaa/latest/userguide/environment-class.html
https://docs.amazonaws.cn/mwaa/latest/userguide/mwaa-autoscaling.html
https://docs.amazonaws.cn/mwaa/latest/userguide/mwaa-autoscaling.html
https://docs.amazonaws.cn/mwaa/latest/API/Welcome.html

Amazon Managed Workflows for Apache Airflow Migration Guide

Migrate workloads from Amazon Data Pipeline to
Amazon MWAA

Amazon launched the Amazon Data Pipeline service in 2012. At that time, customers wanted

a service that let them use a variety of compute options to move data between different data
sources. As data transfer needs changed over time, so have the solutions to those needs. You now
have the option to choose the solution that most closely meets your business requirements. You
can migrate your workloads to any of the following Amazon services:

« Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to manage workflow
orchestration for Apache Airflow.

» Use Step Functions to orchestrate workflows between multiple Amazon Web Services services.

« Use Amazon Glue to run and orchestrate Apache Spark applications.
The option you choose depends on your current workload on Amazon Data Pipeline. This topic
explains how to migrate from Amazon Data Pipeline to Amazon MWAA.

Topics
« Choosing Amazon MWAA

Architecture and concept mapping

Example implementations

Pricing comparison

Related resources

Choosing Amazon MWAA

Amazon Managed Workflows for Apache Airflow (Amazon MWAA) is a managed orchestration
service for Apache Airflow that lets you setup and operate end-to-end data pipelines in the cloud
at scale. Apache Airflow is an open-source tool used to programmatically author, schedule, and

monitor sequences of processes and tasks referred to as workflows. With Amazon MWAA, you can
use Apache Airflow and the Python programming language to create workflows without having
to manage the underlying infrastructure for scalability, availability, and security. Amazon MWAA
automatically scales its workflow capacity to meet your needs, and is integrated with Amazon
security services to help provide you with fast and secure access to your data.

Choosing Amazon MWAA 21

https://airflow.apache.org/

Amazon Managed Workflows for Apache Airflow Migration Guide

The following highlights some of the benefits of migrating from Amazon Data Pipeline to Amazon
MWAA:

« Enhanced scalability and performance - Amazon MWAA provides a flexible and scalable
framework for defining and executing workflows. This allows users to handle large and complex
workflows with ease, and take advantage of features such as dynamic task scheduling, data-
driven workflows and parallelism.

« Improved monitoring and logging - Amazon MWAA integrates with Amazon CloudWatch to
enhance monitoring and logging of your workflows. Amazon MWAA automatically sends system
metrics and logs to CloudWatch. This means you can track the progress and performance of your
workflows in real-time, and identify any issues that arise.

« Better integrations with Amazon services and third-party software - Amazon MWAA
integrates with a variety of other Amazon services, such as Amazon S3, Amazon Glue, and
Amazon Redshift, as well as third-party software such as DBT, Snowflake, and Databricks. This
lets you process, and transfer, data across different environments and services.

« Open-source data pipeline tool - Amazon MWAA leverages the same open-source Apache
Airflow product you are familiar with. Apache Airflow is a purpose-built tool designed to handle
all aspects of data pipeline management, including ingestion, processing, transferring, integrity
testing, quality checks, and ensuring data lineage.

« Modern and flexible architecture — Amazon MWAA leverages containerization and cloud-
native, serverless technologies. This means for more flexibility and portability, as well as easier
deployment and management of your workflow environments.

Architecture and concept mapping

Amazon Data Pipeline and Amazon MWAA have different architectures and components, which
can affect the migration process and the way workflows are defined and executed. This section
overviews architecture and components for both services, and highlights some of the key
differences.

Both Amazon Data Pipeline and Amazon MWAA are fully managed services. When you migrate
your workloads to Amazon MWAA you might need to learn new concepts to model your existing
workflows using Apache Airflow. However, you will not need to manage infrastructure, patch
workers, and manage operating system updates.

The following table associates key concepts in Amazon Data Pipeline with those in Amazon MWAA.
Use this information as a starting point to design a migration plan.

Architecture and concept mapping 22

https://www.getdbt.com/
https://www.snowflake.com/en/
https://www.databricks.com/

Amazon Managed Workflows for Apache Airflow

Migration Guide

Concept

Pipeline definition

Pipeline execution environme
nt

Pipeline components

Pipeline execution

Amazon Data Pipeline

Amazon Data Pipeline uses
JSON-based configuration file
that defines the workflow.

Workflows run on Amazon
EC2 instances. Amazon Data
Pipeline provisions and
manages these instances on
your behalf.

Activities are processing
tasks that run as part of the
workflow.

Preconditions contain
conditional statements
that must be true before an
activity can run.

A resource in Amazon Data
Pipeline refers to the Amazon
compute resource that
performs the work that a
pipeline activity specifies.
Amazon EC2 and Amazon
EMR are two available
resources.

Amazon Data Pipeline
supports scheduling runs with
regular rate-based, and cron-
based patterns.

Amazon MWAA

Amazon MWAA uses Python-
based Directed Acyclic
Graphs (DAGs) that define the
workflow.

Amazon MWAA uses Amazon
ECS containerized environme
nts to run tasks.

Operators (Tasks) are the

fundamental processing units
of a workflow.

Sensors (Tasks) represent
conditional statements that

can wait for a resource or
task to be completed before
running.

Using tasks in a DAG, you can
define a variety of compute
resources, including Amazon
ECS, Amazon EMR, and
Amazon EKS. Amazon MWAA
executes Python operation

s on workers that run on
Amazon ECS.

Amazon MWAA supports
scheduling with cron
expressions and presets, as
well as custom timetables.

Architecture and concept mapping

23

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/operators.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/sensors.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/tasks.html
https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dag-run.html#cron-presets
https://airflow.apache.org/docs/apache-airflow/stable/authoring-and-scheduling/timetable.html

Amazon Managed Workflows for Apache Airflow Migration Guide

Concept Amazon Data Pipeline Amazon MWAA
An instances refers to each A DAG run refers to each
run of the pipeline. run of an Apache Airflow
workflow.

An attempt refers to a retry of Amazon MWAA supports

a failed operation. retries that you define either
at the DAG level, or at the
task-level.

Example implementations

In many cases you will be able to re-use resources you are currently orchestrating with
Amazon Data Pipeline after migrating to Amazon MWAA. The following list contains example
implementations using Amazon MWAA for the most common Amazon Data Pipeline use cases.

e Running an Amazon EMR job (Amazon workshop)

Creating a custom plugin for Apache Hive and Hadoop (Amazon MWAA User Guide)

Copying data from S3 to Redshift (Amazon workshop)

Executing a shell script on a remote Amazon ECS instance (Amazon MWAA User Guide)

Orchestrating hybrid (on-prem) workflows (Blog post)

For additional tutorials and examples, refer to the following:

« Amazon MWAA tutorials

« Amazon MWAA code examples

Pricing comparison

Pricing for Amazon Data Pipeline is based on the number of pipelines, as well as how much you use
each pipeline. Activities that you run more than once a day (high frequency) cost $1 per month per
activity. Activities that you run once a day or less (low frequency) cost $0.60 per month per activity.
Inactive Pipelines are priced at $1 per pipeline. For more information, refer to the Amazon Data

Pipeline pricing page.

Example implementations 24

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dag-run.html
https://catalog.us-east-1.prod.workshops.aws/workshops/795e88bb-17e2-498f-82d1-2104f4824168/en-US/workshop-2-2-2/m1-processing/emr
https://docs.amazonaws.cn/mwaa/latest/userguide/samples-hive.html
https://catalog.us-east-1.prod.workshops.aws/workshops/795e88bb-17e2-498f-82d1-2104f4824168/en-US/workshop-2-2-2/m1-processing/redshift
https://docs.amazonaws.cn/mwaa/latest/userguide/samples-ssh.html
https://dev.to/aws/orchestrating-hybrid-workflows-using-amazon-managed-workflows-for-apache-airflow-mwaa-2boc
https://docs.amazonaws.cn/mwaa/latest/userguide/tutorials.html
https://docs.amazonaws.cn/mwaa/latest/userguide/sample-code.html
https://www.amazonaws.cn/datapipeline/pricing/
https://www.amazonaws.cn/datapipeline/pricing/

Amazon Managed Workflows for Apache Airflow Migration Guide

Pricing for Amazon MWAA is based on the duration of time that your managed Apache Airflow
environment exists, and any additional auto scaling required to provide more workers, or scheduler
capacity. You pay for your Amazon MWAA environment usage on an hourly basis (billed at one-
second resolution), with varying fees depending on the size of the environment. Amazon MWAA
auto-scales the number of workers based on your environment configuration. Amazon calculates
the cost of additional workers separately. For more information on the hourly cost of using various
Amazon MWAA environment sizes, refer to the Amazon MWAA pricing page.

Related resources

For more information and best practices for using Amazon MWAA, refer to the following resources:

o« The Amazon MWAA API reference

» Monitoring dashboards and alarms on Amazon MWAA

» Performance tuning for Apache Airflow on Amazon MWAA

Related resources 25

https://www.amazonaws.cn/managed-workflows-for-apache-airflow/pricing/
https://docs.amazonaws.cn/mwaa/latest/API/Welcome.html
https://docs.amazonaws.cn/mwaa/latest/userguide/monitoring-dashboard.html
https://docs.amazonaws.cn/mwaa/latest/userguide/best-practices-tuning.html

Amazon Managed Workflows for Apache Airflow Migration Guide

Amazon MWAA Document History

The following table describes important additions to the Amazon MWAA migration guide,
beginning in March 2022.
Change Description Date

New topic on migrating Added new information April 14, 2023
workloads from Amazon Data and guidance on migrating

Pipeline to Amazon MWAA existing workloads from
Amazon Data Pipeline to
Amazon MWAA. Use this
information to help you

design a migration plan.

» Migrate workloads from

Amazon Data Pipeline to
Amazon MWAA

Amazon MWAA Migration Amazon MWAA now offers March 7, 2022
Guide launch detailed guidance on

migrating to a new Amazon
MWAA environment. The
steps described in the
Amazon MWAA Migration
Guide apply to mgirating
from an existing Amazon
MWAA environment, or from
a self-managed Apache
Airflow deployment.

e About the Amazon MWAA
migration guide

26

	Amazon Managed Workflows for Apache Airflow
	Table of Contents
	What is the Amazon MWAA migration guide?
	Explore Amazon MWAA network architecture
	Amazon MWAA components
	Connectivity

	Key considerations for migrating to a new MWAA environment
	Authentication
	Execution role

	Migrate to a new Amazon MWAA environment
	Prerequisites
	Step one: Create a new Amazon MWAA environment running the latest supported Apache Airflow version
	Python Script

	Step two: Migrate your workflow resources
	Step three: Exporting the metadata from your existing environment
	Step four: Importing the metadata to your new environment
	Next steps

	Migrate workloads from Amazon Data Pipeline to Amazon MWAA
	Choosing Amazon MWAA
	Architecture and concept mapping
	Example implementations
	Pricing comparison
	Related resources

	Amazon MWAA Document History

