
Developer Guide

Amazon OpenSearch Service

Amazon OpenSearch Service Developer Guide

Amazon OpenSearch Service: Developer Guide

Amazon OpenSearch Service Developer Guide

Table of Contents

What is Amazon OpenSearch Service? ... 1
Features of Amazon OpenSearch Service ... 2
Amazon OpenSearch Serverless .. 3
Amazon OpenSearch Ingestion ... 3
Supported versions of OpenSearch and Elasticsearch ... 3
Pricing for Amazon OpenSearch Service ... 4
Getting started with Amazon OpenSearch Service ... 4
Related services .. 5

Amazon OpenSearch Serverless ... 7
Benefits ... 7
What is Amazon OpenSearch Serverless? ... 8

Use cases for OpenSearch Serverless ... 9
Getting started .. 9
How it works .. 9
Choosing a collection type ... 12
Pricing for OpenSearch Serverless .. 13
Supported Amazon Web Services Regions .. 14
Limitations .. 14
Comparing OpenSearch Service and OpenSearch Serverless .. 15

Getting started with OpenSearch Serverless ... 18
Step 1: Configure permissions ... 19
Step 2: Create a collection ... 20
Step 3: Upload and search data .. 21
Step 4: Delete the collection .. 22
Next steps ... 22

Creating and managing collections .. 22
Creating, listing, and deleting collections ... 23
Working with vector search collections ... 31
Using data lifecycle policies ... 39
Managing collections with the Amazon SDKs .. 47
Creating collections with CloudFormation .. 58

Managing capacity limits .. 60
Configuring capacity settings ... 61
Maximum capacity limits ... 62

iii

Amazon OpenSearch Service Developer Guide

Monitoring capacity usage .. 62
Ingesting data into collections .. 63

Minimum required permissions .. 63
OpenSearch Ingestion .. 64
Fluent Bit .. 65
Amazon Data Firehose ... 66
Fluentd .. 66
Go ... 67
Java .. 69
JavaScript .. 70
Logstash .. 73
Python ... 75
Ruby ... 77
Signing HTTP requests with other clients ... 78

Security in OpenSearch Serverless ... 78
Encryption policies ... 80
Network policies .. 80
Data access policies .. 81
IAM and SAML authentication ... 82
Infrastructure security .. 83
Getting started with security ... 83
Identity and Access Management ... 97
Encryption .. 108
Network access .. 118
Data access control .. 128
VPC endpoints ... 137
SAML authentication .. 146
Compliance validation ... 155

Tagging collections .. 155
Permissions required .. 156
Working with tags (console) ... 156
Working with tags (Amazon CLI) ... 157

Supported operations and plugins .. 157
Supported OpenSearch API operations and permissions ... 158
Supported OpenSearch plugins .. 163

Monitoring OpenSearch Serverless .. 164

iv

Amazon OpenSearch Service Developer Guide

Monitoring with CloudWatch ... 165
Monitoring with CloudTrail ... 170
Monitoring with EventBridge ... 173

Amazon OpenSearch Ingestion .. 177
Key concepts ... 178
Benefits .. 180
Limitations ... 180
Supported Data Prepper versions .. 181
Scaling pipelines .. 181
Pricing ... 183
Supported Amazon Web Services Regions ... 183
Quotas .. 183
Setting up roles and users ... 183

Management role ... 185
Pipeline role ... 186
Ingestion role .. 189
Allowing pipelines to write to domains ... 190
Allowing pipelines to write to serverless collections .. 194

Getting started with OpenSearch Ingestion .. 198
Tutorial: Ingest data into a domain .. 199
Tutorial: Ingest data into a collection .. 208

Pipeline features overview ... 216
Persistent buffering .. 217
Splitting .. 218
Chaining .. 219
Dead-letter queues ... 220
Index management .. 222
End-to-end acknowledgement .. 225
Source back pressure ... 226

Creating pipelines .. 227
Prerequisites and required roles .. 227
Permissions required .. 228
Specifying the pipeline version ... 229
Specifying the ingestion path .. 230
Creating pipelines ... 231
Tracking the status of pipeline creation .. 234

v

Amazon OpenSearch Service Developer Guide

Using blueprints to create a pipeline ... 236
Viewing pipelines ... 239
Updating pipelines ... 241

Considerations ... 242
Permissions required .. 242
Updating pipelines ... 243
Blue/green deployments for pipeline updates .. 244

Stopping and starting pipelines ... 245
Overview of stopping and starting a pipeline ... 245
Stopping a pipeline .. 245
Starting a pipeline .. 246

Deleting pipelines .. 247
Supported plugins and options .. 248

Supported plugins .. 249
Stateless versus stateful processors ... 250
Configuration requirements and constraints .. 250

Working with pipeline integrations ... 256
Constructing the ingestion endpoint ... 256
Creating an ingestion role .. 257
Amazon DynamoDB ... 259
Amazon MSK ... 270
Amazon OpenSearch Service ... 276
Amazon S3 ... 280
Amazon Security Lake ... 290
Fluent Bit .. 293
OpenTelemetry Collector .. 295
Next steps .. 297

Managing pipelines with the Amazon SDKs .. 297
Python ... 297

Use cases for OpenSearch Ingestion ... 301
Pattern matching .. 302
Log enrichment ... 307
Event aggregation .. 317
Deriving metrics from logs ... 321
Trace Analytics .. 322
Deriving metrics from traces .. 324

vi

Amazon OpenSearch Service Developer Guide

Anomaly detection ... 326
Sampling ... 331
Selective download .. 334

Security in OpenSearch Ingestion .. 335
Securing pipelines within a VPC ... 336
Identity and Access Management ... 339
Monitoring with CloudTrail ... 348

Tagging pipelines ... 351
Permissions required .. 352
Working with tags (console) ... 352
Working with tags (Amazon CLI) ... 353

Logging and monitoring .. 354
Monitoring pipeline logs ... 354
Monitoring pipeline metrics ... 356

Best practices .. 386
General best practices ... 386
Recommended CloudWatch alarms .. 387

Setting up .. 393
Sign up for an Amazon Web Services account .. 393
Secure IAM users .. 393
Grant permissions .. 394

Grant programmatic access .. 394
Set up the Amazon CLI .. 395
Open the console ... 396

Getting started .. 397
Step 1: Create a domain .. 397
Step 2: Upload data for indexing ... 398

Option 1: Upload a single document ... 399
Option 2: Upload multiple documents .. 399

Step 3: Search documents ... 400
Search documents from the command line ... 400
Search documents using OpenSearch Dashboards ... 402

Step 4: Delete a domain .. 402
Next steps .. 403

Creating and managing domains ... 404
Creating OpenSearch Service domains .. 404

vii

Amazon OpenSearch Service Developer Guide

Creating OpenSearch Service domains (console) ... 404
Creating OpenSearch Service domains (Amazon CLI) ... 410
Creating OpenSearch Service domains (Amazon SDKs) ... 412
Creating OpenSearch Service domains (Amazon CloudFormation) ... 412

Configuring access policies .. 412
Advanced cluster settings .. 413
Configuration changes .. 414

Changes that usually cause blue/green deployments .. 414
Changes that usually don't cause blue/green deployments .. 415
Determining whether a change will cause a blue/green deployment 416
Initiating and tracking a configuration change .. 421
Stages of a configuration change ... 423
Charges for configuration changes ... 426
Troubleshooting validation errors ... 427

Service software updates ... 432
Optional versus required updates ... 433
Patch updates .. 434
Considerations ... 434
Starting an update ... 434
Off-peak windows .. 438
Monitoring updates .. 439
When domains are ineligible for an update ... 439

Off-peak windows .. 440
Off-peak service software updates ... 441
Off-peak Auto-Tune optimizations ... 442
Enabling the off-peak window .. 442
Configuring a custom off-peak window .. 443
Viewing scheduled actions ... 444
Rescheduling actions ... 446
Migrating from Auto-Tune maintenance windows .. 447

Notifications .. 448
Getting started with notifications .. 449
Notification severities .. 450
Sample EventBridge event ... 451

Configuring a multi-AZ domain .. 451
Multi-AZ with Standby .. 452

viii

Amazon OpenSearch Service Developer Guide

Multi-AZ without Standby .. 453
Availability zone disruptions .. 457

VPC support .. 458
VPC versus public domains .. 459
Limitations .. 459
Architecture .. 460

Creating index snapshots ... 467
Prerequisites .. 468
Registering a manual snapshot repository ... 471
Taking manual snapshots ... 476
Restoring snapshots ... 478
Deleting manual snapshots .. 480
Automating snapshots with Snapshot Management .. 480
Automating snapshots with Index State Management .. 482
Using Curator for snapshots .. 483

Upgrading domains ... 483
Supported upgrade paths ... 484
Starting an upgrade (console) ... 486
Starting an upgrade (CLI) ... 487
Starting an upgrade (SDK) ... 488
Troubleshooting validation failures .. 489
Troubleshooting an upgrade .. 490
Using a snapshot to migrate data .. 492

Creating a custom endpoint .. 499
Custom endpoints for new domains .. 499
Custom endpoints for existing domains .. 500
Next steps .. 501

Auto-Tune .. 501
Types of changes .. 502
Enabling or disabling Auto-Tune .. 503
Scheduling Auto-Tune enhancements ... 504
Monitoring Auto-Tune changes ... 505

Tagging domains .. 505
Tagging examples ... 506
Working with tags (console) ... 506
Working with tags (Amazon CLI) ... 507

ix

Amazon OpenSearch Service Developer Guide

Working with tags (Amazon SDKs) ... 508
Performing administrative actions ... 510

Restart the OpenSearch process on a node ... 510
Reboot a data node ... 511
Restart the Dashboard or Kibana process on a node ... 511
Limitations .. 511

Working with direct queries (preview) .. 513
Pricing ... 514
Limitations ... 514
Quotas .. 515
Supported Regions .. 515
Creating a data source .. 515

Prerequisites .. 516
Required permissions ... 516
Set up a new direct-query data source ... 519
Next steps .. 520

Configuring your data source .. 520
Set up access control ... 521
Define Amazon Glue Data Catalog tables ... 521
Accelerate your queries ... 522

Querying data ... 524
SQL .. 524
PPL ... 524

Deleting a data source .. 525
Monitoring domains .. 527

Monitoring cluster metrics ... 528
Viewing metrics in CloudWatch ... 529
Interpreting health charts in OpenSearch Service .. 529
Cluster metrics .. 530
Dedicated master node metrics .. 537
EBS volume metrics ... 539
Instance metrics .. 541
UltraWarm metrics ... 550
Cold storage metrics .. 554
OR1 metrics ... 555
Alerting metrics .. 556

x

Amazon OpenSearch Service Developer Guide

Anomaly detection metrics .. 557
Asynchronous search metrics ... 559
Auto-Tune metrics .. 561
Multi-AZ with Standby metrics .. 562
Point in time metrics ... 564
SQL metrics .. 565
k-NN metrics .. 566
Cross-cluster search metrics ... 569
Cross-cluster replication metrics ... 570
Learning to Rank metrics .. 571
Piped Processing Language metrics ... 572

Monitoring logs .. 572
Enabling log publishing (console) ... 574
Enabling log publishing (Amazon CLI) ... 576
Enabling log publishing (Amazon SDKs) ... 578
Enabling log publishing (CloudFormation) ... 578
Setting OpenSearch logging thresholds for slow logs ... 580
Viewing logs .. 581

Monitoring audit logs ... 581
Limitations .. 582
Enabling audit logs .. 582
Enable audit logging using the Amazon CLI .. 584
Enable audit logging using the configuration API ... 585
Audit log layers and categories ... 585
Audit log settings ... 587
Audit log example .. 591
Configuring audit logs using the REST API ... 593

Monitoring events .. 595
Service software update events .. 596
Auto-Tune events ... 602
Cluster health events ... 607
VPC endpoint events ... 621
Node retirement events .. 623
Domain error events .. 625
Tutorial: Listening for OpenSearch Service events .. 627
Tutorial: Sending SNS alerts for available updates ... 629

xi

Amazon OpenSearch Service Developer Guide

Monitoring with CloudTrail .. 631
Amazon OpenSearch Service information in CloudTrail .. 171
Understanding Amazon OpenSearch Service log file entries .. 172

Security .. 635
Data protection .. 636

Encryption at rest ... 637
Node-to-node encryption ... 641

Identity and Access Management .. 642
Types of policies ... 642
Making and signing OpenSearch Service requests .. 650
When policies collide ... 651
Policy element reference .. 652
Advanced options and API considerations .. 657
Configuring access policies ... 660
Additional sample policies .. 660
API permissions reference .. 660
Amazon managed policies .. 661

Cross-service confused deputy prevention ... 668
Fine-grained access control ... 669

The bigger picture: fine-grained access control and OpenSearch Service security 670
Key concepts .. 674
About the master user .. 674
Enabling fine-grained access control ... 676
Accessing OpenSearch Dashboards as the master user .. 679
Managing permissions ... 681
Recommended configurations ... 687
Limitations .. 690
Modifying the master user ... 691
Additional master users .. 691
Manual snapshots ... 693
Integrations .. 693
REST API differences .. 694
Tutorial: Fine-grained access control with Cognito authentication .. 696
Tutorial: Internal user database with basic authentication .. 700

Compliance validation .. 703
Resilience ... 704

xii

Amazon OpenSearch Service Developer Guide

Infrastructure security ... 705
Working with OpenSearch Service-managed VPC endpoints ... 706

SAML authentication for OpenSearch Dashboards ... 711
SAML configuration overview .. 711
Considerations ... 712
SAML authentication for VPC domains .. 712
Modifying the domain access policy .. 712
Configuring SP- or IdP-initiated authentication .. 713
Configuring both SP- and IdP-initiated authentication .. 719
Configuring SAML authentication (Amazon CLI) .. 719
Configuring SAML authentication (configuration API) .. 720
SAML troubleshooting ... 720
Disabling SAML authentication ... 724

Amazon Cognito authentication for OpenSearch Dashboards ... 724
Prerequisites .. 725
Configuring a domain to use Amazon Cognito authentication ... 728
Allowing the authenticated role ... 732
Configuring identity providers ... 733
(Optional) Configuring granular access ... 733
(Optional) Customizing the sign-in page .. 735
(Optional) Configuring advanced security ... 735
Testing ... 735
Quotas ... 735
Common configuration issues ... 736
Disabling Amazon Cognito authentication for OpenSearch Dashboards 739
Deleting domains that use Amazon Cognito authentication for OpenSearch Dashboards .. 740

Using service-linked roles .. 740
VPC domain creation role ... 741
Collection creation role ... 744
Pipeline creation role ... 747

Sample code ... 750
Elasticsearch client compatibility ... 750
Compressing HTTP requests .. 751

Enabling gzip compression ... 751
Required headers .. 751
Sample code (Python 3) ... 751

xiii

Amazon OpenSearch Service Developer Guide

Using the Amazon SDKs ... 753
Java .. 753
Python ... 764
Node .. 767

Indexing data ... 771
Naming restrictions for indexes .. 771
Reducing response size ... 772
Index codecs .. 774
Loading streaming data into OpenSearch Service .. 774

Loading streaming data from OpenSearch Ingestion ... 775
Loading streaming data from Amazon S3 .. 775
Loading streaming data from Amazon Kinesis Data Streams ... 781
Loading streaming data from Amazon DynamoDB ... 785
Loading streaming data from Amazon Data Firehose .. 789
Loading streaming data from Amazon CloudWatch ... 789
Loading streaming data from Amazon IoT ... 789

Loading data with Logstash .. 789
Configuration ... 790

Searching data ... 793
URI searches .. 793
Request body searches ... 795

Boosting fields .. 797
Search result highlighting .. 797
Count API ... 799

Paginating search results ... 800
Point in time .. 800
The from and size parameters ... 800

Dashboards Query Language .. 801
Custom packages ... 802

Package permissions requirements ... 803
Uploading packages to Amazon S3 .. 804
Importing and associating packages .. 804
Using packages with OpenSearch ... 805
Updating packages ... 809
Manual index updates for dictionaries ... 813
Dissociating and removing packages ... 815

xiv

Amazon OpenSearch Service Developer Guide

SQL support .. 816
Sample call .. 817
Notes and differences .. 818
SQL Workbench .. 818
SQL CLI ... 818
JDBC driver .. 819
ODBC driver ... 820

k-NN search ... 820
Getting started with k-NN .. 822
k-NN differences, tuning, and limitations ... 824

Cross-cluster search ... 825
Limitations .. 825
Cross-cluster search prerequisites ... 826
Cross-cluster search pricing .. 826
Setting up a connection .. 826
Removing a connection ... 828
Setting up security and sample walkthrough .. 828
OpenSearch Dashboards ... 834

Learning to Rank ... 834
Getting started with Learning to Rank .. 835
Learning to Rank API ... 857

Asynchronous search ... 863
Sample search call ... 863
Asynchronous search permissions ... 865
Asynchronous search settings .. 865
Cross-cluster search ... 866
UltraWarm .. 867

Point in time ... 868
Considerations ... 868
Create a PIT ... 868
Point in time permissions ... 870
PIT settings .. 871
Cross-cluster search ... 871
UltraWarm .. 871

Semantic search ... 872
OpenSearch Dashboards ... 873

xv

Amazon OpenSearch Service Developer Guide

Controlling access to OpenSearch Dashboards ... 873
Using a proxy to access OpenSearch Service from OpenSearch Dashboards 874

Configuring OpenSearch Dashboards to use a WMS map server .. 878
Connecting a local Dashboards server to OpenSearch Service .. 879
Managing indexes in OpenSearch Dashboards .. 880
Additional features .. 881

Managing indexes .. 882
UltraWarm storage .. 882

Prerequisites .. 883
UltraWarm storage requirements and performance considerations .. 885
UltraWarm pricing .. 885
Enabling UltraWarm ... 886
Migrating indexes to UltraWarm storage .. 888
Automating migrations ... 891
Migration tuning ... 891
Cancelling migrations .. 892
Listing hot and warm indexes ... 892
Returning warm indexes to hot storage .. 892
Restoring warm indexes from snapshots .. 893
Manual snapshots of warm indexes ... 894
Migrating warm indexes to cold storage ... 895
Disabling UltraWarm .. 895

Cold storage .. 896
Prerequisites .. 896
Cold storage requirements and performance considerations ... 898
Cold storage pricing ... 898
Enabling cold storage .. 898
Managing cold indexes in OpenSearch Dashboards .. 900
Migrating indexes to cold storage .. 901
Automating migrations to cold storage .. 902
Canceling migrations to cold storage .. 903
Listing cold indexes .. 903
Migrating cold indexes to warm storage ... 907
Restoring cold indexes from snapshots ... 908
Canceling migrations from cold to warm storage ... 908
Updating cold index metadata .. 909

xvi

Amazon OpenSearch Service Developer Guide

Deleting cold indexes .. 909
Disabling cold storage ... 910

OR1 storage .. 910
Limitations .. 911
How OR1 differs from UltraWarm storage ... 911
Using OR1 instances .. 912

Index State Management ... 913
Create an ISM policy .. 913
Sample policies ... 914
ISM templates ... 918
Differences .. 919
Tutorial: Automating ISM processes ... 920

Index rollups ... 925
Creating an index rollup job .. 925

Index transforms .. 926
Creating an index transform job ... 927

Cross-cluster replication ... 928
Limitations .. 929
Prerequisites .. 929
Permissions requirements ... 930
Set up a cross-cluster connection ... 931
Start replication .. 932
Confirm replication .. 933
Pause and resume replication .. 934
Stop replication ... 935
Auto-follow .. 935
Upgrading connected domains .. 936

Remote reindex .. 937
Prerequisites .. 937
Reindex data between OpenSearch Service internet domains ... 938
Reindex data when the remote domain is in a VPC .. 939
Reindex data between non-OpenSearch Service domains .. 944
Reindex large datasets .. 944
Remote reindex settings ... 946

Data streams ... 946
Getting started with data streams ... 947

xvii

Amazon OpenSearch Service Developer Guide

Monitoring data ... 950
Alerting .. 950

Getting started with alerting ... 950
Notifications ... 951
Differences .. 952

Anomaly detection .. 953
.. 954
Tutorial: Detect high CPU usage with anomaly detection ... 957

Machine learning ... 960
Connectors for Amazon Web Services .. 960

Prerequisites .. 960
Create an OpenSearch Service connector ... 963

Connectors for external platforms ... 966
Prerequisites .. 966
Create an OpenSearch Service connector ... 969

CloudFormation template integrations ... 971
Prerequisites .. 972
Amazon SageMaker templates .. 973
Amazon Bedrock templates ... 974

Unsupported ML Commons settings ... 975
Security Analytics .. 976

Security analytics components and concepts .. 976
Log types .. 976
Detectors .. 977
Rules .. 977
Findings ... 977
Alerts ... 977

Exploring Security Analytics .. 977
Configure permissions .. 979
Troubleshooting ... 981

No such index error ... 981
Observability ... 982

Explore your data with event analytics ... 982
Create visualizations .. 984
Dive deeper with Trace Analytics ... 985
Trace Analytics .. 986

xviii

Amazon OpenSearch Service Developer Guide

Prerequisites .. 987
OpenTelemetry Collector sample configuration .. 988
OpenSearch Ingestion sample configuration .. 988
Exploring trace data ... 990

Piped Processing Language ... 991
.. 991

Best practices ... 993
Monitoring and alerting ... 993

Configure CloudWatch alarms ... 993
Enable log publishing .. 994

Shard strategy .. 994
Determine shard and data node counts .. 995
Avoid storage skew .. 996

Stability .. 996
Keep current with OpenSearch .. 996
Improve snapshot performance .. 997
Enable dedicated master nodes .. 997
Deploy across multiple Availability Zones ... 997
Control ingest flow and buffering .. 998
Create mappings for search workloads ... 998
Use index templates .. 999
Manage indexes with Index State Management .. 1000
Remove unused indexes ... 1000
Use multiple domains for high availability ... 1000

Performance ... 1001
Optimize bulk request size and compression ... 1001
Reduce the size of bulk request responses ... 1001
Tune refresh intervals ... 1002
Enable Auto-Tune ... 1002

Security .. 1002
Enable fine-grained access control ... 1002
Deploy domains within a VPC ... 1003
Apply a restrictive access policy ... 1003
Enable encryption at rest ... 1003
Enable node-to-node encryption .. 1003
Monitor with Amazon Security Hub ... 1004

xix

Amazon OpenSearch Service Developer Guide

Cost optimization .. 1004
Use the latest generation instance types ... 1004
Use the latest Amazon EBS gp3 volumes ... 1004
Use UltraWarm and cold storage for time-series log data .. 1005
Review recommendations for Reserved Instances .. 1005

Sizing domains ... 1005
Calculating storage requirements ... 1006
Choosing the number of shards ... 1008
Choosing instance types and testing ... 1009

Petabyte scale .. 1011
Dedicated master nodes .. 1012

Choosing the number of dedicated master nodes .. 1013
Choosing instance types for dedicated master nodes .. 1015

Recommended CloudWatch alarms ... 1016
Other alarms you might consider ... 1020

General reference .. 1024
Supported instance types .. 1024

Current generation instance types ... 1024
Previous generation instance types ... 1034

Features by engine version .. 1037
Plugins by engine version .. 1042

Optional plugins ... 1046
Supported operations ... 1046

Notable API differences .. 1048
OpenSearch version 2.11 ... 1050
OpenSearch version 2.9 .. 1052
OpenSearch version 2.7 .. 1053
OpenSearch version 2.5 .. 1055
OpenSearch version 2.3 .. 1057
OpenSearch version 1.3 .. 1059
OpenSearch version 1.2 .. 1060
OpenSearch version 1.1 .. 1062
OpenSearch version 1.0 .. 1064
Elasticsearch version 7.10 .. 1065
Elasticsearch version 7.9 ... 1067
Elasticsearch version 7.8 ... 1069

xx

Amazon OpenSearch Service Developer Guide

Elasticsearch version 7.7 ... 1071
Elasticsearch version 7.4 ... 1072
Elasticsearch version 7.1 ... 1074
Elasticsearch version 6.8 ... 1075
Elasticsearch version 6.7 ... 1077
Elasticsearch version 6.5 ... 1078
Elasticsearch version 6.4 ... 1080
Elasticsearch version 6.3 ... 1081
Elasticsearch version 6.2 ... 1083
Elasticsearch version 6.0 ... 1084
Elasticsearch version 5.6 ... 1085
Elasticsearch version 5.5 ... 1087
Elasticsearch version 5.3 ... 1088
Elasticsearch version 5.1 ... 1090
Elasticsearch version 2.3 ... 1091
Elasticsearch version 1.5 ... 1092

Quotas .. 1093
UltraWarm storage quotas ... 1094
EBS volume size quotas .. 1094
Network quotas .. 1099
Shard size quotas ... 1105
Java process quota ... 1106
Domain policy quota ... 1106

Reserved Instances .. 1106
Purchasing Reserved Instances (console) .. 1107
Purchasing Reserved Instances (Amazon CLI) .. 1108
Purchasing Reserved Instances (Amazon SDKs) ... 1110
Examining costs .. 1112

Other supported resources .. 1112
Tutorials ... 1114

Creating and searching for documents ... 1114
Prerequisites .. 1114
Adding a document to an index ... 1115
Creating automatically generated IDs ... 1116
Updating a document with a POST command .. 1117
Performing bulk actions ... 1118

xxi

Amazon OpenSearch Service Developer Guide

Searching for documents ... 1119
Related resources ... 1121

Migrating to OpenSearch Service .. 1121
Take and upload the snapshot .. 1121
Create a domain ... 1123
Provide permissions to the S3 bucket ... 1124
Restore the snapshot .. 1126

Creating a search application ... 1128
Prerequisites .. 1129
Step 1: Index sample data ... 1129
Step 2: Create and deploy the Lambda function .. 1130
Step 3: Create the API in API Gateway .. 1133
Step 4: (Optional) Modify the domain access policy .. 1135
Map the Lambda role (if using fine-grained access control) ... 1137
Step 5: Test the web application .. 1137
Next steps .. 1139

Visualizing support calls .. 1140
Step 1: Configure prerequisites ... 1141
Step 2: Copy sample code ... 1142
(Optional) Step 3: Index sample data .. 1146
Step 4: Analyze and visualize your data ... 1148
Step 5: Clean up resources and next steps ... 1152

Amazon OpenSearch Service rename .. 1154
New API version ... 1154
Renamed instance types .. 1155
Access policy changes ... 1155

IAM policies ... 1155
SCP policies ... 1155

New resource types ... 1156
Kibana renamed to OpenSearch Dashboards .. 1157
Renamed CloudWatch metrics .. 1158
Billing and Cost Management console changes .. 1159
New event format ... 1160
What's staying the same? .. 1160
Get started: Upgrade your domains to OpenSearch 1.x ... 1160

Troubleshooting ... 1162

xxii

Amazon OpenSearch Service Developer Guide

Can't access OpenSearch Dashboards ... 1162
Can't access VPC domain ... 1162
Cluster in read-only state .. 1162
Red cluster status .. 1164

Automatic remediation of red clusters .. 1165
Recovering from a continuous heavy processing load ... 1166

Yellow cluster status ... 1168
ClusterBlockException ... 1168

Lack of available storage space .. 1168
High JVM memory pressure ... 1168

Error migrating to Multi-AZ with Standby ... 1169
Creating an index, index template, or ISM policy during migration from domains without
standby to domains with standby .. 981
Incorrect number of data copies .. 1170

JVM OutOfMemoryError .. 1170
Failed cluster nodes .. 1171
Exceeded maximum shard limit ... 1171
Domain stuck in processing state .. 1171
Low EBS burst balance ... 1172
Can't enable audit logs .. 1172
Can't close index .. 1173
Client license checks ... 1173
Request throttling ... 1173
Can't SSH into node ... 1173
"Not Valid for the Object's Storage Class" snapshot error .. 1174
Invalid host header ... 1174
Invalid M3 instance type .. 1174
Hot queries stop working after enabling UltraWarm .. 1175
Can't downgrade after upgrade ... 1175
Need summary of domains for all Amazon Web Services Regions ... 1175
Browser error when using OpenSearch Dashboards .. 1176
Node shard and storage skew .. 1176
Index shard and storage skew .. 1177
Unauthorized operation after selecting VPC access ... 1178
Stuck at loading after creating VPC domain ... 1178
Denied requests to the OpenSearch API .. 1178

xxiii

Amazon OpenSearch Service Developer Guide

Can't connect from Alpine Linux .. 1179
Too many requests for Search Backpressure ... 1180
Certificate error when using SDK ... 1180

Document history .. 1182
Earlier updates ... 1221

Amazon Glossary ... 1224

xxiv

Amazon OpenSearch Service Developer Guide

What is Amazon OpenSearch Service?

Amazon OpenSearch Service is a managed service that makes it easy to deploy, operate, and scale
OpenSearch clusters in the Amazon Cloud. Amazon OpenSearch Service supports OpenSearch
and legacy Elasticsearch OSS (up to 7.10, the final open source version of the software). When you
create a cluster, you have the option of which search engine to use.

OpenSearch is a fully open-source search and analytics engine for use cases such as log analytics,
real-time application monitoring, and clickstream analysis. For more information, see the
OpenSearch documentation.

Amazon OpenSearch Service provisions all the resources for your OpenSearch cluster and launches
it. It also automatically detects and replaces failed OpenSearch Service nodes, reducing the
overhead associated with self-managed infrastructures. You can scale your cluster with a single API
call or a few clicks in the console.

To get started using OpenSearch Service, you create an OpenSearch Service domain, which is
equivalent to an OpenSearch cluster. Each EC2 instance in the cluster acts as one OpenSearch
Service node.

You can use the OpenSearch Service console to set up and configure a domain in minutes. If you
prefer programmatic access, you can use the Amazon CLI or the Amazon SDKs.

1

https://opensearch.org/docs/
https://docs.amazonaws.cn/cli/latest/userguide/
http://www.amazonaws.cn/code

Amazon OpenSearch Service Developer Guide

Features of Amazon OpenSearch Service

OpenSearch Service includes the following features:

Scale

• Numerous configurations of CPU, memory, and storage capacity known as instance types,
including cost-effective Graviton instances

• Up to 3 PB of attached storage

• Cost-effective UltraWarm and cold storage for read-only data

Security

• Amazon Identity and Access Management (IAM) access control

• Easy integration with Amazon VPC and VPC security groups

• Encryption of data at rest and node-to-node encryption

• Amazon Cognito, HTTP basic, or SAML authentication for OpenSearch Dashboards

• Index-level, document-level, and field-level security

• Audit logs

• Dashboards multi-tenancy

Stability

• Numerous geographical locations for your resources, known as Regions and Availability Zones

• Node allocation across two or three Availability Zones in the same Amazon Region, known as
Multi-AZ

• Dedicated master nodes to offload cluster management tasks

• Automated snapshots to back up and restore OpenSearch Service domains

Flexibility

• SQL support for integration with business intelligence (BI) applications

• Custom packages to improve search results

Integration with popular services

Features of Amazon OpenSearch Service 2

Amazon OpenSearch Service Developer Guide

• Data visualization using OpenSearch Dashboards

• Integration with Amazon CloudWatch for monitoring OpenSearch Service domain metrics and
setting alarms

• Integration with Amazon CloudTrail for auditing configuration API calls to OpenSearch Service
domains

• Integration with Amazon S3, Amazon Kinesis, and Amazon DynamoDB for loading streaming
data into OpenSearch Service

• Alerts from Amazon SNS when your data exceeds certain thresholds

Amazon OpenSearch Serverless

Amazon OpenSearch Serverless is an on-demand, auto scaling, serverless configuration for
Amazon OpenSearch Service. Serverless removes the operational complexities of provisioning,
configuring, and tuning your OpenSearch clusters. For more information, see Amazon OpenSearch
Serverless.

Amazon OpenSearch Ingestion

Amazon OpenSearch Ingestion is a fully managed data collector, powered by Data Prepper, that
delivers real-time log and trace data to Amazon OpenSearch Service domains and OpenSearch
Serverless collections. It enables you to filter, enrich, transform, normalize, and aggregate data for
downstream analysis and visualization. For more information, see Amazon OpenSearch Ingestion.

Supported versions of OpenSearch and Elasticsearch

OpenSearch Service currently supports the following OpenSearch versions:

• 2.11, 2.9, 2.7, 2.5, 2.3, 1.3, 1.2, 1.1, 1.0

OpenSearch Service also supports the following legacy Elasticsearch OSS versions:

• 7.10, 7.9, 7.8, 7.7, 7.4, 7.1

• 6.8, 6.7, 6.5, 6.4, 6.3, 6.2, 6.0

• 5.6, 5.5, 5.3, 5.1

• 2.3

Amazon OpenSearch Serverless 3

https://opensearch.org/docs/latest/clients/data-prepper/index/
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ingestion.html

Amazon OpenSearch Service Developer Guide

• 1.5

For more information, see the section called “Supported operations”, the section called “Features
by engine version”, and the section called “Plugins by engine version”.

If you start a new OpenSearch Service project, we strongly recommend that you choose the latest
supported OpenSearch version. If you have an existing domain that uses an older Elasticsearch
version, you can choose to keep the domain or migrate your data. For more information, see the
section called “Upgrading domains”.

Pricing for Amazon OpenSearch Service

For OpenSearch Service, you pay for each hour of use of an EC2 instance and for the cumulative
size of any EBS storage volumes attached to your instances. Standard Amazon data transfer
charges also apply.

However, some notable data transfer exceptions exist. If a domain uses multiple Availability
Zones, OpenSearch Service does not bill for traffic between the Availability Zones. Significant
data transfer occurs within a domain during shard allocation and rebalancing. OpenSearch Service
neither meters nor bills for this traffic. Similarly, OpenSearch Service does not bill for data transfer
between UltraWarm/cold nodes and Amazon S3.

For full pricing details, see Amazon OpenSearch Service pricing. For information about charges
incurred during configuration changes, see the section called “Charges for configuration changes”.

Getting started with Amazon OpenSearch Service

To get started, sign up for an Amazon Web Services account if you don't already have one. After
you are set up with an account, complete the getting started tutorial for Amazon OpenSearch
Service. Consult the following introductory topics if you need more information while learning
about the service:

• Create a domain

• Size the domain appropriately for your workload

• Control access to your domain using a domain access policy or fine-grained access control

• Index data manually or from other Amazon services

Pricing for Amazon OpenSearch Service 4

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/elasticsearch-service/pricing/
https://aws.amazon.com/

Amazon OpenSearch Service Developer Guide

• Use OpenSearch Dashboards to search your data and create visualizations

For information on migrating to OpenSearch Service from a self-managed OpenSearch cluster, see
the section called “Migrating to OpenSearch Service”.

Related services

OpenSearch Service commonly is used with the following services:

Amazon CloudWatch

OpenSearch Service domains automatically send metrics to CloudWatch so that you can
monitor domain health and performance. For more information, see Monitoring OpenSearch
cluster metrics with Amazon CloudWatch.

CloudWatch Logs can also go the other direction. You might configure CloudWatch Logs to
stream data to OpenSearch Service for analysis. To learn more, see the section called “Loading
streaming data from Amazon CloudWatch”.

Amazon CloudTrail

Use Amazon CloudTrail to get a history of the OpenSearch Service configuration API calls and
related events for your account. For more information, see Monitoring Amazon OpenSearch
Service API calls with Amazon CloudTrail.

Amazon Kinesis

Kinesis is a managed service for real-time processing of streaming data at a massive scale. For
more information, see the section called “Loading streaming data from Amazon Kinesis Data
Streams” and the section called “Loading streaming data from Amazon Data Firehose”.

Amazon S3

Amazon Simple Storage Service (Amazon S3) provides storage for the internet. This guide
provides Lambda sample code for integration with Amazon S3. For more information, see the
section called “Loading streaming data from Amazon S3”.

Amazon IAM

Amazon Identity and Access Management (IAM) is a web service that you can use to manage
access to your OpenSearch Service domains. For more information, see the section called
“Identity and Access Management”.

Related services 5

http://aws.amazon.com/documentation/cloudwatch/
http://aws.amazon.com/documentation/cloudtrail/
http://aws.amazon.com/documentation/kinesis/
http://aws.amazon.com/documentation/s3/
http://aws.amazon.com/iam/

Amazon OpenSearch Service Developer Guide

Amazon Lambda

Amazon Lambda is a compute service that lets you run code without provisioning or managing
servers. This guide provides Lambda sample code to stream data from DynamoDB, Amazon
S3, and Kinesis. For more information, see the section called “Loading streaming data into
OpenSearch Service”.

Amazon DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and
predictable performance with seamless scalability. To learn more about streaming data to
OpenSearch Service, see the section called “Loading streaming data from Amazon DynamoDB”.

Amazon QuickSight

You can visualize data from OpenSearch Service using Amazon QuickSight dashboards. For
more information, see Using Amazon OpenSearch Service with Amazon QuickSight in the
Amazon QuickSight User Guide.

Note

OpenSearch includes certain Apache-licensed Elasticsearch code from Elasticsearch B.V.
and other source code. Elasticsearch B.V. is not the source of that other source code.
ELASTICSEARCH is a registered trademark of Elasticsearch B.V.

Related services 6

http://aws.amazon.com/documentation/lambda/
http://aws.amazon.com/documentation/dynamodb/
http://aws.amazon.com/documentation/quicksight/
https://docs.amazonaws.cn/quicksight/latest/user/connecting-to-es.html

Amazon OpenSearch Service Developer Guide

Amazon OpenSearch Serverless

Amazon OpenSearch Serverless is an on-demand, auto-scaling configuration for Amazon
OpenSearch Service. An OpenSearch Serverless collection is an OpenSearch cluster that scales
compute capacity based on your application's needs. This contrasts with OpenSearch Service
provisioned OpenSearch domains, which you manually manage capacity for.

OpenSearch Serverless provides a simple, cost-effective option for infrequent, intermittent, or
unpredictable workloads. It's cost-effective because it automatically scales compute capacity to
match your application's usage.

OpenSearch Serverless collections have the same kind of high-capacity, distributed, and highly
available storage volume that is used by provisioned OpenSearch Service domains.

OpenSearch Serverless collections are always encrypted. You can choose the encryption key, but
you can't disable encryption. For more information, see the section called “Encryption”.

Topics

• Benefits

• What is Amazon OpenSearch Serverless?

• Getting started with Amazon OpenSearch Serverless

• Creating and managing Amazon OpenSearch Serverless collections

• Managing capacity limits for Amazon OpenSearch Serverless

• Ingesting data into Amazon OpenSearch Serverless collections

• Overview of security in Amazon OpenSearch Serverless

• Tagging Amazon OpenSearch Serverless collections

• Supported operations and plugins in Amazon OpenSearch Serverless

• Monitoring Amazon OpenSearch Serverless

Benefits

OpenSearch Serverless has the following benefits:

• Simpler than provisioned – OpenSearch Serverless removes much of the complexity of
managing OpenSearch clusters and capacity. It automatically sizes and tunes your clusters, and

Benefits 7

Amazon OpenSearch Service Developer Guide

takes care of shard and index lifecycle management. It also manages service software updates
and OpenSearch version upgrades. All updates and upgrades are non-disruptive.

• Cost-effective – When you use OpenSearch Serverless, you only pay for the resources that
you consume. This removes the need for upfront provisioning and overprovisioning for peak
workloads.

• Highly available – OpenSearch Serverless supports production workloads with redundancy to
protect against Availability Zone outages and infrastructure failures.

• Scalable – OpenSearch Serverless automatically scales resources to maintain consistently fast
data ingestion rates and query response times.

What is Amazon OpenSearch Serverless?

Amazon OpenSearch Serverless is an on-demand serverless configuration for Amazon OpenSearch
Service. Serverless removes the operational complexities of provisioning, configuring, and
tuning your OpenSearch clusters. It's a good option for organizations that don't want to self-
manage their OpenSearch clusters, or organizations that don't have the dedicated resources or
expertise to operate large clusters. With OpenSearch Serverless, you can easily search and analyze
a large volume of data without having to worry about the underlying infrastructure and data
management.

An OpenSearch Serverless collection is a group of OpenSearch indexes that work together
to support a specific workload or use case. Collections are easier to use than self-managed
OpenSearch clusters, which require manual provisioning.

Collections have the same kind of high-capacity, distributed, and highly available storage volume
that's used by provisioned OpenSearch Service domains, but they remove more complexity
because they don't require manual configuration and tuning. Data is encrypted in transit within
a collection. OpenSearch Serverless also supports OpenSearch Dashboards, which provides an
intuitive interface for analyzing data.

Serverless collections currently run OpenSearch version 2.0.x. As new versions are released,
OpenSearch Serverless will automatically upgrade your collections to consume new features, bug
fixes, and performance improvements.

Topics

• Use cases for OpenSearch Serverless

• Getting started

What is Amazon OpenSearch Serverless? 8

Amazon OpenSearch Service Developer Guide

• How it works

• Choosing a collection type

• Pricing for OpenSearch Serverless

• Supported Amazon Web Services Regions

• Limitations

• Comparing OpenSearch Service and OpenSearch Serverless

Use cases for OpenSearch Serverless

OpenSearch Serverless supports two primary use cases:

• Log analytics - The log analytics segment focuses on analyzing large volumes of semi-
structured, machine-generated time series data for operational and user behavior insights.

• Full-text search - The full-text search segment powers applications in your internal networks
(content management systems, legal documents) and internet-facing applications, such as
ecommerce website content search.

When you create a collection, you choose one of these use cases. For more information, see the
section called “Choosing a collection type”.

Getting started

To get started with OpenSearch Serverless, create one or more collections using the OpenSearch
Service console, the Amazon CLI, or one of the Amazon SDKs. For a tutorial that helps you get
a collection up and running quickly, see the section called “Getting started with OpenSearch
Serverless”.

OpenSearch Serverless supports the same ingest and query API operations as the OpenSearch
open source suite, so you can continue to use your existing clients and applications. Your clients
must be compatible with OpenSearch 2.x in order to work with OpenSearch Serverless. For more
information, see the section called “Ingesting data into collections”.

How it works

Traditional OpenSearch clusters have a single set of instances that perform both indexing and
search operations, and index storage is tightly coupled with compute capacity. In contrast,

Use cases for OpenSearch Serverless 9

Amazon OpenSearch Service Developer Guide

OpenSearch Serverless uses a cloud-native architecture that separates the indexing (ingest)
components from the search (query) components, with Amazon S3 as the primary data storage for
indexes.

This decoupled architecture lets you scale search and indexing functions independently of each
other, and independently of the indexed data in S3. The architecture also provides isolation for
ingest and query operations so that they can run concurrently without resource contention.

When you write data to a collection, OpenSearch Serverless distributes it to the indexing compute
units. The indexing compute units ingest the incoming data and move the indexes to S3. When
you perform a search on the collection data, OpenSearch Serverless routes requests to the search
compute units that hold the data being queried. The search compute units download the indexed
data directly from S3 (if it's not already cached locally), run search operations, and perform
aggregations.

The following image illustrates this decoupled architecture:

How it works 10

Amazon OpenSearch Service Developer Guide

OpenSearch Serverless compute capacity for data ingestion, searching, and querying are measured
in OpenSearch Compute Units (OCUs). Each OCU is a combination of 6 GiB of memory and
corresponding virtual CPU (vCPU), as well as data transfer to Amazon S3. Each OCU includes
enough hot ephemeral storage for 120 GiB of index data.

When you create your first collection, OpenSearch Serverless instantiates two OCUs—one for
indexing and one for search. To ensure high availability, it also launches a standby set of nodes
in another Availability Zone. You can opt to disable the two standby replicas when you create the
collection if you're working in a development or testing environment. By default, the redundant

How it works 11

Amazon OpenSearch Service Developer Guide

active replicas are enabled, which means that a total of four OCUs are instantiated for the first
collection in an account.

These OCUs exist even when there's no activity on any collection endpoints. All subsequent
collections share these OCUs. When you create additional collections in the same account,
OpenSearch Serverless only adds additional OCUs for search and ingest as needed to support the
collections, according to the capacity limits that you specify. Capacity does scale back down as your
compute usage decreases.

For information about how you're billed for these OCUs, see the section called “Pricing for
OpenSearch Serverless”.

Choosing a collection type

OpenSearch Serverless supports three primary collection types:

Time series – The log analytics segment that focuses on analyzing large volumes of semi-
structured, machine-generated data in real-time for operational, security, user behavior, and
business insights.

Search – Full-text search that powers applications in your internal networks (content management
systems, legal documents) and internet-facing applications, such as ecommerce website search and
content search.

Vector search – Semantic search on vector embeddings that simplifies vector data management
and powers machine learning (ML) augmented search experiences and generative AI applications,
such as chatbots, personal assistants, and fraud detection.

You choose a collection type when you first create a collection:

The collection type that you choose depends on the kind of data that you plan to ingest into the
collection, and how you plan to query it. You can't change the collection type after you create it.

The collection types have the following notable differences:

Choosing a collection type 12

Amazon OpenSearch Service Developer Guide

• For search and vector search collections, all data is stored in hot storage to ensure fast query
response times. Time series collections use a combination of hot and warm storage, where the
most recent data is kept in hot storage to optimize query response times for more frequently
accessed data.

• For time series and vector search collections, you can't index by custom document ID or update by
upsert requests. This operation is reserved for search use cases. You can update by document ID
instead. For more information, see the section called “Supported OpenSearch API operations and
permissions”.

• For search and time series collections, you can't use k-NN type indexes.

Pricing for OpenSearch Serverless

In OpenSearch Serverless, you're charged for the following components:

• Data ingestion compute

• Search and query compute

• Storage retained in Amazon S3

OCUs are billed on an hourly basis, with per-second granularity. In your account statement, you
see an entry for compute in OCU-hours with a label for data ingestion and a label for search.
You're also billed on a monthly basis for data stored in Amazon S3. You aren't charged for using
OpenSearch Dashboards.

You're billed for a minimum of four OCUs that are allocated for your workloads when you create a
collection and enable redundant active replicas. You're billed for a minimum of two OCUs for the
first collection in your account if you disable redundant active replicas. All subsequent collections
can share those OCUs.

OpenSearch Serverless adds additional OCUs based on the compute needed to support your
collections. If your workload uses a fractional OCU, the pricing is proportionate. You can configure
a maximum number of OCUs for your account in order to control costs.

Note

Collections with unique Amazon KMS keys can't share OCUs with other collections.

Pricing for OpenSearch Serverless 13

Amazon OpenSearch Service Developer Guide

For full pricing details, see Amazon OpenSearch Service pricing.

Supported Amazon Web Services Regions

OpenSearch Serverless is available in a subset of Amazon Web Services Regions that OpenSearch
Service is available in. For a list of supported Regions, see Amazon OpenSearch Service endpoints
and quotas in the Amazon Web Services General Reference.

Limitations

OpenSearch Serverless has the following limitations:

• Some OpenSearch API operations aren't supported. See the section called “Supported
OpenSearch API operations and permissions”.

• Some OpenSearch plugins aren't supported. See the section called “Supported OpenSearch
plugins”.

• There's currently no way to automatically migrate your data from a managed OpenSearch
Service domain to a serverless collection. You must reindex your data from a domain to a
collection.

• Cross-account access to collections isn't supported. You can't include collections from other
accounts in your encryption or data access policies.

• Custom OpenSearch plugins aren't supported.

• You can't take or restore snapshots of OpenSearch Serverless collections.

• Cross-Region search and replication aren't supported.

• There are limits on the number of serverless resources that you can have in a single account and
Region. See OpenSearch Serverless quotas.

• The refresh interval for indexes might be between 10 and 60 seconds depending on the size of
your requests.

• The number of shards, number of intervals, and refresh interval are not modifiable and are
handled by OpenSearch Serverless. The sharding strategy is based off the collection type
and traffic. For example, a time series collection scales primary shards based on write traffic
bottlenecks.

• Geospatial features available on OpenSearch versions up to 2.1 are supported.

Supported Amazon Web Services Regions 14

https://aws.amazon.com/opensearch-service/pricing/
https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html
https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html
https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html#opensearch-limits-serverless

Amazon OpenSearch Service Developer Guide

Comparing OpenSearch Service and OpenSearch Serverless

In OpenSearch Serverless, some concepts and features are different than their corresponding
feature for a provisioned OpenSearch Service domain. For example, one important difference is
that OpenSearch Serverless doesn't have the concept of a cluster or node.

The following table describes how important features and concepts in OpenSearch Serverless differ
from the equivalent feature in a provisioned OpenSearch Service domain.

Feature OpenSearch Service OpenSearch Serverless

Domains
versus
collections

Indexes are held in domains,
which are pre-provisioned
OpenSearch clusters.

For more information, see
Creating and managing
domains.

Indexes are held in collections, which are
logical groupings of indexes that represent a
specific workload or use case.

For more information, see the section called
“Creating, listing, and deleting collections”.

Node types
and capacity
managemen
t

You build a cluster with node
types that meet your cost and
performance specifications.
You must calculate your own
storage requirements and
choose an instance type for
your domain.

For more information, see
the section called “Sizing
domains”.

OpenSearch Serverless automatically scales
and provisions additional compute units for
your account based on your capacity usage.

For more information, see the section called
“Managing capacity limits”.

Billing You pay for each hour of use
of an EC2 instance and for the
cumulative size of any EBS
storage volumes attached to
your instances.

You're charged in OCU-hours for compute for
data ingestion, compute for search and query,
and storage retained in S3.

For more information, see the section called
“Pricing for OpenSearch Serverless”.

Comparing OpenSearch Service and OpenSearch Serverless 15

Amazon OpenSearch Service Developer Guide

Feature OpenSearch Service OpenSearch Serverless

For more information, see
the section called “Pricing for
Amazon OpenSearch Service”.

Encryption Encryption at rest is optional
for domains.

For more information, see the
section called “Encryption at
rest”.

Encryption at rest is required for collections.

For more information, see the section called
“Encryption”.

Data access
control

Access to the data within
domains is determined by
IAM policies and fine-grained
access control.

Access to data within collections is determine
d by data access policies.

Supported
OpenSearch
operations

OpenSearch Service supports
a subset of all of the
OpenSearch API operations.

For more information, see
the section called “Supported
operations”.

OpenSearch Serverless supports a different
subset of OpenSearch API operations.

For more information, see the section called
“Supported operations and plugins”.

Dashboards
sign-in

Sign in with a username and
password.

For more information, see
the section called “Accessin
g OpenSearch Dashboards as
the master user”.

If you're logged into the Amazon console
and navigate to your Dashboard URL, you'll
automatically log in.

For more information, see the section called
“Accessing OpenSearch Dashboards”.

APIs Interact programmatically
with OpenSearch Service
using the OpenSearch Service
API operations.

Interact programmatically with OpenSearch
Serverless using the OpenSearch Serverless
API operations.

Comparing OpenSearch Service and OpenSearch Serverless 16

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

Feature OpenSearch Service OpenSearch Serverless

Network
access

Network settings for a domain
apply to the domain endpoint
as well as the OpenSearc
h Dashboards endpoint.
Network access for both is
tightly coupled.

Network settings for the domain endpoint
and the OpenSearch Dashboards endpoint are
decoupled. You can choose to not configure
network access for OpenSearch Dashboards.

For more information, see the section called
“Network access”.

Signing
requests

Use the OpenSearch high and
low-level REST clients to sign
requests. Specify the service
name as es.

At this time, OpenSearch Serverless supports
a subset of clients that OpenSearch Service
supports.

When you sign requests, specify the service
name as aoss. The x-amz-content-sha2
56 header is required. For more information,
see the section called “Signing HTTP requests
with other clients”.

OpenSearc
h version
upgrades

You manually upgrade your
domains as new versions
of OpenSearch become
available. You're responsible
for ensuring that your domain
meets the upgrade requireme
nts, and that you've addressed
 any breaking changes.

OpenSearch Serverless automatically
upgrades your collections to new OpenSearc
h versions. Upgrades don't necessarily happen
as soon as a new version is available.

Service
software
updates

You manually apply service
software updates to your
domain as they become
available.

OpenSearch Serverless automatically updates
your collections to consume the latest bug
fixes, features, and performance improveme
nts.

Comparing OpenSearch Service and OpenSearch Serverless 17

Amazon OpenSearch Service Developer Guide

Feature OpenSearch Service OpenSearch Serverless

VPC access You can provision your
domain within a VPC.

You can also create additional
OpenSearch Service-managed
VPC endpoints to access the
domain.

You create one or more OpenSearch Serverles
s-managed VPC endpoints for your account.
Then, you include these endpoints within
network policies.

SAML
authentic
ation

You enable SAML authentic
ation on a per-domain basis.

For more information, see
the section called “SAML
authentication for OpenSearc
h Dashboards”.

You configure one or more SAML providers
at the account level, then you include the
associated user and group IDs within data
access policies.

For more information, see the section called
“SAML authentication”.

Transport
Security
Layer (TSL)

OpenSearch Service supports
TLS 1.2 but it is recommend
you use TLS 1.3.

OpenSearch Serverless supports TLS 1.2 but it
is recommended you use TLS 1.3.

Getting started with Amazon OpenSearch Serverless

This tutorial walks you through the basic steps to get an Amazon OpenSearch Serverless search
collection up and running quickly. A search collection allows you to power applications in your
internal networks and internet-facing applications, such as ecommerce website search and content
search.

To learn how to use a vector search collection, see the section called “Working with vector
search collections”. For more detailed information about using collections, see the section called
“Creating, listing, and deleting collections” and the other topics within this guide.

You'll complete the following steps in this tutorial:

1. Configure permissions

2. Create a collection

3. Upload and search data

Getting started with OpenSearch Serverless 18

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-getting-started-search.html#serverless-gsg-permissions
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-getting-started-search.html#serverless-gsg-create
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-getting-started-search.html#serverless-gsg-index

Amazon OpenSearch Service Developer Guide

4. Delete the collection

Step 1: Configure permissions

In order to complete this tutorial, and to use OpenSearch Serverless in general, you must have the
correct IAM permissions. In this tutorial, you will create a collection, upload and search data, and
then delete the collection.

Your user or role must have an attached identity-based policy with the following minimum
permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aoss:CreateCollection",
 "aoss:ListCollections",
 "aoss:BatchGetCollection",
 "aoss:DeleteCollection",
 "aoss:CreateAccessPolicy",
 "aoss:ListAccessPolicies",
 "aoss:UpdateAccessPolicy",
 "aoss:CreateSecurityPolicy",
 "aoss:GetSecurityPolicy",
 "aoss:UpdateSecurityPolicy",
 "iam:ListUsers",
 "iam:ListRoles"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For more information about OpenSearch Serverless IAM permissions, see the section called
“Identity and Access Management”.

Step 1: Configure permissions 19

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-getting-started-search.html#serverless-gsg-delete

Amazon OpenSearch Service Developer Guide

Step 2: Create a collection

A collection is a group of OpenSearch indexes that work together to support a specific workload or
use case.

To create an OpenSearch Serverless collection

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. Choose Collections in the left navigation pane and choose Create collection.

3. Name the collection movies.

4. For collection type, choose Search. For more information, see Choosing a collection type.

5. Under Encryption, select Use Amazon owned key. This is the Amazon KMS key that
OpenSearch Serverless will use to encrypt your data.

6. Under Network, configure network settings for the collection.

• For the access type, select Public.

• For the resource type, enable access to both OpenSearch endpoints and OpenSearch
Dashboards. Since you'll upload and search data using OpenSearch Dashboards, you need to
enable both.

7. Choose Next.

8. For Configure data access, set up access settings for the collection. Data access policies allow
users and roles to access the data within a collection. In this tutorial, we'll provide a single user
the permissions required to index and search data in the movies collection.

Create a single rule that provides access to the movies collection. Name the rule Movies
collection access.

9. Choose Add principals, IAM users and roles and select the user or role that you'll use to sign
in to OpenSearch Dashboards and index data. Choose Save.

10. Under Index permissions, select all of the permissions.

11. Choose Next.

12. For the access policy settings, choose Create a new data access policy and name the policy
movies.

13. Choose Next.

14. Review your collection settings and choose Submit. Wait several minutes for the collection
status to become Active.

Step 2: Create a collection 20

https://console.aws.amazon.com/aos/home
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-overview.html#serverless-usecase

Amazon OpenSearch Service Developer Guide

Step 3: Upload and search data

You can upload data to an OpenSearch Serverless collection using Postman or curl. For brevity,
these examples use Dev Tools within the OpenSearch Dashboards console.

To index and search data in the movies collection

1. Choose Collections in the left navigation pane and choose the movies collection to open its
details page.

2. Choose the OpenSearch Dashboards URL for the collection. The URL takes the format
https://collection-id.us-east-1.aoss.amazonaws.com/_dashboards.

3. Within OpenSearch Dashboards, open the left navigation pane and choose Dev Tools.

4. To create a single index called movies-index, send the following request:

PUT movies-index

5. To index a single document into movies-index, send the following request:

PUT movies-index/_doc/1
{
 "title": "Shawshank Redemption",
 "genre": "Drama",
 "year": 1994
}

6. To search data in OpenSearch Dashboards, you need to configure at least one index pattern.
OpenSearch uses these patterns to identify which indexes you want to analyze. Open the left

Step 3: Upload and search data 21

https://www.postman.com/downloads/

Amazon OpenSearch Service Developer Guide

navigation pane, choose Stack Management, choose Index Patterns, and then choose Create
index pattern. For this tutorial, enter movies.

7. Choose Next step and then choose Create index pattern. After the pattern is created, you can
view the various document fields such as title and genre.

8. To begin searching your data, open the left navigation pane again and choose Discover, or use
the search API within Dev Tools.

Step 4: Delete the collection

Because the movies collection is for test purposes, make sure to delete it when you're done
experimenting.

To delete an OpenSearch Serverless collection

1. Go back to the Amazon OpenSearch Service console.

2. Choose Collections in the left navigation pane and select the movies collection.

3. Choose Delete and confirm deletion.

Next steps

Now that you know how to create a collection and index data, you might want to try some of the
following exercises:

• See more advanced options for creating a collection. For more information, see the section called
“Creating, listing, and deleting collections”.

• Learn how to configure security policies to manage collection security at scale. For more
information, see the section called “Security in OpenSearch Serverless”.

• Discover other ways to index data into collections. For more information, see the section called
“Ingesting data into collections”.

Creating and managing Amazon OpenSearch Serverless
collections

You can create Amazon OpenSearch Serverless collections using the console, the Amazon CLI and
API, the Amazon SDKs, and Amazon CloudFormation.

Step 4: Delete the collection 22

https://opensearch.org/docs/latest/api-reference/search/

Amazon OpenSearch Service Developer Guide

Topics

• Creating, listing, and deleting Amazon OpenSearch Serverless collections

• Working with vector search collections

• Using data lifecycle policies with Amazon OpenSearch Serverless

• Using the Amazon SDKs to interact with Amazon OpenSearch Serverless

• Using Amazon CloudFormation to create Amazon OpenSearch Serverless collections

Creating, listing, and deleting Amazon OpenSearch Serverless
collections

A collection in Amazon OpenSearch Serverless is a logical grouping of one or more indexes that
represent an analytics workload. OpenSearch Service automatically manages and tunes the
collection, requiring minimal manual input.

Topics

• Permissions required

• Creating collections

• Accessing OpenSearch Dashboards

• Viewing collections

• Deleting collections

Permissions required

OpenSearch Serverless uses the following Amazon Identity and Access Management (IAM)
permissions for creating and managing collections. You can specify IAM conditions to restrict users
to specific collections.

• aoss:CreateCollection – Create a collection.

• aoss:ListCollections – List collections in the current account.

• aoss:BatchGetCollection – Get details about one or more collections.

• aoss:UpdateCollection – Modify a collection.

• aoss:DeleteCollection – Delete a collection.

Creating, listing, and deleting collections 23

Amazon OpenSearch Service Developer Guide

The following sample identity-based access policy provides the minimum permissions necessary for
a user to manage a single collection named Logs:

[
 {
 "Sid":"Allows managing logs collections",
 "Effect":"Allow",
 "Action":[
 "aoss:CreateCollection",
 "aoss:ListCollections",
 "aoss:BatchGetCollection",
 "aoss:UpdateCollection",
 "aoss:DeleteCollection",
 "aoss:CreateAccessPolicy",
 "aoss:CreateSecurityPolicy"
],
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "aoss:collection":"Logs"
 }
 }
 }
]

aoss:CreateAccessPolicy and aoss:CreateSecurityPolicy are included because
encryption, network, and data access policies are required in order for a collection to function
properly. For more information, see the section called “Identity and Access Management”.

Note

If you're creating the first collection in your account, you also need the
iam:CreateServiceLinkedRole permission. For more information, see the section
called “Collection creation role”.

Creating collections

You can use the console or the Amazon CLI to create a serverless collection. These steps cover
how to create a search or time series collection. To create a vector search collection, see the section
called “Working with vector search collections”.

Creating, listing, and deleting collections 24

Amazon OpenSearch Service Developer Guide

Create a collection (console)

To create a collection using the console

1. Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home/.

2. Expand Serverless in the left navigation pane and choose Collections.

3. Choose Create collection.

4. Provide a name and description for the collection. The name must meet the following criteria:

• Is unique to your account and Amazon Web Services Region

• Starts with a lowercase letter

• Contains between 3 and 32 characters

• Contains only lowercase letters a-z, the numbers 0–9, and the hyphen (-)

5. Choose a collection type:

• Search – Full-text search that powers applications in your internal networks and internet-
facing applications. All search data is stored in hot storage to ensure fast query response
times.

• Time series – Log analytics segment that focuses on analyzing large volumes of semi-
structured, machine-generated data. At least 24 hours of data is stored on hot indexes, and
the rest remains in warm storage.

• Vector search – Semantic search on vector embeddings that simplifies vector data
management. Powers machine learning (ML) augmented search experiences and generative
AI applications such as chatbots, personal assistants, and fraud detection.

For more information, see the section called “Choosing a collection type”.

6. Under Deployment type, clear Enable redundancy (active replicas). This creates a collection
in development or testing mode, and reduces the number of OpenSearch Compute Units
(OCUs) in your collection to two. If you want to create a production environment in this
tutorial, leave the check box selected.

7. Under Encryption, choose an Amazon KMS key to encrypt your data with. OpenSearch
Serverless notifies you if the collection name that you entered matches a pattern defined in
an encryption policy. You can choose to keep this match or override it with unique encryption
settings. For more information, see the section called “Encryption”.

Creating, listing, and deleting collections 25

https://console.aws.amazon.com/aos/home/
https://console.aws.amazon.com/aos/home/

Amazon OpenSearch Service Developer Guide

8. Under Network access settings, configure network access for the collection.

• For Access type, select public or VPC access. If you choose to enable access through a virtual
private cloud (VPC), select one or more VPC endpoints to allow access through. To create a
VPC endpoint, see the section called “VPC endpoints”.

• For Resource type, select whether the collection will be accessible through its OpenSearch
endpoint (to make API calls through curl, Postman, and so on), through the OpenSearch
Dashboards endpoint (to work with visualizations and make API calls through the console),
or through both.

OpenSearch Serverless notifies you if the collection name that you entered matches a pattern
defined in a network policy. You can choose to keep this match or override it with custom
network settings. For more information, see the section called “Network access”.

9. (Optional) Add one or more tags to the collection. For more information, see the section called
“Tagging collections”.

10. Choose Next.

11. Configure data access rules for the collection, which define who can access the data within the
collection. For each rule that you create, perform the following steps:

• Choose Add principals and select one or more IAM roles or SAML users and groups to
provide data access to.

• Under Grant permissions, select the alias, template, and index permissions to grant the
associated principals. For a full list of permissions and the access they allow, see the section
called “Supported OpenSearch API operations and permissions”.

OpenSearch Serverless notifies you if the collection name that you entered matches a pattern
defined in a data access policy. You can choose to keep this match or override it with unique
data access settings. For more information, see the section called “Data access control”.

12. Choose Next.

13. Under Data access policy settings, choose what to do with the rules you just created. You can
either use them to create a new data access policy, or add them to an existing policy.

14. Review your collection configuration and choose Submit.

The collection status changes to Creating as OpenSearch Serverless creates the collection.

Creating, listing, and deleting collections 26

Amazon OpenSearch Service Developer Guide

Create a collection (CLI)

Before you create a collection using the Amazon CLI, you must have an encryption policy with a
resource pattern that matches the intended name of the collection. For example, if you plan to
name your collection logs-application, you might create an encryption policy like this:

aws opensearchserverless create-security-policy \
 --name logs-policy \
 --type encryption --policy "{\"Rules\":[{\"ResourceType\":\"collection\",\"Resource
\":[\"collection\/logs-application\"]}],\"AWSOwnedKey\":true}"

If you plan to use the policy for additional collections, you can make the rule more broad, such as
collection/logs* or collection/*.

You also need to configure network settings for the collection in the form of a network policy.
Using the previous logs-application example, you might create the following network policy:

aws opensearchserverless create-security-policy \
 --name logs-policy \
 --type network --policy "[{\"Description\":\"Public access for logs collection
\",\"Rules\":[{\"ResourceType\":\"dashboard\",\"Resource\":[\"collection\/logs-
application\"]},{\"ResourceType\":\"collection\",\"Resource\":[\"collection\/logs-
application\"]}],\"AllowFromPublic\":true}]"

Note

You can create network policies after you create a collection, but we recommend doing it
beforehand.

To create a collection, send a CreateCollection request:

aws opensearchserverless create-collection --name "logs-application" --type SEARCH --
description "A collection for storing log data"

For type, specify either SEARCH or TIMESERIES. For more information, see the section called
“Choosing a collection type”.

Sample response

Creating, listing, and deleting collections 27

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_CreateCollection.html

Amazon OpenSearch Service Developer Guide

{
 "createCollectionDetail": {
 "id": "07tjusf2h91cunochc",
 "name": "books",
 "description":"A collection for storing log data",
 "status": "CREATING",
 "type": "SEARCH",
 "kmsKeyArn": "auto",
 "arn": "arn:aws:aoss:us-east-1:123456789012:collection/07tjusf2h91cunochc",
 "createdDate": 1665952577473
 }
}

If you don't specify a collection type in the request, it defaults to TIMESERIES. If your collection is
encrypted with an Amazon owned key, the kmsKeyArn is auto rather than an ARN.

Important

After you create a collection, you won't be able to access it unless it matches a data access
policy. For instructions to create data access policies, see the section called “Data access
control”.

Accessing OpenSearch Dashboards

After you create a collection with the Amazon Web Services Management Console, you can
navigate to the collection's OpenSearch Dashboards URL. You can find the Dashboards URL by
choosing Collections in the left navigation pane and selecting the collection to open its details
page. The URL takes the format https://dashboards.us-east-1.aoss.amazonaws.com/
_login/?collectionId=07tjusf2h91cunochc. Once you navigate to the URL, you'll
automatically log into Dashboards.

If you already have the OpenSearch Dashboards URL available but aren't on the Amazon Web
Services Management Console, calling the Dashboards URL from the browser will redirect to the
console. Once you enter your Amazon credentials, you'll automatically log in to Dashboards. For
information about accessing collections for SAML, see Accessing OpenSearch Dashboards with
SAML.

The OpenSearch Dashboards console timeout is one hour and isn't configurable.

Creating, listing, and deleting collections 28

Amazon OpenSearch Service Developer Guide

Note

On May 10, 2023, OpenSearch introduced a common global endpoint for OpenSearch
Dashboards. You can now navigate to OpenSearch Dashboards in the browser with a URL
that takes the format https://dashboards.us-east-1.aoss.amazonaws.com/
_login/?collectionId=07tjusf2h91cunochc. To ensure backward compatibility,
we'll continue to support the existing collection specific OpenSearch Dashboards endpoints
with the format https://07tjusf2h91cunochc.us-east-1.aoss.amazonaws.com/
_dashboards.

Viewing collections

You can view the existing collections in your Amazon Web Services account on the Collections tab
of the Amazon OpenSearch Service console.

To list collections along with their IDs, send a ListCollections request.

aws opensearchserverless list-collections

Sample response

{
 "collectionSummaries":[
 {
 "arn":"arn:aws:aoss:us-east-1:123456789012:collection/07tjusf2h91cunochc",
 "id":"07tjusf2h91cunochc",
 "name":"my-collection",
 "status":"CREATING"
 }
]
}

To limit the search results, use collection filters. This request filters the response to collections in
the ACTIVE state:

aws opensearchserverless list-collections --collection-filters '{ "status": "ACTIVE" }'

To get more detailed information about one or more collections, including the OpenSearch
endpoint and the OpenSearch Dashboards endpoint, send a BatchGetCollection request:

Creating, listing, and deleting collections 29

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_ListCollections.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_BatchGetCollection.html

Amazon OpenSearch Service Developer Guide

aws opensearchserverless batch-get-collection --ids ["07tjusf2h91cunochc",
 "1iu5usc4rame"]

Note

You can include --names or --ids in the request, but not both.

Sample response

{
 "collectionDetails":[
 {
 "id": "07tjusf2h91cunochc",
 "name": "my-collection",
 "status": "ACTIVE",
 "type": "SEARCH",
 "description": "",
 "arn": "arn:aws:aoss:us-east-1:123456789012:collection/07tjusf2h91cunochc",
 "kmsKeyArn": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "createdDate": 1667446262828,
 "lastModifiedDate": 1667446300769,
 "collectionEndpoint": "https://07tjusf2h91cunochc.us-
east-1.aoss.amazonaws.com",
 "dashboardEndpoint": "https://07tjusf2h91cunochc.us-east-1.aoss.amazonaws.com/
_dashboards"
 },
 {
 "id": "178ukvtg3i82dvopdid",
 "name": "another-collection",
 "status": "ACTIVE",
 "type": "TIMESERIES",
 "description": "",
 "arn": "arn:aws:aoss:us-east-1:123456789012:collection/178ukvtg3i82dvopdid",
 "kmsKeyArn": "arn:aws:kms:us-
east-1:123456789012:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "createdDate": 1667446262828,
 "lastModifiedDate": 1667446300769,
 "collectionEndpoint": "https://178ukvtg3i82dvopdid.us-
east-1.aoss.amazonaws.com",

Creating, listing, and deleting collections 30

Amazon OpenSearch Service Developer Guide

 "dashboardEndpoint": "https://178ukvtg3i82dvopdid.us-
east-1.aoss.amazonaws.com/_dashboards"
 }
],
 "collectionErrorDetails":[]
}

Deleting collections

Deleting a collection deletes all data and indexes in the collection. You can't recover collections
after you delete them.

To delete a collection using the console

1. From the Collections panel of the Amazon OpenSearch Service console, select the collection
you want to delete.

2. Choose Delete and confirm deletion.

To delete a collection using the Amazon CLI, send a DeleteCollection request:

aws opensearchserverless delete-collection --id 07tjusf2h91cunochc

Sample response

{
 "deleteCollectionDetail":{
 "id":"07tjusf2h91cunochc",
 "name":"my-collection",
 "status":"DELETING"
 }
}

Working with vector search collections

The vector search collection type in OpenSearch Serverless provides a similarity search capability
that is scalable and high performing. It makes it easy for you to build modern machine learning
(ML) augmented search experiences and generative artificial intelligence (AI) applications without
having to manage the underlying vector database infrastructure.

Working with vector search collections 31

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_DeleteCollection.html

Amazon OpenSearch Service Developer Guide

Use cases for vector search collections include image searches, document searches, music retrieval,
product recommendations, video searches, location-based searches, fraud detection, and anomaly
detection.

Because the vector engine for OpenSearch Serverless is powered by the k-nearest neighbor (k-NN)
search feature in OpenSearch, you get the same functionality with the simplicity of a serverless
environment. The engine supports the k-NN OpenSearch API operations. With these operations,
you can take advantage of full-text search, advanced filtering, aggregations, geospatial queries,
nested queries for faster retrieval of data, and enhanced search results.

The vector engine provides distance metrics such as Euclidean distance, cosine similarity, and dot
product similarity, and can accommodate 16,000 dimensions. You can store fields with various
data types for metadata, such as numbers, Booleans, dates, keywords, and geopoints. You can also
store fields with text for descriptive information to add more context to stored vectors. Colocating
the data types reduces complexity, increases maintainability, and avoids data duplication, version
compatibility challenges, and licensing issues.

Getting started with vector search collections

In this tutorial, you complete the following steps to store, search, and retrieve vector embeddings
in real time:

1. Configure permissions

2. Create a collection

3. Upload and search data

4. Delete the collection

Step 1: Configure permissions

To complete this tutorial (and to use OpenSearch Serverless in general), you must have the correct
Amazon Identity and Access Management (IAM) permissions. In this tutorial, you create a collection,
upload and search data, and then delete the collection.

Your user or role must have an attached identity-based policy with the following minimum
permissions:

{
 "Version": "2012-10-17",
 "Statement": [

Working with vector search collections 32

https://opensearch.org/docs/latest/search-plugins/knn/index/
https://opensearch.org/docs/latest/search-plugins/knn/index/
https://opensearch.org/docs/latest/search-plugins/knn/api/

Amazon OpenSearch Service Developer Guide

 {
 "Action": [
 "aoss:CreateCollection",
 "aoss:ListCollections",
 "aoss:BatchGetCollection",
 "aoss:DeleteCollection",
 "aoss:CreateAccessPolicy",
 "aoss:ListAccessPolicies",
 "aoss:UpdateAccessPolicy",
 "aoss:CreateSecurityPolicy",
 "iam:ListUsers",
 "iam:ListRoles"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For more information about OpenSearch Serverless IAM permissions, see the section called
“Identity and Access Management”.

Step 2: Create a collection

A collection is a group of OpenSearch indexes that work together to support a specific workload or
use case.

To create an OpenSearch Serverless collection

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. Choose Collections in the left navigation pane and choose Create collection.

3. Name the collection housing.

4. For collection type, choose Vector search. For more information, see the section called
“Choosing a collection type”.

5. Under Deployment type, clear Enable redundancy (active replicas). This creates a collection
in development or testing mode, and reduces the number of OpenSearch Compute Units
(OCUs) in your collection to two. If you want to create a production environment in this
tutorial, leave the check box selected.

6. Under Security, select Easy create to streamline your security configuration. All the data in
the vector engine is encrypted in transit and at rest by default. The vector engine supports

Working with vector search collections 33

https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

fine-grained IAM permissions so that you can define who can create, update, and delete
encryptions, networks, collections, and indexes.

7. Choose Next.

8. Review your collection settings and choose Submit. Wait several minutes for the collection
status to become Active.

Step 3: Upload and search data

An index is a collection of documents with a common data schema that provides a way for you to
store, search, and retrieve your vector embeddings and other fields. You can create and upload
data to indexes in an OpenSearch Serverless collection by using an HTTP tool such as Postman or
awscurl.

To index and search data in the movies collection

1. To create a single index for your new collection, send the following request with Postman. By
default, this creates an index with an nmslib engine and Euclidean distance.

PUT housing-index
{
 "settings": {
 "index.knn": true
 },
 "mappings": {
 "properties": {
 "housing-vector": {
 "type": "knn_vector",
 "dimension": 3
 },
 "title": {
 "type": "text"
 },
 "price": {
 "type": "long"
 },
 "location": {
 "type": "geo_point"
 }
 }
 }

Working with vector search collections 34

https://www.postman.com/downloads/
https://github.com/okigan/awscurl

Amazon OpenSearch Service Developer Guide

}

2. To index a single document into housing-index, send the following request:

POST housing-index/_doc
{
 "housing-vector": [
 10,
 20,
 30
],
 "title": "2 bedroom in downtown Seattle",
 "price": "2800",
 "location": "47.71, 122.00"
}

3. To search for properties that are similar to the ones in your index, send the following query:

GET housing-index/_search
{
 "size": 5,
 "query": {
 "knn": {
 "housing-vector": {
 "vector": [
 10,
 20,
 30
],
 "k": 5
 }
 }
 }
}

Step 4: Delete the collection

Because the housing collection is for test purposes, make sure to delete it when you're done
experimenting.

Working with vector search collections 35

Amazon OpenSearch Service Developer Guide

To delete an OpenSearch Serverless collection

1. Go back to the Amazon OpenSearch Service console.

2. Choose Collections in the left navigation pane and select the properties collection.

3. Choose Delete and confirm the deletion.

Filtered search

You can use filters to refine your semantic search results. To create an index and perform a filtered
search on your documents, substitute Upload and search data in the previous tutorial with the
following instructions. The other steps remain the same. For more information about filters, see k-
NN search with filters.

To index and search data in the movies collection

1. To create a single index for your collection, send the following request with Postman:

PUT housing-index-filtered
{
 "settings": {
 "index.knn": true
 },
 "mappings": {
 "properties": {
 "housing-vector": {
 "type": "knn_vector",
 "dimension": 3,
 "method": {
 "engine": "faiss",
 "name": "hnsw"
 }
 },
 "title": {
 "type": "text"
 },
 "price": {
 "type": "long"
 },
 "location": {
 "type": "geo_point"
 }

Working with vector search collections 36

https://opensearch.org/docs/latest/search-plugins/knn/filter-search-knn/
https://opensearch.org/docs/latest/search-plugins/knn/filter-search-knn/

Amazon OpenSearch Service Developer Guide

 }
 }
}

2. To index a single document into housing-index-filtered, send the following request:

POST housing-index-filtered/_doc
{
 "housing-vector": [
 10,
 20,
 30
],
 "title": "2 bedroom in downtown Seattle",
 "price": "2800",
 "location": "47.71, 122.00"
}

3. To search your data for an apartment in Seattle under a given price and within a given distance
of a geographical point, send the following request:

GET housing-index-filtered/_search
{
 "size": 5,
 "query": {
 "knn": {
 "housing-vector": {
 "vector": [
 0.1,
 0.2,
 0.3
],
 "k": 5,
 "filter": {
 "bool": {
 "must": [
 {
 "query_string": {
 "query": "Find me 2 bedroom apartment in Seattle under $3000 ",
 "fields": [
 "title"
]
 }

Working with vector search collections 37

Amazon OpenSearch Service Developer Guide

 },
 {
 "range": {
 "price": {
 "lte": 3000
 }
 }
 },
 {
 "geo_distance": {
 "distance": "100miles",
 "location": {
 "lat": 48,
 "lon": 121
 }
 }
 }
]
 }
 }
 }
 }
 }
}

Billion scale workloads

Vector search collections support workloads with billions of vectors. You don’t need to reindex for
scaling purposes because auto scaling does this for you. If you have millions of vectors (or more)
with a high number of dimensions and need more than 200 OCUs, contact Amazon Support to
raise your the maximum OpenSearch Compute Units (OCUs) for your account.

Limitations

Vector search collections have the following limitations:

• Vector search collections don't support the Apache Lucene ANN engine.

• Vector search collections only support the HNSW algorithm with Faiss and do not support IVF
and IVFQ.

• Vector search collections don't support the warmup, stats, and model training API operations.

Working with vector search collections 38

https://aws.amazon.com/premiumsupport/

Amazon OpenSearch Service Developer Guide

• Vector search collections don't support inline or stored scripts.

• Index count information isn't available in the Amazon Web Services Management Console for
vector search collections.

• The refresh interval for indexes on vector search collections is 60 seconds.

Next steps

Now that you know how to create a vector search collection and index data, you might want to try
some of the following exercises:

• Use the OpenSearch Python client to work with vector search collections. See this tutorial on
GitHub.

• Use the OpenSearch Java client to work with vector search collections. See this tutorial on
GitHub.

• Set up LangChain to use OpenSearch as a vector store. LangChain is an open source framework
for developing applications powered by language models. For more information, see the
LangChain documentation.

Using data lifecycle policies with Amazon OpenSearch Serverless

A data lifecycle policy for an Amazon OpenSearch Serverless time series collection determines the
lifespan of the data in that collection. OpenSearch Serverless retains the data for the period of
time that you configure.

You can configure a separate data lifecycle policy for each index of each time series collection in
your Amazon Web Services account. OpenSearch Serverless retains documents in indexes for, at
minimum, the retention period you configure in the policy. It then automatically deletes them on a
best-effort basis, typically within 48 hours or 10% of the retention period, whichever is longer.

Only time series collections support data lifecycle policies. They are not supported by search or
vector search collections.

Topics

• Data lifecycle policies

• Permissions required

• Policy precedence

Using data lifecycle policies 39

https://github.com/opensearch-project/opensearch-py/blob/main/guides/plugins/knn.md
https://github.com/opensearch-project/opensearch-java/blob/main/guides/plugins/knn.md
https://python.langchain.com/docs/integrations/vectorstores/opensearch

Amazon OpenSearch Service Developer Guide

• Policy syntax

• Creating data lifecycle policies (Amazon CLI)

• Viewing data lifecycle policies

• Updating data lifecycle policies

• Deleting data lifecycle policies

Data lifecycle policies

In a data lifecycle policy, you specify a series of rules. The data lifecycle policy lets you manage the
retention period of data associated to indexes or collections that match these rules. These rules
define the retention period for data in an index or group of indexes. Each rule consists of a resource
type (index), a retention period, and a list of resources (indexes) that the retention period applies
to.

You define the retention period with one of the following formats:

• "MinIndexRetention": "24h" – OpenSearch Serverless retains index data for the specified
period in hours or days. You can set this period to be from 24h to 3650d.

• "NoMinIndexRetention": true – OpenSearch Serverless retains index data indefinitely.

In the following sample policy, the first rule specifies a retention period of 15 days for all indexes
within the collection marketing. The second rule specifies that all index names that begin with
log in the finance collection have no retention period set and will be retained indefinitely.

{
 "lifeCyclePolicyDetail": {
 "type": "retention",
 "name": "my-policy",
 "policyVersion": "MTY4ODI0NTM2OTk1N18x",
 "policy": {
 "Rules": [
 {
 "ResourceType":"index",
 "Resource":[
 "index/marketing/*"
],
 "MinIndexRetention": "15d"
 },

Using data lifecycle policies 40

Amazon OpenSearch Service Developer Guide

 {
 "ResourceType":"index",
 "Resource":[
 "index/finance/log*"
],
 "NoMinIndexRetention": true
 }
]
 },
 "createdDate": 1688245369957,
 "lastModifiedDate": 1688245369957
 }
}

In the following sample policy rule, OpenSearch Serverless indefinitely retains the data in all
indexes for all collections within the account.

{
 "Rules": [
 {
 "ResourceType": "index",
 "Resource": [
 "index/*/*"
]
 }
],
 "NoMinIndexRetention": true
}

Permissions required

Lifecycle policies for OpenSearch Serverless use the following Amazon Identity and Access
Management (IAM) permissions. You can specify IAM conditions to restrict users to data lifecycle
policies associated with specific collections and indexes.

• aoss:CreateLifecyclePolicy – Create a data lifecycle policy.

• aoss:ListLifecyclePolicies – List all data lifecycle policies in the current account.

• aoss:BatchGetLifecyclePolicy – View a data lifecycle policy associated with an account or
policy name.

• aoss:BatchGetEffectiveLifecyclePolicy – View a data lifecycle policy for a given
resource (index is the only supported resource).

Using data lifecycle policies 41

Amazon OpenSearch Service Developer Guide

• aoss:UpdateLifecyclePolicy – Modify a given data lifecycle policy, and change its retention
setting or resource.

• aoss:DeleteLifecyclePolicy – Delete a data lifecycle policy.

The following identity-based access policy allows a user to view all data lifecycle policies, and
update policies with the resource pattern collection/application-logs:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "aoss:UpdateLifecyclePolicy"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aoss:collection": "application-logs"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "aoss:ListLifecyclePolicies",
 "aoss:BatchGetLifecyclePolicy"
],
 "Resource": "*"
 }
]
}

Policy precedence

There can be situations where data lifecycle policy rules overlap, within or across policies. When
this happens, a rule with a more specific resource name or pattern for an index overrides a rule
with a more general resource name or pattern for any indexes that are common to both rules.

For example, in the following policy, two rules apply to an index index/sales/logstash. In this
situation, the second rule takes precedence because index/sales/log* is the longest match

Using data lifecycle policies 42

Amazon OpenSearch Service Developer Guide

to index/sales/logstash. Therefore, OpenSearch Serverless sets no retention period for the
index.

{
 "Rules":[
 {
 "ResourceType":"index",
 "Resource":[
 "index/sales/*",
],
 "MinIndexRetention": "15d"
 },
 {
 "ResourceType":"index",
 "Resource":[
 "index/sales/log*",
],
 "NoMinIndexRetention": true
 }
]
 }

Policy syntax

Provide one or more rules. These rules define data lifecycle settings for your OpenSearch Serverless
indexes.

Each rule contains the following elements. You can either provide MinIndexRetention or
NoMinIndexRetention in each rule, but not both.

Element Description

Resource type The type of resource that the rule applies to.
The only supported option for data lifecycle
policies is index.

Resource A list of resource names and/or patterns.
Patterns consist of a prefixe and a wildcard
(*), which allow the associated permissio
ns to apply to multiple resources. For

Using data lifecycle policies 43

Amazon OpenSearch Service Developer Guide

Element Description

example, index/<collection-name|p
attern> /<index-name|pattern> .

MinIndexRetention The minimum period, in days (d) or hours (h),
to retain the document in the index. The lower
bound is 24h and the upper bound is 3650d.

NoMinIndexRetention If true, OpenSearch Serverless retains
documents indefinitely.

The following are some examples:

{
 "Rules": [
 {
 "ResourceType": "index",
 "Resource": [
 "index/autoparts-inventory/*"
],
 "MinIndexRetention": "20d"
 },
 {
 "ResourceType": "index",
 "Resource": [
 "index/auto*/gear"
],
 "MinIndexRetention": "24h"
 },
 {
 "ResourceType": "index",
 "Resource": [
 "index/autoparts-inventory/tires"
],
 "NoMinIndexRetention": true
 }
]
}

Using data lifecycle policies 44

Amazon OpenSearch Service Developer Guide

Creating data lifecycle policies (Amazon CLI)

To create a data lifecycle policy using the OpenSearch Serverless API operations, use the
CreateLifecyclePolicy command. This command accepts both inline policies and .json files. Inline
policies must be encoded as a JSON escaped string.

The following request creates a data lifecycle policy:

aws opensearchserverless create-lifecycle-policy \
 --name my-policy \
 --type retention \
 --policy "{\"Rules\":[{\"ResourceType\":\"index\",\"Resource\":[\"index/autoparts-
inventory/*\"],\"MinIndexRetention\": \"81d\"},{\"ResourceType\":\"index\",\"Resource
\":[\"index/sales/orders*\"],\"NoMinIndexRetention\":true}]}"

To provide the policy in a JSON file, use the format --policy file://my-policy.json

Viewing data lifecycle policies

Before you create a collection, you might want to preview the existing data lifecycle policies in
your account to see which one has a resource pattern that matches your collection's name. The
following ListLifecyclePolicies request lists all data lifecycle policies in your account:

aws opensearchserverless list-lifecycle-policies --type retention

The request returns information about all configured data lifecycle policies. To view the pattern
rules defined in the one specific policy, find the policy information in the contents of the
lifecyclePolicySummaries element in the response. Note the name and type of this policy
and use these properties in a BatchGetLifecyclePolicy request to receive a response with the
following policy details:

{
 "lifecyclePolicySummaries": [
 {
 "type": "retention",
 "name": "my-policy",
 "policyVersion": "MTY2MzY5MTY1MDA3Ml8x",
 "createdDate": 1663691650072,
 "lastModifiedDate": 1663691650072
 }
]

Using data lifecycle policies 45

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_CreateLifecyclePolicy.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_ListLifecyclePolicies.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_BatchGetLifecyclePolicy.html

Amazon OpenSearch Service Developer Guide

}

To limit the results to policies that contain specific collections or indexes, you can include resource
filters:

aws opensearchserverless list-lifecycle-policies --type retention --resources
 "index/autoparts-inventory/*"

To view detailed information about a specific policy, use the BatchGetLifecyclePolicy command.

Updating data lifecycle policies

When you modify a data lifecycle policy, all associated collections are impacted. To update a data
lifecycle policy in the OpenSearch Serverless console, expand Data lifecycle policies, select the
policy to modify, and choose Edit. Make your changes and choose Save.

To update a data lifecycle policy using the OpenSearch Serverless API, use the
UpdateLifecyclePolicy command. You must include a policy version in the request. You can retrieve
the policy version by using the ListLifecyclePolicies or BatchGetLifecyclePolicy
commands. Including the most recent policy version ensures that you don't inadvertently override
a change made by someone else.

The following request updates a data lifecycle policy with a new policy JSON document:

aws opensearchserverless update-lifecycle-policy \
 --name my-policy \
 --type retention \
 --policy-version MTY2MzY5MTY1MDA3Ml8x \
 --policy file://my-new-policy.json

There might be a few minutes of lag time between when you update the policy and when the new
retention periods are enforced.

Deleting data lifecycle policies

When you delete a data lifecycle policy, it no longer applies to any matching indexes. To delete a
policy in the OpenSearch Serverless console, select the policy and choose Delete.

You can also use the DeleteLifecyclePolicy command:

aws opensearchserverless delete-lifecycle-policy --name my-policy --type retention

Using data lifecycle policies 46

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_BatchGetLifecyclePolicy.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_UpdateLifecyclePolicy.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_DeleteLifecyclePolicy.html

Amazon OpenSearch Service Developer Guide

Using the Amazon SDKs to interact with Amazon OpenSearch
Serverless

This section includes examples of how to use the Amazon SDKs to interact with Amazon
OpenSearch Serverless. These code samples show how to create security policies and collections,
and how to query collections.

Note

We're currently building out these code samples. If you want to contribute a code sample
(Java, Go, etc.), please open a pull request directly within the GitHub repository.

Topics

• Python

• JavaScript

Python

The following sample script uses the Amazon SDK for Python (Boto3), as well as the opensearch-
py client for Python, to create encryption, network, and data access policies, create a matching
collection, and index some sample data.

To install the required dependencies, run the following commands:

pip install opensearch-py
pip install boto3
pip install botocore
pip install requests-aws4auth

Within the script, replace the Principal element with the Amazon Resource Name (ARN) of the
user or role that's signing the request. You can also optionally modify the region.

from opensearchpy import OpenSearch, RequestsHttpConnection
from requests_aws4auth import AWS4Auth
import boto3
import botocore
import time

Managing collections with the Amazon SDKs 47

https://github.com/awsdocs/amazon-opensearch-service-developer-guide/blob/master/doc_source/serverless-sdk.md
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/opensearchserverless.html
https://pypi.org/project/opensearch-py/
https://pypi.org/project/opensearch-py/

Amazon OpenSearch Service Developer Guide

Build the client using the default credential configuration.
You can use the CLI and run 'aws configure' to set access key, secret
key, and default region.

client = boto3.client('opensearchserverless')
service = 'aoss'
region = 'us-east-1'
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key,
 region, service, session_token=credentials.token)

def createEncryptionPolicy(client):
 """Creates an encryption policy that matches all collections beginning with tv-"""
 try:
 response = client.create_security_policy(
 description='Encryption policy for TV collections',
 name='tv-policy',
 policy="""
 {
 \"Rules\":[
 {
 \"ResourceType\":\"collection\",
 \"Resource\":[
 \"collection\/tv-*\"
]
 }
],
 \"AWSOwnedKey\":true
 }
 """,
 type='encryption'
)
 print('\nEncryption policy created:')
 print(response)
 except botocore.exceptions.ClientError as error:
 if error.response['Error']['Code'] == 'ConflictException':
 print(
 '[ConflictException] The policy name or rules conflict with an existing
 policy.')
 else:
 raise error

Managing collections with the Amazon SDKs 48

Amazon OpenSearch Service Developer Guide

def createNetworkPolicy(client):
 """Creates a network policy that matches all collections beginning with tv-"""
 try:
 response = client.create_security_policy(
 description='Network policy for TV collections',
 name='tv-policy',
 policy="""
 [{
 \"Description\":\"Public access for TV collection\",
 \"Rules\":[
 {
 \"ResourceType\":\"dashboard\",
 \"Resource\":[\"collection\/tv-*\"]
 },
 {
 \"ResourceType\":\"collection\",
 \"Resource\":[\"collection\/tv-*\"]
 }
],
 \"AllowFromPublic\":true
 }]
 """,
 type='network'
)
 print('\nNetwork policy created:')
 print(response)
 except botocore.exceptions.ClientError as error:
 if error.response['Error']['Code'] == 'ConflictException':
 print(
 '[ConflictException] A network policy with this name already exists.')
 else:
 raise error

def createAccessPolicy(client):
 """Creates a data access policy that matches all collections beginning with tv-"""
 try:
 response = client.create_access_policy(
 description='Data access policy for TV collections',
 name='tv-policy',
 policy="""
 [{
 \"Rules\":[
 {

Managing collections with the Amazon SDKs 49

Amazon OpenSearch Service Developer Guide

 \"Resource\":[
 \"index\/tv-*\/*\"
],
 \"Permission\":[
 \"aoss:CreateIndex\",
 \"aoss:DeleteIndex\",
 \"aoss:UpdateIndex\",
 \"aoss:DescribeIndex\",
 \"aoss:ReadDocument\",
 \"aoss:WriteDocument\"
],
 \"ResourceType\": \"index\"
 },
 {
 \"Resource\":[
 \"collection\/tv-*\"
],
 \"Permission\":[
 \"aoss:CreateCollectionItems\"
],
 \"ResourceType\": \"collection\"
 }
],
 \"Principal\":[
 \"arn:aws:iam::123456789012:role\/Admin\"
]
 }]
 """,
 type='data'
)
 print('\nAccess policy created:')
 print(response)
 except botocore.exceptions.ClientError as error:
 if error.response['Error']['Code'] == 'ConflictException':
 print(
 '[ConflictException] An access policy with this name already exists.')
 else:
 raise error

def createCollection(client):
 """Creates a collection"""
 try:
 response = client.create_collection(

Managing collections with the Amazon SDKs 50

Amazon OpenSearch Service Developer Guide

 name='tv-sitcoms',
 type='SEARCH'
)
 return(response)
 except botocore.exceptions.ClientError as error:
 if error.response['Error']['Code'] == 'ConflictException':
 print(
 '[ConflictException] A collection with this name already exists. Try
 another name.')
 else:
 raise error

def waitForCollectionCreation(client):
 """Waits for the collection to become active"""
 response = client.batch_get_collection(
 names=['tv-sitcoms'])
 # Periodically check collection status
 while (response['collectionDetails'][0]['status']) == 'CREATING':
 print('Creating collection...')
 time.sleep(30)
 response = client.batch_get_collection(
 names=['tv-sitcoms'])
 print('\nCollection successfully created:')
 print(response["collectionDetails"])
 # Extract the collection endpoint from the response
 host = (response['collectionDetails'][0]['collectionEndpoint'])
 final_host = host.replace("https://", "")
 indexData(final_host)

def indexData(host):
 """Create an index and add some sample data"""
 # Build the OpenSearch client
 client = OpenSearch(
 hosts=[{'host': host, 'port': 443}],
 http_auth=awsauth,
 use_ssl=True,
 verify_certs=True,
 connection_class=RequestsHttpConnection,
 timeout=300
)
 # It can take up to a minute for data access rules to be enforced
 time.sleep(45)

Managing collections with the Amazon SDKs 51

Amazon OpenSearch Service Developer Guide

 # Create index
 response = client.indices.create('sitcoms-eighties')
 print('\nCreating index:')
 print(response)

 # Add a document to the index.
 response = client.index(
 index='sitcoms-eighties',
 body={
 'title': 'Seinfeld',
 'creator': 'Larry David',
 'year': 1989
 },
 id='1',
)
 print('\nDocument added:')
 print(response)

def main():
 createEncryptionPolicy(client)
 createNetworkPolicy(client)
 createAccessPolicy(client)
 createCollection(client)
 waitForCollectionCreation(client)

if __name__ == "__main__":
 main()

JavaScript

The following sample script uses the SDK for JavaScript in Node.js, as well as the opensearch-js
client for JavaScript, to create encryption, network, and data access policies, create a matching
collection, create an index, and index some sample data.

To install the required dependencies, run the following commands:

npm i aws-sdk
npm i aws4
npm i @opensearch-project/opensearch

Managing collections with the Amazon SDKs 52

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-opensearchserverless/
https://www.npmjs.com/package/@opensearch-project/opensearch

Amazon OpenSearch Service Developer Guide

Within the script, replace the Principal element with the Amazon Resource Name (ARN) of the
user or role that's signing the request. You can also optionally modify the region.

var AWS = require('aws-sdk');
var aws4 = require('aws4');
var {
 Client,
 Connection
} = require("@opensearch-project/opensearch");
var {
 OpenSearchServerlessClient,
 CreateSecurityPolicyCommand,
 CreateAccessPolicyCommand,
 CreateCollectionCommand,
 BatchGetCollectionCommand
} = require("@aws-sdk/client-opensearchserverless");
var client = new OpenSearchServerlessClient();

async function execute() {
 await createEncryptionPolicy(client)
 await createNetworkPolicy(client)
 await createAccessPolicy(client)
 await createCollection(client)
 await waitForCollectionCreation(client)
}

async function createEncryptionPolicy(client) {
 // Creates an encryption policy that matches all collections beginning with 'tv-'
 try {
 var command = new CreateSecurityPolicyCommand({
 description: 'Encryption policy for TV collections',
 name: 'tv-policy',
 type: 'encryption',
 policy: " \
 { \
 \"Rules\":[\
 { \
 \"ResourceType\":\"collection\", \
 \"Resource\":[\
 \"collection\/tv-*\" \
] \
 } \
], \

Managing collections with the Amazon SDKs 53

Amazon OpenSearch Service Developer Guide

 \"AWSOwnedKey\":true \
 }"
 });
 const response = await client.send(command);
 console.log("Encryption policy created:");
 console.log(response['securityPolicyDetail']);
 } catch (error) {
 if (error.name === 'ConflictException') {
 console.log('[ConflictException] The policy name or rules conflict with an
 existing policy.');
 } else
 console.error(error);
 };
}

async function createNetworkPolicy(client) {
 // Creates a network policy that matches all collections beginning with 'tv-'
 try {
 var command = new CreateSecurityPolicyCommand({
 description: 'Network policy for TV collections',
 name: 'tv-policy',
 type: 'network',
 policy: " \
 [{ \
 \"Description\":\"Public access for television collection\", \
 \"Rules\":[\
 { \
 \"ResourceType\":\"dashboard\", \
 \"Resource\":[\"collection\/tv-*\"] \
 }, \
 { \
 \"ResourceType\":\"collection\", \
 \"Resource\":[\"collection\/tv-*\"] \
 } \
], \
 \"AllowFromPublic\":true \
 }]"
 });
 const response = await client.send(command);
 console.log("Network policy created:");
 console.log(response['securityPolicyDetail']);
 } catch (error) {
 if (error.name === 'ConflictException') {

Managing collections with the Amazon SDKs 54

Amazon OpenSearch Service Developer Guide

 console.log('[ConflictException] A network policy with that name already
 exists.');
 } else
 console.error(error);
 };
}

async function createAccessPolicy(client) {
 // Creates a data access policy that matches all collections beginning with 'tv-'
 try {
 var command = new CreateAccessPolicyCommand({
 description: 'Data access policy for TV collections',
 name: 'tv-policy',
 type: 'data',
 policy: " \
 [{ \
 \"Rules\":[\
 { \
 \"Resource\":[\
 \"index\/tv-*\/*\" \
], \
 \"Permission\":[\
 \"aoss:CreateIndex\", \
 \"aoss:DeleteIndex\", \
 \"aoss:UpdateIndex\", \
 \"aoss:DescribeIndex\", \
 \"aoss:ReadDocument\", \
 \"aoss:WriteDocument\" \
], \
 \"ResourceType\": \"index\" \
 }, \
 { \
 \"Resource\":[\
 \"collection\/tv-*\" \
], \
 \"Permission\":[\
 \"aoss:CreateCollectionItems\" \
], \
 \"ResourceType\": \"collection\" \
 } \
], \
 \"Principal\":[\
 \"arn:aws:iam::123456789012:role\/Admin\" \
] \

Managing collections with the Amazon SDKs 55

Amazon OpenSearch Service Developer Guide

 }]"
 });
 const response = await client.send(command);
 console.log("Access policy created:");
 console.log(response['accessPolicyDetail']);
 } catch (error) {
 if (error.name === 'ConflictException') {
 console.log('[ConflictException] An access policy with that name already
 exists.');
 } else
 console.error(error);
 };
}

async function createCollection(client) {
 // Creates a collection to hold TV sitcoms indexes
 try {
 var command = new CreateCollectionCommand({
 name: 'tv-sitcoms',
 type: 'SEARCH'
 });
 const response = await client.send(command);
 return (response)
 } catch (error) {
 if (error.name === 'ConflictException') {
 console.log('[ConflictException] A collection with this name already
 exists. Try another name.');
 } else
 console.error(error);
 };
}

async function waitForCollectionCreation(client) {
 // Waits for the collection to become active
 try {
 var command = new BatchGetCollectionCommand({
 names: ['tv-sitcoms']
 });
 var response = await client.send(command);
 while (response.collectionDetails[0]['status'] == 'CREATING') {
 console.log('Creating collection...')
 await sleep(30000) // Wait for 30 seconds, then check the status again
 function sleep(ms) {
 return new Promise((resolve) => {

Managing collections with the Amazon SDKs 56

Amazon OpenSearch Service Developer Guide

 setTimeout(resolve, ms);
 });
 }
 var response = await client.send(command);
 }
 console.log('Collection successfully created:');
 console.log(response['collectionDetails']);
 // Extract the collection endpoint from the response
 var host = (response.collectionDetails[0]['collectionEndpoint'])
 // Pass collection endpoint to index document request
 indexDocument(host)
 } catch (error) {
 console.error(error);
 };
}

async function indexDocument(host) {

 var client = new Client({
 node: host,
 Connection: class extends Connection {
 buildRequestObject(params) {
 var request = super.buildRequestObject(params)
 request.service = 'aoss';
 request.region = 'us-east-1'; // e.g. us-east-1
 var body = request.body;
 request.body = undefined;
 delete request.headers['content-length'];
 request.headers['x-amz-content-sha256'] = 'UNSIGNED-PAYLOAD';
 request = aws4.sign(request, AWS.config.credentials);
 request.body = body;

 return request
 }
 }
 });

 // Create an index
 try {
 var index_name = "sitcoms-eighties";

 var response = await client.indices.create({
 index: index_name
 });

Managing collections with the Amazon SDKs 57

Amazon OpenSearch Service Developer Guide

 console.log("Creating index:");
 console.log(response.body);

 // Add a document to the index
 var document = "{ \"title\": \"Seinfeld\", \"creator\": \"Larry David\", \"year
\": \"1989\" }\n";

 var response = await client.index({
 index: index_name,
 body: document
 });

 console.log("Adding document:");
 console.log(response.body);
 } catch (error) {
 console.error(error);
 };
}

execute()

Using Amazon CloudFormation to create Amazon OpenSearch
Serverless collections

You can use Amazon CloudFormation to create Amazon OpenSearch Serverless resources such as
collections, security policies, and VPC endpoints. For the comprehensive OpenSearch Serverless
CloudFormation reference, see Amazon OpenSearch Serverless in the Amazon CloudFormation User
Guide.

The following sample CloudFormation template creates a simple data access policy, network policy,
and security policy, as well as a matching collection. It's a good way to get up and running quickly
with Amazon OpenSearch Serverless and provision the necessary elements to create and use a
collection.

Important

This example uses public network access, which isn't recommended for production
workloads. We recommend using VPC access to protect your collections. For more

Creating collections with CloudFormation 58

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_OpenSearchServerless.html

Amazon OpenSearch Service Developer Guide

information, see AWS::OpenSearchServerless::VpcEndpoint and the section called “VPC
endpoints”.

AWSTemplateFormatVersion: 2010-09-09
Description: 'Amazon OpenSearch Serverless template to create an IAM user, encryption
 policy, data access policy and collection'
Resources:
 IAMUSer:
 Type: 'AWS::IAM::User'
 Properties:
 UserName: aossadmin
 DataAccessPolicy:
 Type: 'AWS::OpenSearchServerless::AccessPolicy'
 Properties:
 Name: quickstart-access-policy
 Type: data
 Description: Access policy for quickstart collection
 Policy: !Sub >-
 [{"Description":"Access for cfn user","Rules":
[{"ResourceType":"index","Resource":["index/*/*"],"Permission":["aoss:*"]},
 {"ResourceType":"collection","Resource":["collection/quickstart"],"Permission":
["aoss:*"]}],
 "Principal":["arn:aws:iam::${AWS::AccountId}:user/aossadmin"]}]
 NetworkPolicy:
 Type: 'AWS::OpenSearchServerless::SecurityPolicy'
 Properties:
 Name: quickstart-network-policy
 Type: network
 Description: Network policy for quickstart collection
 Policy: >-
 [{"Rules":[{"ResourceType":"collection","Resource":["collection/
quickstart"]}, {"ResourceType":"dashboard","Resource":["collection/
quickstart"]}],"AllowFromPublic":true}]
 EncryptionPolicy:
 Type: 'AWS::OpenSearchServerless::SecurityPolicy'
 Properties:
 Name: quickstart-security-policy
 Type: encryption
 Description: Encryption policy for quickstart collection
 Policy: >-
 {"Rules":[{"ResourceType":"collection","Resource":["collection/
quickstart"]}],"AWSOwnedKey":true}

Creating collections with CloudFormation 59

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-opensearchserverless-vpcendpoint.html

Amazon OpenSearch Service Developer Guide

 Collection:
 Type: 'AWS::OpenSearchServerless::Collection'
 Properties:
 Name: quickstart
 Type: TIMESERIES
 Description: Collection to holds timeseries data
 DependsOn: EncryptionPolicy
Outputs:
 IAMUser:
 Value: !Ref IAMUSer
 DashboardURL:
 Value: !GetAtt Collection.DashboardEndpoint
 CollectionARN:
 Value: !GetAtt Collection.Arn

Managing capacity limits for Amazon OpenSearch Serverless

With Amazon OpenSearch Serverless, you don't have to manage capacity yourself. OpenSearch
Serverless automatically scales compute capacity for your account based on the current workload.
Serverless compute capacity is measured in OpenSearch Compute Units (OCUs). Each OCU is a
combination of 6 GiB of memory and corresponding virtual CPU (vCPU), as well as data transfer to
Amazon S3. For more information about the decoupled architecture in OpenSearch Serverless, see
the section called “How it works”.

When you create your first collection, OpenSearch Serverless instantiates a total of four OCUs
(two for indexing and two for search). These OCUs always exist, even when there's no indexing or
search activity. All subsequent collections can share these OCUs (except for collections with unique
Amazon KMS keys, which instantiate their own set of four OCUs). If needed, OpenSearch Serverless
automatically scales out and adds additional OCUs as your indexing and search usage grows. When
traffic on your collection endpoint decreases, capacity scales back down to the minimum number
of OCUs required for your data size. At most, it will scale down to 2 OCUs for indexing and 2 OCUs
for search.

For search and vector search collections, all data is stored on hot indexes to ensure fast query
response times. Time series collections use a combination of hot and warm storage, keeping the
most recent data in hot storage to optimize query response times for more frequently accessed
data. For more information, see the section called “Choosing a collection type”.

Managing capacity limits 60

Amazon OpenSearch Service Developer Guide

To manage capacity for your collections and to control costs, you can specify the overall maximum
indexing and search capacity for the current account and Region, and OpenSearch Serverless scales
out your collection resources automatically based on these specifications.

Because indexing and search capacity scale separately, you specify account-level limits for each:

• Maximum indexing capacity – OpenSearch Serverless can increase indexing capacity up to this
number of OCUs.

• Maximum search capacity – OpenSearch Serverless can increase search capacity up to this
number of OCUs.

Note

At this time, capacity settings only apply at the account level. You can't configure per-
collection capacity limits.

Your goal should be to ensure that the maximum capacity is high enough to handle spikes in
workload. Based on your settings, OpenSearch Serverless automatically scales out the number of
OCUs for your collections to process the indexing and search workload.

Topics

• Configuring capacity settings

• Maximum capacity limits

• Monitoring capacity usage

Configuring capacity settings

To configure capacity settings in the OpenSearch Serverless console, expand Serverless in the left
navigation pane and select Dashboard. Specify the maximum indexing and search capacity under
Capacity management:

Configuring capacity settings 61

Amazon OpenSearch Service Developer Guide

To configure capacity using the Amazon CLI, send an UpdateAccountSettings request:

aws opensearchserverless update-account-settings \
 --capacity-limits '{ "maxIndexingCapacityInOCU": 8,"maxSearchCapacityInOCU": 9 }'

Maximum capacity limits

For all three types of collections, the default maximum capacity is 10 OCUs for indexing and 10
OCUs for search. The minimum allowed capacity for an account is 2 OCUs for indexing and 2 OCUs
for search. For all collections, the maximum allowed capacity is 200 OCUs for indexing and 200
OCUs for search. You can configure the OCU count to be any number from 2 to the maximum
allowed capacity, in multiples of 2.

Each OCU includes enough hot ephemeral storage for 120 GiB of index data. OpenSearch
Serverless supports up to 1 TiB of data per index in search and vector search collections, and 10 TiB
of hot data per index in a time series collection. For time series collections, you can still ingest more
data, which can be stored as warm data in S3.

For a list of all quotas, see OpenSearch Serverless quotas.

Monitoring capacity usage

You can monitor the SearchOCU and IndexingOCU account-level CloudWatch metrics to
understand how your collections are scaling. We recommend that you configure alarms to notify

Maximum capacity limits 62

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_UpdateAccountSettings.html
https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html#opensearch-limits-serverless

Amazon OpenSearch Service Developer Guide

you if your account is approaching a threshold for metrics related to capacity, so you can adjust
your capacity settings accordingly.

You can also use these metrics to determine if your maximum capacity settings are appropriate, or
if you need to adjust them. Analyze these metrics to focus your efforts for optimizing the efficiency
of your collections. For more information about the metrics that OpenSearch Serverless sends to
CloudWatch, see the section called “Monitoring OpenSearch Serverless”.

Ingesting data into Amazon OpenSearch Serverless collections

These sections provide details about the supported ingest pipelines for data ingestion into Amazon
OpenSearch Serverless collections. They also cover some of the clients that you can use to interact
with the OpenSearch API operations. Your clients should be compatible with OpenSearch 2.x in
order to integrate with OpenSearch Serverless.

Topics

• Minimum required permissions

• OpenSearch Ingestion

• Fluent Bit

• Amazon Data Firehose

• Fluentd

• Go

• Java

• JavaScript

• Logstash

• Python

• Ruby

• Signing HTTP requests with other clients

Minimum required permissions

In order to ingest data into an OpenSearch Serverless collection, the principal that is writing the
data must have the following minimum permissions assigned in a data access policy:

[

Ingesting data into collections 63

Amazon OpenSearch Service Developer Guide

 {
 "Rules":[
 {
 "ResourceType":"index",
 "Resource":[
 "index/target-collection/logs"
],
 "Permission":[
 "aoss:CreateIndex",
 "aoss:WriteDocument",
 "aoss:UpdateIndex"
]
 }
],
 "Principal":[
 "arn:aws:iam::123456789012:user/my-user"
]
 }
]

The permissions can be more broad if you plan to write to additional indexes. For example, rather
than specifying a single target index, you can allow permission to all indexes (index/target-
collection/*), or a subset of indexes (index/target-collection/logs*).

For a reference of all available OpenSearch API operations and their associated permissions, see
the section called “Supported operations and plugins”.

OpenSearch Ingestion

Rather than using a third-party client to send data directly to an OpenSearch Serverless collection,
you can use Amazon OpenSearch Ingestion. You configure your data producers to send data to
OpenSearch Ingestion, and it automatically delivers the data to the collection that you specify.
You can also configure OpenSearch Ingestion to transform your data before delivering it. For more
information, see Amazon OpenSearch Ingestion.

An OpenSearch Ingestion pipeline needs permission to write to an OpenSearch Serverless
collection that is configured as its sink. These permissions include the ability to describe the
collection and send HTTP requests to it.

First, create an IAM role that has the aoss:BatchGetCollection and aoss:APIAccessAll
permissions against all resources (*). Then, include this role in a data access policy and provide it

OpenSearch Ingestion 64

Amazon OpenSearch Service Developer Guide

permissions to create indexes, update indexes, describe indexes, and write documents within the
collection. Finally, specify the role ARN as the value of the sts_role_arn option within the pipeline
configuration.

For instructions to complete each of these steps, see the section called “Allowing pipelines to write
to serverless collections”.

To get started with OpenSearch Ingestion, see the section called “Tutorial: Ingest data into a
collection”.

Fluent Bit

You can use Amazon for Fluent Bit image and the OpenSearch output plugin to ingest data into
OpenSearch Serverless collections.

Note

You must have version 2.30.0 or later of the Amazon for Fluent Bit image in order to
integrate with OpenSearch Serverless.

Example configuration:

This sample output section of the configuration file shows how to use an OpenSearch Serverless
collection as a destination. The important addition is the AWS_Service_Name parameter, which is
aoss. Host is the collection endpoint.

[OUTPUT]
 Name opensearch
 Match *
 Host collection-endpoint.us-west-2.aoss.amazonaws.com
 Port 443
 Index my_index
 Trace_Error On
 Trace_Output On
 AWS_Auth On
 AWS_Region <region>
 AWS_Service_Name aoss
 tls On
 Suppress_Type_Name On

Fluent Bit 65

https://github.com/aws/aws-for-fluent-bit#public-images
https://docs.fluentbit.io/manual/pipeline/outputs/opensearch

Amazon OpenSearch Service Developer Guide

Amazon Data Firehose

Firehose supports OpenSearch Serverless as a delivery destination. For instructions to send data
into OpenSearch Serverless, see Creating a Kinesis Data Firehose Delivery Stream and Choose
OpenSearch Serverless for Your Destination in the Amazon Data Firehose Developer Guide.

The IAM role that you provide to Firehose for delivery must be specified within a data access policy
with the aoss:WriteDocument minimum permission for the target collection, and you must
have a preexisting index to send data to. For more information, see the section called “Minimum
required permissions”.

Before you send data to OpenSearch Serverless, you might need to perform transforms on the
data. To learn more about using Lambda functions to perform this task, see Amazon Kinesis Data
Firehose Data Transformation in the same guide.

Fluentd

You can use the Fluentd OpenSearch plugin to collect data from your infrastructure, containers,
and network devices and send them to OpenSearch Serverless collections. Calyptia maintains a
distribution of Fluentd that contains all of the downstream dependencies of Ruby and SSL.

To use Fluentd to send data to OpenSearch Serverless

1. Download version 1.4.2 or later of Calyptia Fluentd from https://www.fluentd.org/download.
This version includes the OpenSearch plugin by default, which supports OpenSearch
Serverless.

2. Install the package. Follow the instructions in the Fluentd documentation based on your
operating system:

• Red Hat Enterprise Linux / CentOS / Amazon Linux

• Debian / Ubuntu

• Windows

• MacOSX

3. Add a configuration that sends data to OpenSearch Serverless. This sample configuration
sends the message "test" to a single collection. Make sure to do the following:

• For host, specify the endpoint of your OpenSearch Serverless collection.

Amazon Data Firehose 66

https://docs.amazonaws.cn/firehose/latest/dev/basic-create.html
https://docs.amazonaws.cn/firehose/latest/dev/create-destination.html#create-destination-opensearch-serverless
https://docs.amazonaws.cn/firehose/latest/dev/create-destination.html#create-destination-opensearch-serverless
https://docs.amazonaws.cn/firehose/latest/dev/data-transformation.html
https://docs.amazonaws.cn/firehose/latest/dev/data-transformation.html
https://docs.fluentd.org/output/opensearch
https://www.fluentd.org/download
https://docs.fluentd.org/installation/install-by-rpm
https://docs.fluentd.org/installation/install-by-deb
https://docs.fluentd.org/installation/install-by-msi
https://docs.fluentd.org/installation/install-by-dmg

Amazon OpenSearch Service Developer Guide

• For aws_service_name, specify aoss.

<source>
@type sample
tag test
test {"hello":"world"}
</source>

<match test>
@type opensearch
host https://collection-endpoint.us-east-1.aoss.amazonaws.com
port 443
index_name fluentd
aws_service_name aoss
</match>

4. Run Calyptia Fluentd to start sending data to the collection. For example, on Mac you can run
the following command:

sudo launchctl load /Library/LaunchDaemons/calyptia-fluentd.plist

Go

The following sample code uses the opensearch-go client for Go to establish a secure connection to
the specified OpenSearch Serverless collection and create a single index. You must provide values
for region and host.

package main

import (
 "context"
 "log"
 "strings"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 opensearch "github.com/opensearch-project/opensearch-go/v2"
 opensearchapi "github.com/opensearch-project/opensearch-go/v2/opensearchapi"
 requestsigner "github.com/opensearch-project/opensearch-go/v2/signer/awsv2"
)

Go 67

https://github.com/opensearch-project/opensearch-go

Amazon OpenSearch Service Developer Guide

const endpoint = "" // serverless collection endpoint

func main() {
 ctx := context.Background()

 awsCfg, err := config.LoadDefaultConfig(ctx,
 config.WithRegion("<AWS_REGION>"),
 config.WithCredentialsProvider(
 getCredentialProvider("<AWS_ACCESS_KEY>", "<AWS_SECRET_ACCESS_KEY>",
 "<AWS_SESSION_TOKEN>"),
),
)
 if err != nil {
 log.Fatal(err) // don't log.fatal in a production-ready app
 }

 // create an AWS request Signer and load AWS configuration using default config folder
 or env vars.
 signer, err := requestsigner.NewSignerWithService(awsCfg, "aoss") // "aoss" for Amazon
 OpenSearch Serverless
 if err != nil {
 log.Fatal(err) // don't log.fatal in a production-ready app
 }

 // create an opensearch client and use the request-signer
 client, err := opensearch.NewClient(opensearch.Config{
 Addresses: []string{endpoint},
 Signer: signer,
 })
 if err != nil {
 log.Fatal("client creation err", err)
 }

 indexName := "go-test-index"

 // define index mapping
 mapping := strings.NewReader(`{
 "settings": {
 "index": {
 "number_of_shards": 4
 }
 }
 }`)

Go 68

Amazon OpenSearch Service Developer Guide

 // create an index
 createIndex := opensearchapi.IndicesCreateRequest{
 Index: indexName,
 Body: mapping,
 }
 createIndexResponse, err := createIndex.Do(context.Background(), client)
 if err != nil {
 log.Println("Error ", err.Error())
 log.Println("failed to create index ", err)
 log.Fatal("create response body read err", err)
 }
 log.Println(createIndexResponse)

 // delete the index
 deleteIndex := opensearchapi.IndicesDeleteRequest{
 Index: []string{indexName},
 }

 deleteIndexResponse, err := deleteIndex.Do(context.Background(), client)
 if err != nil {
 log.Println("failed to delete index ", err)
 log.Fatal("delete index response body read err", err)
 }
 log.Println("deleting index", deleteIndexResponse)
}

func getCredentialProvider(accessKey, secretAccessKey, token string)
 aws.CredentialsProviderFunc {
 return func(ctx context.Context) (aws.Credentials, error) {
 c := &aws.Credentials{
 AccessKeyID: accessKey,
 SecretAccessKey: secretAccessKey,
 SessionToken: token,
 }
 return *c, nil
 }
}

Java

The following sample code uses the opensearch-java client for Java to establish a secure
connection to the specified OpenSearch Serverless collection and create a single index. You must
provide values for region and host.

Java 69

https://search.maven.org/artifact/org.opensearch.client/opensearch-java

Amazon OpenSearch Service Developer Guide

The important difference compared to OpenSearch Service domains is the service name (aoss
instead of es).

// import OpenSearchClient to establish connection to OpenSearch Serverless collection
import org.opensearch.client.opensearch.OpenSearchClient;

SdkHttpClient httpClient = ApacheHttpClient.builder().build();

// create an opensearch client and use the request-signer
OpenSearchClient client = new OpenSearchClient(
 new AwsSdk2Transport(
 httpClient,
 "...us-west-2.aoss.amazonaws.com", // serverless collection endpoint
 "aoss" // signing service name
 Region.US_WEST_2, // signing service region
 AwsSdk2TransportOptions.builder().build()
)
);

String index = "sample-index";

// create an index
CreateIndexRequest createIndexRequest = new
 CreateIndexRequest.Builder().index(index).build();
CreateIndexResponse createIndexResponse = client.indices().create(createIndexRequest);
System.out.println("Create index reponse: " + createIndexResponse);

// delete the index
DeleteIndexRequest deleteIndexRequest = new
 DeleteIndexRequest.Builder().index(index).build();
DeleteIndexResponse deleteIndexResponse = client.indices().delete(deleteIndexRequest);
System.out.println("Delete index reponse: " + deleteIndexResponse);

httpClient.close();

JavaScript

The following sample code uses the opensearch-js client for JavaScript to establish a secure
connection to the specified OpenSearch Serverless collection, create a single index, add a
document, and delete the index. You must provide values for node and region.

JavaScript 70

https://www.npmjs.com/package/@opensearch-project/opensearch

Amazon OpenSearch Service Developer Guide

The important difference compared to OpenSearch Service domains is the service name (aoss
instead of es).

Version 3

This example uses version 3 of the SDK for JavaScript in Node.js.

const { defaultProvider } = require('@aws-sdk/credential-provider-node');
const { Client } = require('@opensearch-project/opensearch');
const { AwsSigv4Signer } = require('@opensearch-project/opensearch/aws');

async function main() {
 // create an opensearch client and use the request-signer
 const client = new Client({
 ...AwsSigv4Signer({
 region: 'us-west-2',
 service: 'aoss',
 getCredentials: () => {
 const credentialsProvider = defaultProvider();
 return credentialsProvider();
 },
 }),
 node: '' # // serverless collection endpoint
 });

 const index = 'movies';

 // create index if it doesn't already exist
 if (!(await client.indices.exists({ index })).body) {
 console.log((await client.indices.create({ index })).body);
 }

 // add a document to the index
 const document = { foo: 'bar' };
 const response = await client.index({
 id: '1',
 index: index,
 body: document,
 });
 console.log(response.body);

 // delete the index
 console.log((await client.indices.delete({ index })).body);
}

JavaScript 71

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/

Amazon OpenSearch Service Developer Guide

main();

Version 2

This example uses version 2 of the SDK for JavaScript in Node.js.

const AWS = require('aws-sdk');
const { Client } = require('@opensearch-project/opensearch');
const { AwsSigv4Signer } = require('@opensearch-project/opensearch/aws');

async function main() {
 // create an opensearch client and use the request-signer
 const client = new Client({
 ...AwsSigv4Signer({
 region: 'us-west-2',
 service: 'aoss',
 getCredentials: () =>
 new Promise((resolve, reject) => {
 AWS.config.getCredentials((err, credentials) => {
 if (err) {
 reject(err);
 } else {
 resolve(credentials);
 }
 });
 }),
 }),
 node: '' # // serverless collection endpoint
 });

 const index = 'movies';

 // create index if it doesn't already exist
 if (!(await client.indices.exists({ index })).body) {
 console.log((await client.indices.create({
 index
 })).body);
 }

 // add a document to the index
 const document = {
 foo: 'bar'
 };

JavaScript 72

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/

Amazon OpenSearch Service Developer Guide

 const response = await client.index({
 id: '1',
 index: index,
 body: document,
 });
 console.log(response.body);

 // delete the index
 console.log((await client.indices.delete({ index })).body);
}

main();

Logstash

You can use the Logstash OpenSearch plugin to publish logs to OpenSearch Serverless collections.

To use Logstash to send data to OpenSearch Serverless

1. Install version 2.0.0 or later of the logstash-output-opensearch plugin using Docker or Linux.

Docker

Docker hosts the Logstash OSS software with the OpenSearch output plugin preinstalled:
opensearchproject/logstash-oss-with-opensearch-output-plugin. You can pull the image
just like any other image:

docker pull opensearchproject/logstash-oss-with-opensearch-output-plugin:latest

Linux

First, install the latest version of Logstash if you haven't already. Then, install version 2.0.0
of the output plugin:

cd logstash-8.5.0/
bin/logstash-plugin install --version 2.0.0 logstash-output-opensearch

If the plugin is already installed, update it to the latest version:

bin/logstash-plugin update logstash-output-opensearch

Logstash 73

https://github.com/opensearch-project/logstash-output-opensearch
https://github.com/opensearch-project/logstash-output-opensearch
https://hub.docker.com/r/opensearchproject/logstash-oss-with-opensearch-output-plugin/tags?page=1&ordering=last_updated&name=8.4.0
https://www.elastic.co/guide/en/logstash/current/installing-logstash.html

Amazon OpenSearch Service Developer Guide

Starting with version 2.0.0 of the plugin, the Amazon SDK uses version 3. If you're using a
Logstash version earlier than 8.4.0, you must remove any pre-installed Amazon plugins and
install the logstash-integration-aws plugin:

/usr/share/logstash/bin/logstash-plugin remove logstash-input-s3
/usr/share/logstash/bin/logstash-plugin remove logstash-input-sqs
/usr/share/logstash/bin/logstash-plugin remove logstash-output-s3
/usr/share/logstash/bin/logstash-plugin remove logstash-output-sns
/usr/share/logstash/bin/logstash-plugin remove logstash-output-sqs
/usr/share/logstash/bin/logstash-plugin remove logstash-output-cloudwatch

/usr/share/logstash/bin/logstash-plugin install --version 0.1.0.pre logstash-
integration-aws

2. In order for the OpenSearch output plugin to work with OpenSearch Serverless, you must
make the following modifications to the opensearch output section of logstash.conf:

• Specify aoss as the service_name under auth_type.

• Specify your collection endpoint for hosts.

• Add the parameters default_server_major_version and legacy_template. These
parameters are required for the plugin to work with OpenSearch Serverless.

output {
 opensearch {
 hosts => "collection-endpoint:443"
 auth_type => {
 ...
 service_name => 'aoss'
 }
 default_server_major_version => 2
 legacy_template => false
 }
}

This example configuration file takes its input from files in an S3 bucket and sends them to an
OpenSearch Serverless collection:

input {
 s3 {

Logstash 74

Amazon OpenSearch Service Developer Guide

 bucket => "my-s3-bucket"
 region => "us-east-1"
 }
}

output {
 opensearch {
 ecs_compatibility => disabled
 hosts => "https://my-collection-endpoint.us-east-1.aoss.amazonaws.com:443"
 index => my-index
 auth_type => {
 type => 'aws_iam'
 aws_access_key_id => 'your-access-key'
 aws_secret_access_key => 'your-secret-key'
 region => 'us-east-1'
 service_name => 'aoss'
 }
 default_server_major_version => 2
 legacy_template => false
 }
}

3. Then, run Logstash with the new configuration to test the plugin:

bin/logstash -f config/test-plugin.conf

Python

The following sample code uses the opensearch-py client for Python to establish a secure
connection to the specified OpenSearch Serverless collection, create a single index, and search that
index. You must provide values for region and host.

The important difference compared to OpenSearch Service domains is the service name (aoss
instead of es).

from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth
import boto3

host = '' # serverless collection endpoint, without https://
region = '' # e.g. us-east-1

Python 75

https://pypi.org/project/opensearch-py/

Amazon OpenSearch Service Developer Guide

service = 'aoss'
credentials = boto3.Session().get_credentials()
auth = AWSV4SignerAuth(credentials, region, service)

create an opensearch client and use the request-signer
client = OpenSearch(
 hosts=[{'host': host, 'port': 443}],
 http_auth=auth,
 use_ssl=True,
 verify_certs=True,
 connection_class=RequestsHttpConnection,
 pool_maxsize=20,
)

create an index
index_name = "books-index"
create_response = client.indices.create(
 index_name
)

print('\nCreating index:')
print(create_response)

index a document
document = {
 'title': 'The Green Mile,
 'director': 'Stephen King',
 'year': '1996'
}

response = client.index(
 index = 'books-index',
 body = document,
 id = '1'
)

delete the index
delete_response = client.indices.delete(
 index_name
)

print('\nDeleting index:')

Python 76

Amazon OpenSearch Service Developer Guide

print(delete_response)

Ruby

The opensearch-aws-sigv4 gem provides access to OpenSearch Serverless, along with
OpenSearch Service, out of the box. It has all features of the opensearch-ruby client because it's a
dependency of this gem.

When instantiating the Sigv4 signer, specify aoss as the service name:

require 'opensearch-aws-sigv4'
require 'aws-sigv4'

signer = Aws::Sigv4::Signer.new(service: 'aoss',
 region: 'us-west-2',
 access_key_id: 'key_id',
 secret_access_key: 'secret')

create an opensearch client and use the request-signer
client = OpenSearch::Aws::Sigv4Client.new(
 { host: 'https://your.amz-opensearch-serverless.endpoint',
 log: true },
 signer)

create an index
index = 'prime'
client.indices.create(index: index)

insert data
client.index(index: index, id: '1', body: { name: 'Amazon Echo',
 msrp: '5999',
 year: 2011 })

query the index
client.search(body: { query: { match: { name: 'Echo' } } })

delete index entry
client.delete(index: index, id: '1')

delete the index
client.indices.delete(index: index)

Ruby 77

https://rubygems.org/gems/opensearch-ruby

Amazon OpenSearch Service Developer Guide

Signing HTTP requests with other clients

The following requirements apply when signing requests to OpenSearch Serverless collections
when you construct HTTP requests with another clients.

• You must specify the service name as aoss.

• The x-amz-content-sha256 header is required for all Amazon Signature Version 4 requests.
It provides a hash of the request payload. If there's a request payload, set the value to its Secure
Hash Algorithm (SHA) cryptographic hash (SHA256). If there's no request payload, set the value
to e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855, which is
the hash of an empty string.

Overview of security in Amazon OpenSearch Serverless

Security in Amazon OpenSearch Serverless differs fundamentally from security in Amazon
OpenSearch Service in the following ways:

Feature OpenSearch Service OpenSearch Serverless

Data access
control

Data access is determined by IAM policies
and fine-grained access control.

Data access is determined by
data access policies.

Encryption at
rest

Encryption at rest is optional for domains. Encryption at rest is required for
collections.

Security setup
and administr
ation

You must configure network, encryptio
n, and data access individually for each
domain.

You can use security policies to
manage security settings for
multiple collections at scale.

The following diagram illustrates the security components that make up a functional collection.
A collection must have an assigned encryption key, network access settings, and a matching data
access policy that grants permission to its resources.

Signing HTTP requests with other clients 78

https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html

Amazon OpenSearch Service Developer Guide

Topics

• Encryption policies

• Network policies

• Data access policies

• IAM and SAML authentication

• Infrastructure security

• Getting started with security in Amazon OpenSearch Serverless

• Identity and Access Management for Amazon OpenSearch Serverless

• Encryption in Amazon OpenSearch Serverless

• Network access for Amazon OpenSearch Serverless

• Data access control for Amazon OpenSearch Serverless

• Access Amazon OpenSearch Serverless using an interface endpoint (Amazon PrivateLink)

• SAML authentication for Amazon OpenSearch Serverless

• Compliance validation for Amazon OpenSearch Serverless

Security in OpenSearch Serverless 79

Amazon OpenSearch Service Developer Guide

Encryption policies

Encryption policies define whether your collections are encrypted with an Amazon owned key or a
customer managed key. Encryption policies consist of two components: a resource pattern and an
encryption key. The resource pattern defines which collection or collections the policy applies to.
The encryption key determines how the associated collections will be secured.

To apply a policy to multiple collections, you include a wildcard (*) in the policy rule. For example,
the following policy applies to all collections with names that begin with "logs".

Encryption policies streamline the process of creating and managing collections, especially when
you do so programmatically. You can create a collection by simply specifying a name, and an
encryption key is automatically assigned to it upon creation.

Network policies

Network policies define whether your collections are accessible over the internet from public
networks, or whether they must be accessed through OpenSearch Serverless–managed VPC
endpoints. Just like encryption policies, network policies can apply to multiple collections, which
allows you to manage network access for many collections at scale.

Network policies consist of two components: an access type and a resource type. The access type
can either be public or VPC access. The resource type determines whether the access you choose
applies to the collection endpoint, the OpenSearch Dashboards endpoint, or both.

Encryption policies 80

Amazon OpenSearch Service Developer Guide

If you plan to configure VPC access within a network policy, you must first create one or more
OpenSearch Serverless-managed VPC endpoints. These endpoints let you access OpenSearch
Serverless as if it were in your VPC, without the use of an internet gateway, NAT device, VPN
connection, or Amazon Direct Connect connection.

Data access policies

Data access policies define how your users access the data within your collections. Data access
policies help you manage collections at scale by automatically assigning access permissions
to collections and indexes that match a specific pattern. Multiple policies can apply to a single
resource.

Data access policies consist of a set of rules, each with three components: a resource type, granted
resources, and a set of permissions. The resource type can be a collection or index. The granted
resources can be collection/index names or patterns with a wildcard (*). The list of permissions
specifies which OpenSearch API operations the policy grants access to. In addition, the policy
contains a list of principals, which specify the IAM roles, users, and SAML identities to grant access
to.

Data access policies 81

Amazon OpenSearch Service Developer Guide

For more information about the format of a data access policy, see the policy syntax.

Before you create a data access policy, you must have one or more IAM roles or users, or SAML
identities, to provide access to in the policy. For details, see the next section.

IAM and SAML authentication

IAM principals and SAML identities are one of the building blocks of a data access policy. Within the
principal statement of an access policy, you can include IAM roles, users, and SAML identities.
These principals are then granted the permissions that you specify in the associated policy rules.

[
 {
 "Rules":[
 {
 "ResourceType":"index",
 "Resource":[
 "index/marketing/orders*"
],
 "Permission":[
 "aoss:*"
]
 }
],
 "Principal":[
 "arn:aws:iam::123456789012:user/Dale",
 "arn:aws:iam::123456789012:role/RegulatoryCompliance",
 "saml/123456789012/myprovider/user/Annie"
]
 }
]

IAM and SAML authentication 82

Amazon OpenSearch Service Developer Guide

You configure SAML authentication directly within OpenSearch Serverless. For more information,
see the section called “SAML authentication”.

Infrastructure security

Amazon OpenSearch Serverless is protected by Amazon global network security. For information
about Amazon security services and how Amazon protects infrastructure, see Amazon Cloud
Security. To design your Amazon environment using the best practices for infrastructure security,
see Infrastructure Protection in Security Pillar Amazon Well‐Architected Framework.

You use Amazon published API calls to access Amazon OpenSearch Serverless through the
network. Clients must support Transport Layer Security (TLS). We require TLS 1.2 and recommend
TLS 1.3. For a list of supported ciphers for TLS 1.3, see TLS protocols and ciphers in the Elastic Load
Balancing documentation.

Additionally, you must sign requests using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Getting started with security in Amazon OpenSearch Serverless

The following tutorials help you get started using Amazon OpenSearch Serverless. Both tutorials
accomplish the same basic steps, but one uses the console while the other uses the Amazon CLI.

Note that the use cases in these tutorials are simplified. The network and security policies are fairly
open. In production workloads, we recommend that you configure more robust security features
such as SAML authentication, VPC access, and restrictive data access policies.

Topics

• Tutorial: Getting started with security in Amazon OpenSearch Serverless (console)

• Tutorial: Getting started with security in Amazon OpenSearch Serverless (CLI)

Tutorial: Getting started with security in Amazon OpenSearch Serverless
(console)

This tutorial walks you through the basic steps to create and manage security policies using the
Amazon OpenSearch Serverless console.

You will complete the following steps in this tutorial:

Infrastructure security 83

https://www.amazonaws.cn/security/
https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/network/create-tls-listener.html#tls-protocols-ciphers
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

1. Configure permissions

2. Create an encryption policy

3. Create a network policy

4. Configure a data access policy

5. Create a collection

6. Upload and search data

This tutorial walks you through setting up a collection using the Amazon Web Services
Management Console. For the same steps using the Amazon CLI, see the section called “Tutorial:
Getting started with security (CLI)”.

Step 1: Configure permissions

Note

You can skip this step if you're already using a more broad identity-based policy, such
as Action":"aoss:*" or Action":"*". In production environments, however, we
recommend that you follow the principal of least privilege and only assign the minimum
permissions necessary to complete a task.

In order to complete this tutorial, you must have the correct IAM permissions. Your user or role
must have an attached identity-based policy with the following minimum permissions:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aoss:ListCollections",
 "aoss:BatchGetCollection",
 "aoss:CreateCollection",
 "aoss:CreateSecurityPolicy",
 "aoss:GetSecurityPolicy",
 "aoss:ListSecurityPolicies",
 "aoss:CreateAccessPolicy",
 "aoss:GetAccessPolicy",
 "aoss:ListAccessPolicies"

Getting started with security 84

Amazon OpenSearch Service Developer Guide

],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For a full list of OpenSearch Serverless permissions, see the section called “Identity and Access
Management”.

Step 2: Create an encryption policy

Encryption policies specify the Amazon KMS key that OpenSearch Serverless will use to encrypt
the collection. You can encrypt collections with an Amazon managed key or a different key. For
simplicity in this tutorial, we'll encrypt our collection with an Amazon managed key.

To create an encryption policy

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. Expand Serverless in the left navigation pane and choose Encryption policies.

3. Choose Create encryption policy.

4. Name the policy books-policy. For the description, enter Encryption policy for books
collection.

5. Under Resources, enter books, which is what you'll name your collection. If you wanted to be
more broad, you could include an asterisk (books*) to make the policy apply to all collections
beginning with the word "books".

6. For Encryption, keep Use Amazon Web Services owned key selected.

7. Choose Create.

Step 3: Create a network policy

Network policies determine whether your collection is accessible over the internet from public
networks, or whether it must be accessed through OpenSearch Serverless–managed VPC
endpoints. In this tutorial, we'll configure public access.

To create a network policy

1. Choose Network policies in the left navigation pane and choose Create network policy.

Getting started with security 85

https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

2. Name the policy books-policy. For the description, enter Network policy for books
collection.

3. Under Rule 1, name the rule Public access for books collection.

4. For simplicity in this tutorial, we'll configure public access for the books collection. For the
access type, select Public.

5. We're going to access the collection from OpenSearch Dashboards. In order to do this, you
need to configure network access for Dashboards and the OpenSearch endpoint, otherwise
Dashboards won't function.

For the resource type, enable both Access to OpenSearch endpoints and Access to
OpenSearch Dashboards.

6. In both input boxes, enter Collection Name = books. This setting scopes the policy down so
that it only applies to a single collection (books). Your rule should look like this:

7. Choose Create.

Step 4: Create a data access policy

Your collection data won't be accessible until you configure data access. Data access policies are
separate from the IAM identity-based policy that you configured in step 1. They allow users to
access the actual data within a collection.

Getting started with security 86

Amazon OpenSearch Service Developer Guide

In this tutorial, we'll provide a single user the permissions required to index data into the books
collection.

To create a data access policy

1. Choose Data access policies in the left navigation pane and choose Create access policy.

2. Name the policy books-policy. For the description, enter Data access policy for books
collection.

3. Select JSON for the policy definition method and paste the following policy in the JSON
editor.

Replace the principal ARN with the ARN of the account that you'll use to log in to OpenSearch
Dashboards and index data.

[
 {
 "Rules":[
 {
 "ResourceType":"index",
 "Resource":[
 "index/books/*"
],
 "Permission":[
 "aoss:CreateIndex",
 "aoss:DescribeIndex",
 "aoss:ReadDocument",
 "aoss:WriteDocument",
 "aoss:UpdateIndex",
 "aoss:DeleteIndex"
]
 }
],
 "Principal":[
 "arn:aws:iam::123456789012:user/my-user"
]
 }
]

This policy provides a single user the minimum permissions required to create an index in the
books collection, index some data, and search for it.

4. Choose Create.

Getting started with security 87

Amazon OpenSearch Service Developer Guide

Step 5: Create a collection

Now that you configured encryption and network policies, you can create a matching collection
and the security settings will be automatically applied to it.

To create an OpenSearch Serverless collection

1. Choose Collections in the left navigation pane and choose Create collection.

2. Name the collection books.

3. For collection type, choose Search.

4. Under Encryption, OpenSearch Serverless informs you that the collection name matches the
books-policy encryption policy.

5. Under Network access settings, OpenSearch Serverless informs you that the collection name
matches the books-policy network policy.

6. Choose Next.

7. Under Data access policy options, OpenSearch Serverless informs you that the collection
name matches the books-policy data access policy.

8. Choose Next.

9. Review the collection configuration and choose Submit. Collections typically take less than a
minute to initialize.

Step 6: Upload and search data

You can upload data to an OpenSearch Serverless collection using Postman or curl. For brevity,
these examples use Dev Tools within the OpenSearch Dashboards console.

To index and search data in a collection

1. Choose Collections in the left navigation pane and choose the books collection to open its
details page.

2. Choose the OpenSearch Dashboards URL for the collection. The URL takes the format
https://collection-id.us-east-1.aoss.amazonaws.com/_dashboards.

3. Sign in to OpenSearch Dashboards using the Amazon access and secret keys for the principal
that you specified in your data access policy.

4. Within OpenSearch Dashboards, open the left navigation menu and choose Dev Tools.

5. To create a single index called books-index, run the following command:

Getting started with security 88

https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html

Amazon OpenSearch Service Developer Guide

PUT books-index

6. To index a single document into books-index, run the following command:

PUT books-index/_doc/1
{
 "title": "The Shining",
 "author": "Stephen King",
 "year": 1977
}

7. To search data in OpenSearch Dashboards, you need to configure at least one index pattern.
OpenSearch uses these patterns to identify which indexes you want to analyze. Open the
Dashboards main menu, choose Stack Management, choose Index Patterns, and then choose
Create index pattern. For this tutorial, enter books-index.

8. Choose Next step and then choose Create index pattern. After the pattern is created, you can
view the various document fields such as author and title.

9. To begin searching your data, open the main menu again and choose Discover, or use the
search API.

Tutorial: Getting started with security in Amazon OpenSearch Serverless (CLI)

This tutorial walks you through the steps described in the console getting started tutorial for
security, but uses the Amazon CLI rather than the OpenSearch Service console.

Getting started with security 89

https://opensearch.org/docs/latest/opensearch/rest-api/search/

Amazon OpenSearch Service Developer Guide

You'll complete the following steps in this tutorial:

1. Create an IAM permissions policy

2. Attatch the IAM policy to an IAM role

3. Create an encryption policy

4. Create a network policy

5. Create a collection

6. Configure a data access policy

7. Retrieve the collection endpoint

8. Upload data to your connection

9. Search data in your collection

The goal of this tutorial is to set up a single OpenSearch Serverless collection with fairly simple
encryption, network, and data access settings. For example, we'll configure public network access,
an Amazon managed key for encryption, and a simplified data access policy that grants minimal
permissions to a single user.

In a production scenario, consider implementing a more robust configuration, including SAML
authentication, a custom encryption key, and VPC access.

To get started with security policies in OpenSearch Serverless

1.
Note

You can skip this step if you're already using a more broad identity-based policy, such
as Action":"aoss:*" or Action":"*". In production environments, however,
we recommend that you follow the principal of least privilege and only assign the
minimum permissions necessary to complete a task.

To start, create an Amazon Identity and Access Management policy with the minimum required
permissions to perform the steps in this tutorial. We'll name the policy TutorialPolicy:

aws iam create-policy \
 --policy-name TutorialPolicy \
 --policy-document "{\"Version\": \"2012-10-17\",\"Statement\":
 [{\"Action\": [\"aoss:ListCollections\",\"aoss:BatchGetCollection\",

Getting started with security 90

Amazon OpenSearch Service Developer Guide

\"aoss:CreateCollection\",\"aoss:CreateSecurityPolicy\",\"aoss:GetSecurityPolicy\",
\"aoss:ListSecurityPolicies\",\"aoss:CreateAccessPolicy\",\"aoss:GetAccessPolicy\",
\"aoss:ListAccessPolicies\"],\"Effect\": \"Allow\",\"Resource\": \"*\"}]}"

Sample response

{
 "Policy": {
 "PolicyName": "TutorialPolicy",
 "PolicyId": "ANPAW6WRAECKG6QJWUV7U",
 "Arn": "arn:aws:iam::123456789012:policy/TutorialPolicy",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2022-10-16T20:57:18+00:00",
 "UpdateDate": "2022-10-16T20:57:18+00:00"
 }
}

2. Attach TutorialPolicy to the IAM role who will index and search data in the collection.
We'll name the user TutorialRole:

aws iam attach-role-policy \
 --role-name TutorialRole \
 --policy-arn arn:aws:iam::123456789012:policy/TutorialPolicy

3. Before you create a collection, you need to create an encryption policy that assigns an Amazon
owned key to the books collection that you'll create in a later step.

Send the following request to create an encryption policy for the books collection:

aws opensearchserverless create-security-policy \
 --name books-policy \
 --type encryption --policy "{\"Rules\":[{\"ResourceType\":\"collection\",
\"Resource\":[\"collection\/books\"]}],\"AWSOwnedKey\":true}"

Sample response

{

Getting started with security 91

Amazon OpenSearch Service Developer Guide

 "securityPolicyDetail": {
 "type": "encryption",
 "name": "books-policy",
 "policyVersion": "MTY2OTI0MDAwNTk5MF8x",
 "policy": {
 "Rules": [
 {
 "Resource": [
 "collection/books"
],
 "ResourceType": "collection"
 }
],
 "AWSOwnedKey": true
 },
 "createdDate": 1669240005990,
 "lastModifiedDate": 1669240005990
 }
}

4. Create a network policy that provides public access to the books collection:

aws opensearchserverless create-security-policy --name books-policy --type network
 \
 --policy "[{\"Description\":\"Public access for books collection\",\"Rules
\":[{\"ResourceType\":\"dashboard\",\"Resource\":[\"collection\/books\"]},
{\"ResourceType\":\"collection\",\"Resource\":[\"collection\/books\"]}],
\"AllowFromPublic\":true}]"

Sample response

{
 "securityPolicyDetail": {
 "type": "network",
 "name": "books-policy",
 "policyVersion": "MTY2OTI0MDI1Njk1NV8x",
 "policy": [
 {
 "Rules": [
 {
 "Resource": [
 "collection/books"
],

Getting started with security 92

Amazon OpenSearch Service Developer Guide

 "ResourceType": "dashboard"
 },
 {
 "Resource": [
 "collection/books"
],
 "ResourceType": "collection"
 }
],
 "AllowFromPublic": true,
 "Description": "Public access for books collection"
 }
],
 "createdDate": 1669240256955,
 "lastModifiedDate": 1669240256955
 }
}

5. Create the books collection:

aws opensearchserverless create-collection --name books --type SEARCH

Sample response

{
 "createCollectionDetail": {
 "id": "8kw362bpwg4gx9b2f6e0",
 "name": "books",
 "status": "CREATING",
 "type": "SEARCH",
 "arn": "arn:aws:aoss:us-
east-1:123456789012:collection/8kw362bpwg4gx9b2f6e0",
 "kmsKeyArn": "auto",
 "createdDate": 1669240325037,
 "lastModifiedDate": 1669240325037
 }
}

6. Create a data access policy that provides the minimum permissions to index and search data in
the books collection. Replace the principal ARN with the ARN of TutorialRole from step 1:

aws opensearchserverless create-access-policy \

Getting started with security 93

Amazon OpenSearch Service Developer Guide

 --name books-policy \
 --type data \
 --policy "[{\"Rules\":[{\"ResourceType\":\"index\",\"Resource\":
[\"index\/books\/books-index\"],\"Permission\":[\"aoss:CreateIndex
\",\"aoss:DescribeIndex\",\"aoss:ReadDocument\",\"aoss:WriteDocument
\",\"aoss:UpdateIndex\",\"aoss:DeleteIndex\"]}],\"Principal\":
[\"arn:aws:iam::123456789012:role\/TutorialRole\"]}]"

Sample response

{
 "accessPolicyDetail": {
 "type": "data",
 "name": "books-policy",
 "policyVersion": "MTY2OTI0MDM5NDY1M18x",
 "policy": [
 {
 "Rules": [
 {
 "Resource": [
 "index/books/books-index"
],
 "Permission": [
 "aoss:CreateIndex",
 "aoss:DescribeIndex",
 "aoss:ReadDocument",
 "aoss:WriteDocument",
 "aoss:UpdateDocument",
 "aoss:DeleteDocument"
],
 "ResourceType": "index"
 }
],
 "Principal": [
 "arn:aws:iam::123456789012:role/TutorialRole"
]
 }
],
 "createdDate": 1669240394653,
 "lastModifiedDate": 1669240394653
 }
}

Getting started with security 94

Amazon OpenSearch Service Developer Guide

TutorialRole should now be able to index and search documents in the books collection.

7. To make calls to the OpenSearch API, you need the collection endpoint. Send the following
request to retrieve the collectionEndpoint parameter:

aws opensearchserverless batch-get-collection --names books

Sample response

{
 "collectionDetails": [
 {
 "id": "8kw362bpwg4gx9b2f6e0",
 "name": "books",
 "status": "ACTIVE",
 "type": "SEARCH",
 "description": "",
 "arn": "arn:aws:aoss:us-
east-1:123456789012:collection/8kw362bpwg4gx9b2f6e0",
 "createdDate": 1665765327107,
 "collectionEndpoint": "https://8kw362bpwg4gx9b2f6e0.us-
east-1.aoss.amazonaws.com",
 "dashboardEndpoint": "https://8kw362bpwg4gx9b2f6e0.us-
east-1.aoss.amazonaws.com/_dashboards"
 }
],
 "collectionErrorDetails": []
}

Note

You won't be able to see the collection endpoint until the collection status changes to
ACTIVE. You might have to make multiple calls to check the status until the collection
is successfully created.

8. Use an HTTP tool such as Postman or curl to index data into the books collection. We'll create
an index called books-index and add a single document.

Send the following request to the collection endpoint that you retrieved in the previous step,
using the credentials for TutorialRole.

Getting started with security 95

https://www.getpostman.com/

Amazon OpenSearch Service Developer Guide

PUT https://8kw362bpwg4gx9b2f6e0.us-east-1.aoss.amazonaws.com/books-index/_doc/1
{
 "title": "The Shining",
 "author": "Stephen King",
 "year": 1977
}

Sample response

{
 "_index" : "books-index",
 "_id" : "1",
 "_version" : 1,
 "result" : "created",
 "_shards" : {
 "total" : 0,
 "successful" : 0,
 "failed" : 0
 },
 "_seq_no" : 0,
 "_primary_term" : 0
}

9. To begin searching data in your collection, use the search API. The following query performs a
basic search:

GET https://8kw362bpwg4gx9b2f6e0.us-east-1.aoss.amazonaws.com/books-index/_search

Sample response

{
 "took": 405,
 "timed_out": false,
 "_shards": {
 "total": 6,
 "successful": 6,
 "skipped": 0,
 "failed": 0
 },
 "hits": {
 "total": {

Getting started with security 96

https://opensearch.org/docs/latest/opensearch/rest-api/search/

Amazon OpenSearch Service Developer Guide

 "value": 2,
 "relation": "eq"
 },
 "max_score": 1.0,
 "hits": [
 {
 "_index": "books-index:0::3xJq14MBUaOS0wL26UU9:0",
 "_id": "F_bt4oMBLle5pYmm5q4T",
 "_score": 1.0,
 "_source": {
 "title": "The Shining",
 "author": "Stephen King",
 "year": 1977
 }
 }
]
 }
}

Identity and Access Management for Amazon OpenSearch Serverless

Amazon Identity and Access Management (IAM) is an Amazon Web Service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can
be authenticated (signed in) and authorized (have permissions) to use OpenSearch Serverless
resources. IAM is an Amazon Web Service that you can use with no additional charge.

Topics

• Identity-based policies for OpenSearch Serverless

• Policy actions for OpenSearch Serverless

• Policy resources for OpenSearch Serverless

• Policy condition keys for Amazon OpenSearch Serverless

• ABAC with OpenSearch Serverless

• Using temporary credentials with OpenSearch Serverless

• Service-linked roles for OpenSearch Serverless

• Identity-based policy examples for OpenSearch Serverless

Identity and Access Management 97

Amazon OpenSearch Service Developer Guide

Identity-based policies for OpenSearch Serverless

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for OpenSearch Serverless

To view examples of OpenSearch Serverless identity-based policies, see the section called
“Identity-based policy examples”.

Policy actions for OpenSearch Serverless

Supports policy actions Yes

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated Amazon API
operation. There are some exceptions, such as permission-only actions that don't have a matching
API operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in OpenSearch Serverless use the following prefix before the action:

aoss

To specify multiple actions in a single statement, separate them with commas.

Identity and Access Management 98

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html

Amazon OpenSearch Service Developer Guide

"Action": [
 "aoss:action1",
 "aoss:action2"
]

You can specify multiple actions using wildcard characters (*). For example, to specify all actions
that begin with the word Describe, include the following action:

"Action": "aoss:List*"

To view examples of OpenSearch Serverless identity-based policies, see Identity-based policy
examples for OpenSearch Serverless.

Policy resources for OpenSearch Serverless

Supports policy resources Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

Policy condition keys for Amazon OpenSearch Serverless

Supports service-specific policy condition keys Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

Identity and Access Management 99

https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html

Amazon OpenSearch Service Developer Guide

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, Amazon evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, Amazon evaluates the condition using a logical OR operation. All
of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

Amazon supports global condition keys and service-specific condition keys. To see all Amazon
global condition keys, see Amazon global condition context keys in the IAM User Guide.

In addition to attribute-based access control (ABAC), OpenSearch Serverless supports the following
condition keys:

• aoss:collection

• aoss:CollectionId

• aoss:index

You can use these condition keys even when providing permissions for access policies and security
policies. For example:

[
 {
 "Effect":"Allow",
 "Action":[
 "aoss:CreateAccessPolicy",
 "aoss:CreateSecurityPolicy"
],
 "Resource":"*",
 "Condition":{
 "StringLike":{
 "aoss:collection":"log"
 }

Identity and Access Management 100

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon OpenSearch Service Developer Guide

 }
 }
]

In this example, the condition applies to policies that contain rules that match a collection name or
pattern. The conditions have the following behavior:

• StringEquals - Applies to policies with rules that contain the exact resource string "log" (i.e.
collection/log).

• StringLike - Applies to policies with rules that contain a resource string that includes the string
"log" (i.e. collection/log but also collection/logs-application or collection/
applogs123).

Note

Collection condition keys don't apply at the index level. For example, in the policy above,
the condition wouldn't apply to an access or security policy containing the resource string
index/logs-application/*.

To see a list of OpenSearch Serverless condition keys, see Condition keys for Amazon OpenSearch
Serverless in the Service Authorization Reference. To learn with which actions and resources you can
use a condition key, see Actions defined by Amazon OpenSearch Serverless.

ABAC with OpenSearch Serverless

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In Amazon, these attributes are called tags. You can attach tags to IAM entities (users
or roles) and to many Amazon resources. Tagging entities and resources is the first step of ABAC.
Then you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

Identity and Access Management 101

https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchserverless.html#amazonopensearchserverless-policy-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchserverless.html#amazonopensearchserverless-policy-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchserverless.html#amazonopensearchserverless-actions-as-permissions

Amazon OpenSearch Service Developer Guide

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

For more information about tagging OpenSearch Serverless resources, see the section called
“Tagging collections”.

Using temporary credentials with OpenSearch Serverless

Supports temporary credentials Yes

Some Amazon Web Services don't work when you sign in using temporary credentials. For
additional information, including which Amazon Web Services work with temporary credentials,
see Amazon Web Services that work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the Amazon Web Services Management
Console using any method except a user name and password. For example, when you access
Amazon using your company's single sign-on (SSO) link, that process automatically creates
temporary credentials. You also automatically create temporary credentials when you sign in to the
console as a user and then switch roles. For more information about switching roles, see Switching
to a role (console) in the IAM User Guide.

You can manually create temporary credentials using the Amazon CLI or Amazon API. You can then
use those temporary credentials to access Amazon. Amazon recommends that you dynamically
generate temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Service-linked roles for OpenSearch Serverless

Supports service-linked roles Yes

Identity and Access Management 102

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html

Amazon OpenSearch Service Developer Guide

A service-linked role is a type of service role that is linked to an Amazon Web Service. The service
can assume the role to perform an action on your behalf. Service-linked roles appear in your
Amazon Web Services account and are owned by the service. An IAM administrator can view, but
not edit the permissions for service-linked roles.

For details about creating and managing OpenSearch Serverless service-linked roles, see the
section called “Collection creation role”.

Identity-based policy examples for OpenSearch Serverless

By default, users and roles don't have permission to create or modify OpenSearch Serverless
resources. They also can't perform tasks by using the Amazon Web Services Management Console,
Amazon Command Line Interface (Amazon CLI), or Amazon API. To grant users permission to
perform actions on the resources that they need, an IAM administrator can create IAM policies. The
administrator can then add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amazon OpenSearch Serverless, including
the format of the ARNs for each of the resource types, see Actions, resources, and condition keys
for Amazon OpenSearch Serverless in the Service Authorization Reference.

Topics

• Policy best practices

• Using OpenSearch Serverless in the console

• Administering OpenSearch Serverless collections

• Viewing OpenSearch Serverless collections

• Using OpenSearch API operations

Policy best practices

Identity-based policies are very powerful. They determine whether someone can create, access,
or delete OpenSearch Serverless resources in your account. These actions can incur costs for your
Amazon Web Services account. When you create or edit identity-based policies, follow these
guidelines and recommendations:

Identity-based policies determine whether someone can create, access, or delete OpenSearch
Serverless resources in your account. These actions can incur costs for your Amazon Web

Identity and Access Management 103

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchserverless.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchserverless.html

Amazon OpenSearch Service Developer Guide

Services account. When you create or edit identity-based policies, follow these guidelines and
recommendations:

• Get started with Amazon managed policies and move toward least-privilege permissions
– To get started granting permissions to your users and workloads, use the Amazon managed
policies that grant permissions for many common use cases. They are available in your Amazon
Web Services account. We recommend that you reduce permissions further by defining Amazon
customer managed policies that are specific to your use cases. For more information, see Amazon
managed policies or Amazon managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition
to specify that all requests must be sent using SSL. You can also use conditions to grant access
to service actions if they are used through a specific Amazon Web Service, such as Amazon
CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM
User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a
root user in your Amazon Web Services account, turn on MFA for additional security. To require
MFA when API operations are called, add MFA conditions to your policies. For more information,
see Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Identity and Access Management 104

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html

Amazon OpenSearch Service Developer Guide

Using OpenSearch Serverless in the console

To access OpenSearch Serverless within the OpenSearch Service console, you must have a
minimum set of permissions. These permissions must allow you to list and view details about the
OpenSearch Serverless resources in your Amazon account. If you create an identity-based policy
that is more restrictive than the minimum required permissions, the console won't function as
intended for entities (such as IAM roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to
the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API
operation that you're trying to perform.

The following policy allows a user to access OpenSearch Serverless within the OpenSearch Service
console:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Resource": "*",
 "Effect": "Allow",
 "Action": [
 "aoss:ListCollections",
 "aoss:BatchGetCollection",
 "aoss:ListAccessPolicies",
 "aoss:ListSecurityConfigs",
 "aoss:ListSecurityPolicies",
 "aoss:ListTagsForResource",
 "aoss:ListVpcEndpoints",
 "aoss:GetAccessPolicy",
 "aoss:GetAccountSettings",
 "aoss:GetSecurityConfig",
 "aoss:GetSecurityPolicy"
]
 }
]
}

Identity and Access Management 105

Amazon OpenSearch Service Developer Guide

Administering OpenSearch Serverless collections

This policy is an example of a "collection admin" policy that allows a user to manage and
administer Amazon OpenSearch Serverless collections. The user can create, view, and delete
collections.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Resource": "arn:aws:aoss:region:123456789012:collection/*",
 "Action": [
 "aoss:CreateCollection",
 "aoss:DeleteCollection",
 "aoss:UpdateCollection"
],
 "Effect": "Allow"
 },
 {
 "Resource": "*",
 "Action": [
 "aoss:BatchGetCollection",
 "aoss:ListCollections",
 "aoss:CreateAccessPolicy",
 "aoss:CreateSecurityPolicy"
],
 "Effect": "Allow"
 }
]
}

Viewing OpenSearch Serverless collections

This example policy allows a user to view details for all Amazon OpenSearch Serverless collections
in their account. The user can't modify the collections or any associated security policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Resource": "*",
 "Action": [

Identity and Access Management 106

Amazon OpenSearch Service Developer Guide

 "aoss:ListAccessPolicies",
 "aoss:ListCollections",
 "aoss:ListSecurityPolicies",
 "aoss:ListTagsForResource",
 "aoss:BatchGetCollection"
],
 "Effect": "Allow"
 }
]
}

Using OpenSearch API operations

Data plane API operations consist of the functions you use in OpenSearch Serverless to derive
realtime value from the service. Control plane API operations consist of the functions you use to
set up the environment.

To access Amazon OpenSearch Serverless data plane APIs and OpenSearch Dashboards from the
browser, you need to add two IAM permissions for collection resources. These permissions are
aoss:APIAccessAll and aoss:DashboardsAccessAll.

Note

Starting May 10, 2023, OpenSearch Serverless requires these two new IAM permissions for
collection resources. The aoss:APIAccessAll permission allows data plane access, and
the aoss:DashboardsAccessAll permission allows OpenSearch Dashboards from the
browser. Failure to add the two new IAM permissions results in a 403 error.

This example policy allows a user to access data plane APIs for a specified collection in their
account, and to access OpenSearch Dashboards for all collections in their account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "aoss:APIAccessAll",
 "Resource": "arn:aws:aoss:region:account-id:collection/collection-id"
 },
 {

Identity and Access Management 107

Amazon OpenSearch Service Developer Guide

 "Effect": "Allow",
 "Action": "aoss:DashboardsAccessAll",
 "Resource": "arn:aws:aoss:region:account-id:dashboards/default"
 }
]
}

Both aoss:APIAccessAll and aoss:DashboardsAccessAll give full IAM permission to the
collection resources, while the Dashboards permission also provides OpenSearch Dashboards
access. Each permission works independently, so an explicit deny on aoss:APIAccessAll doesn't
block aoss:DashboardsAccessAll access to the resources, including Dev Tools. The same is true
for a deny on aoss:DashboardsAccessAll.

OpenSearch Serverless only supports the source IP address in the condition setting in the
principal's IAM policy for data plane calls:

"Condition": {
 "IpAddress": {
 "aws:SourceIp": "52.95.4.14"
 }
}

Encryption in Amazon OpenSearch Serverless

Encryption at rest

Each Amazon OpenSearch Serverless collection that you create is protected with encryption of
data at rest, a security feature that helps prevent unauthorized access to your data. Encryption at
rest uses Amazon Key Management Service (Amazon KMS) to store and manage your encryption
keys. It uses the Advanced Encryption Standard algorithm with 256-bit keys (AES-256) to perform
the encryption.

Topics

• Encryption policies

• Considerations

• Permissions required

• Key policy for a customer managed key

• How OpenSearch Serverless uses grants in Amazon KMS

Encryption 108

Amazon OpenSearch Service Developer Guide

• Creating encryption policies (console)

• Creating encryption policies (Amazon CLI)

• Viewing encryption policies

• Updating encryption policies

• Deleting encryption policies

Encryption policies

With encryption policies, you can manage many collections at scale by automatically assigning an
encryption key to newly created collections that match a specific name or pattern.

When you create an encryption policy, you can either specify a prefix, which is a wildcard-based
matching rule such as MyCollection*, or enter a single collection name. Then, when you create
a collection that matches that name or prefix pattern, the policy and corresponding KMS key are
automatically assigned to it.

Encryption policies contain the following elements:

• Rules – one or more collection matching rules, each with the following sub-elements:

• ResourceType – Currently the only option is "collection". Encryption policies apply to
collection resources only.

• Resource – One or more collection names or patterns that the policy will apply to, in the
format collection/<collection name|pattern>.

Encryption 109

Amazon OpenSearch Service Developer Guide

• AWSOwnedKey – Whether to use an Amazon owned key.

• KmsARN – If you set AWSOwnedKey to false, specify the Amazon Resource Name (ARN) of the
KMS key to encrypt the associated collections with. If you include this parameter, OpenSearch
Serverless ignores the AWSOwnedKey parameter.

The following sample policy will assign a customer managed key to any future collection named
autopartsinventory, as well as collections that begin with the term "sales":

{
 "Rules":[
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/autopartsinventory",
 "collection/sales*"
]
 }
],
 "AWSOwnedKey":false,
 "KmsARN":"arn:aws:encryption:us-east-1:123456789012:key/93fd6da4-a317-4c17-
bfe9-382b5d988b36"
}

Even if a policy matches a collection name, you can choose to override this automatic assignment
during collection creation if the resource pattern contains a wildcard (*). If you choose to override
automatic key assignment, OpenSearch Serverless creates an encryption policy for you named
auto-<collection-name> and attaches it to the collection. The policy initially only applies to a
single collection, but you can modify it to include additional collections.

If you modify policy rules to no longer match a collection, the associated KMS key won't be
unassigned from that collection. The collection always remains encrypted with its initial encryption
key. If you want to change the encryption key for a collection, you must recreate the collection.

If rules from multiple policies match a collection, the more specific rule is used. For example, if one
policy contains a rule for collection/log*, and another for collection/logSpecial, the
encryption key for the second policy is used because it's more specific.

You can't use a name or a prefix in a policy if it already exists in another policy. OpenSearch
Serverless displays an error if you try to configure identical resource patterns in different
encryption policies.

Encryption 110

Amazon OpenSearch Service Developer Guide

Considerations

Consider the following when you configure encryption for your collections:

• Encryption at rest is required for all serverless collections.

• You have the option to use a customer managed key or an Amazon owned key. If you choose a
customer managed key, we recommend that you enable automatic key rotation.

• You can't change the encryption key for a collection after the collection is created. Carefully
choose which Amazon KMS to use the first time you set up a collection.

• A collection can only match a single encryption policy.

• Collections with unique KMS keys can't share OpenSearch Compute Units (OCUs) with other
collections. Each collection with a unique key requires its own 4 OCUs.

• If you update the KMS key in an encryption policy, the change doesn't affect existing matching
collections with KMS keys already assigned.

• OpenSearch Serverless doesn't explicitly check user permissions on customer managed keys. If
a user has permissions to access a collection through a data access policy, they will be able to
ingest and query the data that is encrypted with the associated key.

Permissions required

Encryption at rest for OpenSearch Serverless uses the following Amazon Identity and Access
Management (IAM) permissions. You can specify IAM conditions to restrict users to specific
collections.

• aoss:CreateSecurityPolicy – Create an encryption policy.

• aoss:ListSecurityPolicies – List all encryption policies and collections that they are
attached to.

• aoss:GetSecurityPolicy – See details of a specific encryption policy.

• aoss:UpdateSecurityPolicy – Modify an encryption policy.

• aoss:DeleteSecurityPolicy – Delete an encryption policy.

The following sample identity-based access policy provides the minimum permissions necessary
for a user to manage encryption policies with the resource pattern collection/application-
logs.

Encryption 111

https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html

Amazon OpenSearch Service Developer Guide

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "aoss:CreateSecurityPolicy",
 "aoss:UpdateSecurityPolicy",
 "aoss:DeleteSecurityPolicy",
 "aoss:GetSecurityPolicy"
],
 "Resource":"*",
 "Condition":{
 "StringEquals":{
 "aoss:collection":"application-logs"
 }
 }
 },
 {
 "Effect":"Allow",
 "Action":[
 "aoss:ListSecurityPolicies"
],
 "Resource":"*"
 }
]
}

Key policy for a customer managed key

If you select a customer managed key to protect a collection, OpenSearch Serverless gets
permission to use the KMS key on behalf of the principal who makes the selection. That principal,
a user or role, must have the permissions on the KMS key that OpenSearch Serverless requires. You
can provide these permissions in a key policy or an IAM policy.

At a minimum, OpenSearch Serverless requires the following permissions on a customer managed
key:

• kms:DescribeKey

• kms:CreateGrant

• kms:ListKeys

Encryption 112

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/key-policies.html
https://docs.amazonaws.cn/kms/latest/developerguide/iam-policies.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ListKeys.html

Amazon OpenSearch Service Developer Guide

For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:ListKeys"
],
 "Resource": "*"
 },
{
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:CreateGrant"
],
 "Resource": "{kms-key-arn}"
 }
]
}

OpenSearch Serverless create a grant with the kms:GenerateDataKey and kms:Decrypt permissions.

If you want to keep your key exclusive to OpenSearch Serverless, you can add the kms:ViaService
condition to that key policy:

"Condition": {
 "StringEquals": {
 "kms:ViaService": "aoss.us-east-1.amazonaws.com"
 },
 "Bool": {
 "kms:GrantIsForAWSResource": "true"
 }
}

For more information, see Using key policies in Amazon KMS in the Amazon Key Management
Service Developer Guide.

How OpenSearch Serverless uses grants in Amazon KMS

OpenSearch Serverless requires a grant in order to use a customer managed key.

Encryption 113

https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.amazonaws.cn/kms/latest/developerguide/key-policies.html
https://docs.amazonaws.cn/kms/latest/developerguide/grants.html

Amazon OpenSearch Service Developer Guide

When you create an encryption policy in your account with a new key, OpenSearch Serverless
creates a grant on your behalf by sending a CreateGrant request to Amazon KMS. Grants in
Amazon KMS are used to give OpenSearch Serverless access to a KMS key in a customer account.

OpenSearch Serverless requires the grant to use your customer managed key for the following
internal operations:

• Send DescribeKey requests to Amazon KMS to verify that the symmetric customer managed key
ID provided is valid.

• Send GenerateDataKey requests to KMS key to create data keys with which to encrypt objects.

• Send Decrypt requests to Amazon KMS to decrypt the encrypted data keys so that they can be
used to encrypt your data.

You can revoke access to the grant, or remove the service's access to the customer managed key
at any time. If you do, OpenSearch Serverless won't be able to access any of the data encrypted
by the customer managed key, which affects all the operations that are dependent on that data,
leading to AccessDeniedException errors and failures in the asynchronous workflows.

OpenSearch Serverless retires grants in an asynchronous workflow when a given customer
managed key isn't associated with any security policies or collections.

Creating encryption policies (console)

In an encryption policy, you specify an KMS key and a series of collection patterns that the policy
will apply to. Any new collections that match one of the patterns defined in the policy will be
assigned the corresponding KMS key when you create the collection. We recommend that you
create encryption policies before you start creating collections.

To create an OpenSearch Serverless encryption policy

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. On the left navigation panel, expand Serverless and choose Encryption policies.

3. Choose Create encryption policy.

4. Provide a name and description for the policy.

5. Under Resources, enter one or more resource patterns for this encryption policy. Any newly
created collections in the current Amazon Web Services account and Region that match
one of the patterns are automatically assigned to this policy. For example, if you enter

Encryption 114

https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

ApplicationLogs (with no wildcard), and later create a collection with that name, the policy
and corresponding KMS key are assigned to that collection.

You can also provide a prefix such as Logs*, which assigns the policy to any new collections
with names beginning with Logs. By using wildcards, you can manage encryption settings for
multiple collections at scale.

6. Under Encryption, choose an KMS key to use.

7. Choose Create.

Next step: Create collections

After you configure one or more encryption policies, you can start creating collections that match
the rules defined in those policies. For instructions, see the section called “Creating collections”.

In the Encryptions step of collection creation, OpenSearch Serverless informs you that the name
that you entered matches the pattern defined in an encryption policy, and automatically assigns
the corresponding KMS key to the collection. If the resource pattern contains a wildcard (*), you can
choose to override the match and select your own key.

Creating encryption policies (Amazon CLI)

To create an encryption policy using the OpenSearch Serverless API operations, you specify
resource patterns and an encryption key in JSON format. The CreateSecurityPolicy request accepts
both inline policies and .json files.

Encryption policies take the following format. This sample my-policy.json file matches any
future collection named autopartsinventory, as well as any collections with names beginning
with sales.

{
 "Rules":[
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/autopartsinventory",
 "collection/sales*"
]
 }
],

Encryption 115

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_CreateSecurityPolicy.html

Amazon OpenSearch Service Developer Guide

 "AWSOwnedKey":false,
 "KmsARN":"arn:aws:encryption:us-east-1:123456789012:key/93fd6da4-a317-4c17-
bfe9-382b5d988b36"
}

To use a service-owned key, set AWSOwnedKey to true:

{
 "Rules":[
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/autopartsinventory",
 "collection/sales*"
]
 }
],
 "AWSOwnedKey":true
}

The following request creates the encryption policy:

aws opensearchserverless create-security-policy \
 --name sales-inventory \
 --type encryption \
 --policy file://my-policy.json

Then, use the CreateCollection API operation to create one or more collections that match one of
the resource patterns.

Viewing encryption policies

Before you create a collection, you might want to preview the existing encryption policies in
your account to see which one has a resource pattern that matches your collection's name. The
following ListSecurityPolicies request lists all encryption policies in your account:

aws opensearchserverless list-security-policies --type encryption

The request returns information about all configured encryption policies. Use the contents of the
policy element to view the pattern rules that are defined in the policy:

Encryption 116

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_CreateCollection.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_ListSecurityPolicies.html

Amazon OpenSearch Service Developer Guide

{
 "securityPolicyDetails": [
 {
 "createdDate": 1663693217826,
 "description": "Sample encryption policy",
 "lastModifiedDate": 1663693217826,
 "name": "my-policy",
 "policy": "{\"Rules\":[{\"ResourceType\":\"collection\",\"Resource\":
[\"collection/autopartsinventory\",\"collection/sales*\"]}],\"AWSOwnedKey\":true}",
 "policyVersion": "MTY2MzY5MzIxNzgyNl8x",
 "type": "encryption"
 }
]
}

To view detailed information about a specific policy, including the KMS key, use the
GetSecurityPolicy command.

Updating encryption policies

If you update the KMS key in an encryption policy, the change only applies to the newly created
collections that match the configured name or pattern. It doesn't affect existing collections that
have KMS keys already assigned.

The same applies to policy matching rules. If you add, modify, or delete a rule, the change only
applies to newly created collections. Existing collections don't lose their assigned KMS key if you
modify a policy's rules so that it no longer matches a collection's name.

To update an encryption policy in the OpenSearch Serverless console, choose Encryption policies,
select the policy to modify, and choose Edit. Make your changes and choose Save.

To update an encryption policy using the OpenSearch Serverless API, use the UpdateSecurityPolicy
operation. The following request updates an encryption policy with a new policy JSON document:

aws opensearchserverless update-security-policy \
 --name sales-inventory \
 --type encryption \
 --policy-version 2 \
 --policy file://my-new-policy.json

Encryption 117

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_GetSecurityPolicy.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_UpdateSecurityPolicy.html

Amazon OpenSearch Service Developer Guide

Deleting encryption policies

When you delete an encryption policy, any collections that are currently using the KMS key defined
in the policy are not affected. To delete a policy in the OpenSearch Serverless console, select the
policy and choose Delete.

You can also use the DeleteSecurityPolicy operation:

aws opensearchserverless delete-security-policy --name my-policy --type encryption

Encryption in transit

Within OpenSearch Serverless, all paths in a collection are encrypted in transit using Transport
Layer Security 1.2 (TLS) with an industry-standard AES-256 cipher. Access to all APIs and
Dashboards for Opensearch is also through TLS 1.2 . TLS is a set of industry-standard
cryptographic protocols used for encrypting information that is exchanged over the network.

Network access for Amazon OpenSearch Serverless

The network settings for an Amazon OpenSearch Serverless collection determine whether the
collection is accessible over the internet from public networks, or whether it must be accessed
through OpenSearch Serverless–managed VPC endpoints. You can configure network access
separately for a collection's OpenSearch endpoint and its corresponding OpenSearch Dashboards
endpoint.

Network access is the isolation mechanism for allowing access from different source networks.
For example, if a collection's OpenSearch Dashboards endpoint is publically accessible but the
OpenSearch API endpoint isn't, a user can access the collection data only through Dashboards
when connecting from a public network. If they try to call the OpenSearch APIs directly from a
public network, they'll be blocked. Network settings can be used for such permutations of source
to resource type.

Topics

• Network policies

• Considerations

• Permissions required

• Policy precedence

• Creating network policies (console)

Network access 118

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_DeleteSecurityPolicy.html

Amazon OpenSearch Service Developer Guide

• Creating network policies (Amazon CLI)

• Viewing network policies

• Updating network policies

• Deleting network policies

Network policies

Network policies let you manage many collections at scale by automatically assigning network
access settings to collections that match the rules defined in the policy.

In a network policy, you specify a series of rules. These rule define access permissions to collection
endpoints and OpenSearch Dashboards endpoints. Each rule consists of an access type (public or
VPC) and a resource type (collection and/or OpenSearch Dashboards endpoint). For each resource
type (collection and dashboard), you specify a series of rules that define which collection(s)
the policy will apply to.

In this sample policy, the first rule specifies VPC access to both the collection endpoint and
the Dashboards endpoint for all collections beginning with the term marketing*. The second
rule specifies public access to the finance collection, but only for the collection endpoint (no
Dashboards access).

[
 {
 "Description":"Marketing access",
 "Rules":[
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/marketing*"
]
 },
 {
 "ResourceType":"dashboard",
 "Resource":[
 "collection/marketing*"
]
 }
],
 "AllowFromPublic":false,
 "SourceVPCEs":[

Network access 119

Amazon OpenSearch Service Developer Guide

 "vpce-050f79086ee71ac05"
]
 },
 {
 "Description":"Sales access",
 "Rules":[
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/finance"
]
 }
],
 "AllowFromPublic":true
 }
]

This policy provides public access only to OpenSearch Dashboards for collections beginning with
"finance". Any attempts to directly access the OpenSearch API will fail.

[
 {
 "Description": "Dashboards access",
 "Rules": [
 {
 "ResourceType": "dashboard",
 "Resource": [
 "collection/finance*"
]
 }
],
 "AllowFromPublic": true
 }
]

Network policies can apply to existing collections as well as future collections. For example, you
can create a collection and then create a network policy with a rule that matches the collection
name. You don't need to create network policies before you create collections.

Considerations

Consider the following when you configure network access for your collections:

Network access 120

Amazon OpenSearch Service Developer Guide

• If you plan to configure VPC access for a collection, you must first create at least one OpenSearch
Serverless-managed VPC endpoint.

• If a collection is accessible from public networks, it's also accessible from all OpenSearch
Serverless–managed VPCs.

• Multiple network policies can apply to a single collection. For more information, see the section
called “Policy precedence”.

Permissions required

Network access for OpenSearch Serverless uses the following Amazon Identity and Access
Management (IAM) permissions. You can specify IAM conditions to restrict users to network policies
associated with specific collections.

• aoss:CreateSecurityPolicy – Create a network access policy.

• aoss:ListSecurityPolicies – List all network policies in the current account.

• aoss:GetSecurityPolicy – View a network access policy specification.

• aoss:UpdateSecurityPolicy – Modify a given network access policy, and change the VPC ID
or public access designation.

• aoss:DeleteSecurityPolicy – Delete a network access policy (after it's detached from all
collections).

The following identity-based access policy allows a user to view all network policies, and update
policies with the resource pattern collection/application-logs:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "aoss:UpdateSecurityPolicy"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aoss:collection": "application-logs"
 }
 }

Network access 121

Amazon OpenSearch Service Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "aoss:ListSecurityPolicies",
 "aoss:GetSecurityPolicy"
],
 "Resource": "*"
 }
]
}

Policy precedence

There can be situations where network policy rules overlap, within or across policies. When this
happens, a rule that specifies public access overrides a rule that specifies VPC access for any
collections that are common to both rules.

For example, in the following policy, both rules assign network access to the finance collection,
but one rule specifies VPC access while the other specifies public access. In this situation, public
access overrides VPC access only for the finance collection (because it exists in both rules), so the
finance collection will be accessible from public networks. The sales collection will have VPC access
from the specified endpoint.

[
 {
 "Description":"Rule 1",
 "Rules":[
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/sales",
 "collection/finance"
]
 }
],
 "AllowFromPublic":false,
 "SourceVPCEs":[
 "vpce-050f79086ee71ac05"
]
 },
 {

Network access 122

Amazon OpenSearch Service Developer Guide

 "Description":"Rule 2",
 "Rules":[
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/finance"
]
 }
],
 "AllowFromPublic":true
 }
]

If multiple VPC endpoints from different rules apply to a collection, the rules are additive and the
collection will be accessible from all specified endpoints. If you set AllowFromPublic to true
but also provide one or more SourceVPCEs, the VPC endpoints are ignored and the associated
collections will have public access.

Creating network policies (console)

Network policies can apply to existing policies as well as future policies. We recommend that you
create network policies before you start creating collections.

To create an OpenSearch Serverless network policy

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. On the left navigation panel, expand Serverless and choose Network policies.

3. Choose Create network policy.

4. Provide a name and description for the policy.

5. Provide one or more rules. These rules define access permissions for your OpenSearch
Serverless collections and their OpenSearch Dashboards endpoints.

Each rule contains the following elements:

Element Description

Rule name A name that describes the contents of the
rule. For example, "VPC access for marketing
team".

Network access 123

https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

Element Description

Access type Choose either public or VPC access. If you
choose VPC access, select one or more
OpenSearch Serverless-managed VPC
endpoints to provide access to.

Resource type Select whether to provide access to
OpenSearch endpoints (which allows
making calls to the OpenSearch API), to
OpenSearch Dashboards (which allows
access to visualizations and the user
interface for OpenSearch plugins), or both.

For each resource type that you select, you can choose existing collections to apply the policy
settings to, and/or create one or more resource patterns. Resource patterns consist of a prefix
and a wildcard (*), and define which collections the policy settings will apply to.

For example, if you include a pattern called Marketing*, any new or existing collections
whose names start with "Marketing" will have the network settings in this policy automatically
applied to them. A single wildcard (*) applies the policy to all current and future collections.

In addition, you can specify the name of a future collection without a wildcard, such as
Finance. OpenSearch Serverless will apply the policy settings to any newly created collection
with that exact name.

6. When you're satisfied with your policy configuration, choose Create.

Creating network policies (Amazon CLI)

To create a network policy using the OpenSearch Serverless API operations, you specify rules
in JSON format. The CreateSecurityPolicy request accepts both inline policies and .json files. All
collections and patterns must take the form collection/<collection name|pattern>.

Network access 124

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_CreateSecurityPolicy.html

Amazon OpenSearch Service Developer Guide

Note

The resource type dashboards only allows permission to OpenSearch Dashboards, but in
order for OpenSearch Dashboards to function, you must also allow collection access from
the same sources. See the second policy below for an example.

The following sample network policy provides VPC access to collection endpoints only for
collections beginning with the prefix log*. Authenticated users can't sign in to OpenSearch
Dashboards; they can only access the collection endpoint programmatically.

[
 {
 "Description":"VPC access for log collections",
 "Rules":[
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/log*"
]
 }
],
 "AllowFromPublic":false,
 "SourceVPCEs":[
 "vpce-050f79086ee71ac05"
]
 }
]

The following policy provides public access to the OpenSearch endpoint and OpenSearch
Dashboards for a single collection named finance. If the collection doesn't exist, the network
settings will be applied to the collection if and when it's created.

[
 {
 "Description":"Public access for finance collection",
 "Rules":[
 {
 "ResourceType":"dashboard",
 "Resource":[
 "collection/finance"

Network access 125

Amazon OpenSearch Service Developer Guide

]
 },
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/finance"
]
 }
],
 "AllowFromPublic":true
 }
]

The following request creates the above network policy:

aws opensearchserverless create-security-policy \
 --name sales-inventory \
 --type network \
 --policy "[{\"Description\":\"Public access for finance collection\",\"Rules
\":[{\"ResourceType\":\"dashboard\",\"Resource\":[\"collection\/finance\"]},
{\"ResourceType\":\"collection\",\"Resource\":[\"collection\/finance\"]}],
\"AllowFromPublic\":true}]"

To provide the policy in a JSON file, use the format --policy file://my-policy.json

Viewing network policies

Before you create a collection, you might want to preview the existing network policies in your
account to see which one has a resource pattern that matches your collection's name. The
following ListSecurityPolicies request lists all network policies in your account:

aws opensearchserverless list-security-policies --type network

The request returns information about all configured network policies. To view the pattern
rules defined in the one specific policy, find the policy information in the contents of the
securityPolicySummaries element in the response. Note the name and type of this policy and
use these properties in a GetSecurityPolicy request to receive a response with the following policy
details:

{

Network access 126

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_ListSecurityPolicies.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_GetSecurityPolicy.html

Amazon OpenSearch Service Developer Guide

 "securityPolicyDetail": [
 {
 "type": "network",
 "name": "my-policy",
 "policyVersion": "MTY2MzY5MTY1MDA3Ml8x",
 "policy": "[{\"Description\":\"My network policy rule\",\"Rules\":
[{\"ResourceType\":\"dashboard\",\"Resource\":[\"collection/*\"]}],\"AllowFromPublic
\":true}]",
 "createdDate": 1663691650072,
 "lastModifiedDate": 1663691650072
 }
]
}

To view detailed information about a specific policy, use the GetSecurityPolicy command.

Updating network policies

When you modify the VPC endpoints or public access designation for a network, all associated
collections are impacted. To update a network policy in the OpenSearch Serverless console, expand
Network policies, select the policy to modify, and choose Edit. Make your changes and choose
Save.

To update a network policy using the OpenSearch Serverless API, use the UpdateSecurityPolicy
command. You must include a policy version in the request. You can retrieve the policy version
by using the ListSecurityPolicies or GetSecurityPolicy commands. Including the most
recent policy version ensures that you don't inadvertently override a change made by someone
else.

The following request updates a network policy with a new policy JSON document:

aws opensearchserverless update-security-policy \
 --name sales-inventory \
 --type network \
 --policy-version MTY2MzY5MTY1MDA3Ml8x \
 --policy file://my-new-policy.json

Deleting network policies

Before you can delete a network policy, you must detach it from all collections. To delete a policy in
the OpenSearch Serverless console, select the policy and choose Delete.

Network access 127

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_GetSecurityPolicy.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_UpdateSecurityPolicy.html

Amazon OpenSearch Service Developer Guide

You can also use the DeleteSecurityPolicy command:

aws opensearchserverless delete-security-policy --name my-policy --type network

Data access control for Amazon OpenSearch Serverless

With data access control in Amazon OpenSearch Serverless, you can allow users to access
collections and indexes, regardless of their access mechanism or network source. You can provide
access to IAM roles and SAML identities.

You manage access permissions through data access policies, which apply to collections and index
resources. Data access policies help you manage collections at scale by automatically assigning
access permissions to collections and indexes that match a specific pattern. Multiple data access
policies can apply to a single resource. Note that you must have a data access policy for your
collection in order to access your OpenSearch Dashboards URL.

Topics

• Data access policies versus IAM policies

• IAM permissions required

• Policy syntax

• Supported policy permissions

• Sample datasets on OpenSearch Dashboards

• Creating data access policies (console)

• Creating data access policies (Amazon CLI)

• Viewing data access policies

• Updating data access policies

• Deleting data access policies

Data access policies versus IAM policies

Data access policies are logically separate from Amazon Identity and Access Management
(IAM) policies. IAM permissions control access to the serverless API operations, such as
CreateCollection and ListAccessPolicies. Data access policies control access to the
OpenSearch operations that OpenSearch Serverless supports, such as PUT <index> or GET
_cat/indices.

Data access control 128

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_DeleteSecurityPolicy.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

The IAM permissions that control access to data access policy API operations, such as
aoss:CreateAccessPolicy and aoss:GetAccessPolicy (described in the next section), don't
affect the permission specified in a data access policy.

For example, suppose an IAM policy denies a user from creating data access policies for
collection-a, but allows them to create data access policies for all collections (*):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "aoss:CreateAccessPolicy"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aoss:collection": "collection-a"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "aoss:CreateAccessPolicy"
],
 "Resource": "*"
 }
]
}

If the user creates a data access policy that allows certain permission to all collections
(collection/* or index/*/*) the policy will apply to all collections, including collection A.

Important

Being granted permissions within a data access policy is not sufficient to access data in
your OpenSearch Serverless collection. An associated principal must also be granted access
to the IAM permissions aoss:APIAccessAll and aoss:DashboardAccessAll. Both
permissions grant full access to collection resources, while the Dashboards permission
also provides access to OpenSearch Dashboards. If a principal doesn't have both of these

Data access control 129

Amazon OpenSearch Service Developer Guide

IAM permissions, they will receive 403 errors when attempting to send requests to the
collection. For more information, see the section called “Using OpenSearch API operations”.

IAM permissions required

Data access control for OpenSearch Serverless uses the following IAM permissions. You can specify
IAM conditions to restrict users to specific access policy names.

• aoss:CreateAccessPolicy – Create an access policy.

• aoss:ListAccessPolicies – List all access policies.

• aoss:GetAccessPolicy – See details about a specific access policy.

• aoss:UpdateAccessPolicy – Modify an access policy.

• aoss:DeleteAccessPolicy – Delete an access policy.

The following identity-based access policy allows a user to view all access policies, and update
policies that contain the resource pattern collection/logs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aoss:ListAccessPolicies",
 "aoss:GetAccessPolicy"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "aoss:UpdateAccessPolicy"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aoss:collection": [
 "logs"

Data access control 130

Amazon OpenSearch Service Developer Guide

]
 }
 }
 }
]
}

Policy syntax

A data access policy includes a set of rules, each with the following elements:

Element Description

ResourceType The type of resource (collection or index) that the permissions apply to.
Alias and template permissions are at the collection level, while permissions
for creating, modifying, and searching data are at the index level. For more
information, see Supported policy permissions.

Resource A list of resource names and/or patterns. Patterns are prefixes followed by
a wildcard (*), which allow the associated permissions to apply to multiple
resources.

• Collections take the format collection/ <name|pattern> .

• Indexes take the format index/<collection-name|p
attern> /<index-name|pattern/> .

Permission A list of permissions to grant for the specified resources. For a complete
list of permissions and the API operations they allow, see the section called
“Supported OpenSearch API operations and permissions”.

Principal A list of one or more principals to grant access to. Principals can be IAM
role ARNs or SAML identities. These principals must be within the current
Amazon Web Services account. Cross-account access isn't supported.

The following example policy grants alias and template permissions to the collection called
autopartsinventory, as well as any collections that begin with the prefix sales*. It also grants
read and write permissions to all indexes within the autopartsinventory collection, and any
indexes in the salesorders collection that begin with the prefix orders*.

Data access control 131

Amazon OpenSearch Service Developer Guide

[
 {
 "Description": "Rule 1",
 "Rules":[
 {
 "ResourceType":"collection",
 "Resource":[
 "collection/autopartsinventory",
 "collection/sales*"
],
 "Permission":[
 "aoss:CreateCollectionItems",
 "aoss:UpdateCollectionItems",
 "aoss:DescribeCollectionItems"
]
 },
 {
 "ResourceType":"index",
 "Resource":[
 "index/autopartsinventory/*",
 "index/salesorders/orders*"
],
 "Permission":[
 "aoss:*"
]
 }
],
 "Principal":[
 "arn:aws:iam::123456789012:user/Dale",
 "arn:aws:iam::123456789012:role/RegulatoryCompliance",
 "saml/123456789012/myprovider/user/Annie",
 "saml/123456789012/anotherprovider/group/Accounting"
]
 }
]

You can't explicitly deny access within a policy. Therefore, all policy permissions are additive.
For example, if one policy grants a user aoss:ReadDocument, and another policy grants
aoss:WriteDocument, the user will have both permissions. If a third policy grants the same user
aoss:*, then the user can perform all actions on the associated index; more restrictive permissions
don't override less restrictive ones.

Data access control 132

Amazon OpenSearch Service Developer Guide

Supported policy permissions

The following permissions are supported in data access policies. For the OpenSearch API
operations that each permission allows, see the section called “Supported OpenSearch API
operations and permissions”.

Collection permissions

• aoss:CreateCollectionItems

• aoss:DeleteCollectionItems

• aoss:UpdateCollectionItems

• aoss:DescribeCollectionItems

• aoss:*

Index permissions

• aoss:ReadDocument

• aoss:WriteDocument

• aoss:CreateIndex

• aoss:DeleteIndex

• aoss:UpdateIndex

• aoss:DescribeIndex

• aoss:*

Sample datasets on OpenSearch Dashboards

OpenSearch Dashboards provides sample datasets that come with visualizations, dashboards, and
other tools to help you explore Dashboards before you add your own data. To create indexes from
this sample data, you need a data access policy that provides permissions to the dataset that you
want to work with. The following policy uses a wildcard (*) to provide permissions to all three
sample datasets.

[
 {
 "Rules": [

Data access control 133

https://opensearch.org/docs/latest/dashboards/quickstart-dashboards/#adding-sample-data

Amazon OpenSearch Service Developer Guide

 {
 "Resource": [
 "index/<collection-name>/opensearch_dashboards_sample_data_*"
],
 "Permission": [
 "aoss:CreateIndex",
 "aoss:DescribeIndex",
 "aoss:ReadDocument"
],
 "ResourceType": "index"
 }
],
 "Principal": [
 "arn:aws:iam::<account-id>:user/<user>"
]
 }
]

Creating data access policies (console)

You can create a data access policy using the visual editor, or in JSON format. Any new collections
that match one of the patterns defined in the policy will be assigned the corresponding
permissions when you create the collection.

To create an OpenSearch Serverless data access policy

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. In the left navigation pane, expand Serverless and choose Data access control.

3. Choose Create access policy.

4. Provide a name and description for the policy.

5. Provide a name for the first rule in your policy. For example, "Logs collection access".

6. Choose Add principals and select one or more IAM roles or SAML users and groups to provide
data access to.

Note

In order to select principals from the dropdown menus, you must have the
iam:ListUsers and iam:ListRoles permissions (for IAM principals) and
aoss:ListSecurityConfigs permission (for SAML identities).

Data access control 134

https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

7. Choose Grant and select the alias, template, and index permissions to grant the associated
principals. For a full list of permissions and the access they allow, see the section called
“Supported OpenSearch API operations and permissions”.

8. (Optional) Configure additional rules for the policy.

9. Choose Create. There might be about a minute of lag time between when you create the
policy and when the permissions are enforced. If it takes more than 5 minutes, contact
Amazon Web Services Support.

Important

If your policy only includes index permissions (and no collection permissions), you might
still see a message for matching collections stating Collection cannot be accessed
yet. Configure data access policies so that users can access the data
within this collection. You can ignore this warning. Allowed principals can still
perform their assigned index-related operations on the collection.

Creating data access policies (Amazon CLI)

To create a data access policy using the OpenSearch Serverless API, use the CreateAccessPolicy
command. The command accepts both inline policies and .json files. Inline policies must be
encoded as a JSON escaped string.

The following request creates a data access policy:

aws opensearchserverless create-access-policy \
 --name marketing \
 --type data \
 --policy "[{\"Rules\":[{\"ResourceType\":\"collection\",\"Resource\":
[\"collection/autopartsinventory\",\"collection/sales*\"],\"Permission\":
[\"aoss:UpdateCollectionItems\"]},{\"ResourceType\":\"index\",\"Resource\":
[\"index/autopartsinventory/*\",\"index/salesorders/orders*\"],\"Permission
\":[\"aoss:ReadDocument\",\"aoss:DescribeIndex\"]}],\"Principal\":
[\"arn:aws:iam::123456789012:user/Shaheen\"]}]"

To provide the policy within a .json file, use the format --policy file://my-policy.json.

The principals included in the policy can now use the OpenSearch operations that they were
granted access to.

Data access control 135

https://console.aws.amazon.com/support/home
https://www.freeformatter.com/json-escape.html

Amazon OpenSearch Service Developer Guide

Viewing data access policies

Before you create a collection, you might want to preview the existing data access policies in
your account to see which one has a resource pattern that matches your collection's name. The
following ListAccessPolicies request lists all data access policies in your account:

aws opensearchserverless list-access-policies --type data

The request returns information about all configured data access policies. To view the pattern
rules defined in the one specific policy, find the policy information in the contents of the
accessPolicySummaries element in the response. Note the name and type of this policy and
use these properties in a GetAccessPolicy request to receive a response with the following policy
details:

{
 "accessPolicyDetails": [
 {
 "type": "data",
 "name": "my-policy",
 "policyVersion": "MTY2NDA1NDE4MDg1OF8x",
 "description": "My policy",
 "policy": "[{\"Rules\":[{\"ResourceType\":\"collection\",
\"Resource\":[\"collection/autopartsinventory\",\"collection/sales*\"],
\"Permission\":[\"aoss:UpdateCollectionItems\"]},{\"ResourceType\":\"index\",
\"Resource\":[\"index/autopartsinventory/*\",\"index/salesorders/orders*\"],
\"Permission\":[\"aoss:ReadDocument\",\"aoss:DescribeIndex\"]}],\"Principal\":
[\"arn:aws:iam::123456789012:user/Shaheen\"]}]",
 "createdDate": 1664054180858,
 "lastModifiedDate": 1664054180858
 }
]
}

You can include resource filters to limit the results to policies that contain specific collections or
indexes:

aws opensearchserverless list-access-policies --type data --resource
 "index/autopartsinventory/*"

To view details about a specific policy, use the GetAccessPolicy command.

Data access control 136

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_ListAccessPolicies.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_GetAccessPolicy.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_GetAccessPolicy.html

Amazon OpenSearch Service Developer Guide

Updating data access policies

When you update a data access policy, all associated collections are impacted. To update a data
access policy in the OpenSearch Serverless console, choose Data access control, select the policy
to modify, and choose Edit. Make your changes and choose Save.

To update a data access policy using the OpenSearch Serverless API, send an
UpdateAccessPolicy request. You must include a policy version, which you can retrieve using
the ListAccessPolicies or GetAccessPolicy commands. Including the most recent policy
version ensures that you don't inadvertently override a change made by someone else.

The following UpdateAccessPolicy request updates a data access policy with a new policy JSON
document:

aws opensearchserverless update-access-policy \
 --name sales-inventory \
 --type data \
 --policy-version MTY2NDA1NDE4MDg1OF8x \
 --policy file://my-new-policy.json

There might be a few minutes of lag time between when you update the policy and when the new
permissions are enforced.

Deleting data access policies

When you delete a data access policy, all associated collections lose the access that is defined in
the policy. Make sure that your IAM and SAML users have the appropriate access to the collection
before you delete a policy. To delete a policy in the OpenSearch Serverless console, select the
policy and choose Delete.

You can also use the DeleteAccessPolicy command:

aws opensearchserverless delete-access-policy --name my-policy --type data

Access Amazon OpenSearch Serverless using an interface endpoint
(Amazon PrivateLink)

You can use Amazon PrivateLink to create a private connection between your VPC and Amazon
OpenSearch Serverless. You can access OpenSearch Serverless as if it were in your VPC, without the

VPC endpoints 137

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_UpdateAccessPolicy.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_DeleteAccessPolicy.html

Amazon OpenSearch Service Developer Guide

use of an internet gateway, NAT device, VPN connection, or Amazon Direct Connect connection.
Instances in your VPC don't need public IP addresses to access OpenSearch Serverless.

You establish this private connection by creating an interface endpoint, powered by Amazon
PrivateLink. We create an endpoint network interface in each subnet that you specify for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for OpenSearch Serverless.

For more information, see Access Amazon Web Services through Amazon PrivateLink in the
Amazon PrivateLink Guide.

Topics

• DNS resolution of collection endpoints

• VPCs and network access policies

• VPCs and endpoint policies

• Considerations

• Permissions required

• Create an interface endpoint for OpenSearch Serverless

• Next step: Grant the endpoint access to a collection

DNS resolution of collection endpoints

When you create a VPC endpoint, the service creates a new Amazon Route 53 private hosted zone
and attaches it to the VPC. This private hosted zone consists of a record to resolve the wildcard
DNS record for OpenSearch Serverless collections (*.aoss.us-east-1.amazonaws.com) to the
interface addresses used for the endpoint. You only need one OpenSearch Serverless VPC endpoint
in a VPC to access any and all collections and Dashboards in each Amazon Web Services Region.
Every VPC with an endpoint for OpenSearch Serverless has its own private hosted zone attached.

OpenSearch Serverless also creates a public Route 53 wildcard DNS record for all collections in the
Region. The DNS name resolves to the OpenSearch Serverless public IP addresses. Clients in VPCs
that don't have an OpenSearch Serverless VPC endpoint or clients in public networks can use the
public Route 53 resolver and access the collections and Dashboards with those IP addresses.

The DNS resolver address for a given VPC is the second IP address of the VPC CIDR. Any client in
the VPC needs to use that resolver to get the VPC endpoint address for any collection. The resolver
uses private hosted zone created by OpenSearch Serverless. It's sufficient to use that resolver

VPC endpoints 138

https://docs.amazonaws.cn/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/hosted-zones-private.html

Amazon OpenSearch Service Developer Guide

for all collections in any account. It's also possible to use the VPC resolver for some collection
endpoints and the public resolver for others, although it's not typically necessary.

VPCs and network access policies

To grant network permission to OpenSearch APIs and Dashboards for your collections, you can
use OpenSearch Serverless network access policies. You can control this network access either
from your VPC endpoint(s) or the public internet. Since your network policy only controls traffic
permissions, you must also set up a data access policy that specifies permission to operate on the
data in a collection and its indices. Think of an OpenSearch Serverless VPC endpoint as an access
point to the service, a network access policy as the network-level access point to collections and
Dashboards, and a data access policy as the access point for fine-grained access control for any
operation on data in the collection.

Since you can specify multiple VPC endpoint IDs in a network policy, we recommend that you
create a VPC endpoint for every VPC that needs to access a collection. These VPCs can belong to
different Amazon accounts than the account that owns the OpenSearch Serverless collection and
network policy. We don’t recommend that you create a VPC-to-VPC peering or other proxying
solution between two accounts so that one account's VPC can use another account's VPC endpoint.
This is less secure and cost effective than each VPC having its own endpoint. The first VPC will
not be easily visible to the other VPC’s admin, who has set up access to that VPC's endpoint in the
network policy.

VPCs and endpoint policies

Amazon OpenSearch Serverless supports endpoint policies for VPCs. An endpoint policy is an IAM
resource-based policy that you attach to a VPC endpoint to control which Amazon principals can
use the endpoint to access your Amazon service. For more information, see Control access to VPC
endpoints using endpoint policies.

To use an endpoint policy, you must first create an interface endpoint. You can create an interface
endpoint using either the OpenSearch Serverless console or the OpenSearch Serverless API. After
you create your interface endpoint, you will need to add the endpoint policy to the endpoint. For
more information, see Access Amazon OpenSearch Serverless using an interface endpoint (Amazon
PrivateLink).

Note

You can't define an endpoint policy directly in the OpenSearch Service console.

VPC endpoints 139

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-network.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-data-access.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-vpc.html#serverless-vpc-creat
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-vpc.html#serverless-vpc-creat

Amazon OpenSearch Service Developer Guide

An endpoint policy does not override or replace other identity-based policies, resource-based
policies, network policies, or data access policies you may have configured. For more information
on updating endpoint policies, see Control access to VPC endpoints using endpoint policies.

By default, an endpoint policy grants full access to your VPC endpoint.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "*",
 "Resource": "*"
 }
]
}

Although the default VPC endpoint policy grants full endpoint access, you can configure a VPC
endpoint policy to allow access to specific roles and users. To do this, see the following example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "123456789012",
 "987654321098"
]
 },
 "Action": "*",
 "Resource": "*"
 }
]
}

You can specify an OpenSearch Serverless collection to be included as a conditional element in
your VPC endpoint policy. To do this, see the following example:

{

VPC endpoints 140

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon OpenSearch Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:CollectionName": [
 "coll-abc"
]
 }
 }
 }
]
}

You can use SAML identities in your VPC endpoint policy to determine VPC endpoint access. You
must use a wildcard (*) in the principal section of your VPC endpoint policy. To do this, see the
following example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:SamlGroups": [
 "saml/123456789012/idp123/group/football",
 "saml/123456789012/idp123/group/soccer",
 "saml/123456789012/idp123/group/cricket"
]
 }
 }
 }
]
}

VPC endpoints 141

Amazon OpenSearch Service Developer Guide

Additionally, you can configure your endpoint policy to include a specific SAML principal policy. To
do this, see the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SamlPrincipal": [
 "saml/123456789012/idp123/user/user1234"]
 }
 }
 }
]
 }

For more information on using SAML authentication with Amazon OpenSearch Serverless, see
SAML authentication for Amazon OpenSearch Serverless.

You can also include IAM and SAML users in the same VPC endpoint policy. To do this, see the
following example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:SamlGroups": [
 "saml/123456789012/idp123/group/football",
 "saml/123456789012/idp123/group/soccer",
 "saml/123456789012/idp123/group/cricket"
]

VPC endpoints 142

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/serverless-saml.html

Amazon OpenSearch Service Developer Guide

 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "123456789012"
]
 },
 "Action": "*",
 "Resource": "*"
 }
]
}

Considerations

Before you set up an interface endpoint for OpenSearch Serverless, consider the following:

• OpenSearch Serverless supports making calls to all supported OpenSearch API operations (not
configuration API operations) through the interface endpoint.

• After you create an interface endpoint for OpenSearch Serverless, you still need to include it in
network access policies in order for it to access serverless collections.

• By default, full access to OpenSearch Serverless is allowed through the interface endpoint.
You can associate a security group with the endpoint network interfaces to control traffic to
OpenSearch Serverless through the interface endpoint.

• A single Amazon Web Services account can have a maximum of 50 OpenSearch Serverless VPC
endpoints.

• If you enable public internet access to your collection’s API or Dashboards in a network policy,
your collection is accessible by any VPC and by the public internet.

• If you're on-premises and outside of the VPC, you can't use a DNS resolver for the OpenSearch
Serverless VPC endpoint resolution directly. If you need VPN access, the VPC needs a DNS proxy
resolver for external clients to use. Route 53 provides an inbound endpoint option that you can
use to resolve DNS queries to your VPC from your on-premises network or another VPC.

• For other considerations, see Considerations in the Amazon PrivateLink Guide.

VPC endpoints 143

https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints

Amazon OpenSearch Service Developer Guide

Permissions required

VPC access for OpenSearch Serverless uses the following Amazon Identity and Access Management
(IAM) permissions. You can specify IAM conditions to restrict users to specific collections.

• aoss:CreateVpcEndpoint – Create a VPC endpoint.

• aoss:ListVpcEndpoints – List all VPC endpoints.

• aoss:BatchGetVpcEndpoint – See details about a subset of VPC endpoints.

• aoss:UpdateVpcEndpoint – Modify a VPC endpoint.

• aoss:DeleteVpcEndpoint – Delete a VPC endpoint.

In addition, you need the following Amazon EC2 and Route 53 permissions in order to create a VPC
endpoint.

• ec2:CreateTags

• ec2:CreateVpcEndpoint

• ec2:DeleteVpcEndPoints

• ec2:DescribeSecurityGroups

• ec2:DescribeSubnets

• ec2:DescribeVpcEndpoints

• ec2:DescribeVpcs

• ec2:ModifyVpcEndPoint

• route53:AssociateVPCWithHostedZone

• route53:ChangeResourceRecordSets

• route53:CreateHostedZone

• route53:DeleteHostedZone

• route53:GetChange

• route53:GetHostedZone

• route53:ListHostedZonesByName

• route53:ListHostedZonesByVPC

• route53:ListResourceRecordSets

VPC endpoints 144

Amazon OpenSearch Service Developer Guide

Create an interface endpoint for OpenSearch Serverless

You can create an interface endpoint for OpenSearch Serverless using either the console or the
OpenSearch Serverless API.

To create an interface endpoint for an OpenSearch Serverless collection

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. In the left navigation pane, expand Serverless and choose VPC endpoints.

3. Choose Create VPC endpoint.

4. Provide a name for the endpoint.

5. For VPC, select the VPC that you'll access OpenSearch Serverless from.

6. For Subnets, select one subnet that you'll access OpenSearch Serverless from.

7. For Security groups, select the security groups to associate with the endpoint network
interfaces. This is a critical step where you limit the ports, protocols, and sources for inbound
traffic that you’re authorizing into your endpoint. Make sure that the security group rules allow
the resources that will use the VPC endpoint to communicate with OpenSearch Serverless to
communicate with the endpoint network interface.

8. Choose Create endpoint.

To create a VPC endpoint using the OpenSearch Serverless API, use the CreateVpcEndpoint
command.

Note

After you create an endpoint, note its ID (for example, vpce-050f79086ee71ac05. In
order to provide the endpoint access to your collections, you must include this ID in one or
more network access policies.

Next step: Grant the endpoint access to a collection

After you create an interface endpoint, you must provide it access to collections through network
access policies. For more information, see the section called “Network access”.

VPC endpoints 145

https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

SAML authentication for Amazon OpenSearch Serverless

With SAML authentication for Amazon OpenSearch Serverless, you can use your existing identity
provider to offer single sign-on (SSO) for the OpenSearch Dashboards endpoints of serverless
collections.

SAML authentication lets you use third-party identity providers to sign in to OpenSearch
Dashboards to index and search data. OpenSearch Serverless supports providers that use the SAML
2.0 standard, such as IAM Identity Center, Okta, Keycloak, Active Directory Federation Services (AD
FS), and Auth0. You can configure IAM Identity Center to synchronize users and groups from other
identity sources like Okta, OneLogin, and Microsoft Entra ID. For a list of identity sources supported
by IAM Identity Center and steps to configure them, see Getting started tutorials in the IAM Identity
Center User Guide.

Note

SAML authentication is only for accessing OpenSearch Dashboards through a web browser.
Authenticated users can only make requests to the OpenSearch API operations through
Dev Tools in OpenSearch Dashboards. Your SAML credentials do not let you make direct
HTTP requests to the OpenSearch API operations.

To set up SAML authentication, you first configure a SAML identity provider (IdP). You then include
one or more users from that IdP in a data access policy. This policy grants it certain permissions
to collections and/or indexes. A user can then sign in to OpenSearch Dashboards and perform the
actions that are allowed in the data access policy.

Topics

• Considerations

• Permissions required

SAML authentication 146

https://docs.amazonaws.cn/singlesignon/latest/userguide/tutorials.html

Amazon OpenSearch Service Developer Guide

• Creating SAML providers (console)

• Accessing OpenSearch Dashboards

• Granting SAML identities access to collection data

• Creating SAML providers (Amazon CLI)

• Viewing SAML providers

• Updating SAML providers

• Deleting SAML providers

Considerations

Consider the following when configuring SAML authentication:

• Signed and encrypted requests are not supported.

• Encrypted assertions are not supported.

• IdP-initiated authentication and sign-out are not supported.

Permissions required

SAML authentication for OpenSearch Serverless uses the following Amazon Identity and Access
Management (IAM) permissions:

• aoss:CreateSecurityConfig – Create a SAML provider.

• aoss:ListSecurityConfig – List all SAML providers in the current account.

• aoss:GetSecurityConfig – View SAML provider information.

• aoss:UpdateSecurityConfig – Modify a given SAML provider configuration, including the
XML metadata.

• aoss:DeleteSecurityConfig – Delete a SAML provider.

The following identity-based access policy allows a user to manage all IdP configurations:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [

SAML authentication 147

Amazon OpenSearch Service Developer Guide

 "aoss:CreateSecurityConfig",
 "aoss:DeleteSecurityConfig",
 "aoss:GetSecurityConfig",
 "aoss:UpdateSecurityConfig",
 "aoss:ListSecurityConfigs"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Note that the Resource element must be a wildcard.

Creating SAML providers (console)

These steps explain how to create SAML providers. This enables SAML authentication with service
provider (SP)-initiated authentication for OpenSearch Dashboards. IdP-initiated authentication is
not supported.

To enable SAML authentication for OpenSearch Dashboards

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. On the left navigation panel, expand Serverless and choose SAML authentication.

3. Choose Add SAML provider.

4. Provide a name and description for the provider.

Note

The name that you specify is publicly accessible and will appear in a dropdown menu
when users sign in to OpenSearch Dashboards. Make sure that the name is easily
recognizable and doesn't reveal sensitive information about your identity provider.

5. Under Configure your IdP, copy the assertion consumer service (ACS) URL.

6. Use the ACS URL that you just copied to configure your identity provider. Terminology and
steps vary by provider. Consult your provider's documentation.

SAML authentication 148

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

In Okta, for example, you create a "SAML 2.0 web application" and specify the ACS URL as the
Single Sign On URL, Recipient URL, and Destination URL. For Auth0, you specify it in Allowed
Callback URLs.

7. Provide the audience restriction if your IdP has a field for it. The audience restriction is
a value within the SAML assertion that specifies who the assertion is intended for. For
OpenSearch Serverless, specify aws:opensearch:<aws account id>. For example,
aws:opensearch:123456789012.

The name of the audience restriction field varies by provider. For Okta it's Audience URI (SP
Entity ID). For IAM Identity Center it's Application SAML audience.

8. If you're using IAM Identity Center, you also need to specify the following attribute mapping:
Subject=${user:name}, with a format of unspecified.

9. After you configure your identity provider, it generates an IdP metadata file. This XML file
contains information about the provider, such as a TLS certificate, single sign-on endpoints,
and the identity provider's entity ID.

Copy the text in the IdP metadata file and paste it under Provide metadata from your IdP
field. Alternately, choose Import from XML file and upload the file. The metadata file should
look something like this:

<?xml version="1.0" encoding="UTF-8"?>
<md:EntityDescriptor entityID="entity-id"
 xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata">
 <md:IDPSSODescriptor WantAuthnRequestsSigned="false"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <md:KeyDescriptor use="signing">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>tls-certificate</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>s
 </md:KeyDescriptor>
 <md:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified</
md:NameIDFormat>
 <md:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress</
md:NameIDFormat>
 <md:SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
POST" Location="idp-sso-url"/>

SAML authentication 149

https://docs.amazonaws.cn/singlesignon/latest/userguide/attributemappingsconcept.html

Amazon OpenSearch Service Developer Guide

 <md:SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Redirect" Location="idp-sso-url"/>
 </md:IDPSSODescriptor>
</md:EntityDescriptor>

10. Keep the Custom user ID attribute field empty to use the NameID element of the SAML
assertion for the username. If your assertion doesn't use this standard element and instead
includes the username as a custom attribute, specify that attribute here. Attributes are case-
sensitive. Only a single user attribute is supported.

The following example shows an override attribute for NameID in the SAML assertion:

<saml2:Attribute Name="UserId" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">
 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xs:string">annie</saml2:AttributeValue>
</saml2:Attribute>

11. (Optional) Specify a custom attribute in the Group attribute field, such as role or group.
Only a single group attribute is supported. There's no default group attribute. If you don't
specify one, your data access policies can only contain user principals.

The following example shows a group attribute in the SAML assertion:

<saml2:Attribute Name="department"
 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml2:AttributeValue xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xs:string">finance</saml2:AttributeValue>
</saml2:Attribute>

12. By default, OpenSearch Dashboards signs users out after 24 hours. You can configure this
value to any number between 1 and 12 hours (15 and 720 minutes) by specifying the
OpenSearch Dashboards timeout. If you try to set the timeout equal to or less than 15
minutes, your session will be reset to one hour.

13. Choose Create SAML provider.

SAML authentication 150

Amazon OpenSearch Service Developer Guide

Accessing OpenSearch Dashboards

After you configure a SAML provider, all users and groups associated with that provider can
navigate to the OpenSearch Dashboards endpoint. The Dashboards URL has the format
collection-endpoint/_dashboards/ for all collections.

If you have SAML enabled, selecting the link in the Amazon Web Services Management Console
directs you to the IdP selection page, where you can sign in using your SAML credentials. First, use
the dropdown to select an identity provider:

Then sign in using your IdP credentials.

If you don't have SAML enabled, selecting the link in the Amazon Web Services Management
Console directs you to log in as an IAM user or role, with no option for SAML.

SAML authentication 151

Amazon OpenSearch Service Developer Guide

Granting SAML identities access to collection data

After you create a SAML provider, you still need to grant the underlying users and groups access to
the data within your collections. You grant access through data access policies. Until you provide
users access, they won't be able to read, write, or delete any data within your collections.

To grant access, create a data access policy and specify your SAML user and/or group IDs in the
Principal statement:

[
 {
 "Rules":[
 ...
],
 "Principal":[
 "saml/987654321098/myprovider/user/Shaheen",
 "saml/987654321098/myprovider/group/finance"
]
 }
]

You can grant access to collections, indexes, or both. If you want different users to have different
permissions, create multiple rules. For a list of available permissions, see Supported policy
permissions. For information about how to format an access policy, see Policy syntax.

Creating SAML providers (Amazon CLI)

To create a SAML provider using the OpenSearch Serverless API, send a CreateSecurityConfig
request:

aws opensearchserverless create-security-config \
 --name myprovider \
 --type saml \
 --saml-options file://saml-auth0.json

Specify saml-options, including the metadata XML, as a key-value map within a .json file. The
metadata XML must be encoded as a JSON escaped string.

{
 "sessionTimeout": 70,
 "groupAttribute": "department",

SAML authentication 152

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_CreateSecurityConfig.html
https://www.freeformatter.com/json-escape.html

Amazon OpenSearch Service Developer Guide

 "userAttribute": "userid",
 "metadata": "<EntityDescriptor xmlns=\"urn:oasis:names:tc:SAML:2.0:metadata
\" IDPSSODescriptor>\r\n<\/EntityDescriptor>"
}

Viewing SAML providers

The following ListSecurityConfigs request lists all SAML providers in your account:

aws opensearchserverless list-security-configs --type saml

The request returns information about all existing SAML providers, including the full IdP metadata
that your identity provider generates:

{
 "securityConfigDetails": [
 {
 "configVersion": "MTY2NDA1MjY4NDQ5M18x",
 "createdDate": 1664054180858,
 "description": "Example SAML provider",
 "id": "saml/123456789012/myprovider",
 "lastModifiedDate": 1664054180858,
 "samlOptions": {
 "groupAttribute": "department",
 "metadata": "<EntityDescriptor xmlns=\"urn:oasis:names:tc:SAML:2.0:metadata
\" IDPSSODescriptor>\r\n<\/EntityDescriptor>",
 "sessionTimeout": 120,
 "userAttribute": "userid"
 }
 }
]
}

To view details about a specific provider, including the configVersion for future updates, send a
GetSecurityConfig request.

Updating SAML providers

To update a SAML provider using the OpenSearch Serverless console, choose SAML
authentication, select your identity provider, and choose Edit. You can modify all fields, including
the metadata and custom attributes.

SAML authentication 153

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_ListSecurityConfigs.html

Amazon OpenSearch Service Developer Guide

To update a provider through the OpenSearch Serverless API, send an UpdateSecurityConfig
request and include the identifier of the policy to be updated. You must also include
a configuration version, which you can retrieve using the ListSecurityConfigs or
GetSecurityConfig commands. Including the most recent version ensures that you don't
inadvertently override a change made by someone else.

The following request updates the SAML options for a provider:

aws opensearchserverless update-security-config \
 --id saml/123456789012/myprovider \
 --type saml \
 --saml-options file://saml-auth0.json \
 --config-version MTY2NDA1MjY4NDQ5M18x

Specify your SAML configuration options as a key-value map within a .json file.

Important

Updates to SAML options are not incremental. If you don't specify a value for a parameter
in the SAMLOptions object when you make an update, the existing values will be
overridden with empty values. For example, if the current configuration contains a value for
userAttribute, and then you make an update and don't include this value, the value is
removed from the configuration. Make sure you know what the existing values are before
you make an update by calling the GetSecurityConfig operation.

Deleting SAML providers

When you delete a SAML provider, any references to associated users and groups in your data
access policies are no longer functional. To avoid confusion, we suggest that you remove all
references to the endpoint in your access policies before you delete the endpoint.

To delete a SAML provider using the OpenSearch Serverless console, choose Authentication, select
the provider, and choose Delete.

To delete a provider through the OpenSearch Serverless API, send a DeleteSecurityConfig request:

aws opensearchserverless delete-security-config --id saml/123456789012/myprovider

SAML authentication 154

https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_UpdateSecurityConfig.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_DeleteSecurityConfig.html

Amazon OpenSearch Service Developer Guide

Compliance validation for Amazon OpenSearch Serverless

Third-party auditors assess the security and compliance of Amazon OpenSearch Serverless as part
of multiple Amazon compliance programs. These programs include SOC, PCI, and HIPAA.

To learn whether an Amazon Web Service is within the scope of specific compliance programs, see
Amazon Web Services in Scope by Compliance Program and choose the compliance program that
you are interested in. For general information, see Amazon Web Services Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Your compliance responsibility when using Amazon Web Services is determined by the sensitivity
of your data, your company's compliance objectives, and applicable laws and regulations. Amazon
provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on Amazon that are
security and compliance focused.

• Amazon Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the Amazon Config Developer Guide – The Amazon Config
service assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• Amazon Security Hub – This Amazon Web Service provides a comprehensive view of your security
state within Amazon. Security Hub uses security controls to evaluate your Amazon resources
and to check your compliance against security industry standards and best practices. For a list of
supported services and controls, see Security Hub controls reference.

Tagging Amazon OpenSearch Serverless collections

Tags let you assign arbitrary information to an Amazon OpenSearch Serverless collection so you
can categorize and filter on that information. A tag is a metadata label that you assign or that
Amazon assigns to an Amazon resource.

Each tag consists of a key and a value. For tags that you assign, you define the key and value. For
example, you might define the key as stage and the value for one resource as test.

Compliance validation 155

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html
https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html
https://docs.amazonaws.cn/securityhub/latest/userguide/securityhub-controls-reference.html

Amazon OpenSearch Service Developer Guide

With tags, you can do the following:

• Identify and organize your Amazon resources. Many Amazon services support tagging, so you
can assign the same tag to resources from different services to indicate that the resources are
related. For example, you could assign the same tag to an OpenSearch Serverless collection that
you assign to an Amazon OpenSearch Service domain.

• Track your Amazon costs. You activate these tags on the Amazon Billing and Cost Management
dashboard. Amazon uses the tags to categorize your costs and deliver a monthly cost allocation
report to you. For more information, see Use Cost Allocation Tags in the Amazon Billing User
Guide.

In OpenSearch Serverless, the primary resource is a collection. You can use the OpenSearch Service
console, the Amazon CLI, the OpenSearch Serverless API operations, or the Amazon SDKs to add,
manage, and remove tags from a collection.

Permissions required

OpenSearch Serverless uses the following Amazon Identity and Access Management Access
Analyzer (IAM) permissions for tagging collections:

• aoss:TagResource

• aoss:ListTagsForResource

• aoss:UntagResource

Working with tags (console)

The console is the simplest way to tag a collection.

To create a tag (console)

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. Expand Serverless in the left navigation pane and choose Collections.

3. Select the collection that you want to add tags to, and go to the Tags tab.

4. Choose Manage and Add new tag.

5. Enter a tag key and an optional value.

Permissions required 156

https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/
https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

6. Choose Save.

To delete a tag, follow the same steps and choose Remove on the Manage tags page.

For more information about using the console to work with tags, see Tag Editor in the Amazon
Management Console Getting Started Guide.

Working with tags (Amazon CLI)

To tag a collection using the Amazon CLI, send a TagResource request:

aws opensearchserverless tag-resource
 --resource-arn arn:aws:aoss:us-east-1:123456789012:collection/my-collection
 --tags Key=service,Value=aoss Key=source,Value=logs

View the existing tags for a collection with the ListTagsForResource command:

aws opensearchserverless list-tags-for-resource
 --resource-arn arn:aws:aoss:us-east-1:123456789012:collection/my-collection

Remove tags from a collection using the UntagResource command:

aws opensearchserverless untag-resource
 --resource-arn arn:aws:aoss:us-east-1:123456789012:collection/my-collection
 --tag-keys service

Supported operations and plugins in Amazon OpenSearch
Serverless

Amazon OpenSearch Serverless supports a variety of OpenSearch plugins, as well as a subset of
the indexing, search, and metadata API operations available in OpenSearch. You can include the
permissions in the left column of the table within data access policies in order to limit access to
certain operations.

Topics

• Supported OpenSearch API operations and permissions

• Supported OpenSearch plugins

Working with tags (Amazon CLI) 157

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_TagResource.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_ListTagsForResource.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/API_UntagResource.html
https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

Supported OpenSearch API operations and permissions

The following table lists the API operations that OpenSearch Serverless supports, along with their
corresponding IAM permissions:

Data access policy
permission

OpenSearch API operations Description and caveats

aoss:CreateIndex PUT <index> Create indexes. For more
information, see Create
index.

Note

This permission
also applies to
creating indexes
with the sample
data on OpenSearc
h Dashboards.

aoss:DescribeIndex • GET <index>

• GET <index>/_mapping

• GET <index>/_mappings

• GET <index>/_setting

• GET <index>/_setting/<setting>

• GET <index>/_settings

• GET <index>/_settings/<setting>

• GET _cat/indices

• GET _mapping

• GET _mappings

• GET _resolve/index/<index>

Describe indexes. For
more information, see the
following resources:

• Get index

• Get a mapping

• Get settings

• CAT indices (Response
does not include
health or status
fields.)

aoss:WriteDocument • DELETE <index>/_doc/<id>

• POST <index>/_bulk

Write and update
documents. For more

Supported OpenSearch API operations and permissions 158

https://opensearch.org/docs/latest/api-reference/index-apis/create-index/
https://opensearch.org/docs/latest/api-reference/index-apis/create-index/
https://opensearch.org/docs/latest/api-reference/index-apis/get-index/
https://opensearch.org/docs/latest/field-types/index/#get-a-mapping
https://opensearch.org/docs/latest/api-reference/index-apis/get-settings/
https://opensearch.org/docs/latest/api-reference/cat/cat-indices/

Amazon OpenSearch Service Developer Guide

Data access policy
permission

OpenSearch API operations Description and caveats

• POST <index>/_create/<id> (for
search collection types only)

• POST <index>/_doc

• POST <index>/_update/<id>

• POST _bulk

• PUT <index>/_create/<id> (for
search collection types only)

• PUT <index>/_doc/<id> (for
search collection types only)

information, see the
following resources:

• Bulk

• Index data

Note

Some operations
are only allowed
for collections of
type SEARCH. For
more informati
on, see the section
called “Choosing a
collection type”.

Supported OpenSearch API operations and permissions 159

https://opensearch.org/docs/latest/api-reference/document-apis/bulk/
https://opensearch.org/docs/latest/opensearch/index-data/

Amazon OpenSearch Service Developer Guide

Data access policy
permission

OpenSearch API operations Description and caveats

aoss:ReadDocument • GET <index>/_analyze

• GET <index>/_doc/<id>

• GET <index>/_explain/<id>

• GET <index>/_mget

• GET <index>/_source/<id>

• GET <index>/_count

• GET <index>/_field_caps

• GET <index>/_msearch

• GET <index>/_rank_eval

• GET <index>/_search

• GET <index>/_validate/<query>

• GET _analyze

• GET _field_caps

• GET _mget

• GET _search

• HEAD <index>/_doc/<id>

• HEAD <index>/_source/<id>

• POST <index>/_analyze

• POST <index>/_explain/<id>

• POST <index>/_count

• POST <index>/_field_caps

• POST <index>/_rank_eval

• POST <index>/_search

• POST _analyze

• POST _field_caps

• POST _search

Read documents. For
more information, see the
following resources:

• Perform text analysis

• Get document

• Count

• Query DSL

• Ranking evaluation

• Analyze API

• Explain

Supported OpenSearch API operations and permissions 160

https://opensearch.org/docs/latest/api-reference/analyze-apis/perform-text-analysis/
https://opensearch.org/docs/latest/api-reference/document-apis/get-documents/
https://opensearch.org/docs/latest/api-reference/count/
https://opensearch.org/docs/latest/opensearch/query-dsl/index/
https://opensearch.org/docs/latest/api-reference/rank-eval/
https://opensearch.org/docs/latest/api-reference/analyze-apis/index/
https://opensearch.org/docs/latest/api-reference/explain/

Amazon OpenSearch Service Developer Guide

Data access policy
permission

OpenSearch API operations Description and caveats

aoss:DeleteIndex DELETE <target> Delete indexes. For more
information, see Delete
index.

aoss:UpdateIndex • POST _mapping

• POST <index>/_mapping/

• POST <index>/_mappings/

• POST <index>/_setting

• POST <index>/_settings

• POST _setting

• POST _settings

• PUT _mapping

• PUT <index>/_mapping

• PUT <index>/_mappings/

• PUT <index>/_setting

• PUT <index>/_settings

• PUT _setting

• PUT _settings

Update index settings. For
more information, see the
following resources:

• Mapping

• Update settings

aoss:CreateCollect
ionItems

POST _aliases Create index aliases. For
more information, see
Create aliases.

Supported OpenSearch API operations and permissions 161

https://opensearch.org/docs/latest/api-reference/index-apis/delete-index/
https://opensearch.org/docs/latest/api-reference/index-apis/delete-index/
https://opensearch.org/docs/latest/opensearch/mappings/
https://opensearch.org/docs/latest/api-reference/index-apis/update-settings/
https://opensearch.org/docs/latest/opensearch/index-alias/#create-aliases

Amazon OpenSearch Service Developer Guide

Data access policy
permission

OpenSearch API operations Description and caveats

aoss:DescribeColle
ctionItems

• GET <index>/_alias/<alias>

• GET _alias

• GET _alias/<alias>

• GET _cat/aliases

• GET _cat/templates

• GET _cat/templates/<te
mplate_name>

• GET _component_template

• GET _component_template/
<component-template>

• GET _index_template

• GET _index_template/<index-
template>

• HEAD _alias/<alias>

• HEAD _component_template/
<component-template>

• HEAD _index_template/<name>

• HEAD <index>/_alias/<alias>

Describe aliases and index
templates. For more
information, see the
following resources:

• Manage aliases

• Index templates

Supported OpenSearch API operations and permissions 162

https://opensearch.org/docs/latest/opensearch/index-alias/#manage-aliases
https://opensearch.org/docs/latest/opensearch/index-templates/

Amazon OpenSearch Service Developer Guide

Data access policy
permission

OpenSearch API operations Description and caveats

aoss:UpdateCollect
ionItems

• POST <index>/_alias/<alias>

• POST <index>/_aliases/<alias>

• POST _component_template/
<component-template>

• POST _index_template/<index-
template>

• PUT <index>/_alias/<alias>

• PUT <index>/_aliases/<alias>

• PUT _component_template/
<component-template>

• PUT _index_template/<index-
template>

Update aliases and index
templates. For more
information, see the
following resources:

• Index aliases

• Index templates

aoss:DeleteCollect
ionItems

• DELETE <index>/_alias/<alias>

• DELETE _component_template/
<component-template>

• DELETE _index_template/<index-
template>

• DELETE <index>/_aliases/<alias>

Delete aliases and index
templates. For more
information, see the
following resources:

• Delete aliases

• Delete a template

Supported OpenSearch plugins

OpenSearch Serverless collections come prepackaged with the following plugins from the
OpenSearch community. Serverless automatically deploys and manages plugins for you.

Analysis plugins

• ICU Analysis

• Japanese (kuromoji) Analysis

• Korean (Nori) Analysis

• Phonetic Analysis

Supported OpenSearch plugins 163

https://opensearch.org/docs/latest/opensearch/index-alias/
https://opensearch.org/docs/latest/opensearch/index-templates/
https://opensearch.org/docs/latest/opensearch/index-alias/#delete-aliases
https://opensearch.org/docs/latest/opensearch/index-templates/#delete-a-template
https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/analysis-icu.html
https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/analysis-kuromoji.html
https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/analysis-nori.html
https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/analysis-phonetic.html

Amazon OpenSearch Service Developer Guide

• Smart Chinese Analysis

• Stempel Polish Analysis

• Ukrainian Analysis

Mapper plugins

• Mapper Size

• Mapper Murmur3

• Mapper Annotated Text

Scripting plugins

• Painless

• Expression

• Mustache

In addition, OpenSearch Serverless includes all plugins that ship as modules.

Monitoring Amazon OpenSearch Serverless

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon OpenSearch Serverless and your other Amazon solutions. Amazon provides the following
monitoring tools to watch OpenSearch Serverless, report when something is wrong, and take
automatic actions when appropriate:

• Amazon CloudWatch monitors your Amazon resources and the applications that you run on
Amazon in real time. You can collect and track metrics, create customized dashboards, and set
alarms that notify you or take actions when a specified metric reaches a threshold that you
specify.

For example, you can have CloudWatch track CPU usage or other metrics of your Amazon EC2
instances and automatically launch new instances when needed. For more information, see the
Amazon CloudWatch User Guide.

• Amazon CloudTrail captures API calls and related events made by or on behalf of your Amazon
Web Services account. It delivers the log files to an Amazon S3 bucket that you specify. You can

Monitoring OpenSearch Serverless 164

https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/analysis-smartcn.html
https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/analysis-stempel.html
https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/analysis-ukrainian.html
https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/mapper-size.html
https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/mapper-murmur3.html
https://www.elastic.co/guide/en/elasticsearch/plugins/7.10/mapper-annotated-text.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.10/modules-scripting-painless.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.10/modules-scripting-expression.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.10/search-template.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/

Amazon OpenSearch Service Developer Guide

identify which users and accounts called Amazon, the source IP address from which the calls
were made, and when the calls occurred. For more information, see the Amazon CloudTrail User
Guide.

• Amazon EventBridge delivers a near real-time stream of system events that describe changes
in your OpenSearch Service domains. You can create rules that watch for certain events, and
trigger automated actions in other Amazon Web Services when these events occur. For more
information, see the Amazon EventBridge User Guide.

Monitoring OpenSearch Serverless with Amazon CloudWatch

You can monitor Amazon OpenSearch Serverless using CloudWatch, which collects raw data and
processes it into readable, near real-time metrics. These statistics are kept for 15 months, so that
you can access historical information and gain a better perspective on how your web application or
service is performing.

You can also set alarms that watch for certain thresholds, and send notifications or take actions
when those thresholds are met. For more information, see the Amazon CloudWatch User Guide.

OpenSearch Serverless reports the following metrics in the AWS/AOSS namespace.

Metric Description

ActiveCollection Indicates whether a collection is active. A value of 1
means that the collection is in an ACTIVE state. This
value is emitted upon successful creation of a collection
and remains 1 until you delete the collection. The metric
can't have a value of 0.

Relevant statistics: Max

Dimensions: ClientId, CollectionId , Collectio
nName

Frequency: 60 seconds

DeletedDocuments The total number of deleted documents.

Relevant statistics: Average, Sum

Monitoring with CloudWatch 165

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/eventbridge/latest/userguide/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/

Amazon OpenSearch Service Developer Guide

Metric Description

Dimensions: ClientId, CollectionId , Collectio
nName , IndexId, IndexName

Frequency: 60 seconds

IndexingOCU The number of OpenSearch Compute Units (OCUs)
used to ingest collection data. This metric applies at the
account level.

Relevant statistics: Sum

Dimensions: ClientId

Frequency: 60 seconds

IngestionDataRate The indexing rate in GiB per second to a collection or
index. This metric only applies to bulk indexing requests.

Relevant statistics: Sum

Dimensions: ClientId, CollectionId , Collectio
nName , IndexId, IndexName

Frequency: 60 seconds

IngestionDocumentErrors The total number of document errors during ingestion
for a collection or index. After a successful bulk indexing
request, writers process the request and emit errors for
all failed documents within the request.

Relevant statistics: Sum

Dimensions: ClientId, CollectionId , Collectio
nName , IndexId, IndexName

Frequency: 60 seconds

Monitoring with CloudWatch 166

Amazon OpenSearch Service Developer Guide

Metric Description

IngestionDocumentRate The rate per second at which documents are being
ingested to a collection or index. This metric only applies
to bulk indexing requests.

Relevant statistics: Sum

Dimensions: ClientId, CollectionId , Collectio
nName , IndexId, IndexName

Frequency: 60 seconds

IngestionRequestErrors The total number of bulk indexing request errors to a
collection. OpenSearch Serverless emits this metric when
a bulk indexing request fails for any reason, such as an
authentication or availability issue.

Relevant statistics: Sum

Dimensions: ClientId, CollectionId , Collectio
nName

Frequency: 60 seconds

IngestionRequestLatency The latency, in seconds, for bulk write operations to a
collection.

Relevant statistics: Minimum, Maximum, Average

Dimensions: ClientId, CollectionId , Collectio
nName

Frequency: 60 seconds

Monitoring with CloudWatch 167

Amazon OpenSearch Service Developer Guide

Metric Description

IngestionRequestRate The total number of bulk write operations received by a
collection.

Relevant statistics: Minimum, Maximum, Average

Dimensions: ClientId, CollectionId , Collectio
nName

Frequency: 60 seconds

IngestionRequestSuccess The total number of successful indexing operations to a
collection.

Relevant statistics: Sum

Dimensions: ClientId, CollectionId , Collectio
nName

Frequency: 60 seconds

SearchableDocuments The total number of searchable documents in a collection
or index.

Relevant statistics: Sum

Dimensions: ClientId, CollectionId , Collectio
nName , IndexId, IndexName

Frequency: 60 seconds

SearchRequestErrors The total number of query errors per minute for a
collection.

Relevant statistics: Sum

Dimensions: ClientId, CollectionId , Collectio
nName

Frequency: 60 seconds

Monitoring with CloudWatch 168

Amazon OpenSearch Service Developer Guide

Metric Description

SearchRequestLatency The average time, in milliseconds, that it takes to
complete a search operation against a collection.

Relevant statistics: Minimum, Maximum, Average

Dimensions: ClientId, CollectionId , Collectio
nName

Frequency: 60 seconds

SearchOCU The number of OpenSearch Compute Units (OCUs) used
to search collection data. This metric applies at the
account level.

Relevant statistics: Sum

Dimensions: ClientId

Frequency: 60 seconds

SearchRequestRate The total number of search requests per minute to a
collection.

Relevant statistics: Average, Maximum, Sum

Dimensions: ClientId, CollectionId , Collectio
nName

Frequency: 60 seconds

Monitoring with CloudWatch 169

Amazon OpenSearch Service Developer Guide

Metric Description

StorageUsedInS3 The amount, in bytes, of Amazon S3 storage used.
OpenSearch Serverless stores indexed data in Amazon
S3. You must select the period at one minute to get an
accurate value.

Relevant statistics: Sum

Dimensions: ClientId, CollectionId , Collectio
nName , IndexId, IndexName

Frequency: 60 seconds

2xx, 3xx, 4xx, 5xx The number of requests to the collection that resulted in
the given HTTP response code (2xx, 3xx, 4xx, 5xx).

Relevant statistics: Sum

Dimensions: ClientId, CollectionId , Collectio
nName

Frequency: 60 seconds

Logging OpenSearch Serverless API calls using Amazon CloudTrail

Amazon OpenSearch Serverless is integrated with Amazon CloudTrail, a service that provides a
record of actions taken by a user, role, or an Amazon service in Serverless.

CloudTrail captures all API calls for OpenSearch Serverless as events. The calls captured include
calls from the Serverless section of the OpenSearch Service console and code calls to the
OpenSearch Serverless API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for OpenSearch Serverless. If you don't configure a trail, you can still view
the most recent events in the CloudTrail console in Event history.

Using the information collected by CloudTrail, you can determine the request that was made to
OpenSearch Serverless, the IP address from which the request was made, who made the request,
when it was made, and additional details.

Monitoring with CloudTrail 170

Amazon OpenSearch Service Developer Guide

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

OpenSearch Serverless information in CloudTrail

CloudTrail is enabled on your Amazon Web Services account when you create the account. When
activity occurs in OpenSearch Serverless, that activity is recorded in a CloudTrail event along with
other Amazon service events in Event history. You can view, search, and download recent events
in your Amazon Web Services account. For more information, see Viewing events with CloudTrail
Event history.

For an ongoing record of events in your Amazon Web Services account, including events for
OpenSearch Serverless, create a trail. A trail enables CloudTrail to deliver log files to an Amazon
S3 bucket. By default, when you create a trail in the console, the trail applies to all Amazon Web
Services Regions.

The trail logs events from all Regions in the Amazon partition and delivers the log files to the
Amazon S3 bucket that you specify. Additionally, you can configure other Amazon services to
further analyze and act upon the event data collected in CloudTrail logs. For more information, see
the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All OpenSearch Serverless actions are logged by CloudTrail and are documented in the OpenSearch
Serverless API reference. For example, calls to the CreateCollection, ListCollections, and
DeleteCollection actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine:

• Whether the request was made with root or Amazon Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon service.

Monitoring with CloudTrail 171

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/ServerlessAPIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

For more information, see the CloudTrail userIdentity element.

Understanding OpenSearch Serverless log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries.

An event represents a single request from any source. It includes information about the requested
action, the date and time of the action, request parameters, and so on. CloudTrail log files aren't an
ordered stack trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateCollection
action.

{
 "eventVersion":"1.08",
 "userIdentity":{
 "type":"AssumedRole",
 "principalId":"AIDACKCEVSQ6C2EXAMPLE",
 "arn":"arn:aws:iam::123456789012:user/test-user",
 "accountId":"123456789012",
 "accessKeyId":"access-key",
 "sessionContext":{
 "sessionIssuer":{
 "type":"Role",
 "principalId":"AIDACKCEVSQ6C2EXAMPLE",
 "arn":"arn:aws:iam::123456789012:role/Admin",
 "accountId":"123456789012",
 "userName":"Admin"
 },
 "webIdFederationData":{

 },
 "attributes":{
 "creationDate":"2022-04-08T14:11:34Z",
 "mfaAuthenticated":"false"
 }
 }
 },
 "eventTime":"2022-04-08T14:11:49Z",
 "eventSource":"aoss.amazonaws.com",
 "eventName":"CreateCollection",
 "awsRegion":"us-east-1",

Monitoring with CloudTrail 172

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon OpenSearch Service Developer Guide

 "sourceIPAddress":"AWS Internal",
 "userAgent":"aws-cli/2.1.30 Python/3.8.8 Linux/5.4.176-103.347.amzn2int.x86_64 exe/
x86_64.amzn.2 prompt/off command/aoss.create-collection",
 "errorCode":"HttpFailureException",
 "errorMessage":"An unknown error occurred",
 "requestParameters":{
 "accountId":"123456789012",
 "name":"test-collection",
 "description":"A sample collection",
 "clientToken":"d3a227d2-a2a7-49a6-8fb2-e5c8303c0718"
 },
 "responseElements": null,
 "requestID":"12345678-1234-1234-1234-987654321098",
 "eventID":"12345678-1234-1234-1234-987654321098",
 "readOnly":false,
 "eventType":"AwsApiCall",
 "managementEvent":true,
 "recipientAccountId":"123456789012",
 "eventCategory":"Management",
 "tlsDetails":{
 "clientProvidedHostHeader":"user.aoss-sample.us-east-1.amazonaws.com"
 }
}

Monitoring OpenSearch Serverless events using Amazon EventBridge

Amazon OpenSearch Service integrates with Amazon EventBridge to notify you of certain events
that affect your domains. Events from Amazon services are delivered to EventBridge in near
real time. The same events are also sent to Amazon CloudWatch Events, the predecessor of
Amazon EventBridge. You can write rules to indicate which events are of interest to you, and
what automated actions to take when an event matches a rule. Examples of actions that you can
automatically activate include the following:

• Invoking an Amazon Lambda function

• Invoking an Amazon EC2 Run Command

• Relaying the event to Amazon Kinesis Data Streams

• Activating an Amazon Step Functions state machine

• Notifying an Amazon SNS topic or an Amazon SQS queue

Monitoring with EventBridge 173

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatchEvents.html

Amazon OpenSearch Service Developer Guide

For more information, see Get started with Amazon EventBridge in the Amazon EventBridge User
Guide.

Setting up notifications

You can use Amazon User Notifications to receive notifications when an OpenSearch Serverless
event occurs. An event is an indicator of a change in OpenSearch Serverless environment, such as
when you reach the maximum limit of your OCU usage. Amazon EventBridge receives the event
and routes a notification to the Amazon Web Services Management Console Notifications Center
and your chosen delivery channels. You receive a notification when an event matches a rule that
you specify.

OpenSearch Compute Units (OCU) events

OpenSearch Serverless sends events to EventBridge when one of the following OCU-related events
occur.

OCU usage approaching maximum limit

OpenSearch Serverless sends this event when your search or index OCU usage reaches 75% of
your capacity limit. Your OCU usage is calculated based on your configured capacity limit and your
current OCU consumption.

Example

The following is an example event of this type (search OCU):

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "OCU Utilization Approaching Max Limit",
 "source": "aws.aoss",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "eventTime" : 1678943345789,
 "description": "Your search OCU usage is at 75% and is approaching the configured
 maximum limit."
 }

Monitoring with EventBridge 174

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-get-started.html
https://docs.amazonaws.cn/notifications/latest/userguide/what-is-service.html

Amazon OpenSearch Service Developer Guide

}

The following is an example event of this type (index OCU):

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "OCU Utilization Approaching Max Limit",
 "source": "aws.aoss",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "eventTime" : 1678943345789,
 "description": "Your indexing OCU usage is at 75% and is approaching the configured
 maximum limit."
 }

OCU usage reached maximum limit

OpenSearch Serverless sends this event when your search or index OCU usage reaches 100% of
your capacity limit. Your OCU usage is calculated based on your configured capacity limit and your
current OCU consumption.

Example

The following is an example event of this type (search OCU):

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "OCU Utilization Reached Max Limit",
 "source": "aws.aoss",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "eventTime" : 1678943345789,
 "description": "Your search OCU usage has reached the configured maximum limit."

Monitoring with EventBridge 175

Amazon OpenSearch Service Developer Guide

 }
}

The following is an example event of this type (index OCU):

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "OCU Utilization Reached Max Limit",
 "source": "aws.aoss",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "eventTime" : 1678943345789,
 "description": "Your indexing OCU usage has reached the configured maximum limit."
 }
}

Monitoring with EventBridge 176

Amazon OpenSearch Service Developer Guide

Amazon OpenSearch Ingestion

Amazon OpenSearch Ingestion is a fully managed, serverless data collector that delivers real-time
log, metric, and trace data to Amazon OpenSearch Service domains and OpenSearch Serverless
collections.

With OpenSearch Ingestion, you no longer need to use third-party solutions like Logstash or Jaeger
to ingest data into your OpenSearch Service domains and OpenSearch Serverless collections.
You configure your data producers to send data to OpenSearch Ingestion. Then, it automatically
delivers the data to the domain or collection that you specify. You can also configure OpenSearch
Ingestion to transform your data before delivering it.

Also, with OpenSearch Ingestion, you don't need to worry about provisioning servers, managing
and patching software, or scaling your cluster of servers. You provision ingestion pipelines directly
within the Amazon Web Services Management Console, and OpenSearch Ingestion takes care of
managing and scaling them.

OpenSearch Ingestion is a subset of Amazon OpenSearch Service. It's powered by Data Prepper,
which is an open source data collector that can filter, enrich, transform, normalize, and aggregate
data for downstream analysis and visualization.

Topics

• Key concepts

• Benefits of OpenSearch Ingestion

• Limitations

177

Amazon OpenSearch Service Developer Guide

• Supported Data Prepper versions

• Scaling pipelines

• OpenSearch Ingestion pricing

• Supported Amazon Web Services Regions

• OpenSearch Ingestion quotas

• Setting up roles and users in Amazon OpenSearch Ingestion

• Getting started with Amazon OpenSearch Ingestion

• Overview of pipeline features in Amazon OpenSearch Ingestion

• Creating Amazon OpenSearch Ingestion pipelines

• Viewing Amazon OpenSearch Ingestion pipelines

• Updating Amazon OpenSearch Ingestion pipelines

• Stopping and starting Amazon OpenSearch Ingestion pipelines

• Deleting Amazon OpenSearch Ingestion pipelines

• Supported plugins and options for Amazon OpenSearch Ingestion pipelines

• Working with Amazon OpenSearch Ingestion pipeline integrations

• Using the Amazon SDKs to interact with Amazon OpenSearch Ingestion

• Use cases for Amazon OpenSearch Ingestion

• Security in Amazon OpenSearch Ingestion

• Tagging Amazon OpenSearch Ingestion pipelines

• Logging and monitoring Amazon OpenSearch Ingestion with Amazon CloudWatch

• Best practices for Amazon OpenSearch Ingestion

Key concepts

As you get started with OpenSearch Ingestion, you can benefit from understanding the following
concepts:

Pipeline

From an OpenSearch Ingestion perspective, a pipeline refers to a single provisioned data
collector that you create within OpenSearch Service. You can think of it as the entire YAML

Key concepts 178

Amazon OpenSearch Service Developer Guide

configuration file, which includes one or more sub-pipelines. For steps to create an ingestion
pipeline, see the section called “Creating pipelines”.

Sub-pipeline

You define sub-pipelines within a YAML configuration file. Each sub-pipeline is a combination
of a source, a buffer, zero or more processors, and one or more sinks. You can define multiple
sub-pipelines in a single YAML file, each with unique sources, processors, and sinks. To aid in
monitoring with CloudWatch and other services, we recommend that you specify a pipeline
name that's distinct from all of its sub-pipelines.

You can string multiple sub-pipelines together within a single YAML file, so that the source for
one sub-pipeline is another sub-pipeline, and its sink is a third sub-pipeline. For an example, see
the section called “OpenTelemetry Collector”.

Source

The input component of a sub-pipeline. It defines the mechanism through which a pipeline
consumes records. The source can consume events either by receiving them over HTTPS, or by
reading from external endpoints such as Amazon S3. There are two types of sources: push-based
and pull-based. Push-based sources, such as HTTP and OTel logs, stream records to ingestion
endpoints. Pull-based sources, such as OTel trace and S3, pull data from the source.

Processors

Intermediate processing units that can filter, transform, and enrich records into a desired format
before publishing them to the sink. The processor is an optional component of a pipeline. If you
don't define a processor, records are published in the format defined in the source. You can have
more than one processor. A pipeline runs processors in the order that you define them.

Sink

The output component of a sub-pipeline. It defines one or more destinations that a sub-pipeline
publishes records to. OpenSearch Ingestion supports OpenSearch Service domains as sinks.
It also supports sub-pipelines as sinks. This means that you can string together multiple sub-
pipelines within a single OpenSearch Ingestion pipeline (YAML file). Self-managed OpenSearch
clusters aren't supported as sinks.

Buffer

The part of a processor that acts as the layer between the source and the sink. You can't
manually configure a buffer within your pipeline. OpenSearch Ingestion uses a default buffer
configuration.

Key concepts 179

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-logs-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/

Amazon OpenSearch Service Developer Guide

Route

The part of a processor that allows pipeline authors to only send events that match certain
conditions to different sinks.

A valid sub-pipeline definition must contain a source and a sink. For more information about each
of these pipeline elements, see the configuration reference.

Benefits of OpenSearch Ingestion

OpenSearch Ingestion has the following main benefits:

• Eliminates the need for you to manually manage a self-provisioned pipeline.

• Automatically scales your pipelines based on capacity limits that you define.

• Keeps your pipeline up to date with security and bug patches.

• Provides the option to connect pipelines to your virtual private cloud (VPC) for an added layer of
security.

• Allows you to stop and start pipelines in order to control costs.

• Provides pipeline configuration blueprints for popular use cases to help you get up and running
faster.

• Allows you to interact programmatically with your pipelines through the various Amazon SDKs
and the OpenSearch Ingestion API.

• Supports performance monitoring in Amazon CloudWatch and error logging in CloudWatch
Logs.

Limitations

OpenSearch Ingestion has the following limitations:

• You can only ingest data into domains running OpenSearch 1.0 or later, or Elasticsearch 6.8 or
later. If you're using the OTel trace source, we recommend using Elasticsearch 7.9 or later so that
you can use the OpenSearch Dashboards plugin.

• If a pipeline is writing to an OpenSearch Service domain that's within a VPC, the pipeline must be
created in the same Amazon Web Services Region as the domain.

• You can only configure a single data source within a pipeline definition.

Benefits 180

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/
https://opensearch.org/docs/latest/observability-plugin/trace/ta-dashboards/

Amazon OpenSearch Service Developer Guide

• You can't specify self-managed OpenSearch clusters as sinks.

• You can't specify a custom endpoint as a sink. You can still write to a domain that has custom
endpoints enabled, but you must specify its standard endpoint.

• You can't specify resources within opt-in Regions as sources or sinks.

• There are some constraints on the parameters that you can include in a pipeline configuration.
For more information, see the section called “Configuration requirements and constraints”.

Supported Data Prepper versions

OpenSearch Ingestion currently supports the following major versions of Data Prepper:

• 2.x

When you create a pipeline, use the required version option to specify the major version of
Data Prepper to use. For example, version: "2". OpenSearch Ingestion retrieves the latest
supported minor version of that major version and provisions the pipeline with that version. For
more information, see the section called “Specifying the pipeline version”.

For information about the latest version that OpenSearch Ingestion supports, see 2.5 release notes.
For information about the features and bug fixes that are in each version of Data Prepper, see the
Releases page. Not every minor version of a particular major version is supported by OpenSearch
Ingestion.

Scaling pipelines

You don't need to provision and manage pipeline capacity yourself. OpenSearch Ingestion
automatically scales your pipeline capacity according to your estimated workload, based on the
minimum and maximum Ingestion OpenSearch Compute Units (Ingestion OCUs) that you specify.

Each Ingestion OCU is a combination of approximately 8 GiB of memory and 2 vCPUs. You
can specify the minimum and maximum OCU values for a pipeline, and OpenSearch Ingestion
automatically scales your pipeline capacity based on these limits.

You can specify the following values:

• Minimum capacity – The pipeline can reduce capacity down to this number of Ingestion OCUs.
The specified minimum capacity is also the starting capacity for a pipeline.

Supported Data Prepper versions 181

https://opensearch.org/docs/latest/about/#clusters-and-nodes
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/customendpoint.html
https://docs.amazonaws.cn/controltower/latest/userguide/opt-in-region-considerations.html
https://github.com/opensearch-project/data-prepper/releases/tag/2.5.0
https://github.com/opensearch-project/data-prepper/releases

Amazon OpenSearch Service Developer Guide

• Maximum capacity – The pipeline can increase capacity up to this number of Ingestion OCUs.

Make sure that the maximum capacity for a pipeline is high enough to handle spikes in workload,
and the minimum capacity is low enough to minimize costs when the pipeline isn't busy. Based on
your settings, OpenSearch Ingestion automatically scales the number of Ingestion OCUs for your
pipeline to process the ingest workload. At any specific time, you're charged only for the Ingestion
OCUs that are being actively used by your pipeline.

The capacity allocated to your OpenSearch Ingestion pipeline scales up and down based on the
processing requirements of your pipeline and the load generated by your client application. When
capacity is constrained, OpenSearch Ingestion scales up by allocating more compute units (GiB of
memory). When your pipeline is processing smaller workloads, or not processing data at all, it can
scale down to the minimum configured Ingestion OCUs.

You can specify a minimum of 1 Ingestion OCU, a maximum of 96 Ingestion OCUs for stateless
pipelines, and a maximum of 48 Ingestion OCUs for stateful pipelines. We recommend a minimum
of at least 2 Ingestion OCUs for push-based sources. When persistent buffering is enabled, you can
specify a minimum of 2 and maximum of 384 Ingestion OCUs.

Given a standard log pipeline with a single source, a simple grok pattern, and a sink, each compute
unit can support up to 2 MiB per second. For more complex log pipelines with multiple processors,
each compute unit might support less ingest load. Based on pipeline capacity and resource
utilization, the OpenSearch Ingestion scaling process kicks in.

To ensure high availability, Ingestion OCUs are distributed across Availability Zones (AZs). The
number of AZs depends on the minimum capacity that you specify.

Scaling pipelines 182

Amazon OpenSearch Service Developer Guide

For example, if you specify a minimum of 2 compute units, the Ingestion OCUs that are in use at
any given time are evenly distributed across 2 AZs. If you specify a minimum of 3 or more compute
units, the Ingestion OCUs are evenly distributed across 3 AZs. We recommend that you provision at
least two Ingestion OCUs to ensure 99.9% availability for your ingest pipelines.

You're not billed for Ingestion OCUs when a pipeline is in the Create failed, Creating,
Deleting, and Stopped states.

For instructions to configure and retrieve capacity settings for a pipeline, see the section called
“Creating pipelines”.

OpenSearch Ingestion pricing

At any specific time, you only pay for the number of Ingestion OCUs that are allocated to a
pipeline, regardless of whether there's data flowing through the pipeline. OpenSearch Ingestion
immediately accommodates your workloads by scaling pipeline capacity up or down based on
usage.

For full pricing details, see Amazon OpenSearch Service pricing.

Supported Amazon Web Services Regions

OpenSearch Ingestion is available in a subset of Amazon Web Services Regions that OpenSearch
Service is available in. For a list of supported Regions, see Amazon OpenSearch Service endpoints
and quotas in the Amazon Web Services General Reference.

OpenSearch Ingestion quotas

For a list of default quotas for OpenSearch Ingestion resources, see Amazon OpenSearch Service
quotas.

Setting up roles and users in Amazon OpenSearch Ingestion

Amazon OpenSearch Ingestion uses a variety of permissions models and IAM roles in order to allow
source applications to write to pipelines, and to allow pipelines to write to sinks. Before you can
start ingesting data, you need to create one or more IAM roles with specific permissions based on
your use case.

At minimum, the following roles are required to set up a successful pipeline.

Pricing 183

https://aws.amazon.com/opensearch-service/pricing/
https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html
https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/limits.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/limits.html

Amazon OpenSearch Service Developer Guide

Name Description

Management
role

Any principal that's managing pipelines (generally a "pipeline admin")
needs management access, which includes permissions like osis:Crea
tePipeline and osis:UpdatePipeline . These permissions allow a
user to administer pipelines but not necessarily write data to them.

Pipeline role The pipeline role, which you specify within the pipeline's YAML configura
tion, provides the required permissions for a pipeline to write to the domain
or collection sink and read from pull-based sources. For more information,
see the following topics:

• the section called “Allowing pipelines to write to domains”

• the section called “Allowing pipelines to write to serverless collections”

Ingestion role The ingestion role contains the osis:Ingest permission for the pipeline
resource. This permission allows push-based sources to ingest data into a
pipeline.

The following image demonstrates a typical pipeline setup, where a data source such as Amazon S3
or Fluent Bit is writing to a pipeline in a different account. In this case, the client needs to assume
the ingestion role in order to access the pipeline. For more information, see the section called
“Cross-account ingestion”.

For a simple setup guide, see the section called “Tutorial: Ingest data into a domain”.

Topics

Setting up roles and users 184

Amazon OpenSearch Service Developer Guide

• the section called “Management role”

• the section called “Ingestion role”

• the section called “Pipeline role”

• the section called “Cross-account ingestion”

Management role

In addition to the basic osis:* permissions needed to create and modify a pipeline, you also
need the iam:PassRole permission for the pipeline role resource. Any Amazon Web Service that
accepts a role must use this permission. OpenSearch Ingestion assumes the role every time it needs
to write data to a sink. This helps administrators ensure that only approved users can configure
OpenSearch Ingestion with a role that grants permissions. For more information, see Granting a
user permissions to pass a role to an Amazon Web Service.

If you're using the Amazon Web Services Management Console (using blueprints and later checking
on your pipeline), you need the following permissions to create and update a pipeline:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Resource":"*",
 "Action":[
 "osis:CreatePipeline",
 "osis:GetPipelineBlueprint",
 "osis:ListPipelineBlueprints",
 "osis:GetPipeline",
 "osis:ListPipelines",
 "osis:GetPipelineChangeProgress",
 "osis:ValidatePipeline",
 "osis:UpdatePipeline"
]
 },
 {
 "Resource":[
 "arn:aws:iam::{your-account-id}:role/pipeline-role"
],
 "Effect":"Allow",
 "Action":[

Management role 185

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon OpenSearch Service Developer Guide

 "iam:PassRole"
]
 }
]
}

If you're using the Amazon CLI (not prevalidating your pipeline or using blueprints), you need the
following permissions to create and update a pipeline:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Resource":"*",
 "Action":[
 "osis:CreatePipeline",
 "osis:UpdatePipeline"
]
 },
 {
 "Resource":[
 "arn:aws:iam::{your-account-id}:role/pipeline-role"
],
 "Effect":"Allow",
 "Action":[
 "iam:PassRole"
]
 }
]
}

Pipeline role

A pipeline needs certain permissions to write to its sink. These permissions depend on whether the
sink is an OpenSearch Service domain or an OpenSearch Serverless collection.

In addition, a pipeline might need permissions to pull from the source application (if the source is a
pull-based plugin), and permissions to write to an S3 dead letter queue, if configured.

Topics

• Writing to a domain sink

Pipeline role 186

Amazon OpenSearch Service Developer Guide

• Writing to a collection sink

• Writing to a dead-letter queue

Writing to a domain sink

An OpenSearch Ingestion pipeline needs permission to write to an OpenSearch Service domain
that is configured as its sink. These permissions include the ability to describe the domain and send
HTTP requests to it.

In order to provide your pipeline with the required permissions to write to a sink, first create
an Amazon Identity and Access Management (IAM) role with the required permissions. These
permissions are the same for public and VPC pipelines. Then, specify the pipeline role in the
domain access policy so that the domain can accept write requests from the pipeline.

Finally, specify the role ARN as the value of the sts_role_arn option within the pipeline
configuration:

version: "2"
source:
 http:
 ...
processor:
 ...
sink:
 - opensearch:
 ...
 aws:
 sts_role_arn: arn:aws:iam::{your-account-id}:role/pipeline-role

For instructions to complete each of these steps, see Allowing pipelines to access domains.

Writing to a collection sink

An OpenSearch Ingestion pipeline needs permission to write to an OpenSearch Serverless
collection that is configured as its sink. These permissions include the ability to describe the
collection and send HTTP requests to it.

First, create an IAM role that has the aoss:BatchGetCollection permission against all
resources (*). Then, include this role in a data access policy and provide it permissions to create

Pipeline role 187

Amazon OpenSearch Service Developer Guide

indexes, update indexes, describe indexes, and write documents within the collection. Finally,
specify the role ARN as the value of the sts_role_arn option within the pipeline configuration.

For instructions to complete each of these steps, see Allowing pipelines to access collections.

Writing to a dead-letter queue

If you configure your pipeline to write to a dead-letter queue (DLQ), you must include the
sts_role_arn option within the DLQ configuration. The permissions included in this role allow
the pipeline to access the S3 bucket that you specify as the destination for DLQ events.

You must use the same sts_role_arn in all pipeline components. Therefore, you must attach a
separate permissions policy to your pipeline role that provides DLQ access. At minimum, the role
must be allowed the S3:PutObject action on the bucket resource:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "WriteToS3DLQ",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-dlq-bucket/*"
 }
]
}

You can then specify the role within the pipeline's DLQ configuration:

 ...
 sink:
 opensearch:
 dlq:
 s3:
 bucket: "my-dlq-bucket"
 key_path_prefix: "dlq-files"
 region: "us-west-2"
 sts_role_arn: "arn:aws:iam::123456789012:role/pipeline-role"

Pipeline role 188

https://opensearch.org/docs/latest/data-prepper/pipelines/dlq/

Amazon OpenSearch Service Developer Guide

Ingestion role

All source plugins that OpenSearch Ingestion currently supports, with the exception of S3, use a
push-based architecture. This means that the source application pushes the data to the pipeline,
rather than the pipeline pulling the data from the source.

Therefore, you must grant your source applications the required permissions to ingest data into
an OpenSearch Ingestion pipeline. At minimum, the role that signs the request must be granted
permission for the osis:Ingest action, which allows it to send data to a pipeline. The same
permissions are required for public and VPC pipeline endpoints.

The following example policy allows the associated principal to ingest data into a single pipeline
called my-pipeline:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PermitsWriteAccessToPipeline",
 "Effect": "Allow",
 "Action": "osis:Ingest",
 "Resource": "arn:aws:osis:us-west-2:{your-account-id}:pipeline/my-pipeline"
 }
]
}

For more information, see the section called “Working with pipeline integrations”.

Cross-account ingestion

You might need to ingest data into a pipeline from a different Amazon Web Services account, such
as an application account. To configure cross-account ingestion, define an ingestion role within the
same account as the pipeline and establish a trust relationship between the ingestion role and the
application account:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{external-account-id}:root"

Ingestion role 189

Amazon OpenSearch Service Developer Guide

 },
 "Action": "sts:AssumeRole"
 }]
}

Then, configure your application to assume the ingestion role. The application account must grant
the application role AssumeRole permissions for the ingestion role in the pipeline account.

For detailed steps and example IAM policies, see the section called “Providing cross-account
ingestion access”.

Allowing Amazon OpenSearch Ingestion pipelines to write to domains

An Amazon OpenSearch Ingestion pipeline needs permission to write to the OpenSearch Service
domain that is configured as its sink. To provide access, you configure an Amazon Identity and
Access Management (IAM) role with a restrictive permissions policy that limits access to the domain
that a pipeline is sending data to. For example, you might want to limit an ingestion pipeline to
only the domain and indexes that are required to support its use case.

Before you specify the role in your pipeline configuration, you must configure it with an
appropriate trust relationship, and then grant it access to the domain within the domain access
policy.

Topics

• Step 1: Create a pipeline role

• Step 2: Include the pipeline role in the domain access policy

• Step 3: Map the pipeline role (only for domains that use fine-grained access control)

• Step 4: Specify the role in the pipeline configuration

Step 1: Create a pipeline role

The role that you specify in the sts_role_arn parameter of a pipeline configuration must have an
attached permissions policy that allows it to send data to the domain sink. It must also have a
trust relationship that allows OpenSearch Ingestion to assume the role. For instructions on how to
attach a policy to a role, see Adding IAM identity permissions in the IAM User Guide.

The following sample policy demonstrates the least privilege that you can provide in a pipeline
configuration's sts_role_arn role for it to write to a single domain:

Allowing pipelines to write to domains 190

https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRole.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon OpenSearch Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "es:DescribeDomain",
 "Resource": "arn:aws:es:*:{your-account-id}:domain/*"
 },
 {
 "Effect": "Allow",
 "Action": "es:ESHttp*",
 "Resource": "arn:aws:es:*:{your-account-id}:domain/ingestion-domain/*"
 }
]
}

If you plan to reuse the role to write to multiple domains, you can make the policy more broad by
replacing the domain name with a wildcard character (*).

The role must have the following trust relationship, which allows OpenSearch Ingestion to assume
the pipeline role:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"osis-pipelines.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

In addition, we recommend that you add the aws:SourceAccount and aws:SourceArn
condition keys to the policy to protect yourself against the confused deputy problem. The source
account is the owner of the pipeline.

For example, you could add the following condition block to the policy:

"Condition": {

Allowing pipelines to write to domains 191

https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html

Amazon OpenSearch Service Developer Guide

 "StringEquals": {
 "aws:SourceAccount": "{your-account-id}"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws-cn:osis:{region}:{your-account-id}:pipeline/*"
 }
}

Step 2: Include the pipeline role in the domain access policy

In order for a pipeline to write data to a domain, the domain must have a domain-level access
policy that allows the sts_role_arn pipeline role to access it.

The following sample domain access policy allows the pipeline role named pipeline-role, which
you created in the previous step, to write data to the domain named ingestion-domain:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{your-account-id}:role/pipeline-role"
 },
 "Action": ["es:DescribeDomain", "es:ESHttp*"],
 "Resource": "arn:aws:es:us-east-1:{your-account-id}:domain/ingestion-domain/*"
 }
]
}

Step 3: Map the pipeline role (only for domains that use fine-grained access
control)

If your domain uses fine-grained access control for authentication, there are extra steps you need
to take to provide your pipeline access to a domain. The steps differ depending on your domain
configuration:

Scenario 1: Different master role and pipeline role – If you're using an IAM Amazon Resource
Name (ARN) as the master user and it's different than the pipeline role (sts_role_arn), you need
to map the pipeline role to the OpenSearch all_access backend role. This essentially adds the
pipeline role as an additional master user. For more information, see Additional master users.

Allowing pipelines to write to domains 192

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac.html#ac-types-resource
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac.html#ac-types-resource
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/fgac.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/fgac.html#fgac-more-masters

Amazon OpenSearch Service Developer Guide

Scenario 2: Master user in the internal user database – If your domain uses a master user in the
internal user database and HTTP basic authentication for OpenSearch Dashboards, you can't pass
the master username and password directly into the pipeline configuration. Instead, you need
to map the pipeline role (sts_role_arn) to the OpenSearch all_access backend role. This
essentially adds the pipeline role as an additional master user. For more information, see Additional
master users.

Scenario 3: Same master role and pipeline role (uncommon) – If you're using an IAM ARN as the
master user, and it's the same ARN that you're using as the pipeline role (sts_role_arn), you
don't need to take any further action. The pipeline has the required permissions to write to the
domain. This scenario is uncommon because most environments use an admin role or some other
role as the master role.

The following image shows how to map the pipeline role to a backend role:

Step 4: Specify the role in the pipeline configuration

In order to successfully create a pipeline, you must specify the pipeline role that you created in step
1 as the sts_role_arn parameter in your pipeline configuration. The pipeline assumes this role in
order to sign requests to the OpenSearch Service domain sink.

In the sts_role_arn field, specify the ARN of the IAM pipeline role:

version: "2"
log-pipeline:
 source:

Allowing pipelines to write to domains 193

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/fgac.html#fgac-more-masters
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/fgac.html#fgac-more-masters

Amazon OpenSearch Service Developer Guide

 http:
 path: "/${pipelineName}/logs"
 processor:
 - grok:
 match:
 log: ["%{COMMONAPACHELOG}"]
 sink:
 - opensearch:
 hosts: ["https://search-ingestion-domain.us-east-1.es.amazonaws.com"]
 index: "my-index"
 aws:
 region: "us-east-1"
 sts_role_arn: "arn:aws:iam::{your-account-id}:role/pipeline-role"

For a full reference of required and unsupported parameters, see the section called “Supported
plugins and options”.

Allowing Amazon OpenSearch Ingestion pipelines to write to
collections

An Amazon OpenSearch Ingestion pipeline needs permission to write to the OpenSearch Serverless
collection that is configured as its sink. To provide access, you configure an Amazon Identity
and Access Management (IAM) role with a restrictive permissions policy that limits access to the
collection that a pipeline is sending data to. OpenSearch Ingestion can ingest data to both a public
collection and a VPC collection.

Before you specify the role in your pipeline configuration, you must configure it with an
appropriate trust relationship, and then grant it data access permissions to the collection indexes.

Topics

• Limitations

• Step 1: Create a pipeline role

• Step 2: Create a collection

• Step 3: Create a pipeline

Limitations

The following limitations apply for pipelines that write to OpenSearch Serverless collections:

Allowing pipelines to write to serverless collections 194

Amazon OpenSearch Service Developer Guide

• The OTel trace group processor doesn't currently work with OpenSearch Serverless collection
sinks.

• Currently, OpenSearch Ingestion only supports the legacy _template operation,
while OpenSearch Serverless supports the composable _index_template operation.
Therefore, if your pipeline configuration includes the index_type option, it must be set to
management_disabled.

Step 1: Create a pipeline role

The role that you specify in the sts_role_arn parameter of a pipeline configuration must have an
attached permissions policy that allows it to send data to the collection sink. It must also have a
trust relationship that allows OpenSearch Ingestion to assume the role. For instructions on how to
attach a policy to a role, see Adding IAM identity permissions in the IAM User Guide.

The following sample policy demonstrates the least privilege that you can provide in a pipeline
configuration's sts_role_arn role for it to write to collections:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aoss:BatchGetCollection"
],
 "Effect": "Allow",
 "Resource": "arn:aws:aoss:{region}:{your-account-
id}:collection/{collection-id}"
 },
 {
 "Action": [
 "aoss:CreateSecurityPolicy",
 "aoss:GetSecurityPolicy",
 "aoss:UpdateSecurityPolicy",
 "aoss:APIAccessAll"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aoss:collection": "{collection-name}"
 }

Allowing pipelines to write to serverless collections 195

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/otel-trace-group/
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon OpenSearch Service Developer Guide

 }
 }
]
}

The role must have the following trust relationship, which allows OpenSearch Ingestion to assume
it:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "osis-pipelines.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

In addition, we recommend that you add the aws:SourceAccount and aws:SourceArn
condition keys to the policy to protect yourself against the confused deputy problem. The source
account is the owner of the pipeline.

For example, you could add the following condition block to the policy:

"Condition": {
 "StringEquals": {
 "aws:SourceAccount": "{your-account-id}"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws-cn:osis:{region}:{your-account-id}:pipeline/*"
 }
}

Step 2: Create a collection

Create an OpenSearch Serverless collection with the following settings:

Allowing pipelines to write to serverless collections 196

https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy
https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html

Amazon OpenSearch Service Developer Guide

• You can use a Public or a VPC collection to ingest data from OpenSearch Ingestion. If you use
a VPC collection, you need to create a network access policy and configure that in the pipeline
configuration.

• The following data access policy, which grants the required permissions to the pipeline role:

[
 {
 "Rules": [
 {
 "Resource": [
 "index/{collection-name}/*"
],
 "Permission": [
 "aoss:CreateIndex",
 "aoss:UpdateIndex",
 "aoss:DescribeIndex",
 "aoss:WriteDocument",
],
 "ResourceType": "index"
 }
],
 "Principal": [
 "arn:aws:iam::{account-id}:role/{pipeline-role}"
],
 "Description": "Pipeline role access"
 }
]

Note

In the Principal element, specify the Amazon Resource Name (ARN) of the pipeline
role that you created in the previous step.

For instructions to create a collection, see Creating collections.

Step 3: Create a pipeline

Finally, create a pipeline in which you specify the pipeline role. The pipeline assumes this role in
order to sign requests to the OpenSearch Serverless collection sink.

Allowing pipelines to write to serverless collections 197

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-network.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-data-access.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-manage.html#serverless-create

Amazon OpenSearch Service Developer Guide

Make sure to do the following:

• For the hosts option, specify the endpoint of the collection that you created in step 2.

• For the sts_role_arn option, specify the Amazon Resource Name (ARN) of the pipeline role
that you created in step 1.

• Set the serverless option to true.

version: "2"
log-pipeline:
 source:
 http:
 path: "/log/ingest"
 processor:
 - date:
 from_time_received: true
 destination: "@timestamp"
 sink:
 - opensearch:
 hosts: ["https://{collection-id}.{region}.aoss.amazonaws.com"]
 index: "my-index"
 aws:
 serverless: true
 #If the policy doesn't exist, a new policy will be created.
 serverless_options:
 network_policy_name: "serverless-network-policy"
 region: "us-east-1"
 sts_role_arn: "arn:aws:iam::{account-id}:role/{pipeline-role}"

For a full reference of required and unsupported parameters, see the section called “Supported
plugins and options”.

Getting started with Amazon OpenSearch Ingestion

Amazon OpenSearch Ingestion supports ingesting data into managed OpenSearch Service domains
and OpenSearch Serverless collections. The following tutorials walk you through the basic steps to
get a pipeline up and running for each of these use cases.

Getting started with OpenSearch Ingestion 198

Amazon OpenSearch Service Developer Guide

Note

Pipeline creation will fail if you don't set up the correct permissions. See the section called
“Setting up roles and users” for a better understanding of the required roles before you
create a pipeline.

Topics

• Tutorial: Ingesting data into a domain using Amazon OpenSearch Ingestion

• Tutorial: Ingesting data into a collection using Amazon OpenSearch Ingestion

Tutorial: Ingesting data into a domain using Amazon OpenSearch
Ingestion

This tutorial shows you how to use Amazon OpenSearch Ingestion to configure a simple pipeline
and ingest data into an Amazon OpenSearch Service domain. A pipeline is a resource that
OpenSearch Ingestion provisions and manages. You can use a pipeline to filter, enrich, transform,
normalize, and aggregate data for downstream analytics and visualization in OpenSearch Service.

This tutorial walks you through the basic steps to get a pipeline up and running quickly. For more
detailed information, see the section called “Creating pipelines”.

You'll complete the following steps in this tutorial:

1. Create the pipeline role.

2. Create a domain.

3. Create a pipeline.

4. Ingest some sample data.

Within the tutorial, you'll create the following resources:

• A pipeline named ingestion-pipeline

• A domain named ingestion-domain that the pipeline will write to

• An IAM role named PipelineRole that the pipeline will assume in order to write to the domain

Tutorial: Ingest data into a domain 199

Amazon OpenSearch Service Developer Guide

Required permissions

To complete this tutorial, you must have the correct IAM permissions. Your user or role must have
an attached identity-based policy with the following minimum permissions. These permissions
allow you to create a pipeline role (iam:Create), create or modify a domain (es:*), and work with
pipelines (osis:*).

In addition, the iam:PassRole permission is required on the pipeline role resource. This
permission allows you to pass the pipeline role to OpenSearch Ingestion so that it can write data to
the domain.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Resource":"*",
 "Action":[
 "osis:*",
 "iam:Create*",
 "es:*"
]
 },
 {
 "Resource":[
 "arn:aws:iam::{your-account-id}:role/PipelineRole"
],
 "Effect":"Allow",
 "Action":[
 "iam:PassRole"
]
 }
]
}

Step 1: Create the pipeline role

First, create a role that the pipeline will assume in order to access the OpenSearch Service domain
sink. You'll include this role within the pipeline configuration later in this tutorial.

Tutorial: Ingest data into a domain 200

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/security-iam-serverless.html#security-iam-serverless-id-based-policies

Amazon OpenSearch Service Developer Guide

To create the pipeline role

1. Open the Amazon Identity and Access Management console at https://
console.aws.amazon.com/iamv2/.

2. Choose Policies, and then choose Create policy.

3. In this tutorial, you'll ingest data into a domain called ingestion-domain, which you'll create
in the next step. Select JSON and paste the following policy into the editor. Replace {your-
account-id} with your account ID, and modify the Region if necessary.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "es:DescribeDomain",
 "Resource": "arn:aws:es:us-east-1:{your-account-id}:domain/ingestion-
domain"
 },
 {
 "Effect": "Allow",
 "Action": "es:ESHttp*",
 "Resource": "arn:aws:es:us-east-1:{your-account-id}:domain/ingestion-
domain/*"
 }
]
}

If you want to write data to an existing domain, replace ingestion-domain with the name of
your domain.

Note

For simplicity in this tutorial, we use a fairly broad access policy. In production
environments, however, we recommend that you apply a more restrictive access policy
to your pipeline role. For an example policy that provides the minimum required
permissions, see the section called “Allowing pipelines to write to domains”.

4. Choose Next, choose Next, and name your policy pipeline-policy.

5. Choose Create policy.

Tutorial: Ingest data into a domain 201

https://console.aws.amazon.com/iamv2/
https://console.aws.amazon.com/iamv2/

Amazon OpenSearch Service Developer Guide

6. Next, create a role and attach the policy to it. Choose Roles, and then choose Create role.

7. Choose Custom trust policy and paste the following policy into the editor:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"osis-pipelines.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

8. Choose Next. Then search for and select pipeline-policy (which you just created).

9. Choose Next and name the role PipelineRole.

10. Choose Create role.

Remember the Amazon Resource Name (ARN) of the role (for example, arn:aws:iam::{your-
account-id}:role/PipelineRole). You'll need it when you create your pipeline.

Step 2: Create a domain

Next, create a domain named ingestion-domain to ingest data into.

Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home and create a domain that meets the following requirements:

• Is running OpenSearch 1.0 or later, or Elasticsearch 7.4 or later

• Uses public access

• Does not use fine-grained access control

Tutorial: Ingest data into a domain 202

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

Note

These requirements are meant to ensure simplicity in this tutorial. In production
environments, you can configure a domain with VPC access and/or use fine-grained access
control. For instructions, see the rest of the topics in this chapter.

The domain must have an access policy that grants permission to PipelineRole, which you
created in the previous step. The pipeline will assume this role (named sts_role_arn in the pipeline
configuration) in order to send data to the OpenSearch Service domain sink.

Make sure that the domain has the following domain-level access policy, which grants
PipelineRole access to the domain. Replace the Region and account ID with your own:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{your-account-id}:role/PipelineRole"
 },
 "Action": "es:*",
 "Resource": "arn:aws:es:us-east-1:{your-account-id}:domain/ingestion-domain/*"
 }
]
}

For more information about creating domain-level access policies, see Resource-based access
policies.

If you already have a domain created, modify its existing access policy to provide the above
permissions to PipelineRole.

Note

Remember the domain endpoint (for example, https://search-ingestion-
domain.us-east-1.es.amazonaws.com). You'll use it in the next step to configure your
pipeline.

Tutorial: Ingest data into a domain 203

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/ac.html#ac-types-resource
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/ac.html#ac-types-resource

Amazon OpenSearch Service Developer Guide

Step 3: Create a pipeline

Now that you have a domain and a role with the appropriate access rights, you can create a
pipeline.

To create a pipeline

1. Within the Amazon OpenSearch Service console, choose Pipelines from the left navigation
pane.

2. Choose Create pipeline.

3. Name the pipeline ingestion-pipeline and keep the capacity settings as their defaults.

4. In this tutorial, you'll create a simple sub-pipeline called log-pipeline that uses the Http
source plugin. This plugin accepts log data in a JSON array format. You'll specify a single
OpenSearch Service domain as the sink, and ingest all data into the application_logs
index.

Under Pipeline configuration, paste the following YAML configuration into the editor:

version: "2"
log-pipeline:
 source:
 http:
 path: "/${pipelineName}/test_ingestion_path"
 processor:
 - date:
 from_time_received: true
 destination: "@timestamp"
 sink:
 - opensearch:
 hosts: ["https://search-ingestion-domain.us-east-1.es.amazonaws.com"]
 index: "application_logs"
 aws:
 sts_role_arn: "arn:aws:iam::{your-account-id}:role/PipelineRole"
 region: "us-east-1"

Tutorial: Ingest data into a domain 204

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/

Amazon OpenSearch Service Developer Guide

Note

The path option specifies the URI path for ingestion. This option is required for pull-
based sources. For more information, see the section called “Specifying the ingestion
path”.

5. Replace the hosts URL with the endpoint of the domain that you created (or modified) in the
previous section. Replace the sts_role_arn parameter with the ARN of PipelineRole.

6. Choose Validate pipeline and make sure that the validation succeeds.

7. For simplicity in this tutorial, configure public access for the pipeline. Under Network, choose
Public access.

For information about configuring VPC access, see the section called “Securing pipelines within
a VPC”.

8. Keep log publishing enabled in case you encounter any issues while completing this tutorial.
For more information, see the section called “Monitoring pipeline logs”.

Specify the following log group name: /aws/vendedlogs/OpenSearchIngestion/
ingestion-pipeline/audit-logs

9. Choose Next. Review your pipeline configuration and choose Create pipeline. The pipeline
takes 5–10 minutes to become active.

Step 4: Ingest some sample data

When the pipeline status is Active, you can start ingesting data into it. You must sign all HTTP
requests to the pipeline using Signature Version 4. Use an HTTP tool such as Postman or awscurl
to send some data to the pipeline. As with indexing data directly to a domain, ingesting data into a
pipeline always requires either an IAM role or an IAM access key and secret key.

Note

The principal signing the request must have the osis:Ingest IAM permission.

First, get the ingestion URL from the Pipeline settings page:

Tutorial: Ingest data into a domain 205

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://www.getpostman.com/
https://github.com/okigan/awscurl
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html

Amazon OpenSearch Service Developer Guide

Then, ingest some sample data. The following request uses awscurl to send a single log file to the
application_logs index:

awscurl --service osis --region us-east-1 \
 -X POST \
 -H "Content-Type: application/json" \
 -d
 '[{"time":"2014-08-11T11:40:13+00:00","remote_addr":"122.226.223.69","status":"404","request":"GET
 http://www.k2proxy.com//hello.html HTTP/1.1","http_user_agent":"Mozilla/4.0
 (compatible; WOW64; SLCC2;)"}]' \
 https://{pipeline-endpoint}.us-east-1.osis.amazonaws.com/log-pipeline/
test_ingestion_path

You should see a 200 OK response. If you get an authentication error, it might be because you're
ingesting data from a separate account than the pipeline is in. See the section called “Fixing
permissions issues”.

Now, query the application_logs index to ensure that your log entry was successfully ingested:

awscurl --service es --region us-east-1 \
 -X GET \
 https://search-{ingestion-domain}.us-east-1.es.amazonaws.com/application_logs/
_search | json_pp

Sample response:

{
 "took":984,
 "timed_out":false,
 "_shards":{

Tutorial: Ingest data into a domain 206

https://github.com/okigan/awscurl

Amazon OpenSearch Service Developer Guide

 "total":1,
 "successful":5,
 "skipped":0,
 "failed":0
 },
 "hits":{
 "total":{
 "value":1,
 "relation":"eq"
 },
 "max_score":1.0,
 "hits":[
 {
 "_index":"application_logs",
 "_type":"_doc",
 "_id":"z6VY_IMBRpceX-DU6V4O",
 "_score":1.0,
 "_source":{
 "time":"2014-08-11T11:40:13+00:00",
 "remote_addr":"122.226.223.69",
 "status":"404",
 "request":"GET http://www.k2proxy.com//hello.html HTTP/1.1",
 "http_user_agent":"Mozilla/4.0 (compatible; WOW64; SLCC2;)",
 "@timestamp":"2022-10-21T21:00:25.502Z"
 }
 }
]
 }
}

Fixing permissions issues

If you followed the steps in the tutorial and you still see authentication errors when you try to
ingest data, it might be because the role that is writing to a pipeline is in a different Amazon Web
Services account than the pipeline itself. In this case, you need to create and assume a role that
specifically enables you to ingest data. For instructions, see the section called “Providing cross-
account ingestion access”.

Related resources

This tutorial presented a simple use case of ingesting a single document over HTTP. In production
scenarios, you'll configure your client applications (such as Fluent Bit, Kubernetes, or the

Tutorial: Ingest data into a domain 207

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html

Amazon OpenSearch Service Developer Guide

OpenTelemetry Collector) to send data to one or more pipelines. Your pipelines will likely be more
complex than the simple example in this tutorial.

To get started configuring your clients and ingesting data, see the following resources:

• Creating and managing pipelines

• Configuring your clients to send data to OpenSearch Ingestion

• Data Prepper documentation

Tutorial: Ingesting data into a collection using Amazon OpenSearch
Ingestion

This tutorial shows you how to use Amazon OpenSearch Ingestion to configure a simple pipeline
and ingest data into an Amazon OpenSearch Serverless collection. A pipeline is a resource that
OpenSearch Ingestion provisions and manages. You can use a pipeline to filter, enrich, transform,
normalize, and aggregate data for downstream analytics and visualization in OpenSearch Service.

For a tutorial that demonstrates how to ingest data into a provisioned OpenSearch Service domain,
see the section called “Tutorial: Ingest data into a domain”.

You'll complete the following steps in this tutorial:

1. Create the pipeline role.

2. Create a collection.

3. Create a pipeline.

4. Ingest some sample data.

Within the tutorial, you'll create the following resources:

• A pipeline named ingestion-pipeline-serverless

• A collection named ingestion-collection that the pipeline will write to

• An IAM role named PipelineRole that the pipeline will assume in order to write to the
collection

Tutorial: Ingest data into a collection 208

https://opensearch.org/docs/latest/clients/data-prepper/index/

Amazon OpenSearch Service Developer Guide

Required permissions

To complete this tutorial, you must have the correct IAM permissions. Your user or role must have
an attached identity-based policy with the following minimum permissions. These permissions
allow you to create a pipeline role (iam:Create*), create or modify a collection (aoss:*), and
work with pipelines (osis:*).

In addition, the iam:PassRole permission is required on the pipeline role resource. This
permission allows you to pass the pipeline role to OpenSearch Ingestion so that it can write data to
the collection.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Resource":"*",
 "Action":[
 "osis:*",
 "iam:Create*",
 "aoss:*"
]
 },
 {
 "Resource":[
 "arn:aws:iam::{your-account-id}:role/PipelineRole"
],
 "Effect":"Allow",
 "Action":[
 "iam:PassRole"
]
 }
]
}

Step 1: Create the pipeline role

First, create a role that the pipeline will assume in order to access the OpenSearch Serverless
collection sink. You'll include this role within the pipeline configuration later in this tutorial.

Tutorial: Ingest data into a collection 209

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/security-iam-serverless.html#security-iam-serverless-id-based-policies

Amazon OpenSearch Service Developer Guide

To create the pipeline role

1. Open the Amazon Identity and Access Management console at https://
console.aws.amazon.com/iamv2/.

2. Choose Policies, and then choose Create policy.

3. Select JSON and paste the following policy into the editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "aoss:BatchGetCollection",
 "aoss:APIAccessAll"
],
 "Effect": "Allow",
 "Resource": "arn:aws:aoss:{region}:{your-account-id}:collection/{collection-
id}"
 },
 {
 "Action": [
 "aoss:CreateSecurityPolicy",
 "aoss:GetSecurityPolicy",
 "aoss:UpdateSecurityPolicy"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aoss:collection": "{collection-name}"
 }
 }
 }
]
}

4. Choose Next, choose Next, and name your policy collection-pipeline-policy.

5. Choose Create policy.

6. Next, create a role and attach the policy to it. Choose Roles, and then choose Create role.

7. Choose Custom trust policy and paste the following policy into the editor:

Tutorial: Ingest data into a collection 210

https://console.aws.amazon.com/iamv2/
https://console.aws.amazon.com/iamv2/

Amazon OpenSearch Service Developer Guide

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"osis-pipelines.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

8. Choose Next. Then search for and select collection-pipeline-policy (which you just created).

9. Choose Next and name the role PipelineRole.

10. Choose Create role.

Remember the Amazon Resource Name (ARN) of the role (for example, arn:aws:iam::{your-
account-id}:role/PipelineRole). You'll need it when you create your pipeline.

Step 2: Create a collection

Next, create a collection to ingest data into. We'll name the collection ingestion-collection.

1. Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. Choose Collections from the left navigation and choose Create collection.

3. Name the collection ingestion-collection.

4. Under Network access settings, change the access type to Public.

5. Keep all other settings as their defaults and choose Next.

6. For Definition method, choose JSON and paste the following policy into the editor. This policy
does two things:

• Allows the pipeline role to write to the collection.

• Allows you to read from the collection. Later, after you ingest some sample data into the
pipeline, you'll query the collection to ensure that the data was successfully ingested and
written to the index.

Tutorial: Ingest data into a collection 211

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

[
 {
 "Rules": [
 {
 "Resource": [
 "index/ingestion-collection/*"
],
 "Permission": [
 "aoss:CreateIndex",
 "aoss:UpdateIndex",
 "aoss:DescribeIndex",
 "aoss:ReadDocument",
 "aoss:WriteDocument"
],
 "ResourceType": "index"
 }
],
 "Principal": [
 "arn:aws:iam::{your-account-id}:role/PipelineRole",
 "arn:aws:iam::{your-account-id}:role/Admin"
],
 "Description": "Rule 1"
 }
]

7. Replace the Principal elements. The first principal should specify the pipeline role that you
created. The second should specify a user or role that you can use to query the collection later.

8. Choose Next. Name the access policy pipeline-domain-access and choose Next again.

9. Review your collection configuration and choose Submit.

When the collection is active, note the OpenSearch endpoint under Endpoint (for example,
https://{collection-id}.us-east-1.aoss.amazonaws.com). You'll need it when you
create your pipeline.

Step 3: Create a pipeline

Now that you have a collection and a role with the appropriate access rights, you can create a
pipeline.

Tutorial: Ingest data into a collection 212

Amazon OpenSearch Service Developer Guide

To create a pipeline

1. Within the Amazon OpenSearch Service console, choose Pipelines from the left navigation
pane.

2. Choose Create pipeline.

3. Name the pipeline serverless-ingestion and keep the capacity settings as their defaults.

4. In this tutorial, we'll create a simple sub-pipeline called log-pipeline that uses the HTTP
source plugin. The plugin accepts log data in a JSON array format. We'll specify a single
OpenSearch Serverless collection as the sink, and ingest all data into the my_logs index.

Under Pipeline configuration, paste the following YAML configuration into the editor:

version: "2"
log-pipeline:
 source:
 http:
 path: "/${pipelineName}/test_ingestion_path"
 processor:
 - date:
 from_time_received: true
 destination: "@timestamp"
 sink:
 - opensearch:
 hosts: ["https://{collection-id}.us-east-1.aoss.amazonaws.com"]
 index: "my_logs"
 aws:
 sts_role_arn: "arn:aws:iam::{your-account-id}:role/PipelineRole"
 region: "us-east-1"
 serverless: true

5. Replace the hosts URL with the endpoint of the collection that you created in the previous
section. Replace the sts_role_arn parameter with the ARN of PipelineRole. Optionally,
modify the region.

6. Choose Validate pipeline and make sure that the validation succeeds.

7. For simplicity in this tutorial, we'll configure public access for the pipeline. Under Network,
choose Public access.

For information about configuring VPC access, see the section called “Securing pipelines within
a VPC”.

Tutorial: Ingest data into a collection 213

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/

Amazon OpenSearch Service Developer Guide

8. Keep log publishing enabled in case you encounter any issues while completing this tutorial.
For more information, see the section called “Monitoring pipeline logs”.

Specify the following log group name: /aws/vendedlogs/OpenSearchIngestion/
serverless-ingestion/audit-logs

9. Choose Next. Review your pipeline configuration and choose Create pipeline. The pipeline
takes 5–10 minutes to become active.

Step 4: Ingest some sample data

When the pipeline status is Active, you can start ingesting data into it. You must sign all HTTP
requests to the pipeline using Signature Version 4. Use an HTTP tool such as Postman or awscurl to
send some data to the pipeline. As with indexing data directly to a collection, ingesting data into a
pipeline always requires either an IAM role or an IAM access key and secret key.

Note

The principal signing the request must have the osis:Ingest IAM permission.

First, get the ingestion URL from the Pipeline settings page:

Then, ingest some sample data. The following sample request uses awscurl to send a single log file
to the my_logs index:

awscurl --service osis --region us-east-1 \
 -X POST \
 -H "Content-Type: application/json" \

Tutorial: Ingest data into a collection 214

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://www.getpostman.com/
https://github.com/okigan/awscurl
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html
https://github.com/okigan/awscurl

Amazon OpenSearch Service Developer Guide

 -d
 '[{"time":"2014-08-11T11:40:13+00:00","remote_addr":"122.226.223.69","status":"404","request":"GET
 http://www.k2proxy.com//hello.html HTTP/1.1","http_user_agent":"Mozilla/4.0
 (compatible; WOW64; SLCC2;)"}]' \
 https://{pipeline-endpoint}.us-east-1.osis.amazonaws.com/log-pipeline/
test_ingestion_path

You should see a 200 OK response.

Now, query the my_logs index to ensure that the log entry was successfully ingested:

awscurl --service aoss --region us-east-1 \
 -X GET \
 https://{collection-id}.us-east-1.aoss.amazonaws.com/my_logs/_search | json_pp

Sample response:

{
 "took":348,
 "timed_out":false,
 "_shards":{
 "total":0,
 "successful":0,
 "skipped":0,
 "failed":0
 },
 "hits":{
 "total":{
 "value":1,
 "relation":"eq"
 },
 "max_score":1.0,
 "hits":[
 {
 "_index":"my_logs",
 "_id":"1%3A0%3ARJgDvIcBTy5m12xrKE-y",
 "_score":1.0,
 "_source":{
 "time":"2014-08-11T11:40:13+00:00",
 "remote_addr":"122.226.223.69",
 "status":"404",
 "request":"GET http://www.k2proxy.com//hello.html HTTP/1.1",
 "http_user_agent":"Mozilla/4.0 (compatible; WOW64; SLCC2;)",

Tutorial: Ingest data into a collection 215

Amazon OpenSearch Service Developer Guide

 "@timestamp":"2023-04-26T05:22:16.204Z"
 }
 }
]
 }
}

Related resources

This tutorial presented a simple use case of ingesting a single document over HTTP. In production
scenarios, you'll configure your client applications (such as Fluent Bit, Kubernetes, or the
OpenTelemetry Collector) to send data to one or more pipelines. Your pipelines will likely be more
complex than the simple example in this tutorial.

To get started configuring your clients and ingesting data, see the following resources:

• Creating and managing pipelines

• Configuring your clients to send data to OpenSearch Ingestion

• Data Prepper documentation

Overview of pipeline features in Amazon OpenSearch Ingestion

Amazon OpenSearch Ingestion provisions pipelines, which consist of a source, a buffer, zero or
more processors, and one or more sinks. Ingestion pipelines are powered by Data Prepper as the
data engine. For an overview of the various components of a pipeline, see the section called “Key
concepts”.

The following sections provide an overview of some of the most commonly used features in
Amazon OpenSearch Ingestion.

Note

This is not an exhaustive list of features that are available for pipelines. For comprehensive
documentation of all available pipeline functionality, see the Data Prepper documentation.
Note that OpenSearch Ingestion places some constraints on the plugins and options that
you can use. For more information, see the section called “Supported plugins and options”.

Topics

Pipeline features overview 216

https://opensearch.org/docs/latest/clients/data-prepper/index/
https://opensearch.org/docs/latest/data-prepper/pipelines/pipelines/

Amazon OpenSearch Service Developer Guide

• Persistent buffering

• Splitting

• Chaining

• Dead-letter queues

• Index management

• End-to-end acknowledgement

• Source back pressure

Persistent buffering

Persistent buffering protects the durability of data entering a pipeline. With persistent buffering,
you don't need need to set up and manage a standalone buffer.

OpenSearch Ingestion automatically determines the required buffering capacity from your pipeline
configuration. It allocates the appropriate amount of compute and buffering capacity from the
pool of minimum and maximum capacity units that are configured for the pipeline.

To tune your persistent buffer, you specify both minimum and maximum capacity units for a
pipeline. OpenSearch Ingestion internally allocates the necessary compute and buffering capacity
based on the Ingestion OpenSearch Compute Units (Ingestion OCUs) that you specify. For more
information about specifying minimum and maximum capacity units for a pipeline, see Scaling
pipelines.

By default, pipelines use an Amazon managed key to encrypt buffer data. Pipelines with persistent
buffering and Amazon managed keys don't need any additional permissions for the pipeline role.
For more information about Amazon managed keys, see Amazon KMS keys.

Alternately, you can specify a customer managed key and add the following IAM permissions to the
pipeline role. For more information, see Key policies in Amazon Key Management Service.

Specify the following IAM permissions policy and attach it to your pipeline role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KeyAccess",

Persistent buffering 217

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/ingestion.html#ingestion-scaling
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/ingestion.html#ingestion-scaling
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon OpenSearch Service Developer Guide

 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
]
}

Note

You can enable persistent buffering when you're creating or updating a pipeline. You can
also disable persistent buffering when you're updating a pipeline. If you disable persistent
buffering, your pipeline will be updated to run entirely on in-memory buffering.

Splitting

You can configure an OpenSearch Ingestion pipeline to split incoming events into a sub-pipeline,
allowing you to perform different types of processing on the same incoming event.

The following example pipeline splits incoming events into two sub-pipelines. Each sub-pipeline
uses its own processor to enrich and manipulate the data, and then sends the data to different
OpenSearch indexes.

version: "2"
log-pipeline:
 source:
 http:
 ...
 sink:
 - pipeline:
 name: "logs_enriched_one_pipeline"
 - pipeline:
 name: "logs_enriched_two_pipeline"

logs_enriched_one_pipeline:
 source:
 log-pipeline

Splitting 218

Amazon OpenSearch Service Developer Guide

 processor:
 ...
 sink:
 - opensearch:
 # Provide a domain or collection endpoint
 # Enable the 'serverless' flag if the sink is an OpenSearch Serverless
 collection
 aws:
 ...
 index: "enriched_one_logs"

logs_enriched_two_pipeline:
 source:
 log-pipeline
 processor:
 ...
 sink:
 - opensearch:
 # Provide a domain or collection endpoint
 # Enable the 'serverless' flag if the sink is an OpenSearch Serverless
 collection
 aws:
 ...
 index: "enriched_two_logs"

Chaining

You can chain multiple sub-pipelines together in order to perform data processing and enrichment
in chunks. In other words, you can enrich an incoming event with certain processing capabilities in
one sub-pipeline, then send it to another sub-pipeline for additional enrichment with a different
processor, and finally send it to its OpenSearch sink.

In the following example, the log_pipeline sub-pipeline enriches an incoming log event with
a set of processors, then sends the event to an OpenSearch index named enriched_logs. The
pipeline sends the same event to the log_advanced_pipeline sub-pipeline, which processes it
and sends it to a different OpenSearch index named enriched_advanced_logs.

version: "2"
log-pipeline:
 source:
 http:
 ...

Chaining 219

Amazon OpenSearch Service Developer Guide

 processor:
 ...
 sink:
 - opensearch:
 # Provide a domain or collection endpoint
 # Enable the 'serverless' flag if the sink is an OpenSearch Serverless
 collection
 aws:
 ...
 index: "enriched_logs"
 - pipeline:
 name: "log_advanced_pipeline"

log_advanced_pipeline:
 source:
 log-pipeline
 processor:
 ...
 sink:
 - opensearch:
 # Provide a domain or collection endpoint
 # Enable the 'serverless' flag if the sink is an OpenSearch Serverless
 collection
 aws:
 ...
 index: "enriched_advanced_logs"

Dead-letter queues

Dead-letter queues (DLQs) are destinations for events that a pipeline fails to write to a sink. In
OpenSearch Ingestion, you must specify a Amazon S3 bucket with appropriate write permissions
to be used as the DLQ. You can add a DLQ configuration to every sink within a pipeline. When a
pipeline encounters write errors, it creates DLQ objects in the configured S3 bucket. DLQ objects
exist within a JSON file as an array of failed events.

A pipeline writes events to the DLQ when either of the following conditions are met:

• The max_retries for the OpenSearch sink have been exhausted. OpenSearch Ingestion requires
a minimum of 16 for this option.

• Events are rejected by the sink due to an error condition.

Dead-letter queues 220

Amazon OpenSearch Service Developer Guide

Configuration

To configure a dead-letter queue for a sub-pipeline, specify the dlq option within the
opensearch sink configuration:

apache-log-pipeline:
 ...
 sink:
 opensearch:
 dlq:
 s3:
 bucket: "my-dlq-bucket"
 key_path_prefix: "dlq-files"
 region: "us-west-2"
 sts_role_arn: "arn:aws:iam::123456789012:role/dlq-role"

Files written to this S3 DLQ will have the following naming pattern:

dlq-v${version}-${pipelineName}-${pluginId}-${timestampIso8601}-${uniqueId}

For more information, see Dead-Letter Queues (DLQ).

For instructions to configure the sts_role_arn role, see the section called “Writing to a dead-
letter queue”.

Example

Consider the following example DLQ file:

dlq-v2-apache-log-pipeline-opensearch-2023-04-05T15:26:19.152938Z-e7eb675a-
f558-4048-8566-dac15a4f8343

Here's an example of data that failed to be written to the sink, and is sent to the DLQ S3 bucket for
further analysis:

Record_0
pluginId "opensearch"
pluginName "opensearch"
pipelineName "apache-log-pipeline"
failedData
index "logs"
indexId null

Dead-letter queues 221

https://opensearch.org/docs/latest/data-prepper/pipelines/dlq/

Amazon OpenSearch Service Developer Guide

status 0
message "Number of retries reached the limit of max retries (configured value 15)"
document
log "sample log"
timestamp "2023-04-14T10:36:01.070Z"

Record_1
pluginId "opensearch"
pluginName "opensearch"
pipelineName "apache-log-pipeline"
failedData
index "logs"
indexId null
status 0
message "Number of retries reached the limit of max retries (configured value 15)"
document
log "another sample log"
timestamp "2023-04-14T10:36:01.071Z"

Index management

Amazon OpenSearch Ingestion has many index management capabilities, including the following.

Creating indexes

You can specify an index name in a pipeline sink and OpenSearch Ingestion creates the index when
it provisions the pipeline. If an index already exists, the pipeline uses it to index incoming events.
If you stop and restart a pipeline, or if you update its YAML configuration, the pipeline attempts to
create new indexes if they don't already exist. A pipeline can never delete an index.

The following example sinks create two indexes when the pipeline is provisioned:

sink:
 - opensearch:
 index: apache_logs
 - opensearch:
 index: nginx_logs

Generating index names and patterns

You can generate dynamic index names by using variables from the fields of incoming events.
In the sink configuration, use the format string${} to signal string interpolation, and use

Index management 222

Amazon OpenSearch Service Developer Guide

a JSON pointer to extract fields from events. The options for index_type are custom or
management_disabled. Because index_type defaults to custom for OpenSearch domains and
management_disabled for OpenSearch Serverless collections, it can be left unset.

For example, the following pipeline selects the metadataType field from incoming events to
generate index names.

pipeline:
 ...
 sink:
 opensearch:
 index: "metadata-${metadataType}"

The following configuration continues to generate a new index every day or every hour.

pipeline:
 ...
 sink:
 opensearch:
 index: "metadata-${metadataType}-%{yyyy.MM.dd}"

pipeline:
 ...
 sink:
 opensearch:
 index: "metadata-${metadataType}-%{yyyy.MM.dd.HH}"

The index name can also be a plain string with a date-time pattern as a suffix, such as my-index-
%{yyyy.MM.dd}. When the sink sends data to OpenSearch, it replaces the date-time pattern
with UTC time and creates a new index for each day, such as my-index-2022.01.25. For more
information, see the DateTimeFormatter class.

This index name can also be a formatted string (with or without a date-time pattern suffix), such
as my-${index}-name. When the sink sends data to OpenSearch, it replaces the "${index}"
portion with the value in the event being processed. If the format is "${index1/index2/
index3}", it replaces the field index1/index2/index3 with its value in the event.

Generating document IDs

A pipeline can generate a document ID while indexing documents to OpenSearch. It can infer these
document IDs from the fields within incoming events.

Index management 223

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Amazon OpenSearch Service Developer Guide

This example uses the uuid field from an incoming event to generate a document ID.

pipeline:
 ...
 sink:
 opensearch:
 index_type: custom
 index: "metadata-${metadataType}-%{yyyy.MM.dd}"
 document_id_field: "uuid"

In the following example, the Add entries processor merges the fields uuid and other_field
from the incoming event to generate a document ID.

The create action ensures that documents with identical IDs aren't overwritten. The pipeline
drops duplicate documents without any retry or DLQ event. This is a reasonable expectation for
pipeline authors who use this action, because the goals is to avoid updating existing documents.

pipeline:
 ...
 processor:
 - add_entries:
 entries:
 - key: "my_doc_id_field"
 format: "${uuid}-${other_field}"
 sink:
 - opensearch:
 ...
 action: "create"
 document_id_field: "my_doc_id_field"

You might want to set an event's document ID to a field from a sub-object. In the following
example, the OpenSearch sink plugin uses the sub-object info/id to generate a document ID.

sink:
 - opensearch:
 ...
 document_id_field: info/id

Given the following event, the pipeline will generate a document with the _id field set to
json001:

Index management 224

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/add-entries/

Amazon OpenSearch Service Developer Guide

{
 "fieldA":"arbitrary value",
 "info":{
 "id":"json001",
 "fieldA":"xyz",
 "fieldB":"def"
 }
}

Generating routing IDs

You can use the routing_field option within the OpenSearch sink plugin to set the value of a
document routing property (_routing) to a value from an incoming event.

Routing supports JSON pointer syntax, so nested fields also are available, not just top-level fields.

sink:
 - opensearch:
 ...
 routing_field: metadata/id
 document_id_field: id

Given the following event, the plugin generates a document with the _routing field set to abcd:

{
 "id":"123",
 "metadata":{
 "id":"abcd",
 "fieldA":"valueA"
 },
 "fieldB":"valueB"
}

For instructions to create index templates that pipelines can use during index creation, see Index
templates.

End-to-end acknowledgement

OpenSearch Ingestion ensures the durability and reliability of data by tracking its delivery from
source to sinks in stateless pipelines using end-to-end acknowledgement. Currently, only the S3
source plugin supports end-to-end acknowledgement.

End-to-end acknowledgement 225

https://opensearch.org/docs/latest/im-plugin/index-templates/
https://opensearch.org/docs/latest/im-plugin/index-templates/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/

Amazon OpenSearch Service Developer Guide

With end-to-end acknowledgement, the pipeline source plugin creates an acknowledgement
set to monitor a batch of events. It receives a positive acknowledgement when those events are
successfully sent to their sinks, or a negative acknowledgement when any of the events could not
be sent to their sinks.

In the event of a failure or crash of a pipeline component, or if a source fails to receive an
acknowledgement, the source times out and takes necessary actions such as retrying or logging
the failure. If the pipeline has multiple sinks or multiple sub-pipelines configured, event-level
acknowledgements are sent only after the event is sent to all sinks in all sub-pipelines. If a sink has
a DLQ configured, end-to-end acknowledgements also tracks events written to the DLQ.

To enable end-to-end acknowledgement, include the acknowledgments option within the source
configuration:

s3-pipeline:
 source:
 s3:
 acknowledgments: true
...

Source back pressure

A pipeline can experience back pressure when it's busy processing data, or if its sinks are
temporarily down or slow to ingest data. OpenSearch Ingestion has different ways of handling
back pressure depending on the source plugin that a pipeline is using.

HTTP source

Pipelines that use the HTTP source plugin handle back pressure differently depending on which
pipeline component is congested:

• Buffers – When buffers are full, the pipeline starts returning HTTP status REQUEST_TIMEOUT
with error code 408 back to the source endpoint. As buffers are freed up, the pipeline starts
processing HTTP events again.

• Source threads – When all HTTP source threads are busy executing requests and the
unprocessed request queue size has exceeded the maximum allowed number of requests, the
pipeline starts to return HTTP status TOO_MANY_REQUESTS with error code 429 back to the
source endpoint. When the request queue drops below the maximum allowed queue size, the
pipeline starts processing requests again.

Source back pressure 226

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/

Amazon OpenSearch Service Developer Guide

OTel source

When buffers are full for pipelines that use OpenTelemetry sources (OTel logs, OTel metrics, and
OTel trace), the pipeline starts to return HTTP status REQUEST_TIMEOUT with error code 408 to
the source endpoint. As buffers are freed up, the pipeline starts processing events again.

S3 source

When buffers are full for pipelines with an S3 source, the pipelines stop processing SQS
notifications. As the buffers are freed up, the pipelines start processing notifications again.

If a sink is down or unable to ingest data and end-to-end acknowledgement is enabled
for the source, the pipeline stops processing SQS notifications until it receives a successful
acknowledgement from all sinks.

Creating Amazon OpenSearch Ingestion pipelines

A pipeline is the mechanism that Amazon OpenSearch Ingestion uses to move data from its source
(where the data comes from) to its sink (where the data goes). In OpenSearch Ingestion, the sink
will always be a single Amazon OpenSearch Service domain, while the source of your data could be
clients like Amazon S3, Fluent Bit, or the OpenTelemetry Collector.

For more information, see Pipelines in the OpenSearch documentation.

Topics

• Prerequisites and required roles

• Permissions required

• Specifying the pipeline version

• Specifying the ingestion path

• Creating pipelines

• Tracking the status of pipeline creation

• Using blueprints to create a pipeline

Prerequisites and required roles

In order to create an OpenSearch Ingestion pipeline, you must have the following resources:

Creating pipelines 227

https://github.com/opensearch-project/data-prepper/tree/main/data-prepper-plugins/otel-logs-source
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-metrics-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/
https://opensearch.org/docs/latest/clients/data-prepper/pipelines/

Amazon OpenSearch Service Developer Guide

• An IAM role that OpenSearch Ingestion will assume in order to write to the sink. You will include
this role ARN in your pipeline configuration.

• An OpenSearch Service domain or OpenSearch Serverless collection to act as the sink. If you're
writing to a domain, it must be running OpenSearch 1.0 or later, or Elasticsearch 7.4 or later. The
sink must have an access policy that grants the appropriate permissions to your IAM pipeline
role.

For instructions to create these resources, see the following topics:

• the section called “Allowing pipelines to write to domains”

• the section called “Allowing pipelines to write to serverless collections”

Note

If you're writing to a domain that uses fine-grained access control, there are extra steps you
need to complete. See the section called “Step 3: Map the pipeline role (only for domains
that use fine-grained access control)”.

Permissions required

OpenSearch Ingestion uses the following IAM permissions for creating pipelines:

• osis:CreatePipeline – Create a pipeline.

• osis:ValidatePipeline – Check whether a pipeline configuration is valid.

• iam:PassRole – Pass the pipeline role to OpenSearch Ingestion so that it can write data to the
domain. This permission must be on the pipeline role resource (the ARN that you specify for the
sts_role_arn option in the pipeline configuration), or simply * if you plan to use different
roles in each pipeline.

For example, the following policy grants permission to create a pipeline:

{
 "Version":"2012-10-17",
 "Statement":[
 {

Permissions required 228

Amazon OpenSearch Service Developer Guide

 "Effect":"Allow",
 "Resource":"*",
 "Action":[
 "osis:CreatePipeline",
 "osis:ListPipelineBlueprints",
 "osis:ValidatePipeline"
]
 },
 {
 "Resource":[
 "arn:aws:iam::{your-account-id}:role/{pipeline-role}"
],
 "Effect":"Allow",
 "Action":[
 "iam:PassRole"
]
 }
]
}

OpenSearch Ingestion also includes a permission called osis:Ingest, which is required in order
to send signed requests to the pipeline using Signature Version 4. For more information, see the
section called “Creating an ingestion role”.

Note

In addition, the first user to create a pipeline in an account must have permissions for
the iam:CreateServiceLinkedRole action. For more information, see pipeline role
resource.

For more information about each permission, see Actions, resources, and condition keys for
OpenSearch Ingestion in the Service Authorization Reference.

Specifying the pipeline version

When you configure a pipeline, you must specify the major version of Data Prepper that the
pipeline will run. To specify the version, include the version option in your pipeline configuration:

version: "2"
log-pipeline:

Specifying the pipeline version 229

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_opensearchingestionservice.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_opensearchingestionservice.html
https://github.com/opensearch-project/data-prepper/releases

Amazon OpenSearch Service Developer Guide

 source:
 ...

When you choose Create, OpenSearch Ingestion determines the latest available minor version of
the major version that you specify, and provisions the pipeline with that version. For example, if
you specify version: "2", and the latest supported version of Data Prepper is 2.1.1, OpenSearch
Ingestion provisions your pipeline with version 2.1.1. We don't publicly display the minor version
that your pipeline is running.

In order to upgrade your pipeline when a new major version of Data Prepper is available, edit the
pipeline configuration and specify the new version. You can't downgrade a pipeline to an earlier
version.

Note

OpenSearch Ingestion doesn't immediately support new versions of Data Prepper as soon
as they're released. There will be some lag between when a new version is publicly available
and when it's supported in OpenSearch Ingestion. In addition, OpenSearch Ingestion might
explicitly not support certain major or minor versions altogether. For a comprehensive list,
see the section called “Supported Data Prepper versions”.

Any time you make a change to your pipeline that initiates a blue/green deployment, OpenSearch
Ingestion can upgrade it to the latest minor version of the major version that's currently configured
in the pipeline YAML file. For more information, see the section called “Blue/green deployments for
pipeline updates”. OpenSearch Ingestion can't change the major version of your pipeline unless you
explicitly update the version option within the pipeline configuration.

Specifying the ingestion path

For pull-based sources like OTel trace and OTel metrics, OpenSearch Ingestion requires the
additional path option in your source configuration. The path is a string such as /log/ingest,
which represents the URI path for ingestion. This path defines the URI that you use to send data to
the pipeline.

For example, say you specify the following entry sub-pipeline for an ingestion pipeline named
logs:

entry-pipeline:

Specifying the ingestion path 230

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-metrics-source/

Amazon OpenSearch Service Developer Guide

 source:
 http:
 path: "/my/test_path"

When you ingest data into the pipeline, you must specify the following endpoint in your client
configuration: https://logs-abcdefgh.us-west-2.osis.amazonaws.com/my/test_path.

The path must start with a slash (/) and can contain the special characters '-', '_', '.',
and '/', as well as the ${pipelineName} placeholder. If you use ${pipelineName}
(such as path: "/${pipelineName}/test_path"), the variable is replaced with the
name of the associated sub-pipeline. In this example, it would be https://logs.us-
west-2.osis.amazonaws.com/entry-pipeline/test_path.

Creating pipelines

This section describes how to create OpenSearch Ingestion pipelines using the OpenSearch Service
console and the Amazon CLI.

Console

To create a pipeline

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. Choose Pipelines in the left navigation pane and choose Create pipeline.

3. Enter a name for the pipeline.

4. (Optional) Choose Enable persistent buffer. A persistent buffer stores your data in a disk-
based buffer across multiple AZs. For more information, see Persistent buffering. If you enable
persistent buffer, select the Amazon Key Management Service key to encrypt the buffer data.

5. Configure the minimum and maximum pipeline capacity in Ingestion OpenSearch Compute
Units (OCUs). For more information, see the section called “Scaling pipelines”.

6. Under Pipeline configuration, provide your pipeline configuration in YAML format. A single
pipeline configuration file can contain 1-10 sub-pipelines. Each sub-pipeline is a combination
of a single source, zero or more processors, and a single sink. For OpenSearch Ingestion, the
sink must always be an OpenSearch Service domain. For a list of supported options, see the
section called “Supported plugins and options”.

Creating pipelines 231

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/osis-features-overview.html#persistent-buffering

Amazon OpenSearch Service Developer Guide

Note

You must include the sts_role_arn and sigv4 options in each sub-pipeline. The
pipeline assumes the rule defined in sts_role_arn to sign requests to the domain.
For more information, see the section called “Allowing pipelines to write to domains”.

The following sample configuration file uses the HTTP source and Grok plugins to process
unstructured log data and send it to an OpenSearch Service domain. The sub-pipeline is
named log-pipeline.

version: "2"
log-pipeline:
 source:
 http:
 path: "/log/ingest"
 processor:
 - grok:
 match:
 log: ['%{COMMONAPACHELOG}']
 - date:
 from_time_received: true
 destination: "@timestamp"
 sink:
 - opensearch:
 hosts: ["https://search-my-domain.us-east-1.es.amazonaws.com"]
 index: "apache_logs"
 aws:
 sts_role_arn: "arn:aws:iam::123456789012:role/{pipeline-role}"
 region: "us-east-1"

Note

If you specify multiple sinks within a YAML pipeline definition, they must all be the
same OpenSearch Service domain. An OpenSearch Ingestion pipeline can't write to
multiple different domains.

Creating pipelines 232

Amazon OpenSearch Service Developer Guide

You can build your own pipeline configuration, or choose Upload file and import an existing
configuration for a self-managed Data Prepper pipeline. Alternatively, you can use a
configuration blueprint.

7. After you configure your pipeline, choose Validate pipeline to confirm that your configuration
is correct. If the validation fails, fix the errors and re-run the validation.

8. Under Network, choose either VPC access or Public access. If you choose Public access, skip
to the next step. If you choose VPC access, configure the following settings:

Setting Description

VPC Choose the ID of the virtual private cloud (VPC) that you want to
use. The VPC and pipeline must be in the same Amazon Web Services
Region.

Subnets Choose one or more subnets. OpenSearch Service will place a VPC
endpoint and elastic network interfaces in the subnets.

Security groups Choose one or more VPC security groups that allow your required
application to reach the OpenSearch Ingestion pipeline on the ports (80
or 443) and protocols (HTTP or HTTPs) exposed by the pipeline.

For more information, see the section called “Securing pipelines within a VPC”.

9. (Optional) Under Tags, add one or more tags (key-value pairs) to your pipeline. For more
information, see the section called “Tagging pipelines”.

10. (Optional) Under Log publishing options, turn on pipeline log publishing to Amazon
CloudWatch Logs. We recommend that you enable log publishing so that you can more easily
troubleshoot pipeline issues. For more information, see the section called “Monitoring pipeline
logs”.

11. Choose Next.

12. Review your pipeline configuration and choose Create.

OpenSearch Ingestion runs an asynchronous process to build the pipeline. Once the pipeline status
is Active, you can start ingesting data.

Creating pipelines 233

Amazon OpenSearch Service Developer Guide

Amazon CLI

The create-pipeline command accepts the pipeline configuration as a string or within a .yaml file.
If you provide the configuration as a string, each new line must be escaped with \n. For example,
"log-pipeline:\n source:\n http:\n processor:\n - grok:\n ...

The following sample command creates a pipeline with the following configuration:

• Minimum of 4 Ingestion OCUs, maximum of 10 Ingestion OCUs

• Provisioned within a virtual private cloud (VPC)

• Log publishing enabled

aws osis create-pipeline \
 --pipeline-name my-pipeline \
 --min-units 4 \
 --max-units 10 \
 --log-publishing-options
 IsLoggingEnabled=true,CloudWatchLogDestination={LogGroup="MyLogGroup"} \
 --vpc-options
 SecurityGroupIds={sg-12345678,sg-9012345},SubnetIds=subnet-1212234567834asdf \
 --pipeline-configuration-body "file://pipeline-config.yaml"

OpenSearch Ingestion runs an asynchronous process to build the pipeline. Once the pipeline status
is Active, you can start ingesting data. To check the status of the pipeline, use the GetPipeline
command.

OpenSearch Ingestion API

To create an OpenSearch Ingestion pipeline using the OpenSearch Ingestion API, call the
CreatePipeline operation.

After your pipeline is successfully created, you can configure your client and start ingesting data
into your OpenSearch Service domain. For more information, see the section called “Working with
pipeline integrations”.

Tracking the status of pipeline creation

You can track the status of a pipeline as OpenSearch Ingestion provisions it and prepares it to
ingest data.

Tracking the status of pipeline creation 234

https://docs.amazonaws.cn/cli/latest/reference/osis/create-pipeline.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_GetPipeline.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_CreatePipeline.html

Amazon OpenSearch Service Developer Guide

Console

After you initially create a pipeline, it goes through multiple stages as OpenSearch Ingestion
prepares it to ingest data. To view the various stages of pipeline creation, choose the pipeline name
to see its Pipeline settings page. Under Status, choose View details.

A pipeline goes through the following stages before it's available to ingest data:

• Validation – Validating pipeline configuration. When this stage is complete, all validations have
succeeded.

• Create environment – Preparing and provisioning resources. When this stage is complete, the
new pipeline environment has been created.

• Deploy pipeline – Deploying the pipeline. When this stage is complete, the pipeline has been
successfully deployed.

• Check pipeline health – Checking the health of the pipeline. When this stage is complete, all
health checks have passed.

• Enable traffic – Enabling the pipeline to ingest data. When this stage is complete, you can start
ingesting data into the pipeline.

CLI

Use the get-pipeline-change-progress command to check the status of a pipeline. The following
Amazon CLI request checks the status of a pipeline named my-pipeline:

aws osis get-pipeline-change-progress \
 --pipeline-name my-pipeline

Response:

{
 "ChangeProgressStatuses": {
 "ChangeProgressStages": [
 {
 "Description": "Validating pipeline configuration",
 "LastUpdated": 1.671055851E9,
 "Name": "VALIDATION",
 "Status": "PENDING"
 }
],

Tracking the status of pipeline creation 235

https://docs.amazonaws.cn/cli/latest/reference/osis/get-pipeline-change-progress.html

Amazon OpenSearch Service Developer Guide

 "StartTime": 1.671055851E9,
 "Status": "PROCESSING",
 "TotalNumberOfStages": 5
 }
}

OpenSearch Ingestion API

To track the status of pipeline creation using the OpenSearch Ingestion API, call the
GetPipelineChangeProgress operation.

Using blueprints to create a pipeline

Rather than creating a pipeline definition from scratch, you can use configuration blueprints, which
are preconfigured YAML templates for common ingestion scenarios such as Trace Analytics or
Apache logs. Configuration blueprints help you easily provision pipelines without having to author
a configuration from scratch.

OpenSearch Ingestion includes the following blueprints:

• ALB access log pipeline – Extracts data from ALB access logs.

• Apache log pipeline – Extracts data from Apache using grok patterns.

• Apache log sampling – Extracts data from Apache logs and routes them to various indexes.

• CloudTrail log S3 pipeline – Enriches Amazon CloudTrail logs by pulling from an SQS queue.

• ELB access log S3 pipeline – Extracts data from ELB access logs using grok patterns.

• Generic log pipeline – Converts unstructured data to structured data using grok patterns and
index mapping templates.

• Log aggregation with conditional routing – Aggregates various logs received in a time window
and conditionally routes them to different indexes.

• Log to metric anomaly pipeline – Derives metrics from incoming logs and identifies anomalies.

• Log to metric pipeline – Derives metrics from incoming logs.

• Security Lake S3 parquet OCSF pipeline – Parses Open Cybersecurity Schema Framework
(OCSF) parquet files from Security Lake.

• S3 log pipeline – Listens to S3 Amazon SQS notifications and pulls data from S3 buckets.

• S3 select pipeline – Performs selective download from an S3 bucket.

• Trace Analytics pipeline – Enriches spans and generates a service-map (dependency graph of
services).

Using blueprints to create a pipeline 236

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_GetPipelineChangeProgress.html

Amazon OpenSearch Service Developer Guide

• Trace to metric anomaly pipeline – Derives RED (rate, error, and duration) metrics from traces
and finds anomalies.

• VPC flow log pipeline – Extracts data from VPC flow logs using grok patterns.

• WAF access log pipeline – Parses Web Application Firewall (WAF) access logs and extracts data
using grok.

Console

To use a pipeline blueprint

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. Choose Pipelines in the left navigation pane and choose Create pipeline.

3. Under Pipeline configuration, choose Configuration blueprints.

4. Select a blueprint. The pipeline configuration populates with a sub-pipeline for the use case
you selected.

5. Review the commented-out text which guides you through configuring the blueprint.

Important

The pipeline blueprint isn't valid as-is. You need to make some modifications, such as
providing the Amazon Web Services Region and the role ARN to use for authentication,
otherwise pipeline validation will fail.

CLI

To get a list of all available blueprints using the Amazon CLI, send a list-pipeline-blueprints
request.

aws osis list-pipeline-blueprints

The request returns a list of all available blueprints.

To get more detailed information about a specific blueprint, use the get-pipeline-blueprint
command:

Using blueprints to create a pipeline 237

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home
https://docs.amazonaws.cn/cli/latest/reference/osis/list-pipeline-blueprints.html
https://docs.amazonaws.cn/cli/latest/reference/osis/get-pipeline-blueprint.html

Amazon OpenSearch Service Developer Guide

aws osis get-pipeline-blueprint --blueprint-name AWS-ApacheLogPipeline

This request returns the contents of the Apache log pipeline blueprint:

{
 "Blueprint":{
 "PipelineConfigurationBody":"###\n # Limitations: https://docs.aws.amazon.com/
opensearch-service/latest/ingestion/ingestion.html#ingestion-limitations\n###\n###\n
 # apache-log-pipeline:\n # This pipeline receives logs via http (e.g. FluentBit),
 extracts important values from the logs by matching\n # the value in the 'log' key
 against the grok common Apache log pattern. The grokked logs are then sent\n # to
 OpenSearch to an index named 'logs'\n###\n\nversion: \"2\"\napache-log-pipeline:\n
 source:\n http:\n # Provide the path for ingestion. ${pipelineName} will be
 replaced with pipeline name configured for this pipeline.\n # In this case it
 would be \"/apache-log-pipeline/logs\". This will be the FluentBit output URI value.
\n path: \"/${pipelineName}/logs\"\n processor:\n - grok:\n match:\n
 log: [\"%{COMMONAPACHELOG_DATATYPED}\"]\n sink:\n - opensearch:\n
 # Provide an AWS OpenSearch Service domain endpoint\n # hosts: [\"https://
search-mydomain-1a2a3a4a5a6a7a8a9a0a9a8a7a.us-east-1.es.amazonaws.com\"]\n
 aws:\n # Provide a Role ARN with access to the domain. This role should have
 a trust relationship with osis-pipelines.amazonaws.com\n # sts_role_arn:
 \"arn:aws:iam::123456789012:role/Example-Role\"\n # Provide the region of the
 domain.\n # region: \"us-east-1\"\n # Enable the 'serverless' flag
 if the sink is an Amazon OpenSearch Serverless collection\n # serverless:
 true\n index: \"logs\"\n # Enable the S3 DLQ to capture any failed
 requests in an S3 bucket\n # dlq:\n # s3:\n # Provide an
 S3 bucket\n # bucket: \"your-dlq-bucket-name\"\n # Provide a key
 path prefix for the failed requests\n # key_path_prefix: \"${pipelineName}/
logs/dlq\"\n # Provide the region of the bucket.\n # region:
 \"us-east-1\"\n # Provide a Role ARN with access to the bucket. This role
 should have a trust relationship with osis-pipelines.amazonaws.com\n #
 sts_role_arn: \"arn:aws:iam::123456789012:role/Example-Role\"\n",
 "BlueprintName":"AWS-ApacheLogPipeline"
 }
}

OpenSearch Ingestion API

To get information about pipeline blueprints using the OpenSearch Ingestion API, use the the
ListPipelineBlueprints and GetPipelineBlueprint operations.

Using blueprints to create a pipeline 238

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_ListPipelineBlueprints.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_GetPipelineBlueprint.html

Amazon OpenSearch Service Developer Guide

Viewing Amazon OpenSearch Ingestion pipelines

You can view the details about an Amazon OpenSearch Ingestion pipeline using the Amazon Web
Services Management Console, the Amazon CLI, or the OpenSearch Ingestion API.

Console

To view a pipeline

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. Choose Pipelines in the left navigation pane.

3. (Optional) To view pipelines with a particular status, choose Any status and select a status to
filter by.

A pipeline can have the following statuses:

• Creating – The pipeline is being created.

• Active – The pipeline is active and ready to ingest data.

• Updating – The pipeline is being updated.

• Deleting – The pipeline is being deleted.

• Create failed – The pipeline could not be created.

• Update failed – The pipeline could not be updated.

• Starting – The pipeline is starting.

• Start failed – The pipeline could not be started.

• Stopping – The pipeline is being stopped.

• Stopped – The pipeline is stopped and can be restarted at any time.

You're not billed for Ingestion OCUs when a pipeline is in the Create failed, Creating,
Deleting, and Stopped states.

CLI

To view pipelines using the Amazon CLI, send a list-pipelines request:

aws osis list-pipelines

Viewing pipelines 239

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home
https://docs.amazonaws.cn/cli/latest/reference/osis/list-pipelines.html

Amazon OpenSearch Service Developer Guide

The request returns a list of all existing pipelines:

{
 "NextToken": null,
 "Pipelines": [
 {,
 "CreatedAt": 1.671055851E9,
 "LastUpdatedAt": 1.671055851E9,
 "MaxUnits": 4,
 "MinUnits": 2,
 "PipelineArn": "arn:aws:osis:us-west-2:123456789012:pipeline/log-pipeline",
 "PipelineName": "log-pipeline",
 "Status": "ACTIVE",
 "StatusReason": {
 "Description": "The pipeline is ready to ingest data."
 }
 },
 "CreatedAt": 1.671055851E9,
 "LastUpdatedAt": 1.671055851E9,
 "MaxUnits": 2,
 "MinUnits": 8,
 "PipelineArn": "arn:aws:osis:us-west-2:123456789012:pipeline/another-
pipeline",
 "PipelineName": "another-pipeline",
 "Status": "CREATING",
 "StatusReason": {
 "Description": "The pipeline is being created. It is not able to ingest
 data."
 }
 }
]
}

To get information about a single pipeline, use the get-pipeline command:

aws osis get-pipeline --pipeline-name "my-pipeline"

The request returns configuration information for the specified pipeline:

{
 "Pipeline": {
 "PipelineName": "my-pipeline",

Viewing pipelines 240

https://docs.amazonaws.cn/cli/latest/reference/osis/get-pipeline.html

Amazon OpenSearch Service Developer Guide

 "PipelineArn": "arn:aws:osis:us-east-1:123456789012:pipeline/my-pipeline",
 "MinUnits": 9,
 "MaxUnits": 10,
 "Status": "ACTIVE",
 "StatusReason": {
 "Description": "The pipeline is ready to ingest data."
 },
 "PipelineConfigurationBody": "log-pipeline:\n source:\n http:\n processor:\n
 - grok:\n match:\nlog: ['%{COMMONAPACHELOG}']\n - date:\n from_time_received: true
\n destination: \"@timestamp\"\n sink:\n - opensearch:\n hosts: [\"https://search-
mdp-performance-test-duxkb4qnycd63rpy6svmvyvfpi.us-east-1.es.amazonaws.com\"]\n index:
 \"apache_logs\"\n aws_sts_role_arn: \"arn:aws:iam::123456789012:role/my-domain-role
\"\n aws_region: \"us-east-1\"\n aws_sigv4: true",,
 "CreatedAt": "2022-10-01T15:28:05+00:00",
 "LastUpdatedAt": "2022-10-21T21:41:08+00:00",
 "IngestEndpointUrls": [
 "my-pipeline-123456789012.us-east-1.osis.amazonaws.com"
]
 }
}

OpenSearch Ingestion API

To view OpenSearch Ingestion pipelines using the OpenSearch Ingestion API, call the ListPipelines
and GetPipeline operations.

Updating Amazon OpenSearch Ingestion pipelines

You can update Amazon OpenSearch Ingestion pipelines using the Amazon Web Services
Management Console, the Amazon CLI, or the OpenSearch Ingestion API. OpenSearch Ingestion
initiates a blue/green deployment when you update a pipeline's YAML configuration. For more
information, see the section called “Blue/green deployments for pipeline updates”.

Topics

• Considerations

• Permissions required

• Updating pipelines

• Blue/green deployments for pipeline updates

Updating pipelines 241

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_ListPipelines.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_GetPipeline.html

Amazon OpenSearch Service Developer Guide

Considerations

Consider the following when you update a pipeline:

• You can edit a pipeline's capacity limits, log publishing options, and YAML configuration. You
can't edit its name or network settings.

• If your pipeline writes to a VPC domain sink, you can't go back and change the sink to a different
VPC domain after the pipeline is created. You must delete and recreate the pipeline with the new
sink. You can still switch the sink from a VPC domain to a public domain, from a public domain to
a VPC domain, or from a public domain to another public domain.

• You can switch the pipeline sink at any time between a public OpenSearch Service domain and
an OpenSearch Serverless collection.

• When you update a pipeline's YAML configuration, OpenSearch Ingestion initiates a blue/green
deployment. For more information, see the section called “Blue/green deployments for pipeline
updates”.

• When you update a pipeline's YAML configuration, OpenSearch Ingestion can automatically
upgrade your pipeline to the latest supported minor version of the major version of Data Prepper
that's specified in the pipeline configuration. This process keeps your pipeline up to date with the
latest bug fixes and performance improvements.

• You can still make updates to your pipeline when it's stopped.

Permissions required

OpenSearch Ingestion uses the following IAM permissions for updating pipelines:

• osis:UpdatePipeline – Update a pipeline.

• osis:ValidatePipeline – Check whether a pipeline configuration is valid.

• iam:PassRole – Pass the pipeline role to OpenSearch Ingestion so that it can write data to the
domain. This permission is only required if you're updating the pipeline YAML configuration, not
if you're modifying other settings such as log publishing or capacity limits.

For example, the following policy grants permission to update a pipeline:

{
 "Version":"2012-10-17",
 "Statement":[

Considerations 242

Amazon OpenSearch Service Developer Guide

 {
 "Effect":"Allow",
 "Resource":"*",
 "Action":[
 "osis:UpdatePipeline",
 "osis:ValidatePipeline"
]
 },
 {
 "Resource":[
 "arn:aws:iam::{your-account-id}:role/{pipeline-role}"
],
 "Effect":"Allow",
 "Action":[
 "iam:PassRole"
]
 }
]
}

Updating pipelines

You can update Amazon OpenSearch Ingestion pipelines using the Amazon Web Services
Management Console, the Amazon CLI, or the OpenSearch Ingestion API.

Console

To update a pipeline

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. Choose Pipelines in the left navigation pane.

3. Choose a pipeline to open its settings. You can edit a pipeline's capacity limits, log publishing
options, and YAML configuration. You can't edit its name or network settings.

4. When you're done making changes, choose Save.

CLI

To update a pipeline using the Amazon CLI, send an update-pipeline request. The following sample
request uploads a new configuration file and updates the minimum and maximum capacity values:

Updating pipelines 243

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home
https://docs.amazonaws.cn/cli/latest/reference/osis/update-pipeline.html

Amazon OpenSearch Service Developer Guide

aws osis update-pipeline \
 --pipeline-name "my-pipeline" \
 --pipline-configuration-body "file://new-pipeline-config.yaml" \
 --min-units 11 \
 --max-units 18

OpenSearch Ingestion API

To update an OpenSearch Ingestion pipeline using the OpenSearch Ingestion API, call the
UpdatePipeline operation.

Blue/green deployments for pipeline updates

OpenSearch Ingestion initiates a blue/green deployment process when you update a pipeline's
YAML configuration.

Blue/green refers to the practice of creating a new environment for pipeline updates and routing
traffic to the new environment after those updates are complete. The practice minimizes downtime
and maintains the original environment in the event that deployment to the new environment
is unsuccessful. Blue/green deployments themselves don't have any performance impact, but
performance might change if your pipeline configuration changes in a way that alters performance.

OpenSearch Ingestion blocks auto-scaling during blue/green deployments. You continue to be
charged only for traffic to the old pipeline until it's redirected to the new pipeline. Once traffic has
been redirected, you're only charged for the new pipeline. You're never charged for two pipelines
simultaneously.

When you update a pipeline's YAML configuration file, OpenSearch Ingestion can automatically
upgrade your pipeline to the latest supported minor version of the major version of Data Prepper
that's specified in the pipeline configuration. For example, you might have version: "2" in
your pipeline configuration, and OpenSearch Ingestion initially provisioned the pipeline with
version 2.1.0. When support for version 2.1.1 is added, and you make a change to your pipeline
configuration, OpenSearch Ingestion upgrades your pipeline to version 2.1.1.

This process keeps your pipeline up to date with the latest bug fixes and performance
improvements. OpenSearch Ingestion can't update the major version of your pipeline unless you
manually change the version option within the pipeline configuration.

Blue/green deployments for pipeline updates 244

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_UpdatePipeline.html

Amazon OpenSearch Service Developer Guide

Stopping and starting Amazon OpenSearch Ingestion pipelines

Stopping and starting Amazon OpenSearch Ingestion pipelines helps you manage costs for
development and test environments. You can temporarily stop a pipeline instead of setting it up
and tearing it down each time that you use the pipeline.

Topics

• Overview of stopping and starting an OpenSearch Ingestion pipeline

• Stopping an OpenSearch Ingestion pipeline

• Starting an OpenSearch Ingestion pipeline

Overview of stopping and starting an OpenSearch Ingestion pipeline

You can stop a pipeline during periods where you don't need to ingest data into it. You can start
the pipeline again anytime you need to use it. Starting and stopping simplifies the setup and
teardown processes for pipelines used for development, testing, or similar activities that don't
require continuous availability.

While your pipeline is stopped, you aren't charged for any Ingestion OCU hours. You can still
update stopped pipelines, and they receive automatic minor version updates and security patches.

Don't use starting and stopping if you need to keep your pipeline running but it has more capacity
than you need. If your pipeline is too costly or not very busy, consider reducing its maximum
capacity limits. For more information, see the section called “Scaling pipelines”.

Stopping an OpenSearch Ingestion pipeline

To use an OpenSearch Ingestion pipeline or perform administration, you always begin with an
active pipeline, then stop the pipeline, and then start the pipeline again. While your pipeline is
stopped, you're not charged for Ingestion OCU hours.

Console

To stop a pipeline

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

Stopping and starting pipelines 245

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

2. In the navigation pane, choose Pipelines, and then choose a pipeline. You can perform the
stop operation from this page, or navigate to the details page for the pipeline that you want to
stop.

3. For Actions, choose Stop pipeline.

If a pipeline can't be stopped and started, the Stop pipeline action isn't available.

Amazon CLI

To stop a pipeline using the Amazon CLI, call the stop-pipeline command with the following
parameters:

• --pipeline-name – the name of the pipeline.

Example

aws osis stop-pipeline --pipeline-name my-pipeline

OpenSearch Ingestion API

To stop a pipeline using the OpenSearch Ingestion API, call the StopPipeline operation with the
following parameter:

• PipelineName – the name of the pipeline.

Starting an OpenSearch Ingestion pipeline

You always start an OpenSearch Ingestion pipeline beginning with a pipeline that's already in
the stopped state. The pipeline keeps its configuration settings such as capacity limits, network
settings, and log publishing options.

Restarting a pipeline usually takes several minutes.

Console

To start a pipeline

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

Starting a pipeline 246

https://docs.amazonaws.cn/cli/latest/reference/osis/stop-pipeline.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_StopPipeline.html
https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

2. In the navigation pane, choose Pipelines, and then choose a pipeline. You can perform the
start operation from this page, or navigate to the details page for the pipeline that you want
to start.

3. For Actions, choose Start pipeline.

Amazon CLI

To start a pipeline by using the Amazon CLI, call the start-pipeline command with the following
parameters:

• --pipeline-name – the name of the pipeline.

Example

aws osis start-pipeline --pipeline-name my-pipeline

OpenSearch Ingestion API

To start an OpenSearch Ingestion pipeline using the OpenSearch Ingestion API, call the
StartPipeline operation with the following parameter:

• PipelineName – the name of the pipeline.

Deleting Amazon OpenSearch Ingestion pipelines

You can delete an Amazon OpenSearch Ingestion pipeline using the Amazon Web Services
Management Console, the Amazon CLI, or the OpenSearch Ingestion API. You can't delete a
pipeline when has a status of Creating or Updating.

Console

To delete a pipeline

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. Choose Pipelines in the left navigation pane.

3. Select the pipeline that you want to delete and choose Delete.

Deleting pipelines 247

https://docs.amazonaws.cn/cli/latest/reference/osis/start-pipeline.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_StartPipeline.html
https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

4. Confirm deletion and choose Delete.

CLI

To delete a pipeline using the Amazon CLI, send a delete-pipeline request:

aws osis delete-pipeline --pipeline-name "my-pipeline"

OpenSearch Ingestion API

To delete an OpenSearch Ingestion pipeline using the OpenSearch Ingestion API, call the
DeletePipeline operation with the following parameter:

• PipelineName – the name of the pipeline.

Supported plugins and options for Amazon OpenSearch
Ingestion pipelines

Amazon OpenSearch Ingestion supports a subset of sources, processors, and sinks compared to
open source Data Prepper. In addition, there are some constraints that OpenSearch Ingestion
places on the available options for each supported plugin. The following sections describe the
plugins and associated options that OpenSearch Ingestion supports.

Note

OpenSearch Ingestion doesn't support any buffer plugins because it automatically
configures a default buffer. You receive a validation error if you include a buffer in your
pipeline configuration.

Topics

• Supported plugins

• Stateless versus stateful processors

• Configuration requirements and constraints

Supported plugins and options 248

https://docs.amazonaws.cn/cli/latest/reference/osis/delete-pipeline.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_osis_DeletePipeline.html

Amazon OpenSearch Service Developer Guide

Supported plugins

OpenSearch Ingestion supports the following Data Prepper plugins:

Sources:

• Dynamodb

• OpenSearch

• HTTP

• Kafka

• OTel logs

• OTel metrics

• OTel trace

• S3

Processors:

• Aggregate

• Anomaly detector

• CSV

• Date

• Dissect

• Drop events

• Grok

• Key value

• Mutate event (series of processors)

• Mutate string (series of processors)

• Obfuscate

• OTel metrics

• OTel trace group

• OTel trace

• Parse JSON

Supported plugins 249

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/dynamo-db/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/opensearch/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/kafka/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-logs-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-metrics-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/aggregate/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/anomaly-detector/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/csv/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/date/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/dissect/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/drop-events/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/grok/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/key-value/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/mutate-event/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/mutate-string/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/obfuscate/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/otel-metrics/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/otel-trace-group/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/otel-trace-raw/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/parse-json/

Amazon OpenSearch Service Developer Guide

• Service-map

• Trace peer forwarder

• User agent

Sinks:

• OpenSearch (supports OpenSearch Service, OpenSearch Serverless, and Elasticsearch 6.8 or
later)

• S3

Sink codecs:

• Avro

• NDJSON

• JSON

• Parquet

Stateless versus stateful processors

Stateless processors perform operations like transformations and filtering, while stateful processors
perform operations like aggregations, which remember the result of the previous run. OpenSearch
Ingestion supports the stateful processors Aggregate and Service-map. All other supported
processors are stateless.

For pipelines that contain only stateless processors, the maximum capacity limit is 96 Ingestion
OCUs. If a pipeline contains any stateful processors, the maximum capacity limit is 48 Ingestion
OCUs. However, if a pipeline has persistent buffering enabled, it can have a maximum of 384
Ingestion OCUs with only stateless processors, or 192 Ingestion OCUs if it contains any stateful
processors. For more information, see the section called “Scaling pipelines”.

End-to-end acknowledgment is only supported for stateless processors. For more information, see
the section called “End-to-end acknowledgement”.

Configuration requirements and constraints

Unless otherwise specified below, all options described in the Data Prepper configuration reference
for the supported plugins listed above are allowed in OpenSearch Ingestion pipelines. The

Stateless versus stateful processors 250

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/service-map-stateful/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/trace-peer-forwarder/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/user-agent/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/opensearch/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/s3/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/s3/#avro-codec
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/s3/#ndjson-codec
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/s3/#json-codec
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/s3/#parquet-codec
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/aggregate/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/service-map-stateful/

Amazon OpenSearch Service Developer Guide

following sections explain the constraints that OpenSearch Ingestion places on certain plugin
options.

Note

OpenSearch Ingestion doesn't support any buffer plugins because it automatically
configures a default buffer. You receive a validation error if you include a buffer in your
pipeline configuration.

Many options are configured and managed internally by OpenSearch Ingestion, such as
authentication and acm_certificate_arn. Other options, such as thread_count and
request_timeout, have performance impacts if changed manually. Therefore, these values are
set internally to ensure optimal performance of your pipelines.

Lastly, some options can't be passed to OpenSearch Ingestion, such as ism_policy_file and
sink_template, because they're local files when run in open source Data Prepper. These values
aren't supported.

Topics

• General pipeline options

• Grok processor

• HTTP source

• OpenSearch sink

• OTel metrics source, OTel trace source, and OTel logs source

• OTel trace group processor

• OTel trace processor

• Service-map processor

• S3 source

General pipeline options

The following general pipeline options are set by OpenSearch Ingestion and aren't supported in
pipeline configurations:

• workers

Configuration requirements and constraints 251

https://opensearch.org/docs/latest/data-prepper/pipelines/pipelines-configuration-options/

Amazon OpenSearch Service Developer Guide

• delay

Grok processor

The following Grok processor options aren't supported:

• patterns_directories

• patterns_files_glob

HTTP source

The HTTP source plugin has the following requirements and constraints:

• The path option is required. The path is a string such as /log/ingest, which represents the URI
path for log ingestion. This path defines the URI that you use to send data to the pipeline. For
example, https://log-pipeline.us-west-2.osis.amazonaws.com/log/ingest. The
path must start with a slash (/), and can contain the special characters '-', '_', '.', and '/', as well as
the ${pipelineName} placeholder.

• The following HTTP source options are set by OpenSearch Ingestion and aren't supported in
pipeline configurations:

• port

• ssl

• ssl_key_file

• ssl_certificate_file

• aws_region

• authentication

• unauthenticated_health_check

• use_acm_certificate_for_ssl

• thread_count

• request_timeout

• max_connection_count

• max_pending_requests

• health_check_service

• acm_private_key_password

Configuration requirements and constraints 252

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/grok/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/

Amazon OpenSearch Service Developer Guide

• acm_certificate_timeout_millis

• acm_certificate_arn

OpenSearch sink

The OpenSearch sink plugin has the following requirements and limitations.

• The aws option is required, and must contain the following options:

• sts_role_arn

• region

• hosts

• serverless (if the sink is an OpenSearch Serverless collection)

• The sts_role_arn option must point to the same role for each sink within a YAML definition
file.

• The hosts option must specify an OpenSearch Service domain endpoint or an OpenSearch
Serverless collection endpoint. All hosts within a YAML definition file must point to the same
endpoint. You can't specify a custom endpoint for a domain; it must be the standard endpoint.

• If the hosts option is a serverless collection endpoint, you must set the serverless option to
true. In addition, if your YAML definition file contains the index_type option, it must be set to
management_disabled, otherwise validation fails.

• The following options aren't supported:

• username

• password

• cert

• proxy

• dlq_file - If you want to offload failed events to a dead letter queue (DLQ), you must use
the dlq option and specify an S3 bucket.

• ism_policy_file

• socket_timeout

• template_file

• insecure

• bulk_sizeConfiguration requirements and constraints 253

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/opensearch/
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/customendpoint.html

Amazon OpenSearch Service Developer Guide

OTel metrics source, OTel trace source, and OTel logs source

The OTel metrics source, OTel trace source, and OTel logs source plugins have the following
requirements and limitations:

• The path option is required. The path is a string such as /log/ingest, which represents the URI
path for log ingestion. This path defines the URI that you use to send data to the pipeline. For
example, https://log-pipeline.us-west-2.osis.amazonaws.com/log/ingest. The
path must start with a slash (/), and can contain the special characters '-', '_', '.', and '/', as well as
the ${pipelineName} placeholder.

• The following options are set by OpenSearch Ingestion and aren't supported in pipeline
configurations:

• port

• ssl

• sslKeyFile

• sslKeyCertChainFile

• authentication

• unauthenticated_health_check

• useAcmCertForSSL

• unframed_requests

• proto_reflection_service

• thread_count

• request_timeout

• max_connection_count

• acmPrivateKeyPassword

• acmCertIssueTimeOutMillis

• health_check_service

• acmCertificateArn

• awsRegion

OTel trace group processor

The OTel trace group processor has the following requirements and limitations:Configuration requirements and constraints 254

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-metrics-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-logs-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/otel-trace-group/

Amazon OpenSearch Service Developer Guide

• The aws option is required, and must contain the following options:

• sts_role_arn

• region

• hosts

• The sts_role_arn option specify the same role as the pipeline role that you specify in the
OpenSearch sink configuration.

• The username, password, cert, and insecure options aren't supported.

• The aws_sigv4 option is required and must be set to true.

• The serverless option within the OpenSearch sink plugin isn't supported. The Otel trace
group processor doesn't currently work with OpenSearch Serverless collections.

• The number of otel_trace_group processors within the pipeline configuration body can't
exceed 8.

OTel trace processor

The OTel trace processor has the following requirements and limitations:

• The value of the trace_flush_interval option can't exceed 300 seconds.

Service-map processor

The Service-map processor has the following requirements and limitations:

• The value of the window_duration option can't exceed 300 seconds.

S3 source

The S3 source plugin has the following requirements and limitations:

• The aws option is required, and must contain region and sts_role_arn options.

• The value of the records_to_accumulate option can't exceed 200.

• The value of the maximum_messages option can't exceed 10.

• If specified, the disable_bucket_ownership_validation option must be set to false.

• If specified, the input_serialization option must be set to parquet.

Configuration requirements and constraints 255

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/otel-trace-raw/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/service-map-stateful/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/

Amazon OpenSearch Service Developer Guide

Working with Amazon OpenSearch Ingestion pipeline
integrations

In order to successfully ingest data into an Amazon OpenSearch Ingestion pipeline, you must
configure your client application (the source) to send data to the pipeline endpoint. Your source
might be clients like Fluent Bit logs, the OpenTelemetry Collector, or a simple S3 bucket. The exact
configuration differs for each client.

The important differences during source configuration (compared to sending data directly to an
OpenSearch Service domain or OpenSearch Serverless collection) are the Amazon service name
(osis) and the host endpoint, which must be the pipeline endpoint.

Topics

• Constructing the ingestion endpoint

• Creating an ingestion role

• Using an OpenSearch Ingestion pipeline with Amazon DynamoDB

• Using an OpenSearch Ingestion pipeline with Amazon Managed Streaming for Apache Kafka

• Using an OpenSearch Ingestion pipeline with Amazon OpenSearch Service

• Using an OpenSearch Ingestion pipeline with Amazon S3

• Using an OpenSearch Ingestion pipeline with Amazon Security Lake

• Using an OpenSearch Ingestion pipeline with Fluent Bit

• Using an OpenSearch Ingestion pipeline with OpenTelemetry Collector

• Next steps

Constructing the ingestion endpoint

In order to ingest data into a pipeline, send it to the ingestion endpoint. To locate the ingestion
URL, navigate to the Pipeline settings page and copy the Ingestion URL:

Working with pipeline integrations 256

Amazon OpenSearch Service Developer Guide

To construct the full ingestion endpoint for pull-based sources like OTel trace and OTel metrics,
add the ingestion path from your pipeline configuration to the ingestion URL.

For example, say that your pipeline configuration has the following ingestion path:

entry-pipeline:
 source:
 http:
 path: "/my/test_path"

The full ingestion endpoint, which you specify in your client configuration, will take the following
format: https://ingestion-pipeline-abcdefg.us-west-2.osis.amazonaws.com/my/
test_path.

For more information, see the section called “Specifying the ingestion path”.

Creating an ingestion role

All requests to OpenSearch Ingestion must be signed with Signature Version 4. At minimum, the
role that signs the request must be granted permission for the osis:Ingest action, which allows
it to send data to an OpenSearch Ingestion pipeline.

For example, the following Amazon Identity and Access Management (IAM) policy allows the
corresponding role to send data to a single pipeline:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Creating an ingestion role 257

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-metrics-source/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon OpenSearch Service Developer Guide

 "Action": "osis:Ingest",
 "Resource": "arn:aws:osis:us-east-1:{account-id}:pipeline/pipeline-name"
 }
]
}

Note

To use the role for all pipelines, replace the ARN in the Resource element with a wildcard
(*).

Providing cross-account ingestion access

Note

You can only provide cross-account ingestion access for public pipelines, not VPC pipelines.

You might need to ingest data into a pipeline from a different Amazon Web Services account, such
as an account that houses your source application. If the principal that is writing to a pipeline is in
a different account than the pipeline itself, you need to configure the principal to trust another IAM
role to ingest data into the pipeline.

To configure cross-account ingestion permissions

1. Create the ingestion role with osis:Ingest permission (described in the previous section)
within the same Amazon Web Services account as the pipeline. For instructions, see Creating
IAM roles.

2. Attach a trust policy to the ingestion role that allows a principal in another account to assume
it:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{external-account-id}:root"
 },
 "Action": "sts:AssumeRole"

Creating an ingestion role 258

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy

Amazon OpenSearch Service Developer Guide

 }]
}

3. In the other account, configure your client application (for example, Fluent Bit) to assume the
ingestion role. In order for this to work, the application account must grant permissions to the
application user or role to assume the ingestion role.

The following example identity-based policy allows the attached principal to assume
ingestion-role from the pipeline account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::{account-id}:role/ingestion-role"
 }
]
}

The client application can then use the AssumeRole operation to assume ingestion-role and
ingest data into the associated pipeline.

Using an OpenSearch Ingestion pipeline with Amazon DynamoDB

You can use an OpenSearch Ingestion pipeline with DynamoDB to stream DynamoDB table events
(such as create, update, and delete) to Amazon OpenSearch Service domains and collections. The
OpenSearch Ingestion pipeline incorporates change data capture (CDC) infrastructure to provide a
high-scale, low-latency way to continuously stream data from a DynamoDB table.

There are two ways that you can use DynamoDB as a source to process data—with and without a
full initial snapshot.

A full initial snapshot is a backup of a table that DynamoDB takes with the point-in-time recovery
(PITR) feature. DynamoDB uploads this snapshot to Amazon S3. From there, an OpenSearch
Ingestion pipeline sends it to one index in a domain, or partitions it to multiple indexes in a
domain. To keep the data in DynamoDB and OpenSearch consistent, the pipeline syncs all of
the create, update, and delete events in the DynamoDB table with the documents saved in the
OpenSearch index or indexes.

Amazon DynamoDB 259

https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRole.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/PointInTimeRecovery.html

Amazon OpenSearch Service Developer Guide

When you use a full initial snapshot, your OpenSearch Ingestion pipeline first ingests the snapshot
and then starts reading data from DynamoDB Streams. It eventually catches up and maintains near
real-time data consistency between DynamoDB and OpenSearch. When you choose this option,
you must enable both PITR and a DynamoDB stream on your table.

You can also use the OpenSearch Ingestion integration with DynamoDB to stream events without
a snapshot. Choose this option if you already have a full snapshot from some other mechanism, or
if you just want to stream current events from a DynamoDB table with DynamoDB Streams. When
you choose this option, you only need to enable a DynamoDB stream on your table.

For more information about this integration, see DynamoDB zero-ETL integration with Amazon
OpenSearch Service in the Amazon DynamoDB Developer Guide.

Topics

• Prerequisites

• Step 1: Configure the pipeline role

• Step 2: Create the pipeline

• Data consistency

• Mapping data types

• Limitations

Prerequisites

To set up your pipeline, you must have a DynamoDB table with DynamoDB Streams enabled. Your
stream should use the NEW_IMAGE stream view type. However, OpenSearch Ingestion pipelines can
also stream events with NEW_AND_OLD_IMAGES if this stream view type fits your use case.

If you're using snapshots, you must also enable point-in-time recovery on your table. For more
information, see Creating a table, Enabling point-in-time recovery, and Enabling a stream in the
Amazon DynamoDB Developer Guide.

Step 1: Configure the pipeline role

After you have your DynamoDB table set up, set up the pipeline role that you want to use in your
pipeline configuration, and add the following DynamoDB permissions in the role:

{
 "Version": "2012-10-17",

Amazon DynamoDB 260

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.Streams
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/OpenSearchIngestionForDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/OpenSearchIngestionForDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.CreateTable
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/PointInTimeRecovery_Howitworks.html#howitworks_enabling
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html#Streams.Enabling

Amazon OpenSearch Service Developer Guide

 "Statement": [
 {
 "Sid": "allowRunExportJob",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:DescribeContinuousBackups",
 "dynamodb:ExportTableToPointInTime"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:{account-id}:table/my-table"
]
 },
 {
 "Sid": "allowCheckExportjob",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeExport"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:{account-id}:table/my-table/export/*"
]
 },
 {
 "Sid": "allowReadFromStream",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeStream",
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:{account-id}:table/my-table/stream/*"
]
 },
 {
 "Sid": "allowReadAndWriteToS3ForExport",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:AbortMultipartUpload",
 "s3:PutObject",
 "s3:PutObjectAcl"
],

Amazon DynamoDB 261

Amazon OpenSearch Service Developer Guide

 "Resource": [
 "arn:aws:s3:::my-bucket/export/*"
]
 }
]
}

You can also use an Amazon KMS customer managed key to encrypt the export data files.
To decrypt the exported objects, specify s3_sse_kms_key_id for the key ID in the export
configuration of the pipeline with the following format: arn:aws:kms:us-west-2:{account-
id}:key/my-key-id.

Step 2: Create the pipeline

You can then configure an OpenSearch Ingestion pipeline like the following, which specifies
DynamoDB as the source. This sample pipeline ingests data from table-a with the PITR snapshot,
followed by events from DynamoDB Streams. A start position of LATEST indicates that the pipeline
should read the latest data from DynamoDB Streams.

version: "2"
cdc-pipeline:
 source:
 dynamodb:
 tables:
 - table_arn: "arn:aws:dynamodb:us-west-2:{account-id}:table/table-a"
 export:
 s3_bucket: "my-bucket"
 s3_prefix: "export/"
 stream:
 start_position: "LATEST"
 aws:
 region: "us-west-2"
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 sink:
 - opensearch:
 hosts: ["https://search-mydomain.us-east-1.es.amazonaws.com"]
 index: "${getMetadata(\"table_name\")}"
 index_type: custom
 document_id: "${getMetadata(\"primary_key\")}"
 action: "${getMetadata(\"opensearch_action\")}"
 document_version: "${getMetadata(\"document_version\")}"
 document_version_type: "external"

Amazon DynamoDB 262

Amazon OpenSearch Service Developer Guide

You can use the AWS-DynamoDBChangeDataCapturePipeline or AWS-
DynamoDBSingleTableDesignPipeline blueprint to create this pipeline. For more information, see
the section called “Using blueprints to create a pipeline”.

Data consistency

OpenSearch Ingestion supports end-to-end acknowledgement to ensure data durability. When a
pipeline reads snapshots or streams, it dynamically creates partitions for parallel processing. The
pipeline marks a partition as complete when it receives an acknowledgement after ingesting all
records in the OpenSearch domain or collection.

If you want to ingest into an OpenSearch Serverless search collection, you can generate a
document ID in the pipeline. If you want to ingest into an OpenSearch Serverless time series
collection, note that the pipeline doesn't generate a document ID.

An OpenSearch Ingestion pipeline also maps incoming event actions into corresponding bulk
indexing actions to help ingest documents. This keeps data consistent, so that every data change in
DynamoDB is reconciled with the corresponding document changes in OpenSearch.

Mapping data types

OpenSearch Service dynamically maps data types in each incoming document to the corresponding
data type in DynamoDB. The following table shows how OpenSearch Service automatically maps
various data types.

Data type OpenSearch DynamoDB

Number OpenSearch automatically maps
numeric data. If the number is a whole
number, OpenSearch maps it as a long
value. If the number is fractional, then
OpenSearch maps it as a float value.

OpenSearch dynamically maps
various attributes based on the first
sent document. If you have a mix of
data types for the same attribute in
DynamoDB, such as both a whole

DynamoDB supports numbers.

Amazon DynamoDB 263

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Number

Amazon OpenSearch Service Developer Guide

Data type OpenSearch DynamoDB

number and a fractional number,
mapping might fail.

For example, if your first document has
an attribute that is a whole number,
and a later document has that same
attribute as a fractional number,
OpenSearch fails to ingest the second
document. In these cases, you should
provide an explicit mapping template,
such as the following:

{
 "template": {
 "mappings": {
 "properties": {
 "MixedNumberAttribute": {
 "type": "float"
 }
 }
 }
 }
}

If you need double precision, use
string-type field mapping. There is no
equivalent numeric type that supports
38 digits of precision in OpenSearch.

Number
set

OpenSearch automatically maps a
number set into an array of either long
values or float values. As with the scalar
numbers, this depends on whether
the first number ingested is a whole
number or a fractional number. You can
provide mappings for number sets the
same way that you map scalar strings.

DynamoDB supports types that
represent sets of numbers.

Amazon DynamoDB 264

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes

Amazon OpenSearch Service Developer Guide

Data type OpenSearch DynamoDB

String OpenSearch automatically maps string
values as text. In some situations, such
as enumerated values, you can map to
the keyword type.

The following example shows how to
map a DynamoDB attribute named
PartType to an OpenSearch keyword.

{
 "template": {
 "mappings": {
 "properties": {
 "PartType": {
 "type": "keyword"
 }
 }
 }
 }
}

DynamoDB supports strings.

String set OpenSearch automatically maps a
string set into an array of strings. You
can provide mappings for string sets the
same way that you map scalar strings.

DynamoDB supports types that
represent sets of strings.

Amazon DynamoDB 265

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.String
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes

Amazon OpenSearch Service Developer Guide

Data type OpenSearch DynamoDB

Binary OpenSearch automatically maps
binary data as text. You can provide a
mapping to write these as binary fields
in OpenSearch.

The following example shows how to
map a DynamoDB attribute named
ImageData to an OpenSearch binary
field.

{
 "template": {
 "mappings": {
 "properties": {
 "ImageData": {
 "type": "binary"
 }
 }
 }
 }
}

DynamoDB supports binary type
attributes.

Binary set OpenSearch automatically maps a
binary set into an array of binary data
as text. You can provide mappings for
number sets the same way that you
map scalar binary.

DynamoDB supports types that
represent sets of binary values.

Boolean OpenSearch maps a DynamoDB
Boolean type into an OpenSearch
Boolean type.

DynamoDB supports Boolean type
attributes.

Amazon DynamoDB 266

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Binary
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Binary
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Boolean
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Boolean

Amazon OpenSearch Service Developer Guide

Data type OpenSearch DynamoDB

Null OpenSearch can ingest documents with
the DynamoDB null type. It saves the
value as a null value in the document.
There is no mapping for this type, and
this field is not indexed or searchable.

If the same attribute name is used for
a null type and then later changes to
different type such as string, OpenSearc
h creates a dynamic mapping for the
first non-null value. Subsequent values
can still be DynamoDB null values.

DynamoDB supports null type attribute
s.

Map OpenSearch maps DynamoDB map
attributes to nested fields. The same
mappings apply within a nested field.

The following example maps a string
in a nested field to a keyword type in
OpenSearch:

{
 "template": {
 "mappings": {
 "properties": {
 "AdditionalDescriptions": {
 "properties": {
 "PartType": {
 "type": "keyword"
 }
 }
 }
 }
 }
 }
}

DynamoDB supports map type attribute
s.

Amazon DynamoDB 267

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Null
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Null
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Document.Map
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Document.Map

Amazon OpenSearch Service Developer Guide

Data type OpenSearch DynamoDB

List OpenSearch provides different results
for DynamoDB lists, depending on what
is in the list.

When a list contains all of the same
type of scalar types (for example, a list
of all strings), then OpenSearch ingests
the list as an array of that type. This
works for string, number, Boolean, and
null types. The restrictions for each of
these types are the same as restrictions
for a scalar of that type.

You can also provide mappings for lists
of maps by using the same mapping as
you would use for a map.

You can't provide a list of mixed types.

DynamoDB supports list type attributes.

Amazon DynamoDB 268

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.Document.List

Amazon OpenSearch Service Developer Guide

Data type OpenSearch DynamoDB

Set OpenSearch provides different results
for DynamoDB sets depending on what
is in the set.

When a set contains all of the same
type of scalar types (for example, a set
of all strings), then OpenSearch ingests
the set as an array of that type. This
works for string, number, Boolean, and
null types. The restrictions for each of
these types are the same as the restricti
ons for a scalar of that type.

You can also provide mappings for sets
of maps by using the same mapping as
you would use for a map.

You can't provide a set of mixed types.

DynamoDB supports types that
represent sets.

We recommend that you configure the dead-letter queue (DLQ) in your OpenSearch Ingestion
pipeline. If you've configured the queue, OpenSearch Service sends all failed documents that can't
be ingested due to dynamic mapping failures to the queue.

In case automatic mappings fail, you can use template_type and template_content in your
pipeline configuration to define explicit mapping rules. Alternatively, you can create mapping
templates directly in your search domain or collection before you start the pipeline.

Limitations

Consider the following limitations when you set up an OpenSearch Ingestion pipeline for
DynamoDB:

• The OpenSearch Ingestion integration with DynamoDB currently doesn't support cross-Region
ingestion. Your DynamoDB table and OpenSearch Ingestion pipeline must be in the same
Amazon Web Services Region.

Amazon DynamoDB 269

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes

Amazon OpenSearch Service Developer Guide

• Your DynamoDB table and OpenSearch Ingestion pipeline must be in the same Amazon Web
Services account.

• An OpenSearch Ingestion pipeline supports only one DynamoDB table as its source.

• DynamoDB Streams only stores data in a log for up to 24 hours. If ingestion from an initial
snapshot of a large table takes 24 hours or more, there will be some initial data loss. To mitigate
this data loss, estimate the size of the table and configure appropriate compute units of
OpenSearch Ingestion pipelines.

Using an OpenSearch Ingestion pipeline with Amazon Managed
Streaming for Apache Kafka

You can use the Kafka plugin to ingest data from Amazon Managed Streaming for Apache Kafka
(Amazon MSK) into your OpenSearch Ingestion pipeline. With Amazon MSK, you can build and run
applications that use Apache Kafka to process streaming data. OpenSearch Ingestion uses Amazon
PrivateLink to connect to Amazon MSK.

Topics

• Prerequisites

• Step 1: Configure the pipeline role

• Step 2: Create the pipeline

• Step 3: (Optional) Use the Amazon Glue Schema Registry

• Step 4: (Optional) Configure recommended compute units (OCUs) for the Amazon MSK pipeline

Prerequisites

Before you create your OpenSearch Ingestion pipeline, perform the following steps:

1. Create an Amazon MSK cluster by following the steps in Creating a cluster in the Amazon
Managed Streaming for Apache Kafka Developer Guide.

• For Cluster type, choose Provisioned. OpenSearch Ingestion doesn't support Serverless MSK
clusters.

2. After the cluster has an Active status, follow the steps in Turn on multi-VPC connectivity.

3. Follow the steps in Attach a cluster policy to the MSK cluster to attach one of the following
policies, depending on if your cluster and pipeline are in the same Amazon Web Services
account. This policy allows OpenSearch Ingestion to create a Amazon PrivateLink connection

Amazon MSK 270

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/kafka/
https://docs.amazonaws.cn/msk/latest/developerguide/
https://docs.amazonaws.cn/msk/latest/developerguide/msk-create-cluster.html#create-cluster-console
https://docs.amazonaws.cn/msk/latest/developerguide/aws-access-mult-vpc.html#mvpc-cluster-owner-action-turn-on
https://docs.amazonaws.cn/msk/latest/developerguide/aws-access-mult-vpc.html#mvpc-cluster-owner-action-policy

Amazon OpenSearch Service Developer Guide

to your Amazon MSK cluster and read data from Kafka topics. Make sure that you update the
resource with your own ARN.

The following policies applies when your cluster and pipeline are in the same Amazon Web
Services account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "osis.amazonaws.com"
 },
 "Action": [
 "kafka:CreateVpcConnection",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2"
],
 "Resource": "arn:aws:kafka:us-east-1:{account-id}:cluster/cluster-name/cluster-
id"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "osis-pipelines.amazonaws.com"
 },
 "Action": [
 "kafka:CreateVpcConnection",
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2"
],
 "Resource": "arn:aws:kafka:us-east-1:{account-id}:cluster/cluster-name/cluster-
id"
 }
]
}

If your MSK cluster is in a different Amazon Web Services account than your pipeline, attach the
following policy instead. The ARN for the Amazon principal should be the ARN for the same
pipeline role that you provide to your pipleine YAML configuration:

Amazon MSK 271

Amazon OpenSearch Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "osis.amazonaws.com"
 },
 "Action": [
 "kafka:CreateVpcConnection",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2"
],
 "Resource": "arn:aws:kafka:us-east-1:{msk-account-id}:cluster/cluster-
name/cluster-id"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "osis-pipelines.amazonaws.com"
 },
 "Action": [
 "kafka:CreateVpcConnection",
 "kafka:GetBootstrapBrokers",
 "kafka:DescribeCluster",
 "kafka:DescribeClusterV2"
],
 "Resource": "arn:aws:kafka:us-east-1:{msk-account-id}:cluster/cluster-
name/cluster-id"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::{pipeline-account-id}:role/pipeline-role"
 },
 "Action": [
 "kafka-cluster:*",
 "kafka:*"
],
 "Resource": [
 "arn:aws:kafka:us-east-1:{msk-account-id}:cluster/cluster-name/cluster-id",
 "arn:aws:kafka:us-east-1:{msk-account-id}:topic/cluster-name/cluster-id/*",
 "arn:aws:kafka:us-east-1:{msk-account-id}:group/cluster-name/*"

Amazon MSK 272

Amazon OpenSearch Service Developer Guide

]
 }
]
}

4. Create a Kafka topic by following the steps in Create a topic. Make sure that
BootstrapServerString is one of the private endpoint (single-VPC) bootstrap URLs. The
value for --replication-factor should be 2 or 3, based on the number of zones your MSK
cluster has. The value for --partitions should be at least 10.

5. Produce and consume data by following the steps in Produce and consume data. Again, make
sure that BootstrapServerString is one of your private endpoint (single-VPC) bootstrap
URLs.

Step 1: Configure the pipeline role

After you have your MSK cluster set up, add the following Kafka permissions in the pipeline role
that you want to use in your pipeline configuration:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:Connect",
 "kafka-cluster:AlterCluster",
 "kafka-cluster:DescribeCluster",
 "kafka:DescribeClusterV2",
 "kafka:GetBootstrapBrokers"
],
 "Resource": [
 "arn:aws:kafka:us-east-1:{account-id}:cluster/cluster-name/cluster-id"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:*Topic*",
 "kafka-cluster:ReadData"
],
 "Resource": [

Amazon MSK 273

https://docs.amazonaws.cn/msk/latest/developerguide/create-topic.html
https://docs.amazonaws.cn/msk/latest/developerguide/produce-consume.html

Amazon OpenSearch Service Developer Guide

 "arn:aws:kafka:us-east-1:{account-id}:topic/cluster-name/cluster-
id/topic-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:AlterGroup",
 "kafka-cluster:DescribeGroup"
],
 "Resource": [
 "arn:aws:kafka:us-east-1:{account-id}:group/cluster-name/*"
]
 }
]
}

Step 2: Create the pipeline

You can then configure an OpenSearch Ingestion pipeline like the following, which specifies Kafka
as the source:

version: "2"
log-pipeline:
 source:
 kafka:
 acknowledgements: true
 topics:
 - name: "topic-name"
 group_id: "group-id"
 serde_format: "json"/"plaintext"
 aws:
 msk:
 arn: "arn:aws:iam::{account-id}:role/cluster-role"
 region: "us-west-2"
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 schema: # Optional
 type: "aws_glue"
 processor:
 - grok:
 match:
 log:
 - "%{COMMONAPACHELOG}"

Amazon MSK 274

Amazon OpenSearch Service Developer Guide

 - date:
 destination: "@timestamp"
 from_time_received: true
 sink:
 - opensearch:
 hosts: ["https://search-domain-endpoint.us-east-1.es.amazonaws.com"]
 index: "index_name"
 aws_sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 aws_region: "us-east-1"
 aws_sigv4: true

You can use the AWS-MSKPipeline blueprint to create this pipeline. For more information, see the
section called “Using blueprints to create a pipeline”.

Step 3: (Optional) Use the Amazon Glue Schema Registry

When you use OpenSearch Ingestion with Amazon MSK, you can use the AVRO data format for
schemas hosted in the Amazon Glue Schema Registry. With the Amazon Glue Schema Registry, you
can centrally discover, control, and evolve data stream schemas.

To use this option, enable the schema type in your pipeline configuration:

schema:
 type: "aws_glue"

You must also provide Amazon Glue with read access permissions in your pipeline role. You can
use the Amazon managed policy called AWSGlueSchemaRegistryReadonlyAccess. Additionally,
your registry must be in the same Amazon Web Services account and Region as your OpenSearch
Ingestion pipeline.

Step 4: (Optional) Configure recommended compute units (OCUs) for the Amazon
MSK pipeline

Each compute unit has one consumer per topic. Brokers balance partitions among these consumers
for a given topic. However, when the number of partitions is greater than the number of
consumers, Amazon MSK hosts multiple partitions on every consumer. OpenSearch Ingestion has
built-in auto scaling to scale up or down based on CPU usage or number of pending records in the
pipeline.

For optimal performance, distribute your partitions across many compute units for parallel
processing. If topics have a large number of partitions (for example, more than 96, which is the

Amazon MSK 275

https://docs.amazonaws.cn/glue/latest/dg/schema-registry.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSGlueSchemaRegistryReadonlyAccess.html

Amazon OpenSearch Service Developer Guide

maximum OCUs per pipeline), we recommend that you configure a pipeline with 1–96 OCUs.
This is because it will automatically scale as needed. If a topic has a low number of partitions (for
example, less than 96), keep the maximum compute unit the same as the number of partitions.

When a pipeline has more than one topic, choose the topic with the highest number of partitions
as a reference to configure maximum computes units. By adding another pipeline with a new set of
OCUs to the same topic and consumer group, you can scale the throughput almost linearly.

Using an OpenSearch Ingestion pipeline with Amazon OpenSearch
Service

With OpenSearch Ingestion, you can use Amazon OpenSearch Service as a source or as a
destination. When you use it as a source, you send data to an OpenSearch Ingestion pipeline. When
you use it as a destination, you write data from an OpenSearch Ingestion pipeline to one or more
OpenSearch Service domains.

In order to do this, you must have the following:

• A source OpenSearch Service domain or source OpenSearch Serverless VPC collection. If you're
writing to a destination domain, it must be running OpenSearch 1.0 or later, or Elasticsearch 7.4
or later. The source domain or collection must have an access policy that grants the appropriate
permissions to your IAM pipeline role.

• An IAM role that OpenSearch Ingestion will use to read and write to your collection or domain.
You will include this role ARN in your pipeline configuration. For more information, see the
section called “Allowing pipelines to write to domains”.

Topics

• OpenSearch Service as a source

• Using multiple OpenSearch Service domains as a destination

• Ingesting data into an OpenSearch Serverless VPC collection

• Limitations

OpenSearch Service as a source

When you use Amazon OpenSearch Service as a source, you send data to an OpenSearch Ingestion
pipeline.

Amazon OpenSearch Service 276

Amazon OpenSearch Service Developer Guide

Creating a pipeline role in IAM

To create your OpenSearch Ingestion pipeline, you must first create your pipeline role to grant read
and write access between domains. To do this, perform the following steps:

1. Create a new permissions policy in IAM to apply to the pipeline role. Make sure you allow
permissions to read from your source domain and write to your destination domain. For more
information on setting IAM pipeline permissions for OpenSearch Service domains, see the
section called “Allowing pipelines to write to domains”.

2. Specify the following permissions to the IAM pipeline role to read from the source domain:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"es:ESHttpGet",
 "Resource":[
 "arn:aws:es:us-east-1:{account-id}:domain/{domain-name}/",
 "arn:aws:es:us-east-1:{account-id}:domain/{domain-name}/_cat/indices",
 "arn:aws:es:us-east-1:{account-id}:domain/{domain-name}/_search",
 "arn:aws:es:us-east-1:{account-id}:domain/{domain-name}/_search/scroll",
 "arn:aws:es:us-east-1:{account-id}:domain/{domain-name}/*/_search"
]
 },
 {
 "Effect":"Allow",
 "Action":"es:ESHttpPost",
 "Resource":[
 "arn:aws:es:us-east-1:{account-id}:domain/{domain-name}/*/_search/
point_in_time",
 "arn:aws:es:us-east-1:{account-id}:domain/{domain-name}/*/_search/scroll"
]
 },
 {
 "Effect":"Allow",
 "Action":"es:ESHttpDelete",
 "Resource":[
 "arn:aws:es:us-east-1:{account-id}:domain/{domain-name}/_search/
point_in_time",
 "arn:aws:es:us-east-1:{account-id}:domain/{domain-name}/_search/scroll"
]

Amazon OpenSearch Service 277

Amazon OpenSearch Service Developer Guide

 }
]
}

Creating a pipeline

After you attach the permissions to the pipeline role, use the
AWSOpenSearchDataMigrationPipeline migration blueprint to create the pipeline migration.
This blueprint includes a default configuration for migrating data between OpenSearch Service
domains. For more information, see the section called “Using blueprints to create a pipeline”.

Note

OpenSearch Ingestion uses your source domain version and distribution to determine
what mechanism to use for migration. For versions and distributions that support,
point_in_time, point_in_time is used. For OpenSearch Serverless, search_after is
used. OpenSearch Serverless doesn't support point_in_time or scroll.

New indexes might be in the process of being created during the migration process, or documents
might be updating while migration is in progress. Because of this, you might need to perform
either a single scan or multiple scans of your domain index data to pick up new or updated data.

Specify the number of scans to run by configuring the index_read_count and interval in the
pipeline configuration. The following example shows how to perform multiple scans:

scheduling:
 interval: "PT2H"
 index_read_count: 3
 start_time: "2023-06-02T22:01:30.00Z"

While migrating data from your source OpenSearch Service domain, your OpenSearch Ingestion
pipeline ensures that your data is written to the same index and maintains the same document ID.
The following example shows a sample configuration:

index: "${getMetadata(\"opensearch-index\")}"
document_id: "${getMetadata(\"opensearch-document_id\")}"

Amazon OpenSearch Service 278

Amazon OpenSearch Service Developer Guide

Using multiple OpenSearch Service domains as a destination

With OpenSearch Ingestion, you can use multiple public OpenSearch Service domains as
destinations for your OpenSearch Ingestion pipelines. You can use this capability to perform
conditional routing or replicate incoming data into multiple OpenSearch Service domains. You can
specify up to 10 different public OpenSearch Service domains as destinations.

In the following example, incoming data is conditionally routed to different OpenSearch Service
domains:

...
 route:
 - 2xx_status: "/response >= 200 and /response < 300"
 - 5xx_status: "/response >= 500 and /response < 600"
 sink:
 - opensearch:
 hosts: ["https://search-response-2xx-1a2a3a4a5a6a7a8a9a0a9a8a7a.us-
east-1.es.amazonaws.com"]
 aws:
 sts_role_arn: "arn:aws:iam::123456789012:role/Example-Role"
 region: "us-east-1"
 index: "response-2xx"
 routes:
 - 2xx_status
 - opensearch:
 hosts: ["https://search-response-5xx-1a2a3a4a5a6a7a8a9a0a9a8a7a.us-
east-1.es.amazonaws.com"]
 aws:
 sts_role_arn: "arn:aws:iam::123456789012:role/Example-Role"
 region: "us-east-1"
 index: "response-5xx"
 routes:
 - 5xx_status

Ingesting data into an OpenSearch Serverless VPC collection

You can use OpenSearch Ingestion to ingest data into an OpenSearch Serverless VPC collection. To
use an OpenSearch Serverless VPC to ingest data, you have to provide a network access policy in
the pipeline configuration. For more information about data ingestion into OpenSearch Serverless
VPC collections, see the section called “Tutorial: Ingest data into a collection”.

Amazon OpenSearch Service 279

Amazon OpenSearch Service Developer Guide

To create a pipeline with OpenSearch Serverless VPC collection as a destination

1. Create an OpenSearch Serverless collection. For instructions, see the section called “Tutorial:
Ingest data into a collection”.

2. Create a network policy for the collection that specifies VPC access to both the collection
endpoint and the Dashboards endpoint. For instructions, see the section called “Network
access”.

3. Create the pipeline role if you don't already have one. For instructions, see the section called
“Pipeline role”.

4. Create the pipeline. For instructions, see the section called “Using blueprints to create a
pipeline”.

Limitations

The following limitations apply when you designate OpenSearch Service domains or OpenSearch
Serverless collections as sinks:

• A pipeline can't write to more than one VPC domain.

• You can't specify a combination of VPC and public domains in a single pipeline configuration.

• You can have a maximum of 20 non-pipeline sinks within a single pipeline configuration.

• You can specify sinks from a maximum of three different Amazon Web Services Regions in a
single pipeline configuration.

• A pipeline with multiple domain or collection sinks might experience a reduction in processing
speed over time if any of the sinks are down for too long, or are not provisioned with enough
capacity to receive incoming data.

Using an OpenSearch Ingestion pipeline with Amazon S3

With OpenSearch Ingestion, you can use Amazon S3 as a source or as a destination. When you
use Amazon S3 as a source, you send data to an OpenSearch Ingestion pipeline. When you use
Amazon S3 as a destination, you write data from an OpenSearch Ingestion pipeline to one or more
S3 buckets.

Topics

• Amazon S3 as a source

Amazon S3 280

Amazon OpenSearch Service Developer Guide

• Amazon S3 as a destination

• Amazon S3 cross account as a source

Amazon S3 as a source

There are two ways that you can use Amazon S3 as a source to process data—with S3-SQS
processing and with scheduled scans.

Use S3-SQS processing when you require near real-time scanning of files after they are written to
S3. You can configure Amazon S3 buckets to raise an event any time an object is stored or modified
within the bucket. Use a one-time or recurring scheduled scan to batch process data in a S3 bucket.

Topics

• Prerequisites

• Step 1: Configure the pipeline role

• Step 2: Create the pipeline

Prerequisites

To use Amazon S3 as the source for an OpenSearch Ingestion pipeline for both a scheduled scan or
S3-SQS processing, first create an S3 bucket.

Note

If the S3 bucket used as a source in the OpenSearch Ingestion pipeline is in a different
Amazon Web Services account, you also need to enable cross-account read permissions on
the bucket. This allows the pipeline to read and process the data. To enable cross-account
permissions, see Bucket owner granting cross-account bucket permissions in the Amazon S3
User Guide.
If your S3 buckets are in multiple accounts, use a bucket_owners map. For an example,
see Cross-account S3 access in the OpenSearch documentation.

To set up S3-SQS processing, you also need to perform the following steps:

1. Create an Amazon SQS queue.

2. Enable event notifications on the S3 bucket with the SQS queue as a destination.

Amazon S3 281

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example2.html
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/#cross-account-s3-access
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/step-create-queue.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/enable-event-notifications.html

Amazon OpenSearch Service Developer Guide

Step 1: Configure the pipeline role

Unlike other source plugins that push data to a pipeline, the S3 source plugin has a read-based
architecture in which the pipeline pulls data from the source.

Therefore, in order for a pipeline to read from S3, you must specify a role within the pipeline's
S3 source configuration that has access to both the S3 bucket and the Amazon SQS queue. The
pipeline will assume this role in order to read data from the queue.

Note

The role that you specify within the S3 source configuration must be the pipeline role.
Therefore, your pipeline role must contain two separate permissions policies—one to write
to a sink, and one to pull from the S3 source. You must use the same sts_role_arn in all
pipeline components.

The following sample policy shows the required permissions for using S3 as a source:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action":[
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::my-bucket/*"
 },
 {
 "Effect":"Allow",
 "Action":"s3:ListAllMyBuckets",
 "Resource":"arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sqs:DeleteMessage",
 "sqs:ReceiveMessage",
 "sqs:ChangeMessageVisibility"

Amazon S3 282

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/

Amazon OpenSearch Service Developer Guide

],
 "Resource": "arn:aws:sqs:us-west-2:{account-id}:MyS3EventSqsQueue"
 }
]
}

You must attach these permissions to the IAM role that you specify in the sts_role_arn option
within the S3 source plugin configuration:

version: "2"
source:
 s3:
 ...
 aws:
 ...
 sts_role_arn: arn:aws:iam::{account-id}:role/pipeline-role
processor:
 ...
sink:
 - opensearch:
 ...

Step 2: Create the pipeline

After you've set up your permissions, you can configure an OpenSearch Ingestion pipeline
depending on your Amazon S3 use case.

S3-SQS processing

To set up S3-SQS processing, configure your pipeline to specify S3 as the source and set up
Amazon SQS notifications:

version: "2"
s3-pipeline:
 source:
 s3:
 notification_type: "sqs"
 codec:
 newline: null
 sqs:
 queue_url: "https://sqs.us-east-1.amazonaws.com/{account-id}/ingestion-queue"
 compression: "none"

Amazon S3 283

Amazon OpenSearch Service Developer Guide

 aws:
 region: "us-east-1"
 # IAM role that the pipeline assumes to read data from the queue. This role
 must be the same as the pipeline role.
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 processor:
 - grok:
 match:
 log:
 - "%{COMMONAPACHELOG}"
 - date:
 destination: "@timestamp"
 from_time_received: true
 sink:
 - opensearch:
 hosts: ["https://search-domain-endpoint.us-east-1.es.amazonaws.com"]
 index: "index-name"
 aws:
 # IAM role that the pipeline assumes to access the domain sink
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 region: "us-east-1"

Scheduled scan

To set up a scheduled scan, configure your pipeline with a schedule at the scan level that applies to
all your S3 buckets, or at the bucket level. A bucket-level schedule or a scan-interval configuration
always overwrites a scan-level configuration.

You can configure scheduled scans with either a one-time scan, which is ideal for data migration, or
a recurring scan, which is ideal for batch processing.

To configure your pipeline to read from Amazon S3, use the Amazon S3 blueprints named AWS-
S3ScanPipeline or AWS-S3ScanSchedulePipeline. You can edit the scan portion of your pipeline
configuration to meet your scheduling needs. For more information, see the section called “Using
blueprints to create a pipeline”.

One-time scan

A one-time scheduled scan runs once. In your YAML configuration, you can use a start_time and
end_time to specify when you want the objects in the bucket to be scanned. Alternatively, you can
use range to specify the interval of time relative to current time that you want the objects in the
bucket to be scanned.

Amazon S3 284

Amazon OpenSearch Service Developer Guide

For example, a range set to PT4H scans all files created in the last four hours. To configure a one-
time scan to run a second time, you must stop and restart the pipeline. If you don't have a range
configured, you must also update the start and end times.

The following configuration sets up a one-time scan for all buckets and all objects in those buckets:

version: "2"
log-pipeline:
 source:
 s3:
 codec:
 csv:
 compression: "none"
 aws:
 region: "us-east-1"
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 acknowledgments: true
 scan:
 buckets:
 - bucket:
 name: my-bucket-1
 filter:
 include_prefix:
 - Objects1/
 exclude_suffix:
 - .jpeg
 - .png
 - bucket:
 name: my-bucket-2
 key_prefix:
 include:
 - Objects2/
 exclude_suffix:
 - .jpeg
 - .png
 delete_s3_objects_on_read: false
 processor:
 - date:
 destination: "@timestamp"
 from_time_received: true
 sink:
 - opensearch:
 hosts: ["https://search-domain-endpoint.us-east-1.es.amazonaws.com"]

Amazon S3 285

Amazon OpenSearch Service Developer Guide

 index: "index-name"
 aws:
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 region: "us-east-1"
 dlq:
 s3:
 bucket: "my-bucket-1"
 region: "us-east-1"
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"

The following configuration sets up a one-time scan for all buckets during a specified time window.
This means that S3 processes only those objects with creation times that fall within this window.

scan:
 start_time: 2023-01-21T18:00:00.000Z
 end_time: 2023-04-21T18:00:00.000Z
 buckets:
 - bucket:
 name: my-bucket-1
 filter:
 include:
 - Objects1/
 exclude_suffix:
 - .jpeg
 - .png
 - bucket:
 name: my-bucket-2
 filter:
 include:
 - Objects2/
 exclude_suffix:
 - .jpeg
 - .png

The following configuration sets up a one-time scan at both the scan level and the bucket level.
Start and end times at the bucket level override start and end times at the scan level.

scan:
 start_time: 2023-01-21T18:00:00.000Z
 end_time: 2023-04-21T18:00:00.000Z
 buckets:
 - bucket:

Amazon S3 286

Amazon OpenSearch Service Developer Guide

 start_time: 2023-01-21T18:00:00.000Z
 end_time: 2023-04-21T18:00:00.000Z
 name: my-bucket-1
 filter:
 include:
 - Objects1/
 exclude_suffix:
 - .jpeg
 - .png
 - bucket:
 start_time: 2023-01-21T18:00:00.000Z
 end_time: 2023-04-21T18:00:00.000Z
 name: my-bucket-2
 filter:
 include:
 - Objects2/
 exclude_suffix:
 - .jpeg
 - .png

Stopping a pipeline removes any pre-existing reference of what objects have been scanned by
the pipeline before the stop. If a single scan pipeline is stopped, it will rescan all objects again
after its started, even if they were already scanned. If you need to stop a single scan pipeline, it is
recommended you change your time window before starting the pipeline again.

If you need to filter objects by start time and end time, stopping and starting your pipeline is
the only option. If you don't need to filter by start time and end time, you can filter objects
by name. Flitering by name doesn't require you to stop and start your pipeline. To do this, use
include_prefix and exclude_suffix.

Recurring scan

A recurring scheduled scan runs a scan of your specified S3 buckets at regular, scheduled
intervals. You can only configure these intervals at the scan level because individual bucket level
configurations aren't supported.

In your YAML configuration, the interval specifies the frequency of the recurring scan, and can
be between 30 seconds and 365 days. The first of these scans always occurs when you create the
pipeline. The count defines the total number of scan instances.

The following configuration sets up a recurring scan, with a delay of 12 hours between the scans:

Amazon S3 287

Amazon OpenSearch Service Developer Guide

scan:
 scheduling:
 interval: PT12H
 count: 4
 buckets:
 - bucket:
 name: my-bucket-1
 filter:
 include:
 - Objects1/
 exclude_suffix:
 - .jpeg
 - .png
 - bucket:
 name: my-bucket-2
 filter:
 include:
 - Objects2/
 exclude_suffix:
 - .jpeg
 - .png

Amazon S3 as a destination

To write data from an OpenSearch Ingestion pipeline to an S3 bucket, use the blueprint named
AWS-S3SinkLogPipeline to create a pipeline with an S3 sink. This pipeline routes selective data to
an OpenSearch sink and simultaneously sends all data for archival in S3. For more information, see
the section called “Using blueprints to create a pipeline”.

When you create your S3 sink, you can specify your preferred formatting from a variety of sink
codecs. For example, if you want to write data in columnar format, choose the Parquet or Avro
codec. If you prefer a row-based format, choose JSON or ND-JSON. To write data to S3 in a
specified schema, you can also define an inline schema within sink codecs using the Avro format.

The following example defines an inline schema in an S3 sink:

- s3:
 codec:
 parquet:
 schema: >
 {
 "type" : "record",

Amazon S3 288

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/s3/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/s3/#codec
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/s3/#codec
https://avro.apache.org/docs/current/specification/#schema-declaration

Amazon OpenSearch Service Developer Guide

 "namespace" : "org.vpcFlowLog.examples",
 "name" : "VpcFlowLog",
 "fields" : [
 { "name" : "version", "type" : "string"},
 { "name" : "srcport", "type": "int"},
 { "name" : "dstport", "type": "int"},
 { "name" : "start", "type": "int"},
 { "name" : "end", "type": "int"},
 { "name" : "protocol", "type": "int"},
 { "name" : "packets", "type": "int"},
 { "name" : "bytes", "type": "int"},
 { "name" : "action", "type": "string"},
 { "name" : "logStatus", "type" : "string"}
]
 }

When you define this schema, specify a superset of all keys that might be present in the different
types of events that your pipeline delivers to a sink.

For example, if an event has the possibility of a key missing, add that key in your schema with a
null value. Null value declarations allow the schema to process non-uniform data (where some
events have these keys and others don't). When incoming events do have these keys present, their
values are written to sinks.

This schema definition acts as a filter that only allows defined keys to be sent to sinks, and drops
undefined keys from incoming events.

You can also use include_keys and exclude_keys in your sink to filter data that's routed to
other sinks. These two filters are mutually exclusive, so you can only use one at a time in your
schema. Additionally, you can't use them within user-defined schemas.

To create pipelines with such filters, use the AWSSinkFilterWithSchemaPipeline blueprint. For
more information, see the section called “Using blueprints to create a pipeline”.

Amazon S3 cross account as a source

You can grant access across accounts with Amazon S3 so that OpenSearch Ingestion pipelines can
access S3 buckets in another account as a source. The following YAML configuration enables access
across accounts to an Amazon S3 bucket as a source:

s3-pipeline:
 source:

Amazon S3 289

Amazon OpenSearch Service Developer Guide

 s3:
 notification_type: "sqs"
 codec:
 csv:
 delimiter: ","
 quote_character: "\""
 detect_header: True
 sqs:
 queue_url: "https://sqs.ap-northeast-1.amazonaws.com/401447383613/test-s3-queue"
 bucket_owners:
 user-role-1234567890: 1234567890 # User1
 user-role-12345678891: 1234567891 # User2
 compression: "gzip"

Using an OpenSearch Ingestion pipeline with Amazon Security Lake

You can use the S3 source plugin to ingest data from Amazon Security Lake into your OpenSearch
Ingestion pipeline. Security Lake automatically centralizes security data from Amazon
environments, on-premises environments, and SaaS providers into a purpose-built data lake. You
can create a subscription that replicates data from Security Lake to your OpenSearch Ingestion
pipeline, which then writes it to your OpenSearch Service domain or OpenSearch Serverless
collection.

To configure your pipeline to read from Security Lake, use the Security Lake blueprint named
AWS-SecurityLakeS3ParquetOCSFPipeline. The blueprint includes a default configuration for
ingesting Open Cybersecurity Schema Framework (OCSF) parquet files from Security Lake. For
more information, see the section called “Using blueprints to create a pipeline”.

Topics

• Prerequisites

• Step 1: Configure the pipeline role

• Step 2: Create the pipeline

Prerequisites

Before you create your OpenSearch Ingestion pipeline, perform the following steps:

• Enable Security Lake.

• Create a subscriber in Security Lake.

Amazon Security Lake 290

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/
https://docs.aws.amazon.com/security-lake/latest/userguide/what-is-security-lake.html
https://docs.aws.amazon.com/security-lake/latest/userguide/getting-started.html#enable-service
https://docs.aws.amazon.com/security-lake/latest/userguide/subscriber-data-access.html#create-subscriber-data-access

Amazon OpenSearch Service Developer Guide

• Choose the sources that you want to ingest into your pipeline.

• For Subscriber credentials, add the ID of the Amazon Web Services account where you intend
to create the pipeline. For the external ID, specify OpenSearchIngestion-{accountid}.

• For Data access method, choose S3.

• For Notification details, choose SQS queue.

When you create a subscriber, Security Lake automatically creates two inline permissions
policies—one for S3 and one for SQS. The policies take the following format:
AmazonSecurityLake-{12345}-S3 and AmazonSecurityLake-{12345}-SQS. To allow your
pipeline to access the subscriber sources, you must associate the required permissions with your
pipeline role.

Step 1: Configure the pipeline role

Create a new permissions policy in IAM that combines only the required permissions from the two
policies that Security Lake automatically created. The following example policy shows the least
privilege required for an OpenSearch Ingestion pipeline to read data from multiple Security Lake
sources:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObject"
],
 "Resource":[
 "arn:aws:s3:::aws-security-data-lake-{region}-abcde/aws/
LAMBDA_EXECUTION/1.0/*",
 "arn:aws:s3:::aws-security-data-lake-{region}-abcde/aws/S3_DATA/1.0/*",
 "arn:aws:s3:::aws-security-data-lake-{region}-abcde/aws/VPC_FLOW/1.0/*",
 "arn:aws:s3:::aws-security-data-lake-{region}-abcde/aws/ROUTE53/1.0/*",
 "arn:aws:s3:::aws-security-data-lake-{region}-abcde/aws/SH_FINDINGS/1.0/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "sqs:ReceiveMessage",

Amazon Security Lake 291

Amazon OpenSearch Service Developer Guide

 "sqs:DeleteMessage"
],
 "Resource":[
 "arn:aws:sqs:{region}:{account-id}:AmazonSecurityLake-abcde-Main-Queue"
]
 }
]
}

Important

Security Lake doesn’t manage the pipeline role policy for you. If you add or remove sources
from your Security Lake subscription, you must manually update the policy. Security Lake
creates partitions for each log source, so you need to manually add or remove permissions
in the pipeline role.

You must attach these permissions to the IAM role that you specify in the sts_role_arn option
within the S3 source plugin configuration, under sqs.

version: "2"
source:
 s3:
 ...
 sqs:
 queue_url: "https://sqs.{region}.amazonaws.com/{account-id}/
AmazonSecurityLake-abcde-Main-Queue"
 aws:
 ...
 sts_role_arn: arn:aws:iam::{account-id}:role/pipeline-role
processor:
 ...
sink:
 - opensearch:
 ...

Step 2: Create the pipeline

After you add the permissions to the pipeline role, use the AWS-
SecurityLakeS3ParquetOCSFPipeline blueprint to create the pipeline. For more information, see
the section called “Using blueprints to create a pipeline”.

Amazon Security Lake 292

Amazon OpenSearch Service Developer Guide

You must specify the queue_url option within the s3 source configuration, which is the
Amazon SQS queue URL to read from. To format the URL, locate the Subscription endpoint
in the subscriber configuration and change arn:aws: to https://. For example, https://
sqs.{region}.amazonaws.com/{account-id}/AmazonSecurityLake-abdcef-Main-
Queue.

The sts_role_arn that you specify within the S3 source configuration must be the ARN of the
pipeline role.

Using an OpenSearch Ingestion pipeline with Fluent Bit

This sample Fluent Bit configuration file sends log data from Fluent Bit to an OpenSearch Ingestion
pipeline. For more information about ingesting log data, see Log Analytics in the Data Prepper
documentation.

Note the following:

• The host value must be your pipeline endpoint. For example, pipeline-endpoint.us-
east-1.osis.amazonaws.com.

• The aws_service value must be osis.

• The aws_role_arn value is the ARN of the Amazon IAM role for the client to assume and use
for Signature Version 4 authentication.

[INPUT]
 name tail
 refresh_interval 5
 path /var/log/test.log
 read_from_head true

[OUTPUT]
 Name http
 Match *
 Host pipeline-endpoint.us-east-1.osis.amazonaws.com
 Port 443
 URI /log/ingest
 Format json
 aws_auth true
 aws_region us-east-1
 aws_service osis

Fluent Bit 293

https://docs.fluentbit.io/manual/pipeline/outputs/http
https://github.com/opensearch-project/data-prepper/blob/main/docs/log_analytics.md

Amazon OpenSearch Service Developer Guide

 aws_role_arn arn:aws:iam::{account-id}:role/ingestion-role
 Log_Level trace
 tls On

You can then configure an OpenSearch Ingestion pipeline like the following, which has HTTP as the
source:

version: "2"
unaggregated-log-pipeline:
 source:
 http:
 path: "/log/ingest"
 processor:
 - grok:
 match:
 log:
 - "%{TIMESTAMP_ISO8601:timestamp} %{NOTSPACE:network_node}
 %{NOTSPACE:network_host} %{IPORHOST:source_ip}:%{NUMBER:source_port:int} ->
 %{IPORHOST:destination_ip}:%{NUMBER:destination_port:int} %{GREEDYDATA:details}"
 - grok:
 match:
 details:
 - "'%{NOTSPACE:http_method} %{NOTSPACE:http_uri}' %{NOTSPACE:protocol}"
 - "TLS%{NOTSPACE:tls_version} %{GREEDYDATA:encryption}"
 - "%{NUMBER:status_code:int} %{NUMBER:response_size:int}"
 - delete_entries:
 with_keys: ["details", "log"]

 sink:
 - opensearch:
 hosts: ["https://search-domain-endpoint.us-east-1.es.amazonaws.com"]
 index: "index_name"
 index_type: custom
 bulk_size: 20
 aws:
 # IAM role that the pipeline assumes to access the domain sink
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 region: "us-east-1"

Fluent Bit 294

Amazon OpenSearch Service Developer Guide

Using an OpenSearch Ingestion pipeline with OpenTelemetry Collector

This sample OpenTelemetry configuration file exports trace data from the OpenTelemetry
Collector and sends it to an OpenSearch Ingestion pipeline. For more information about ingesting
trace data, see Trace Analytics in the Data Prepper documentation.

Note the following:

• The endpoint value must include your pipeline endpoint. For example, https://pipeline-
endpoint.us-east-1.osis.amazonaws.com.

• The service value must be osis.

extensions:
 sigv4auth:
 region: "us-east-1"
 service: "osis"

receivers:
 jaeger:
 protocols:
 grpc:

exporters:
 otlphttp:
 traces_endpoint: "https://pipeline-endpoint.us-east-1.osis.amazonaws.com/v1/traces"
 auth:
 authenticator: sigv4auth
 compression: none

service:
 extensions: [sigv4auth]
 pipelines:
 traces:
 receivers: [jaeger]
 exporters: [otlphttp]

You can then configure an OpenSearch Ingestion pipeline like the following, which specifies the
OTel trace plugin as the source:

version: "2"

OpenTelemetry Collector 295

https://opentelemetry.io/docs/collector/configuration/
https://github.com/opensearch-project/data-prepper/blob/main/docs/trace_analytics.md
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/

Amazon OpenSearch Service Developer Guide

otel-trace-pipeline:
 source:
 otel_trace_source:
 path: "/v1/traces"
 processor:
 - trace_peer_forwarder:
 sink:
 - pipeline:
 name: "trace-pipeline"
 - pipeline:
 name: "service-map-pipeline"
trace-pipeline:
 source:
 pipeline:
 name: "otel-trace-pipeline"
 processor:
 - otel_traces:
 sink:
 - opensearch:
 hosts: ["https://search-domain-endpoint.us-east-1.es.amazonaws.com"]
 index_type: trace-analytics-raw
 aws:
 # IAM role that OpenSearch Ingestion assumes to access the domain sink
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 region: "us-east-1"

service-map-pipeline:
 source:
 pipeline:
 name: "otel-trace-pipeline"
 processor:
 - service_map:
 sink:
 - opensearch:
 hosts: ["https://search-domain-endpoint.us-east-1.es.amazonaws.com"]
 index_type: trace-analytics-service-map
 aws:
 # IAM role that the pipeline assumes to access the domain sink
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 region: "us-east-1"

For another example pipeline, see the Trace Analytics pipeline blueprint. For more information,
see the section called “Using blueprints to create a pipeline”.

OpenTelemetry Collector 296

Amazon OpenSearch Service Developer Guide

Next steps

After you export your data to a pipeline, you can query it from the OpenSearch Service domain
that is configured as a sink for the pipeline. The following resources can help you get started:

• Observability

• the section called “Trace Analytics”

• the section called “Piped Processing Language”

Using the Amazon SDKs to interact with Amazon OpenSearch
Ingestion

This section includes an example of how to use the Amazon SDKs to interact with Amazon
OpenSearch Ingestion. The code example demonstrates how to create a domain and a pipeline,
and then ingest data into the pipeline.

Topics

• Python

Python

The following sample script uses the Amazon SDK for Python (Boto3) to create an IAM pipeline
role, a domain to write data to, and a pipeline to ingest data through. It then ingests a sample log
file into the pipeline using the requests HTTP library.

To install the required dependencies, run the following commands:

pip install boto3
pip install botocore
pip install requests
pip install requests-auth-aws-sigv4

Within the script, replace the account IDs in the access policies with your Amazon Web Services
account ID. You can also optionally modify the region.

import boto3
import botocore

Next steps 297

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/searching.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/osis.html
https://pypi.org/project/requests/

Amazon OpenSearch Service Developer Guide

from botocore.config import Config
import requests
from requests_auth_aws_sigv4 import AWSSigV4
import time

Build the client using the default credential configuration.
You can use the CLI and run 'aws configure' to set access key, secret
key, and default region.

my_config = Config(
 # Optionally lets you specify a Region other than your default.
 region_name='us-east-1'
)

opensearch = boto3.client('opensearch', config=my_config)
iam = boto3.client('iam', config=my_config)
osis = boto3.client('osis', config=my_config)

domainName = 'test-domain' # The name of the domain
pipelineName = 'test-pipeline' # The name of the pipeline

def createPipelineRole(iam, domainName):
 """Creates the pipeline role"""
 response = iam.create_policy(
 PolicyName='pipeline-policy',
 PolicyDocument=f'{{\"Version\":\"2012-10-17\",\"Statement\":[{{\"Effect
\":\"Allow\",\"Action\":\"es:DescribeDomain\",\"Resource\":\"arn:aws:es:us-
east-1:123456789012:domain\/{domainName}\"}},{{\"Effect\":\"Allow\",\"Action\":
\"es:ESHttp*\",\"Resource\":\"arn:aws:es:us-east-1:123456789012:domain\/{domainName}\/*
\"}}]}}'
)
 policyarn = response['Policy']['Arn']

 response = iam.create_role(
 RoleName='PipelineRole',
 AssumeRolePolicyDocument='{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect
\":\"Allow\",\"Principal\":{\"Service\":\"osis-pipelines.amazonaws.com\"},\"Action\":
\"sts:AssumeRole\"}]}'
)
 rolename=response['Role']['RoleName']

 response = iam.attach_role_policy(
 RoleName=rolename,
 PolicyArn=policyarn

Python 298

Amazon OpenSearch Service Developer Guide

)

 print('Creating pipeline role...')
 time.sleep(10)
 print('Role created: ' + rolename)

def createDomain(opensearch, domainName):
 """Creates a domain to ingest data into"""
 response = opensearch.create_domain(
 DomainName=domainName,
 EngineVersion='OpenSearch_2.3',
 ClusterConfig={
 'InstanceType': 't2.small.search',
 'InstanceCount': 5,
 'DedicatedMasterEnabled': True,
 'DedicatedMasterType': 't2.small.search',
 'DedicatedMasterCount': 3
 },
 # Many instance types require EBS storage.
 EBSOptions={
 'EBSEnabled': True,
 'VolumeType': 'gp2',
 'VolumeSize': 10
 },
 AccessPolicies=f'{{\"Version\":\"2012-10-17\",\"Statement\":[{{\"Effect\":
\"Allow\",\"Principal\":{{\"AWS\":\"arn:aws:iam::123456789012:role\/PipelineRole
\"}},\"Action\":\"es:*\",\"Resource\":\"arn:aws:es:us-east-1:123456789012:domain\/
{domainName}\/*\"}}]}}',
 NodeToNodeEncryptionOptions={
 'Enabled': True
 }
)
 return(response)

def waitForDomainProcessing(opensearch, domainName):
 """Waits for the domain to be active"""
 try:
 response = opensearch.describe_domain(
 DomainName=domainName
)
 # Every 30 seconds, check whether the domain is processing.
 while 'Endpoint' not in response['DomainStatus']:
 print('Creating domain...')
 time.sleep(60)

Python 299

Amazon OpenSearch Service Developer Guide

 response = opensearch.describe_domain(
 DomainName=domainName)

 # Once we exit the loop, the domain is ready for ingestion.
 endpoint = response['DomainStatus']['Endpoint']
 print('Domain endpoint ready to receive data: ' + endpoint)
 createPipeline(osis, endpoint)

 except botocore.exceptions.ClientError as error:
 if error.response['Error']['Code'] == 'ResourceNotFoundException':
 print('Domain not found.')
 else:
 raise error

def createPipeline(osis, endpoint):
 """Creates a pipeline using the domain and pipeline role"""
 try:
 definition = f'version: \"2\"\nlog-pipeline:\n source:\n http:\n path:
 \"/${{pipelineName}}/logs\"\n processor:\n - date:\n from_time_received:
 true\n destination: \"@timestamp\"\n sink:\n - opensearch:\n hosts:
 [\"https://{endpoint}\"]\n index: \"application_logs\"\n aws:\n
 sts_role_arn: \"arn:aws:iam::123456789012:role/PipelineRole\"\n region:
 \"us-east-1\"'
 response = osis.create_pipeline(
 PipelineName=pipelineName,
 MinUnits=4,
 MaxUnits=9,
 PipelineConfigurationBody=definition
)

 response = osis.get_pipeline(
 PipelineName=pipelineName
)

 # Every 30 seconds, check whether the pipeline is active.
 while response['Pipeline']['Status'] == 'CREATING':
 print('Creating pipeline...')
 time.sleep(30)
 response = osis.get_pipeline(
 PipelineName=pipelineName)

 # Once we exit the loop, the pipeline is ready for ingestion.
 ingestionEndpoint = response['Pipeline']['IngestEndpointUrls'][0]
 print('Pipeline ready to ingest data at endpoint: ' + ingestionEndpoint)

Python 300

Amazon OpenSearch Service Developer Guide

 ingestData(ingestionEndpoint)

 except botocore.exceptions.ClientError as error:
 if error.response['Error']['Code'] == 'ResourceAlreadyExistsException':
 print('Pipeline already exists.')
 response = osis.get_pipeline(
 PipelineName=pipelineName
)
 ingestionEndpoint = response['Pipeline']['IngestEndpointUrls'][0]
 ingestData(ingestionEndpoint)
 else:
 raise error

def ingestData(ingestionEndpoint):
 """Ingests a sample log file into the pipeline"""
 endpoint = 'https://' + ingestionEndpoint
 r = requests.request('POST', f'{endpoint}/log-pipeline/logs',

 data='[{"time":"2014-08-11T11:40:13+00:00","remote_addr":"122.226.223.69","status":"404","request":"GET
 http://www.k2proxy.com//hello.html HTTP/1.1","http_user_agent":"Mozilla/4.0
 (compatible; WOW64; SLCC2;)"}]',
 auth=AWSSigV4('osis'))
 print('Ingesting sample log file into pipeline')
 print('Response: ' + r.text)

def main():
 createPipelineRole(iam, domainName)
 createDomain(opensearch, domainName)
 waitForDomainProcessing(opensearch, domainName)

if __name__ == "__main__":
 main()

Use cases for Amazon OpenSearch Ingestion

This chapter demonstrates some common use cases for Amazon OpenSearch Ingestion. This list
is not exhaustive. For the full capabilities of each supported plugin, see Sources, Processors, and
Sinks in the Data Prepper documentation.

Topics

• Grok pattern matching with Amazon OpenSearch Ingestion

Use cases for OpenSearch Ingestion 301

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/sources/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/processors/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/sinks/

Amazon OpenSearch Service Developer Guide

• Log enrichment with Amazon OpenSearch Ingestion

• Event aggregation with Amazon OpenSearch Ingestion

• Deriving metrics from logs with Amazon OpenSearch Ingestion

• Trace Analytics with Amazon OpenSearch Ingestion

• Deriving metrics from traces with Amazon OpenSearch Ingestion

• Anomaly detection with Amazon OpenSearch Ingestion

• Sampling with Amazon OpenSearch Ingestion

• Selective download with Amazon OpenSearch Ingestion

Grok pattern matching with Amazon OpenSearch Ingestion

Amazon OpenSearch Ingestion provides pattern matching capabilities with the Grok processor.
The Grok processor is based on the java-grok library and supports all compatible patterns. The
java-grok library is built using the java.util.regex regular expression library.

You can add custom patterns to your pipelines using the patterns_definitions option. When
debugging custom patterns, the Grok Debugger can be helpful.

In addition to these examples, you can also use the Apache log pipeline blueprint. For more
information about blueprints, see the section called “Using blueprints to create a pipeline”.

Topics

• Basic usage

• Including named and empty captures

• Overwriting keys

• Using custom patterns

• Storing captures with a parent key

Basic usage

To get started with pattern matching, create the following pipeline:

version: "2"
patten-matching-pipeline:

Pattern matching 302

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/grok/
https://mvnrepository.com/artifact/io.krakens/java-grok
https://docs.oracle.com/javase/8/docs/api/java/util/regex/package-summary.html
https://grokdebugger.com/

Amazon OpenSearch Service Developer Guide

 source
 ...
 processor:
 - grok:
 match:
 message: ['%{IPORHOST:clientip} \[%{HTTPDATE:timestamp}\]
 %{NUMBER:response_status:int}']
 sink:
 - opensearch:
 # Provide an OpenSearch Service domain endpoint
 # Enable the 'serverless' flag if the sink is an OpenSearch Serverless
 collection
 aws:
 ...
 index: "metrics_for_traces"
 # serverless: true

An incoming message to the pipeline might have the following contents:

{"message": "127.0.0.1 198.126.12 [10/Oct/2000:13:55:36 -0700] 200"}

The pipeline will locate the value in the message key of each incoming event and try to match the
pattern. The keywords IPORHOST, HTTPDATE, and NUMBER are built into the plugin.

When an incoming record matches the pattern, it generates an internal event like the following,
with extracted identification keys from the original message.

{
 "message":"127.0.0.1 198.126.12 [10/Oct/2000:13:55:36 -0700] 200",
 "response_status":200,
 "clientip":"198.126.12",
 "timestamp":"10/Oct/2000:13:55:36 -0700"
}

The match configuration for the Grok processor specifies which keys of a record to match which
patterns against.

In the following example, the match configuration checks incoming logs for a message key. If
the key exists, it matches the key value against the SYSLOGBASE pattern, and then against the
COMMONAPACHELOG pattern. It then checks the logs for a timestamp key. If that key exists, it
attempts to match the key value against the TIMESTAMP_ISO8601 pattern.

Pattern matching 303

Amazon OpenSearch Service Developer Guide

processor:
 - grok:
 match:
 message: ['%{SYSLOGBASE}', "%{COMMONAPACHELOG}"]
 timestamp: ["%{TIMESTAMP_ISO8601}"]

By default, the plugin continues until it finds a successful match. For example, if there's a successful
match against the value in the message key for a SYSLOGBASE pattern, the plugin doesn't
attempt to match the other patterns. If you want to match logs against every pattern, include the
break_on_match option.

Including named and empty captures

Include the keep_empty_captures option in your pipeline configuration to include null captures,
or the named_captures_only option to include only named captures. Named captures follow the
pattern %{SYNTAX:SEMANTIC}, while unnamed captures follow the pattern %{SYNTAX}.

For example, you can modify the Grok configuration above to remove clientip from the
%{IPORHOST} pattern:

processor:
 - grok:
 match:
 message: ['%{IPORHOST} \[%{HTTPDATE:timestamp}\]
 %{NUMBER:response_status:int}']

The resulting grokked log will look like this:

{
 "message":"127.0.0.1 198.126.12 [10/Oct/2000:13:55:36 -0700] 200",
 "response_status":200,
 "timestamp":"10/Oct/2000:13:55:36 -0700"
}

Notice that the clientip key no longer exists, because the %{IPORHOST} pattern is now an
unnamed capture.

However, if you set named_captures_only to false:

processor:

Pattern matching 304

Amazon OpenSearch Service Developer Guide

 - grok:
 match:
 named_captures_only: false
 message: ['%{IPORHOST} \[%{HTTPDATE:timestamp}\] %{NUMBER:message:int}']

The resulting grokked log will look like this:

{
 "message":"127.0.0.1 198.126.12 [10/Oct/2000:13:55:36 -0700] 200",
 "MONTH":"Oct",
 "YEAR":"2000",
 "response_status":200,
 "HOUR":"13",
 "TIME":"13:55:36",
 "MINUTE":"55",
 "SECOND":"36",
 "IPORHOST":"198.126.12",
 "MONTHDAY":"10",
 "INT":"-0700",
 "timestamp":"10/Oct/2000:13:55:36 -0700"
}

Note that the IPORHOST capture now shows up as a new key, along with some internal unnamed
captures like MONTH and YEAR. The HTTPDATE keyword is using these patterns, which you can see
in the default patterns file.

Overwriting keys

Include the keys_to_overwrite option to specify which existing keys of a record to overwrite if
there's a capture with the same key value.

For example, you can modify the grok configuration above to replace
%{NUMBER:response_status:int} with %{NUMBER:message:int}, and add message to the
list of keys to overwrite.

processor:
 - grok:
 match:
 keys_to_overwrite: ["message"]
 message: ['%{IPORHOST:clientip} \[%{HTTPDATE:timestamp}\]
 %{NUMBER:message:int}']

Pattern matching 305

Amazon OpenSearch Service Developer Guide

In the resulting grokked log, the original message is overwritten with the number 200.

{
 "message":200,
 "clientip":"198.126.12",
 "timestamp":"10/Oct/2000:13:55:36 -0700"
}

Using custom patterns

Include the pattern_definitions option in your grok configuration to specify custom patterns.

The following configuration creates custom regex patterns named CUSTOM_PATTERN-1 and
CUSTOM_PATTERN-2. By default, the plugin continues until it finds a successful match.

processor:
 - grok:
 pattern_definitions:
 CUSTOM_PATTERN_1: 'this-is-regex-1'
 CUSTOM_PATTERN_2: '%{CUSTOM_PATTERN_1} REGEX'
 match:
 message: ["%{CUSTOM_PATTERN_2:my_pattern_key}"]

If you specify break_on_match as false, the pipeline tries to match all patterns and extract keys
from the incoming events:

processor:
 - grok:
 pattern_definitions:
 CUSTOM_PATTERN_1: 'this-is-regex-1'
 CUSTOM_PATTERN_2: 'this-is-regex-2'
 CUSTOM_PATTERN_3: 'this-is-regex-3'
 CUSTOM_PATTERN_4: 'this-is-regex-4'
 match:
 message: ["%{PATTERN1}”, "%{PATTERN2}"]
 log: ["%{PATTERN3}", "%{PATTERN4}"]
 break_on_match: false

You can define your own custom patterns to use for pattern matching in pipelines. In the previous
example, my_pattern will be extracted after matching the custom patterns.

Pattern matching 306

Amazon OpenSearch Service Developer Guide

Storing captures with a parent key

Include the target_key option in your grok configuration to wrap all captures for a record in an
additional outer key value.

For example, you can modify the grok configuration above to add a target key named grokked.

processor:
 - grok:
 target_key: "grok"
 match:
 message: ['%{IPORHOST} \[%{HTTPDATE:timestamp}\]
 %{NUMBER:response_status:int}']

The resulting grokked log will look like this:

{
 "message":"127.0.0.1 198.126.12 [10/Oct/2000:13:55:36 -0700] 200",
 "grokked": {
 "response_status":200,
 "clientip":"198.126.12",
 "timestamp":"10/Oct/2000:13:55:36 -0700"
 }
}

Log enrichment with Amazon OpenSearch Ingestion

You can perform different types of log enrichment with Amazon OpenSearch Ingestion. In addition
to these examples, you can also use the Generic log pipeline blueprint. For more information
about blueprints, see the section called “Using blueprints to create a pipeline”.

Topics

• Filtering

• Extracting key-value pairs from strings

• Mutating events

• Mutating strings

• Converting lists to maps

• Processing incoming timestamps

Log enrichment 307

Amazon OpenSearch Service Developer Guide

Filtering

Use the Drop events processor to filter out specific log events before sending them to a sink. For
example, say you're collecting web request logs and only want to store unsuccessful requests. You
create the following pipeline, which drops any requests where the response is less than 400 so that
only log events with HTTP status codes 400 and above remain.

version: "2"
log-pipeline:
 source:
 ...
 processor:
 - grok:
 match:
 log: ["%{COMMONAPACHELOG_DATATYPED}"]
 - drop:
 drop_when: "/response < 400"
 sink:
 - opensearch:
 ...
 index: failure_logs

The drop_when option specifies which evens to drop from the pipeline.

Extracting key-value pairs from strings

Log data often includes strings of key-value pairs. One common scenario is an HTTP query string.
For example, if a web user queries a pageable URL, the HTTP logs might have the following HTTP
query string:

page=3&q=my-search-term

To perform analysis using the search terms, you can extract the value of q from a query string. The
Key value processor provides robust support for extracting keys and values from strings.

The following example combines the split_string and key_value processors to extract query
parameters from an Apache log line:

version: "2"
pipeline
 ...

Log enrichment 308

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/drop-events/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/key-value/

Amazon OpenSearch Service Developer Guide

 processor:
 - grok:
 match:
 message: ["%{COMMONAPACHELOG_DATATYPED}"]
 - split_string:
 entries:
 - source: request
 delimiter: "?"
 - key_value:
 source: "/request/1"
 field_split_characters: "&"
 value_split_characters: "="
 destination: query_params

Mutating events

The different Mutate event processors let you rename, copy, add, and delete event entries.

In this example, the first processor sets the value of the debug key to true if the key already exists
in the event. The second processor only sets the debug key to true if the key doesn't exist in the
event, because overwrite_if_key_exists is set to true.

...
processor:
 - add_entries:
 entries:
 - key: "debug"
 value: true
...
processor:
 - add_entries:
 entries:
 - key: "debug"
 value: true
 overwrite_if_key_exists: true
...

You can also use a format string to construct new entries from existing entries. For example,
${date}-${time} will create a new entry based on the values of the existing entries date and
time.

For example, the following pipeline adds new event entries dynamically from existing events:

Log enrichment 309

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/mutate-event/

Amazon OpenSearch Service Developer Guide

processor:
 - add_entries:
 entries:
 - key: "key_three"
 format: "${key_one}-${key_two}

For example, consider the following incoming event:

{
 "key_one": "value_one",
 "key_two": "value_two"
}

The processor transforms it into an event with a new key key_three, which combines values of
other keys in the original event.

{
 "key_one": "value_one",
 "key_two": "value_two",
 "key_three": "value_one-value_two"
}

Mutating strings

The various Mutate string processors offer tools to manipulate strings in incoming data. For
example, if you need to split a string into an array, use the split_string processor:

...
processor:
 - split_string:
 entries:
 - source: "message"
 delimiter: "&"
...

The processor will transform a string such as a&b&c into ["a", "b", "c"].

Converting lists to maps

The List-to-map processor, which is one of the Mutate events processors, converts a list of objects
in an event to a map.

Log enrichment 310

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/mutate-string/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/list-to-map/

Amazon OpenSearch Service Developer Guide

For example, consider the following processor configuration:

...
processor:
 - list_to_map:
 key: "name"
 source: "A-car-as-list"
 target: "A-car-as-map"
 value_key: "value"
 flatten: true
...

This processor will convert an event that contains a list of objects like this:

{
 "A-car-as-list": [
 {
 "name": "make",
 "value": "tesla"
 },
 {
 "name": "model",
 "value": "model 3"
 },
 {
 "name": "color",
 "value": "white"
 }
]
}

Into a map:

{
 "A-car-as-map": {
 "make": "tesla",
 "model": "model 3",
 "color": "white"
 }
}

As another example, say you have an incoming event with the following structure:

Log enrichment 311

Amazon OpenSearch Service Developer Guide

{
 "mylist" : [
 {
 "somekey" : "a",
 "somevalue" : "val-a1",
 "anothervalue" : "val-a2"
 },
 {
 "somekey" : "b",
 "somevalue" : "val-b1",
 "anothervalue" : "val-b2"
 },
 {
 "somekey" : "b",
 "somevalue" : "val-b3",
 "anothervalue" : "val-b4"
 },
 {
 "somekey" : "c",
 "somevalue" : "val-c1",
 "anothervalue" : "val-c2"
 }
]
}

You can define the following options in the processor configuration:

...
processor:
 - list_to_map:
 key: "somekey"
 source: "mylist"
 target: "myobject"
 value_key: "value"
 flatten: true
...

The processor modifies the event by removing mylist and adding the new myobject object:

{
 "myobject" : {
 "a" : [

Log enrichment 312

Amazon OpenSearch Service Developer Guide

 {
 "somekey" : "a",
 "somevalue" : "val-a1",
 "anothervalue" : "val-a2"
 }
],
 "b" : [
 {
 "somekey" : "b",
 "somevalue" : "val-b1",
 "anothervalue" : "val-b2"
 },
 {
 "somekey" : "b",
 "somevalue" : "val-b3",
 "anothervalue" : "val-b4"
 }
 "c" : [
 {
 "somekey" : "c",
 "somevalue" : "val-c1",
 "anothervalue" : "val-c2"
 }
]
 }
}

In many cases, you might want to flatten the array for each key. In these situations, you must
choose only one object to remain. The processor offers the choice of either first or last.

...
processor:
 - list_to_map:
 key: "somekey"
 source: "mylist"
 target: "myobject"
 flatten: true
...

The incoming event structure is then flattened accordingly:

{
 "myobject" : {

Log enrichment 313

Amazon OpenSearch Service Developer Guide

 "a" : {
 "somekey" : "a",
 "somevalue" : "val-a1",
 "anothervalue" : "val-a2"
 },
 "b" : {
 "somekey" : "b",
 "somevalue" : "val-b1",
 "anothervalue" : "val-b2"
 }
 "c" : {
 "somekey" : "c",
 "somevalue" : "val-c1",
 "anothervalue" : "val-c2"
 }
 }
}

You can use the List-to-map processor to process Amazon WAF logs. For example, consider a
sample WAF log like this:

{
 "webaclId": "arn:aws:wafv2:ap-southeast-2:111122223333:regional/webacl/
STMTest/1EXAMPLE-2ARN-3ARN-4ARN-123456EXAMPLE",
 "httpRequest": {
 "headers": [
 {
 "name": "Host",
 "value": "localhost:1989"
 },
 {
 "name": "User-Agent",
 "value": "curl/7.61.1"
 }
]
 }
}

If the following pipeline processes the event:

...
processor:
 - list_to_map:

Log enrichment 314

Amazon OpenSearch Service Developer Guide

 key: "name"
 source: "httpRequest/headers"
 value_key: "value"
 flatten: true
...

It will create the following new event:

{
 "webaclId": "arn:aws:wafv2:ap-southeast-2:111122223333:regional/webacl/
STMTest/1EXAMPLE-2ARN-3ARN-4ARN-123456EXAMPLE",
 "httpRequest": {
 "headers": [
 {
 "name": "Host",
 "value": "localhost:1989"
 },
 {
 "name": "User-Agent",
 "value": "curl/7.61.1"
 }
]
 },
 "Host": "localhost:1989",
 "User-Agent": "curl/7.61.1"
}

Processing incoming timestamps

The Date processor parses the timestamp key from incoming events by converting it to ISO 8601
format.

...
 processor:
 - date:
 match:
 - key: timestamp
 patterns: ["dd/MMM/yyyy:HH:mm:ss"]
 destination: "@timestamp"
 source_timezone: "America/Los_Angeles"
 destination_timezone: "America/Chicago"
 locale: "en_US"

Log enrichment 315

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/date/

Amazon OpenSearch Service Developer Guide

...

If the pipeline above processes the following event:

{"timestamp": "10/Feb/2000:13:55:36"}

It converts the event into the following format:

{
 "timestamp":"10/Feb/2000:13:55:36",
 "@timestamp":"2000-02-10T15:55:36.000-06:00"
}

Generating timestamps

The Date processor can generate timestamps for incoming events if you specify @timestamp for
the destination option.

...
 processor:
 - date:
 from_time_received: true
 destination: "@timestamp"
...

Deriving punctuation patterns

The Substitute string processor (which is one of the Mutate string processors) lets you derive a
punctuation pattern from incoming events. In the following example pipeline, the processor will
scan incoming Apache log events and derive punctuation patterns from them.

processor:

 - substitute_string:

 entries:

 - source: "message"

 from: "[a-zA-Z0-9_]+"

Log enrichment 316

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/substitute-string/

Amazon OpenSearch Service Developer Guide

 to: ""

 - source: "message"

 from: "[]+"

 to: "_"

The following incoming Apache HTTP log will generate a punctuation pattern:

[{"message":"10.10.10.11 - admin [19/Feb/2015:15:50:36 -0500] \"GET /big2.pdf
 HTTP/1.1\" 200 33973115 0.202 \"-\" \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.111 Safari/537.36\""}]

{"message":"..._-_[//:::_-]_\"_/._/.\"_._\"-\"_\"/._(;_)_/._(,_)_/..._/.\""}

You can count these generated patterns by passing them through the Aggregate processor with the
count action.

Event aggregation with Amazon OpenSearch Ingestion

You can use Amazon OpenSearch Ingestion to aggregate data from different events over a period
of time. Aggregating events can help reduce unnecessary log volume and handle use cases like
multi-line logs that come in as separate events. The Aggregate processor is a stateful processor
that groups events based on the values for a set of specified identification keys, and performs a
configurable action on each group.

State in the Aggregate processor is stored in memory. For example, in order to combine four
events into one, the processor needs to retain pieces of the first three events. The state of an
aggregate group of events is kept for a configurable amount of time. Depending on your logs, the
aggregate action being used, and the amount of memory options in the processor configuration,
the aggregation could take place over a long period of time.

In addition to these examples, you can also use the Log aggregation with conditional routing
blueprint. For more information about blueprints, see the section called “Using blueprints to create
a pipeline”.

Topics

• Basic usage

• Removing duplicates

Event aggregation 317

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/aggregate/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/aggregate/

Amazon OpenSearch Service Developer Guide

• Log aggregation and conditional routing

Basic usage

The following example pipeline extracts the fields sourceIp, destinationIp, and port using
the Grok processor, and then aggregates on those fields over a period of 30 seconds using the
Aggregate processor and the put_all action. At the end of the 30 seconds, the aggregated log is
sent to the OpenSearch sink.

version: "2"
aggregate_pipeline:
 source:
 http:
 path: "/${pipelineName}/logs"
 processor:
 - grok:
 match:
 log: ["%{IPORHOST:sourceIp} %{IPORHOST:destinationIp} %{NUMBER:port:int}"]
 - aggregate:
 group_duration: "30s"
 identification_keys: ["sourceIp", "destinationIp", "port"]
 action:
 put_all:
 sink:
 - opensearch:
 ...
 index: aggregated_logs

For example, consider the following batch of logs:

{ "log": "127.0.0.1 192.168.0.1 80", "status": 200 }
{ "log": "127.0.0.1 192.168.0.1 80", "bytes": 1000 }
{ "log": "127.0.0.1 192.168.0.1 80" "http_verb": "GET" }

The Grok processor will extract the identification_keys to create the following logs:

{ "sourceIp": "127.0.0.1", "destinationIp": "192.168.0.1", "port": 80, "status": 200 }
{ "sourceIp": "127.0.0.1", "destinationIp": "192.168.0.1", "port": 80, "bytes": 1000 }
{ "sourceIp": "127.0.0.1", "destinationIp": "192.168.0.1", "port": 80, "http_verb":
 "GET" }

Event aggregation 318

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/grok/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/aggregate/

Amazon OpenSearch Service Developer Guide

When the group finishes 30 seconds after when the first log is received by the Aggregate processor,
the following aggregated log is written to the sink:

{ "sourceIp": "127.0.0.1", "destinationIp": "192.168.0.1", "port": 80, "status": 200,
 "bytes": 1000, "http_verb": "GET" }

Removing duplicates

You can remove duplicate entries by deriving keys from incoming events and specifying the
remove_duplicates option for the Aggregate processor. This action immediately processes the
first event for a group, and drops all following events in that group.

In the following example, the first event is processed with the identification keys sourceIp and
destinationIp:

{ "sourceIp": "127.0.0.1", "destinationIp": "192.168.0.1", "status": 200 }

The pipeline will then drop the following event because it has the same keys:

{ "sourceIp": "127.0.0.1", "destinationIp": "192.168.0.1", "bytes": 1000 }

The pipeline processes this event and creates a new group because the sourceIp is different:

{ "sourceIp": "127.0.0.2", "destinationIp": "192.168.0.1", "bytes": 1000 }

Log aggregation and conditional routing

You can use multiple plugins to combine log aggregation with conditional routing. In this example,
the sub-pipeline log-aggregate-pipeline receives logs via an HTTP client like FluentBit and
extracts important values from the logs by matching the value in the log key against the common
Apache log pattern.

Two of the values it extracts from the logs with a grok pattern include response and clientip.
The Aggregate processor then uses the clientip value, along with the remove_duplicates
option, to drop any logs that contain a clientip that has already been processed within the given
group_duration.

Three routes, or conditional statements, exist in the pipeline. These routes separate the value of
the response into 2xx/3xx, 4xx, and 5xx responses. Logs with a 2xx and 3xx status are sent to the

Event aggregation 319

Amazon OpenSearch Service Developer Guide

aggregated_2xx_3xx index, logs with a 4xx status are sent to the aggregated_4xx index, and
logs with a 5xx status are sent to the aggregated_5xx index.

version: "2"
log-aggregate-pipeline:
 source:
 http:
 # Provide the path for ingestion. ${pipelineName} will be replaced with pipeline
 name configured for this pipeline.
 # In this case it would be "/log-aggregate-pipeline/logs". This will be the
 FluentBit output URI value.
 path: "/${pipelineName}/logs"
 processor:
 - grok:
 match:
 log: ["%{COMMONAPACHELOG_DATATYPED}"]
 - aggregate:
 identification_keys: ["clientip"]
 action:
 remove_duplicates:
 group_duration: "180s"
 route:
 - 2xx_status: "/response >= 200 and /response < 300"
 - 3xx_status: "/response >= 300 and /response < 400"
 - 4xx_status: "/response >= 400 and /response < 500"
 - 5xx_status: "/response >= 500 and /response < 600"
 sink:
 - opensearch:
 ...
 index: "aggregated_2xx_3xx"
 routes:
 - 2xx_status
 - 3xx_status
 - opensearch:
 ...
 index: "aggregated_4xx"
 routes:
 - 4xx_status
 - opensearch:
 ...
 index: "aggregated_5xx"
 routes:
 - 5xx_status

Event aggregation 320

Amazon OpenSearch Service Developer Guide

Deriving metrics from logs with Amazon OpenSearch Ingestion

You can use Amazon OpenSearch Ingestion to derive metrics from logs. The following example
pipeline receives incoming logs using the HTTP source plugin and the Grok processor. It then uses
the Aggregate processor to extract the metric bytes aggregated over a 30-second window and
derives histograms from the results.

The overall pipeline contains two sub-pipelines:

• apache-log-pipeline-with-metrics – Receives logs via an HTTP client like FluentBit,
extracts important values from the logs by matching the value in the log key against the
grok common Apache log pattern, and then forwards the grokked logs to both the log-to-
metrics-pipeline sub-pipeline and to an OpenSearch index named logs.

• log-to-metrics-pipeline – Receives the grokked logs from the apache-log-pipeline-
with-metrics sub-pipeline, aggregates the logs and derives histogram metrics of bytes based
on the values in the clientip and request keys. Finally, it sends the histogram metrics to an
OpenSearch index named histogram_metrics.

version: "2"
apache-log-pipeline-with-metrics:
 source:
 http:
 # Provide the path for ingestion. ${pipelineName} will be replaced with pipeline
 name configured for this pipeline.
 # In this case it would be "/apache-log-pipeline-with-metrics/logs". This will be
 the FluentBit output URI value.
 path: "/${pipelineName}/logs"
 processor:
 - grok:
 match:
 log: ["%{COMMONAPACHELOG_DATATYPED}"]
 sink:
 - opensearch:
 ...
 index: "logs"
 - pipeline:
 name: "log-to-metrics-pipeline"

log-to-metrics-pipeline:
 source:

Deriving metrics from logs 321

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/grok/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/aggregate/

Amazon OpenSearch Service Developer Guide

 pipeline:
 name: "apache-log-pipeline-with-metrics"
 processor:
 - aggregate:
 # Specify the required identification keys
 identification_keys: ["clientip", "request"]
 action:
 histogram:
 # Specify the appropriate values for each of the following fields
 key: "bytes"
 record_minmax: true
 units: "bytes"
 buckets: [0, 25000000, 50000000, 75000000, 100000000]
 # Pick the required aggregation period
 group_duration: "30s"
 sink:
 - opensearch:
 ...
 index: "histogram_metrics"

In addition to this example, you can also use the Log to metric pipeline blueprint. For more
information about blueprints, see the section called “Using blueprints to create a pipeline”.

Trace Analytics with Amazon OpenSearch Ingestion

You can use Amazon OpenSearch Ingestion to collect OpenTelemetry trace data and transform it
for use in OpenSearch Service. The following example pipeline uses three sub-pipelines to monitor
Trace Analytics: entry-pipeline, span-pipeline, and service-map-pipeline.

OpenTelemetry trace source

The Otel trace source plugin accepts trace data from the OpenTelemetry Collector. The plugin
follows the OpenTelemetry Protocol and officially supports industry-standard encryption HTTPS.

Processors

You can use the following processors for Trace Analytics:

• OTel trace – Receives a collection of span records from the source and performs stateful
processing, extraction, and completion of fields.

• OTel trace group – Fills in missing trace group fields in the collection of span records.

Trace Analytics 322

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/reference/specification/protocol/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/otel-trace-raw/
https://github.com/opensearch-project/data-prepper/tree/main/data-prepper-plugins/otel-trace-group-processor

Amazon OpenSearch Service Developer Guide

• Service-map – Performs preprocessing for trace data and builds metadata to display service-map
dashboards.

OpenSearch sink

The OpenSearch sink plugin provides indexes and index templates that are specific to Trace
Analytics. The following OpenSearch indexes are specific to Trace Analytics:

• otel-v1-apm-span – Stores the output from the OTel trace processor.

• otel-v1-apm-service-map – Stores the output from the Service-map processor.

Pipeline configuration

The following example pipeline supports Observability for OpenSearch Dashboards. The first sub-
pipeline (entry-pipeline) receives data from the OpenTelemetry Collector and uses two other
sub-pipelines as sinks.

The span-pipeline sub-pipeline parses the trace data and enriches and ingests the span
documents into a span index. The service-map-pipeline sub-pipeline aggregates traces into a
service map and writes documents to a service map index.

version: "2"
entry-pipeline:
 source:
 otel_trace_source:
 # Provide the path for ingestion. This will be the endpoint URI path in the
 OpenTelemetry Exporter configuration.
 # ${pipelineName} will be replaced with the sub-pipeline name. In this case it
 would be "/entry-pipeline/v1/traces".
 path: "/${pipelineName}/v1/traces"
 processor:
 - trace_peer_forwarder
 sink:
 - pipeline:
 name: "span-pipeline"
 - pipeline:
 name: "service-map-pipeline"

span-pipeline:
 source:

Trace Analytics 323

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/service-map-stateful/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/opensearch/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/observability.html

Amazon OpenSearch Service Developer Guide

 pipeline:
 name: "entry-pipeline"
 processor:
 - otel_traces
 sink:
 - opensearch:
 ...
 index_type: trace-analytics-raw

service-map-pipeline:
 source:
 pipeline:
 name: "entry-pipeline"
 processor:
 - service_map
 sink:
 - opensearch:
 ...
 index_type: trace-analytics-service-map

You must run the OpenTelemetry Collector in your environment to send data to the ingestion
endpoint. For another example pipeline, see the Trace Analytics pipeline blueprint. For more
information, see the section called “Using blueprints to create a pipeline”.

Deriving metrics from traces with Amazon OpenSearch Ingestion

You can use Amazon OpenSearch Ingestion to derive metrics from OpenTelemetry traces.
The following example pipeline receives incoming traces and extracts a metric called
durationInNanos, aggregated over a tumbling window of 30 seconds. It then derives a
histogram from the incoming traces.

The pipeline contains the following sub-pipelines:

• entry-pipeline – Receives trace data from the OpenTelemetry collector and forwards it to the
trace_to_metrics_pipeline sub-pipeline.

• trace-to-metrics-pipeline – Receives the trace data from the entry-pipeline sub-
pipeline, aggregates it, and derives a histogram of durationInNanos from the traces based on
the value of the serviceName field. It then sends the derived metrics to the OpenSearch index
called metrics_for_traces.

Deriving metrics from traces 324

Amazon OpenSearch Service Developer Guide

version: "2"
entry-pipeline:
 source:
 otel_trace_source:
 # Provide the path for ingestion. ${pipelineName} will be replaced with sub-
pipeline name.
 # In this case it would be "/entry-pipeline/v1/traces". This will be endpoint URI
 path in OpenTelemetry Exporter configuration.
 path: "/${pipelineName}/v1/traces"
 sink:
 - pipeline:
 name: "trace-to-metrics-pipeline"

trace-to-metrics-pipeline:
 source:
 pipeline:
 name: "entry-pipeline"
 processor:
 - aggregate:
 # Pick the required identification keys
 identification_keys: ["serviceName"]
 action:
 histogram:
 # Pick the appropriate values for each of the following fields
 key: "durationInNanos"
 record_minmax: true
 units: "seconds"
 buckets: [0, 10000000, 50000000, 100000000]
 # Specify an aggregation period
 group_duration: "30s"
 sink:
 - opensearch:
 ...
 index: "metrics_for_traces"

For another example pipeline, see the Trace to metric anomaly pipeline blueprint. For more
information about blueprints, see the section called “Using blueprints to create a pipeline”.

Deriving metrics from traces 325

Amazon OpenSearch Service Developer Guide

Anomaly detection with Amazon OpenSearch Ingestion

You can use Amazon OpenSearch Ingestion to train models and generate anomalies in near real-
time on timeseries aggregated events. You can generate anomalies either on events generated
within the pipeline, or on events coming directly into the pipeline, like OpenTelemetry metrics.

You can feed these tumbling window aggregated timeseries events to the Anomaly detector
processor, which trains a model and generate anomalies with a grade score. Then, write the
anomalies to a separate index to create document monitors and trigger fast alerting.

In addition to these examples, you can also use the Log to metric anomaly pipeline and Trace to
metric anomaly pipeline blueprints. For more information about blueprints, see the section called
“Using blueprints to create a pipeline”.

Topics

• Metrics from logs

• Metrics from traces

• OpenTelemetry metrics

Metrics from logs

The following pipeline receives logs via an HTTP source like FluentBit, extracts important values
from the logs by matching the value in the log key against the grok common Apache log pattern,
and then forwards the grokked logs to both the log-to-metrics-pipeline sub-pipeline, as
well as to an OpenSearch index named logs.

The log-to-metrics-pipeline sub-pipeline receives the grokked logs from the apache-
log-pipeline-with-metrics sub-pipeline, aggregates them, and derives histogram metrics
based on the values in the clientip and request keys. It then sends the histogram metrics to an
OpenSearch index named histogram_metrics, as well as to the log-to-metrics-anomaly-
detector sub-pipeline.

The log-to-metrics-anomaly-detector-pipeline sub-pipeline receives the aggregated
histogram metrics from the log-to-metrics-pipeline sub-pipeline and sends them to the
Anomaly detector processor to detect anomalies using the Random Cut Forest algorithm. If it
detects anomalies, it sends them to an OpenSearch index named log-metric-anomalies.

version: "2"

Anomaly detection 326

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/anomaly-detector/

Amazon OpenSearch Service Developer Guide

apache-log-pipeline-with-metrics:
 source:
 http:
 # Provide the path for ingestion. ${pipelineName} will be replaced with pipeline
 name configured for this pipeline.
 # In this case it would be "/apache-log-pipeline-with-metrics/logs". This will be
 the FluentBit output URI value.
 path: "/${pipelineName}/logs"
 processor:
 - grok:
 match:
 log: ["%{COMMONAPACHELOG_DATATYPED}"]
 sink:
 - opensearch:
 ...
 index: "logs"
 - pipeline:
 name: "log-to-metrics-pipeline"

log-to-metrics-pipeline:
 source:
 pipeline:
 name: "apache-log-pipeline-with-metrics"
 processor:
 - aggregate:
 # Specify the required identification keys
 identification_keys: ["clientip", "request"]
 action:
 histogram:
 # Specify the appropriate values for each the following fields
 key: "bytes"
 record_minmax: true
 units: "bytes"
 buckets: [0, 25000000, 50000000, 75000000, 100000000]
 # Pick the required aggregation period
 group_duration: "30s"
 sink:
 - opensearch:
 ...
 index: "histogram_metrics"
 - pipeline:
 name: "log-to-metrics-anomaly-detector-pipeline"

log-to-metrics-anomaly-detector-pipeline:

Anomaly detection 327

Amazon OpenSearch Service Developer Guide

 source:
 pipeline:
 name: "log-to-metrics-pipeline"
 processor:
 - anomaly_detector:
 # Specify the key on which to run anomaly detection
 keys: ["bytes"]
 mode:
 random_cut_forest:
 sink:
 - opensearch:
 ...
 index: "log-metric-anomalies"

Metrics from traces

You can derive metrics from traces and find anomalies in these generated metrics. In this example,
the entry-pipeline sub-pipeline receives trace data from the OpenTelemetry Collector and
forwards it to the following sub-pipelines:

• span-pipeline – Extracts the raw spans from the traces. It sends the raw spans to any indexes
OpenSearch prefixed with otel-v1-apm-span.

• service-map-pipeline – Aggregates and analyzes it to create documents that represent
connections between services. It sends these documents to an OpenSearch index named otel-
v1-apm-service-map. You can then see a visualization of the service map through the Trace
Analytics plugin for OpenSearch Dashboards.

• trace-to-metrics-pipeline -–Aggregates and derives histogram metrics from the traces
based on the value of the serviceName. It then sends the derived metrics to an OpenSearch
index named metrics_for_traces, as well as to the trace-to-metrics-anomaly-
detector-pipeline sub-pipeline.

The trace-to-metrics-anomaly-detector-pipeline sub-pipeline receives the aggregated
histogram metrics from the trace-to-metrics-pipeline and sends them to the Anomaly
detector processor to detect anomalies using the Random Cut Forest algorithm. If it detects any
anomalies, it sends them to an OpenSearch index named trace-metric-anomalies.

version: "2"
entry-pipeline:
 source:

Anomaly detection 328

Amazon OpenSearch Service Developer Guide

 otel_trace_source:
 # Provide the path for ingestion. ${pipelineName} will be replaced with pipeline
 name configured for this pipeline.
 # In this case it would be "/entry-pipeline/v1/traces". This will be endpoint URI
 path in OpenTelemetry Exporter
 # configuration.
 # path: "/${pipelineName}/v1/traces"
 processor:
 - trace_peer_forwarder:
 sink:
 - pipeline:
 name: "span-pipeline"
 - pipeline:
 name: "service-map-pipeline"
 - pipeline:
 name: "trace-to-metrics-pipeline"

span-pipeline:
 source:
 pipeline:
 name: "entry-pipeline"
 processor:
 - otel_trace_raw:
 sink:
 - opensearch:
 ...
 index_type: "trace-analytics-raw"

service-map-pipeline:
 source:
 pipeline:
 name: "entry-pipeline"
 processor:
 - service_map:
 sink:
 - opensearch:
 ...
 index_type: "trace-analytics-service-map"

trace-to-metrics-pipeline:
 source:
 pipeline:
 name: "entry-pipeline"
 processor:

Anomaly detection 329

Amazon OpenSearch Service Developer Guide

 - aggregate:
 # Pick the required identification keys
 identification_keys: ["serviceName"]
 action:
 histogram:
 # Pick the appropriate values for each the following fields
 key: "durationInNanos"
 record_minmax: true
 units: "seconds"
 buckets: [0, 10000000, 50000000, 100000000]
 # Pick the required aggregation period
 group_duration: "30s"
 sink:
 - opensearch:
 ...
 index: "metrics_for_traces"
 - pipeline:
 name: "trace-to-metrics-anomaly-detector-pipeline"

trace-to-metrics-anomaly-detector-pipeline:
 source:
 pipeline:
 name: "trace-to-metrics-pipeline"
 processor:
 - anomaly_detector:
 # Below Key will find anomalies in the max value of histogram generated for
 durationInNanos.
 keys: ["max"]
 mode:
 random_cut_forest:
 sink:
 - opensearch:
 ...
 index: "trace-metric-anomalies"

OpenTelemetry metrics

You can create a pipeline that receives OpenTelemetry metrics and detects anomalies in these
metrics. In this example, entry-pipeline receives metrics data from the OpenTelemetry
Collector. If a metric is of type GAUGE and the name of the metric is totalApiBytesSent, the
processor sends it to the ad-pipeline sub-pipeline.

Anomaly detection 330

Amazon OpenSearch Service Developer Guide

The ad-pipeline sub-pipeline receives the metrics data from the entry pipeline and performs
anomaly detection on the value of the metric using the Anomaly detector processor.

entry-pipeline:
 source:
 otel_metrics_source:
 processor:
 - otel_metrics:
 route:
 - gauge_route: '/kind = "GAUGE" and /name = "totalApiBytesSent"'
 sink:
 - pipeline:
 name: "ad-pipeline"
 routes:
 - gauge_route
 - opensearch:
 ...
 index: "otel-metrics"

ad-pipeline:
 source:
 pipeline:
 name: "entry-pipeline"
 processor:
 - anomaly_detector:
 # Use "value" as the key on which anomaly detector needs to be run
 keys: ["value"]
 mode:
 random_cut_forest:
 sink:
 - opensearch:
 ...
 index: otel-metrics-anomalies

In addition to this example, you can also use the Trace to metric anomaly pipeline blueprint. For
more information about blueprints, see the section called “Using blueprints to create a pipeline”.

Sampling with Amazon OpenSearch Ingestion

Amazon OpenSearch Ingestion provides the following sampling capabilities. In addition to these
examples, you can also use the Apache log sampling blueprint. For more information about
blueprints, see the section called “Using blueprints to create a pipeline”.

Sampling 331

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/anomaly-detector/

Amazon OpenSearch Service Developer Guide

Topics

• Time sampling

• Percentage sampling

• Tail sampling

Time sampling

You can use the rate_limiter action within the Aggregate processor to limit the number of
events that can be processed per second. You can choose to either drop excess events or carry
them forward to the next time period.

In this example, only 100 events per second with a status code of 200 are sent to the sink from a
given IP address. It drops all excess events from the configured time window.

...
 processor:
 - aggregate:

 identification_keys: ["clientip"]

 action:

 rate_limiter:

 events_per_second: 100

 when_exceeds: drop
 when: "/status == 200"
...

If you instead set the when_exceeds option to block, the processor will process excess events in
the next time window.

Percentage sampling

Use the percent_sampler action within the Aggregate processor to limit the number of events
that are sent to a sink. All excess events will be dropped.

In this example, only 20 percent of events with a status code of 200 are sent to the sink from a
given IP address:

Sampling 332

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/aggregate/

Amazon OpenSearch Service Developer Guide

...
 processor:
 - aggregate:

 identification_keys: ["clientip"]
 duration :

 action:

 percent_sampler:

 percent: 20

 when: "/status == 200"
...

Tail sampling

Use the tail_sampler action within the Aggregate processor to sample events based on a set
of defined policies. This action waits for an aggregation to complete across different aggregation
periods based on the configured wait period. When an aggregation is complete, and if it matches
the specific error condition, it's sent to the sink. Otherwise, only a configured percentage of events
are sent to the sink.

The following example pipeline sends all OpenTelemetry traces with an error condition status of 2
to the sink. It only sends 20% of the traces that don't match this error condition to the sink.

...
 processor:
 - aggregate:

 identification_keys: ["traceId"]

 action:

 tail_sampler:

 percent: 20

 wait_period: "10s"

Sampling 333

Amazon OpenSearch Service Developer Guide

 condition: "/status == 2"

...

If you set the error condition to false or don't include it, only a the configured percentage of
events is allowed to pass through, determined by a probabilistic outcome.

Because it's difficult to determine exactly when tail sampling should occur, you can use the
wait_period option to measure the idle time after the last event was received.

Selective download with Amazon OpenSearch Ingestion

If your pipeline uses an S3 source, you can use SQL expressions to perform filtering and
computations on the contents of S3 objects before ingesting them into a pipeline.

The s3_select option supports objects in Parquet format. It also works with objects that
are compressed with GZIP or BZIP2 (for CSV and JSON objects only), and supports columnar
compression for Parquet using GZIP and Snappy.

The following example pipeline downloads data in incoming S3 objects, encoded in Parquet
format:

pipeline:
 source:
 s3:
 s3_select:
 expression: "select * from s3object s"
 input_serialization: parquet
 notification_type: "sqs"
...

The following example downloads only the first 10,000 records in the objects:

pipeline:
 source:
 s3:
 s3_select:
 expression: "select * from s3object s LIMIT 10000"
 input_serialization: parquet
 notification_type: "sqs"

Selective download 334

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/

Amazon OpenSearch Service Developer Guide

...

The following example checks for the minimum and maximum value of data_value before
ingesting events into the pipeline:

pipeline:
 source:
 s3:
 s3_select:
 expression: "select s.* from s3object s where s.data_value > 200 and
 s.data_value < 500 "
 input_serialization: parquet
 notification_type: "sqs"
...

In addition to these examples, you can also use the S3 select pipeline blueprint. For more
information about blueprints, see the section called “Using blueprints to create a pipeline”.

For more information, see the following resources:

• Filtering and retrieving data using Amazon S3 Select

• SQL reference for Amazon S3 Select

Security in Amazon OpenSearch Ingestion

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. Third-party auditors regularly test and verify the effectiveness of our security as part of
the Amazon compliance programs.

• Security in the cloud – Your responsibility is determined by the Amazon service that you use.
You are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

Security in OpenSearch Ingestion 335

https://docs.amazonaws.cn/AmazonS3/latest/user-guide/selecting-content-from-objects.html
https://docs.amazonaws.cn/AmazonS3/latest/user-guide/s3-select-sql-reference.html
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/programs/

Amazon OpenSearch Service Developer Guide

This documentation helps you understand how to apply the shared responsibility model when
using OpenSearch Ingestion. The following topics show you how to configure OpenSearch
Ingestion to meet your security and compliance objectives. You also learn how to use other
Amazon services that help you to monitor and secure your OpenSearch Ingestion resources.

Topics

• Securing Amazon OpenSearch Ingestion pipelines within a VPC

• Identity and Access Management for Amazon OpenSearch Ingestion

• Logging Amazon OpenSearch Ingestion API calls using Amazon CloudTrail

Securing Amazon OpenSearch Ingestion pipelines within a VPC

You can launch Amazon OpenSearch Ingestion pipelines into a virtual private cloud (VPC). A VPC
is a virtual network that's dedicated to your Amazon Web Services account. It's logically isolated
from other virtual networks in the Amazon Cloud. Placing a pipeline within a VPC enables secure
communication between OpenSearch Ingestion and other services within the VPC without the
need for an internet gateway, NAT device, or VPN connection. All traffic remains securely within the
Amazon Cloud.

Using a VPC allows you to enforce data flow through your OpenSearch Ingestion pipelines within
the boundaries of the VPC, rather than over the public internet. Pipelines that aren't within a VPC
send and receive data over public-facing endpoints and the internet.

For instructions to provision a pipeline within a VPC, see the section called “Creating pipelines”.

Topics

• Considerations

• Limitations

• Prerequisites

• Configuring VPC access for a pipeline

• Service-linked role for VPC access

Considerations

Consider the following when you configure VPC access for a pipeline.

Securing pipelines within a VPC 336

Amazon OpenSearch Service Developer Guide

• A public pipeline can write to a VPC domain. Similarly, a VPC pipeline can write to a public
domain.

• A pipeline doesn't need to be in the same VPC as its domain sink. You also don't need to
establish a connection between the two VPCs. OpenSearch Ingestion takes care of connecting
them for you.

• You can only specify one VPC for your pipeline.

• Unlike with public pipelines, a VPC pipeline must be in the same Amazon Web Services Region as
the domain that it's writing to.

• You can choose to deploy a pipeline into one, two, or three subnets of your VPC. The subnets are
distributed across the same Availability Zones that your Ingestion OpenSearch Compute Units
(OCUs) are deployed in.

• If you only deploy a pipeline in one subnet and the Availability Zone goes down, you won't be
able to ingest data. To ensure high availability, we recommend that you configure pipelines with
two or three subnets.

• Specifying a security group is optional. If you don't provide a security group, we use the default
security group that is specified in the VPC.

Limitations

Pipelines within a VPC have the following limitations.

• You can't change a pipeline's network configuration after you create it. If you launch a pipeline
within a VPC, you can't later change it to a public endpoint, and vice versa.

• You can either launch your pipeline within a VPC or use a public endpoint, but you can't do both.
You must choose one or the other when you create a pipeline.

• After you provision a pipeline within a VPC, you can't move it to a different VPC, and you can't
change its subnets or security group settings.

• If your pipeline writes to a VPC domain sink, you can't go back later and change the sink to a
different domain (VPC or public) after the pipeline is created. You must delete and recreate the
pipeline with a new sink. You can still switch a sink from a public domain to a VPC domain.

• You can't provide cross-account ingestion access to VPC pipelines.

Prerequisites

Before you can provision a pipeline within a VPC, you must do the following:

Securing pipelines within a VPC 337

Amazon OpenSearch Service Developer Guide

• Create a VPC

To create your VPC, you can use the Amazon VPC console, the Amazon CLI, or one of the Amazon
SDKs. For more information, see Working with VPCs in the Amazon VPC User Guide. If you already
have a VPC, you can skip this step.

• Reserve IP addresses

OpenSearch Ingestion places an elastic network interface in each subnet that you specify during
pipeline creation. Each network interface is associated with an IP address. You must reserve one
IP address per subnet for the network interfaces.

Configuring VPC access for a pipeline

You can enable VPC access for a pipeline within the OpenSearch Service console or using the
Amazon CLI.

Console

You configure VPC access during pipeline creation. Under Network, choose VPC access and
configure the following settings:

Setting Description

VPC Choose the ID of the virtual private cloud (VPC) that you want to use. The
VPC and pipeline must be in the same Amazon Web Services Region.

Subnets Choose one or more subnets. OpenSearch Service will place a VPC endpoint
and elastic network interfaces in the subnets.

Security groups Choose one or more VPC security groups that allow your required applicati
on to reach the OpenSearch Ingestion pipeline on the ports (80 or 443) and
protocols (HTTP or HTTPs) exposed by the pipeline.

CLI

To configure VPC access using the Amazon CLI, specify the --vpc-options parameter:

aws osis create-pipeline \

Securing pipelines within a VPC 338

https://docs.amazonaws.cn/vpc/latest/userguide/working-with-vpcs.html

Amazon OpenSearch Service Developer Guide

 --pipeline-name vpc-pipeline \
 --min-units 4 \
 --max-units 10 \
 --vpc-options
 SecurityGroupIds={sg-12345678,sg-9012345},SubnetIds=subnet-1212234567834asdf \
 --pipeline-configuration-body "file://pipeline-config.yaml"

Service-linked role for VPC access

A service-linked role is a unique type of IAM role that delegates permissions to a service so that it
can create and manage resources on your behalf. OpenSearch Ingestion requires a service-linked
role called AWSServiceRoleForAmazonOpenSearchIngestion to access your VPC, create the
pipeline endpoint, and place network interfaces in a subnet of your VPC. For more information on
this role's permissions and how to delete it, see the section called “Pipeline creation role”.

OpenSearch Ingestion automatically creates the role when you create an ingestion pipeline. For
this automatic creation to succeed, the user creating the first pipeline in an account must have
permissions for the iam:CreateServiceLinkedRole action. To learn more, see Service-linked
role permissions in the IAM User Guide. You can view the role in the Amazon Identity and Access
Management (IAM) console after it's created.

Identity and Access Management for Amazon OpenSearch Ingestion

Amazon Identity and Access Management (IAM) is an Amazon Web Service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can be
authenticated (signed in) and authorized (have permissions) to use OpenSearch Ingestion resources.
IAM is an Amazon Web Service that you can use with no additional charge.

Topics

• Identity-based policies for OpenSearch Ingestion

• Policy actions for OpenSearch Ingestion

• Policy resources for OpenSearch Ingestion

• Policy condition keys for Amazon OpenSearch Ingestion

• ABAC with OpenSearch Ingestion

• Using temporary credentials with OpenSearch Ingestion

• Service-linked roles for OpenSearch Ingestion

• Identity-based policy examples for OpenSearch Ingestion

Identity and Access Management 339

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon OpenSearch Service Developer Guide

Identity-based policies for OpenSearch Ingestion

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for OpenSearch Ingestion

To view examples of OpenSearch Ingestion identity-based policies, see the section called “Identity-
based policy examples”.

Policy actions for OpenSearch Ingestion

Supports policy actions Yes

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated Amazon API
operation. There are some exceptions, such as permission-only actions that don't have a matching
API operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in OpenSearch Ingestion use the following prefix before the action:

osis

To specify multiple actions in a single statement, separate them with commas.

Identity and Access Management 340

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html

Amazon OpenSearch Service Developer Guide

"Action": [
 "osis:action1",
 "osis:action2"
]

You can specify multiple actions using wildcard characters (*). For example, to specify all actions
that begin with the word List, include the following action:

"Action": "osis:List*"

To view examples of OpenSearch Ingestion identity-based policies, see Identity-based policy
examples for OpenSearch Serverless.

Policy resources for OpenSearch Ingestion

Supports policy resources Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

Policy condition keys for Amazon OpenSearch Ingestion

Supports service-specific policy condition keys No

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

Identity and Access Management 341

https://docs.amazonaws.cn/general/latest/gr/aws-arns-and-namespaces.html

Amazon OpenSearch Service Developer Guide

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, Amazon evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, Amazon evaluates the condition using a logical OR operation. All
of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

Amazon supports global condition keys and service-specific condition keys. To see all Amazon
global condition keys, see Amazon global condition context keys in the IAM User Guide.

To see a list of OpenSearch Ingestion condition keys, see Condition keys for Amazon OpenSearch
Ingestion in the Service Authorization Reference. To learn with which actions and resources you can
use a condition key, see Actions defined by Amazon OpenSearch Ingestion.

ABAC with OpenSearch Ingestion

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In Amazon, these attributes are called tags. You can attach tags to IAM entities (users
or roles) and to many Amazon resources. Tagging entities and resources is the first step of ABAC.
Then you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

Identity and Access Management 342

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchingestion.html#amazonopensearchingestion-policy-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchingestion.html#amazonopensearchingestion-policy-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchingestion.html#amazonopensearchingestion-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon OpenSearch Service Developer Guide

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

For more information about tagging OpenSearch Ingestion resources, see the section called
“Tagging pipelines”.

Using temporary credentials with OpenSearch Ingestion

Supports temporary credentials Yes

Some Amazon Web Services don't work when you sign in using temporary credentials. For
additional information, including which Amazon Web Services work with temporary credentials,
see Amazon Web Services that work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the Amazon Web Services Management
Console using any method except a user name and password. For example, when you access
Amazon using your company's single sign-on (SSO) link, that process automatically creates
temporary credentials. You also automatically create temporary credentials when you sign in to the
console as a user and then switch roles. For more information about switching roles, see Switching
to a role (console) in the IAM User Guide.

You can manually create temporary credentials using the Amazon CLI or Amazon API. You can then
use those temporary credentials to access Amazon. Amazon recommends that you dynamically
generate temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Service-linked roles for OpenSearch Ingestion

Supports service-linked roles Yes

A service-linked role is a type of service role that is linked to an Amazon Web Service. The service
can assume the role to perform an action on your behalf. Service-linked roles appear in your

Identity and Access Management 343

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html

Amazon OpenSearch Service Developer Guide

Amazon Web Services account and are owned by the service. An IAM administrator can view, but
not edit the permissions for service-linked roles.

OpenSearch Ingestion uses a service-linked role called
AWSServiceRoleForAmazonOpenSearchIngestion. For details about creating and managing
OpenSearch Ingestion service-linked roles, see the section called “Pipeline creation role”.

Identity-based policy examples for OpenSearch Ingestion

By default, users and roles don't have permission to create or modify OpenSearch Ingestion
resources. They also can't perform tasks by using the Amazon Web Services Management Console,
Amazon Command Line Interface (Amazon CLI), or Amazon API. To grant users permission to
perform actions on the resources that they need, an IAM administrator can create IAM policies. The
administrator can then add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Amazon OpenSearch Ingestion, including
the format of the ARNs for each of the resource types, see Actions, resources, and condition keys
for Amazon OpenSearch Ingestion in the Service Authorization Reference.

Topics

• Policy best practices

• Using OpenSearch Ingestion in the console

• Administering OpenSearch Ingestion pipelines

• Ingesting data into an OpenSearch Ingestion pipeline

Policy best practices

Identity-based policies are very powerful. They determine whether someone can create, access,
or delete OpenSearch Ingestion resources in your account. These actions can incur costs for your
Amazon Web Services account. When you create or edit identity-based policies, follow these
guidelines and recommendations:

Identity-based policies determine whether someone can create, access, or delete OpenSearch
Ingestion resources in your account. These actions can incur costs for your Amazon Web
Services account. When you create or edit identity-based policies, follow these guidelines and
recommendations:

Identity and Access Management 344

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchingestion.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchingestion.html

Amazon OpenSearch Service Developer Guide

• Get started with Amazon managed policies and move toward least-privilege permissions
– To get started granting permissions to your users and workloads, use the Amazon managed
policies that grant permissions for many common use cases. They are available in your Amazon
Web Services account. We recommend that you reduce permissions further by defining Amazon
customer managed policies that are specific to your use cases. For more information, see Amazon
managed policies or Amazon managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition
to specify that all requests must be sent using SSL. You can also use conditions to grant access
to service actions if they are used through a specific Amazon Web Service, such as Amazon
CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM
User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a
root user in your Amazon Web Services account, turn on MFA for additional security. To require
MFA when API operations are called, add MFA conditions to your policies. For more information,
see Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using OpenSearch Ingestion in the console

To access OpenSearch Ingestion within the OpenSearch Service console, you must have a minimum
set of permissions. These permissions must allow you to list and view details about the OpenSearch
Ingestion resources in your Amazon account. If you create an identity-based policy that is more

Identity and Access Management 345

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html

Amazon OpenSearch Service Developer Guide

restrictive than the minimum required permissions, the console won't function as intended for
entities (such as IAM roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to
the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API
operation that you're trying to perform.

The following policy allows a user to access OpenSearch Ingestion within the OpenSearch Service
console:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Resource": "*",
 "Effect": "Allow",
 "Action": [
 "osis:ListPipelines",
 "osis:GetPipeline",
 "osis:ListPipelineBlueprints",
 "osis:GetPipelineBlueprint",
 "osis:GetPipelineChangeProgress"
]
 }
]
}

Alternately, you can use the the section called “AmazonOpenSearchIngestionReadOnlyAccess”
Amazon Web Services managed policy, which grants read-only access to all OpenSearch Ingestion
resources for an Amazon Web Services account.

Administering OpenSearch Ingestion pipelines

This policy is an example of a "pipeline admin" policy that allows a user to manage and administer
Amazon OpenSearch Ingestion pipelines. The user can create, view, and delete pipelines.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Resource": "arn:aws:osis:region:123456789012:pipeline/*",

Identity and Access Management 346

Amazon OpenSearch Service Developer Guide

 "Action": [
 "osis:CreatePipeline",
 "osis:DeletePipeline",
 "osis:UpdatePipeline",
 "osis:ValidatePipeline",
 "osis:StartPipeline",
 "osis:StopPipeline"
],
 "Effect": "Allow"
 },
 {
 "Resource": "*",
 "Action": [
 "osis:ListPipelines",
 "osis:GetPipeline",
 "osis:ListPipelineBlueprints",
 "osis:GetPipelineBlueprint",
 "osis:GetPipelineChangeProgress"
],
 "Effect": "Allow"
 }
]
}

Ingesting data into an OpenSearch Ingestion pipeline

This example policy allows a user or other entity to ingest data into an Amazon OpenSearch
Ingestion pipeline in their account. The user can't modify the pipelines.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Resource": "arn:aws:osis:region:123456789012:pipeline/*",
 "Action": [
 "osis:Ingest"
],
 "Effect": "Allow"
 }
]
}

Identity and Access Management 347

Amazon OpenSearch Service Developer Guide

Logging Amazon OpenSearch Ingestion API calls using Amazon
CloudTrail

Amazon OpenSearch Ingestion is integrated with Amazon CloudTrail, a service that provides a
record of actions taken by a user, role, or an Amazon service in OpenSearch Ingestion.

CloudTrail captures all API calls for OpenSearch Ingestion as events. The calls captured include calls
from the OpenSearch Ingestion section of the OpenSearch Service console and code calls to the
OpenSearch Ingestion API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for OpenSearch Ingestion. If you don't configure a trail, you can still view
the most recent events in the CloudTrail console in Event history.

Using the information collected by CloudTrail, you can determine the request that was made to
OpenSearch Ingestion, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

OpenSearch Ingestion information in CloudTrail

CloudTrail is enabled on your Amazon Web Services account when you create the account. When
activity occurs in OpenSearch Ingestion, that activity is recorded in a CloudTrail event along with
other Amazon service events in Event history. You can view, search, and download recent events
in your Amazon Web Services account. For more information, see Viewing events with CloudTrail
Event history.

For an ongoing record of events in your Amazon Web Services account, including events for
OpenSearch Ingestion, create a trail. A trail enables CloudTrail to deliver log files to an Amazon
S3 bucket. By default, when you create a trail in the console, the trail applies to all Amazon Web
Services Regions.

The trail logs events from all Regions in the Amazon partition and delivers the log files to the
Amazon S3 bucket that you specify. Additionally, you can configure other Amazon services to
further analyze and act upon the event data collected in CloudTrail logs. For more information, see
the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

Monitoring with CloudTrail 348

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html

Amazon OpenSearch Service Developer Guide

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All OpenSearch Ingestion actions are logged by CloudTrail and are documented in the OpenSearch
Ingestion API reference. For example, calls to the CreateCollection, ListCollections, and
DeleteCollection actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine:

• Whether the request was made with root or Amazon Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon service.

For more information, see the CloudTrail userIdentity element.

Understanding OpenSearch Ingestion log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries.

An event represents a single request from any source. It includes information about the requested
action, the date and time of the action, request parameters, and so on. CloudTrail log files aren't an
ordered stack trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the DeletePipeline
action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn":"arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "access-key",
 "sessionContext": {

Monitoring with CloudTrail 349

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_Operations_Amazon_OpenSearch_Ingestion.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_Operations_Amazon_OpenSearch_Ingestion.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon OpenSearch Service Developer Guide

 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/Admin",
 "accountId": "123456789012",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2023-04-21T16:48:33Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2023-04-21T16:49:22Z",
 "eventSource": "osis.amazonaws.com",
 "eventName": "UpdatePipeline",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "123.456.789.012",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36
 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36",
 "requestParameters": {
 "pipelineName": "my-pipeline",
 "pipelineConfigurationBody": "version: \"2\"\nlog-pipeline:\n source:\n
 http:\n path: \"/test/logs\"\n processor:\n - grok:\n match:\n
 log: ['%{COMMONAPACHELOG}']\n - date:\n from_time_received: true
\n destination: \"@timestamp\"\n sink:\n - opensearch:\n hosts:
 [\"https://search-b5zd22mwxhggheqpj5ftslgyle.us-west-2.es.amazonaws.com\"]\n
 index: \"apache_logs2\"\n aws_sts_role_arn: \"arn:aws:iam::709387180454:role/
canary-bootstrap-OsisRole-J1BARLD26QKN\"\n aws_region: \"us-west-2\"\n
 aws_sigv4: true\n"
 },
 "responseElements": {
 "pipeline": {
 "pipelineName": "my-pipeline",sourceIPAddress
 "pipelineArn": "arn:aws:osis:us-west-2:123456789012:pipeline/my-pipeline",
 "minUnits": 1,
 "maxUnits": 1,
 "status": "UPDATING",
 "statusReason": {
 "description": "An update was triggered for the pipeline. It is still
 available to ingest data."
 },

Monitoring with CloudTrail 350

Amazon OpenSearch Service Developer Guide

 "pipelineConfigurationBody": "version: \"2\"\nlog-pipeline:\n source:\n
 http:\n path: \"/test/logs\"\n processor:\n - grok:\n match:
\n log: ['%{COMMONAPACHELOG}']\n - date:\n from_time_received:
 true\n destination: \"@timestamp\"\n sink:\n - opensearch:\n hosts:
 [\"https://search-b5zd22mwxhggheqpj5ftslgyle.us-west-2.es.amazonaws.com\"]\n
 index: \"apache_logs2\"\n aws_sts_role_arn: \"arn:aws:iam::709387180454:role/
canary-bootstrap-OsisRole-J1BARLD26QKN\"\n aws_region: \"us-west-2\"\n
 aws_sigv4: true\n",
 "createdAt": "Mar 29, 2023 1:03:44 PM",
 "lastUpdatedAt": "Apr 21, 2023 9:49:21 AM",
 "ingestEndpointUrls": [
 "my-pipeline-tu33ldsgdltgv7x7tjqiudvf7m.us-west-2.osis.amazonaws.com"
]
 }
 },
 "requestID": "12345678-1234-1234-1234-987654321098",
 "eventID": "12345678-1234-1234-1234-987654321098",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "709387180454",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "osis.us-west-2.amazonaws.com"
 },
 "sessionCredentialFromConsole": "true"
}

Tagging Amazon OpenSearch Ingestion pipelines

Tags let you assign arbitrary information to an Amazon OpenSearch Ingestion pipeline so you can
categorize and filter on that information. A tag is a metadata label that you assign or that Amazon
assigns to an Amazon resource. Each tag consists of a key and a value. For tags that you assign, you
define the key and value. For example, you might define the key as stage and the value for one
resource as test.

Tags help you do the following:

• Identify and organize your Amazon resources. Many Amazon services support tagging, so you
can assign the same tag to resources from different services to indicate that the resources are

Tagging pipelines 351

Amazon OpenSearch Service Developer Guide

related. For example, you could assign the same tag to an OpenSearch Ingestion pipeline that
you assign to an Amazon OpenSearch Service domain.

• Track your Amazon costs. You activate these tags on the Amazon Billing and Cost Management
dashboard. Amazon uses the tags to categorize your costs and deliver a monthly cost allocation
report to you. For more information, see Use Cost Allocation Tags in the Amazon Billing User
Guide.

• Restrict access to pipelines using attribute based access control. For more information, see
Controlling access based on tag keys in the IAM User Guide.

In OpenSearch Ingestion, the primary resource is a pipeline. You can use the OpenSearch Service
console, the Amazon CLI, OpenSearch Ingestion APIs, or the Amazon SDKs to add, manage, and
remove tags from a pipeline.

Topics

• Permissions required

• Working with tags (console)

• Working with tags (Amazon CLI)

Permissions required

OpenSearch Ingestion uses the following Amazon Identity and Access Management Access
Analyzer (IAM) permissions for tagging pipelines:

• osis:TagResource

• osis:ListTagsForResource

• osis:UntagResource

For more information about each permission, see Actions, resources, and condition keys for
OpenSearch Ingestion in the Service Authorization Reference.

Working with tags (console)

The console is the simplest way to tag a pipeline.

Permissions required 352

https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_opensearchingestionservice.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_opensearchingestionservice.html

Amazon OpenSearch Service Developer Guide

To create a tag

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. Choose Ingestion on the left navigation pane.

3. Select the pipeline you want to add tags to and go to the Tags tab.

4. Choose Manage and Add new tag.

5. Enter a tag key and an optional value.

6. Choose Save.

To delete a tag, follow the same steps and choose Remove on the Manage tags page.

For more information about using the console to work with tags, see Tag Editor in the Amazon
Management Console Getting Started Guide.

Working with tags (Amazon CLI)

To tag a pipeline using the Amazon CLI, send a TagResource request:

aws osis tag-resource
 --arn arn:aws:osis:us-east-1:123456789012:pipeline/my-pipeline
 --tags Key=service,Value=osis Key=source,Value=otel

Remove tags from a pipeline using the UntagResource command:

aws osis untag-resource
 --arn arn:aws:osis:us-east-1:123456789012:pipeline/my-pipeline
 --tag-keys service

View the existing tags for a pipeline with the ListTagsForResource command:

aws osis list-tags-for-resource
 --arn arn:aws:osis:us-east-1:123456789012:pipeline/my-pipeline

Working with tags (Amazon CLI) 353

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html

Amazon OpenSearch Service Developer Guide

Logging and monitoring Amazon OpenSearch Ingestion with
Amazon CloudWatch

Amazon OpenSearch Ingestion publishes metrics and logs to Amazon CloudWatch.

Topics

• Monitoring pipeline logs

• Monitoring pipeline metrics

Monitoring pipeline logs

You can enable logging for Amazon OpenSearch Ingestion pipelines to expose error and warning
messages raised during pipeline operations and ingestion activity. OpenSearch Ingestion publishes
all logs to Amazon CloudWatch Logs. CloudWatch Logs can monitor information in the log files and
notify you when certain thresholds are met. You can also archive your log data in highly durable
storage. For more information, see the Amazon CloudWatch Logs User Guide.

Logs from OpenSearch Ingestion might indicate failed processing of requests, authentication errors
from the source to the sink, and other warnings that can be helpful for troubleshooting. For its
logs, OpenSearch Ingestion uses the log levels of INFO, WARN, ERROR, and FATAL. We recommend
enabling log publishing for all pipelines.

Permissions required

In order to enable OpenSearch Ingestion to send logs to CloudWatch Logs, you must be signed in
as a user that has certain IAM permissions.

You need the following CloudWatch Logs permissions in order to create and update log delivery
resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Resource": "*",
 "Action": [
 "logs:CreateLogDelivery",

Logging and monitoring 354

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/

Amazon OpenSearch Service Developer Guide

 "logs:PutResourcePolicy",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:DescribeResourcePolicies",
 "logs:GetLogDelivery",
 "logs:ListLogDeliveries"
]
 }
]
}

Enabling log publishing

You can enable log publishing on existing pipelines, or while creating a pipeline. For steps to enable
log publishing during pipeline creation, see the section called “Creating pipelines”.

Console

To enable log publishing on an existing pipeline

1. Sign in to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home.

2. Choose Ingestion in the left navigation pane and select the pipeline that you want to enable
logs for.

3. Choose Edit log publishing options.

4. Select Publish to CloudWatch Logs.

5. Either create a new log group or select an existing one. We recommend that you format
the name as a path, such as /aws/vendedlogs/OpenSearchIngestion/pipeline-
name/audit-logs. This format makes it easier to apply a CloudWatch access policy that
grants permissions to all log groups under a specific path such as /aws/vendedlogs/
OpenSearchService/OpenSearchIngestion.

Important

You must include the prefix vendedlogs in the log group name, otherwise creation
fails.

6. Choose Save.

Monitoring pipeline logs 355

https://console.aws.amazon.com/aos/home
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

CLI

To enable log publishing using the Amazon CLI, send the following request:

aws osis update-pipeline \
 --pipeline-name my-pipeline \
 --log-publishing-options IsLoggingEnabled=true,CloudWatchLogDestination={LogGroup="/
aws/vendedlogs/OpenSearchIngestion/pipeline-name"}

Monitoring pipeline metrics

You can monitor Amazon OpenSearch Ingestion pipelines using Amazon CloudWatch, which
collects raw data and processes it into readable, near real-time metrics. These statistics are kept for
15 months, so that you can access historical information and gain a better perspective on how your
web application or service is performing. You can also set alarms that watch for certain thresholds,
and send notifications or take actions when those thresholds are met. For more information, see
the Amazon CloudWatch User Guide.

The OpenSearch Ingestion console displays a series of charts based on the raw data from
CloudWatch on the Performance tab for each pipeline.

OpenSearch Ingestion reports metrics from most supported plugins. If certain plugins don't have
their own table below, it means that they don't report any plugin-specific metrics. Pipeline metrics
are published in the AWS/OSIS namespace.

Topics

• Common metrics

• Buffer metrics

• Signature V4 metrics

• Bounded blocking buffer metrics

• Otel trace source metrics

• Otel metrics source metrics

• Http metrics

• S3 metrics

• Aggregate metrics

• Date metrics

• Grok metrics

Monitoring pipeline metrics 356

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/

Amazon OpenSearch Service Developer Guide

• Otel trace raw metrics

• Otel trace group metrics

• Service map stateful metrics

• OpenSearch metrics

• System and metering metrics

Common metrics

The following metrics are common to all processors and sinks.

Each metric is prefixed by the sub-pipeline name and plugin name, in the format
<sub_pipeline_name><plugin><metric_name>. For example, the full name of the
recordsIn.count metric for a sub-pipeline named my-pipeline and the date processor would
be my-pipeline.date.recordsIn.count.

Metric suffix Description

recordsIn.count The ingress of records to a pipeline component. This
metric applies to processors and sinks.

Relevant statistics: Sum

Dimension: PipelineName

recordsOut.count The egress of records from a pipeline component. This
metric applies to processors and sources.

Relevant statistics: Sum

Dimension: PipelineName

timeElapsed.count A count of data points recorded during execution of a
pipeline component. This metric applies to processors
and sinks.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 357

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/date/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

timeElapsed.sum The total time elapsed during execution of a pipeline
component. This metric applies to processors and sinks,
in milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

timeElapsed.max The maximum time elapsed during execution of a
pipeline component. This metric applies to processors
and sinks, in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

Buffer metrics

The following metrics apply to the default Bounded blocking buffer that OpenSearch Ingestion
automatically configures for all pipelines.

Each metric is prefixed by the sub-pipeline name and buffer name, in the format
<sub_pipeline_name><buffer_name><metric_name>. For example, the full name of
the recordsWritten.count metric for a sub-pipeline named my-pipeline would be my-
pipeline.BlockingBuffer.recordsWritten.count.

Metric suffix Description

recordsWritten.count The number of records written to a buffer.

Relevant statistics: Sum

Dimension: PipelineName

recordsRead.count The number of records read from a buffer.

Relevant statistics: Sum

Monitoring pipeline metrics 358

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/buffers/bounded-blocking/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

Dimension: PipelineName

recordsInFlight.value The number of unchecked records read from a buffer.

Relevant statistics: Average

Dimension: PipelineName

recordsInBuffer.value The number of records currently in a buffer.

Relevant statistics: Average

Dimension: PipelineName

recordsProcessed.count The number of records read from a buffer and processed
by a pipeline.

Relevant statistics: Sum

Dimension: PipelineName

recordsWriteFailed.count The number of records that the pipeline failed to write to
the sink.

Relevant statistics: Sum

Dimension: PipelineName

writeTimeElapsed.count A count of data points recorded while writing to a buffer.

Relevant statistics: Sum

Dimension: PipelineName

writeTimeElapsed.sum The total time elapsed while writing to a buffer, in
milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 359

Amazon OpenSearch Service Developer Guide

Metric suffix Description

writeTimeElapsed.max The maximum time elapsed while writing to a buffer, in
milliseconds.

Relevant statistics: Max

Dimension: PipelineName

writeTimeouts.count The count of write timeouts to a buffer.

Relevant statistics: Sum

Dimension: PipelineName

readTimeElapsed.count A count of data points recorded while reading from a
buffer.

Relevant statistics: Sum

Dimension: PipelineName

readTimeElapsed.sum The total time elapsed while reading from a buffer, in
milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

readTimeElapsed.max The maximum time elapsed while reading from a buffer,
in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

checkpointTimeElap
sed.count

A count of data points recorded while checkpointing.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 360

Amazon OpenSearch Service Developer Guide

Metric suffix Description

checkpointTimeElapsed.sum The total time elapsed while checkpointing, in milliseco
nds.

Relevant statistics: Sum

Dimension: PipelineName

checkpointTimeElapsed.max The maximum time elapsed while checkpointing, in
milliseconds.

Relevant statistics: Max

Dimension: PipelineName

Signature V4 metrics

The following metrics apply to the ingestion endpoint for a pipeline and are associate with the
source plugins (http, otel_trace, and otel_metrics). All requests to the ingestion endpoint
must be signed using Signature Version 4. These metrics can help you identify authorization issues
when connecting to your pipeline, or confirm that you're successfully authenticating.

Each metric is prefixed by the sub-pipeline name and osis_sigv4_auth. For example,
sub_pipeline_name.osis_sigv4_auth.httpAuthSuccess.count.

Metric suffix Description

httpAuthSuccess.count The number of successful Signature V4 requests to the
pipeline.

Relevant statistics: Sum

Dimension: PipelineName

httpAuthFailure.count The number of failed Signature V4 requests to the
pipeline.

Relevant statistics: Sum

Monitoring pipeline metrics 361

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Amazon OpenSearch Service Developer Guide

Metric suffix Description

Dimension: PipelineName

httpAuthServerError.count The number of Signature V4 requests to the pipeline that
returned server errors.

Relevant statistics: Sum

Dimension: PipelineName

Bounded blocking buffer metrics

The following metrics apply to the bounded blocking buffer. Each metric
is prefixed by the sub-pipeline name and BlockingBuffer. For example,
sub_pipeline_name.BlockingBuffer.bufferUsage.value.

Metric suffix Description

bufferUsage.value Percent usage of the buffer_size based on the
number of records in the buffer. buffer_size
represents the maximum number of records written into
the buffer as well as in-flight records that have not been
checked.

Relevant statistics: Average

Dimension: PipelineName

Otel trace source metrics

The following metrics apply to the OTel trace source. Each metric is
prefixed by the sub-pipeline name and otel_trace_source. For example,
sub_pipeline_name.otel_trace_source.requestTimeouts.count.

Metric suffix Description

requestTimeouts.count The number of requests that timed out.

Monitoring pipeline metrics 362

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/buffers/bounded-blocking/
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-trace/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

Relevant statistics: Sum

Dimension: PipelineName

requestsReceived.count The number of requests received by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

successRequests.count The number of requests that were successfully processed
by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

badRequests.count The number of requests with an invalid format that were
processed by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

requestsTooLarge.count The number of requests of which the number of spans in
the content is larger than the buffer capacity.

Relevant statistics: Sum

Dimension: PipelineName

internalServerError.count The number of requests processed by the plugin with a
custom exception type.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 363

Amazon OpenSearch Service Developer Guide

Metric suffix Description

requestProcessDura
tion.count

A count of data points recorded while processing requests
by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

requestProcessDura
tion.sum

The total latency of requests processed by the plugin, in
milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

requestProcessDura
tion.max

The maximum latency of requests processed by the
plugin, in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

payloadSize.count A count of the distribution of payload sizes of incoming
requests, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

payloadSize.sum The total distribution of the payload sizes of incoming
requests, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 364

Amazon OpenSearch Service Developer Guide

Metric suffix Description

payloadSize.max The maximum distribution of payload sizes of incoming
requests, in bytes.

Relevant statistics: Max

Dimension: PipelineName

Otel metrics source metrics

The following metrics apply to the OTel metrics source. Each metric is prefixed
by the sub-pipeline name and otel_metrics_source. For example,
sub_pipeline_name.otel_metrics_source.requestTimeouts.count.

Metric suffix Description

requestTimeouts.count The total number of requests to the plugin that time out.

Relevant statistics: Sum

Dimension: PipelineName

requestsReceived.count The total number of requests received by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

successRequests.count The number of requests successfully processed (200
response status code) by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

requestProcessDura
tion.count

A count of the latency of requests processed by the
plugin, in seconds.

Relevant statistics: Sum

Monitoring pipeline metrics 365

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/otel-metrics-source/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

Dimension: PipelineName

requestProcessDura
tion.sum

The total latency of requests processed by the plugin, in
milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

requestProcessDura
tion.max

The maximum latency of requests processed by the
plugin, in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

payloadSize.count A count of the distribution of payload sizes of incoming
requests, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

payloadSize.sum The total distribution of the payload sizes of incoming
requests, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

payloadSize.max The maximum distribution of payload sizes of incoming
requests, in bytes.

Relevant statistics: Max

Dimension: PipelineName

Monitoring pipeline metrics 366

Amazon OpenSearch Service Developer Guide

Http metrics

The following metrics apply to the HTTP source. Each metric is prefixed by the sub-pipeline name
and http. For example, sub_pipeline_name.http.requestsReceived.count.

Metric suffix Description

requestsReceived.count The number of requests received by the /log/ingest
endpoint.

Relevant statistics: Sum

Dimension: PipelineName

requestsRejected.count The number of requests rejected (429 response status
code) by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

successRequests.count The number of requests successfully processed (200
response status code) by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

badRequests.count The number of requests with invalid content type or
format (400 response status code) processed by the
plugin.

Relevant statistics: Sum

Dimension: PipelineName

requestTimeouts.count The number of requests that time out in the HTTP source
server (415 response status code).

Relevant statistics: Sum

Monitoring pipeline metrics 367

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/http-source/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

Dimension: PipelineName

requestsTooLarge.count The number of requests of which the events size in the
content is larger than the buffer capacity (413 response
status code).

Relevant statistics: Sum

Dimension: PipelineName

internalServerError.count The number of requests processed by the plugin with a
custom exception type (500 response status code).

Relevant statistics: Sum

Dimension: PipelineName

requestProcessDura
tion.count

A count of the latency of requests processed by the
plugin, in seconds.

Relevant statistics: Sum

Dimension: PipelineName

requestProcessDura
tion.sum

The total latency of requests processed by the plugin, in
milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

requestProcessDura
tion.max

The maximum latency of requests processed by the
plugin, in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

Monitoring pipeline metrics 368

Amazon OpenSearch Service Developer Guide

Metric suffix Description

payloadSize.count A count of the distribution of payload sizes of incoming
requests, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

payloadSize.sum The total distribution of the payload sizes of incoming
requests, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

payloadSize.max The maximum distribution of payload sizes of incoming
requests, in bytes.

Relevant statistics: Max

Dimension: PipelineName

S3 metrics

The following metrics apply to the S3 source. Each metric is prefixed by the sub-pipeline name and
s3. For example, sub_pipeline_name.s3.s3ObjectsFailed.count.

Metric suffix Description

s3ObjectsFailed.count The total number of S3 objects that the plugin failed to
read.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectsNotFound.count The number of S3 objects that the plugin failed to read
due to a Not Found error from S3. These metrics also
count toward the s3ObjectsFailed metric.

Monitoring pipeline metrics 369

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/s3/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectsAccessDen
ied.count

The number of S3 objects that the plugin failed to read
due to an Access Denied or Forbidden error from
S3. These metrics also count toward the s3Objects
Failed metric.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectReadTimeEl
apsed.count

The amount of time the plugin takes to perform a GET
request for an S3 object, parse it, and write events to the
buffer.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectReadTimeEl
apsed.sum

The total amount of time that the plugin takes to
perform a GET request for an S3 object, parse it, and
write events to the buffer, in milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectReadTimeEl
apsed.max

The maximum amount of time that the plugin takes to
perform a GET request for an S3 object, parse it, and
write events to the buffer, in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

Monitoring pipeline metrics 370

Amazon OpenSearch Service Developer Guide

Metric suffix Description

s3ObjectSizeBytes.count The count of the distribution of S3 object sizes, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectSizeBytes.sum The total distribution of S3 object sizes, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectSizeBytes.max The maximum distribution of S3 object sizes, in bytes.

Relevant statistics: Max

Dimension: PipelineName

s3ObjectProcessedB
ytes.count

The count of the distribution of S3 objects processed by
the plugin, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectProcessedB
ytes.sum

The total distribution of S3 objects processed by the
plugin, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectProcessedB
ytes.max

The maximum distribution of S3 objects processed by the
plugin, in bytes.

Relevant statistics: Max

Dimension: PipelineName

Monitoring pipeline metrics 371

Amazon OpenSearch Service Developer Guide

Metric suffix Description

s3ObjectsEvents.count The count of the distribution of S3 events received by the
plugin.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectsEvents.sum The total distribution of S3 events received by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

s3ObjectsEvents.max The maximum distribution of S3 events received by the
plugin.

Relevant statistics: Max

Dimension: PipelineName

sqsMessageDelay.count A count of data points recorded while S3 records an
event time for the creation of an object to when it's fully
parsed.

Relevant statistics: Sum

Dimension: PipelineName

sqsMessageDelay.sum The total amount of time between when S3 records an
event time for the creation of an object to when it's fully
parsed, in milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 372

Amazon OpenSearch Service Developer Guide

Metric suffix Description

sqsMessageDelay.max The maximum amount of time between when S3 records
an event time for the creation of an object to when it's
fully parsed, in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

s3ObjectsSucceeded.count The number of S3 objects that the plugin successfully
read.

Relevant statistics: Sum

Dimension: PipelineName

sqsMessagesReceived.count The number of Amazon SQS messages received from the
queue by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

sqsMessagesDeleted.count The number of Amazon SQS messages deleted from the
queue by the plugin.

Relevant statistics: Sum

Dimension: PipelineName

sqsMessagesFailed.count The number of Amazon SQS messages that the plugin
failed to parse.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 373

Amazon OpenSearch Service Developer Guide

Aggregate metrics

The following metrics apply to the Aggregate processor. Each metric
is prefixed by the sub-pipeline name and aggregate. For example,
sub_pipeline_name.aggregate.actionHandleEventsOut.count.

Metric suffix Description

actionHandleEvents
Out.count

The number of events that have been returned from the
handleEvent call to the configured action.

Relevant statistics: Sum

Dimension: PipelineName

actionHandleEvents
Dropped.count

The number of events that have been returned from the
handleEvent call to the configured action.

Relevant statistics: Sum

Dimension: PipelineName

actionHandleEvents
ProcessingErrors.count

The number of calls made to handleEvent for the
configured action that resulted in an error.

Relevant statistics: Sum

Dimension: PipelineName

actionConcludeGrou
pEventsOut.count

The number of events that have been returned from the
concludeGroup call to the configured action.

Relevant statistics: Sum

Dimension: PipelineName

actionConcludeGrou
pEventsDropped.count

The number of events that have not been returned from
the condludeGroup call to the configured action.

Relevant statistics: Sum

Monitoring pipeline metrics 374

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/aggregate/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

Dimension: PipelineName

actionConcludeGrou
pEventsProcessingE
rrors.count

The number of calls made to concludeGroup for the
configured action that resulted in an error.

Relevant statistics: Sum

Dimension: PipelineName

currentAggregateGr
oups.value

The current number of groups. This gauge decreases
when groups are concluded, and increases when an event
initiates the creation of a new group.

Relevant statistics: Average

Dimension: PipelineName

Date metrics

The following metrics apply to the Date processor. Each metric is prefixed by the sub-pipeline
name and date. For example,
sub_pipeline_name.date.dateProcessingMatchSuccess.count.

Metric suffix Description

dateProcessingMatc
hSuccess.count

The number of records that match at least one of the
patterns specified in the match configuration option.

Relevant statistics: Sum

Dimension: PipelineName

dateProcessingMatc
hFailure.count

The number of records that didn't match any of the
patterns specified in the match configuration option.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 375

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/date/

Amazon OpenSearch Service Developer Guide

Grok metrics

The following metrics apply to the Grok processor. Each metric is prefixed by the sub-pipeline
name and grok. For example, sub_pipeline_name.grok.grokProcessingMatch.count.

Metric suffix Description

grokProcessingMatch.count The number of records that found at least one pattern
match from the match configuration option.

Relevant statistics: Sum

Dimension: PipelineName

grokProcessingMism
atch.count

The number of records that didn't match any of the
patterns specified in the match configuration option.

Relevant statistics: Sum

Dimension: PipelineName

grokProcessingErro
rs.count

The number of record processing errors.

Relevant statistics: Sum

Dimension: PipelineName

grokProcessingTime
outs.count

The number of records that timed out while matching.

Relevant statistics: Sum

Dimension: PipelineName

grokProcessingTime.count A count of data points recorded while an individua
l record matched against patterns from the match
configuration option.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 376

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/grok/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

grokProcessingTime.sum The total amount of time that each individual record
takes to match against patterns from the match
configuration option, in milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

grokProcessingTime.max The maximum amount of time that each individual
record takes to match against patterns from the match
configuration option, in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

Otel trace raw metrics

The following metrics apply to the OTel trace raw processor. Each metric
is prefixed by the sub-pipeline name and otel_trace_raw. For example,
sub_pipeline_name.otel_trace_raw.traceGroupCacheCount.value.

Metric suffix Description

traceGroupCacheCou
nt.value

The number of trace groups in the trace group cache.

Relevant statistics: Sum

Dimension: PipelineName

spanSetCount.value The number of span sets in the span set collection.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 377

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/otel-trace-raw/

Amazon OpenSearch Service Developer Guide

Otel trace group metrics

The following metrics apply to the OTel trace group processor. Each metric
is prefixed by the sub-pipeline name and otel_trace_group. For example,
sub_pipeline_name.otel_trace_group.recordsInMissingTraceGroup.count.

Metric suffix Description

recordsInMissingTr
aceGroup.count

The number of ingress records missing trace group fields.

Relevant statistics: Sum

Dimension: PipelineName

recordsOutFixedTra
ceGroup.count

The number of egress records with trace group fields that
were filled successfully.

Relevant statistics: Sum

Dimension: PipelineName

recordsOutMissingT
raceGroup.count

The number of egress records missing trace group fields.

Relevant statistics: Sum

Dimension: PipelineName

Service map stateful metrics

The following metrics apply to the Service-map stateful processor. Each metric is prefixed by the
sub-pipeline name and service-map-stateful. For example, sub_pipeline_name.service-
map-stateful.spansDbSize.count.

Metric suffix Description

spansDbSize.value The in-memory byte sizes of spans in MapDB across the
current and previous window durations.

Relevant statistics: Average

Monitoring pipeline metrics 378

https://github.com/opensearch-project/data-prepper/tree/main/data-prepper-plugins/otel-trace-group-processor
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/processors/service-map-stateful/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

Dimension: PipelineName

traceGroupDbSize.value The in-memory byte sizes of trace groups in MapDB
across the current and previous window durations.

Relevant statistics: Average

Dimension: PipelineName

spansDbCount.value The count of spans in MapDB across the current and
previous window durations.

Relevant statistics: Sum

Dimension: PipelineName

traceGroupDbCount.value The count of trace groups in MapDB across the current
and previous window durations.

Relevant statistics: Sum

Dimension: PipelineName

relationshipCount.value The count of relationships stored across the current and
previous window durations.

Relevant statistics: Sum

Dimension: PipelineName

OpenSearch metrics

The following metrics apply to the OpenSearch sink. Each metric is
prefixed by the sub-pipeline name and opensearch. For example,
sub_pipeline_name.opensearch.bulkRequestErrors.count.

Monitoring pipeline metrics 379

https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sinks/opensearch/

Amazon OpenSearch Service Developer Guide

Metric suffix Description

bulkRequestErrors.count The total number of errors encountered while sending
bulk requests.

Relevant statistics: Sum

Dimension: PipelineName

documentsSuccess.count The number of documents successfully sent to the
OpenSearch Service by bulk request, including retries.

Relevant statistics: Sum

Dimension: PipelineName

documentsSuccessFi
rstAttempt.count

The number of documents successfully sent to
OpenSearch Service by bulk request on the first attempt.

Relevant statistics: Sum

Dimension: PipelineName

documentErrors.count The number of documents that failed to be sent by bulk
requests.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestFailed.count The number of bulk requests that failed.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestNumberO
fRetries.count

The number of retries of failed bulk requests.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 380

Amazon OpenSearch Service Developer Guide

Metric suffix Description

bulkBadRequestErro
rs.count

The number of Bad Request errors encountered while
sending bulk requests.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestNotAllo
wedErrors.count

The number of Request Not Allowed errors encounter
ed while sending bulk requests.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestInvalid
InputErrors.count

The number of Invalid Input errors encountered
while sending bulk requests.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestNotFoun
dErrors.count

The number of Request Not Found errors encountered
while sending bulk requests.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestTimeout
Errors.count

The number of Request Timeout errors encountered
while sending bulk requests.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 381

Amazon OpenSearch Service Developer Guide

Metric suffix Description

bulkRequestServerE
rrors.count

The number of Server Error errors encountered while
sending bulk requests.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestSizeByt
es.count

A count of the distribution of payload sizes of bulk
requests, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestSizeBytes.sum The total distribution of payload sizes of bulk requests, in
bytes.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestSizeBytes.max The maximum distribution of payload sizes of bulk
requests, in bytes.

Relevant statistics: Max

Dimension: PipelineName

bulkRequestLatency.count A count of data points recorded while requests are sent
to the plugin, including retries.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 382

Amazon OpenSearch Service Developer Guide

Metric suffix Description

bulkRequestLatency.sum The total latency of requests sent to the plugin, including
 retries, in milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

bulkRequestLatency.max The maximum latency of requests sent to the plugin,
including retries, in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

s3.dlqS3RecordsSuc
cess.count

The number of records successfully sent to the S3 dead
letter queue.

Relevant statistics: Sum

Dimension: PipelineName

s3.dlqS3RecordsFai
led.count

The number of recourds that failed to be sent to the S3
dead letter queue.

Relevant statistics: Sum

Dimension: PipelineName

s3.dlqS3RequestSuc
cess.count

The number of successful requests to the S3 dead letter
queue.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 383

Amazon OpenSearch Service Developer Guide

Metric suffix Description

s3.dlqS3RequestFai
led.count

The number of failed requests to the S3 dead letter
queue.

Relevant statistics: Sum

Dimension: PipelineName

s3.dlqS3RequestLat
ency.count

A count of data points recorded while requests are sent
to the S3 dead letter queue, including retries.

Relevant statistics: Sum

Dimension: PipelineName

s3.dlqS3RequestLat
ency.sum

The total latency of requests sent to the S3 dead letter
queue, including retries, in milliseconds.

Relevant statistics: Sum

Dimension: PipelineName

s3.dlqS3RequestLat
ency.max

The maximum latency of requests sent to the S3 dead
letter queue, including retries, in milliseconds.

Relevant statistics: Max

Dimension: PipelineName

s3.dlqS3RequestSiz
eBytes.count

A count of the distribution of payload sizes of requests to
the S3 dead letter queue, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

Monitoring pipeline metrics 384

Amazon OpenSearch Service Developer Guide

Metric suffix Description

s3.dlqS3RequestSiz
eBytes.sum

The total distribution of payload sizes of requests to the
S3 dead letter queue, in bytes.

Relevant statistics: Sum

Dimension: PipelineName

s3.dlqS3RequestSiz
eBytes.max

The maximum distribution of payload sizes of requests to
the S3 dead letter queue, in bytes.

Relevant statistics: Max

Dimension: PipelineName

System and metering metrics

The following metrics apply to the overall OpenSearch Ingestion system. These metrics aren't
prefixed by anything.

Metric Description

system.cpu.usage.value The percentage of available CPU usage for all data nodes.

Relevant statistics: Average

Dimension: PipelineName , area, id

system.cpu.count.value The total amount of CPU usage for all data nodes.

Relevant statistics: Average

Dimension: PipelineName , area, id

jvm.memory.max.value The maximum amount of memory that can be used for
memory management, in bytes.

Relevant statistics: Average

Monitoring pipeline metrics 385

Amazon OpenSearch Service Developer Guide

Metric Description

Dimension: PipelineName , area, id

jvm.memory.used.value The total amount of memory used, in bytes.

Relevant statistics: Average

Dimension: PipelineName , area, idsigna

jvm.memory.committ
ed.value

The amount of memory that is committed for use by the
Java virtual machine (JVM), in bytes.

Relevant statistics: Average

Dimension: PipelineName , area, id

computeUnits The number of Ingestion OpenSearch Compute Units
(Ingestion OCUs) in use by a pipeline.

Relevant statistics: Max, Sum, Average

Dimension: PipelineName

Best practices for Amazon OpenSearch Ingestion

This topic provides best practices for creating and managing Amazon OpenSearch Ingestion
pipelines and includes general guidelines that apply to many use cases. Each workload is unique,
with unique characteristics, so no generic recommendation is exactly right for every use case.

Topics

• General best practices

• Recommended CloudWatch alarms

General best practices

The following general best practices apply to creating and managing pipelines.

Best practices 386

Amazon OpenSearch Service Developer Guide

• To ensure high availability, configure VPC pipelines with two or three subnets. If you only deploy
a pipeline in one subnet and the Availability Zone goes down, you won't be able to ingest data.

• Within each pipeline, we recommend limiting the number of sub-pipelines to 5 or fewer.

• If you're using the S3 source plugin, use evenly-sized S3 files for optimal performance.

• If you're using the S3 source plugin, add 30 seconds of additional visibility timeout for every 0.25
GB of file size in the S3 bucket for optimal performance.

• Include a dead-letter queue (DLQ) in your pipeline configuration so that you can offload failed
events and make them accessible for analysis. If your sinks reject data due to incorrect mappings
or other issues, you can route the data to the DLQ in order to troubleshoot and fix the issue.

Recommended CloudWatch alarms

CloudWatch alarms perform an action when a CloudWatch metric exceeds a specified value for
some amount of time. For example, you might want Amazon to email you if your cluster health
status is red for longer than one minute. This section includes some recommended alarms for
Amazon OpenSearch Ingestion and how to respond to them.

For more information about configuring alarms, see Creating Amazon CloudWatch Alarms in the
Amazon CloudWatch User Guide.

Alarm Issue

computeUnits
maximum is = the
configured maxUnits
for 15 minute, 3
consecutive times

The pipeline has reached the maximum capacity and might require a
maxUnits update. Increase the maximum capacity of your pipeline

opensearc
h.documen
tErrors.count
sum is = {sub_pipe
line_name
} .opensear
ch.record
sIn.count sum

The pipeline is unable to write to the OpenSearch sink. Check the
pipeline permissions and confirm that the domain or collection is
healthy. You can also check the dead letter queue (DLQ) for failed
events, if it's configured.

Recommended CloudWatch alarms 387

https://opensearch.org/docs/latest/data-prepper/pipelines/dlq/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon OpenSearch Service Developer Guide

Alarm Issue

for 1 minute, 1
consecutive time

bulkReque
stLatency.max
max is >= x for 1
minute, 1 consecutive
time

The pipeline is experiencing high latency sending data to the
OpenSearch sink. This is likely due to the sink being undersized, or
a poor sharding strategy, which is causing the sink to fall behind.
Sustained high latency can impact pipeline performance and will likely
lead to backpressure on the clients.

httpAuthF
ailure.count
sum >= 1 for 1
minute, 1 consecutive
time

Ingestion requests are not being authenticated. Confirm that all clients
have Signature Version 4 authentication enabled correctly.

system.cp
u.usage.value
average >= 80%
for 15 minutes, 3
consecutive times

Sustained high CPU usage can be problematic. Consider increasing the
maximum capacity for the pipeline.

bufferUsa
ge.value average
>= 80% for 15
minutes, 3 consecuti
ve times

Sustained high buffer usage can be problematic. Consider increasing
the maximum capacity for the pipeline.

Other alarms you might consider

Consider configuring the following alarms depending on which Amazon OpenSearch Ingestion
features you regularly use.

Alarm Issue

dynamodb.
exportJob

The attempt to trigger an export to Amazon S3 failed.

Recommended CloudWatch alarms 388

Amazon OpenSearch Service Developer Guide

Alarm Issue

Failure.count
sum 1

opensearc
h.EndtoEn
dLatency.avg
average > X for 15
minutes, 4 consecuti
ve times

The EndtoEndLatency is higher than desired for reading from
DynamoDB streams. This could be caused by an underscaled
OpenSearch cluster or a maximum pipeline OCU capacity that is too
low for the WCU throughput on the DynamoDB table. EndtoEndL
atency will be higher after an export but should decrease over time
as it catches up to the latest DynamoDB streams.

dyanmodb.
changeEve
ntsProces
sed.count sum ==
0 for X minutes

No records are being gathered from DynamoDB streams. This could be
caused by to no activity on the table, or an issue accessing DynamoDB
streams.

opensearc
h.s3.dlqS
3RecordsS
uccess.count
sum >= opensearc
h.documen
tSuccess.count
sum for 1 minute, 1
consecutive time

A larger number of records are being sent to the DLQ than the
OpenSearch sink. Review the OpenSearch sink plugin metrics to
investigate and determine the root cause.

grok.grok
Processin
gTimeouts.count
sum = recordsIn.count
sum for 1 minute, 5
consecutive times

All data is timing out while the Grok processor is trying to pattern
match. This is likely impacting performance and slowing your pipeline
down. Consider adjusting your patterns to reduce timeouts.

Recommended CloudWatch alarms 389

Amazon OpenSearch Service Developer Guide

Alarm Issue

grok.grok
Processin
gErrors.count
sum is >= 1 for 1
minute, 1 consecutive
time

The Grok processor is failing to match patterns to the data in the
pipeline, resulting in errors. Review your data and Grok plugin
configurations to ensure the pattern matching is expected.

grok.grok
Processin
gMismatch.count
sum = recordsIn.count
sum for 1 minute, 5
consecutive times

The Grok processor is unable to match patterns to the data in the
pipeline. Review your data and Grok plugin configurations to ensure
the pattern matching is expected.

date.date
Processin
gMatchFai
lure.count sum
= recordsIn.count
sum for 1 minut, 5
consecutive times

The Date processor is unable to match any patterns to the data in the
pipeline. Review your data and Date plugin configurations to ensure
the pattern is expected.

s3.s3Obje
ctsFailed.count
sum >= 1 for 1
minute, 1 consecutive
time

This issue is either occurring because the S3 object doesn't exist,
or the pipeline has insufficient privileges. Reivew the s3Objects
NotFound.count and s3ObjectsAccessDenied.count
metrics to determine the root cause. Confirm that the S3 object exists
and/or update the permissions.

s3.sqsMes
sagesFail
ed.count sum >=
1 for 1 minute, 1
consecutive time

The S3 plugin failed to process an Amazon SQS message. If you have
a DLQ enabled on your SQS queue, review the failed message. The
queue might be receiving invalid data that the pipeline is attempting
to process.

Recommended CloudWatch alarms 390

Amazon OpenSearch Service Developer Guide

Alarm Issue

http.badR
equests.count
sum >= 1 for 1
minute, 1 consecutive
times

The client is sending a bad request. Confirm that all clients are sending
the proper payload.

http.requ
estsTooLa
rge.count sum
>= 1 for 1 minute, 1
consecutive time

Requests from the HTTP source plugin contain too much data, which is
exceeding the buffer capacity. Adjust the batch size for your clients.

http.inte
rnalServe
rError.count
sum >= 0 for 1
minute, 1 consecutive
time

The HTTP source plugin is having trouble receiving events.

http.requ
estTimeou
ts.count sum >=
0 for 1 minute, 1
consecutive time

Source timeouts are likely the result of the pipeline being underprov
isioned. Consider increasing the pipeline maxUnits to handle
additional workload.

otel_trac
e.badRequ
ests.count sum
>= 1 for 1 minute, 1
consecutive time

The client is sending a bad request. Confirm that all clients are sending
the proper payload.

Recommended CloudWatch alarms 391

Amazon OpenSearch Service Developer Guide

Alarm Issue

otel_trac
e.request
sTooLarge.count
sum >= 1 for 1
minute, 1 consecutive
time

Requests from the Otel Trace source plugin contain too much data,
which is exceeding the buffer capacity. Adjust the batch size for your
clients.

otel_trac
e.interna
lServerEr
ror.count sum
>= 0 for 1 minute, 1
consecutive time

The Otel Trace source plugin is having trouble receiving events.

otel_trac
e.request
Timeouts.count
sum >= 0 for 1
minute, 1 consecutive
time

Source timeouts are likely the result of the pipeline being underprov
isioned. Consider increasing the pipeline maxUnits to handle
additional workload.

otel_metr
ics.reque
stTimeout
s.count sum >=
0 for 1 minute, 1
consecutive time

Source timeouts are likely the result of the pipeline being underprov
isioned. Consider increasing the pipeline maxUnits to handle
additional workload.

Recommended CloudWatch alarms 392

Amazon OpenSearch Service Developer Guide

Setting up Amazon OpenSearch Service

Topics

• Sign up for an Amazon Web Services account

• Secure IAM users

• Grant permissions

• Install and configure the Amazon CLI

• Open the console

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

Sign up for an Amazon Web Services account 393

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user

Amazon OpenSearch Service Developer Guide

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Grant permissions

In production environments, we recommend that you use finer-grained policies. To learn more
about access management, see Access management for Amazon resources in the IAM User Guide.

To provide access, add permissions to your users, groups, or roles:

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Grant programmatic access

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web
Services Management Console. The Amazon APIs and the Amazon Command Line Interface require
access keys. Whenever possible, create temporary credentials that consist of an access key ID, a
secret access key, and a security token that indicates when the credentials expire.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

IAM Use short-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon

Following the instructions in
Using temporary credentials

Grant permissions 394

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Amazon OpenSearch Service Developer Guide

Which user needs
programmatic access?

To By

APIs (directly or by using the
Amazon SDKs).

with Amazon resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Managing access keys for IAM
users in the IAM User Guide.

Install and configure the Amazon CLI

If you want to use OpenSearch Service APIs, you must install the latest version of the Amazon
Command Line Interface (Amazon CLI). You don't need the Amazon CLI to use OpenSearch Service
from the console, and you can get started without the CLI by following the steps in Getting started
with Amazon OpenSearch Service.

To set up the Amazon CLI

1. To install the latest version of the Amazon CLI for macOS, Linux, or Windows, see Installing or
updating the latest version of the Amazon CLI.

2. To configure the Amazon CLI and secure setup of your access to Amazon Web Services,
including OpenSearch Service, see Quick configuration with aws configure.

3. To verify the setup, enter the following DataBrew command at the command prompt.

aws opensearch help

Amazon CLI commands use the default Amazon Web Services Region from your configuration,
unless you set it with a parameter or a profile. To set your Amazon Web Services Region with a
parameter, you can add the --region parameter to each command.

To set your Amazon Web Services Region with a profile, first add a named profile in the
~/.aws/config file or the %UserProfile%/.aws/config file (for Microsoft Windows).

Set up the Amazon CLI 395

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config

Amazon OpenSearch Service Developer Guide

Follow the steps in Named profiles for the Amazon CLI. Next, set your Amazon Web Services
Region and other settings with a command similar to the one in the following example.

[profile opensearch]
aws_access_key_id = ACCESS-KEY-ID-OF-IAM-USER
aws_secret_access_key = SECRET-ACCESS-KEY-ID-OF-IAM-USER
region = us-east-1
output = text

Open the console

Most of the console-oriented topics in this section start from the OpenSearch Service console.
If you aren't already signed in to your Amazon Web Services account, sign in, then open the
OpenSearch Service console and continue to the next section to continue getting started with
OpenSearch Service.

Open the console 396

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-profiles.html
https://console.amazonaws.cn/aos/home
https://console.amazonaws.cn/aos/home

Amazon OpenSearch Service Developer Guide

Getting started with Amazon OpenSearch Service

This tutorial shows you how to use Amazon OpenSearch Service to create and configure a test
domain. An OpenSearch Service domain is synonymous with an OpenSearch cluster. Domains are
clusters with the settings, instance types, instance counts, and storage resources that you specify.

This tutorial walks you through the basic steps to get an OpenSearch Service domain up and
running quickly. For more detailed information, see Creating and managing domains and the other
topics within this guide. For information on migrating to OpenSearch Service from a self-managed
OpenSearch cluster, see the section called “Migrating to OpenSearch Service”.

You can complete the steps in this tutorial by using the OpenSearch Service console, the Amazon
CLI, or the Amazon SDK. For information about installing and setting up the Amazon CLI, see the
Amazon Command Line Interface User Guide.

Step 1: Create an Amazon OpenSearch Service domain

Important

This is a concise tutorial for configuring a test Amazon OpenSearch Service domain. Do not
use this process to create production domains. For a comprehensive version of the same
process, see Creating and managing domains.

An OpenSearch Service domain is synonymous with an OpenSearch cluster. Domains are clusters
with the settings, instance types, instance counts, and storage resources that you specify. You can
create an OpenSearch Service domain by using the console, the Amazon CLI, or the Amazon SDKs.

To create an OpenSearch Service domain using the console

1. Go to https://aws.amazon.com and choose Sign In to the Console.

2. Under Analytics, choose Amazon OpenSearch Service.

3. Choose Create domain.

4. Provide a name for the domain. The examples in this tutorial use the name movies.

5. For the domain creation method, choose Standard create.

Step 1: Create a domain 397

https://docs.amazonaws.cn/cli/latest/userguide/
https://aws.amazon.com

Amazon OpenSearch Service Developer Guide

Note

To quickly configure a production domain with best practices, you can choose Easy
create. For the development and testing purposes of this tutorial, we'll use Standard
create.

6. For templates, choose Dev/test.

7. For the deployment option, choose Domain with standby.

8. For Version, choose the latest version.

9. For now, ignore the Data nodes, Warm and cold data storage, Dedicated master nodes,
Snapshot configuration, and Custom endpoint sections.

10. For simplicity in this tutorial, use a public access domain. Under Network, choose Public
access.

11. In the fine-grained access control settings, keep the Enable fine-grained access control check
box selected. Select Create master user and provide a username and password.

12. For now, ignore the SAML authentication and Amazon Cognito authentication sections.

13. For Access policy, choose Only use fine-grained access control. In this tutorial, fine-grained
access control handles authentication, not the domain access policy.

14. Ignore the rest of the settings and choose Create. New domains typically take 15–30 minutes
to initialize, but can take longer depending on the configuration. After your domain initializes,
select it to open its configuration pane. Note the domain endpoint under General information
(for example, https://search-my-domain.us-east-1.es.amazonaws.com), which
you'll use in the next step.

Next: Upload data to an OpenSearch Service domain for indexing

Step 2: Upload data to Amazon OpenSearch Service for
indexing

Important

This is a concise tutorial for uploading a small amount of test data to Amazon OpenSearch
Service. For more about uploading data in a production domain, see Indexing data.

Step 2: Upload data for indexing 398

Amazon OpenSearch Service Developer Guide

You can upload data to an OpenSearch Service domain using the command line or most
programming languages.

The following example requests use curl (a common HTTP client) for brevity and convenience.
Clients like curl can't perform the request signing that's required if your access policies specify IAM
users or roles. To successfully complete this process, you must use fine-grained access control with
a primary username and password like you configured in Step 1.

You can install curl on Windows and use it from the command prompt, but we recommend a tool
like Cygwin or the Windows Subsystem for Linux. macOS and most Linux distributions come with
curl preinstalled.

Option 1: Upload a single document

Run the following command to add a single document to the movies domain:

curl -XPUT -u 'master-user:master-user-password' 'domain-endpoint/movies/_doc/1' -d
 '{"director": "Burton, Tim", "genre": ["Comedy","Sci-Fi"], "year": 1996, "actor":
 ["Jack Nicholson","Pierce Brosnan","Sarah Jessica Parker"], "title": "Mars Attacks!"}'
 -H 'Content-Type: application/json'

In the command, provide the username and password that you created in Step 1.

For a detailed explanation of this command and how to make signed requests to OpenSearch
Service, see Indexing data.

Option 2: Upload multiple documents

To upload a JSON file that contains multiple documents to an OpenSearch Service domain

1. Create a local file called bulk_movies.json. Paste the following content into the file and
add a trailing newline:

{ "index" : { "_index": "movies", "_id" : "2" } }
{"director": "Frankenheimer, John", "genre": ["Drama", "Mystery", "Thriller",
 "Crime"], "year": 1962, "actor": ["Lansbury, Angela", "Sinatra, Frank", "Leigh,
 Janet", "Harvey, Laurence", "Silva, Henry", "Frees, Paul", "Gregory, James",
 "Bissell, Whit", "McGiver, John", "Parrish, Leslie", "Edwards, James", "Flowers,
 Bess", "Dhiegh, Khigh", "Payne, Julie", "Kleeb, Helen", "Gray, Joe", "Nalder,
 Reggie", "Stevens, Bert", "Masters, Michael", "Lowell, Tom"], "title": "The
 Manchurian Candidate"}

Option 1: Upload a single document 399

https://curl.haxx.se/
https://www.cygwin.com/
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Amazon OpenSearch Service Developer Guide

{ "index" : { "_index": "movies", "_id" : "3" } }
{"director": "Baird, Stuart", "genre": ["Action", "Crime", "Thriller"], "year":
 1998, "actor": ["Downey Jr., Robert", "Jones, Tommy Lee", "Snipes, Wesley",
 "Pantoliano, Joe", "Jacob, Ir\u00e8ne", "Nelligan, Kate", "Roebuck, Daniel",
 "Malahide, Patrick", "Richardson, LaTanya", "Wood, Tom", "Kosik, Thomas",
 "Stellate, Nick", "Minkoff, Robert", "Brown, Spitfire", "Foster, Reese",
 "Spielbauer, Bruce", "Mukherji, Kevin", "Cray, Ed", "Fordham, David", "Jett,
 Charlie"], "title": "U.S. Marshals"}
{ "index" : { "_index": "movies", "_id" : "4" } }
{"director": "Ray, Nicholas", "genre": ["Drama", "Romance"], "year": 1955, "actor":
 ["Hopper, Dennis", "Wood, Natalie", "Dean, James", "Mineo, Sal", "Backus, Jim",
 "Platt, Edward", "Ray, Nicholas", "Hopper, William", "Allen, Corey", "Birch,
 Paul", "Hudson, Rochelle", "Doran, Ann", "Hicks, Chuck", "Leigh, Nelson",
 "Williams, Robert", "Wessel, Dick", "Bryar, Paul", "Sessions, Almira", "McMahon,
 David", "Peters Jr., House"], "title": "Rebel Without a Cause"}

2. Run the following command in the local directory where the file is stored to upload it to the
movies domain:

curl -XPOST -u 'master-user:master-user-password' 'domain-endpoint/_bulk' --data-
binary @bulk_movies.json -H 'Content-Type: application/json'

For more information about the bulk file format, see Indexing data.

Next: Search documents

Step 3: Search documents in Amazon OpenSearch Service

To search documents in an Amazon OpenSearch Service domain, use the OpenSearch search API.
Alternatively, you can use OpenSearch Dashboards to search documents in the domain.

Search documents from the command line

Run the following command to search the movies domain for the word mars:

curl -XGET -u 'master-user:master-user-password' 'domain-endpoint/movies/_search?
q=mars&pretty=true'

If you used the bulk data on the previous page, try searching for rebel instead.

Step 3: Search documents 400

Amazon OpenSearch Service Developer Guide

You should see a response similar to the following:

{
 "took" : 5,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 1,
 "relation" : "eq"
 },
 "max_score" : 0.2876821,
 "hits" : [
 {
 "_index" : "movies",
 "_type" : "_doc",
 "_id" : "1",
 "_score" : 0.2876821,
 "_source" : {
 "director" : "Burton, Tim",
 "genre" : [
 "Comedy",
 "Sci-Fi"
],
 "year" : 1996,
 "actor" : [
 "Jack Nicholson",
 "Pierce Brosnan",
 "Sarah Jessica Parker"
],
 "title" : "Mars Attacks!"
 }
 }
]
 }
}

Search documents from the command line 401

Amazon OpenSearch Service Developer Guide

Search documents using OpenSearch Dashboards

OpenSearch Dashboards is a popular open source visualization tool designed to work with
OpenSearch. It provides a helpful user interface for you to search and monitor your indices.

To search documents from an OpenSearch Service domain using Dashboards

1. Navigate to the OpenSearch Dashboards URL for your domain. You can find the URL on the
domain's dashboard in the OpenSearch Service console. The URL follows this format:

domain-endpoint/_dashboards/

2. Log in using your primary username and password.

3. To use Dashboards, you need to create at least one index pattern. Dashboards uses these
patterns to identify which indexes you want to analyze. Open the left navigation panel, choose
Stack Management, choose Index Patterns, and then choose Create index pattern. For this
tutorial, enter movies.

4. Choose Next step and then choose Create index pattern. After the pattern is created, you can
view the various document fields such as actor and director.

5. Go back to the Index Patterns page and make sure that movies is set as the default. If it's not,
select the pattern and choose the star icon to make it the default.

6. To begin searching your data, open the left navigation panel again and choose Discover.

7. In the search bar, enter mars if you uploaded a single document, or rebel if you uploaded
multiple documents, and then press Enter. You can try searching other terms, such as actor or
director names.

Next: Delete a domain

Step 4: Delete an Amazon OpenSearch Service domain

Because the movies domain from this tutorial is for test purposes, make sure to delete it when
you're done experimenting to avoid incurring charges.

To delete an OpenSearch Service domain from the console

1. Sign in to the Amazon OpenSearch Service console.

2. Under Domains, select the movies domain.

Search documents using OpenSearch Dashboards 402

Amazon OpenSearch Service Developer Guide

3. Choose Delete and confirm deletion.

Next steps

Now that you know how to create a domain and index data, you might want to try some of the
following exercises:

• Learn about more advanced options for creating a domain. For more information, see Creating
and managing domains.

• Discover how to manage the indices in your domain. For more information, see Managing
indexes.

• Try out one of the tutorials for working with Amazon OpenSearch Service. For more information,
see Tutorials.

Next steps 403

Amazon OpenSearch Service Developer Guide

Creating and managing Amazon OpenSearch Service
domains

This chapter describes how to create and manage Amazon OpenSearch Service domains. An
OpenSearch Service domain is synonymous with an OpenSearch cluster. Domains are clusters with
the settings, instance types, instance counts, and storage resources that you specify.

Unlike the brief instructions in the Getting started tutorial, this chapter describes all options and
provides relevant reference information. You can complete each procedure by using instructions
for the OpenSearch Service console, the Amazon Command Line Interface (Amazon CLI), or the
Amazon SDKs.

Creating OpenSearch Service domains

This section describes how to create OpenSearch Service domains by using the OpenSearch Service
console or by using the Amazon CLI with the create-domain command.

Creating OpenSearch Service domains (console)

Use the following procedure to create an OpenSearch Service domain by using the console.

To create an OpenSearch Service domain (console)

1. Go to https://aws.amazon.com and choose Sign In to the Console.

2. Under Analytics, choose Amazon OpenSearch Service.

3. Choose Create domain.

4. For Domain name, enter a domain name. The name must meet the following criteria:

• Unique to your account and Amazon Web Services Region

• Starts with a lowercase letter

• Contains between 3 and 28 characters

• Contains only lowercase letters a-z, the numbers 0-9, and the hyphen (-)

5. For the domain creation method, choose Standard create.

6. For Templates, choose the option that best matches the purpose of your domain:

Creating OpenSearch Service domains 404

https://aws.amazon.com

Amazon OpenSearch Service Developer Guide

• Production domains for workloads that need high-availability and performance. These
domains use Multi-AZ (with or without standby) and dedicated master nodes for higher
availability.

• Dev/test for development or testing. These domains can use Multi-AZ (with or without
standby) or a single Availability Zone.

Important

Different deployment types present different options on subsequent pages. These
steps include all options.

7. For Deployment Option(s), choose Domain with standby to configure a 3-AZ domain, with
nodes in one of the zones are reserved as standby. This option enforces a number of best
practices, such as a specified data node count, master node count, instance type, replica count,
and software update settings.

8. For Version, choose the version of OpenSearch or legacy Elasticsearch OSS to use. We
recommend that you choose the latest version of OpenSearch. For more information, see the
section called “Supported versions of OpenSearch and Elasticsearch”.

(Optional) If you chose an OpenSearch version for your domain, select Enable compatibility
mode to make OpenSearch report its version as 7.10, which allows certain Elasticsearch OSS
clients and plugins that check the version before connecting to continue working with the
service.

9. For Instance type, choose an instance type for your data nodes. For more information, see the
section called “Supported instance types”.

Note

Not all Availability Zones support all instance types. If you choose Multi-AZ with or
without Standby, we recommend choosing current-generation instance types, such as
R5 or I3.

10. For Number of nodes, choose the number of data nodes.

For maximum values, see OpenSearch Service domain and instance quotas. Single-node
clusters are fine for development and testing, but should not be used for production

Creating OpenSearch Service domains (console) 405

https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html#opensearch-limits-domain

Amazon OpenSearch Service Developer Guide

workloads. For more guidance, see the section called “Sizing domains” and the section called
“Configuring a multi-AZ domain”.

11. For Storage type, select Amazon EBS. The volume types available in the list depend on the
instance type that you've chosen. For guidance on creating especially large domains, see the
section called “Petabyte scale”.

12. For EBS storage, configure the following additional settings. Some settings might not appear
depending on the type of volume you choose.

Setting Description

EBS volume type Choose between General Purpose (SSD) - gp3 and General
Purpose (SSD) - gp2, or the previous generation Provisioned
IOPS (SSD), and Magnetic (standard).

EBS storage size per
node

Enter the size of the EBS volume that you want to attach to
each data node.

EBS volume size is per node. You can calculate the total cluster
size for the OpenSearch Service domain by multiplying the
number of data nodes by the EBS volume size. The minimum
and maximum size of an EBS volume depends on both the
specified EBS volume type and the instance type that it's
attached to. To learn more, see EBS volume size limits.

Provisioned IOPS If you selected a Provisioned IOPS SSD volume type, enter the
number of I/O operations per second (IOPS) that the volume
can support.

13. (Optional) If you selected a gp3 volume type, expand Advanced settings and specify
additional IOPS (up to 1,000 MiB/s for every 3 TiB volume size provisioned per data node) and
throughput (up to 16,000 for every 3 TiB volume size provisioned per data node) to provision
for each node, beyond what is included with the price of storage, for an additional cost. For
more information, see the Amazon OpenSearch Service pricing.

14. (Optional) To enable UltraWarm storage, choose Enable UltraWarm data nodes. Each instance
type has a maximum amount of storage that it can address. Multiply that amount by the
number of warm data nodes for the total addressable warm storage.

Creating OpenSearch Service domains (console) 406

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/general-purpose.html#gp3-ebs-volume-type
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/general-purpose.html#EBSVolumeTypes_gp2
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/general-purpose.html#EBSVolumeTypes_gp2
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/provisioned-iops.html#EBSVolumeTypes_piops
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/provisioned-iops.html#EBSVolumeTypes_piops
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EBSVolumeTypes_standard.html
https://aws.amazon.com/opensearch-service/pricing/

Amazon OpenSearch Service Developer Guide

15. (Optional) To enable cold storage, choose Enable cold storage. You must enable UltraWarm to
enable cold storage.

16. If you use Multi-AZ with Standby, three dedicated master nodes are aleady enabled. Choose
the type of master nodes that you want. If you chose a Multi-AZ without Standby domain,
select Enable dedicated master nodes and choose the type and number of master nodes
that you want. Dedicated master nodes increase cluster stability and are required for domains
that have instance counts greater than 10. We recommend three dedicated master nodes for
production domains.

Note

You can choose different instance types for your dedicated master nodes and data
nodes. For example, you might select general purpose or storage-optimized instances
for your data nodes, but compute-optimized instances for your dedicated master
nodes.

17. (Optional) For domains running OpenSearch or Elasticsearch 5.3 and later, the Snapshot
configuration is irrelevant. For more information about automated snapshots, see the section
called “Creating index snapshots”.

18. If you want to use a custom endpoint rather than the standard one of https://
search-mydomain-1a2a3a4a5a6a7a8a9a0a9a8a7a.us-east-1.es.amazonaws.com
, choose Enable custom endpoint and provide a name and certificate. For more information,
see the section called “Creating a custom endpoint”.

19. Under Network, choose either VPC access or Public access. If you choose Public access,
skip to the next step. If you choose VPC access, make sure you meet the prerequisites, then
configure the following settings:

Setting Description

VPC Choose the ID of the virtual private cloud (VPC) that you want to
use. The VPC and domain must be in the same Amazon Web Services
Region, and you must select a VPC with tenancy set to Default.
OpenSearch Service does not yet support VPCs that use dedicated
tenancy.

Creating OpenSearch Service domains (console) 407

Amazon OpenSearch Service Developer Guide

Setting Description

Subnet Choose a subnet. If you enabled Multi-AZ, you must choose two or
three subnets. OpenSearch Service will place a VPC endpoint and elastic
network interfaces in the subnets.

You must reserve sufficient IP addresses for the network interfaces in
the subnet(s). For more information, see Reserving IP addresses in a
VPC subnet.

Security groups Choose one or more VPC security groups that allow your required
application to reach the OpenSearch Service domain on the ports (80 or
443) and protocols (HTTP or HTTPS) exposed by the domain. For more
information, see the section called “VPC support”.

IAM Role Keep the default role. OpenSearch Service uses this predefined role
(also known as a service-linked role) to access your VPC and to place
a VPC endpoint and network interfaces in the subnet of the VPC. For
more information, see Service-linked role for VPC access.

IP Address Type Choose either dual stack or IPv4 as your IP address type. Dual stack
allows you to share domain resources across IPv4 and IPv6 address
types, and is the recommended option. If you set your IP address type
to dual stack, you can't change your address type later.

20. Enable or disable fine-grained access control:

• If you want to use IAM for user management, choose Set IAM ARN as master user and
specify the ARN for an IAM role.

• If you want to use the internal user database, choose Create master user and specify a
username and password.

Whichever option you choose, the master user can access all indexes in the cluster and
all OpenSearch APIs. For guidance on which option to choose, see the section called “Key
concepts”.

Creating OpenSearch Service domains (console) 408

Amazon OpenSearch Service Developer Guide

If you disable fine-grained access control, you can still control access to your domain by
placing it within a VPC, applying a restrictive access policy, or both. You must enable node-to-
node encryption and encryption at rest to use fine-grained access control.

Note

We strongly recommend enabling fine-grained access control to protect the data
on your domain. Fine-grained access control provides security at the cluster, index,
document, and field levels.

21. (Optional) If you want to use SAML authentication for OpenSearch Dashboards, choose Enable
SAML authentication and configure SAML options for the domain. For instructions, see the
section called “SAML authentication for OpenSearch Dashboards”.

22. (Optional) If you want to use Amazon Cognito authentication for OpenSearch Dashboards,
choose Enable Amazon Cognito authentication. Then choose the Amazon Cognito user
pool and identity pool that you want to use for OpenSearch Dashboards authentication. For
guidance on creating these resources, see the section called “Amazon Cognito authentication
for OpenSearch Dashboards”.

23. For Access policy, choose an access policy or configure one of your own. If you choose to
create a custom policy, you can configure it yourself or import one from another domain. For
more information, see the section called “Identity and Access Management”.

Note

If you enabled VPC access, you can't use IP-based policies. Instead, you can use security
groups to control which IP addresses can access the domain. For more information, see
the section called “About access policies on VPC domains”.

24. (Optional) To require that all requests to the domain arrive over HTTPS, select Require HTTPS
for all traffic to the domain. To enable node-to-node encryption, select Node-to-node
encryption. For more information, see the section called “Node-to-node encryption”. To
enable encryption of data at rest, select Enable encryption of data at rest. These options are
pre-selected if you chose the Multi-AZ with Standby deployment option.

25. (Optional) Select Use Amazon owned key to have OpenSearch Service create an Amazon KMS
encryption key on your behalf (or use the one that it already created). Otherwise, choose your
own KMS key. For more information, see the section called “Encryption at rest”.

Creating OpenSearch Service domains (console) 409

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon OpenSearch Service Developer Guide

26. For Off-peak window, select a start time to schedule service software updates and Auto-Tune
optimizations that require a blue/green deployment. Off-peak updates help to minimize strain
on a cluster's dedicated master nodes during high traffic periods.

27. For Auto-Tune, choose whether to allow OpenSearch Service to suggest memory-related
configuration changes to your domain to improve speed and stability. For more information,
see the section called “Auto-Tune”.

(Optional) Select Off-peak window to schedule a recurring window during which Auto-Tune
updates the domain.

28. (Optional) Select Automatic software update to enable automatic software updates.

29. (Optional) Add tags to describe your domain so you can categorize and filter on that
information. For more information, see the section called “Tagging domains”.

30. (Optional) Expand and configure Advanced cluster settings. For a summary of these options,
see the section called “Advanced cluster settings”.

31. Choose Create.

Creating OpenSearch Service domains (Amazon CLI)

Instead of creating an OpenSearch Service domain by using the console, you can use the Amazon
CLI. For syntax, see Amazon OpenSearch Service in the Amazon CLI command referencea.

Example commands

This first example demonstrates the following OpenSearch Service domain configuration:

• Creates an OpenSearch Service domain named mylogs with OpenSearch version 1.2

• Populates the domain with two instances of the r6g.large.search instance type

• Uses a 100 GiB General Purpose (SSD) gp3 EBS volume for storage for each data node

• Allows anonymous access, but only from a single IP address: 192.0.2.0/32

aws opensearch create-domain \
 --domain-name mylogs \
 --engine-version OpenSearch_1.2 \
 --cluster-config InstanceType=r6g.large.search,InstanceCount=2 \
 --ebs-options
 EBSEnabled=true,VolumeType=gp3,VolumeSize=100,Iops=3500,Throughput=125 \

Creating OpenSearch Service domains (Amazon CLI) 410

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/opensearch/index.html

Amazon OpenSearch Service Developer Guide

 --access-policies '{"Version": "2012-10-17", "Statement": [{"Action": "es:*",
 "Principal":"*","Effect": "Allow", "Condition": {"IpAddress":{"aws:SourceIp":
["192.0.2.0/32"]}}}]}'

The next example demonstrates the following OpenSearch Service domain configuration:

• Creates an OpenSearch Service domain named mylogs with Elasticsearch version 7.10

• Populates the domain with six instances of the r6g.large.search instance type

• Uses a 100 GiB General Purpose (SSD) gp2 EBS volume for storage for each data node

• Restricts access to the service to a single user, identified by the user's Amazon Web Services
account ID: 555555555555

• Distributes instances across three Availability Zones

aws opensearch create-domain \
 --domain-name mylogs \
 --engine-version Elasticsearch_7.10 \
 --cluster-config
 InstanceType=r6g.large.search,InstanceCount=6,ZoneAwarenessEnabled=true,ZoneAwarenessConfig={AvailabilityZoneCount=3}
 \
 --ebs-options EBSEnabled=true,VolumeType=gp2,VolumeSize=100 \
 --access-policies '{"Version": "2012-10-17", "Statement": [{ "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::555555555555:root" }, "Action":"es:*", "Resource":
 "arn:aws:es:us-east-1:555555555555:domain/mylogs/*" }] }'

The next example demonstrates the following OpenSearch Service domain configuration:

• Creates an OpenSearch Service domain named mylogs with OpenSearch version 1.0

• Populates the domain with ten instances of the r6g.xlarge.search instance type

• Populates the domain with three instances of the r6g.large.search instance type to serve as
dedicated master nodes

• Uses a 100 GiB Provisioned IOPS EBS volume for storage, configured with a baseline
performance of 1000 IOPS for each data node

• Restricts access to a single user and to a single subresource, the _search API

aws opensearch create-domain \
 --domain-name mylogs \
 --engine-version OpenSearch_1.0 \

Creating OpenSearch Service domains (Amazon CLI) 411

Amazon OpenSearch Service Developer Guide

 --cluster-config
 InstanceType=r6g.xlarge.search,InstanceCount=10,DedicatedMasterEnabled=true,DedicatedMasterType=r6g.large.search,DedicatedMasterCount=3
 \
 --ebs-options EBSEnabled=true,VolumeType=io1,VolumeSize=100,Iops=1000 \
 --access-policies '{"Version": "2012-10-17", "Statement": [{ "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::555555555555:root" }, "Action": "es:*",
 "Resource": "arn:aws:es:us-east-1:555555555555:domain/mylogs/_search" }] }'

Note

If you attempt to create an OpenSearch Service domain and a domain with the same name
already exists, the CLI does not report an error. Instead, it returns details for the existing
domain.

Creating OpenSearch Service domains (Amazon SDKs)

The Amazon SDKs (except the Android and iOS SDKs) support all the actions defined in the
Amazon OpenSearch Service API Reference, including CreateDomain. For sample code, see the
section called “Using the Amazon SDKs”. For more information about installing and using the
Amazon SDKs, see Amazon Software Development Kits.

Creating OpenSearch Service domains (Amazon CloudFormation)

OpenSearch Service is integrated with Amazon CloudFormation, a service that helps you to model
and set up your Amazon resources so that you can spend less time creating and managing your
resources and infrastructure. You create a template that describes the OpenSearch domain you
want to create, and CloudFormation provisions and configures the domain for you. For more
information, including examples of JSON and YAML templates for OpenSearch domains, see the
Amazon OpenSearch Service resource type reference in the Amazon CloudFormation User Guide.

Configuring access policies

Amazon OpenSearch Service offers several ways to configure access to your OpenSearch Service
domains. For more information, see the section called “Identity and Access Management” and the
section called “Fine-grained access control”.

The console provides preconfigured access policies that you can customize for the specific needs
of your domain. You also can import access policies from other OpenSearch Service domains. For

Creating OpenSearch Service domains (Amazon SDKs) 412

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
http://aws.amazon.com/code
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-elasticsearch-domain.html

Amazon OpenSearch Service Developer Guide

information about how these access policies interact with VPC access, see the section called “About
access policies on VPC domains”.

To configure access policies (console)

1. Go to https://aws.amazon.com, and then choose Sign In to the Console.

2. Under Analytics, choose Amazon OpenSearch Service.

3. In the navigation pane, under Domains, choose the domain you want to update.

4. Choose Actions and Edit security configuration.

5. Edit the access policy JSON, or import a preconfigured option.

6. Choose Save changes.

Advanced cluster settings

Use advanced options to configure the following:

Indices in request bodies

Specifies whether explicit references to indexes are allowed inside the body of HTTP requests.
Setting this property to false prevents users from bypassing access control for subresources.
By default, the value is true. For more information, see the section called “Advanced options
and API considerations”.

Fielddata cache allocation

Specifies the percentage of Java heap space that is allocated to field data. By default, this
setting is 20% of the JVM heap.

Note

Many customers query rotating daily indices. We recommend that you begin benchmark
testing with indices.fielddata.cache.size configured to 40% of the JVM heap
for most of these use cases. For very large indices, you might need a large field data
cache.

Advanced cluster settings 413

https://aws.amazon.com

Amazon OpenSearch Service Developer Guide

Max clause count

Specifies the maximum number of clauses allowed in a Lucene boolean query. The default is
1,024. Queries with more than the permitted number of clauses result in a TooManyClauses
error. For more information, see the Lucene documentation.

Making configuration changes in Amazon OpenSearch Service

Amazon OpenSearch Service uses a blue/green deployment process when updating domains.
A blue/green deployment creates an idle environment for domain updates that copies the
production environment, and routes users to the new environment after those updates
are complete. In a blue/green deployment, the blue environment is the current production
environment. The green environment is the idle environment.

Data is migrated from the blue environment to the green environment. When the new environment
is ready, OpenSearch Service switches over the environments to promote the green environment
to be the new production environment. The switchover happens with no data loss. This practice
minimizes downtime and maintains the original environment in the event that deployment to the
new environment is unsuccessful.

Topics

• Changes that usually cause blue/green deployments

• Changes that usually don't cause blue/green deployments

• Determining whether a change will cause a blue/green deployment

• Initiating and tracking a configuration change

• Stages of a configuration change

• Charges for configuration changes

• Troubleshooting validation errors

Changes that usually cause blue/green deployments

The following operations cause blue/green deployments:

• Changing instance type

• Enabling fine-grained access control

• Performing service software updates

Configuration changes 414

https://lucene.apache.org/core/6_6_0/core/org/apache/lucene/search/BooleanQuery.html

Amazon OpenSearch Service Developer Guide

• If your domain doesn't have dedicated master nodes, changing data instance count

• Enabling or disabling dedicated master nodes

• Enabling or disabling Multi-AZ without Standby

• Changing storage type, volume type, or volume size

• Choosing different VPC subnets

• Adding or removing VPC security groups

• Enabling or disabling Amazon Cognito authentication for OpenSearch Dashboards

• Choosing a different Amazon Cognito user pool or identity pool

• Modifying advanced settings

• Upgrading to a new OpenSearch version

• Enabling encryption of data at rest or node-to-node encryption

• Enabling or disabling UltraWarm or cold storage

• Disabling Auto-Tune and rolling back its changes

• Associating an optional plugin to a domain and dissociating an optional plugin from a domain

• Increasing dedicated master node count for domains with two dedicated master nodes and zone
awareness enabled

• Decreasing the EBS volume size

• Enabling the publication of audit logs to CloudWatch.

• Changing EBS volume size, IOPS, and throughput, if the the last change you made is in progress
or you have not waited more than 6 hours before attempting to make another change.

For Multi-AZ with Standby domains, you can only make one change request at a time. If a change
is already in progress, the new request will be rejected. You can check the status of the current
change with the DescribeDomainChangeProgress API.

When you upgrade domains, OpenSearch Dashboards might be unavailable during some or all of
the upgrade. The upgrade can take from 15 minutes to several hours to complete.

Changes that usually don't cause blue/green deployments

In most cases, the following operations do not cause blue/green deployments:

• Changing access policy

• Modifying the custom endpoint

Changes that usually don't cause blue/green deployments 415

Amazon OpenSearch Service Developer Guide

• Changing the Transport Layer Security (TLS) policy

• Changing the automated snapshot hour

• Enabling or disabling Require HTTPS

• Enabling Auto-Tune or disabling it without rolling back its changes

• If your domain has dedicated master nodes, changing data node or UltraWarm node count

• If your domain has dedicated master nodes, changing dedicated master instance type or node
count (except for domains with two dedicated masters and zone awareness enabled)

• Enabling or disabling the publication of error logs or slow logs to CloudWatch

• Disabling the publication of audit logs to CloudWatch.

• Increasing volume size, changing volume type, IOPS, and throughput to up to 3 TiB per data
node volume size

• Adding or removing tags

Note

There are some exceptions depending on your service software version. If you want to be
absolutely sure that a change won't cause a blue/green deployment, perform a dry run
before updating your domain, if this option is available. Some changes don't offer a dry run
option. We generally recommend that you make changes to your cluster outside of peak
traffic hours.

Determining whether a change will cause a blue/green deployment

You can test some types of planned configuration changes to determine whether they will cause
a blue/green deployment, without having to commit to those changes. Before you initiate a
configuration change, use the console or an API to run a validation check to ensure that your
domain is eligible for an update.

Console

To validate a configuration change

1. Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/
aos/.

Determining whether a change will cause a blue/green deployment 416

https://console.aws.amazon.com/aos/
https://console.aws.amazon.com/aos/

Amazon OpenSearch Service Developer Guide

2. In the left navigation pane, choose Domains.

3. Select the domain you want to make a configuration change for. This opens the
domain details page. Select the Actions dropdown menu and then choose Edit cluster
configuration.

4. On the Edit cluster configuration page, you can make changes to the instance type, the
number of nodes, and any other configurations. After you've confirmed your changes in the
summary panel, choose Run.

5. Once your dry run is complete, the results automatically display at the bottom of the page,
along with a dry run ID. These results notify you which category your change falls into:

• Initiates a blue/green deployment

• Doesn't require a blue/green deployment

• Contains validation errors that you need to address before you can save your changes

Note that each dry run overwrites the one before it. To look up the details of each dry run
later on, make sure you save your dry run ID. Each dry run is available for 90 days, or until
you make a configuration update.

6. To proceed with your configuration update, choose Save changes. Otherwise, choose
Cancel. Either option takes you back to the Cluster configuration tab. On this tab, you can
choose Dry run details to see the details of your latest dry run. This page also includes
a side-by-side comparison between the configuration before the dry run and the dry run
configuration.

API

You can perform a dry run validation through the configuration API. To test your changes with
the API, set DryRun to true, and DryRunMode to Verbose. Verbose mode runs a validation
check in addition to determining whether the change will initiate a blue/green deployment.
For example, this UpdateDomainConfig request tests the deployment type that results from
enabling UltraWarm:

POST https://es.us-east-1.amazonaws.com/2021-01-01/opensearch/domain/my-domain/
config
{
 "ClusterConfig": {
 "WarmCount": 3,

Determining whether a change will cause a blue/green deployment 417

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpdateDomainConfig.html

Amazon OpenSearch Service Developer Guide

 "WarmEnabled": true,
 "WarmType": "ultrawarm1.large.search"
 },
 "DryRun": true,
 "DryRunMode": "Verbose"
}

The request runs a validation check and returns the type of deployment the change will cause
but doesn't actually perform the update:

{
 "ClusterConfig": {
 ...
 },
 "DryRunResults": {
 "DeploymentType": "Blue/Green",
 "Message": "This change will require a blue/green deployment."
 }
}

Possible deployment types are:

• Blue/Green – The change will cause a blue/green deployment.

• DynamicUpdate – The change won't cause a blue/green deployment.

• Undetermined – The domain is still in a processing state, so the deployment type can't be
determined.

• None – No configuration change.

If the validation fails, it returns a list of validation failures.

{
 "ClusterConfig":{
 "..."
 },
 "DryRunProgressStatus":{
 "CreationDate":"2023-01-12T01:14:33.847Z",
 "DryRunId":"db00ca39-48b2-4774-bbd3-252cf094d205",
 "DryRunStatus":"failed",
 "UpdateDate":"2023-01-12T01:14:33.847Z",
 "ValidationFailures":[

Determining whether a change will cause a blue/green deployment 418

Amazon OpenSearch Service Developer Guide

 {
 "Code":"Cluster.Index.WriteBlock",
 "Message":"Cluster has index write blocks."
 }
]
 }
}

If the status is still pending, you can use the dry run ID in your UpdateDomainConfig response
in subsequent DescribeDryRunProgress calls to check the status of the validation.

GET https://es.us-east-1.amazonaws.com/2021-01-01/opensearch/domain/my-domain/
dryRun?dryRunId=my-dry-run-id
{
 "DryRunConfig": null,
 "DryRunProgressStatus": {
 "CreationDate": "2023-01-12T01:14:42.998Z",
 "DryRunId": "db00ca39-48b2-4774-bbd3-252cf094d205",
 "DryRunStatus": "succeeded",
 "UpdateDate": "2023-01-12T01:14:49.334Z",
 "ValidationFailures": null
 },
 "DryRunResults": {
 "DeploymentType": "Blue/Green",
 "Message": "This change will require a blue/green deployment."
 }
}

To run a dry run analysis without a validation check, set DryRunMode to Basic when you use
the configuration API.

Python

The following Python code uses the UpdateDomainConfig API to perform a dry run validation
check and, if the check succeeds, calls the same API without a dry run to start the update. If the
check fails, the script prints out the error and stops.

import time
import boto3

client = boto3.client('opensearch')

response = client.UpdateDomainConfig(

Determining whether a change will cause a blue/green deployment 419

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_DescribeDryRunProgress.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpdateDomainConfig.html

Amazon OpenSearch Service Developer Guide

 ClusterConfig={
 'WarmCount': 3,
 'WarmEnabled': True,
 'WarmCount': 123,
 },
 DomainName='test-domain',
 DryRun=True,
 DryRunMode='Verbose'
)

dry_run_id = response.DryRunProgressStatus.DryRunId

retry_count = 0

while True:

 if retry_count == 5:
 print('An error occured')
 break

 dry_run_progress_response = client.DescribeDryRunProgress('test-domain',
 dry_run_id)
 dry_run_status = dry_run_progress_response.DryRunProgressStatus.DryRunStatus

 if dry_run_status == 'succeeded':
 client.UpdateDomainConfig(
 ClusterConfig={
 'WarmCount': 3,
 'WarmEnabled': True,
 'WarmCount': 123,
 })
 break

 elif dry_run_status == 'failed':
 validation_failures_list =
 dry_run_progress_response.DryRunProgressStatus.ValidationFailures
 for item in validation_failures_list:
 print(f"Code: {item['Code']}, Message: {item['Message']}")
 break

 retry_count += 1
 time.sleep(30)

Determining whether a change will cause a blue/green deployment 420

Amazon OpenSearch Service Developer Guide

Initiating and tracking a configuration change

Note

You can request one configuration change at a time. You can also group multiple
configuration changes in a single request. Wait for the status of your domain to become
Active before requesting any additional configuration changes.

You can view the Domain Processing Status and Config Change Status fields in the Amazon
OpenSearch Service console to track domain and configuration changes. You can also track domain
and configuration changes through the DomainProcessingStatus and ConfigChangeStatus
parameters in the API responses. For more information, see the DomainStatus data type in the
OpenSearch Service API reference.

Domain processing status visibility: You can easily determine the configuration status of
a domain by looking at the Domain Processing Status field in the console. Similarly, the
DomainProcessingStatus API parameter can be used to identify the status. The following
values are processing statuses for a domain:

• Active: No configuration change is in progress. You can submit a new configuration change
request.

• Creating: New domain creation is in progress.

• Modifying: Configuration changes, such as the addition of new data nodes, EBS, GP3, IOPS
provisioning, or setting up KMS keys, are in progress.

Note

You may see the status as Modifying in situations where a domain requires shard
movement to complete the configuration changes. For backwards compatibility, the
behavior of the Processing parameter is kept unchanged in the API responses, and
is set to false as soon as core configuration changes are complete, without waiting for
shard movement completion.

• Upgrading Engine Version: An engine version upgrade in progress.

• Updating Service Software: A service software update is in progress.

• Deleting: A domain deletion is in progress.

Initiating and tracking a configuration change 421

https://docs.aws.amazon.com/opensearch-service/latest/APIReference/API_DomainStatus.html

Amazon OpenSearch Service Developer Guide

• Isolated: A domain is now suspended.

Configuration status visibility: Configuration changes can be initiated by the operator (e.g.
new data node addition, instance type change) or by the service (e.g. AutoTune and Off-
peak hour updates). You can find the status of the latest configuration change details in the
Configuration Change Status field of the Amazon OpenSearch Service console, and in the
ConfigChangeStatus API parameter response. The following values indicate the configuration
status of a domain:

• Pending: Indicates that a configuration change request has been submitted.

• Initializing: Service is initializing a configuration change request.

• Validating: Service is validating the requested changes and resources required.

• Awaiting user inputs: Applies when operator expects some configuration changes such as
instance type change to proceed further. You are able to edit configuration changes.

• Applying changes: Service is applying requested configuration changes.

• Cancelled: Configuration change is cancelled. If you receive the validation failed status, you can
click Cancel in the console or call the CancelDomainConfigChange API. If you do this, all the
applied changes are rolled back.

• Completed: Requested configuration changes have been completed with success.

• Validation Failed: Requested changes failed validation. No configuration changes are
applied.

Note

Validation failures could be the result of red indices present in your domain,
unavailability of a chosen instance type, or low disk space. For a list of validation error
see the section called “Troubleshooting validation errors”. During a validation failure
event, you can cancel, retry, or edit configuration changes.

API Summary: You can use the DescribeDomain, DescribeDomainChangeProgress, and
DescribeDomainConfig APIs to get detailed configuration update statuses. In addition, you can
use CancelDomainConfigChange to cancel the updates in the event of validation failures. For
more information, see the OpenSearch Service API documentation

When the confiugration changes are complete, the domain state changes back to Active.

Initiating and tracking a configuration change 422

https://docs.aws.amazon.com/cli/latest/reference/opensearch/

Amazon OpenSearch Service Developer Guide

You can review the cluster health and Amazon CloudWatch metrics and see that the number of
nodes in the cluster temporarily increases—often doubling—while the domain update occurs.
In the following illustration, you can see the number of nodes doubling from 11 to 22 during a
configuration change and returning to 11 when the update is complete.

This temporary increase can strain the cluster's dedicated master nodes, which suddenly
might have many more nodes to manage. It can also increase search and indexing latencies as
OpenSearch Service copies data from the old cluster to the new one. It's important to maintain
sufficient capacity on the cluster to handle the overhead that is associated with these blue/green
deployments.

Important

You do not incur any additional charges during configuration changes and service
maintenance. You're billed only for the number of nodes that you request for your cluster.
For specifics, see the section called “Charges for configuration changes”.

To prevent overloading dedicated master nodes, you can monitor usage with the Amazon
CloudWatch metrics. For recommended maximum values, see the section called “Recommended
CloudWatch alarms”.

Stages of a configuration change

After you initiate a configuration change, OpenSearch Service goes through a series of steps to
update your domain. You can view the progress of the configuration change under Configuration
change status in the console. The exact steps that an update goes through depends on
the type of change you're making. You can also monitor a configuration change using the
DescribeDomainChangeProgress API operation.

The following are possible stages an update can go through during a configuration change:

Stages of a configuration change 423

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_DescribeDomainChangeProgress.html

Amazon OpenSearch Service Developer Guide

Stage name Description

Validation Validatin
g that the
domain is
eligible for
an update,
and surfacing
validatio
n issues if
necessary.

Creating a new environment Completing
the necessary
prerequisites
and creating
required
resources
to start the
blue/green
deployment.

Provisioning new nodes Creating a
new set of
instances
in the new
environment.

Traffic routing on new nodes Redirecting
traffic to the
newly created
data nodes.

Traffic routing on old nodes Disabling
traffic on
the old data
nodes.

Stages of a configuration change 424

Amazon OpenSearch Service Developer Guide

Stage name Description

Preparing nodes for removal Preparing to
remove nodes.
This step
only happens
when you're
downscaling
your domain
(for example,
from 8 nodes
to 6 nodes).

Copying shards to new nodes Moving shards
from the old
nodes to the
new nodes.

Terminating nodes Terminating
and deleting
old nodes
after shards
are removed.

Deleting older resources Deleting
resources
associated
with the old
environme
nt (e.g. load
balancer).

Stages of a configuration change 425

Amazon OpenSearch Service Developer Guide

Stage name Description

Dynamic update Displayed
when the
update does
not require
a blue/gree
n deploymen
t and can be
dynamically
applied.

Applying dedicated master related changes Displayed
when the
dedicated
master
instance type
or count is
changed.

Applying volume related changes Displayed
when volume
size, type,
IOPS and
throughput
are changed.

Charges for configuration changes

If you change the configuration for a domain, OpenSearch Service creates a new cluster as
described in the section called “Configuration changes”. During the migration of old to new, you
incur the following charges:

• If you change the instance type, you're charged for both clusters for the first hour. After the first
hour, you're only charged for the new cluster. EBS volumes aren't charged twice because they're
part of your cluster, so their billing follows instance billing.

Charges for configuration changes 426

Amazon OpenSearch Service Developer Guide

Example: You change the configuration from three m3.xlarge instances to four m4.large
instances. For the first hour, you're charged for both clusters (3 * m3.xlarge + 4 * m4.large).
After the first hour, you're charged only for the new cluster (4 * m4.large).

• If you don't change the instance type, you're charged only for the largest cluster for the first
hour. After the first hour, you're charged only for the new cluster.

Example: You change the configuration from six m3.xlarge instances to three m3.xlarge
instances. For the first hour, you're charged for the largest cluster (6 * m3.xlarge). After the first
hour, you're charged only for the new cluster (3 * m3.xlarge).

Troubleshooting validation errors

When you initiate a configuration change or perform an OpenSearch or Elasticsearch version
upgrade, OpenSearch Service first performs a series of validation checks to ensure that your
domain is eligible for an update. If any of these checks fail, you receive a notification in the console
containing the specific issues that you must fix before updating your domain. The following table
lists the possible domain issues that OpenSearch Service might surface, and steps to resolve them.

Issue Error code Troubleshooting steps

Security
group not
found

SecurityG
roupNotFo
und

The security group associated with your OpenSearch Service domain
does not exist. To resolve this issue, create a security group with the
specified name.

Subnet not
found

SubnetNot
Found

The subnet associated with your OpenSearch Service domain does
not exist. To resolve this issue, create a subnet in your VPC.

Service-
linked
role not
configured

SLRNotCon
figured

The service-linked role for OpenSearch Service is not configure
d. The service-linked role is predefined by OpenSearch Service
and includes all the permissions the service requires to call other
Amazon services on your behalf. If the role doesn't exist, you might
need to create it manually.

Not
enough IP
addresses

Insuffici
entFreeIP

One or more of your VPC subnets don't have enough IP addresses to
update your domain. To calculate how many IP addresses you need,
see the section called “Reserving IP addresses in a VPC subnet”.

Troubleshooting validation errors 427

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_SecurityGroups.html#creating-security-groups
https://docs.amazonaws.cn/vpc/latest/userguide/working-with-subnets.html#create-subnets

Amazon OpenSearch Service Developer Guide

Issue Error code Troubleshooting steps

sForSubne
ts

Cognito
user pool
doesn't
exist

CognitoUs
erPoolNot
Found

OpenSearch Service can't find the Amazon Cognito user pool.
Confirm that you created one and have the correct ID. To find the ID,
you can use the Amazon Cognito console or the following Amazon
CLI command:

aws cognito-idp list-user-pools --max-results 60 --
region us-east-1

Cognito
identity
pool
doesn't
exist

CognitoId
entityPoo
lNotFound

OpenSearch Service can't find the Cognito identity pool. Confirm
that you created one and have the correct ID. To find the ID, you
can use the Amazon Cognito console or the following Amazon CLI
command:

aws cognito-identity list-identity-pools --max-results
 60 --region us-east-1

Cognito
domain
not found
for user
pool

CognitoDo
mainNotFo
und

The user pool does not have a domain name. You can configure one
using the Amazon Cognito console or the following Amazon CLI
command:

aws cognito-idp create-user-pool-domain --domain my-
domain --user-pool-id id

Cognito
role not
configured

CognitoRo
leNotConf
igured

The IAM role that grants OpenSearch Service permission to
configure the Amazon Cognito user and identity pools, and use
them for authentication, is not configured. Configure the role
with an appropriate permission set and trust relationship. You can
use the console, which creates the default CognitoAccessForAm
azonOpenSearch role for you, or you can manually configure a role
using the Amazon CLI or the Amazon SDK.

Troubleshooting validation errors 428

Amazon OpenSearch Service Developer Guide

Issue Error code Troubleshooting steps

Unable to
describe
user pool

UserPoolN
otDescrib
able

The specified Amazon Cognito role doesn't have permission to
describe the user pool associated with your domain. Make sure
the role permissions policy allows the cognito-identity:D
escribeUserPool action. See the section called “About the
CognitoAccessForAmazonOpenSearch role” for the full permissions
policy.

Unable to
describe
identity
pool

IdentityP
oolNotDes
cribable

The specified Amazon Cognito role doesn't have permission to
describe the identity pool associated with your domain. Make sure
the role permissions policy allows the cognito-identity:D
escribeIdentityPool action. See the section called
“About the CognitoAccessForAmazonOpenSearch role” for the full
permissions policy.

Unable to
describe
user and
identity
pool

CognitoPo
olsNotDes
cribable

The specified Amazon Cognito role doesn't have permission to
describe the user and identity pools associated with your domain.
Make sure the role permissions policy allows the cognito-
identity:DescribeIdentityPool and cognito-i
dentity:DescribeUserPool actions. See the section called
“About the CognitoAccessForAmazonOpenSearch role” for the full
permissions policy.

KMS
key not
enabled

KMSKeyNot
Enabled

The Amazon Key Management Service (Amazon KMS) key used to
encrypt your domain is disabled. Re-enable the key immediately.

Custom
certifica
te not in
ISSUED
state

InvalidCe
rtificate

If your domain uses a custom endpoint, you secure it by either
generating an SSL certificate in Amazon Certificate Manager (ACM)
or importing one of your own. The certificate status must be Issued.
If you receive this error, check the status of your certificate in the
ACM console. If the status is Expired, Failed, Inactive, or Pending
validation, see the ACM troubleshooting documentation to resolve
the issue.

Troubleshooting validation errors 429

https://docs.amazonaws.cn/kms/latest/developerguide/enabling-keys
https://docs.amazonaws.cn/acm/latest/userguide/gs-acm-describe.html
https://docs.amazonaws.cn/acm/latest/userguide/troubleshooting.html

Amazon OpenSearch Service Developer Guide

Issue Error code Troubleshooting steps

Not
enough
capacity
to launch
chosen
instance
type

Insuffici
entInstan
ceCapacit
y

The requested instance type capacity is not available. For example,
you might have requested five i3.16xlarge.search nodes,
but OpenSearch Service doesn't have enough i3.16xlar
ge.search hosts available, so the request can't be fulfilled.
Check the supported instance types in OpenSearch Service and
choose a different instance type.

Red
indexes in
cluster

RedCluste
r

One or more indexes in your cluster have a red status, leading to an
overall red cluster status. To troubleshoot and remediate this issue,
see the section called “Red cluster status”.

Memory
circuit
breaker,
too many
requests

TooManyRe
quests

There are too many search and write requests to your domain, so
OpenSearch Service can't update its configuration. You can reduce
the number of requests, scale instances vertically up to 64 GiB of
RAM, or scale horizontally by adding instances.

New
configura
tion can't
hold data
(low disk
space)

Insuffici
entStorag
eCapacity

The configured storage size can't hold all of the data on your
domain. To resolve this issue, choose a larger volume, delete
unused indexes, or increase the number of nodes in the cluster to
immediately free up disk space.

Troubleshooting validation errors 430

https://opensearch.org/docs/latest/opensearch/rest-api/index-apis/delete-index/
https://opensearch.org/docs/latest/opensearch/rest-api/index-apis/delete-index/

Amazon OpenSearch Service Developer Guide

Issue Error code Troubleshooting steps

Shards
pinned to
specific
nodes

ShardMove
mentBlock
ed

One or more indexes in your domain are attached to specific nodes
and can't be reassigned. This most likely happened because you
configured shard allocation filtering, which lets you specify which
nodes are allowed to host the shards of a particular index.

To resolve this issue, remove shard allocation filters from all
affected indexes:

PUT my-index/_settings
{
 "settings": {
 "index.routing.allocation.require._name": null
 }
}

New
configura
tion can't
hold all
shards
(shard
count)

TooManySh
ards

The shard count on your domain is too high, which prevents
OpenSearch Service from moving them to the new configuration. To
resolve this issue, scale your domain horizonally by adding nodes of
the same configuration type as your current cluster nodes. Note that
the maximum EBS volume size depends on the node's instance type.

To prevent this issue in the future, see the section called “Choosing
the number of shards” and define a sharding strategy that is
appropriate for your use case.

The subnet
associated
with your
domain
does not
support
IPv4
addresses

ResultCod
eIPv4Bloc
kNotExist
s

To resolve this issue, create a subnet or update the existing subnet
in your VPC according to the configured IP address type of the
domain. If your domain uses an IPv4 only address type, use an IPv4-
only subnet. If your domain uses Dual-stack mode, use a dual-stack
subnet.

Troubleshooting validation errors 431

https://docs.amazonaws.cn/vpc/latest/userguide/configure-subnets.html#subnet-IP-address-range

Amazon OpenSearch Service Developer Guide

Issue Error code Troubleshooting steps

The subnet
associated
with your
domain
does not
support
IPv6
addresses

ResultCod
eIPv6Bloc
kNotExist
s

To resolve this issue, create a subnet or update the existing subnet
in your VPC according to the configured IP address type of the
domain. If your domain uses an IPv4 only address type, use an IPv4-
only subnet. If your domain uses Dual-stack mode, use a dual-stack
subnet.

Service software updates in Amazon OpenSearch Service

Note

For explanations of the changes and additions made in each major (non-patch) service
software update, see the release notes.

Amazon OpenSearch Service regularly releases service software updates that add features or
otherwise improve your domains. The Notifications panel in the console is the easiest way to see if
an update is available or to check the status of an update. Each notification includes details about
the service software update. All service software updates use blue/green deployments to minimize
downtime.

Service software updates differ from OpenSearch version upgrades. For information about
upgrading to a later version of OpenSearch, see the section called “Upgrading domains”.

Topics

• Optional versus required updates

• Patch updates

• Considerations

• Starting a service software update

• Scheduling software updates during off-peak windows

• Monitoring service software updates

Service software updates 432

https://docs.amazonaws.cn/vpc/latest/userguide/configure-subnets.html#subnet-IP-address-range

Amazon OpenSearch Service Developer Guide

• When domains are ineligible for an update

Optional versus required updates

OpenSearch Service has two broad categories of service software updates:

Optional updates

Optional service software updates generally include enhancements and support for new features
or functionality. Optional updates aren't enforced on your domains, and there's no hard deadline
to install them. The availability of the update is communicated through email and a console
notification. You can choose to apply the update immediately or reschedule it for a more
appropriate date and time. You can also schedule it during the domain's off-peak window. The
majority of software updates are optional.

Regardless of whether or not you schedule an update, if you make a change on the domain that
causes a blue/green deployment, OpenSearch Service automatically updates your service software
for you.

You can configure your domain to automatically apply optional updates during off-peak hours.
When this option is turned on, OpenSearch Service waits at least 13 days from when an optional
update is available and then schedules the update after 72 hours (three days). You receive a
console notification when the update is scheduled and you can choose to reschedule it for a later
date.

To turn on automatic software updates, select Enable automatic software update when you
create or update your domain. To configure the same setting using the Amazon CLI, set --
software-update-options to true when you create or update your domain.

Required updates

Required service software updates generally include critical security fixes or other mandatory
updates to ensure the continued integrity and functionality of your domain. Examples of required
updates are Log4j Common Vulnerabilities and Exposures (CVEs) and enforcement of Instance
Metadata Service Version 2 (IMDSv2). The number of mandatory updates in a year is usually less
than three.

OpenSearch Service automatically schedules these updates and notifies you 72 hours (three days)
before the scheduled update through email and a console notification. You can choose to apply

Optional versus required updates 433

Amazon OpenSearch Service Developer Guide

the update immediately or reschedule it for a more appropriate date and time within the allowed
timeframe. You can also schedule it during the domain's next off-peak window. If you take no
action on a required update and you don't make any domain changes that cause a blue/green
deployment, OpenSearch Service can initiate the update at any time beyond the specified deadline
(typically 14 days from availability), within the domain's off-peak window.

Regardless of when the update is scheduled for, if you make a change on the domain that causes a
blue/green deployment, OpenSearch Service automatically updates your domain for you.

Patch updates

Service software versions that end in "-P" and a number, such as R20211203-P4, are patch releases.
Patches are likely to include performance improvements, minor bug fixes, and security fixes or
posture improvements. Patch releases do not include new features or breaking changes, and they
generally don't have a direct or noticeable impact on users. The service software notification tells
you if a patch release is optional or mandatory.

Considerations

Consider the following when deciding whether to update your domain:

• Manually updating your domain lets you take advantage of new features more quickly. When you
choose Update, OpenSearch Service places the request in a queue and begins the update when it
has time.

• When you initiate a service software update, OpenSearch Service sends a notification when the
update starts and when it completes.

• Software updates use blue/green deployments to minimize downtime. Updates can temporarily
strain a cluster's dedicated master nodes, so make sure to maintain sufficient capacity to handle
the associated overhead.

• Updates typically complete within minutes, but can also take several hours or even days if your
system is experiencing heavy load. Consider updating your domain during the configured off-
peak window to avoid long update periods.

Starting a service software update

You can request a service software update through the OpenSearch Service console, the Amazon
CLI, or one of the SDKs.

Patch updates 434

Amazon OpenSearch Service Developer Guide

Console

To request a service software update

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. Select the domain name to open its configuration.

3. Choose Actions, Update and select one of the following options:

• Apply update now - Immediately schedules the action to happen in the current hour if
there's capacity available. If capacity isn't available, we provide other available time slots to
choose from.

• Schedule it in off-peak window – Only available if the off-peak window is enabled for
the domain. Schedules the update to take place during the domain's configured off-peak
window. There's no guarantee that the update will happen during the next immediate
window. Depending on capacity, it might happen in subsequent days. For more information,
see the section called “Off-peak windows”.

• Schedule for specific date and time – Schedules the update to take place at a specific date
and time. If the time that you specify is unavailable for capacity reasons, you can select a
different time slot.

If you schedule the update for a later date (within or outside the domain's off-peak window),
you can reschedule it at any time. For instructions, see the section called “Rescheduling
actions”.

4. Choose Confirm.

Amazon CLI

Send a start-service-software-update Amazon CLI request to initiate a service software update.
This example adds the update to the queue immediately:

aws opensearch start-service-software-update \
 --domain-name my-domain \
 --schedule-at "NOW"

Response:

{

Starting an update 435

https://console.aws.amazon.com/aos/home
https://docs.aws.amazon.com/cli/latest/reference/opensearch/start-service-software-update.html

Amazon OpenSearch Service Developer Guide

 "ServiceSoftwareOptions": {
 "CurrentVersion": "R20220928-P1",
 "NewVersion": "R20220928-P2",
 "UpdateAvailable": true,
 "Cancellable": true,
 "UpdateStatus": "PENDING_UPDATE",
 "Description": "",
 "AutomatedUpdateDate": "1969-12-31T16:00:00-08:00",
 "OptionalDeployment": true
 }
}

Tip

After you request an update, you have a narrow window of time in which you can cancel it.
The duration of this PENDING_UPDATE state can vary greatly and depends on your Amazon
Web Services Region and the number of concurrent updates that OpenSearch Service
is performing. To cancel an update, use the console or cancel-service-software-
update Amazon CLI command.

If the request fails with a BaseException, it means that the time you specified isn't available for
capacity reasons, and you must specify a different time. OpenSearch Service provides alternate
available slot suggestions in the response.

Amazon SDKs

This sample Python script uses the describe_domain and start_service_software_update methods
from the Amazon SDK for Python (Boto3) to check whether a domain is eligible for a service
software update and if so, starts the update. You must provide a value for domain_name.

import boto3
from botocore.config import Config
import time

Build the client using the default credential configuration.
You can use the CLI and run 'aws configure' to set access key, secret
key, and default region.

my_config = Config(
 # Optionally lets you specify a Region other than your default.

Starting an update 436

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/opensearch.html#OpenSearchService.Client.describe_domain
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/opensearch.html#OpenSearchService.Client.start_service_software_update

Amazon OpenSearch Service Developer Guide

 region_name='us-east-1'
)

domain_name = '' # The name of the domain to check and update

client = boto3.client('opensearch', config=my_config)

def getUpdateStatus(client):
 """Determines whether the domain is eligible for an update"""
 response = client.describe_domain(
 DomainName=domain_name
)
 sso = response['DomainStatus']['ServiceSoftwareOptions']
 if sso['UpdateStatus'] == 'ELIGIBLE':
 print('Domain [' + domain_name + '] is eligible for a service software update
 from version ' +
 sso['CurrentVersion'] + ' to version ' + sso['NewVersion'])
 updateDomain(client)
 else:
 print('Domain is not eligible for an update at this time.')

def updateDomain(client):
 """Starts a service software update for the eligible domain"""
 response = client.start_service_software_update(
 DomainName=domain_name
)
 print('Updating domain [' + domain_name + '] to version ' +
 response['ServiceSoftwareOptions']['NewVersion'] + '...')
 waitForUpdate(client)

def waitForUpdate(client):
 """Waits for the domain to finish updating"""
 response = client.describe_domain(
 DomainName=domain_name
)
 status = response['DomainStatus']['ServiceSoftwareOptions']['UpdateStatus']
 if status == 'PENDING_UPDATE' or status == 'IN_PROGRESS':
 time.sleep(30)
 waitForUpdate(client)
 elif status == 'COMPLETED':
 print('Domain [' + domain_name +

Starting an update 437

Amazon OpenSearch Service Developer Guide

 '] successfully updated to the latest software version')
 else:
 print('Domain is not currently being updated.')

def main():
 getUpdateStatus(client)

Scheduling software updates during off-peak windows

Each OpenSearch Service domain created after February 16, 2023 has a daily 10-hour window
between 10:00 P.M. and 8:00 A.M. local time that we consider the off-peak window. OpenSearch
Service uses this window to schedule service software updates for the domain. Off-peak updates
help to minimize strain on a cluster's dedicated master nodes during higher traffic periods.
OpenSearch Service can't initiate updates outside of this 10-hour window without your consent.

• For optional updates, OpenSearch Service notifies you of the update's availability and prompts
you to schedule the update during an upcoming off-peak window.

• For required updates, OpenSearch Service automatically schedules the update during an
upcoming off-peak window and notifies you three days ahead of time. You can reschedule the
update (for within or outside the off-peak window), but only within the required timeframe for
the update to be completed.

For each domain, you can choose to override the default 10:00 P.M. start time with a custom time.
For instructions, see the section called “Configuring a custom off-peak window”.

Console

To schedule an update during an upcoming off-peak window

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. Select the domain name to open its configuration.

3. Choose Actions, Update.

4. Select Schedule it in off-peak window.

5. Choose Confirm.

You can view the scheduled action on the Off-peak window tab and reschedule it at any time. See
the section called “Viewing scheduled actions”.

Off-peak windows 438

https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

CLI

To schedule an update during an upcoming off-peak window using the Amazon CLI, send a
StartServiceSoftwareUpdate request and specify OFF_PEAK_WINDOW for the --schedule-at
parameter:

aws opensearch start-service-software-update \
 --domain-name my-domain \
 --schedule-at "OFF_PEAK_WINDOW"

Monitoring service software updates

OpenSearch Service sends a notification when a service software update is available, required,
started, completed, or failed. You can view these notifications on the Notifications panel of the
OpenSearch Service console. The notification severity is Informational if the update is optional
and High if it's required.

OpenSearch Service also sends service software events to Amazon EventBridge. You can use
EventBridge to configure rules that send an email or perform a specific action when an event is
received. For an example walkthrough, see the section called “Tutorial: Sending SNS alerts for
available updates”.

To see the format of each service software event sent to Amazon EventBridge, see the section
called “Service software update events”.

When domains are ineligible for an update

Your domain is ineligible for a service software update if it's in any of the following states:

State Description

Domain in processing The domain is in the middle of a configuration change. Check update
eligibility after the operation completes.

Red cluster status One or more indexes in the cluster is red. For troubleshooting steps, see
the section called “Red cluster status”.

High error rate The OpenSearch cluster is returning a large number of 5xx errors when
attempting to process requests. This problem is usually the result of

Monitoring updates 439

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_StartServiceSoftwareUpdate.html

Amazon OpenSearch Service Developer Guide

State Description

too many simultaneous read or write requests. Consider reducing traffic
to the cluster or scaling your domain.

Split brain Split brain means your OpenSearch cluster has more than one master
node and has split into two clusters that never will rejoin on their
own. You can avoid split brain by using the recommended number of
dedicated master nodes. For help recovering from split brain, contact
Amazon Web Services Support.

Amazon Cognito
integration issue

Your domain uses authentication for OpenSearch Dashboards, and
OpenSearch Service can't find one or more Amazon Cognito resources.
This problem usually occurs if the Amazon Cognito user pool is missing.
To correct the issue, recreate the missing resource and configure the
OpenSearch Service domain to use it.

Other service issue Issues with OpenSearch Service itself might cause your domain to
display as ineligible for an update. If none of the previous conditions
apply to your domain and the problem persists for more than a day,
contact Amazon Web Services Support.

Defining off-peak windows for Amazon OpenSearch Service

When you create an Amazon OpenSearch Service domain, you define a daily 10-hour window
that's considered off-peak hours. OpenSearch Service uses this window to schedule service
software updates and Auto-Tune optimizations that require a blue/green deployment during
comparatively lower traffic times, whenever possible. Blue/green refers to the process of creating
a new environment for domain updates and routing users to the new environment after those
updates are complete.

Although blue/green deployments are non-disruptive, to minimize any potential performance
impact while resources are being consumed for a blue/green deployment, we recommend that you
schedule these deployments during the domain's configured off-peak window. Updates such as
node replacements, or those that need to be deployed to the domain immediately, don't use the
off-peak window.

Off-peak windows 440

https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/support/home

Amazon OpenSearch Service Developer Guide

You can modify the start time for the off-peak window, but you can't modify the length of the
window.

Note

Off-peak windows were introduced on February 16, 2023. All domains created before
this date have the off-peak window disabled by default. You must manually enable and
configure the off-peak window for these domains. All domains created after this date will
have the off-peak window enabled by default. You can't disable the off-peak window for a
domain after it's enabled.

Topics

• Off-peak service software updates

• Off-peak Auto-Tune optimizations

• Enabling the off-peak window

• Configuring a custom off-peak window

• Viewing scheduled actions

• Rescheduling actions

• Migrating from Auto-Tune maintenance windows

Off-peak service software updates

OpenSearch Service has two broad categories of service software updates—optional and required.
Both types require blue/green deployments. Optional updates aren't enforced on your domains,
while required updates are automatically installed if you take no action before the specified
deadline (typically two weeks from availability). For more information, see the section called
“Optional versus required updates”.

When you initiate an optional update, you have the choice to apply the update immediately,
schedule it for a subsequent off-peak window, or specify a custom date and time to apply it.

Off-peak service software updates 441

Amazon OpenSearch Service Developer Guide

For required updates, OpenSearch Service automatically schedules a date and time during off-peak
hours to perform the update. You receive a notification three days before the scheduled update,
and you can choose to reschedule it for a later date and time within the required deployment
period. For instructions, see the section called “Rescheduling actions”.

Off-peak Auto-Tune optimizations

Previously, Auto-Tune used maintenance windows to schedule changes that required a blue/green
deployment. Domains that already had Auto-Tune and maintenance windows enabled prior to the
introduction of off-peak windows will continue to use maintenance windows for these updates,
unless you migrate them to use the off-peak window.

We recommend that you migrate your domains to use the off-peak window, as it's used to
schedule other activities on the domain such as service softwate updates. For instructions, see the
section called “Migrating from Auto-Tune maintenance windows”. You can't revert back to using
maintenance windows after you migrate your domain to the off-peak window.

All domains created after February 16, 2023 will use the off-peak window, rather than legacy
maintenance windows, to schedule blue/green deployments. You can't disable the off-peak
window for a domain. For a list of Auto-Tune optimizations that require blue/green deployments,
see the section called “Types of changes”.

Enabling the off-peak window

Any domains created before February 16, 2023 (when off-peak windows were introduced) have the
feature disabled by default. You must manually enable it for these domains. You can't disable the
off-peak window after it's enabled.

Off-peak Auto-Tune optimizations 442

Amazon OpenSearch Service Developer Guide

Console

To enable the off-peak window for a domain

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. Select the name of the domain to open its configuration.

3. Navigate to the Off-peak window tab and choose Edit.

4. Specify a custom start time in Coordinated Universal Time (UTC). For example, to configure a
start time of 11:30 P.M. in the US West (Oregon) Region, specify 07:30.

5. Choose Save changes.

CLI

To modify the off-peak window using the Amazon CLI, send an UpdateDomainConfig request:

aws opensearch update-domain-config \
 --domain-name my-domain \
 --off-peak-window-options 'Enabled=true,
 OffPeakWindow={WindowStartTime={Hours=02,Minutes=00}}'

If you don't specify a custom window start time, it defaults to 00:00 UTC.

Configuring a custom off-peak window

You specify a custom off-peak window for your domain in Coordinated Universal Time (UTC). For
example, if your want the off-peak window to start at 11:00 P.M. for a domain in the US East (N.
Virginia) Region, you'd specify 04:00 UTC.

Console

To modify the off-peak window for a domain

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. Select the name of the domain to open its configuration.

3. Navigate to the Off-peak window tab. You can view the configured off-peak window and a list
of upcoming scheduled actions for the domain.

4. Choose Edit and specify a new start time in UTC. For example, to configure a start time of 9:00
PM in the US East (N. Virginia) Region, specify 02:00 UCT.

Configuring a custom off-peak window 443

https://console.aws.amazon.com/aos/home
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpdateDomainConfig.html
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

5. Choose Save changes.

CLI

To configure a custom off-peak window using the Amazon CLI, send an UpdateDomainConfig
request and specify the hour and minute in 24-hour time format.

For example, the following request changes the window start time to 2:00 A.M. UTC:

aws opensearch update-domain-config \
 --domain-name my-domain \
 --off-peak-window-options 'OffPeakWindow={WindowStartTime={Hours=02,Minutes=00}}'

If you don't specify a window start time, it defaults to 10:00 P.M. local time for the Amazon Web
Services Region that the domain is created in.

Viewing scheduled actions

You can view all actions that are currently scheduled, in progress, or pending for each of your
domains. Actions can have a severity of HIGH, MEDIUM, and LOW.

Actions can have the following statuses:

• Pending update – The action is in the queue to be processed.

• In progress – The action is currently in progress.

• Failed – The action failed to complete.

• Completed – The action has completed successfully.

• Not eligible – Only for service software updates. The update can't proceed because the
cluster is in an unhealthy state.

• Eligible – Only for service software updates. The domain is eligible for an update.

Console

The OpenSearch Service console displays all scheduled actions within the domain configuration,
along with each action's severity and current status.

To view scheduled actions for a domain

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

Viewing scheduled actions 444

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpdateDomainConfig.html
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

2. Select the name of the domain to open its configuration.

3. Navigate to the Off-peak window tab.

4. Under Scheduled actions, view all actions that are currently scheduled, in progress, or pending
for the domain.

CLI

To view scheduled actions using the Amazon CLI, send a ListScheduledActions request:

aws opensearch list-scheduled-actions \
 --domain-name my-domain

Response:

{
 "ScheduledActions": [
 {
 "Cancellable": true,
 "Description": "The Deployment type is : BLUE_GREEN.",
 "ID": "R20220721-P13",
 "Mandatory": false,
 "Severity": "HIGH",
 "ScheduledBy": "CUSTOMER",
 "ScheduledTime": 1.673871601E9,
 "Status": "PENDING_UPDATE",
 "Type": "SERVICE_SOFTWARE_UPDATE",
 },
 {
 "Cancellable": true,
 "Description": "Amazon Opensearch will adjust the young generation JVM
 arguments on your domain to improve performance",
 "ID": "Auto-Tune",
 "Mandatory": true,
 "Severity": "MEDIUM",
 "ScheduledBy": "SYSTEM",
 "ScheduledTime": 1.673871601E9,
 "Status": "PENDING_UPDATE",
 "Type": "JVM_HEAP_SIZE_TUNING",
 }
]
}

Viewing scheduled actions 445

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_ListScheduledActions.html

Amazon OpenSearch Service Developer Guide

Rescheduling actions

OpenSearch Service notifies you of scheduled service software updates and Auto-Tune
optimizations. You can choose to apply the change immediately, or reschedule it for a later date
and time.

Note

OpenSearch Service can schedule the action within an hour of the time you select. For
exmple, if you choose to apply an update at 5 P.M., it can be applied between 5 and 6 P.M.

Console

To reschedule an action

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. Select the name of the domain to open its configuration.

3. Navigate to the Off-peak window tab.

4. Under Scheduled actions, select the action and choose Reschedule.

5. Choose one of the following options:

• Apply update now - Immediately schedules the action to happen in the current hour if
there's capacity available. If capacity isn't available, we provide other available time slots to
choose from.

• Schedule it in off-peak window - Marks the action to be picked up during an upcoming
off-peak window. There's no guarantee that the change will be implemented during the
immediate next window. Depending on capacity, it might happen in subsequent days.

• Reschedule this update - Lets you specify a custom date and time to apply the change. If
the time that you specify is unavailable for capacity reasons, you can select a different time
slot.

• Cancel scheduled update - Cancels the update. This option is only available for optional
service software updates. It's not available for Auto-Tune actions or mandatory software
updates.

6. Choose Save changes.

Rescheduling actions 446

https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

CLI

To reschedule an action using the Amazon CLI, send an UpdateScheduledAction request. To
retrieve the action ID, send a ListScheduledActions request.

The following request reschedules a service software update for a specific date and time:

aws opensearch update-scheduled-action \
 --domain-name my-domain \
 --action-id R20220721-P13 \
 --action-type "SERVICE_SOFTWARE_UPDATE" \
 --desired-start-time 1677348395000 \
 --schedule-at TIMESTAMP

Response:

{
 "ScheduledAction": {
 "Cancellable": true,
 "Description": "Cluster status is updated.",
 "Id": "R20220721-P13",
 "Mandatory": false,
 "ScheduledBy": "CUSTOMER",
 "ScheduledTime": 1677348395000,
 "Severity": "HIGH",
 "Status": "PENDING_UPDATE",
 "Type": "SERVICE_SOFTWARE_UPDATE"
 }
}

If the request fails with a SlotNotAvailableException, it means that the time you specified
isn't available for capacity reasons, and you must specify a different time. OpenSearch Service
provides alternate available slot suggestions in the response.

Migrating from Auto-Tune maintenance windows

If a domain was created before February 16, 2023, it could use maintenance windows to schedule
Auto-Tune optimizations that require a blue/green deployment. You can migrate your existing
Auto-Tune domains to use the off-peak window instead.

Migrating from Auto-Tune maintenance windows 447

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpdateScheduledAction.html

Amazon OpenSearch Service Developer Guide

Note

You can't revert back to using maintenance windows after you migrate your domain to use
off-peak windows.

Console

To migrate a domain to use the off-peak window

1. Within the Amazon OpenSearch Service console, select the name of the domain to open its
configuration.

2. Go to the Auto-Tune tab and choose Edit.

3. Select Migrate to off-peak window.

4. For Start time (UTC), provide a daily start time for the off-peak window in Universal
Coordinated Time (UTC).

5. Choose Save changes.

CLI

To migrate from a Auto-Tune maintenance window to the off-peak window using the Amazon CLI,
send an UpdateDomainConfig request:

aws opensearch update-domain-config \
 --domain-name my-domain \
 --auto-tune-options
 DesiredState=ENABLED,UseOffPeakWindow=true,MaintenanceSchedules=[]

The off-peak window must be turned on in order for you to migrate a domain from the Auto-Tune
maintenance window to the off-peak window. You can enable the off-peak window in a separate
request or in the same request. For instructions, see the section called “Enabling the off-peak
window”.

Notifications in Amazon OpenSearch Service

Notifications in Amazon OpenSearch Service contain important information about the
performance and health of your domains. OpenSearch Service notifies you about service software

Notifications 448

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpdateDomainConfig.html

Amazon OpenSearch Service Developer Guide

updates, Auto-Tune enhancements, cluster health events, and domain errors. Notifications are
available for all versions of OpenSearch and Elasticsearch OSS.

You can view notifications in the Notifications panel of the OpenSearch Service console. All
notifications for OpenSearch Service are also surfaced in Amazon EventBridge. For a full list of
notifications and sample events, see the section called “Monitoring events”.

Topics

• Getting started with notifications

• Notification severities

• Sample EventBridge event

Getting started with notifications

Notifications are enabled automatically when you create a domain. Go to the Notifications panel
of the OpenSearch Service console to monitor and acknowledge notifications. Each notification
includes information such as the time it was posted, the domain it relates to, a severity and status
level, and a brief explanation. You can view historical notifications for up to 90 days in the console.

After accessing the Notifications panel or acknowledging a notification, you might receive
an error message about not having permissions to perform es:ListNotifications or
es:UpdateNotificationStatus. To resolve this problem, give your user or role the following
permissions in IAM:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "es:UpdateNotificationStatus",
 "es:ListNotifications"
],
 "Resource": "arn:aws:es:*:123456789012:domain/*"
 }]
}

The IAM console throws an error ("IAM does not recognize one or more actions.") that you can
safely ignore. You can also restrict the es:UpdateNotificationStatus action to certain
domains. To learn more, see the section called “Policy element reference”.

Getting started with notifications 449

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-what-is.html

Amazon OpenSearch Service Developer Guide

Notification severities

Notifications in OpenSearch Service can be informational, which relate to any action you've already
taken or the operations of your domain, or actionable, which require you to take specific actions
such as applying a mandatory security patch. Each notification has a severity associated with it,
which can be Informational, Low, Medium, High, or Critical. The following table summarizes
each severity:

Severity Description Examples

Informati
onal

Information related to the
operation of your domain.

• Service software update available

• Auto-Tune started

Low A recommended action,
but has no adverse impact
on domain availability or
performance if no action is
taken.

• Auto-Tune cancelled

• High shard count warning

Medium There might be an impact
if the recommended action
is not taken, but comes
with an extended time
window for the action to
be taken.

• Service software update failed

• Shard count limit exceeded

High Urgent action is required
to avoid adverse impact.

• Service software update required

• KMS key inaccessible

Critical Immediate action is
required to avoid adverse
impact, or to recover from
it.

None currently available

Notification severities 450

Amazon OpenSearch Service Developer Guide

Sample EventBridge event

The following example shows an OpenSearch Service notification event sent to Amazon
EventBridge. The notification has a severity of Informational because the update is optional:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Available",
 "severity": "Informational",
 "description": "Service software update [R20200330-p1] available."
 }
}

Configuring a multi-AZ domain in Amazon OpenSearch Service

To prevent data loss and minimize Amazon OpenSearch Service cluster downtime in the event of
a service disruption, you can distribute nodes across two or three Availability Zones in the same
Region, a configuration known as Multi-AZ. Availability Zones are isolated locations within each
Amazon Region.

For domains that run production workloads, we recommend the Multi-AZ with Standby
deployment option, which creates the following configuration:

• The domain deployed across three zones.

• Current-generation instance types for dedicated master nodes and data nodes.

• Three dedicated master nodes and three (or a multiple of three) data nodes.

• At least two replicas for each index in your domain, or a multiple of three copies of data
(including both primary nodes and replicas).

The rest of this section provides explanations for and context around these configurations.

Sample EventBridge event 451

Amazon OpenSearch Service Developer Guide

Multi-AZ with Standby

Multi-AZ with Standby is a deployment option for Amazon OpenSearch Service domains that offers
99.99% availability, consistent performance for production workloads, and simplified domain
configuration and management. When you use Multi-AZ with Standby, domains are resilient to
infrastructure failures, with no impact to performance or availability. This deployment option
achieves this standard by mandating a number of best practices, such as a specified data node
count, master node count, instance type, replica count, software update settings, and Auto-Tune
turned on.

When you use Multi-AZ with Standby, OpenSearch Service creates a domain across three
Availability Zones, with each zone containing a complete copy of data and with the data equally
distributed in each of the zones. Your domain reserves nodes in one of these zones as standby,
which means that they don't serve search requests. When OpenSearch Service detects a failure in
the underlying infrastructure, it automatically activates the standby nodes in less than a minute.
The domain continues to serve indexing and search requests, and any impact is limited to the
time it takes to perform the failover. There is no redistribution of data or resources, which results
in unaffected cluster performance and no risk of degraded availability. Multi-AZ with Standby is
available at no extra cost.

You have two options to create a domain with standby on the Amazon Web Services Management
Console. First, you can create a domain with the Easy create creation method, and OpenSearch
Service will automatically use a predetermined configuration, which includes the following:

• Three Availability Zones, with one acting as a standby

• Three dedicated master node and data nodes

• Auto-Tune enabled on the domain

• GP3 storage for the data nodes

You can also choose the Standard create creation method and select Domain with standby as
your deployment option. This allows you to customize your domain while still mandating key
features of standby, such as three zones and three master nodes. We recommend choosing a data
node count that's a multiple of three (the number of Availability Zones).

Once you've created your domain, you can navigate to the domain details pages and, in the Cluster
configuration tab, confirm that 3-AZ with standby appears under Availability Zone(s).

Multi-AZ with Standby 452

Amazon OpenSearch Service Developer Guide

If you have problems migrating an existing domain to Multi-AZ with Standby, see Error migrating
to Multi-AZ with Standby in the troubleshooting guide.

Limitations

When you set up a domain with Multi-AZ with Standby, consider the following limitations:

• The total number of shards on a node can't exceed 1000, the total number of shards on a cluster
can't exceed 75000, and the size of a single shard can't exceed 65 GB.

• Multi-AZ with Standby only works with the m5, c5, r5, r6g, c6g, m6g, r6gd and i3 instance
types. For more information on supported instances, see Supported instance types.

• You can only use Provisioned IOPs SSD, General Purpose SSD (GP3), or instance-backed storage
with standby.

Multi-AZ without Standby

OpenSearch Service still supports multi-AZ without Standby, which offers 99.9% availability. Nodes
are distributed across Availability Zone(s), and availability depends on the number of Availability
Zones and copies of data. Whereas with standby you have to configure your domain with best
practices, without standby you can choose your own number of Availability Zones, nodes, and
replicas. We don't recommend this option unless you have existing workflows that would be
disrupted by creating domains with standby.

If you choose this option, we still recommend that you select three Availability Zones in order to
remain resilient to node, disk, and single-AZ failures. When a failure occurs, the cluster redistributes
data across the remaining resources to maintain availability and redundancy. This data movement
increases resource usage on the cluster, and can have an impact on the performance. If the cluster
isn't sized properly, it can experience degraded availability, which largely defeats the purpose of
multi-AZ.

The only way to configure a domain without standby on the Amazon Web Services Management
Console is to choose the Standard create creation method, and select Domain without standby as
your deployment option.

Shard distribution

If you enable multi-AZ without Standby, you should create at least one replica for each index in
your cluster. Without replicas, OpenSearch Service can't distribute copies of your data to other

Multi-AZ without Standby 453

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/handling-errors.html#troubleshooting-multi-az-standby
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/handling-errors.html#troubleshooting-multi-az-standby
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/supported-instance-types.html

Amazon OpenSearch Service Developer Guide

Availability Zones. Fortunately, the default configuration for any index is a replica count of 1. As
the following diagram shows, OpenSearch Service makes a best effort to distribute primary shards
and their corresponding replica shards to different zones.

In addition to distributing shards by Availability Zone, OpenSearch Service distributes them by
node. Still, certain domain configurations can result in imbalanced shard counts. Consider the
following domain:

• 5 data nodes

• 5 primary shards

• 2 replicas

• 3 Availability Zones

In this situation, OpenSearch Service has to overload one node in order to distribute the primary
and replica shards across the zones, as shown in the following diagram.

Multi-AZ without Standby 454

Amazon OpenSearch Service Developer Guide

To avoid these kinds of situations, which can strain individual nodes and hurt performance, we
recommend that you choose multi-AZ with Standby, or choose an instance count that is a multiple
of three when you plan to have two or more replicas per index.

Multi-AZ without Standby 455

Amazon OpenSearch Service Developer Guide

Dedicated master node distribution

Even if you select two Availability Zones when configuring your domain, OpenSearch Service
automatically distributes dedicated master nodes across three Availability Zones. This distribution
helps prevent cluster downtime if a zone experiences a service disruption. If you use the
recommended three dedicated master nodes and one Availability Zone goes down, your cluster still
has a quorum (2) of dedicated master nodes and can elect a new master. The following diagram
demonstrates this configuration.

If you choose an older-generation instance type that is not available in three Availability Zones, the
following scenarios apply:

• If you chose three Availability Zones for the domain, OpenSearch Service throws an error. Choose
a different instance type, and try again.

• If you chose two Availability Zones for the domain, OpenSearch Service distributes the dedicated
master nodes across two zones.

Multi-AZ without Standby 456

Amazon OpenSearch Service Developer Guide

Availability zone disruptions

Availability Zone disruptions are rare, but do occur. The following table lists different Multi-AZ
configurations and behaviors during a disruption. The last row in the table applies to Multi-AZ with
Standby, while all other rows have configurations that only apply to Multi-AZ without Standby.

Number of
Availability
Zones in a
region

Number of
Availability
Zones you
chose

Number of
dedicated
master
nodes

Behavior if one Availability Zone experiences
a disruption

2 or more 2 0 Downtime. Your cluster loses half of its data
nodes and must replace at least one in the
remaining Availability Zone before it can elect
a master.

2 2 3 50/50 chance of downtime. OpenSearch
Service distributes two dedicated master
nodes into one Availability Zone and one into
the other:

• If the Availability Zone with one dedicated
master node experiences a disruption,
the two dedicated master nodes in the
remaining Availability Zone can elect a
master.

• If the Availability Zone with two dedicated
master nodes experiences a disruption, the
cluster is unavailable until the remaining
 Availability Zone recovers.

3 or more 2 3 No downtime. OpenSearch Service automatic
ally distributes the dedicated master nodes
across three Availability Zones, so the
remaining two dedicated master nodes can
elect a master.

Availability zone disruptions 457

Amazon OpenSearch Service Developer Guide

Number of
Availability
Zones in a
region

Number of
Availability
Zones you
chose

Number of
dedicated
master
nodes

Behavior if one Availability Zone experiences
a disruption

3 or more 3 0 No downtime. Roughly two-thirds of your data
nodes are still available to elect a master.

3 or more 3 3 No downtime. The remaining two dedicated
master nodes can elect a master.

In all configurations, regardless of the cause, node failures can cause the cluster's remaining data
nodes to experience a period of increased load while OpenSearch Service automatically configures
new nodes to replace the now-missing ones.

For example, in the event of an Availability Zone disruption in a three-zone configuration, two-
thirds as many data nodes have to process just as many requests to the cluster. As they process
these requests, the remaining nodes are also replicating shards onto new nodes as they come
online, which can further impact performance. If availability is critical to your workload, consider
adding resources to your cluster to alleviate this concern.

Note

OpenSearch Service manages Multi-AZ domains transparently, so you can't manually
simulate Availability Zone disruptions.

Launching your Amazon OpenSearch Service domains within a
VPC

You can launch Amazon resources, such as Amazon OpenSearch Service domains, into a virtual
private cloud (VPC). A VPC is a virtual network that's dedicated to your Amazon Web Services
account. It's logically isolated from other virtual networks in the Amazon Cloud. Placing an
OpenSearch Service domain within a VPC enables secure communication between OpenSearch
Service and other services within the VPC without the need for an internet gateway, NAT device, or
VPN connection. All traffic remains securely within the Amazon Cloud.

VPC support 458

Amazon OpenSearch Service Developer Guide

Note

If you place your OpenSearch Service domain within a VPC, your computer must be able
to connect to the VPC. This connection often takes the form of a VPN, transit gateway,
managed network, or proxy server. You can't directly access your domains from outside the
VPC.

Topics

• VPC versus public domains

• Limitations

• Architecture

VPC versus public domains

The following are some of the ways VPC domains differ from public domains. Each difference is
described later in more detail.

• Because of their logical isolation, domains that reside within a VPC have an extra layer of security
compared to domains that use public endpoints.

• While public domains are accessible from any internet-connected device, VPC domains require
some form of VPN or proxy.

• Compared to public domains, VPC domains display less information in the console. Specifically,
the Cluster health tab does not include shard information, and the Indices tab isn't present.

• The domain endpoints take different forms (https://search-domain-name vs.
https://vpc-domain-name).

• You can't apply IP-based access policies to domains that reside within a VPC because security
groups already enforce IP-based access policies.

Limitations

Operating an OpenSearch Service domain within a VPC has the following limitations:

VPC versus public domains 459

Amazon OpenSearch Service Developer Guide

• If you launch a new domain within a VPC, you can't later switch it to use a public endpoint. The
reverse is also true: If you create a domain with a public endpoint, you can't later place it within a
VPC. Instead, you must create a new domain and migrate your data.

• You can either launch your domain within a VPC or use a public endpoint, but you can't do both.
You must choose one or the other when you create your domain.

• You can't launch your domain within a VPC that uses dedicated tenancy. You must use a VPC
with tenancy set to Default.

• After you place a domain within a VPC, you can't move it to a different VPC, but you can change
the subnets and security group settings.

• To access the default installation of OpenSearch Dashboards for a domain that resides within a
VPC, users must have access to the VPC. This process varies by network configuration, but likely
involves connecting to a VPN or managed network or using a proxy server or transit gateway. To
learn more, see the section called “About access policies on VPC domains”, the Amazon VPC User
Guide, and the section called “Controlling access to OpenSearch Dashboards”.

Architecture

To support VPCs, OpenSearch Service places an endpoint into one, two, or three subnets of your
VPC. If you enable multiple Availability Zones for your domain, each subnet must be in a different
Availability Zone in the same region. If you only use one Availability Zone, OpenSearch Service
places an endpoint into only one subnet.

The following illustration shows the VPC architecture for one Availability Zone:

Architecture 460

https://docs.amazonaws.cn/vpc/latest/userguide/
https://docs.amazonaws.cn/vpc/latest/userguide/

Amazon OpenSearch Service Developer Guide

The following illustration shows the VPC architecture for two Availability Zones:

Architecture 461

Amazon OpenSearch Service Developer Guide

OpenSearch Service also places an elastic network interface (ENI) in the VPC for each of your data
nodes. OpenSearch Service assigns each ENI a private IP address from the IPv4 address range
of your subnet. The service also assigns a public DNS hostname (which is the domain endpoint)
for the IP addresses. You must use a public DNS service to resolve the endpoint (which is a DNS
hostname) to the appropriate IP addresses for the data nodes:

• If your VPC uses the Amazon-provided DNS server by setting the enableDnsSupport option to
true (the default value), resolution for the OpenSearch Service endpoint will succeed.

• If your VPC uses a private DNS server and the server can reach the public authoritative DNS
servers to resolve DNS hostnames, resolution for the OpenSearch Service endpoint will also
succeed.

Architecture 462

Amazon OpenSearch Service Developer Guide

Because the IP addresses might change, you should resolve the domain endpoint periodically so
that you can always access the correct data nodes. We recommend that you set the DNS resolution
interval to one minute. If you’re using a client, you should also ensure that the DNS cache in the
client is cleared.

Migrating from public access to VPC access

When you create a domain, you specify whether it should have a public endpoint or reside within
a VPC. Once created, you cannot switch from one to the other. Instead, you must create a new
domain and either manually reindex or migrate your data. Snapshots offer a convenient means
of migrating data. For information about taking and restoring snapshots, see the section called
“Creating index snapshots”.

About access policies on VPC domains

Placing your OpenSearch Service domain within a VPC provides an inherent, strong layer of
security. When you create a domain with public access, the endpoint takes the following form:

https://search-domain-name-identifier.region.es.amazonaws.com

As the "public" label suggests, this endpoint is accessible from any internet-connected device,
though you can (and should) control access to it. If you access the endpoint in a web browser, you
might receive a Not Authorized message, but the request reaches the domain.

When you create a domain with VPC access, the endpoint looks similar to a public endpoint:

https://vpc-domain-name-identifier.region.es.amazonaws.com

If you try to access the endpoint in a web browser, however, you might find that the request times
out. To perform even basic GET requests, your computer must be able to connect to the VPC. This
connection often takes the form of a VPN, transit gateway, managed network, or proxy server. For
details on the various forms it can take, see Examples for VPC in the Amazon VPC User Guide. For a
development-focused example, see the section called “Testing VPC domains”.

In addition to this connectivity requirement, VPCs let you manage access to the domain through
security groups. For many use cases, this combination of security features is sufficient, and you
might feel comfortable applying an open access policy to the domain.

Operating with an open access policy does not mean that anyone on the internet can access the
OpenSearch Service domain. Rather, it means that if a request reaches the OpenSearch Service

Architecture 463

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_Scenarios.html
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon OpenSearch Service Developer Guide

domain and the associated security groups permit it, the domain accepts the request. The only
exception is if you're using fine-grained access control or an access policy that specifies IAM roles.
In these situations, for the domain to accept a request, the security groups must permit it and it
must be signed with valid credentials.

Note

Because security groups already enforce IP-based access policies, you can't apply IP-based
access policies to OpenSearch Service domains that reside within a VPC. If you use public
access, IP-based policies are still available.

Before you begin: prerequisites for VPC access

Before you can enable a connection between a VPC and your new OpenSearch Service domain, you
must do the following:

• Create a VPC

To create your VPC, you can use the Amazon VPC console, the Amazon CLI, or one of the Amazon
SDKs. For more information, see Working with VPCs in the Amazon VPC User Guide. If you already
have a VPC, you can skip this step.

• Reserve IP addresses

OpenSearch Service enables the connection of a VPC to a domain by placing network interfaces
in a subnet of the VPC. Each network interface is associated with an IP address. You must
reserve a sufficient number of IP addresses in the subnet for the network interfaces. For more
information, see Reserving IP addresses in a VPC subnet.

Testing VPC domains

The enhanced security of a VPC can make connecting to your domain and running basic tests a
challenge. If you already have an OpenSearch Service VPC domain and would rather not create a
VPN server, try the following process:

1. For your domain's access policy, choose Only use fine-grained access control. You can always
update this setting after you finish testing.

Architecture 464

https://docs.amazonaws.cn/vpc/latest/userguide/working-with-vpcs.html

Amazon OpenSearch Service Developer Guide

2. Create an Amazon Linux Amazon EC2 instance in the same VPC, subnet, and security group as
your OpenSearch Service domain.

Because this instance is for testing purposes and needs to do very little work, choose an
inexpensive instance type like t2.micro. Assign the instance a public IP address and either
create a new key pair or choose an existing one. If you create a new key, download it to your
~/.ssh directory.

To learn more about creating instances, see Getting started with Amazon EC2 Linux instances.

3. Add an internet gateway to your VPC.

4. In the route table for your VPC, add a new route. For Destination, specify a CIDR block that
contains your computer's public IP address. For Target, specify the internet gateway you just
created.

For example, you might specify 123.123.123.123/32 for just your computer or
123.123.123.0/24 for a range of computers.

5. For the security group, specify two inbound rules:

Type Protocol Port Range Source

SSH (22) TCP (6) 22 your-cidr-block

HTTPS (443) TCP (6) 443 your-security-
group-id

The first rule lets you SSH into your EC2 instance. The second allows the EC2 instance to
communicate with the OpenSearch Service domain over HTTPS.

6. From the terminal, run the following command:

ssh -i ~/.ssh/your-key.pem ec2-user@your-ec2-instance-public-ip -N -L
 9200:vpc-domain-name.region.es.amazonaws.com:443

This command creates an SSH tunnel that forwards requests to https://localhost:9200 to your
OpenSearch Service domain through the EC2 instance. Specifying port 9200 in the command
simulates a local OpenSearch install, but use whichever port you'd like. OpenSearch Service only
accepts connections over port 80 (HTTP) or 443 (HTTPS).

Architecture 465

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Route_Tables.html
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#IPv4_CIDR_blocks
https://localhost:9200

Amazon OpenSearch Service Developer Guide

The command provides no feedback and runs indefinitely. To stop it, press Ctrl + C.

7. Navigate to https://localhost:9200/_dashboards/ in your web browser. You might need to
acknowledge a security exception.

Alternately, you can send requests to https://localhost:9200 using curl, Postman, or your
favorite programming language.

Tip

If you encounter curl errors due to a certificate mismatch, try the --insecure flag.

Reserving IP addresses in a VPC subnet

OpenSearch Service connects a domain to a VPC by placing network interfaces in a subnet of
the VPC (or multiple subnets of the VPC if you enable multiple Availability Zones). Each network
interface is associated with an IP address. Before you create your OpenSearch Service domain,
you must have a sufficient number of IP addresses available in each subnet to accommodate the
network interfaces.

Here's the basic formula: The number of IP addresses that OpenSearch Service reserves in each
subnet is three times the number of data nodes, divided by the number of Availability Zones.

Examples

• If a domain has nine data nodes across three Availability Zones, the IP count per subnet is 9 * 3 /
3 = 9.

• If a domain has eight data nodes across two Availability Zones, the IP count per subnet is 8 * 3 /
2 = 12.

• If a domain has six data nodes in one Availability Zone, the IP count per subnet is 6 * 3 / 1 = 18.

When you create the domain, OpenSearch Service reserves the IP addresses, uses some for the
domain, and reserves the rest for blue/green deployments. You can see the network interfaces and
their associated IP addresses in the Network Interfaces section of the Amazon EC2 console. The
Description column shows which OpenSearch Service domain the network interface is associated
with.

Architecture 466

https://localhost:9200/_plugin/kibana/
https://localhost:9200
https://curl.haxx.se/
https://www.getpostman.com/

Amazon OpenSearch Service Developer Guide

Tip

We recommend that you create dedicated subnets for the OpenSearch Service reserved
IP addresses. By using dedicated subnets, you avoid overlap with other applications and
services and ensure that you can reserve additional IP addresses if you need to scale your
cluster in the future. To learn more, see Creating a subnet in your VPC.

Service-linked role for VPC access

A service-linked role is a unique type of IAM role that delegates permissions to a service so that it
can create and manage resources on your behalf. OpenSearch Service requires a service-linked role
to access your VPC, create the domain endpoint, and place network interfaces in a subnet of your
VPC.

OpenSearch Service automatically creates the role when you use the OpenSearch Service
console to create a domain within a VPC. For this automatic creation to succeed, you must have
permissions for the iam:CreateServiceLinkedRole action. To learn more, see Service-linked
role permissions in the IAM User Guide.

After OpenSearch Service creates the role, you can view it
(AWSServiceRoleForAmazonOpenSearchService) using the IAM console.

For full information on this role's permissions and how to delete it, see the section called “Using
service-linked roles”.

Creating index snapshots in Amazon OpenSearch Service

Snapshots in Amazon OpenSearch Service are backups of a cluster's indexes and state. State
includes cluster settings, node information, index settings, and shard allocation.

OpenSearch Service snapshots come in the following forms:

• Automated snapshots are only for cluster recovery. You can use them to restore your domain in
the event of red cluster status or data loss. For more information, see Restoring snapshots below.
OpenSearch Service stores automated snapshots in a preconfigured Amazon S3 bucket at no
additional charge.

• Manual snapshots are for cluster recovery or for moving data from one cluster to another. You
have to initiate manual snapshots. These snapshots are stored in your own Amazon S3 bucket

Creating index snapshots 467

https://docs.amazonaws.cn/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon OpenSearch Service Developer Guide

and standard S3 charges apply. If you have a snapshot from a self-managed OpenSearch cluster,
you can use that snapshot to migrate to an OpenSearch Service domain. For more information,
see Migrating to Amazon OpenSearch Service.

All OpenSearch Service domains take automated snapshots, but the frequency differs in the
following ways:

• For domains running OpenSearch or Elasticsearch 5.3 and later, OpenSearch Service takes hourly
automated snapshots and retains up to 336 of them for 14 days. Hourly snapshots are less
disruptive because of their incremental nature. They also provide a more recent recovery point in
case of domain problems.

• For domains running Elasticsearch 5.1 and earlier, OpenSearch Service takes daily automated
snapshots during the hour you specify, retains up to 14 of them, and doesn't retain any snapshot
data for more than 30 days.

If your cluster enters red status, all automated snapshots fail while the cluster status persists. If you
don't correct the problem within two weeks, you can permanently lose the data in your cluster. For
troubleshooting steps, see the section called “Red cluster status”.

Topics

• Prerequisites

• Registering a manual snapshot repository

• Taking manual snapshots

• Restoring snapshots

• Deleting manual snapshots

• Automating snapshots with Snapshot Management

• Automating snapshots with Index State Management

• Using Curator for snapshots

Prerequisites

To create snapshots manually, you need to work with IAM and Amazon S3. Make sure you meet the
following prerequisites before you attempt to take a snapshot:

Prerequisites 468

Amazon OpenSearch Service Developer Guide

Prerequis
ite

Description

S3 bucket Create an S3 bucket to store manual snapshots for your OpenSearch Service
domain. For instructions, see Create a Bucket in the Amazon Simple Storage
Service User Guide.

Remember the name of the bucket to use it in the following places:

• The Resource statement of the IAM policy attached to your IAM role

• The Python client used to register a snapshot repository (if you use this
method)

Important

Do not apply an S3 Glacier lifecycle rule to this bucket. Manual snapshots
don't support the S3 Glacier storage class.

IAM role Create an IAM role to delegate permissions to OpenSearch Service. For instructi
ons, see Creating an IAM role (console) in the IAM User Guide. The rest of this
chapter refers to this role as TheSnapshotRole .

Attach an IAM policy

Attach the following policy to TheSnapshotRole to allow access to the S3
bucket:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3::: s3-bucket-name "
]
 },
 {

Prerequisites 469

http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console

Amazon OpenSearch Service Developer Guide

Prerequis
ite

Description

 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3::: s3-bucket-name /*"
]
 }
]
}

For instructions to attach a policy to a role, see Adding IAM Identity Permissions
in the IAM User Guide.

Edit the trust relationship

Edit the trust relationship of TheSnapshotRole to specify OpenSearch Service
in the Principal statement as shown in the following example:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "es.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }]

}

For instructions to edit the trust relationship, see Modifying a role trust policy in
the IAM User Guide.

Prerequisites 470

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy

Amazon OpenSearch Service Developer Guide

Prerequis
ite

Description

Permissions In order to register the snapshot repository, you need to be able to pass
TheSnapshotRole to OpenSearch Service. You also need access to the
es:ESHttpPut action. To grant both of these permissions, attach the
following policy to the IAM role whose credentials are being used to sign the
request:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam:: 123456789012 :role/TheSnapshotRole "
 },
 {
 "Effect": "Allow",
 "Action": "es:ESHttpPut",
 "Resource": "arn:aws:es: region:123456789012 :domain/domain-na
me /*"
 }
]
}

If your user or role doesn't have iam:PassRole permissions to pass
TheSnapshotRole , you might encounter the following common error when
you try to register a repository in the next step:

$ python register-repo.py
{"Message":"User: arn:aws:iam:: 123456789012 :user/MyUserAccount
is not authorized to perform: iam:PassRole on resource:
arn:aws:iam:: 123456789012 :role/TheSnapshotRole "}

Registering a manual snapshot repository

You need to register a snapshot repository with OpenSearch Service before you can take manual
index snapshots. This one-time operation requires that you sign your Amazon request with

Registering a manual snapshot repository 471

Amazon OpenSearch Service Developer Guide

credentials that are allowed to access TheSnapshotRole, as described in the section called
“Prerequisites”.

Step 1: Map the snapshot role in OpenSearch Dashboards (if using fine-grained
access control)

Fine-grained access control introduces an additional step when registering a repository. Even if you
use HTTP basic authentication for all other purposes, you need to map the manage_snapshots
role to your IAM role that has iam:PassRole permissions to pass TheSnapshotRole.

1. Navigate to the OpenSearch Dashboards plugin for your OpenSearch Service domain. You can
find the Dashboards endpoint on your domain dashboard on the OpenSearch Service console.

2. From the main menu choose Security, Roles, and select the manage_snapshots role.

3. Choose Mapped users, Manage mapping.

4. Add the ARN of the role that has permissions to pass TheSnapshotRole. Put role ARNs under
Backend roles.

arn:aws:iam::123456789123:role/role-name

5. Select Map and confirm the user or role shows up under Mapped users.

Step 2: Register a repository

The following Snapshots tab demonstrates how to register a snapshot directory. For options
specific to encrypting a manual snapshot and registering a snapshot after migrating to a new
domain, see the relevant tabs.

Snapshots

To register a snapshot repository, send a PUT request to the OpenSearch Service domain
endpoint. You can use curl, the sample Python client, Postman, or some other method to send a
signed request to register the snapshot repository. Note that you can't use a PUT request in the
OpenSearch Dashboards console to register the repository.

The request takes the following format:

PUT domain-endpoint/_snapshot/my-snapshot-repo-name
{

Registering a manual snapshot repository 472

https://curl.se/docs/manpage.html#--aws-sigv4
https://www.getpostman.com/

Amazon OpenSearch Service Developer Guide

 "type": "s3",
 "settings": {
 "bucket": "s3-bucket-name",
 "region": "region",
 "role_arn": "arn:aws:iam::123456789012:role/TheSnapshotRole"
 }
}

Note

Repository names cannot start with "cs-". Additionally, you shouldn't write to the same
repository from multiple domains. Only one domain should have write access to the
repository.

If your domain resides within a virtual private cloud (VPC), your computer must be connected
to the VPC for the request to successfully register the snapshot repository. Accessing a VPC
varies by network configuration, but likely involves connecting to a VPN or corporate network.
To check that you can reach the OpenSearch Service domain, navigate to https://your-vpc-
domain.region.es.amazonaws.com in a web browser and verify that you receive the default
JSON response.

When your Amazon S3 bucket is in another Amazon Web Services Region than your OpenSearch
domain, add the parameter "endpoint": "s3.amazonaws.com" to the request.

Encrypted snapshots

You currently can't use Amazon Key Management Service (KMS) keys to encrypt manual
snapshots, but you can protect them using server-side encryption (SSE).

To turn on SSE with S3-managed keys for the bucket you use as a snapshot repository, add
"server_side_encryption": true to the "settings" block of the PUT request. For
more information, see Protecting data using server-side encryption with Amazon S3-managed
encryption keys in the Amazon Simple Storage Service User Guide.

Alternatively, you can use Amazon KMS keys for server-side encryption on the S3 bucket
that you use as a snapshot repository. If you use this approach, make sure to provide
TheSnapshotRole permission to the Amazon KMS key used to encrypt the S3 bucket. For
more information, see Key policies in Amazon KMS.

Registering a manual snapshot repository 473

https://docs.amazonaws.cn/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.amazonaws.cn/kms/latest/developerguide/key-policies.html

Amazon OpenSearch Service Developer Guide

Domain migration

Registering a snapshot repository is a one-time operation. However, to migrate from one
domain to another, you have to register the same snapshot repository on the old domain and
the new domain. The repository name is arbitrary.

Consider the following guidelines when migrating to a new domain or registering the same
repository with multiple domains:

• When registering the repository on the new domain, add "readonly": true to the
"settings" block of the PUT request. This setting prevents you from accidentally
overwriting data from the old domain. Only one domain should have write access to the
repository.

• If you're migrating data to a domain in a different Amazon Web Services Region, (for
example, from an old domain and bucket located in us-east-2 to a new domain in us-west-2),
replace "region": "region" with "endpoint": "s3.amazonaws.com" in the PUT
statement and retry the request.

Using the sample Python client

The Python client is easier to automate than a simple HTTP request and has better reusability. If
you choose to use this method to register a snapshot repository, save the following sample Python
code as a Python file, such as register-repo.py. The client requires the Amazon SDK for Python
(Boto3), requests and requests-aws4auth packages. The client contains commented-out examples
for other snapshot operations.

Update the following variables in the sample code: host, region, path, and payload.

import boto3
import requests
from requests_aws4auth import AWS4Auth

host = '' # domain endpoint
region = '' # e.g. us-west-1
service = 'es'
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

Register repository

Registering a manual snapshot repository 474

https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
http://docs.python-requests.org/
https://pypi.python.org/pypi/requests-aws4auth

Amazon OpenSearch Service Developer Guide

path = '/_snapshot/my-snapshot-repo-name' # the OpenSearch API endpoint
url = host + path

payload = {
 "type": "s3",
 "settings": {
 "bucket": "s3-bucket-name",
 "region": "us-west-1",
 "role_arn": "arn:aws:iam::123456789012:role/snapshot-role"
 }
}

headers = {"Content-Type": "application/json"}

r = requests.put(url, auth=awsauth, json=payload, headers=headers)

print(r.status_code)
print(r.text)

Take snapshot
#
path = '_snapshot/my-snapshot-repo-name/my-snapshot'
url = host + path
#
r = requests.put(url, auth=awsauth)
#
print(r.text)
#
Delete index
#
path = 'my-index'
url = host + path
#
r = requests.delete(url, auth=awsauth)
#
print(r.text)
#
Restore snapshot (all indexes except Dashboards and fine-grained access control)
#
path = '_snapshot/my-snapshot-repo-name/my-snapshot/_restore'
url = host + path
#
payload = {

Registering a manual snapshot repository 475

Amazon OpenSearch Service Developer Guide

"indices": "-.kibana*,-.opendistro_security,-.opendistro-*",
"include_global_state": False
}
#
headers = {"Content-Type": "application/json"}
#
r = requests.post(url, auth=awsauth, json=payload, headers=headers)
#
print(r.text)

Restore snapshot (one index)
#
path = '_snapshot/my-snapshot-repo-name/my-snapshot/_restore'
url = host + path
#
payload = {"indices": "my-index"}
#
headers = {"Content-Type": "application/json"}
#
r = requests.post(url, auth=awsauth, json=payload, headers=headers)
#
print(r.text)

Taking manual snapshots

Snapshots are not instantaneous. They take time to complete and don't represent perfect point-in-
time views of the cluster. While a snapshot is in progress, you can still index documents and make
other requests to the cluster, but new documents and updates to existing documents generally
aren't included in the snapshot. The snapshot includes primary shards as they existed when
OpenSearch initiated the snapshot. Depending on the size of your snapshot thread pool, different
shards might be included in the snapshot at slightly different times. For snapshot best practices,
see the section called “Improve snapshot performance”.

Snapshot storage and performance

OpenSearch snapshots are incremental, meaning they only store data that changed since the last
successful snapshot. This incremental nature means the difference in disk usage between frequent
and infrequent snapshots is often minimal. In other words, taking hourly snapshots for a week
(for a total of 168 snapshots) might not use much more disk space than taking a single snapshot
at the end of the week. Also, the more frequently you take snapshots, the less time they take
to complete. For example, daily snapshots can take 20-30 minutes to complete, whereas hourly

Taking manual snapshots 476

Amazon OpenSearch Service Developer Guide

snapshots might complete within a few minutes. Some OpenSearch users take snapshots as often
as every half hour.

Take a snapshot

You specify the following information when you create a snapshot:

• The name of your snapshot repository

• A name for the snapshot

The examples in this chapter use curl, a common HTTP client, for convenience and brevity. To pass
a username and password to your curl request, see the Getting started tutorial.

If your access policies specify users or roles, you must sign your snapshot requests. For curl, you can
use the --aws-sigv4 option with version 7.75.0 or later. You can also use the commented-out
examples in the sample Python client to make signed HTTP requests to the same endpoints that
the curl commands use.

To take a manual snapshot, perform the following steps:

1. You can't take a snapshot if one is currently in progress. To check, run the following command:

curl -XGET 'domain-endpoint/_snapshot/_status'

2. Run the following command to take a manual snapshot:

curl -XPUT 'domain-endpoint/_snapshot/repository-name/snapshot-name'

To include or exclude certain indexes and specify other settings, add a request body. For the
request structure, see Take snapshots in the OpenSearch documentation.

Note

The time required to take a snapshot increases with the size of the OpenSearch Service
domain. Long-running snapshot operations sometimes encounter the following error: 504
GATEWAY_TIMEOUT. You can typically ignore these errors and wait for the operation to
complete successfully. Run the following command to verify the state of all snapshots of
your domain:

Taking manual snapshots 477

https://curl.haxx.se/
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/gsg.html
https://curl.se/docs/manpage.html#--aws-sigv4
https://opensearch.org/docs/1.1/opensearch/snapshot-restore/#take-snapshots

Amazon OpenSearch Service Developer Guide

curl -XGET 'domain-endpoint/_snapshot/repository-name/_all?pretty'

Restoring snapshots

Before you restore a snapshot, make sure that the destination domain does not use Multi-AZ with
Standby. Having standby enabled causes the restore operation to fail.

Warning

If you use index aliases, you should either cease write requests to an alias or switch the alias
to another index prior to deleting its index. Halting write requests helps avoid the following
scenario:

1. You delete an index, which also deletes its alias.

2. An errant write request to the now-deleted alias creates a new index with the same
name as the alias.

3. You can no longer use the alias due to a naming conflict with the new index. If you
switched the alias to another index, specify "include_aliases": false when you
restore from a snapshot.

To restore a snapshot

1. Identify the snapshot you want to restore. Ensure that all settings for this index, such as
custom analyzer packages or allocation requirement settings, are compatible with the domain.
To see all snapshot repositories, run the following command:

curl -XGET 'domain-endpoint/_snapshot?pretty'

After you identify the repository, run the following command to see all snapshots:

curl -XGET 'domain-endpoint/_snapshot/repository-name/_all?pretty'

Restoring snapshots 478

Amazon OpenSearch Service Developer Guide

Note

Most automated snapshots are stored in the cs-automated repository. If your domain
encrypts data at rest, they're stored in the cs-automated-enc repository. If you don't
see the manual snapshot repository you're looking for, make sure you registered it to
the domain.

2. (Optional) Delete or rename one or more indexes in the OpenSearch Service domain if you
have naming conflicts between indexes on the cluster and indexes in the snapshot. You can't
restore a snapshot of your indexes to an OpenSearch cluster that already contains indexes with
the same names.

You have the following options if you have index naming conflicts:

• Delete the indexes on the existing OpenSearch Service domain and then restore the
snapshot.

• Rename the indexes as you restore them from the snapshot and reindex them later.

• Restore the snapshot to a different OpenSearch Service domain (only possible with manual
snapshots).

The following command deletes all existing indexes in a domain:

curl -XDELETE 'domain-endpoint/_all'

However, if you don't plan to restore all indexes, you can just delete one:

curl -XDELETE 'domain-endpoint/index-name'

3. To restore a snapshot, run the following command:

curl -XPOST 'domain-endpoint/_snapshot/repository-name/snapshot-name/_restore'

Due to special permissions on the OpenSearch Dashboards and fine-grained access control
indexes, attempts to restore all indexes might fail, especially if you try to restore from an
automated snapshot. The following example restores just one index, my-index, from 2020-
snapshot in the cs-automated snapshot repository:

Restoring snapshots 479

Amazon OpenSearch Service Developer Guide

curl -XPOST 'domain-endpoint/_snapshot/cs-automated/2020-snapshot/_restore' \
-d '{"indices": "my-index"}' \
-H 'Content-Type: application/json'

Alternately, you might want to restore all indexes except the Dashboards and fine-grained
access control indexes:

curl -XPOST 'domain-endpoint/_snapshot/cs-automated/2020-snapshot/_restore' \
-d '{"indices": "-.kibana*,-.opendistro*"}' \
-H 'Content-Type: application/json'

You can restore a snapshot without deleting its data by using the rename_pattern and
rename_replacement parameters. For more information on these parameters, see the
Restore Snapshot API request fields and example request in the OpenSearch documentation.

Note

If not all primary shards were available for the indexes involved, a snapshot might have a
state of PARTIAL. This value indicates that data from at least one shard wasn't stored
successfully. You can still restore from a partial snapshot, but you might need to use older
snapshots to restore any missing indexes.

Deleting manual snapshots

To delete a manual snapshot, run the following command:

DELETE _snapshot/repository-name/snapshot-name

Automating snapshots with Snapshot Management

You can set up a Snapshot Management (SM) policy in OpenSearch Dashboards to automate
periodic snapshot creation and deletion. SM can snapshot of a group of indices, whereas Index
State Management can only take one snapshot per index. To use SM in OpenSearch Service, you
need to register your own Amazon S3 repository. For instructions to register your repository, see
Registering a manual snapshot repository.

Deleting manual snapshots 480

https://opensearch.org/docs/latest/api-reference/snapshots/restore-snapshot/#request-fields
https://opensearch.org/docs/latest/api-reference/snapshots/restore-snapshot/#example-request
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-snapshots.html#managedomains-snapshot-registerdirectory

Amazon OpenSearch Service Developer Guide

Prior to SM, OpenSearch Service offered a free, automated snapshot feature that's still turned on
by default. This feature sends snapshots into the service-maintained cs-* repository. To deactivate
the feature, reach out to Amazon Web Services Support.

For more information on the SM feature, see Snapshot management in the OpenSearch
documentation.

SM doesn't currently support snapshot creation on multiple index types. For example, if you try
to create snapshot on multiple indices with * and some indices are in the warm tier, the snapshot
creation will fail. If you need your snapshot to contain multiple index types, use the ISM snapshot
action until SM supports this option.

Configure permissions

If you're upgrading to 2.5 from a previous OpenSearch Service domain version, the snapshot
management security permissions might not be defined on the domain. Non-admin users must be
mapped to this role in order to use snapshot management on domains using fine-grained access
control. To manually create the snapshot management role, perform the following steps:

1. In OpenSearch Dashboards, go to Security and choose Permissions.

2. Choose Create action group and configure the following groups:

Group name Permissions

snapshot_
managemen
t_full_ac
cess

• cluster:admin/opensearch/snapshot_management/*

• cluster:admin/opensearch/notifications/featur
e/publish

• cluster:admin/repository/*

• cluster:admin/snapshot/*

snapshot_
managemen
t_read_ac
cess

• cluster:admin/opensearch/snapshot_management/
policy/get

• cluster:admin/opensearch/snapshot_management/
policy/search

• cluster:admin/opensearch/snapshot_management/
policy/explain

• cluster:admin/repository/get

Automating snapshots with Snapshot Management 481

https://opensearch.org/docs/latest/dashboards/sm-dashboards/
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ultrawarm.html#ultrawarm-manual-snapshot
https://opensearch.org/docs/latest/im-plugin/ism/policies/#snapshot
https://opensearch.org/docs/latest/im-plugin/ism/policies/#snapshot

Amazon OpenSearch Service Developer Guide

Group name Permissions

• cluster:admin/snapshot/get

3. Choose Roles and Create role.

4. Name the role snapshot_management_role.

5. For Cluster permissions, select snapshot_management_full_access or
snapshot_management_read_access.

6. Choose Create.

7. After you create the role, map it to any user or backend role that will manage snapshots.

Considerations

Consider the following when you configure snapshot management:

• One policy is allowed per repository.

• Up to 400 snapshots are allowed for one policy.

• This feature won't run if your domain has a red status, is under high JVM pressure (85% or
above), or has a stuck snapshot function. When the overall indexing and searching performance
of your cluster is impacted, SM may also be impacted.

• A snapshot operation only starts after the previous operation finishes, so that no concurrent
snapshot operations are activated by one policy.

• Multiple policies with the same schedule can cause a resource spike. If the policies' snapshotted
indices overlap, the shard-level snapshot operations can only run sequentially, which can cause
a cascaded performance problem. If the policies share a repository, there will be spike of write
operations to that repository.

• We recommend that you schedule your snapshot operations automation to no more than once
per hour, unless you have a special use case.

Automating snapshots with Index State Management

You can use the Index State Management (ISM) snapshot operation to automatically trigger
snapshots of indexes based on changes in their age, size, or number of documents. ISM is best
when you need one snapshot per index. If you need to snapshot of a group of indices, see
Automating snapshots with Snapshot Management.

Automating snapshots with Index State Management 482

https://opendistro.github.io/for-elasticsearch-docs/docs/im/ism/policies/#snapshot

Amazon OpenSearch Service Developer Guide

To use SM in OpenSearch Service, you need to register your own Amazon S3 repository. For an
example ISM policy using the snapshot operation, see Sample Policies.

Using Curator for snapshots

If ISM doesn't work for index and snapshot management, you can use Curator instead. It offers
advanced filtering functionality that can help simplify management tasks on complex clusters. Use
pip to install Curator:

pip install elasticsearch-curator

You can use Curator as a command line interface (CLI) or Python API. If you use the Python API,
you must use version 7.13.4 or earlier of the legacy elasticsearch-py client. It doesn't support the
opensearch-py client.

If you use the CLI, export your credentials at the command line and configure curator.yml as
follows:

client:
 hosts: search-my-domain.us-west-1.es.amazonaws.com
 port: 443
 use_ssl: True
 aws_region: us-west-1
 aws_sign_request: True
 ssl_no_validate: False
 timeout: 60

logging:
 loglevel: INFO

Upgrading Amazon OpenSearch Service domains

Note

OpenSearch and Elasticsearch version upgrades differ from service software updates. For
information on updating the service software for your OpenSearch Service domain, see the
section called “Service software updates”.

Using Curator for snapshots 483

https://pip.pypa.io/en/stable/installing/
https://elasticsearch-py.readthedocs.io/

Amazon OpenSearch Service Developer Guide

Amazon OpenSearch Service offers in-place upgrades for domains that run OpenSearch 1.0
or later, or Elasticsearch 5.1 or later. If you use services like Amazon Data Firehose or Amazon
CloudWatch Logs to stream data to OpenSearch Service, check that these services support the
newer version of OpenSearch before migrating.

Topics

• Supported upgrade paths

• Starting an upgrade (console)

• Starting an upgrade (CLI)

• Starting an upgrade (SDK)

• Troubleshooting validation failures

• Troubleshooting an upgrade

• Using a snapshot to migrate data

Supported upgrade paths

Currently, OpenSearch Service supports the following upgrade paths:

From
version

To version

OpenSearch
1.3 or 2.x

OpenSearch 2.x

Version 2.3 has the following breaking changes:

• The type parameter was removed from all OpenSearch API endpoints in
version 2.0. For more information, see the breaking changes.

• If your domain contains any indexes (hot, UltraWarm, or cold) that were
originally created in Elasticsearch 6.8, those indexes are not compatible with
OpenSearch 2.3.

Before you upgrade to version 2.3, you must reindex the incompatible
indexes. For incompatible UltraWarm or cold indexes, migrate them to hot
storage, reindex the data, and then migrate them back to warm or cold
storage. Alternately, you can delete the indexes if you no longer need them.

Supported upgrade paths 484

https://opensearch.org/docs/latest/breaking-changes/

Amazon OpenSearch Service Developer Guide

From
version

To version

If you accidentally upgrade your domain to version 2.3 without performing
these steps first, you won't be able to migrate the incompatible indexes out
of their current storage tier. Your only option is to delete them.

OpenSearch
1.x

OpenSearch 1.x

Elasticsearch
7.x

Elasticsearch 7.x or OpenSearch 1.x

Important

OpenSearch 1.x introduces numerous breaking changes. For details, see
Amazon OpenSearch Service rename.

Elasticsearch
6.8

Elasticsearch 7.x or OpenSearch 1.x

Important

Elasticsearch 7.0 and OpenSearch 1.0 include numerous breaking
changes. Before initiating an in-place upgrade, we recommend taking
a manual snapshot of the 6.x domain, restoring it on a test 7.x or
OpenSearch 1.x domain, and using that test domain to identify
potential upgrade issues. For breaking changes in OpenSearch 1.0, see
Amazon OpenSearch Service rename.
Like Elasticsearch 6.x, indexes can only contain one mapping type, but
that type must now be named _doc. As a result, certain APIs no longer
require a mapping type in the request body (such as the _bulk API).
For new indexes, self-hosted Elasticsearch 7.x and OpenSearch 1.x have
a default shard count of one. OpenSearch Service domains on Elasticse
arch 7.x and later retain the previous default of five.

Elasticsearch
6.x

Elasticsearch 6.x

Supported upgrade paths 485

Amazon OpenSearch Service Developer Guide

From
version

To version

Elasticsearch
5.6

Elasticsearch 6.x

Important

Indexes created in version 6.x no longer support multiple mapping
types. Indexes created in version 5.x still support multiple mapping
types when restored into a 6.x cluster. Check that your client code
creates only a single mapping type per index.
To minimize downtime during the upgrade from Elasticsearch 5.6 to
6.x, OpenSearch Service reindexes the .kibana index to .kibana-6 ,
deletes .kibana, creates an alias named .kibana, and maps the new
index to the new alias.

Elasticsearch
5.x

Elasticsearch 5.x

The upgrade process consists of three steps:

1. Pre-upgrade checks – OpenSearch Service checks for issues that can block an upgrade and
doesn't proceed to the next step unless these checks succeed.

2. Snapshot – OpenSearch Service takes a snapshot of the OpenSearch or Elasticsearch cluster and
doesn't proceed to the next step unless the snapshot succeeds. If the upgrade fails, OpenSearch
Service uses this snapshot to restore the cluster to its original state. For more information see
the section called “Can't downgrade after upgrade”.

3. Upgrade – OpenSearch Service starts the upgrade, which can take from 15 minutes to several
hours to complete. OpenSearch Dashboards might be unavailable during some or all of the
upgrade.

Starting an upgrade (console)

The upgrade process is irreversible and can't be paused or cancelled. During an upgrade, you can't
make configuration changes to the domain. Before starting an upgrade, double-check that you

Starting an upgrade (console) 486

Amazon OpenSearch Service Developer Guide

want to proceed. You can use these same steps to perform the pre-upgrade check without actually
starting an upgrade.

If the cluster has dedicated master nodes, OpenSearch upgrades complete without downtime.
Otherwise, the cluster might be unresponsive for several seconds post-upgrade while it elects a
master node.

To upgrade a domain to a later version of OpenSearch or Elasticsearch

1. Take a manual snapshot of your domain. This snapshot serves as a backup that you can restore
on a new domain if you want to return to using the prior OpenSearch version.

2. Go to https://aws.amazon.com and choose Sign In to the Console.

3. Under Analytics, choose Amazon OpenSearch Service.

4. In the navigation pane, under Domains, choose the domain that you want to upgrade.

5. Choose Actions and Upgrade.

6. Select the version to upgrade to. If you're upgrading to an OpenSearch version, the Enable
compatibility mode option appears. If you enable this setting, OpenSearch reports its version
as 7.10 to allow Elasticsearch OSS clients and plugins like Logstash to continue working with
Amazon OpenSearch Service. You can disable this setting later

7. Choose Upgrade.

8. Check the Status on the domain dashboard to monitor the status of the upgrade.

Starting an upgrade (CLI)

You can use the following operations to identify the correct version of OpenSearch or Elasticsearch
for your domain, start an in-place upgrade, perform the pre-upgrade check, and view progress:

• get-compatible-versions (GetCompatibleVersions)

• upgrade-domain (UpgradeDomain)

• get-upgrade-status (GetUpgradeStatus)

• get-upgrade-history (GetUpgradeHistory)

For more information, see the Amazon CLI command reference and Amazon OpenSearch Service
API Reference.

Starting an upgrade (CLI) 487

https://aws.amazon.com
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/opensearch/index.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

Starting an upgrade (SDK)

This sample uses the OpenSearchService low-level Python client from the Amazon SDK for
Python (Boto) to check if a domain is eligible for upgrade to a specific version, upgrades it, and
continuously checks the upgrade status.

import boto3
from botocore.config import Config
import time

Build the client using the default credential configuration.
You can use the CLI and run 'aws configure' to set access key, secret
key, and default Region.

DOMAIN_NAME = '' # The name of the domain to upgrade
TARGET_VERSION = '' # The version you want to upgrade the domain to. For example,
 OpenSearch_1.1

my_config = Config(
 # Optionally lets you specify a Region other than your default.
 region_name='us-east-1'
)
client = boto3.client('opensearch', config=my_config)

def check_versions():
 """Determine whether domain is eligible for upgrade"""
 response = client.get_compatible_versions(
 DomainName=DOMAIN_NAME
)
 compatible_versions = response['CompatibleVersions']
 for i in range(len(compatible_versions)):
 if TARGET_VERSION in compatible_versions[i]["TargetVersions"]:
 print('Domain is eligible for upgrade to ' + TARGET_VERSION)
 upgrade_domain()
 print(response)
 else:
 print('Domain not eligible for upgrade to ' + TARGET_VERSION)

def upgrade_domain():
 """Upgrades the domain"""
 response = client.upgrade_domain(

Starting an upgrade (SDK) 488

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/opensearch.html

Amazon OpenSearch Service Developer Guide

 DomainName=DOMAIN_NAME,
 TargetVersion=TARGET_VERSION
)
 print('Upgrading domain to ' + TARGET_VERSION + '...' + response)
 time.sleep(5)
 wait_for_upgrade()

def wait_for_upgrade():
 """Get the status of the upgrade"""
 response = client.get_upgrade_status(
 DomainName=DOMAIN_NAME
)
 if (response['UpgradeStep']) == 'UPGRADE' and (response['StepStatus']) ==
 'SUCCEEDED':
 print('Domain successfully upgraded to ' + TARGET_VERSION)
 elif (response['StepStatus']) == 'FAILED':
 print('Upgrade failed. Please try again.')
 elif (response['StepStatus']) == 'SUCCEEDED_WITH_ISSUES':
 print('Upgrade succeeded with issues')
 elif (response['StepStatus']) == 'IN_PROGRESS':
 time.sleep(30)
 wait_for_upgrade()

def main():
 check_versions()

if __name__ == "__main__":
 main()

Troubleshooting validation failures

When you initiate an OpenSearch or Elasticsearch version upgrade, OpenSearch Service first
performs a series of validation checks to ensure that your domain is eligible for an upgrade. If
any of these checks fail, you receive a notification containing the specific issues that you must fix
before upgrading your domain. For a list of potential issues and steps to resolve them, see the
section called “Troubleshooting validation errors”.

Troubleshooting validation failures 489

Amazon OpenSearch Service Developer Guide

Troubleshooting an upgrade

In-place upgrades require healthy domains. Your domain might be ineligible for an upgrade or fail
to upgrade for a wide variety of reasons. The following table shows the most common issues.

Issue Description

Optional plugin not
supported

When you upgrade a domain with optional plugins, OpenSearch Service
automatically upgrades the plugins as well. Therefore, the target
version for your domain must also support these optional plugins. If
the domain has an optional plugin installed that is not available for the
target version, the upgrade request fails.

Too many shards per
node

OpenSearch, as well as 7.x versions of Elasticsearch, have a default
setting of no more than 1,000 shards per node. If a node in your
current cluster exceeds this setting, OpenSearch Service doesn't allow
you to upgrade. See the section called “Exceeded maximum shard limit”
for troubleshooting options.

Domain in processing The domain is in the middle of a configuration change. Check upgrade
eligibility after the operation completes.

Red cluster status One or more indexes in the cluster is red. For troubleshooting steps, see
the section called “Red cluster status”.

High error rate The cluster is returning a large number of 5xx errors when attemptin
g to process requests. This problem is usually the result of too many
simultaneous read or write requests. Consider reducing traffic to the
cluster or scaling your domain.

Split brain Split brain means that your cluster has more than one master node
and has split into two clusters that never will rejoin on their own. You
can avoid split brain by using the recommended number of dedicated
master nodes. For help recovering from split brain, contact Amazon
Web Services Support.

Master node not
found

OpenSearch Service can't find the cluster's master node. If your domain
uses multi-AZ, an Availability Zone failure might have caused the

Troubleshooting an upgrade 490

https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/support/home

Amazon OpenSearch Service Developer Guide

Issue Description

cluster to lose quorum and be unable to elect a new master node. If the
issue does not self-resolve, contact Amazon Web Services Support.

Too many pending
tasks

The master node is under heavy load and has many pending tasks.
Consider reducing traffic to the cluster or scaling your domain.

Impaired storage
volume

The disk volume of one or more nodes isn't functioning properly. This
issue often occurs alongside other issues, like a high error rate or too
many pending tasks. If it occurs in isolation and doesn't self-resolve,
contact Amazon Web Services Support.

KMS key issue The KMS key that is used to encrypt the domain is either inaccessible
or missing. For more information, see the section called “Monitoring
domains that encrypt data at rest”.

Snapshot in progress The domain is currently taking a snapshot. Check upgrade eligibili
ty after the snapshot finishes. Also check that you can list manual
snapshot repositories, list snapshots within those repositories, and take
manual snapshots. If OpenSearch Service is unable to check whether a
snapshot is in progress, upgrades can fail.

Snapshot timeout or
failure

The pre-upgrade snapshot took too long to complete or failed. Check
cluster health, and try again. If the problem persists, contact Amazon
Web Services Support.

Incompatible indexes One or more indexes is incompatible with the target version. This
problem can occur if you migrated the indexes from an older version of
OpenSearch or Elasticsearch. Reindex the indexes and try again.

High disk usage Disk usage for the cluster is above 90%. Delete data or scale the
domain, and try again.

High JVM usage JVM memory pressure is above 75%. Reduce traffic to the cluster or
scale the domain, and try again.

Troubleshooting an upgrade 491

https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/support/home

Amazon OpenSearch Service Developer Guide

Issue Description

OpenSearch
Dashboards alias
problem

.dashboards is already configured as an alias and maps to an
incompatible index, likely one from an earlier version of OpenSearch
Dashboards. Reindex and try again.

Red Dashboards
status

OpenSearch Dashboards status is red. Try using Dashboards when the
upgrade completes. If the red status persists, resolve it manually, and
try again.

Cross-cluster
compatibility

You can only upgrade if cross-cluster compatibility is maintained
between the source and destination domains after the upgrade. During
the upgrade process, any incompatible connections are identified. To
proceed, either upgrade the remote domain or delete the incompatible
connections. Note that if replication is active on the domain, you can't
resume it once you delete the connection.

Other OpenSearch
Service service issue

Issues with OpenSearch Service itself might cause your domain to
display as ineligible for an upgrade. If none of the preceding condition
s apply to your domain and the problem persists for more than a day,
contact Amazon Web Services Support.

Using a snapshot to migrate data

In-place upgrades are the easier, faster, and more reliable way to upgrade a domain to a later
OpenSearch or Elasticsearch version. Snapshots are a good option if you need to migrate from a
pre-5.1 version of Elasticsearch or want to migrate to an entirely new cluster.

The following table shows how to use snapshots to migrate data to a domain that uses a different
OpenSearch or Elasticsearch version. For more information about taking and restoring snapshots,
see the section called “Creating index snapshots”.

From version To version Migration process

OpenSearch 1.3
or 2.x

OpenSearch 2.x 1. Review breaking changes for OpenSearch 2.3 to see
if you need to make adjustments to your indexes or
applications.

Using a snapshot to migrate data 492

https://console.aws.amazon.com/support/home

Amazon OpenSearch Service Developer Guide

From version To version Migration process

2. Create a manual snapshot of the 1.3 or 2.x domain.

3. Create a 2.x domain that's a higher version than your
original 1.3 or 2.x domain.

4. Restore the snapshot from the original domain to the
2.x domain. During the operation, you might need
to restore your .opensearch index under a new
name:

POST _snapshot/ <repository-name> /<snapshot-
name>/_restore
{
 "indices": "*",
 "ignore_unavailable": true,
 "rename_pattern": ".opensearch",
 "rename_replacement": ".backup-opensearc
h"
}

Then you can reindex .backup-opensearch
on the new domain and alias it to .opensearch .
Note that the _restore REST call doesn't include
include_global_state because the default in
_restore is false. As a result, the test domain won't
include any index templates and won't have the full
state from the backup.

5. If you no longer need your original domain, delete
it. Otherwise, you continue to incur charges for the
domain.

Using a snapshot to migrate data 493

Amazon OpenSearch Service Developer Guide

From version To version Migration process

OpenSearch 1.x OpenSearch 1.x 1. Create a manual snapshot of the 1.x domain.

2. Create a 1.x domain that's a higher version than your
original 1.x domain.

3. Restore the snapshot from the original domain to
the new 1.x domain. During the operation, you might
need to restore your .opensearch index under a
new name:

POST _snapshot/ <repository-name> /<snapshot-
name>/_restore
{
 "indices": "*",
 "ignore_unavailable": true,
 "rename_pattern": ".opensearch",
 "rename_replacement": ".backup-opensearc
h"
}

Then you can reindex .backup-opensearch
on the new domain and alias it to .opensearch .
Note that the _restore REST call doesn't include
include_global_state because the default in
_restore is false. As a result, the test domain won't
include any index templates and won't have the full
state from the backup.

4. If you no longer need your original domain, delete
it. Otherwise, you continue to incur charges for the
domain.

Using a snapshot to migrate data 494

Amazon OpenSearch Service Developer Guide

From version To version Migration process

Elasticsearch 6.x
or 7.x

OpenSearch 1.x 1. Review breaking changes for OpenSearch 1.0 to see
if you need to make adjustments to your indexes or
applications.

2. Create a manual snapshot of the Elasticsearch 7.x or
6.x domain.

3. Create an OpenSearch 1.x domain.

4. Restore the snapshot from the Elasticsearch domain
to the OpenSearch domain. During the operation, you
might need to restore your .elasticsearch index
under a new name:

POST _snapshot/ <repository-name> /<snapshot-
name>/_restore
{
 "indices": "*",
 "ignore_unavailable": true,
 "rename_pattern": ".elasticsearch",
 "rename_replacement": ".backup-opensearc
h"
}

Then you can reindex .backup-opensearch on
the new domain and alias it to .elasticsearch .
Note that the _restore REST call doesn't include
include_global_state because the default in
_restore is false. As a result, the test domain won't
include any index templates and won't have the full
state from the backup.

5. If you no longer need your original domain, delete
it. Otherwise, you continue to incur charges for the
domain.

Using a snapshot to migrate data 495

Amazon OpenSearch Service Developer Guide

From version To version Migration process

Elasticsearch 6.x Elasticsearch 7.x 1. Review breaking changes for 7.0 to see if you need to
make adjustments to your indexes or applications.

2. Create a manual snapshot of the 6.x domain.

3. Create a 7.x domain.

4. Restore the snapshot from the original domain to the
7.x domain. During the operation, you likely need to
restore the .opensearch index under a new name:

POST _snapshot/ <repository-name> /<snapshot-
name>/_restore
{
 "indices": "*",
 "ignore_unavailable": true,
 "rename_pattern": ".elasticsearch",
 "rename_replacement": ".backup-elasticse
arch"
}

Then you can reindex .backup-elasticsea
rch on the new domain and alias it to .elastics
earch . Note that the _restore REST call doesn't
include include_global_state because the
default in _restore is false. As a result, the test
domain won't include any index templates and won't
have the full state from the backup.

5. If you no longer need your original domain, delete
it. Otherwise, you continue to incur charges for the
domain.

Using a snapshot to migrate data 496

Amazon OpenSearch Service Developer Guide

From version To version Migration process

Elasticsearch 6.x Elasticsearch 6.8 1. Create a manual snapshot of the 6.x domain.

2. Create a 6.8 domain.

3. Restore the snapshot from the original domain to the
6.8 domain.

4. If you no longer need your original domain, delete
it. Otherwise, you continue to incur charges for the
domain.

Elasticsearch 5.x Elasticsearch 6.x 1. Review breaking changes for 6.0 to see if you need to
make adjustments to your indices or applications.

2. Create a manual snapshot of the 5.x domain.

3. Create a 6.x domain.

4. Restore the snapshot from the original domain to the
6.x domain.

5. If you no longer need your 5.x domain, delete it.
Otherwise, you continue to incur charges for the
domain.

Elasticsearch 5.x Elasticsearch 5.6 1. Create a manual snapshot of the 5.x domain.

2. Create a 5.6 domain.

3. Restore the snapshot from the original domain to the
5.6 domain.

4. If you no longer need your original domain, delete
it. Otherwise, you continue to incur charges for the
domain.

Using a snapshot to migrate data 497

Amazon OpenSearch Service Developer Guide

From version To version Migration process

Elasticsearch 2.3 Elasticsearch 6.x Elasticsearch 2.3 snapshots are not compatible with 6.x.
To migrate your data directly from 2.3 to 6.x, you must
manually recreate your indexes in the new domain.

Alternately, you can follow the 2.3 to 5.x steps in this
table, perform _reindex operations in the new 5.x
domain to convert your 2.3 indexes to 5.x indexes, and
then follow the 5.x to 6.x steps.

Elasticsearch 2.3 Elasticsearch 5.x 1. Review breaking changes for 5.0 to see if you need to
make adjustments to your indexes or applications.

2. Create a manual snapshot of the 2.3 domain.

3. Create a 5.x domain.

4. Restore the snapshot from the 2.3 domain to the 5.x
domain.

5. If you no longer need your 2.3 domain, delete it.
Otherwise, you continue to incur charges for the
domain.

Elasticsearch 1.5 Elasticsearch 5.x Elasticsearch 1.5 snapshots are not compatible with 5.x.
To migrate your data from 1.5 to 5.x, you must manually
recreate your indexes in the new domain.

Important

1.5 snapshots are compatible with 2.3, but
OpenSearch Service 2.3 domains do not support
the _reindex operation. Because you cannot
reindex them, indexes that originated in a 1.5
domain still fail to restore from 2.3 snapshots to
5.x domains.

Using a snapshot to migrate data 498

Amazon OpenSearch Service Developer Guide

From version To version Migration process

Elasticsearch 1.5 Elasticsearch 2.3 1. Use the migration plugin to find out if you can
directly upgrade to version 2.3. You might need to
make changes to your data before migration.

a. In a web browser, open http://domain-en
dpoint /_plugin/migration/ .

b. Choose Run checks now.

c. Review the results and, if needed, follow the
instructions to make changes to your data.

2. Create a manual snapshot of the 1.5 domain.

3. Create a 2.3 domain.

4. Restore the snapshot from the 1.5 domain to the 2.3
domain.

5. If you no longer need your 1.5 domain, delete it.
Otherwise, you continue to incur charges for the
domain.

Creating a custom endpoint for Amazon OpenSearch Service

Creating a custom endpoint for your Amazon OpenSearch Service domain makes it easier for you
to refer to your OpenSearch and OpenSearch Dashboards URLs. You can include your company's
branding or just use a shorter, easier-to-remember endpoint than the standard one.

If you ever need to switch to a new domain, just update your DNS to point to the new URL and
continue using the same endpoint as before.

You secure custom endpoints by either generating a certificate in Amazon Certificate Manager
(ACM) or importing one of your own.

Custom endpoints for new domains

You can enable a custom endpoint for a new OpenSearch Service domain using the OpenSearch
Service console, Amazon CLI, or configuration API.

Creating a custom endpoint 499

Amazon OpenSearch Service Developer Guide

To customize your endpoint (console)

1. From the OpenSearch Service console, choose Create domain and provide a name for the
domain.

2. Under Custom endpoint, select Enable custom endpoint.

3. For Custom hostname, enter your preferred custom endpoint hostname. The hostname
should be a fully qualified domain name (FQDN), such as www.yourdomain.com or
example.yourdomain.com.

Note

If you don't have a wildcard certificate you must obtain a new certificate for your
custom endpoint's subdomains.

4. For Amazon certificate, choose the SSL certificate to use for your domain. If no certificates are
available, you can import one into ACM or use ACM to provision one. For more information, see
Issuing and Managing Certificates in the Amazon Certificate Manager User Guide.

Note

The certificate must have the custom endpoint name and be in the same account as
your OpenSearch Service domain. The certificate status should be ISSUED.

• Follow the rest of the steps to create your domain and choose Create.

• Select the domain when it's finished processing to view your custom endpoint.

To use the CLI or configuration API, use the CreateDomain and UpdateDomainConfig
operations. For more information, see the Amazon CLI Command Reference and Amazon
OpenSearch Service API Reference.

Custom endpoints for existing domains

To add a custom endpoint to an existing OpenSearch Service domain, choose Edit and perform
steps 2–4 above.

Custom endpoints for existing domains 500

https://en.wikipedia.org/wiki/Wildcard_certificate
https://docs.aws.amazon.com/acm/latest/userguide/gs.html
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

Next steps

After you enable a custom endpoint for your OpenSearch Service domain, you must create a
CNAME mapping in Amazon Route 53 (or your preferred DNS service provider). You do this to
route traffic to the custom endpoint and its subdomains. Without this mapping, your custom
endpoint won't work. For steps to create this mapping in Route 53, see Configuring DNS routing
for a new domain and Creating a hosted zone for a subdomain. For other providers, consult their
documentation.

Create a CNAME record that points the custom endpoint to the automatically generated domain
endpoint. If your domain is dual stack, you can point your CNAME record to either of the two
service generated endpoints. The dual stack capabilty of the custom endpoint depends on the
service generated endpoint that you point the CNAME record to. The custom endpoint hostname
is the name of the CNAME record, and the domain endpoint hostname is the value of the CNAME
record.

If you use SAML authentication for OpenSearch Dashboards, you must update your IdP with the
new SSO URL.

Auto-Tune for Amazon OpenSearch Service

Auto-Tune in Amazon OpenSearch Service uses performance and usage metrics from your
OpenSearch cluster to suggest memory-related configuration changes, including queue and cache
sizes and Java virtual machine (JVM) settings on your nodes. These optional changes improve
cluster speed and stability.

Some changes deploy immediately, while others are scheduled during your domain's off-peak
window. You can revert to the default OpenSearch Service settings at any time. As Auto-Tune
gathers and analyzes performance metrics for your domain, you can view its recommendations in
the OpenSearch Service console on the Notifications page.

Auto-Tune is available in commercial Amazon Web Services Regions on domains running any
OpenSearch version, or Elasticsearch 6.7 or later, with a supported instance type.

Topics

• Types of changes

• Enabling or disabling Auto-Tune

• Scheduling Auto-Tune enhancements

Next steps 501

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring-new-domain.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-configuring-new-domain.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/dns-routing-traffic-for-subdomains.html#dns-routing-traffic-for-subdomains-creating-hosted-zone

Amazon OpenSearch Service Developer Guide

• Monitoring Auto-Tune changes

Types of changes

Auto-Tune has two broad categories of changes:

• Nondisruptive changes that it applies as the cluster runs.

• Changes that require a blue/green deployment, which it applies during the domain's off-peak
window.

Based on your domain's performance metrics, Auto-Tune can suggest adjustments to the following
settings:

Change
type

Category Description

JVM heap
size

Blue/green By default, OpenSearch Service uses 50% of an instance's RAM for
the JVM heap, up to a heap size of 32 GiB.

Increasing this percentage gives OpenSearch more memory, but
leaves less for the operating system and other processes. Larger
values can decrease the number of garbage collection pauses, but
increase the length of those pauses.

JVM young
generation
settings

Blue/green JVM "young generation" settings affect the frequency of minor
garbage collections. More frequent minor collections can decrease
the number of major collections and pauses.

Queue size Nondisrup
tive

By default, the search queue size is 1000 and the write queue size
is 10000. Auto-Tune automatically scales the search and write
queues if additional heap is available to handle requests.

Cache size Nondisrup
tive

The field cache monitors on-heap data structures, so it's important
to monitor the cache's use. Auto-Tune scales the field data cache
size to avoid out of memory and circuit breaker issues.

The shard request cache is managed at the node level and has a
default maximum size of 1% of the heap. Auto-Tune scales the

Types of changes 502

Amazon OpenSearch Service Developer Guide

Change
type

Category Description

shard request cache size to accept more search and index requests
than what the configured cluster can handle.

Request
size

Nondisrup
tive

By default, when the aggregated size of in-flight requests
surpasses 10% of total JVM (2% for t2 instance types and 1% for
t3.small), OpenSearch throttles all new _search and _bulk
requests until the existing requests complete.

Auto-Tune automatically tunes this threshold, typically between
5-15%, based on the amount of JVM that is currently occupied on
the system. For example, if JVM memory pressure is high, Auto-
Tune might reduce the threshold to 5%, at which point you might
see more rejections until the cluster stabilizes and the threshold
 increases.

Enabling or disabling Auto-Tune

OpenSearch Service enables Auto-Tune by default on new domains. To enable or disable Auto-
Tune on existing domains, we recommend using the console, which simplifies the process. Enabling
Auto-Tune doesn't cause a blue/green deployment.

You currently can't enable or disable Auto-Tune using Amazon CloudFormation.

Console

To enable Auto-Tune on an existing domain

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. In the navigation pane, under Domains, choose the domain name to open the cluster
configuration.

3. Choose Turn on if Auto-Tune isn't already enabled.

4. Optionally, select Off-peak window to schedule optimizations that require a blue/green
deployment during the domain's configured off-peak window. For more information, see the
section called “Scheduling Auto-Tune enhancements”.

5. Choose Save changes.

Enabling or disabling Auto-Tune 503

https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

CLI

To enable Auto-Tune using the Amazon CLI, send an UpdateDomainConfig request:

aws opensearch update-domain-config \
 --domain-name my-domain \
 --auto-tune-options DesiredState=ENABLED

Scheduling Auto-Tune enhancements

Prior to February 16, 2023, Auto-Tune used maintenance windows to schedule changes that
required a blue/green deployment. Maintenance windows are now deprecated in favor of the off-
peak window, which is a daily 10-hour time block during which your domain typically experiences
low traffic. You can modify the default start time for the off-peak window, but you can't modify the
length.

Any domains that had Auto-Tune maintenance windows enabled before the introduction of off-
peak windows on February 16, 2023 can continue to use legacy maintenance windows with no
interruption. However, we recommend that you migrate your existing domains to use the off-peak
window for domain maintenance instead. For instructions, see the section called “Migrating from
Auto-Tune maintenance windows”.

Console

To schedule Auto-Tune actions the off-peak window

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. In the navigation pane, under Domains, choose the domain name to open the cluster
configuration.

3. Go to the Auto-Tune tab and choose Edit.

4. Choose Turn on if Auto-Tune isn't already enabled.

5. Under Schedule optimizations during off-peak window, select Off-peak window.

6. Choose Save changes.

CLI

To configure your domain to schedule Auto-Tune actions during the configured off-peak window,
include UseOffPeakWindow in the UpdateDomainConfig request:

Scheduling Auto-Tune enhancements 504

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpdateDomainConfig.html
https://console.aws.amazon.com/aos/home
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpdateDomainConfig.html

Amazon OpenSearch Service Developer Guide

aws opensearch update-domain-config \
 --domain-name my-domain \
 --auto-tune-options
 DesiredState=ENABLED,UseOffPeakWindow=true,MaintenanceSchedules=null

Monitoring Auto-Tune changes

You can monitor Auto-Tune statistics in Amazon CloudWatch. For a full list of metrics, see the
section called “Auto-Tune metrics”.

OpenSearch Service sends Auto-Tune events to Amazon EventBridge. You can use EventBridge to
configure rules that send an email or perform a specific action when an event is received. To see
the format of each Auto-Tune event sent to EventBridge, see the section called “Auto-Tune events”.

Tagging Amazon OpenSearch Service domains

Tags let you assign arbitrary information to an Amazon OpenSearch Service domain so you can
categorize and filter on that information. A tag is a key-value pair that you define and associate
with an OpenSearch Service domain. You can use these tags to track costs by grouping expenses
for similarly tagged resources. Amazon doesn't apply any semantic meaning to your tags. Tags are
interpreted strictly as character strings. All tags have the following elements:

Tag
Element

Description Required

Tag key The tag key is the name of the tag. Key must be unique to the
OpenSearch Service domain to which they're attached. For a list
of basic restrictions on tag keys and values, see User-Defined Tag
Restrictions.

Yes

Tag value The tag value is the string value of the tag. Tag values can be null
and don't have to be unique in a tag set. For example, you can have
a key-value pair in a tag set of project/Trinity and cost-center/Trinit
y. For a list of basic restrictions on tag keys and values, see User-Defi
ned Tag Restrictions.

No

Monitoring Auto-Tune changes 505

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html

Amazon OpenSearch Service Developer Guide

Each OpenSearch Service domain has a tag set, which contains all the tags assigned to that
OpenSearch Service domain. Amazon doesn't automatically assign any tags to OpenSearch Service
domains. A tag set can contain between 0 and 50 tags. If you add a tag to a domain with the same
key as an existing tag, the new value overwrites the old value.

Tagging examples

You can use a key to define a category, and the value could be an item in that category. For
example, you could define a tag key of project and a tag value of Salix, indicating that
the OpenSearch Service domain is assigned to the Salix project. You could also use tags to
designate OpenSearch Service domains as being used for test or production by using a key such
as environment=test or environment=production. Try to use a consistent set of tag keys to
make it easier to track metadata that is associated with OpenSearch Service domains.

You also can use tags to organize your Amazon bill to reflect your own cost structure. To do this,
sign up to get your Amazon Web Services account bill with tag key values included. Then, organize
your billing information according to resources with the same tag key values to see the cost of
combined resources. For example, you can tag several OpenSearch Service domains with key-
value pairs, and then organize your billing information to see the total cost for each domain across
several services. For more information, see Using Cost Allocation Tags in the Amazon Billing and
Cost Management documentation.

Note

Tags are cached for authorization purposes. Because of this, additions and updates to tags
on OpenSearch Service domains might take several minutes before they're available.

Working with tags (console)

The console is the simplest way to tag a domain.

To create a tag (console)

1. Go to https://aws.amazon.com, and then choose Sign In to the Console.

2. Under Analytics, choose Amazon OpenSearch Service.

3. Select the domain you want to add tags to and go to the Tags tab.

4. Choose Manage and Add new tag.

Tagging examples 506

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://aws.amazon.com

Amazon OpenSearch Service Developer Guide

5. Enter a tag key and an optional value.

6. Choose Save.

To delete a tag, follow the same steps and choose Remove on the Manage tags page.

For more information about using the console to work with tags, see Tag Editor in the Amazon
Management Console Getting Started Guide.

Working with tags (Amazon CLI)

You can create resource tags using the Amazon CLI with the --add-tags command.

Syntax

add-tags --arn=<domain_arn> --tag-list Key=<key>,Value=<value>

Parameter Description

--arn Amazon resource name for the OpenSearch Service domain to which
the tag is attached.

--tag-list Set of space-separated key-value pairs in the following format:
Key=<key>,Value=<value>

Example

The following example creates two tags for the logs domain:

aws opensearch add-tags --arn arn:aws:es:us-east-1:379931976431:domain/logs --tag-list
 Key=service,Value=OpenSearch Key=instances,Value=m3.2xlarge

You can remove tags from an OpenSearch Service domain using the --remove-tags command.

Syntax

remove-tags --arn=<domain_arn> --tag-keys Key=<key>,Value=<value>

Working with tags (Amazon CLI) 507

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html

Amazon OpenSearch Service Developer Guide

Parameter Description

--arn Amazon Resource Name (ARN) for the OpenSearch Service domain to
which the tag is attached.

--tag-keys Set of space-separated key-value pairs that you want to remove from
the OpenSearch Service domain.

Example

The following example removes two tags from the logs domain that were created in the preceding
example:

aws opensearch remove-tags --arn arn:aws:es:us-east-1:379931976431:domain/logs --tag-
keys service instances

You can view the existing tags for an OpenSearch Service domain with the --list-tags command:

Syntax

list-tags --arn=<domain_arn>

Parameter Description

--arn Amazon Resource Name (ARN) for the OpenSearch Service domain to
which the tags are attached.

Example

The following example lists all resource tags for the logs domain:

aws opensearch list-tags --arn arn:aws:es:us-east-1:379931976431:domain/logs

Working with tags (Amazon SDKs)

The Amazon SDKs (except the Android and iOS SDKs) support all the actions defined in the
Amazon OpenSearch Service API Reference, including the AddTags, ListTags, and RemoveTags

Working with tags (Amazon SDKs) 508

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

operations. For more information about installing and using the Amazon SDKs, see Amazon
Software Development Kits.

Python

This example uses the OpenSearchService low-level Python client from the AWS SDK for Python
(Boto) to add a tag to a domain, list the tag attached to the domain, and remove a tag from the
domain. You must provide values for DOMAIN_ARN, TAG_KEY, and TAG_VALUE.

import boto3
from botocore.config import Config # import configuration

DOMAIN_ARN = '' # ARN for the domain. i.e "arn:aws:es:us-east-1:123456789012:domain/
my-domain
TAG_KEY = '' # The name of the tag key. i.e 'Smileyface'
TAG_VALUE = '' # The value assigned to the tag. i.e 'Practicetag'

defines the configurations parameters such as region

my_config = Config(region_name='us-east-1')
client = boto3.client('opensearch', config=my_config)

defines the client variable

def addTags():
 """Adds tags to the domain"""

 response = client.add_tags(ARN=DOMAIN_ARN,
 TagList=[{'Key': TAG_KEY,
 'Value': TAG_VALUE}])

 print(response)

def listTags():
 """List tags that have been added to the domain"""

 response = client.list_tags(ARN=DOMAIN_ARN)
 print(response)

def removeTags():

Working with tags (Amazon SDKs) 509

http://aws.amazon.com/code
http://aws.amazon.com/code
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/opensearch.html

Amazon OpenSearch Service Developer Guide

 """Remove tags that have been added to the domain"""

 response = client.remove_tags(ARN=DOMAIN_ARN, TagKeys=[TAG_KEY])

 print('Tag removed')
 return response

Performing administrative actions on Amazon OpenSearch
Service domains

Amazon OpenSearch Service offers several administrative options that provide granular control if
you need to troubleshoot issues with your domain. These options include the ability to restart the
OpenSearch process on a data node and the ability to restart a data node.

OpenSearch Service monitors node health parameters and, when there are anomolies, takes
corrective actions to keep domains stable. With the administrative options to restart the
OpenSearch process on a node, and restart a node itself, you have control over some of these
mitigation actions.

You can use the Amazon Web Services Management Console, Amazon CLI, or the Amazon SDK to
perform these actions. The following sections cover how to perform these actions with the console.

Restart the OpenSearch process on a node

To restart the OpenSearch process on a node

1. Navigate to the OpenSearch Service console at https://console.aws.amazon.com/aos/.

2. In the left navigation pane, choose Domains. Choose the name of the domain that you want to
work with.

3. After the domain details page opens, navigate to the Instance health tab.

4. Under Data nodes, select the button next to the node that you want to restart the process on.

5. Select the Actions dropdown and choose Restart OpenSearch/Elasticsearch process.

6. Choose Confirm on the modal.

7. To see the status of the action that you initiated, select the name of the node. After the node
details page opens, choose the Events tab under the name of the node to see a list of events
associated with that node.

Performing administrative actions 510

https://console.aws.amazon.com/aos/

Amazon OpenSearch Service Developer Guide

Reboot a data node

To reboot a data node

1. Navigate to the OpenSearch Service console at https://console.aws.amazon.com/aos/.

2. In the left navigation pane, choose Domains. Choose the name of the domain that you want to
work with.

3. After the domain details page opens, navigate to the Instance health tab.

4. Under Data nodes, select the button next to the node that you want to restart the process on.

5. Select the Actions dropdown and choose Reboot node.

6. Choose Confirm on the modal.

7. To see the status of the action that you initiated, select the name of the node. After the node
details page opens, choose the Events tab under the name of the node to see a list of events
associated with that node.

Restart the Dashboard or Kibana process on a node

To restart the Dashboard or Kibana process on a node

1. Navigate to the OpenSearch Service console at https://console.aws.amazon.com/aos/.

2. In the left navigation pane, choose Domains. Choose the name of the domain that you want to
work with.

3. After the domain details page opens, navigate to the Instance health tab.

4. Under Data nodes, select the button next to the node that you want to restart the process on.

5. Select the Actions dropdown and choose Restart Dashboard/Kibana process.

6. Choose Confirm on the modal.

7. To see the status of the action that you initiated, select the name of the node. After the node
details page opens, choose the Events tab under the name of the node to see a list of events
associated with that node.

Limitations

Administrative options have the following limitations:

• Administrative options are supported on Elasticsearch versions 7.x and higher.

Reboot a data node 511

https://console.aws.amazon.com/aos/
https://console.aws.amazon.com/aos/

Amazon OpenSearch Service Developer Guide

• Administrative options don't support domains with Multi-AZ with Standby enabled.

• The OpenSearch and Elasticsearch process restart is supported on domains with three or more
data nodes.

• The Dashboards and Kibana process support is supported on domains with two or more data
nodes.

• To restart the OpenSearch process on a node or reboot a node, the domain must not be in red
state and all indexes must have replicas configured.

Limitations 512

Amazon OpenSearch Service Developer Guide

Working with Amazon OpenSearch Service direct queries
with Amazon S3 (preview)

This is prerelease documentation for Amazon OpenSearch Service direct queries with
Amazon S3, which is in preview release. The documentation and the feature are both
subject to change. We recommend that you use this feature only in test environments,
and not in production environments. For preview terms and conditions, see Betas and
Previews in Amazon Service Terms.

You can use Amazon OpenSearch Service direct queries to query data in Amazon S3. Amazon
OpenSearch Service provides a direct query integration with Amazon S3 as a way to analyze
operational logs in Amazon S3 and data lakes based in Amazon S3 without having to switch
between services. You can now analyze data in cloud object stores—and simultaneously use the
operational analytics and visualizations of OpenSearch Service.

With direct queries with Amazon S3, you no longer need to build complex ETL pipelines or incur
the expense of duplicating data in both OpenSearch Service and Amazon S3 storage. You can
also install integrations of popular log-type templates that include predefined dashboards,
and configure data accelerations tailored to that log type. The templates include VPC Flow
Logs, Amazon CloudTrail logs, and Amazon S3 logs. The accelerations include skipping indexes,
materialized views, and covered indexes.

Topics

• Pricing

• Limitations

• Quotas

• Supported Regions

• Creating Amazon OpenSearch Service data source integrations with Amazon S3

• Configuring your data source in OpenSearch Dashboards

• Querying data in OpenSearch Dashboards

• Deleting an Amazon OpenSearch Service data source with Amazon S3

513

https://aws.amazon.com/service-terms/
https://docs.amazonaws.cn/vpc/latest/userguide/flow-logs.html
https://docs.amazonaws.cn/vpc/latest/userguide/flow-logs.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

Amazon OpenSearch Service Developer Guide

Pricing

You pay for existing OpenSearch Service and Amazon S3 resources that are used to create and
process direct queries. Queries that are sent to Amazon S3 use billable compute and show up as
OpenSearch Compute Units (OCUs) per hour.

Direct queries with Amazon S3 are of two types—interactive and index maintenance. Interactive
queries perform analytics on your data in Amazon S3. When you run a new query, OpenSearch
Service starts a new session that lasts for a minimum of ten minutes. OpenSearch Service keeps
the session active to ensure that subsequent queries run quickly. Index maintenance queries use
compute to maintain indexes in OpenSearch Service. These queries usually take longer because
they ingest a configurable amount of data into OpenSearch Service to make interactive queries run
faster.

For more information, see Amazon OpenSearch Service Pricing.

Limitations

The following limitations apply to OpenSearch Service direct queries with Amazon S3.

• Your OpenSearch domain must be version 2.11 or later to support OpenSearch Service direct
queries.

• OpenSearch Service direct queries with Amazon S3 only support Spark tables within the Amazon
Glue Data Catalog. Hive tables don’t support Spark streaming, which is needed to keep indexes
up to date.

• Some data types aren't supported. Supported data types are limited to Parquet, CSV, and JSON.

• Amazon CloudFormation templates aren't supported in the preview release of direct queries.

• Your OpenSearch domain and Amazon Glue Data Catalog must be in the same Amazon Web
Services account. Your Amazon S3 tables can be in a different account, but must be in the same
Amazon Web Services Region as your domain.

• Nested Spark structures aren't supported. If your source data uses nested structures, you must
explode them to rows.

• Tables created via Athena are not supported.

• Missing columns may require using the COALESCE SQL function to return results.

• Not available in OpenSearch Serverless

Pricing 514

https://aws.amazon.com/opensearch-service/pricing/

Amazon OpenSearch Service Developer Guide

• Data must be flattened ahead of querying or you must use SQL in OpenSearch Service to change
your nested columns into dedicated columns.

Quotas

Your account has the following quotas related to OpenSearch Service direct queries with Amazon
S3. Each time you initiate a query, OpenSearch Service opens a session and keeps it alive for at
least ten minutes. This reduces query latency by removing session startup time in subsequent
queries.

Description Maxiumum

Connections per domain 20

Data sources per domain 20

Indexes per domain 50

Concurrent sessions per data source 100

Supported Regions

The following Regions are available for OpenSearch Service direct queries with Amazon S3: Asia
Pacific (Tokyo), Europe (Frankfurt), Europe (Ireland), US East (N. Virginia), US East (Ohio), and US
West (Oregon).

Creating Amazon OpenSearch Service data source integrations
with Amazon S3

This is prerelease documentation for Amazon OpenSearch Service direct queries with
Amazon S3, which is in preview release. The documentation and the feature are both
subject to change. We recommend that you use this feature only in test environments,
and not in production environments. For preview terms and conditions, see Betas and
Previews in Amazon Service Terms.

Quotas 515

https://aws.amazon.com/service-terms/

Amazon OpenSearch Service Developer Guide

You can create a new Amazon S3 direct-query data source for OpenSearch Service through the
Amazon Web Services Management Console or the API. Each new data source uses the Amazon
Glue Data Catalog to manage tables that represent Amazon S3 buckets.

Topics

• Prerequisites

• Required permissions

• Set up a new direct-query data source

• Next steps

Prerequisites

Before you create a data source, you must have the following:

• An OpenSearch domain with version 2.11 or later

For instructions for setting these up, see the section called “ Creating OpenSearch Service
domains” and Getting started with the Amazon Glue Data Catalog.

Required permissions

To create a data source, your user or role must have an attached identity-based policy with the
appropriate IAM permissions. The following sample policy demonstrates the least-privilege
permissions required to create and manage a data source. Note that if you have broader
permissions, such as s3:* or the AdministratorAccess policy, these permissions encompass the
least-privilege permissions in the sample policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "es:ESHttp*",
 "es:AddDataSource",
 "es:DeleteDataSource",
 "es:GetDataSource",
 "es:ListDataSource",

Prerequisites 516

https://docs.amazonaws.cn/glue/latest/dg/start-data-catalog.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon OpenSearch Service Developer Guide

 "es:UpdateDataSource",
 "s3:Get*",
 "s3:List*",
 "s3:Put*",
 "s3:Describe*",
 "glue:*"
],
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*",
 "arn:aws:glue:us-east-1:{aws-account-id}:database/*"
]
 },
 {
 "Sid": "GlueCreateAndReadDataCatalog",
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabase",
 "glue:CreateDatabase",
 "glue:GetDatabases",
 "glue:CreateTable",
 "glue:GetTable",
 "glue:UpdateTable",
 "glue:DeleteTable",
 "glue:GetTables",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:CreatePartition",
 "glue:BatchCreatePartition",
 "glue:GetUserDefinedFunctions"
],
 "Resource": "*"
 }
]
}

The role must also have the following trust policy, which specifies the target ID.

{
 "Version":"2012-10-17",
 "Statement":[
 {

Required permissions 517

Amazon OpenSearch Service Developer Guide

 "Effect":"Allow",
 "Principal":{
 "Service": "directquery.opensearchservice.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

For instructions to create the role, see Creating a role using custom trust policies.

If you have fine-grained access control enabled, a new OpenSearch fine-grained access control role
will automatically be created for your data source. The name of the new fine-grained access control
role will be AWSOpenSearchDirectQuery_<name of data source>.

By default, the role has access to direct query data source indexes only. Although you can configure
the role to limit or grant access to your data source, it is recommended you not adjust the access of
this role. If you delete the data source, this role will be deleted. This will remove access for any
other users if they are mapped to the role.

Map the Amazon Glue Data Catalog role (if fine-grained access control is enabled
after creating data source)

If you have enabled fine-grained access control after creating a data source, you must map non-
admin users to an IAM role with Amazon Glue Data Catalog access in order to run direct queries.
To manually create a backend glue_access role that you can map to the IAM role, perform the
following steps:

Note

Indexes are used for any queries against the data source. A user with read access to the
request index for a given data source can read all queries against that data source. A user
with read access to the result index can read results for all queries against that data source.

1. From the main menu in OpenSearch Dashboards, choose Security, Roles, and Create roles.

2. Name the role glue_access.

3. For Cluster permissions, select indices:data/write/bulk*, indices:data/read/
scroll, indices:data/read/scroll/clear.

Required permissions 518

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/fgac.html

Amazon OpenSearch Service Developer Guide

4. For Index, enter the following indexes you want to grant the user with the role access to:

• .query_execution_request_<name of data source>

• query_execution_result_<name of data source>

• flint_*

5. For Index permissions, select indices_all.

6. Choose Create.

7. Choose Mapped users, Manage mapping.

8. Under Backend roles, add the ARN of the Amazon Glue role that needs permission to call your
domain.

arn:aws:iam::account-id:role/role-name

9. Select Map and confirm the role shows up under Mapped users.

For more information on mapping roles, see the section called “Mapping roles to users”.

Set up a new direct-query data source

You can set up a direct-query data source on a domain with the Amazon Web Services
Management Console or the OpenSearch Service API.

Amazon Web Services Management Console

1. Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/
aos/.

2. In the left navigation pane, choose Domains.

3. Select the domain that you want to set up a new data source for. This opens the domain
details page. Choose the Connections tab below the general domain details and find the
Direct query section.

4. Choose Create.

5. On the data source creation page, enter a name for your new data source. Under Data source
type, choose Amazon S3. Choose an existing IAM role that has limitations for what can be
accessed in the Amazon Glue Data Catalog and Amazon S3.

6. Choose Create. This opens the data source details screen with an OpenSearch Dashboards
URL. You can navigate to this URL to complete the next steps.

Set up a new direct-query data source 519

https://console.aws.amazon.com/aos/
https://console.aws.amazon.com/aos/

Amazon OpenSearch Service Developer Guide

OpenSearch Service API

Use the AddDataSource API operation to create a new data source in your domain.

POST https://es.region.amazonaws.com/2021-01-01/opensearch/domain/domain-name/
dataSource

{
 "DataSourceType": {
 "s3GlueDataCatalog": {
 "RoleArn": "arn:aws:iam::account-id:role/Admin"
 }
 }
 "Description": "data-source-description",
 "Name": "my-data-source"
}

Next steps

After you create a data source, OpenSearch Service provides you with an OpenSearch Dashboards
URL. You use this to configure access control, define tables, set up log-type based dashboards for
popular log types, and query your data.

Configuring your data source in OpenSearch Dashboards

This is prerelease documentation for Amazon OpenSearch Service direct queries with
Amazon S3, which is in preview release. The documentation and the feature are both
subject to change. We recommend that you use this feature only in test environments,
and not in production environments. For preview terms and conditions, see Betas and
Previews in Amazon Service Terms.

Now that you've created your data source, you can configure security settings, define your Amazon
S3 tables, or set up accelerated data indexing. This section walks you through various use cases
with your data source in OpenSearch Dashboards before you query your data.

To configure the following sections, you must first navigate to your data source in OpenSearch
Dashboards. In the left-hand navigation, under Management, choose Data sources. Under Manage
data sources, select the name of the data source that you created in the console.

Next steps 520

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_AddDataSource.html
https://aws.amazon.com/service-terms/

Amazon OpenSearch Service Developer Guide

Set up access control

On the details page for you your data source, find the Access controls section and choose Edit. If
you have the security plugin installed, choose Restricted and select which role-based groups you
want to provide with access to the new data source. You can also choose Admin only if you only
want the administrator to have access to the data source.

Important

Note that indexes are used for any queries against the data source, so a user with read
access to the request index for a given data source can read all queries against that data
source, and a user with read access to the result index can read results for all queries
against that data source.

Define Amazon Glue Data Catalog tables

Direct queries from OpenSearch Service to Amazon S3 use Spark tables within the Amazon Glue
Data Catalog. You can use an Amazon Glue crawler to crawl your data, which will create a table for
you. Alternately, you can manually create tables from within the Query Workbench.

To manage existing databases and tables in your data source, or to create new tables that you want
to use direct queries on, choose the Define tables option on the data source details page. This
takes you to the Query Workbench plugin page.

To set up a table with sample data that you can explore and use for accelerations in the following
section, run the following query:

CREATE EXTERNAL TABLE IF NOT EXISTS datasourcename.gluedatabasename.gluetablename (
 `@timestamp` TIMESTAMP,
 clientip STRING,
 request STRING,
 status INT,
 size INT,
 year INT,
 month INT,
 day INT)
USING json PARTITIONED BY(year, month, day) OPTIONS (path 's3://my-bucket/data/
http_log', compression 'bzip2')

Set up access control 521

Amazon OpenSearch Service Developer Guide

After creating the table, run the following query to ensure that it's compatible with direct queries:

MSCK REPAIR TABLE datasourcename.databasename.tablename

Accelerate your queries

On the details page for your data source, choose the Accelerate Performance option. To ensure a
fast experience with your data in Amazon S3, there are three different types of accelerations that
you can set up to index data into OpenSearch Service—skipping indexes, materialized views, and
covering indexes.

Skipping indexes

With a skipping index, you can index only the metadata of the data stored in Amazon S3. When you
query a table with a skipping index, the query planner references the index and rewrites the query
to efficiently locate the data, instead of scanning all partitions and files. This allows the skipping
index to quickly narrow down the specific location of the stored data.

When you configure the Spark tables that you'll use from the Amazon Glue Data Catalog,
OpenSearch Dashboards asks if you want to create skipping indexes on your tables. You can create
a skipping index there, or you can create one with the Accelerate Performance use case after you
finish your table configuration.

CREATE SKIPPING INDEX
ON datasourcename.gluedatabasename.gluetablename
(
 year PARTITION,
 month PARTITION,
 day PARTITION,
 hour PARTITION
)

Materialized views

With materialized views, you can use complex queries, such as aggregations, to power Dashboard
visualizations. Materialized views ingest a small amount of your data into OpenSearch Service
storage. OpenSearch Service then forms an index from the ingested data that you can use for
visualizations. You can manage the materialized view index with the section called “Index State
Management”, just as you can with any other OpenSearch index.

Accelerate your queries 522

Amazon OpenSearch Service Developer Guide

Use the following query to create a new materialized view for the http_logs table that you
created in the section called “Define Amazon Glue Data Catalog tables”:

CREATE MATERIALIZED VIEW datasourcename.gluedatabasename.viewname_view
AS
 SELECT
 window.start AS `start.time`,
 COUNT(*) AS count
 FROM datasourcename.gluedatabasename.gluetablename
 WHERE status != 200
 GROUP BY TUMBLE(`@timestamp`, '1 Minutes')
WITH (
 auto_refresh = true,
 refresh_interval = '1 Minutes',
 checkpoint_location = 's3://my-bucket/data/http_log/checkpoint_http_count_view',
 watermark_delay = '10 Minutes'
);

Covering indexes

With a covering index, you can ingest data from a specified column in a table. This is the most
performant of the three indexing types. Because OpenSearch Service ingests all data from your
desired column, you get better performance and can perform advanced analytics.

Just as with materialized views, OpenSearch Service creates a new index from the covering index
data. You can use this new index for Dashboard visualizations and other OpenSearch Service
functionality, such as anomaly detection or geospatial capabilities. You can manage the covering
view index with the section called “Index State Management”, just as you can with any other
OpenSearch index.

Use the following query to create a new covering index for the http_logs table that you created
in the section called “Define Amazon Glue Data Catalog tables”:

CREATE INDEX status_clientip_and_day
ON datasourcename.gluedatabasename.gluetablename (status, day, clientip)
WITH (
 auto_refresh = true,
 refresh_interval = '5 minute',
 checkpoint_location = 's3://my-bucket/data/http_log/checkpoint_status_and_day'
)

Accelerate your queries 523

Amazon OpenSearch Service Developer Guide

Querying data in OpenSearch Dashboards

This is prerelease documentation for Amazon OpenSearch Service direct queries with
Amazon S3, which is in preview release. The documentation and the feature are both
subject to change. We recommend that you use this feature only in test environments,
and not in production environments. For preview terms and conditions, see Betas and
Previews in Amazon Service Terms.

After you set up your tables and configure your desired optional query acceleration, you can
now start performing analytics on your data. To query your data, select the data source from the
dropdown menu on the Discover page or Observability page in OpenSearch Dashboards.

If you're using a skipping index or haven't created an index, you can use SQL or Piped Processing
Language (PPL) to query your data. If you've configured a materialized view or a covering index,
you already have an index and can use Dashboards Query Language (DQL) throughout Dashboards.
You can also use PPL with the Observability plugin, and SQL with the Query Workbench plugin.
Currently, only the Observability and Query Workbench plugins support PPL and SQL.

SQL

Use the following query to run a sample SQL query for the http_logs table that you created in
the section called “Define Amazon Glue Data Catalog tables”:

SELECT
 FIRST(day) AS day,
 status,
 COUNT(status) AS status_count_by_day
FROM datasourcename.gluedatabasename.gluetablename
WHERE status >= 400
GROUP BY day, status
ORDER BY day, status
LIMIT 20;

PPL

Use the following query to run a sample PPL query for the http_logs table that you created in
the section called “Define Amazon Glue Data Catalog tables”:

Querying data 524

https://aws.amazon.com/service-terms/

Amazon OpenSearch Service Developer Guide

source = datasourcename.gluedatabasename.gluetablename |
where status = 500 | sort - clientip, @timestamp | head 20

Deleting an Amazon OpenSearch Service data source with
Amazon S3

This is prerelease documentation for Amazon OpenSearch Service direct queries with
Amazon S3, which is in preview release. The documentation and the feature are both
subject to change. We recommend that you use this feature only in test environments,
and not in production environments. For preview terms and conditions, see Betas and
Previews in Amazon Service Terms.

When you delete a data source, Amazon OpenSearch Service removes it from your domain.
OpenSearch Service also removes indexes associated that are with the data source. Your
transactional data isn't deleted from Amazon S3, but Amazon S3 doesn't send new data to
OpenSearch Service.

You can delete a data source integration using the Amazon Web Services Management Console or
the OpenSearch Service API.

Amazon Web Services Management Console

To delete a data source

1. Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/
aos/.

2. From the left navigation pane, choose Domains.

3. Select the domain that you want to delete a data source for. This opens the domain details
page. Choose the Connections tab below the general information and find the Direct query
section.

4. Select the data source you want to delete, choose Delete, and confirm deletion.

Deleting a data source 525

https://aws.amazon.com/service-terms/
https://console.aws.amazon.com/aos/
https://console.aws.amazon.com/aos/

Amazon OpenSearch Service Developer Guide

OpenSearch Service API

Use the DeleteDataSource API operation to delete an existing data souce in your domain.

POST https://es.region.amazonaws.com/2021-01-01/opensearch/domain/domain-name/
dataSource/data-source-name

Deleting a data source 526

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_DeleteDataSource.html

Amazon OpenSearch Service Developer Guide

Monitoring Amazon OpenSearch Service domains

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon OpenSearch Service and your other Amazon solutions. Amazon provides the following
tools to monitor your OpenSearch Service resources, report issues, and take automatic actions
when appropriate:

Amazon CloudWatch

Amazon CloudWatch monitors your OpenSearch Service resources in real time. You can collect
and track metrics, create customized dashboards, and set alarms that notify you or take actions
when a metric reaches a certain threshold. For more information, see the Amazon CloudWatch
User Guide.

Amazon CloudWatch Logs

Amazon CloudWatch Logs lets you monitor, store, and access your OpenSearch log files.
CloudWatch Logs monitors the information in log files and can notify you when certain
thresholds are met. For more information, see the Amazon CloudWatch Logs User Guide.

Amazon EventBridge

Amazon EventBridge delivers a near real-time stream of system events that describe changes
in your OpenSearch Service domains. You can create rules that watch for certain events,
and trigger automated actions in other Amazon services when these events occur. For more
information, see the Amazon EventBridge User Guide.

Amazon CloudTrail

Amazon CloudTrail captures configuration API calls made to OpenSearch Service as events. It
can deliver these events to an Amazon S3 bucket that you specify. Using this information, you
can identify which users and accounts made requests, the source IP address from which the
requests were made, and when the requests occurred. For more information, see the Amazon
CloudTrail User Guide.

Topics

• Monitoring OpenSearch cluster metrics with Amazon CloudWatch

• Monitoring OpenSearch logs with Amazon CloudWatch Logs

• Monitoring audit logs in Amazon OpenSearch Service

527

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Amazon OpenSearch Service Developer Guide

• Monitoring OpenSearch Service events with Amazon EventBridge

• Monitoring Amazon OpenSearch Service API calls with Amazon CloudTrail

Monitoring OpenSearch cluster metrics with Amazon
CloudWatch

Amazon OpenSearch Service publishes data from your domains to Amazon CloudWatch.
CloudWatch lets you retrieve statistics about those data points as an ordered set of time-series
data, known as metrics. OpenSearch Service sends most metrics to CloudWatch in 60-second
intervals. If you use General Purpose or Magnetic EBS volumes, the EBS volume metrics update
only every five minutes. For more information about Amazon CloudWatch, see the Amazon
CloudWatch User Guide.

The OpenSearch Service console displays a series of charts based on the raw data from
CloudWatch. Depending on your needs, you might prefer to view cluster data in CloudWatch
instead of the graphs in the console. The service archives metrics for two weeks before discarding
them. The metrics are provided at no extra charge, but CloudWatch still charges for creating
dashboards and alarms. For more information, see Amazon CloudWatch pricing.

OpenSearch Service publishes the following metrics to CloudWatch:

• the section called “Cluster metrics”

• the section called “Dedicated master node metrics”

• the section called “EBS volume metrics”

• the section called “Instance metrics”

• the section called “UltraWarm metrics”

• the section called “Cold storage metrics”

• the section called “Alerting metrics”

• the section called “Anomaly detection metrics”

• the section called “Asynchronous search metrics”

• the section called “SQL metrics”

• the section called “k-NN metrics”

• the section called “Cross-cluster search metrics”

• the section called “Cross-cluster replication metrics”

Monitoring cluster metrics 528

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://aws.amazon.com/cloudwatch/pricing/

Amazon OpenSearch Service Developer Guide

• the section called “Learning to Rank metrics”

• the section called “Piped Processing Language metrics”

Viewing metrics in CloudWatch

CloudWatch metrics are grouped first by the service namespace, and then by the various dimension
combinations within each namespace.

To view metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the left navigation pane, find Metrics and choose All metrics. Select the ES/
OpenSearchService namespace.

3. Choose a dimension to view the corresponding metrics. Metrics for individual nodes are in
the ClientId, DomainName, NodeId dimension. Cluster metrics are in the Per-Domain,
Per-Client Metrics dimension. Some node metrics are aggregated at the cluster level
and thus included in both dimensions. Shard metrics are in the ClientId, DomainName,
NodeId, ShardRole dimension.

To view a list of metrics using the Amazon CLI

Run the following command:

aws cloudwatch list-metrics --namespace "AWS/ES"

Interpreting health charts in OpenSearch Service

To view metrics in OpenSearch Service, use the Cluster health and Instance health tabs. The
Instance health tab uses box charts to provide at-a-glance visibility into the health of each
OpenSearch node:

Viewing metrics in CloudWatch 529

https://console.aws.amazon.com/cloudwatch/

Amazon OpenSearch Service Developer Guide

• Each colored box shows the range of values for the node over the specified time period.

• Blue boxes represent values that are consistent with other nodes. Red boxes represent outliers.

• The white line within each box shows the node's current value.

• The “whiskers” on either side of each box show the minimum and maximum values for all nodes
over the time period.

If you make configuration changes to your domain, the list of individual instances in the Cluster
health and Instance health tabs often double in size for a brief period before returning to the
correct number. For an explanation of this behavior, see the section called “Configuration changes”.

Cluster metrics

Amazon OpenSearch Service provides the following metrics for clusters.

Metric Description

ClusterStatus.gree
n

A value of 1 indicates that all index shards are allocated to nodes
in the cluster.

Relevant statistics: Maximum

ClusterStatus.yell
ow

A value of 1 indicates that the primary shards for all indexes are
allocated to nodes in the cluster, but replica shards for at least
one index are not. For more information, see the section called
“Yellow cluster status”.

Relevant statistics: Maximum

Cluster metrics 530

Amazon OpenSearch Service Developer Guide

Metric Description

ClusterStatus.red A value of 1 indicates that the primary and replica shards for at
least one index are not allocated to nodes in the cluster. For more
information, see the section called “Red cluster status”.

Relevant statistics: Maximum

Shards.active The total number of active primary and replica shards.

Relevant statistics: Maximum, Sum

Shards.unassigned The number of shards that are not allocated to nodes in the
cluster.

Relevant statistics: Maximum, Sum

Shards.delayedUnas
signed

The number of shards whose node allocation has been delayed by
the timeout settings.

Relevant statistics: Maximum, Sum

Shards.activePrima
ry

The number of active primary shards.

Relevant statistics: Maximum, Sum

Shards.initializin
g

The number of shards that are under initialization.

Relevant statistics: Sum

Shards.relocating The number of shards that are under relocation.

Relevant statistics: Sum

Nodes The number of nodes in the OpenSearch Service cluster, including
dedicated master nodes and UltraWarm nodes. For more
information, see the section called “Configuration changes”.

Relevant statistics: Maximum

Cluster metrics 531

Amazon OpenSearch Service Developer Guide

Metric Description

SearchableDocument
s

The total number of searchable documents across all data nodes
in the cluster.

Relevant statistics: Minimum, Maximum, Average

DeletedDocuments The total number of documents marked for deletion across all
data nodes in the cluster. These documents no longer appear in
search results, but OpenSearch only removes deleted documents
from disk during segment merges. This metric increases after
delete requests and decreases after segment merges.

Relevant statistics: Minimum, Maximum, Average

CPUUtilization The percentage of CPU usage for data nodes in the cluster.
Maximum shows the node with the highest CPU usage. Average
represents all nodes in the cluster. This metric is also available for
individual nodes.

Relevant statistics: Maximum, Average

Cluster metrics 532

Amazon OpenSearch Service Developer Guide

Metric Description

FreeStorageSpace The free space for data nodes in the cluster. Sum shows total free
space for the cluster, but you must leave the period at one minute
to get an accurate value. Minimum and Maximum show the nodes
with the least and most free space, respectively. This metric is
also available for individual nodes. OpenSearch Service throws
a ClusterBlockException when this metric reaches 0. To
recover, you must either delete indexes, add larger instances, or
add EBS-based storage to existing instances. To learn more, see
the section called “Lack of available storage space”.

The OpenSearch Service console displays this value in GiB. The
Amazon CloudWatch console displays it in MiB.

Note

FreeStorageSpace will always be lower than the
values that the OpenSearch _cluster/stats and
_cat/allocation APIs provide. OpenSearch Service
reserves a percentage of the storage space on each
instance for internal operations. For more information,
see Calculating storage requirements.

Relevant statistics: Minimum, Maximum, Average, Sum

ClusterUsedSpace The total used space for the cluster. You must leave the period at
one minute to get an accurate value.

The OpenSearch Service console displays this value in GiB. The
Amazon CloudWatch console displays it in MiB.

Relevant statistics: Minimum, Maximum

Cluster metrics 533

Amazon OpenSearch Service Developer Guide

Metric Description

ClusterIndexWrites
Blocked

Indicates whether your cluster is accepting or blocking incoming
write requests. A value of 0 means that the cluster is accepting
 requests. A value of 1 means that it is blocking requests.

Some common factors include the following: FreeStora
geSpace is too low or JVMMemoryPressure is too high. To
alleviate this issue, consider adding more disk space or scaling
your cluster.

Relevant statistics: Maximum

JVMMemoryPressure The maximum percentage of the Java heap used for all data
nodes in the cluster. OpenSearch Service uses half of an instance'
s RAM for the Java heap, up to a heap size of 32 GiB. You can
scale instances vertically up to 64 GiB of RAM, at which point you
can scale horizontally by adding instances. See the section called
“Recommended CloudWatch alarms”.

Relevant statistics: Maximum

Note

The logic for this metric changed in service software
R20220323. For more information, see the release notes.

OldGenJVMMemoryPre
ssure

The maximum percentage of the Java heap used for the "old
generation" on all data nodes in the cluster. This metric is also
available at the node level.

Relevant statistics: Maximum

AutomatedSnapshotF
ailure

The number of failed automated snapshots for the cluster. A
value of 1 indicates that no automated snapshot was taken for
the domain in the previous 36 hours.

Relevant statistics: Minimum, Maximum

Cluster metrics 534

Amazon OpenSearch Service Developer Guide

Metric Description

CPUCreditBalance The remaining CPU credits available for data nodes in the cluster.
A CPU credit provides the performance of a full CPU core for one
minute. For more information, see CPU credits in the Amazon EC2
Developer Guide. This metric is available only for the T2 instance
types.

Relevant statistics: Minimum

OpenSearchDashboar
dsHealthyNodes

A health check for OpenSearch Dashboards. If the minimum,
maximum, and average are all equal to 1, Dashboards is behaving
normally. If you have 10 nodes with a maximum of 1, minimum of
0, and average of 0.7, this means 7 nodes (70%) are healthy and
3 nodes (30%) are unhealthy.

Relevant statistics: Minimum, Maximum, Average

OpensearchDashboar
dsReportingFailedR
equestSysErrCount

The number of requests to generate OpenSearch Dashboards
reports that failed due to server problems or feature limitations.

Relevant statistics: Sum

OpensearchDashboar
dsReportingFailedR
equestUserErrCount

The number of requests to generate OpenSearch Dashboards
reports that failed due to client issues.

Relevant statistics: Sum

OpensearchDashboar
dsReportingRequest
Count

The total number of requests to generate OpenSearch Dashboard
s reports.

Relevant statistics: Sum

OpensearchDashboar
dsReportingSuccess
Count

The number of successful requests to generate OpenSearch
Dashboards reports.

Relevant statistics: Sum

Cluster metrics 535

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html

Amazon OpenSearch Service Developer Guide

Metric Description

KMSKeyError A value of 1 indicates that the Amazon KMS key used to encrypt
data at rest has been disabled. To restore the domain to normal
operations, re-enable the key. The console displays this metric
only for domains that encrypt data at rest.

Relevant statistics: Minimum, Maximum

KMSKeyInaccessible A value of 1 indicates that the Amazon KMS key used to encrypt
data at rest has been deleted or revoked its grants to OpenSearc
h Service. You can't recover domains that are in this state. If you
have a manual snapshot, though, you can use it to migrate the
domain's data to a new domain. The console displays this metric
only for domains that encrypt data at rest.

Relevant statistics: Minimum, Maximum

InvalidHostHeaderR
equests

The number of HTTP requests made to the OpenSearch
cluster that included an invalid (or missing) host header. Valid
requests include the domain hostname as the host header
value. OpenSearch Service rejects invalid requests for public
access domains that don't have a restrictive access policy. We
recommend applying a restrictive access policy to all domains.

If you see large values for this metric, confirm that your
OpenSearch clients include the domain hostname (and not, for
example, its IP address) in their requests.

Relevant statistics: Sum

OpenSearchRequests
(previously
ElasticsearchReque
sts)

The number of requests made to the OpenSearch cluster.

Relevant statistics: Sum

Cluster metrics 536

Amazon OpenSearch Service Developer Guide

Metric Description

2xx, 3xx, 4xx, 5xx The number of requests to the domain that resulted in the given
HTTP response code (2xx, 3xx, 4xx, 5xx).

Relevant statistics: Sum

ThroughputThrottle Indicates whether or not disks have been throttled. Throttlin
g occurs when the combined throughput of ReadThrou
ghputMicroBursting and WriteThroughputMic
roBursting is higher than maximum throughput, MaxProvis
ionedThroughput . MaxProvisionedThroughput is the
lower value of the instance throughput or the provisioned volume
throughput. A value of 1 indicates that disks have been throttled.
A value of 0 indicates normal behavior.

For information on instance throughput, see Amazon EBS–
optimized instances. For information on volume throughput, see
Amazon EBS volume types.

Relevant statistics: Minimum, Maximum

Dedicated master node metrics

Amazon OpenSearch Service provides the following metrics for dedicated master nodes.

Metric Description

MasterCPUUtilizati
on

The maximum percentage of CPU resources used by the
dedicated master nodes. We recommend increasing the size of
the instance type when this metric reaches 60 percent.

Relevant statistics: Maximum

MasterFreeStorageS
pace

This metric is not relevant and can be ignored. The service does
not use master nodes as data nodes.

Dedicated master node metrics 537

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-optimized.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-optimized.html
https://aws.amazon.com/ebs/volume-types/

Amazon OpenSearch Service Developer Guide

Metric Description

MasterJVMMemoryPre
ssure

The maximum percentage of the Java heap used for all dedicated
 master nodes in the cluster. We recommend moving to a larger
instance type when this metric reaches 85 percent.

Relevant statistics: Maximum

Note

The logic for this metric changed in service software
R20220323. For more information, see the release notes.

MasterOldGenJVMMem
oryPressure

The maximum percentage of the Java heap used for the "old
generation" per master node.

Relevant statistics: Maximum

MasterCPUCreditBal
ance

The remaining CPU credits available for dedicated master nodes
in the cluster. A CPU credit provides the performance of a full
CPU core for one minute. For more information, see CPU credits
in the Amazon EC2 Developer Guide. This metric is available only
for the T2 instance types.

Relevant statistics: Minimum

MasterReachableFro
mNode

A health check for MasterNotDiscovered exceptions. A
value of 1 indicates normal behavior. A value of 0 indicates that /
_cluster/health/ is failing.

Failures mean that the master node is unreachable from the
source node. They're usually the result of a network connectivity
issue or an Amazon dependency problem.

Relevant statistics: Maximum

MasterSysMemoryUti
lization

The percentage of the master node's memory that is in use.

Relevant statistics: Maximum

Dedicated master node metrics 538

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html

Amazon OpenSearch Service Developer Guide

EBS volume metrics

Amazon OpenSearch Service provides the following metrics for EBS volumes.

Metric Description

ReadLatency The latency, in seconds, for read operations on EBS volumes. This
metric is also available for individual nodes.

Relevant statistics: Minimum, Maximum, Average

WriteLatency The latency, in seconds, for write operations on EBS volumes. This
metric is also available for individual nodes.

Relevant statistics: Minimum, Maximum, Average

ReadThroughput The throughput, in bytes per second, for read operations on EBS
volumes. This metric is also available for individual nodes.

Relevant statistics: Minimum, Maximum, Average

ReadThrou
ghputMicr
oBursting

The throughput, in bytes per second, for read operations on EBS
volumes when micro-bursting is taken into consideration. This metric is
also available for individual nodes. Micro-bursting occurs when an EBS
volume bursts high IOPS or throughput for significantly shorter periods
of time (less than one minute).

Relevant statistics: Minimum, Maximum, Average

WriteThroughput The throughput, in bytes per second, for write operations on EBS
volumes. This metric is also available for individual nodes.

Relevant statistics: Minimum, Maximum, Average

WriteThro
ughputMic
roBursting

The throughput, in bytes per second, for write operations on EBS
volumes when micro-bursting is taken into consideration. This metric is
also available for individual nodes. Micro-bursting occurs when an EBS
volume bursts high IOPS or throughput for significantly shorter periods
of time (less than one minute).

EBS volume metrics 539

https://repost.aws/knowledge-center/ebs-identify-micro-bursting
https://repost.aws/knowledge-center/ebs-identify-micro-bursting

Amazon OpenSearch Service Developer Guide

Metric Description

Relevant statistics: Minimum, Maximum, Average

DiskQueueDepth The number of pending input and output (I/O) requests for an EBS
volume.

Relevant statistics: Minimum, Maximum, Average

ReadIOPS The number of input and output (I/O) operations per second for read
operations on EBS volumes. This metric is also available for individual
nodes.

Relevant statistics: Minimum, Maximum, Average

ReadIOPSM
icroBursting

The number of input and output (I/O) operations per second for
read operations on EBS volumes when micro-bursting is taken into
consideration. This metric is also available for individual nodes. Micro-
bursting occurs when an EBS volume bursts high IOPS or throughput
for significantly shorter periods of time (less than one minute).

Relevant statistics: Minimum, Maximum, Average

WriteIOPS The number of input and output (I/O) operations per second for write
operations on EBS volumes. This metric is also available for individual
nodes.

Relevant statistics: Minimum, Maximum, Average

WriteIOPS
MicroBursting

The number of input and output (I/O) operations per second for
write operations on EBS volumes when micro-bursting is taken into
consideration. This metric is also available for individual nodes. Micro-
bursting occurs when an EBS volume bursts high IOPS or throughput
for significantly shorter periods of time (less than one minute).

Relevant statistics: Minimum, Maximum, Average

EBS volume metrics 540

https://repost.aws/knowledge-center/ebs-identify-micro-bursting
https://repost.aws/knowledge-center/ebs-identify-micro-bursting

Amazon OpenSearch Service Developer Guide

Metric Description

BurstBalance The percentage of input and output (I/O) credits remaining in the burst
bucket for an EBS volume. A value of 100 means that the volume has
accumulated the maximum number of credits. If this percentage falls
below 70%, see the section called “Low EBS burst balance”. The burst
balance stays at 0 for domains with gp3 volumes types, and domains
with gp2 volumes that have a volume size above 1000 GiB.

Relevant statistics: Minimum, Maximum, Average

Instance metrics

Amazon OpenSearch Service provides the following metrics for each instance in a domain.
OpenSearch Service also aggregates these instance metrics to provide insight into overall cluster
health. You can verify this behavior using the Sample Count statistic in the console. Note that each
metric in the following table has relevant statistics for the node and the cluster.

Important

Different versions of Elasticsearch use different thread pools to process calls to the _index
API. Elasticsearch 1.5 and 2.3 use the index thread pool. Elasticsearch 5.x, 6.0, and 6.2 use
the bulk thread pool. OpenSearch and Elasticsearch 6.3 and later use the write thread pool.
Currently, the OpenSearch Service console doesn't include a graph for the bulk thread pool.
Use GET _cluster/settings?include_defaults=true to check thread pool and
queue sizes for your cluster.

Metric Description

IndexingLatency The difference in total time, in milliseconds, taken by all indexing
operations in a node between minute N and minute (N-1).

Relevant node statistics: Average

Relevant cluster statistics: Average, Maximum

Instance metrics 541

Amazon OpenSearch Service Developer Guide

Metric Description

IndexingRate The number of indexing operations per minute. A single call to
the _bulk API that adds two documents and updates two counts
as four operations, which might be spread across one or more
nodes. If that index has one or more replicas, other nodes in the
cluster also record a total of four indexing operations. Document
deletions do not count towards this metric.

Relevant node statistics: Average

Relevant cluster statistics: Average, Maximum, Sum

SearchLatency The difference in total time, in milliseconds, taken by all searches
in a node between minute N and minute (N-1).

Relevant node statistics: Average

Relevant cluster statistics: Average, Maximum

SearchRate The total number of search requests per minute for all shards on
a data node. A single call to the _search API might return results
from many different shards. If five of these shards are on one
node, the node would report 5 for this metric, even though the
client only made one request.

Relevant node statistics: Average

Relevant cluster statistics: Average, Maximum, Sum

SegmentCount The number of segments on a data node. The more segments
you have, the longer each search takes. OpenSearch occasionally
merges smaller segments into a larger one.

Relevant node statistics: Maximum, Average

Relevant cluster statistics: Sum, Maximum, Average

Instance metrics 542

Amazon OpenSearch Service Developer Guide

Metric Description

SysMemoryUtilizati
on

The percentage of the instance's memory that is in use. High
values for this metric are normal and usually do not represent
a problem with your cluster. For a better indicator of potential
 performance and stability issues, see the JVMMemoryPressure
metric.

Relevant node statistics: Minimum, Maximum, Average

Relevant cluster statistics: Minimum, Maximum, Average

JVMGCYoungCollecti
onCount

The number of times that "young generation" garbage collection
has run. A large, ever-growing number of runs is a normal part of
cluster operations.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

JVMGCYoungCollecti
onTime

The amount of time, in milliseconds, that the cluster has spent
performing "young generation" garbage collection.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

JVMGCOldCollection
Count

The number of times that "old generation" garbage collection
has run. In a cluster with sufficient resources, this number should
remain small and grow infrequently.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

JVMGCOldCollection
Time

The amount of time, in milliseconds, that the cluster has spent
performing "old generation" garbage collection.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

Instance metrics 543

Amazon OpenSearch Service Developer Guide

Metric Description

OpenSearchDashboar
dsConcurrentConnec
tions

The number of active concurrent connections to OpenSearch
Dashboards. If this number is consistently high, consider scaling
your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

OpenSearchDashboar
dsHealthyNode

A health check for the individual OpenSearch Dashboards node.
A value of 1 indicates normal behavior. A value of 0 indicates that
Dashboards is inaccessible.

Relevant node statistics: Minimum

Relevant cluster statistics: Minimum, Maximum, Average

OpenSearchDashboar
dsHeapTotal

The amount of heap memory allocated to OpenSearch Dashboard
s in MiB. Different EC2 instance types can impact the exact
memory allocation.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

OpenSearchDashboar
dsHeapUsed

The absolute amount of heap memory used by OpenSearch
Dashboards in MiB.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

OpenSearchDashboar
dsHeapUtilization

The maximum percentage of available heap memory used by
OpenSearch Dashboards. If this value increases above 80%,
consider scaling your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Minimum, Maximum, Average

Instance metrics 544

Amazon OpenSearch Service Developer Guide

Metric Description

OpenSearchDashboar
dsOS1MinuteLoad

The one-minute CPU load average for OpenSearch Dashboards.
The CPU load should ideally stay below 1.00. While temporary
spikes are fine, we recommend increasing the size of the instance
type if this metric is consistently above 1.00.

Relevant node statistics: Average

Relevant cluster statistics: Average, Maximum

OpenSearchDashboar
dsRequestTotal

The total count of HTTP requests made to OpenSearch
Dashboards. If your system is slow or you see high numbers of
Dashboards requests, consider increasing the size of the instance
type.

Relevant node statistics: Sum

Relevant cluster statistics: Sum

OpenSearchDashboar
dsResponseTimesMax
InMillis

The maximum amount of time, in milliseconds, that it takes for
OpenSearch Dashboards to respond to a request. If requests
consistently take a long time to return results, consider increasing
the size of the instance type.

Relevant node statistics: Maximum

Relevant cluster statistics: Maximum, Average

SearchTaskCancelle
d

The number of coordinator node cancellations.

Relevant node statistics: Sum

Relevant cluster statistics: Sum

SearchShardTaskCan
celled

The number of data node cancellations.

Relevant node statistics: Sum

Relevant cluster statistics: Sum,

Instance metrics 545

Amazon OpenSearch Service Developer Guide

Metric Description

ThreadpoolForce_me
rgeQueue

The number of queued tasks in the force merge thread pool. If
the queue size is consistently high, consider scaling your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

ThreadpoolForce_me
rgeRejected

The number of rejected tasks in the force merge thread pool. If
this number continually grows, consider scaling your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum

ThreadpoolForce_me
rgeThreads

The size of the force merge thread pool.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

ThreadpoolIndexQue
ue

The number of queued tasks in the index thread pool. If the
queue size is consistently high, consider scaling your cluster. The
maximum index queue size is 200.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

ThreadpoolIndexRej
ected

The number of rejected tasks in the index thread pool. If this
number continually grows, consider scaling your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum

ThreadpoolIndexThr
eads

The size of the index thread pool.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

Instance metrics 546

Amazon OpenSearch Service Developer Guide

Metric Description

ThreadpoolSearchQu
eue

The number of queued tasks in the search thread pool. If the
queue size is consistently high, consider scaling your cluster. The
maximum search queue size is 1,000.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

ThreadpoolSearchRe
jected

The number of rejected tasks in the search thread pool. If this
number continually grows, consider scaling your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum

ThreadpoolSearchTh
reads

The size of the search thread pool.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

Threadpoolsql-work
erQueue

The number of queued tasks in the SQL search thread pool. If the
queue size is consistently high, consider scaling your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

Threadpoolsql-work
erRejected

The number of rejected tasks in the SQL search thread pool. If
this number continually grows, consider scaling your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum

Threadpoolsql-work
erThreads

The size of the SQL search thread pool.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

Instance metrics 547

Amazon OpenSearch Service Developer Guide

Metric Description

ThreadpoolBulkQueu
e

The number of queued tasks in the bulk thread pool. If the queue
size is consistently high, consider scaling your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

ThreadpoolBulkReje
cted

The number of rejected tasks in the bulk thread pool. If this
number continually grows, consider scaling your cluster.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum

ThreadpoolBulkThre
ads

The size of the bulk thread pool.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

ThreadpoolWriteThr
eads

The size of the write thread pool.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

ThreadpoolWriteQue
ue

The number of queued tasks in the write thread pool.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

Instance metrics 548

Amazon OpenSearch Service Developer Guide

Metric Description

ThreadpoolWriteRej
ected

The number of rejected tasks in the write thread pool.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

Note

Because the default write queue size was increased from
200 to 10000 in version 7.1, this metric is no longer the
only indicator of rejections from OpenSearch Service.
Use the CoordinatingWriteRejected , PrimaryWr
iteRejected , and ReplicaWriteRejected
metrics to monitor rejections in versions 7.1 and later.

CoordinatingWriteR
ejected

The total number of rejections happened on the coordinating
node due to indexing pressure since the last OpenSearch Service
process startup.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

This metric is available in version 7.1 and above.

PrimaryWriteReject
ed

The total number of rejections happened on the primary shards
due to indexing pressure since the last OpenSearch Service
process startup.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

This metric is available in version 7.1 and above.

Instance metrics 549

Amazon OpenSearch Service Developer Guide

Metric Description

ReplicaWriteReject
ed

The total number of rejections happened on the replica shards
due to indexing pressure since the last OpenSearch Service
process startup.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

This metric is available in version 7.1 and above.

UltraWarm metrics

Amazon OpenSearch Service provides the following metrics for UltraWarm nodes.

Metric Description

WarmCPUUt
ilization

The percentage of CPU usage for UltraWarm nodes in the cluster.
Maximum shows the node with the highest CPU usage. Average
represents all UltraWarm nodes in the cluster. This metric is also
available for individual UltraWarm nodes.

Relevant statistics: Maximum, Average

WarmFreeS
torageSpace

The amount of free warm storage space in MiB. Because UltraWarm
 uses Amazon S3 rather than attached disks, Sum is the only relevant
statistic. You must leave the period at one minute to get an accurate
value.

Relevant statistics: Sum

WarmSearc
hableDocuments

The total number of searchable documents across all warm indexes in
the cluster. You must leave the period at one minute to get an accurate
value.

Relevant statistics: Sum

UltraWarm metrics 550

Amazon OpenSearch Service Developer Guide

Metric Description

WarmSearc
hLatency

The difference in total time, in milliseconds, taken by all searches in an
UltraWarm between minute N and minute (N-1).

Relevant node statistics: Average

Relevant cluster statistics: Average, Maximum

WarmSearchRate The total number of search requests per minute for all shards on an
UltraWarm node. A single call to the _search API might return results
from many different shards. If five of these shards are on one node, the
node would report 5 for this metric, even though the client only made
one request.

Relevant node statistics: Average

Relevant cluster statistics: Average, Maximum, Sum

WarmStora
geSpaceUt
ilization

The total amount of warm storage space, in MiB, that the cluster is
using.

Relevant statistics: Maximum

HotStorag
eSpaceUti
lization

The total amount of hot storage space that the cluster is using.

Relevant statistics: Maximum

WarmSysMe
moryUtili
zation

The percentage of the warm node's memory that is in use.

Relevant statistics: Maximum

HotToWarm
Migration
QueueSize

The number of indexes currently waiting to migrate from hot to warm
storage.

Relevant statistics: Maximum

UltraWarm metrics 551

Amazon OpenSearch Service Developer Guide

Metric Description

WarmToHot
Migration
QueueSize

The number of indexes currently waiting to migrate from warm to hot
storage.

Relevant statistics: Maximum

HotToWarm
Migration
FailureCount

The total number of failed hot to warm migrations.

Relevant statistics: Sum

HotToWarm
Migration
ForceMerg
eLatency

The average latency of the force merge stage of the migration
 process. If this stage consistently takes too long, consider increasin
g index.ultrawarm.migration.force_merge.max_num
_segments .

Relevant statistics: Average

HotToWarm
Migration
SnapshotL
atency

The average latency of the snapshot stage of the migration process.
If this stage consistently takes too long, ensure that your shards are
appropriately sized and distributed throughout the cluster.

Relevant statistics: Average

HotToWarm
Migration
Processin
gLatency

The average latency of successful hot to warm migrations, not
including time spent in the queue. This value is the sum of the amount
of time it takes to complete the force merge, snapshot, and shard
relocation stages of the migration process.

Relevant statistics: Average

HotToWarm
Migration
SuccessCount

The total number of successful hot to warm migrations.

Relevant statistics: Sum

HotToWarm
Migration
SuccessLatency

The average latency of successful hot to warm migrations, including
time spent in the queue.

Relevant statistics: Average

UltraWarm metrics 552

Amazon OpenSearch Service Developer Guide

Metric Description

WarmThrea
dpoolSear
chThreads

The size of the UltraWarm search thread pool.

Relevant node statistics: Maximum

Relevant cluster statistics: Average, Sum

WarmThrea
dpoolSear
chRejected

The number of rejected tasks in the UltraWarm search thread pool.
If this number continually grows, consider adding more UltraWarm
 nodes.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum

WarmThrea
dpoolSear
chQueue

The number of queued tasks in the UltraWarm search thread pool. If
the queue size is consistently high, consider adding more UltraWarm
 nodes.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

WarmJVMMe
moryPressure

The maximum percentage of the Java heap used for the UltraWarm
 nodes.

Relevant statistics: Maximum

Note

The logic for this metric changed in service software
R20220323. For more information, see the release notes.

WarmOldGe
nJVMMemor
yPressure

The maximum percentage of the Java heap used for the "old generatio
n" per UltraWarm node.

Relevant statistics: Maximum

UltraWarm metrics 553

Amazon OpenSearch Service Developer Guide

Metric Description

WarmJVMGC
YoungColl
ectionCount

The number of times that "young generation" garbage collection has
run on UltraWarm nodes. A large, ever-growing number of runs is a
normal part of cluster operations.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

WarmJVMGC
YoungColl
ectionTime

The amount of time, in milliseconds, that the cluster has spent
performing "young generation" garbage collection on UltraWarm
 nodes.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

WarmJVMGC
OldCollec
tionCount

The number of times that "old generation" garbage collection has run
on UltraWarm nodes. In a cluster with sufficient resources, this number
should remain small and grow infrequently.

Relevant node statistics: Maximum

Relevant cluster statistics: Sum, Maximum, Average

Cold storage metrics

Amazon OpenSearch Service provides the following metrics for cold storage.

Metric Description

ColdStorageSpaceUt
ilization

The total amount of cold storage space, in MiB, that the cluster
is using.

Relevant statistics: Max

ColdToWarmMigratio
nFailureCount

The total number of failed cold to warm migrations.

Cold storage metrics 554

Amazon OpenSearch Service Developer Guide

Metric Description

Relevant statistics: Sum

ColdToWarmMigratio
nLatency

The amount of time for successful cold to warm migrations to
complete.

Relevant statistics: Average

ColdToWarmMigratio
nQueueSize

The number of indexes currently waiting to migrate from cold
to warm storage.

Relevant statistics: Maximum

ColdToWarmMigratio
nSuccessCount

The total number of successful cold to warm migrations.

Relevant statistics: Sum

WarmToColdMigratio
nFailureCount

The total number of failed warm to cold migrations.

Relevant statistics: Sum

WarmToColdMigratio
nLatency

The amount of time for successful warm to cold migrations to
complete.

Relevant statistics: Average

WarmToColdMigratio
nQueueSize

The number of indexes currently waiting to migrate from warm
to cold storage.

Relevant statistics: Maximum

WarmToColdMigratio
nSuccessCount

The total number of successful warm to cold migrations.

Relevant statistics: Sum

OR1 metrics

Amazon OpenSearch Service provides the following metrics for OR1 instances.

OR1 metrics 555

Amazon OpenSearch Service Developer Guide

Metric Description

RemoteStorageUsedS
pace

The total amount of Amazon S3 space, in MiB, that the cluster
is using.

Relevant statistics: Sum

RemoteStorageWrite
Rejected

The total number of requests rejected on primary shards due
to remote storage and replication pressure. This is calculated
starting from the last OpenSearch Service process startup.

Relevant statistics: Sum

Alerting metrics

Amazon OpenSearch Service provides the following metrics for alerting.

Metric Description

AlertingD
egraded

A value of 1 means that either the alerting index is red or one or more
nodes is not on schedule. A value of 0 indicates normal behavior.

Relevant statistics: Maximum

AlertingI
ndexExists

A value of 1 means the .opensearch-alerting-config index
exists. A value of 0 means it does not. Until you use the alerting feature
for the first time, this value remains 0.

Relevant statistics: Maximum

AlertingI
ndexStatu
s.green

The health of the index. A value of 1 means green. A value of 0 means
that the index either doesn't exist or isn't green.

Relevant statistics: Maximum

AlertingI
ndexStatus.red

The health of the index. A value of 1 means red. A value of 0 means
that the index either doesn't exist or isn't red.

Relevant statistics: Maximum

Alerting metrics 556

Amazon OpenSearch Service Developer Guide

Metric Description

AlertingI
ndexStatu
s.yellow

The health of the index. A value of 1 means yellow. A value of 0 means
that the index either doesn't exist or isn't yellow.

Relevant statistics: Maximum

AlertingN
odesNotOn
Schedule

A value of 1 means some jobs are not running on schedule. A value
of 0 means that all alerting jobs are running on schedule (or that no
alerting jobs exist). Check the OpenSearch Service console or make a
_nodes/stats request to see if any nodes show high resource usage.

Relevant statistics: Maximum

AlertingN
odesOnSchedule

A value of 1 means that all alerting jobs are running on schedule (or
that no alerting jobs exist). A value of 0 means some jobs are not
running on schedule.

Relevant statistics: Maximum

AlertingS
cheduledJ
obEnabled

A value of 1 means that the opensearch.scheduled_jobs.e
nabled cluster setting is true. A value of 0 means it is false, and
scheduled jobs are disabled.

Relevant statistics: Maximum

Anomaly detection metrics

Amazon OpenSearch Service provides the following metrics for anomaly detection.

Metric Description

ADPluginU
nhealthy

A value of 1 means that the anomaly detection plugin is not functioni
ng properly, either because of a high number of failures or because one
of the indexes that it uses is red. A value of 0 indicates the plugin is
working as expected.

Relevant statistics: Maximum

Anomaly detection metrics 557

Amazon OpenSearch Service Developer Guide

Metric Description

ADExecute
RequestCount

The number of requests to detect anomalies.

Relevant statistics: Sum

ADExecute
FailureCount

The number of failed requests to detect anomalies.

Relevant statistics: Sum

ADHCExecu
teFailureCount

The number of failed requests to detect anomalies for high cardinality
detectors.

Relevant statistics: Sum

ADHCExecu
teRequestCount

The number of requests to detect anomalies for high cardinality
detectors.

Relevant statistics: Sum

ADAnomaly
ResultsIn
dexStatus
IndexExists

A value of 1 means the index that the .opensearch-anomaly-
results alias points to exists. Until you use anomaly detection for
the first time, this value remains 0.

Relevant statistics: Maximum

ADAnomaly
ResultsIn
dexStatus.red

A value of 1 means the index that the .opensearch-anomaly-
results alias points to is red. A value of 0 means it is not. Until you
use anomaly detection for the first time, this value remains 0.

Relevant statistics: Maximum

ADAnomaly
Detectors
IndexStat
usIndexExists

A value of 1 means that the .opensearch-anomaly-detecto
rs index exists. A value of 0 means it does not. Until you use anomaly
detection for the first time, this value remains 0.

Relevant statistics: Maximum

Anomaly detection metrics 558

Amazon OpenSearch Service Developer Guide

Metric Description

ADAnomaly
Detectors
IndexStat
us.red

A value of 1 means that the .opensearch-anomaly-detecto
rs index is red. A value of 0 means it is not. Until you use anomaly
detection for the first time, this value remains 0.

Relevant statistics: Maximum

ADModelsC
heckpoint
IndexStat
usIndexExists

A value of 1 means that the .opensearch-anomaly-checkpo
ints index exists. A value of 0 means it does not. Until you use
anomaly detection for the first time, this value remains 0.

Relevant statistics: Maximum

ADModelsC
heckpoint
IndexStat
us.red

A value of 1 means that the .opensearch-anomaly-checkpo
ints index is red. A value of 0 means it is not. Until you use anomaly
detection for the first time, this value remains 0.

Relevant statistics: Maximum

Asynchronous search metrics

Amazon OpenSearch Service provides the following metrics for asynchronous search.

Asynchronous search coordinator node statistics (per coordinator node)

Metric Description

Asynchron
ousSearch
SubmissionRate

The number of asynchronous searches submitted in the last minute.

Asynchron
ousSearch
Initializ
edRate

The number of asynchronous searches initialized in the last minute.

Asynchronous search metrics 559

Amazon OpenSearch Service Developer Guide

Metric Description

Asynchron
ousSearch
RunningCurrent

The number of asynchronous searches currently running.

Asynchron
ousSearch
CompletionRate

The number of asynchronous searches successfully completed in the
last minute.

Asynchron
ousSearch
FailureRate

The number of asynchronous searches that completed and failed in the
last minute.

Asynchron
ousSearch
PersistRate

The number of asynchronous searches that persisted in the last minute.

Asynchron
ousSearch
PersistFa
iledRate

The number of asynchronous searches that failed to persist in the last
minute.

Asynchron
ousSearch
Rejected

The total number of asynchronous searches rejected since the node up
time.

Asynchron
ousSearch
Cancelled

The total number of asynchronous searches cancelled since the node
up time.

Asynchron
ousSearch
MaxRunningTime

The duration of longest running asynchronous search on a node in the
last minute.

Asynchronous search cluster statistics

Asynchronous search metrics 560

Amazon OpenSearch Service Developer Guide

Metric Description

Asynchron
ousSearch
StoreHealth

The health of the store in the persisted index (RED/non-RED) in the last
minute.

Asynchron
ousSearch
StoreSize

The size of the system index across all shards in the last minute.

Asynchron
ousSearch
StoredRes
ponseCount

The numbers of stored responses in the system index in the last
minute.

Auto-Tune metrics

Amazon OpenSearch Service provides the following metrics for Auto-Tune.

Metric Description

AutoTuneC
hangesHis
toryHeapSize

The change history in MiB for heap size tuning values.

AutoTuneC
hangesHis
toryJVMYo
ungGenArgs

The change history for JVM YongGen arguments.

AutoTuneFailed A boolean that indicates if the Auto-Tune change failed.

AutoTuneS
ucceeded

A boolean that indicates if the Auto-Tune change succeeded.

AutoTuneValue The queue change history (count) and cache tunings change history (in
MiB) for non-disruptive changes.

Auto-Tune metrics 561

Amazon OpenSearch Service Developer Guide

Multi-AZ with Standby metrics

Amazon OpenSearch Service provides the following metrics for Multi-AZ with Standby.

Node-level metrics for data nodes in active Availability Zones

Metric Description

CPUUtilization The percentage of CPU usage for data nodes in the cluster. Maximum
shows the node with the highest CPU usage. Average represents all
nodes in the cluster. This metric is also available for individual nodes.

FreeStora
geSpace

The free space for data nodes in the cluster. Sum shows total free space
for the cluster, but you must leave the period at one minute to get
an accurate value. Minimum and Maximum show the nodes with the
least and most free space, respectively. This metric is also available
for individual nodes. OpenSearch Service throws a ClusterBl
ockException when this metric reaches 0. To recover, you must
either delete indexes, add larger instances, or add EBS-based storage
to existing instances. To learn more, see the section called “Lack of
available storage space”.

The OpenSearch Service console displays this value in GiB. The Amazon
CloudWatch console displays it in MiB.

JVMMemory
Pressure

The maximum percentage of the Java heap used for all data nodes in
the cluster. OpenSearch Service uses half of an instance's RAM for the
Java heap, up to a heap size of 32 GiB. You can scale instances verticall
y up to 64 GiB of RAM, at which point you can scale horizontally by
adding instances. See the section called “Recommended CloudWatch
alarms”.

SysMemory
Utilization

The percentage of the instance's memory that is in use. High values
for this metric are normal and usually do not represent a problem
with your cluster. For a better indicator of potential performance and
stability issues, see the JVMMemoryPressure metric.

Multi-AZ with Standby metrics 562

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-multiaz.html#managedomains-za-no-standby

Amazon OpenSearch Service Developer Guide

Metric Description

IndexingLatency The difference in total time, in milliseconds, taken by all indexing
operations in a node between minute N and minute (N-1).

IndexingRate The number of indexing operations per minute.

SearchLatency The difference in total time, in milliseconds, taken by all searches in a
node between minute N and minute (N-1).

SearchRate The total number of search requests per minute for all shards on a data
node.

Threadpoo
lSearchQueue

The number of queued tasks in the search thread pool. If the queue size
is consistently high, consider scaling your cluster. The maximum search
queue size is 1,000.

Threadpoo
lWriteQueue

The number of queued tasks in the write thread pool.

Threadpoo
lSearchRe
jected

The number of rejected tasks in the search thread pool. If this number
continually grows, consider scaling your cluster.

Threadpoo
lWriteRejected

The number of rejected tasks in the write thread pool.

Cluster-level metrics for clusters in active Availability Zones

Metric Description

DataNodes The total number of active and standby shards.

DataNodes
Shards.active

The total number of active primary and replica shards.

Multi-AZ with Standby metrics 563

Amazon OpenSearch Service Developer Guide

Metric Description

DataNodes
Shards.un
assigned

The number of shards that are not allocated to nodes in the cluster.

DataNodes
Shards.in
itializing

The number of shards that are under initialization.

DataNodes
Shards.re
locating

The number of shards that are under relocation.

Availability Zone rotation metrics

If ActiveReads.Availability-Zone = 1, then the zone is active. If
ActiveReads.Availability-Zone = 0, then the zone is in standby.

Point in time metrics

Amazon OpenSearch Service provides the following metrics for point in time (PIT) searches.

PIT coordinator node statistics (per coordinator node)

Metric Description

CurrentPo
intInTime

The number of active PIT search contexts in the node.

TotalPoin
tInTime

The number of expired PIT search contexts since the node up time.

AvgPointI
nTimeAliveTime

The average keep alive of PIT search contexts since the node up time.

HasActive
PointInTime

A value of 1 indicates that there are active PIT contexts on nodes since
the node up time. A value of 0 means there are not.

Point in time metrics 564

Amazon OpenSearch Service Developer Guide

Metric Description

HasUsedPo
intInTime

A value of 1 indicates that there are expired PIT contexts on nodes
since the node up time. A value of 0 means there are not.

SQL metrics

Amazon OpenSearch Service provides the following metrics for SQL support.

Metric Description

SQLFailed
RequestCo
untByCusErr

The number of requests to the _sql API that failed due to a client
issue. For example, a request might return HTTP status code 400 due
to an IndexNotFoundException .

Relevant statistics: Sum

SQLFailed
RequestCo
untBySysErr

The number of requests to the _sql API that failed due to a server
problem or feature limitation. For example, a request might return
HTTP status code 503 due to a VerificationException .

Relevant statistics: Sum

SQLRequestCount The number of requests to the _sql API.

Relevant statistics: Sum

SQLDefaul
tCursorRe
questCount

Similar to SQLRequestCount , but only counts pagination requests.

Relevant statistics: Sum

SQLUnhealthy A value of 1 indicates that, in response to certain requests, the SQL
plugin is returning 5xx response codes or passing invalid query DSL
to OpenSearch. Other requests should continue to succeed. A value
of 0 indicates no recent failures. If you see a sustained value of 1,
troubleshoot the requests your clients are making to the plugin.

Relevant statistics: Maximum

SQL metrics 565

Amazon OpenSearch Service Developer Guide

k-NN metrics

Amazon OpenSearch Service includes the following metrics for the k-nearest neighbor (k-NN)
plugin.

Metric Description

KNNCacheCapacityRe
ached

Per-node metric for whether cache capacity has been reached.
This metric is only relevant to approximate k-NN search.

Relevant statistics: Maximum

KNNCircuitBreakerT
riggered

Per-cluster metric for whether the circuit breaker is triggered
. If any nodes return a value of 1 for KNNCacheCapacityRe
ached , this value will also return 1. This metric is only
relevant to approximate k-NN search.

Relevant statistics: Maximum

KNNEvictionCount Per-node metric for the number of graphs that have been
evicted from the cache due to memory constraints or idle time.
Explicit evictions that occur because of index deletion are not
counted. This metric is only relevant to approximate k-NN
search.

Relevant statistics: Sum

KNNGraphIndexErrors Per-node metric for the number of requests to add the
knn_vector field of a document to a graph that produced
an error.

Relevant statistics: Sum

KNNGraphIndexRequests Per-node metric for the number of requests to add the
knn_vector field of a document to a graph.

Relevant statistics: Sum

k-NN metrics 566

Amazon OpenSearch Service Developer Guide

Metric Description

KNNGraphMemoryUsage Per-node metric for the current cache size (total size of all
graphs in memory) in kilobytes. This metric is only relevant to
approximate k-NN search.

Relevant statistics: Average

KNNGraphQueryErrors Per-node metric for the number of graph queries that
produced an error.

Relevant statistics: Sum

KNNGraphQueryRequests Per-node metric for the number of graph queries.

Relevant statistics: Sum

KNNHitCount Per-node metric for the number of cache hits. A cache hit
occurs when a user queries a graph that is already loaded into
memory. This metric is only relevant to approximate k-NN
search.

Relevant statistics: Sum

KNNLoadExceptionCount Per-node metric for the number of times an exception
occurred while trying to load a graph into the cache. This
metric is only relevant to approximate k-NN search.

Relevant statistics: Sum

KNNLoadSuccessCount Per-node metric for the number of times the plugin successfu
lly loaded a graph into the cache. This metric is only relevant
to approximate k-NN search.

Relevant statistics: Sum

k-NN metrics 567

Amazon OpenSearch Service Developer Guide

Metric Description

KNNMissCount Per-node metric for the number of cache misses. A cache miss
occurs when a user queries a graph that is not yet loaded into
memory. This metric is only relevant to approximate k-NN
search.

Relevant statistics: Sum

KNNQueryRequests Per-node metric for the number of query requests the k-NN
plugin received.

Relevant statistics: Sum

KNNScriptCompilati
onErrors

Per-node metric for the number of errors during script
compilation. This statistic is only relevant to k-NN score script
search.

Relevant statistics: Sum

KNNScriptCompilations Per-node metric for the number of times the k-NN script has
been compiled. This value should usually be 1 or 0, but if the
cache containing the compiled scripts is filled, the k-NN script
might be recompiled. This statistic is only relevant to k-NN
score script search.

Relevant statistics: Sum

KNNScriptQueryErrors Per-node metric for the number of errors during script queries.
This statistic is only relevant to k-NN score script search.

Relevant statistics: Sum

KNNScriptQueryRequ
ests

Per-node metric for the total number of script queries. This
statistic is only relevant to k-NN score script search.

Relevant statistics: Sum

k-NN metrics 568

Amazon OpenSearch Service Developer Guide

Metric Description

KNNTotalLoadTime The time in nanoseconds that k-NN has taken to load graphs
into the cache. This metric is only relevant to approximate k-
NN search.

Relevant statistics: Sum

Cross-cluster search metrics

Amazon OpenSearch Service provides the following metrics for cross-cluster search.

Source domain metrics

Metric Dimension Description

CrossClus
terOutbou
ndConnections

Connectio
nId

Number of connected nodes. If your response includes
one or more skipped domains, use this metric to trace any
unhealthy connections. If this number drops to 0, then the
connection is unhealthy.

CrossClus
terOutbou
ndRequests

Connectio
nId

Number of search requests sent to the destination domain.
Use to check if the load of cross-cluster search requests
are overwhelming your domain, correlate any spike in this
metric with any JVM/CPU spike.

Destination domain metric

Metric Dimension Description

CrossClus
terInboun
dRequests

Connectio
nId

Number of incoming connection requests received from the
source domain.

Add a CloudWatch alarm in the event that you lose a connection unexpectedly. For steps to create
an alarm, see Create a CloudWatch Alarm Based on a Static Threshold.

Cross-cluster search metrics 569

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

Amazon OpenSearch Service Developer Guide

Cross-cluster replication metrics

Amazon OpenSearch Service provides the following metrics for cross-cluster replication.

Metric Description

ReplicationRate The average rate of replication operations per second. This metric is
similar to the IndexingRate metric.

LeaderCheckPoint For a specific connection, the sum of leader checkpoint values across
all replicating indexes. You can use this metric to measure replication
latency.

FollowerC
heckPoint

For a specific connection, the sum of follower checkpoint values
across all replicating indexes. You can use this metric to measure
replication latency.

Replicati
onNumSync
ingIndices

The number of indexes that have a replication status of SYNCING.

Replicati
onNumBoot
strapping
Indices

The number of indexes that have a replication status of BOOTSTRAP
PING .

Replicati
onNumPaus
edIndices

The number of indexes that have a replication status of PAUSED.

Replicati
onNumFail
edIndices

The number of indexes that have a replication status of FAILED.

CrossClus
terOutbou
ndReplica
tionRequests

The number of replication transport requests on the follower domain.
Transport requests are internal and occur each time a replication API
operation is called. They also occur when the follower domain polls
changes from the leader domain.

Cross-cluster replication metrics 570

Amazon OpenSearch Service Developer Guide

Metric Description

CrossClus
terInboun
dReplicat
ionRequests

The number of replication transport requests on the leader domain.
Transport requests are internal and occur each time a replication API
operation is called.

AutoFollo
wNumSucce
ssStartRe
plication

The number of follower indexes that have been successfully created
by a replication rule for a specific connection.

AutoFollo
wNumFaile
dStartRep
lication

The number of follower indexes that failed to be created by a replicati
on rule when there was a matching pattern. This problem might arise
due to a network issue on the remote cluster, or a security issue (i.e.
the associated role doesn't have permission to start replication).

AutoFollo
wLeaderCa
llFailure

Whether there have been any failed queries from the follower index
to the leader index to pull new data. A value of 1 means that there
have been 1 or more failed calls in the last minute.

Learning to Rank metrics

Amazon OpenSearch Service provides the following metrics for Learning to Rank.

Metric Description

LTRReques
tTotalCount

Total count of ranking requests.

LTRReques
tErrorCount

Total count of unsuccessful requests.

LTRStatus.red Tracks if one of the indexes needed to run the plugin is red.

LTRMemoryUsage Total memory used by the plugin.

Learning to Rank metrics 571

Amazon OpenSearch Service Developer Guide

Metric Description

LTRFeatur
eMemoryUs
ageInBytes

The amount of memory, in bytes, used by Learning to Rank feature
fields.

LTRFeatur
esetMemor
yUsageInBytes

The amount of memory, in bytes, used by all Learning to Rank feature
sets.

LTRModelM
emoryUsag
eInBytes

The amount of memory, in bytes, used by all Learning to Rank
models.

Piped Processing Language metrics

Amazon OpenSearch Service provides the following metrics for Piped Processing Language.

Metric Description

PPLFailed
RequestCo
untByCusErr

The number of requests to the _ppl API that failed due to a client
issue. For example, a request might return HTTP status code 400 due
to an IndexNotFoundException .

PPLFailed
RequestCo
untBySysErr

The number of requests to the _ppl API that failed due to a server
problem or feature limitation. For example, a request might return
HTTP status code 503 due to a VerificationException .

PPLRequestCount The number of requests to the _ppl API.

Monitoring OpenSearch logs with Amazon CloudWatch Logs

Amazon OpenSearch Service exposes the following OpenSearch logs through Amazon CloudWatch
Logs:

• Error logs

Piped Processing Language metrics 572

Amazon OpenSearch Service Developer Guide

• Slow logs

• Audit logs

Search slow logs, indexing slow logs, and error logs are useful for troubleshooting performance
and stability issues. Audit logs track user activity for compliance purposes. All the logs are disabled
by default. If enabled, standard CloudWatch pricing applies.

Note

Error logs are available only for OpenSearch and Elasticsearch versions 5.1 and later. Slow
logs are available for all OpenSearch and Elasticsearch versions.

For its logs, OpenSearch uses Apache Log4j 2 and its built-in log levels (from least to most severe)
of TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

If you enable error logs, OpenSearch Service publishes log lines of WARN, ERROR, and FATAL to
CloudWatch. OpenSearch Service also publishes several exceptions from the DEBUG level, including
the following:

• org.opensearch.index.mapper.MapperParsingException

• org.opensearch.index.query.QueryShardException

• org.opensearch.action.search.SearchPhaseExecutionException

• org.opensearch.common.util.concurrent.OpenSearchRejectedExecutionException

• java.lang.IllegalArgumentException

Error logs can help with troubleshooting in many situations, including the following:

• Painless script compilation issues

• Invalid queries

• Indexing issues

• Snapshot failures

• Index State Management migration failures

Topics

Monitoring logs 573

https://opensearch.org/docs/latest/monitoring-your-cluster/logs/#slow-logs
https://aws.amazon.com/cloudwatch/pricing/
https://logging.apache.org/log4j/2.x/

Amazon OpenSearch Service Developer Guide

• Enabling log publishing (console)

• Enabling log publishing (Amazon CLI)

• Enabling log publishing (Amazon SDKs)

• Enabling log publishing (CloudFormation)

• Setting OpenSearch logging thresholds for slow logs

• Viewing logs

Enabling log publishing (console)

The OpenSearch Service console is the simplest way to enable the publishing of logs to
CloudWatch.

To enable log publishing to CloudWatch (console)

1. Go to https://aws.amazon.com, and then choose Sign In to the Console.

2. Under Analytics, choose Amazon OpenSearch Service.

3. Select the domain you want to update.

4. On the Logs tab, select a log type and choose Enable.

5. Create a new CloudWatch log group or choose an existing one.

Note

If you plan to enable multiple logs, we recommend publishing each to its own log
group. This separation makes the logs easier to scan.

6. Choose an access policy that contains the appropriate permissions, or create a policy using the
JSON that the console provides:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "es.amazonaws.com"
 },
 "Action": [

Enabling log publishing (console) 574

https://aws.amazon.com

Amazon OpenSearch Service Developer Guide

 "logs:PutLogEvents",
 "logs:CreateLogStream"
],
 "Resource": "cw_log_group_arn:*"
 }
]
}

We recommend that you add the aws:SourceAccount and aws:SourceArn condition keys
to the policy to protect yourself against the confused deputy problem. The source account is
the owner of the domain and the source ARN is the ARN of the domain. Your domain must be
on service software R20211203 or later in order to add these condition keys.

For example, you could add the following condition block to the policy:

"Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws-cn:es:region:account-id:domain/domain-name"
 }
}

Important

CloudWatch Logs supports 10 resource policies per Region. If you plan to enable logs
for several OpenSearch Service domains, you should create and reuse a broader policy
that includes multiple log groups to avoid reaching this limit. For steps on updating
your policy, see the section called “Enabling log publishing (Amazon CLI)”.

7. Choose Enable.

The status of your domain changes from Active to Processing. The status must return to
Active before log publishing is enabled. This change typically takes 30 minutes, but can take
longer depending on your domain configuration.

If you enabled one of the slow logs, see the section called “Setting OpenSearch logging thresholds
for slow logs”. If you enabled audit logs, see the section called “Step 2: Turn on audit logs in

Enabling log publishing (console) 575

https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html
https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_PutResourcePolicy.html

Amazon OpenSearch Service Developer Guide

OpenSearch Dashboards”. If you enabled only error logs, you don't need to perform any additional
configuration steps.

Enabling log publishing (Amazon CLI)

Before you can enable log publishing, you need a CloudWatch log group. If you don't already have
one, you can create one using the following command:

aws logs create-log-group --log-group-name my-log-group

Enter the next command to find the log group's ARN, and then make a note of it:

aws logs describe-log-groups --log-group-name my-log-group

Now you can give OpenSearch Service permissions to write to the log group. You must provide the
log group's ARN near the end of the command:

aws logs put-resource-policy \
 --policy-name my-policy \
 --policy-document '{ "Version": "2012-10-17", "Statement": [{ "Sid": "",
 "Effect": "Allow", "Principal": { "Service": "es.amazonaws.com"}, "Action":
["logs:PutLogEvents","logs:CreateLogStream"],"Resource": "cw_log_group_arn:*"}]}'

Important

CloudWatch Logs supports 10 resource policies per Region. If you plan to enable slow logs
for several OpenSearch Service domains, you should create and reuse a broader policy that
includes multiple log groups to avoid reaching this limit.

If you need to review this policy at a later time, use the aws logs describe-resource-
policies command. To update the policy, issue the same aws logs put-resource-policy
command with a new policy document.

Finally, you can use the --log-publishing-options option to enable publishing. The syntax for
the option is the same for both the create-domain and update-domain-config commands.

Enabling log publishing (Amazon CLI) 576

https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/API_PutResourcePolicy.html

Amazon OpenSearch Service Developer Guide

Parameter Valid Values

SEARCH_SLOW_LOGS={CloudWatchLogsLogG
roupArn= cw_log_group_arn ,Enabled=true|false}

INDEX_SLOW_LOGS={CloudWatchLogsLogGr
oupArn= cw_log_group_arn ,Enabled=true|false}

ES_APPLICATION_LOGS={CloudWatchLogsLogGroupAr
n= cw_log_group_arn ,Enabled=true|false}

--log-publishing-o
ptions

AUDIT_LOGS={CloudWatchLogsLogGroupAr
n= cw_log_group_arn ,Enabled=true|false}

Note

If you plan to enable multiple logs, we recommend publishing each to its own log group.
This separation makes the logs easier to scan.

Example

The following example enables the publishing of search and indexing slow logs for the specified
domain:

aws opensearch update-domain-config \
 --domain-name my-domain \
 --log-publishing-options
 "SEARCH_SLOW_LOGS={CloudWatchLogsLogGroupArn=arn:aws:logs:us-east-1:123456789012:log-
group:my-log-
group,Enabled=true},INDEX_SLOW_LOGS={CloudWatchLogsLogGroupArn=arn:aws:logs:us-
east-1:123456789012:log-group:my-other-log-group,Enabled=true}"

To disable publishing to CloudWatch, run the same command with Enabled=false.

If you enabled one of the slow logs, see the section called “Setting OpenSearch logging thresholds
for slow logs”. If you enabled audit logs, see the section called “Step 2: Turn on audit logs in
OpenSearch Dashboards”. If you enabled only error logs, you don't need to perform any additional
configuration steps.

Enabling log publishing (Amazon CLI) 577

Amazon OpenSearch Service Developer Guide

Enabling log publishing (Amazon SDKs)

Before you can enable log publishing, you must first create a CloudWatch log group, get its ARN,
and give OpenSearch Service permissions to write to it. The relevant operations are documented in
the Amazon CloudWatch Logs API Reference:

• CreateLogGroup

• DescribeLogGroup

• PutResourcePolicy

You can access these operations using the Amazon SDKs.

The Amazon SDKs (except the Android and iOS SDKs) support all the operations that are defined
in the Amazon OpenSearch Service API Reference, including the --log-publishing-options
option for CreateDomain and UpdateDomainConfig.

If you enabled one of the slow logs, see the section called “Setting OpenSearch logging
thresholds for slow logs”. If you enabled only error logs, you don't need to perform any additional
configuration steps.

Enabling log publishing (CloudFormation)

In this example, we use CloudFormation to create a log group called opensearch-logs, assign
the appropriate permissions, and then create a domain with log publishing enabled for application
logs, search slow logs, and indexing slow logs.

Before you can enable log publishing, you need to create a CloudWatch log group:

Resources:
 OpenSearchLogGroup:
 Type: AWS::Logs::LogGroup
 Properties:
 LogGroupName: opensearch-logs
Outputs:
 Arn:
 Value:
 'Fn::GetAtt':
 - OpenSearchLogGroup
 - Arn

Enabling log publishing (Amazon SDKs) 578

https://docs.amazonaws.cn/AmazonCloudWatchLogs/latest/APIReference/
https://aws.amazon.com/tools/#sdk
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

The template outputs the ARN of the log group. In this case, the ARN is arn:aws:logs:us-
east-1:123456789012:log-group:opensearch-logs.

Using the ARN, create a resource policy that gives OpenSearch Service permissions to write to the
log group:

Resources:
 OpenSearchLogPolicy:
 Type: AWS::Logs::ResourcePolicy
 Properties:
 PolicyName: my-policy
 PolicyDocument: "{ \"Version\": \"2012-10-17\", \"Statement\": [{ \"Sid\": \"\",
 \"Effect\": \"Allow\", \"Principal\": { \"Service\": \"es.amazonaws.com\"}, \"Action
\":[\"logs:PutLogEvents\",\"logs:CreateLogStream\"],\"Resource\": \"arn:aws:logs:us-
east-1:123456789012:log-group:opensearch-logs:*\"}]}"

Finally, create the following CloudFormation stack, which generates an OpenSearch Service domain
with log publishing. The access policy permits the user for the Amazon Web Services account to
make all HTTP requests to the domain.

Resources:
 OpenSearchServiceDomain:
 Type: "AWS::OpenSearchService::Domain"
 Properties:
 DomainName: my-domain
 EngineVersion: "OpenSearch_1.0"
 ClusterConfig:
 InstanceCount: 2
 InstanceType: "r6g.xlarge.search"
 DedicatedMasterEnabled: true
 DedicatedMasterCount: 3
 DedicatedMasterType: "r6g.xlarge.search"
 EBSOptions:
 EBSEnabled: true
 VolumeSize: 10
 VolumeType: "gp2"
 AccessPolicies:
 Version: "2012-10-17"
 Statement:
 Effect: "Allow"
 Principal:
 AWS: "arn:aws:iam::123456789012:user/es-user"

Enabling log publishing (CloudFormation) 579

Amazon OpenSearch Service Developer Guide

 Action: "es:*"
 Resource: "arn:aws:es:us-east-1:123456789012:domain/my-domain/*"
 LogPublishingOptions:
 ES_APPLICATION_LOGS:
 CloudWatchLogsLogGroupArn: "arn:aws:logs:us-east-1:123456789012:log-
group:opensearch-logs"
 Enabled: true
 SEARCH_SLOW_LOGS:
 CloudWatchLogsLogGroupArn: "arn:aws:logs:us-east-1:123456789012:log-
group:opensearch-logs"
 Enabled: true
 INDEX_SLOW_LOGS:
 CloudWatchLogsLogGroupArn: "arn:aws:logs:us-east-1:123456789012:log-
group:opensearch-logs"
 Enabled: true

For detailed syntax information, see the log publishing options in the Amazon CloudFormation User
Guide.

Setting OpenSearch logging thresholds for slow logs

OpenSearch disables slow logs by default. After you enable the publishing of slow logs to
CloudWatch, you still must specify logging thresholds for each OpenSearch index. These thresholds
define precisely what should be logged and at which log level.

You specify these settings through the OpenSearch REST API:

PUT domain-endpoint/index/_settings
{
 "index.search.slowlog.threshold.query.warn": "5s",
 "index.search.slowlog.threshold.query.info": "2s"
}

To test that slow logs are publishing successfully, consider starting with very low values to verify
that logs appear in CloudWatch, and then increase the thresholds to more useful levels.

If the logs don't appear, check the following:

• Does the CloudWatch log group exist? Check the CloudWatch console.

• Does OpenSearch Service have permissions to write to the log group? Check the OpenSearch
Service console.

Setting OpenSearch logging thresholds for slow logs 580

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-elasticsearch-domain-logpublishingoption.html

Amazon OpenSearch Service Developer Guide

• Is the OpenSearch Service domain configured to publish to the log group? Check the
OpenSearch Service console, use the Amazon CLI describe-domain-config option, or call
DescribeDomainConfig using one of the SDKs.

• Are the OpenSearch logging thresholds low enough that your requests are exceeding them? To
review your thresholds for an index, use the following command:

GET domain-endpoint/index/_settings?pretty

If you want to disable slow logs for an index, return any thresholds that you changed to their
default values of -1.

Disabling publishing to CloudWatch using the OpenSearch Service console or Amazon CLI does not
stop OpenSearch from generating logs; it only stops the publishing of those logs. Be sure to check
your index settings if you no longer need the slow logs.

Viewing logs

Viewing the application and slow logs in CloudWatch is just like viewing any other CloudWatch log.
For more information, see View Log Data in the Amazon CloudWatch Logs User Guide.

Here are some considerations for viewing the logs:

• OpenSearch Service publishes only the first 255,000 characters of each line to CloudWatch. Any
remaining content is truncated. For audit logs, it's 10,000 characters per message.

• In CloudWatch, the log stream names have suffixes of -index-slow-logs, -search-slow-
logs, -application-logs, and -audit-logs to help identify their contents.

Monitoring audit logs in Amazon OpenSearch Service

If your Amazon OpenSearch Service domain uses fine-grained access control, you can enable
audit logs for your data. Audit logs are highly customizable and let you track user activity on
your OpenSearch clusters, including authentication success and failures, requests to OpenSearch,
index changes, and incoming search queries. The default configuration tracks a popular set of user
actions, but we recommend tailoring the settings to your exact needs.

Just like OpenSearch application logs and slow logs, OpenSearch Service publishes audit logs to
CloudWatch Logs. If enabled, standard CloudWatch pricing applies.

Viewing logs 581

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData
https://aws.amazon.com/cloudwatch/pricing/

Amazon OpenSearch Service Developer Guide

Note

To enable audit logs, your user role must be mapped to the security_manager role,
which gives you access to the OpenSearch plugins/_security REST API. To learn more,
see the section called “Modifying the master user”.

Topics

• Limitations

• Enabling audit logs

• Enable audit logging using the Amazon CLI

• Enable audit logging using the configuration API

• Audit log layers and categories

• Audit log settings

• Audit log example

• Configuring audit logs using the REST API

Limitations

Audit logs have the following limitations:

• Audit logs don't include cross-cluster search requests that were rejected by the destination's
domain access policy.

• The maximum size of each audit log message is 10,000 characters. The audit log message is
truncated if it exceeds this limit.

Enabling audit logs

Enabling audit logs is a two-step process. First, you configure your domain to publish audit logs to
CloudWatch Logs. Then, you enable audit logs in OpenSearch Dashboards and configure them to
meet your needs.

Limitations 582

Amazon OpenSearch Service Developer Guide

Important

If you encounter an error while following these steps, see the section called “Can't enable
audit logs” for troubleshooting information.

Step 1: Enable audit logs and configure an access policy

These steps describe how to enable audit logs using the console. You can also enable them using
the Amazon CLI, or the OpenSearch Service API.

To enable audit logs for an OpenSearch Service domain (console)

1. Choose the domain to open its configuration, then go to the Logs tab.

2. Select Audit logs and then Enable.

3. Create a CloudWatch log group, or choose an existing one.

4. Choose an access policy that contains the appropriate permissions, or create a policy using the
JSON that the console provides:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "es.amazonaws.com"
 },
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogStream"
],
 "Resource": "cw_log_group_arn"
 }
]
}

We recommend that you add the aws:SourceAccount and aws:SourceArn condition keys
to the policy to protect yourself against the confused deputy problem. The source account is

Enabling audit logs 583

https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html

Amazon OpenSearch Service Developer Guide

the owner of the domain and the source ARN is the ARN of the domain. Your domain must be
on service software R20211203 or later in order to add these condition keys.

For example, you could add the following condition block to the policy:

"Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws-cn:es:region:account-id:domain/domain-name"
 }
}

5. Choose Enable.

Step 2: Turn on audit logs in OpenSearch Dashboards

After you enable audit logs in the OpenSearch Service console, you must also enable them in
OpenSearch Dashboards and configure them to match your needs.

1. Open OpenSearch Dashboards and choose Security from the left side menu.

2. Choose Audit logs.

3. Choose Enable audit logging.

The Dashboards UI offers full control of audit log settings under General settings and Compliance
settings. For a description of all configuration options, see Audit log settings.

Enable audit logging using the Amazon CLI

The following Amazon CLI command enables audit logs on an existing domain:

aws opensearch update-domain-config --domain-name my-domain --log-publishing-options
 "AUDIT_LOGS={CloudWatchLogsLogGroupArn=arn:aws:logs:us-east-1:123456789012:log-
group:my-log-group,Enabled=true}"

You can also enable audit logs when you create a domain. For detailed information, see the
Amazon CLI Command Reference.

Enable audit logging using the Amazon CLI 584

https://docs.amazonaws.cn/cli/latest/reference/

Amazon OpenSearch Service Developer Guide

Enable audit logging using the configuration API

The following request to the configuration API enables audit logs on an existing domain:

POST https://es.us-east-1.amazonaws.com/2021-01-01/opensearch/domain/my-domain/config
{
 "LogPublishingOptions": {
 "AUDIT_LOGS": {
 "CloudWatchLogsLogGroupArn":"arn:aws:logs:us-east-1:123456789012:log-
group1:sample-domain",
 "Enabled":true
 }
 }
}

For more information, see the Amazon OpenSearch Service API reference.

Audit log layers and categories

Cluster communication occurs over two separate layers: the REST layer and the transport layer.

• The REST layer covers communication with HTTP clients such as curl, Logstash, OpenSearch
Dashboards, the Java high-level REST client, the Python Requests library—all HTTP requests that
arrive at the cluster.

• The transport layer covers communication between nodes. For example, after a search request
arrives at the cluster (over the REST layer), the coordinating node serving the request sends the
query to other nodes, receives their responses, gathers the necessary documents, and collates
them into the final response. Operations such as shard allocation and rebalancing also occur over
the transport layer.

You can enable or disable audit logs for entire layers, as well as individual audit categories for a
layer. The following table contains a summary of audit categories and the layers for which they are
available.

Enable audit logging using the configuration API 585

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_LogPublishingOption.html
https://2.python-requests.org/

Amazon OpenSearch Service Developer Guide

Category Description Available
for REST

Available for transport

FAILED_LOGIN A request contained
invalid credentials, and
authentication failed.

Yes Yes

MISSING_PRIVILEGES A user did not have the
privileges to make the
request.

Yes Yes

GRANTED_PRIVILEGES A user had the privileges
to make the request.

Yes Yes

OPENSEARCH_SECURIT
Y_INDEX_ATTEMPT

A request tried to
modify the .opendist
ro_security index.

No Yes

AUTHENTICATED A request contained
valid credentials,
and authentication
succeeded.

Yes Yes

INDEX_EVENT A request performed an
administrative operation
on an index, such as
creating one, setting
an alias, or performin
g a force merge. The
full list of indices:a
dmin/ actions that
this category includes
are available in the
OpenSearch documenta
tion.

No Yes

Audit log layers and categories 586

https://opensearch.org/docs/security-plugin/access-control/permissions/
https://opensearch.org/docs/security-plugin/access-control/permissions/

Amazon OpenSearch Service Developer Guide

In addition to these standard categories, fine-grained access control offers several additional
categories designed to meet data compliance requirements.

Category Description

COMPLIANC
E_DOC_READ

A request performed a read event on a document in an index.

COMPLIANC
E_DOC_WRITE

A request performed a write event on a document in an index.

COMPLIANC
E_INTERNA
L_CONFIG_READ

A request performed a read event on the .opendistro_security
index.

COMPLIANC
E_INTERNA
L_CONFIG_WRITE

A request performed a write event on the .opendistro_security
index.

You can have any combination of categories and message attributes. For example, if you send a
REST request to index a document, you might see the following lines in the audit logs:

• AUTHENTICATED on REST layer (authentication)

• GRANTED_PRIVILEGE on transport layer (authorization)

• COMPLIANCE_DOC_WRITE (document written to an index)

Audit log settings

Audit logs have numerous configuration options.

General settings

General settings let you enable or disable individual categories or entire layers. We highly
recommend leaving GRANTED_PRIVILEGES and AUTHENTICATED as excluded categories.
Otherwise, these categories are logged for every valid request to the cluster.

Audit log settings 587

Amazon OpenSearch Service Developer Guide

Name Backend
setting

Description

REST layer enable_rest Enable or disable events that occur on the REST layer.

REST disabled
categories

disabled_
rest_categories

Specify audit categories to ignore on the REST layer.
Modifying these categories can dramatically increase the
size of the audit logs.

Transport layer enable_tr
ansport

Enable or disable events that happen on the transport
layer.

Transport
disabled
categories

disabled_
transport
_categories

Specify audit categories which must be ignored on the
transport layer. Modifying these categories can dramatica
lly increase the size of the audit logs.

Attribute settings let you customize the amount of detail in each log line.

Name Backend
setting

Description

Bulk requests resolve_b
ulk_requests

Enabling this setting generates a log for each document in
a bulk request, which can dramatically increase the size of
the audit logs.

Request body log_reque
st_body

Include the request body of the requests.

Resolve indices resolve_indices Resolve aliases to indices.

Use ignore settings to exclude a set of users or API paths:

Name Backend
setting

Description

Ignored users ignore_users Specify users that you want to exclude.

Audit log settings 588

Amazon OpenSearch Service Developer Guide

Name Backend
setting

Description

Ignored
requests

ignore_requests Specify request patterns that you want to exclude.

Compliance settings

Compliance settings let you tune for index, document, or field-level access.

Name Backend
setting

Description

Compliance
logging

enable_co
mpliance

Enable or disable compliance logging.

You can specify the following settings for read and write event logging.

Name Backend
setting

Description

Internal config
logging

internal_config Enable or disable logging of events on the .opendist
ro_security index.

You can specify the following settings for read events.

Name Backend
setting

Description

Read metadata read_meta
data_only

Include only metadata for read events. Do not include any
document fields.

Ignored users read_igno
re_users

Do not include certain users for read events.

Audit log settings 589

Amazon OpenSearch Service Developer Guide

Name Backend
setting

Description

Watched fields read_watc
hed_fields

Specify the indices and fields to watch for read events.
Adding watched fields generates one log per document
access, which can dramatically increase the size of the
audit logs. Watched fields support index patterns and field
patterns:

{
 "index-name-pattern": [
 "field-name-pattern"
],
 "logs*": [
 "message"
],
 "twitter": [
 "id",
 "user*"
]
}

You can specify the following settings for write events.

Name Backend
setting

Description

Write metadata write_met
adata_only

Include only metadata for write events. Do not include any
document fields.

Log diffs write_log_diffs If write_metadata_only is false, include only the differenc
es between write events.

Ignored users write_ign
ore_users

Do not include certain users for write events.

Watch indices write_wat
ched_indices

Specify the indices or index patters to watch for write
events. Adding watched fields generates one log per

Audit log settings 590

Amazon OpenSearch Service Developer Guide

Name Backend
setting

Description

document access, which can dramatically increase the size
of the audit logs.

Audit log example

This section includes an example configuration, search request, and the resulting audit log for all
read and write events of an index.

Step 1: Configure audit logs

After you enable the publishing of audit logs to a CloudWatch Logs group, navigate to the
OpenSearch Dashboards audit logging page and choose Enable audit logging.

1. In General Settings, choose Configure and make sure that the REST layer is enabled.

2. In Compliance Settings, choose Configure.

3. Under Write, in Watched Fields, add accounts for all write events to this index.

4. Under Read, in Watched Fields, add ssn and id- fields of the accounts index:

{
 "accounts-": [
 "ssn",
 "id-"
]
}

Step 2: Perform read and write events

1. Navigate to OpenSearch Dashboards, choose Dev Tools, and index a sample document:

PUT accounts/_doc/0
{
 "ssn": "123",
 "id-": "456"
}

Audit log example 591

Amazon OpenSearch Service Developer Guide

2. To test a read event, send the following request:

GET accounts/_search
{
 "query": {
 "match_all": {}
 }
}

Step 3: Observe the logs

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Log groups.

3. Choose the log group that you specified while enabling audit logs. Within the log group,
OpenSearch Service creates a log stream for each node in your domain.

4. In Log streams, choose Search all.

5. For the read and write events, see the corresponding logs. You can expect a delay of 5 seconds
before the log appears.

Sample write audit log

{
 "audit_compliance_operation": "CREATE",
 "audit_cluster_name": "824471164578:audit-test",
 "audit_node_name": "be217225a0b77c2bd76147d3ed3ff83c",
 "audit_category": "COMPLIANCE_DOC_WRITE",
 "audit_request_origin": "REST",
 "audit_compliance_doc_version": 1,
 "audit_node_id": "3xNJhm4XS_yTzEgDWcGRjA",
 "@timestamp": "2020-08-23T05:28:02.285+00:00",
 "audit_format_version": 4,
 "audit_request_remote_address": "3.236.145.227",
 "audit_trace_doc_id": "lxnJGXQBqZSlDB91r_uZ",
 "audit_request_effective_user": "admin",
 "audit_trace_shard_id": 8,
 "audit_trace_indices": [
 "accounts"
],
 "audit_trace_resolved_indices": [
 "accounts"

Audit log example 592

https://console.aws.amazon.com/cloudwatch/

Amazon OpenSearch Service Developer Guide

]
}

Sample read audit log

{
 "audit_cluster_name": "824471164578:audit-docs",
 "audit_node_name": "806f6050cb45437e2401b07534a1452f",
 "audit_category": "COMPLIANCE_DOC_READ",
 "audit_request_origin": "REST",
 "audit_node_id": "saSevm9ASte0-pjAtYi2UA",
 "@timestamp": "2020-08-31T17:57:05.015+00:00",
 "audit_format_version": 4,
 "audit_request_remote_address": "54.240.197.228",
 "audit_trace_doc_id": "config:7.7.0",
 "audit_request_effective_user": "admin",
 "audit_trace_shard_id": 0,
 "audit_trace_indices": [
 "accounts"
],
 "audit_trace_resolved_indices": [
 "accounts"
]
}

To include the request body, return to Compliance settings in OpenSearch Dashboards and disable
Write metadata. To exclude events by a specific user, add the user to Ignored Users.

For a description of each audit log field, see Audit log field reference. For information on searching
and analyzing your audit log data, see Analyzing Log Data with CloudWatch Logs Insights in the
Amazon CloudWatch Logs User Guide.

Configuring audit logs using the REST API

We recommend using OpenSearch Dashboards to configure audit logs, but you can also use the
fine-grained access control REST API. This section contains a sample request. Full documentation
on the REST API is available in the OpenSearch documentation.

PUT _plugins/_security/api/audit/config
{
 "enabled": true,

Configuring audit logs using the REST API 593

https://opensearch.org/docs/security-plugin/audit-logs/field-reference/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/audit-logs.html#audit-log-rest-api

Amazon OpenSearch Service Developer Guide

 "audit": {
 "enable_rest": true,
 "disabled_rest_categories": [
 "GRANTED_PRIVILEGES",
 "AUTHENTICATED"
],
 "enable_transport": true,
 "disabled_transport_categories": [
 "GRANTED_PRIVILEGES",
 "AUTHENTICATED"
],
 "resolve_bulk_requests": true,
 "log_request_body": true,
 "resolve_indices": true,
 "exclude_sensitive_headers": true,
 "ignore_users": [
 "kibanaserver"
],
 "ignore_requests": [
 "SearchRequest",
 "indices:data/read/*",
 "/_cluster/health"
]
 },
 "compliance": {
 "enabled": true,
 "internal_config": true,
 "external_config": false,
 "read_metadata_only": true,
 "read_watched_fields": {
 "read-index-1": [
 "field-1",
 "field-2"
],
 "read-index-2": [
 "field-3"
]
 },
 "read_ignore_users": [
 "read-ignore-1"
],
 "write_metadata_only": true,
 "write_log_diffs": false,
 "write_watched_indices": [

Configuring audit logs using the REST API 594

Amazon OpenSearch Service Developer Guide

 "write-index-1",
 "write-index-2",
 "log-*",
 "*"
],
 "write_ignore_users": [
 "write-ignore-1"
]
 }
}

Monitoring OpenSearch Service events with Amazon
EventBridge

Amazon OpenSearch Service integrates with Amazon EventBridge to notify you of certain events
that affect your domains. Events from Amazon services are delivered to EventBridge in near real
time. The same events are also sent to Amazon CloudWatch Events, the predecessor of Amazon
EventBridge. You can write simple rules to indicate which events are of interest to you, and what
automated actions to take when an event matches a rule. The actions that can be automatically
triggered include the following:

• Invoking an Amazon Lambda function

• Invoking an Amazon EC2 Run Command

• Relaying the event to Amazon Kinesis Data Streams

• Activating an Amazon Step Functions state machine

• Notifying an Amazon SNS topic or an Amazon SQS queue

For more information, see Get started with Amazon EventBridge in the Amazon EventBridge User
Guide.

Topics

• Service software update events

• Auto-Tune events

• Cluster health events

• VPC endpoint events

• Node retirement events

Monitoring events 595

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatchEvents.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-get-started.html

Amazon OpenSearch Service Developer Guide

• Domain error events

• Tutorial: Listening for Amazon OpenSearch Service EventBridge events

• Tutorial: Sending Amazon SNS alerts for available software updates

Service software update events

OpenSearch Service sends events to EventBridge when one of the following service software
update events occur.

Service software update available

OpenSearch Service sends this event when a service software update is available.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Available",
 "severity": "Informational",
 "description": "Service software update R20220928 available. Service Software
 Deployment Mechanism:
 Blue/Green. For more information on deployment configuration,
 please
 see: https://docs.aws.amazon.com/opensearch-service/latest/
developerguide/managedomains-configuration-changes.html"
 }
}

Service software update events 596

Amazon OpenSearch Service Developer Guide

Service software update scheduled

OpenSearch Service sends this event when a service software update has been scheduled. For
optional updates, you receive the notification on the scheduled date and you have the option to
reschedule at any time. For required updates, you receive the notification three days before the
scheduled date, and you have the option to reschedule it within the mandatory window.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Scheduled",
 "severity": "High",
 "description": "A new service software update [R20200330-p1] has been scheduled at
 [21st May 2023 12:40 GMT].
 Please see documentation for more information on scheduling
 software updates:
 https://docs.aws.amazon.com/opensearch-service/latest/
developerguide/service-software.html."
 }
}

Service software update rescheduled

OpenSearch Service sends this event when an optional service software update has been
rescheduled. For more information, see the section called “Optional versus required updates”.

Example

The following is an example event of this type:

{

Service software update events 597

Amazon OpenSearch Service Developer Guide

 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Rescheduled",
 "severity": "High",
 "description": "The service software update [R20200330-p1], which was originally
 scheduled for
 [21st May 2023 12:40 GMT], has been rescheduled to [23rd May 2023
 12:40 GMT].
 Please see documentation for more information on scheduling
 software updates:
 https://docs.aws.amazon.com/opensearch-service/latest/
developerguide/service-software.html."
 }
}

Service software update started

OpenSearch Service sends this event when a service software update has started.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Started",
 "severity": "Informational",

Service software update events 598

Amazon OpenSearch Service Developer Guide

 "description": "Service software update [R20200330-p1] started.
 }
}

Service software update completed

OpenSearch Service sends this event when a service software update has completed.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Completed",
 "severity": "Informational",
 "description": "Service software update [R20200330-p1] completed."
 }
}

Service software update cancelled

OpenSearch Service sends this event when a service software update has been cancelled.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",

Service software update events 599

Amazon OpenSearch Service Developer Guide

 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Cancelled",
 "severity": "Informational",
 "description": "The scheduled service software update [R20200330-p1] has been
 cancelled as a
 newer update is available. Please schedule the latest update."
 }
}

Scheduled service software update cancelled

OpenSearch Service sends this event when a service software update that was previously
scheduled for the domain has been cancelled.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Cancelled",
 "severity": "Informational",
 "description": "The scheduled service software update [R20200330-p1] has been
 cancelled."
 }
}

Service software update unexecuted

OpenSearch Service sends this event when it can't initiate a service software update.

Service software update events 600

Amazon OpenSearch Service Developer Guide

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Unexecuted",
 "severity": "Informational",
 "description": "The scheduled service software update [R20200330-p1] cannot be
 started. Reason: [reason]"
 }
}

Service software update failed

OpenSearch Service sends this event when a service software update fails.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Failed",

Service software update events 601

Amazon OpenSearch Service Developer Guide

 "severity": "High",
 "description": "Installation of service software update [R20200330-p1] failed.
 [reason].
 }
}

Service software update required

OpenSearch Service sends this event when a service software update is required. For more
information, see the section called “Optional versus required updates”.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Software Update Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2016-11-01T13:12:22Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Service Software Update",
 "status": "Required",
 "severity": "High",
 "description": "Service software update [R20200330-p1] available. Update
 will be automatically installed after [21st May 2023] if no
 action is taken. Service Software Deployment Mechanism: Blue/Green.
 For more information on deployment configuration, please see:
 https://docs.aws.amazon.com/opensearch-service/latest/
developerguide/managedomains-configuration-changes.html"
 }
}

Auto-Tune events

OpenSearch Service sends events to EventBridge when one of the following Auto-Tune events
occur.

Auto-Tune events 602

Amazon OpenSearch Service Developer Guide

Auto-Tune pending

OpenSearch Service sends this event when Auto-Tune has identified tuning recommendations for
improved cluster performance and availability. You'll only see this event for domains with Auto-
Tune disabled.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "3acb26c8-397c-4c89-a80a-ce672a864c55",
 "detail-type": "Amazon OpenSearch Service Auto-Tune Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2020-10-30T22:06:31Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Auto-Tune Event",
 "severity": "Informational",
 "status": "Pending",
 "description": "Auto-Tune recommends the following new settings for your
 domain: { JVM Heap size : 60%}. Enable Auto-Tune to improve cluster stability and
 performance.",
 "scheduleTime": "{iso8601-timestamp}"
 }
}

Auto-Tune started

OpenSearch Service sends this event when Auto-Tune begins to apply new settings to your
domain.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "3acb26c8-397c-4c89-a80a-ce672a864c55",
 "detail-type": "Amazon OpenSearch Service Auto-Tune Notification",

Auto-Tune events 603

Amazon OpenSearch Service Developer Guide

 "source": "aws.es",
 "account": "123456789012",
 "time": "2020-10-30T22:06:31Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Auto-Tune Event",
 "severity": "Informational",
 "status": "Started",
 "scheduleTime": "{iso8601-timestamp}",
 "startTime": "{iso8601-timestamp}",
 "description" : "Auto-Tune is applying the following settings to your domain: { JVM
 Heap size : 60%}."
 }
}

Auto-Tune requires a scheduled blue/green deployment

OpenSearch Service sends this event when Auto-Tune has identified tuning recommendations that
require a scheduled blue/green deployment.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "3acb26c8-397c-4c89-a80a-ce672a864c55",
 "detail-type": "Amazon OpenSearch Service Auto-Tune Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2020-10-30T22:06:31Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Auto-Tune Event",
 "severity": "Low",
 "status": "Pending",
 "startTime": "{iso8601-timestamp}",
 "description": "Auto-Tune has identified the following settings for your domain
 that require a blue/green deployment: { JVM Heap size : 60%}.
 You can schedule the deployment for your preferred time."
 }

Auto-Tune events 604

Amazon OpenSearch Service Developer Guide

}

Auto-Tune cancelled

OpenSearch Service sends this event when Auto-Tune schedule has been cancelled because there is
no pending tuning recommendations.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "3acb26c8-397c-4c89-a80a-ce672a864c55",
 "detail-type": "Amazon OpenSearch Service Auto-Tune Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2020-10-30T22:06:31Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Auto-Tune Event",
 "severity": "Low",
 "status": "Cancelled",
 "scheduleTime": "{iso8601-timestamp}",
 "description": "Auto-Tune has cancelled the upcoming blue/green deployment."
 }
}

Auto-Tune completed

OpenSearch Service sends this event when Auto-Tune has completed the blue/green deployment
and the cluster is operational with new JVM settings in place.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "3acb26c8-397c-4c89-a80a-ce672a864c55",
 "detail-type": "Amazon OpenSearch Service Auto-Tune Notification",

Auto-Tune events 605

Amazon OpenSearch Service Developer Guide

 "source": "aws.es",
 "account": "123456789012",
 "time": "2020-10-30T22:06:31Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Auto-Tune Event",
 "severity": "Informational",
 "status": "Completed",
 "completionTime": "{iso8601-timestamp}",
 "description": "Auto-Tune has completed the blue/green deployment and successfully
 applied the following settings: { JVM Heap size : 60%}."
 }
}

Auto-Tune disabled and changes reverted

OpenSearch Service sends this event when Auto-Tune has been disabled and the applied changes
were rolled back.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "3acb26c8-397c-4c89-a80a-ce672a864c55",
 "detail-type": "Amazon OpenSearch Service Auto-Tune Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2020-10-30T22:06:31Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Auto-Tune Event",
 "severity": "Informational",
 "status": "Completed",
 "description": "Auto-Tune is now disabled. All settings have been reverted. Auto-
Tune will continue to evaluate
 cluster performance and provide recommendations.",
 "completionTime": "{iso8601-timestamp}"
 }
}

Auto-Tune events 606

Amazon OpenSearch Service Developer Guide

Auto-Tune disabled and changes retained

OpenSearch Service sends this event when Auto-Tune has been disabled and the applied changes
were retained.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "3acb26c8-397c-4c89-a80a-ce672a864c55",
 "detail-type": "Amazon OpenSearch Service Auto-Tune Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2020-10-30T22:06:31Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Auto-Tune Event",
 "severity": "Informational",
 "status": "Completed",
 "description": "Auto-Tune is now disabled. The most-recent settings by Auto-Tune
 have been retained.
 Auto-Tune will continue to evaluate cluster performance and provide
 recommendations.",
 "completionTime": "{iso8601-timestamp}"
 }
}

Cluster health events

OpenSearch Service sends certain events to EventBridge when your cluster's health is
compromised.

Red cluster recovery started

OpenSearch Service sends this event after your cluster status has been continuously red for more
than an hour. It attempts to automatically restore one or more red indexes from a snapshot in
order to fix the cluster status.

Example

Cluster health events 607

Amazon OpenSearch Service Developer Guide

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Cluster Status Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:es:us-east-1:123456789012:domain/test-domain"
],
 "detail":{
 "event":"Automatic Snapshot Restore for Red Indices",
 "status":"Started",
 "severity":"High",
 "description":"Your cluster status is red. We have started automatic snapshot
 restore for the red indices.
 No action is needed from your side. Red indices [red-index-0, red-
index-1]"
 }
}

Red cluster recovery partially completed

OpenSearch Service sends this event when it was only able to restore a subset of red indexes from
a snapshot while attempting to fix a red cluster status.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Cluster Status Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:es:us-east-1:123456789012:domain/test-domain"

Cluster health events 608

Amazon OpenSearch Service Developer Guide

],
 "detail":{
 "event":"Automatic Snapshot Restore for Red Indices",
 "status":"Partially Restored",
 "severity":"High",
 "description":"Your cluster status is red. We were able to restore the following
 Red indices from
 snapshot: [red-index-0]. Indices not restored: [red-index-1].
 Please refer https://docs.aws.amazon.com/opensearch-service/latest/developerguide/
handling-errors.html#handling-errors-red-cluster-status for troubleshooting steps."
 }
}

Red cluster recovery failed

OpenSearch Service sends this event when it fails to restore any indexes while attempting to fix a
red cluster status.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Cluster Status Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:es:us-east-1:123456789012:domain/test-domain"
],
 "detail":{
 "event":"Automatic Snapshot Restore for Red Indices",
 "status":"Failed",
 "severity":"High",
 "description":"Your cluster status is red. We were unable to restore the Red
 indices automatically.
 Indices not restored: [red-index-0, red-index-1]. Please refer
 https://docs.aws.amazon.com/opensearch-service/latest/developerguide/handling-
errors.html#handling-errors-red-cluster-status for troubleshooting steps."
 }

Cluster health events 609

Amazon OpenSearch Service Developer Guide

}

Shards to be deleted

OpenSearch Service sends this event when it has attempted to automatically fix your red cluster
status after it was continuously red for 14 days, but one or more indexes remains red. After 7 more
days (21 total days of being continuously red), OpenSearch Service proceeds to delete unassigned
shards on all red indexes.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Cluster Status Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2022-04-09T10:36:48Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:es:us-east-1:123456789012:domain/test-domain"
],
 "detail":{
 "severity":"Medium",
 "description":"Your cluster status is red. Please fix the red indices as soon as
 possible.
 If not fixed by 2022-04-12 01:51:47+00:00, we will delete all
 unassigned shards,
 the unit of storage and compute, for these red indices to recover
 your domain and make it green.
 Please refer to https://docs.aws.amazon.com/opensearch-service/
latest/developerguide/handling-errors.html#handling-errors-red-cluster-status for
 troubleshooting steps.
 test_data, test_data1",
 "event":"Automatic Snapshot Restore for Red Indices",
 "status":"Shard(s) to be deleted"
 }
}

Cluster health events 610

Amazon OpenSearch Service Developer Guide

Shards deleted

OpenSearch Service sends this event after your cluster status has been continuously red for 21
days. It proceeds to delete the unassigned shards (storage and compute) on all red indexes. For
details, see the section called “Automatic remediation of red clusters”.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Cluster Status Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2022-04-09T10:54:48Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:es:us-east-1:123456789012:domain/test-domain"
],
 "detail":{
 "severity":"High",
 "description":"We have deleted unassinged shards, the unit of storage and
 compute, in
 red indices: index-1, index-2 because these indices were red for
 more than
 21 days and could not be restored with the automated restore
 process.
 Please refer to https://docs.aws.amazon.com/opensearch-service/
latest/developerguide/handling-errors.html#handling-errors-red-cluster-status for
 troubleshooting steps.",
 "event":"Automatic Snapshot Restore for Red Indices",
 "status":"Shard(s) deleted"
 }
}

High shard count warning

OpenSearch Service sends this event when the average shard count across your hot data nodes has
exceeded 90% of the recommended default limit of 1,000. Although later versions of Elasticsearch

Cluster health events 611

Amazon OpenSearch Service Developer Guide

and OpenSearch support a configurable max shard count per node limit, we recommend you have
no more than 1,000 shards per node. See Choosing the number of shards.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"High Shard Count",
 "status":"Warning",
 "severity":"Low",
 "description":"One or more data nodes have close to 1000 shards. To ensure optimum
 performance and stability of your
 cluster, please refer to the best practice guidelines - https://
docs.aws.amazon.com/opensearch-service/latest/developerguide/sizing-domains.html#bp-
sharding."
 }
}

Shard count limit exceeded

OpenSearch Service sends this event when the average shard count across your hot data nodes has
exceeded the recommended default limit of 1,000. Although later versions of Elasticsearch and
OpenSearch support a configurable max shard count per node limit, we recommend you have no
more than 1,000 shards per node. See Choosing the number of shards.

Example

The following is an example event of this type:

{
 "version":"0",

Cluster health events 612

Amazon OpenSearch Service Developer Guide

 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"High Shard Count",
 "status":"Warning",
 "severity":"Medium",
 "description":"One or more data nodes have more than 1000 shards. To ensure
 optimum performance and stability of your
 cluster, please refer to the best practice guidelines - https://
docs.aws.amazon.com/opensearch-service/latest/developerguide/sizing-domains.html#bp-
sharding."
 }
}

Low disk space

OpenSearch Service sends this event when one or more nodes in your cluster has less than 25% of
available storage space, or less than 25 GB.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"Low Disk Space",
 "status":"Warning",
 "severity":"Medium",
 "description":"One or more data nodes in your cluster has less than 25% of storage
 space or less than 25GB.

Cluster health events 613

Amazon OpenSearch Service Developer Guide

 Your cluster will be blocked for writes at 20% or 20GB. Please refer
 to the documentation for more information - https://docs.aws.amazon.com/opensearch-
service/latest/developerguide/handling-errors.html#troubleshooting-cluster-block"
 }
}

Low disk watermark breach

OpenSearch Service sends this event when all nodes in your cluster have less than 10% of available
storage space, or less than 10 GB. When all nodes breach the low disk watermark, any new index
results in a yellow cluster, and when all nodes fall below the high disk watermark, it will lead to a
red cluster.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"Low Disk Watermark Breach",
 "status":"Warning",
 "severity":"Medium",
 "description":"Low Disk Watermark threshold is about to be breached. Once the
 threshold is breached, new index creation will be blocked on all
 nodes to prevent the cluster status from turning red. Please
 increase disk size to suit your storage needs. For more information,
 see https://docs.aws.amazon.com/opensearch-service/latest/
developerguide/handling-errors.html#troubleshooting-cluster-block".
 }
}

Cluster health events 614

Amazon OpenSearch Service Developer Guide

EBS burst balance below 70%

OpenSearch Service sends this event when the EBS burst balance on one or more data nodes falls
below 70%. EBS burst balance depletion can cause widespread cluster unavailability and throttling
of I/O requests, which can lead to high latencies and timeouts on indexing and search requests. For
steps to fix this issue, see the section called “Low EBS burst balance”.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"EBS Burst Balance",
 "status":"Warning",
 "severity":"Medium",
 "description":"EBS burst balance on one or more data nodes is below 70%.
 Follow https://docs.aws.amazon.com/opensearch-service/latest/
developerguide/handling-errors.html#handling-errors-low-ebs-burst
 to fix this issue."
 }
}

EBS burst balance below 20%

OpenSearch Service sends this event when the EBS burst balance on one or more data nodes falls
below 20%. EBS burst balance depletion can cause widespread cluster unavailability and throttling
of I/O requests, which can lead to high latencies and timeouts on indexing and search requests. For
steps to fix this issue, see the section called “Low EBS burst balance”.

Example

The following is an example event of this type:

Cluster health events 615

Amazon OpenSearch Service Developer Guide

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"EBS Burst Balance",
 "status":"Warning",
 "severity":"High",
 "description":"EBS burst balance on one or more data nodes is below 20%.
 Follow https://docs.aws.amazon.com/opensearch-service/latest/
developerguide/handling-errors.html#handling-errors-low-ebs-burst
 to fix this issue.
 }
}

Disk throughput throttle

OpenSearch Service sends this event when read and write requests to your domain are being
throttled due to the throughput limitations of your EBS volumes or EC2 instance. If you receive this
notification, consider scaling up your volumes or instances following Amazon recommended best
practices. If your volume type is gp2, increase the volume size. If your volume type is gp3, provision
more throughput. You can also check that your instance base and maximum EBS throughput are
greater than or equal to the provisioned volume throughput, and can scale up accordingly.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],

Cluster health events 616

Amazon OpenSearch Service Developer Guide

 "detail":{
 "event":"Disk Throughput Throttle",
 "status":"Warning",
 "severity":"Medium",
 "description":"Your domain is experiencing throttling due to instance or volume
 throughput limitations.
 Please consider scaling your domain to suit your throughput needs.
 In July 2023, we improved
 the accuracy of throughput throttle calculation by replacing ‘Max
 volume throughput’ with
 ‘Provisioned volume throughput’. Please refer to the documentation
 for more information."
 }
}

Large shard size

OpenSearch Service sends this event when one or more shards in your cluster has exceeded either
50GiB or 65GiB. To ensure optimum cluster performance and stability, reduce shard sizes.

For more information, see the sharding best practices.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"Large Shard Size",
 "status":"Warning",
 "severity":"Medium",
 "description":"One or more shards are larger than 65GiB. To ensure optimum cluster
 performance and stability, reduce shard sizes.
 For more information, see https://docs.aws.amazon.com/opensearch-
service/latest/developerguide/monitoring-events.html#monitoring-events-large-shard-
size."

Cluster health events 617

Amazon OpenSearch Service Developer Guide

 }
}

High JVM usage

OpenSearch Service sends this event when the JVMMemoryPressure metric for your domain
has exceeded 80%. If it exceeds 92% for 30 minutes, all write operations to your cluster will be
blocked. To ensure optimum cluster stability, reduce traffic to the cluster or scale your domain to
provide sufficient memory for your workload.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"High JVM Usage",
 "status":"Warning",
 "severity":"High",
 "description":"JVM memory pressure has exceeded 80%. If it exceeds 92% for 30
 minutes, all write operations to your cluster
 will be blocked. To ensure optimum cluster stability, reduce
 traffic to the cluster or use larger instance types.
 For more information, see https://docs.aws.amazon.com/opensearch-
service/latest/developerguide/monitoring-events.html#monitoring-events-high-jvm."
 }
}

Insufficient GC

OpenSearch Service sends this event when maximum JVM is above 70% and difference between
the maximum and minimum is less than 30%. This may indicate that the JVM is unable to reclaim
sufficient memory during garbage collection cycles for your workload. This can lead to increasingly

Cluster health events 618

Amazon OpenSearch Service Developer Guide

slower responses and higher latencies; and in some cases even node drops due to timed out health
checks. To ensure optimum cluster stability, reduce traffic to the cluster or scale your domain to
provide sufficient memory for your workload.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"Insufficient GC",
 "status":"Warning",
 "severity":"Medium",
 "description":"Maximum JVM is above 70% and JVM range is less than 30%. This may
 indicate insufficient garbage collection for your workload.
 For more information, see https://docs.aws.amazon.com/opensearch-
service/latest/developerguide/monitoring-events.html#monitoring-events-insufficient-
gc."
 }
}

Custom index routing warning

OpenSearch Service sends this event when your domain is in processing state and contains indices
with custom index.routing.allocation settings which can cause blue-green deployments to get
stuck. Verify settings are applied properly.

Example

The following is an example event of this type:

{
 "version":"0",

Cluster health events 619

Amazon OpenSearch Service Developer Guide

 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"Custom Index Routing Warning",
 "status":"Warning",
 "severity":"Medium",
 "description":"Your domain is in processing state and contains indice(s) with
 custom index.routing.allocation
 settings which can cause blue-green deployments to get stuck.
 Verify settings are applied properly.
 For more information, see https://docs.aws.amazon.com/opensearch-
service/latest/developerguide/monitoring-events.html#monitoring-events-index-routing."
 }
}

Failed shard lock

OpenSearch Service sends this event when your domain is unhealthy due to unassigned shards
with [ShardLockObtainFailedException]. For more information, see How do I resolve the in-
memory shard lock exception in Amazon OpenSearch Service?

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2017-12-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"Failed Shard Lock",
 "status":"Warning",
 "severity":"Medium",

Cluster health events 620

https://aws.amazon.com/premiumsupport/knowledge-center/opensearch-in-memory-shard-lock/
https://aws.amazon.com/premiumsupport/knowledge-center/opensearch-in-memory-shard-lock/

Amazon OpenSearch Service Developer Guide

 "description":"Your domain is unhealthy due to unassigned shards with
 [ShardLockObtainFailedException]. For more information,
 see https://docs.aws.amazon.com/opensearch-service/latest/
developerguide/monitoring-events.html#monitoring-events-failed-shard-lock."
}

VPC endpoint events

OpenSearch Service sends certain events to EventBridge related to Amazon PrivateLink interface
endpoints.

VPC endpoint creation failed

OpenSearch Service sends this event when it's unable to create a requested VPC endpoint. This
error might occur because you've reached the limit on the number of VPC endoints allowed within
a Region. You will also see this error if a specified subnet or security group doesn't exist.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service VPC Endpoint Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:es:us-east-1:123456789012:domain/test-domain"
],
 "detail":{
 "event":"VPC Endpoint Create Validation",
 "status":"Failed",
 "severity":"High",
 "description":"Unable to create VPC endpoint aos-0d4c74c0342343 for domain
 arn:aws:es:eu-south-1:123456789012:domain/my-domain due to the
 following validation failures: You've reached the limit on the
 number of VPC endpoints that you can create in the AWS Region."
 }
}

VPC endpoint events 621

Amazon OpenSearch Service Developer Guide

VPC endpoint update failed

OpenSearch Service sends this event when it's unable to delete a requested VPC endpoint.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service VPC Endpoint Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:es:us-east-1:123456789012:domain/test-domain"
],
 "detail":{
 "event":"VPC Endpoint Update Validation",
 "status":"Failed",
 "severity":"High",
 "description":"Unable to update VPC endpoint aos-0d4c74c0342343 for domain
 arn:aws:es:eu-south-1:123456789012:domain/my-domain due to the
 following validation failures: <failure message>."
 }
}

VPC endpoint deletion failed

OpenSearch Service sends this event when it's unable to delete a requested VPC endpoint.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service VPC Endpoint Notification",
 "source":"aws.es",
 "account":"123456789012",

VPC endpoint events 622

Amazon OpenSearch Service Developer Guide

 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:es:us-east-1:123456789012:domain/test-domain"
],
 "detail":{
 "event":"VPC Endpoint Delete Validation",
 "status":"Failed",
 "severity":"High",
 "description":"Unable to delete VPC endpoint aos-0d4c74c0342343 for domain
 arn:aws:es:eu-south-1:123456789012:domain/my-domain due to the
 following validation failures: Specified subnet doesn't exist."
 }
}

Node retirement events

OpenSearch Service sends events to EventBridge when one of the following node retirement
events occur.

Node retirement scheduled

OpenSearch Service sends this event when a node retirement has been scheduled.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2023-04-07T10:07:33Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Node Retirement Notification",
 "status": "Scheduled",
 "severity": "Medium",
 "description": "An automated action to retire and replace a node has been scheduled
 on your domain.

Node retirement events 623

Amazon OpenSearch Service Developer Guide

 The node will be replaced in the next off-peak window. For more
 information, see
 https://docs.aws.amazon.com/opensearch-service/latest/
developerguide/monitoring-events.html."
 }
}

Node retirement completed

OpenSearch Service sends this event when a node retirement has completed.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",
 "detail-type": "Amazon OpenSearch Service Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2023-04-07T10:07:33Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Node Retirement Notification",
 "status": "Completed",
 "severity": "Medium",
 "description": "The node has been retired and replaced with a new node."
 }
}

Node retirement failed

OpenSearch Service sends this event when a node retirement fails.

Example

The following is an example event of this type:

{
 "version": "0",
 "id": "01234567-0123-0123-0123-012345678901",

Node retirement events 624

Amazon OpenSearch Service Developer Guide

 "detail-type": "Amazon OpenSearch Service Notification",
 "source": "aws.es",
 "account": "123456789012",
 "time": "2023-04-07T10:07:33Z",
 "region": "us-east-1",
 "resources": ["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail": {
 "event": "Node Retirement Notification",
 "status": "Failed",
 "severity": "Medium",
 "description": "Node retirement failed. No actions are required from your end. We
 will automatically
 retry replacing the node."
 }
}

Domain error events

OpenSearch Service sends events to EventBridge when one of the following domain errors occur.

Domain update validation failure

OpenSearch Service sends this event if it encounters one or more validation failures when
attempting to update or perform a configuration change on a domain. For steps to resolve these
failures, see the section called “Troubleshooting validation errors”.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Domain Update Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":[
 "arn:aws:es:us-east-1:123456789012:domain/test-domain"
],
 "detail":{

Domain error events 625

Amazon OpenSearch Service Developer Guide

 "event":"Domain Update Validation",
 "status":"Failed",
 "severity":"High",
 "description":"Unable to perform updates to your domain due to the following
 validation failures: <failures>
 Please see the documentation for more information https://
docs.aws.amazon.com/opensearch-service/latest/developerguide/managedomains-
configuration-changes.html#validation"
 }
}

KMS key inaccessible

OpenSearch Service sends this event when it can't access your Amazon KMS key.

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Domain Error Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2016-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"KMS Key Inaccessible",
 "status":"Error",
 "severity":"High",
 "description":"The KMS key associated with this domain is inaccessible. You are at
 risk of losing access to your domain.
 For more information, please refer to https://docs.aws.amazon.com/
opensearch-service/latest/developerguide/encryption-at-rest.html#disabled-key."
 }
}

Domain isolation

OpenSearch Service sends this event when your domain becomes isolated and can't received, read,
or write requests because it is unreachable by the network.

Domain error events 626

Amazon OpenSearch Service Developer Guide

Example

The following is an example event of this type:

{
 "version":"0",
 "id":"01234567-0123-0123-0123-012345678901",
 "detail-type":"Amazon OpenSearch Service Notification",
 "source":"aws.es",
 "account":"123456789012",
 "time":"2023-11-01T13:12:22Z",
 "region":"us-east-1",
 "resources":["arn:aws:es:us-east-1:123456789012:domain/test-domain"],
 "detail":{
 "event":"Domain Isolation Notification",
 "status":"Error",
 "severity":"High",
 "description":"Your OpenSearch Service domain has been isolated. An isolated
 domain is unreachable by network and cannot receive, read, or write requests. For more
 information and assistance, please contact AWS Support at https://docs.aws.amazon.com/
opensearch-service/latest/developerguide/encryption-at-rest.html#disabled-key."
 }
}

Tutorial: Listening for Amazon OpenSearch Service EventBridge events

In this tutorial, you set up a simple Amazon Lambda function that listens for Amazon OpenSearch
Service events and writes them to a CloudWatch Logs log stream.

Prerequisites

This tutorial assumes that you have an existing OpenSearch Service domain. If you haven't created
a domain, follow the steps in Creating and managing domains to create one.

Step 1: Create the Lambda function

In this procedure, you create a simple Lambda function to serve as a target for OpenSearch Service
event messages.

To create a target Lambda function

1. Open the Amazon Lambda console at https://console.amazonaws.cn/lambda/.

Tutorial: Listening for OpenSearch Service events 627

https://console.amazonaws.cn/lambda/

Amazon OpenSearch Service Developer Guide

2. Choose Create function and Author from scratch.

3. For Function name, enter event-handler.

4. For Runtime, choose Python 3.8.

5. Choose Create function.

6. In the Function code section, edit the sample code to match the following example:

import json

def lambda_handler(event, context):
 if event["source"] != "aws.es":
 raise ValueError("Function only supports input from events with a source
 type of: aws.es")

 print(json.dumps(event))

This is a simple Python 3.8 function that prints the events sent by OpenSearch Service. If
everything is configured correctly, at the end of this tutorial, the event details appear in the
CloudWatch Logs log stream that's associated with this Lambda function.

7. Choose Deploy.

Step 2: Register an event rule

In this step, you create an EventBridge rule that captures events from your OpenSearch Service
domains. This rule captures all events within the account where it's defined. The event messages
themselves contain information about the event source, including the domain from which it
originated. You can use this information to filter and sort events programmatically.

To create an EventBridge rule

1. Open the EventBridge console at https://console.aws.amazon.com/events/.

2. Choose Create rule.

3. Name the rule event-rule.

4. Choose Next.

5. For the event pattern, select Amazon services, Amazon OpenSearch Service, and All Events.
This pattern applies across all of your OpenSearch Service domains and to every OpenSearch
Service event. Alternatively, you can create a more specific pattern to filter out some results.

Tutorial: Listening for OpenSearch Service events 628

https://console.aws.amazon.com/events/

Amazon OpenSearch Service Developer Guide

6. Press Next.

7. For the target, choose Lambda function. In the function dropdown, choose event-handler.

8. Press Next.

9. Skip the tags and press Next again.

10. Review the configuration and choose Create rule.

Step 3: Test your configuration

The next time you receive a notification in the Notifications section of the OpenSearch Service
console, if everything is configured properly, your Lambda function is triggered and it writes the
event data to a CloudWatch Logs log stream for the function.

To test your configuration

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the navigation pane, choose Logs and select the log group for your Lambda function (for
example, /aws/lambda/event-handler).

3. Select a log stream to view the event data.

Tutorial: Sending Amazon SNS alerts for available software updates

In this tutorial, you configure an Amazon EventBridge event rule that captures notifications
for available service software updates in Amazon OpenSearch Service and sends you an email
notification through Amazon Simple Notification Service (Amazon SNS).

Prerequisites

This tutorial assumes that you have an existing OpenSearch Service domain. If you haven't created
a domain, follow the steps in Creating and managing domains to create one.

Step 1: Create and subscribe to an Amazon SNS topic

Configure an Amazon SNS topic to serve as an event target for your new event rule.

To create an Amazon SNS target

1. Open the Amazon SNS console at https://console.amazonaws.cn/sns/v3/home.

Tutorial: Sending SNS alerts for available updates 629

https://console.aws.amazon.com/cloudwatch/
https://console.amazonaws.cn/sns/v3/home

Amazon OpenSearch Service Developer Guide

2. Choose Topics and Create topic.

3. For the job type, choose Standard, and name the job software-update.

4. Choose Create topic.

5. After the topic is created, choose Create subscription.

6. For Protocol, choose Email. For Endpoint, enter an email address that you currently have
access to and choose Create subscription.

7. Check your email account and wait to receive a subscription confirmation email message.
When you receive it, choose Confirm subscription.

Step 2: Register an event rule

Next, register an event rule that captures only service software update events.

To create an event rule

1. Open the EventBridge console at https://console.aws.amazon.com/events/.

2. Choose Create rule.

3. Name the rule softwareupdate-rule.

4. Choose Next.

5. For the event pattern, select Amazon services, Amazon OpenSearch Service, and Amazon
OpenSearch Service Software Update Notification. This pattern matches any service
software update event from OpenSearch Service. For more information about event patterns,
see Amazon EventBridge event patterns in the Amazon EventBridge User Guide.

6. Optionally, you can filter to only specific severities. For the severities of each event, see the
section called “Service software update events”.

7. Choose Next.

8. For the target, choose SNS topic and select software-update.

9. Choose Next.

10. Skip the tags and choose Next.

11. Review the rule configuration and choose Create rule.

The next time you receive a notification from OpenSearch Service about an available service
software update, if everything is configured properly, Amazon SNS should send you an email alert
about the update.

Tutorial: Sending SNS alerts for available updates 630

https://console.aws.amazon.com/events/
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-event-patterns.html

Amazon OpenSearch Service Developer Guide

Monitoring Amazon OpenSearch Service API calls with Amazon
CloudTrail

Amazon OpenSearch Service integrates with Amazon CloudTrail, a service that provides a record of
actions taken by a user, role, or an Amazon service in OpenSearch Service. CloudTrail captures all
configuration API calls for OpenSearch Service as events.

Note

CloudTrail only captures calls to the Configuration API, such as CreateDomain and
GetUpgradeStatus. CloudTrail doesn't capture calls to the OpenSearch APIs, such as
_search and _bulk. For these calls, see the section called “Monitoring audit logs”.

The captured calls include calls from the OpenSearch Service console, Amazon CLI, or an Amazon
SDK. If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon
S3 bucket, including events for OpenSearch Service. If you don't configure a trail, you can still
view the most recent events on the CloudTrail console in Event history. Using the information
collected by CloudTrail, you can determine the request that was made to OpenSearch Service,
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, see the Amazon CloudTrail User Guide.

Amazon OpenSearch Service information in CloudTrail

CloudTrail is enabled on your Amazon Web Services account when you create the account. When
activity occurs in OpenSearch Service, that activity is recorded in a CloudTrail event along with
other Amazon service events in Event history. You can view, search, and download recent events
in your Amazon Web Services account account. For more information, see Viewing events with
CloudTrail event history.

For an ongoing record of events in your Amazon Web Services account account, including events
for OpenSearch Service, create a trail. A trail enables CloudTrail to deliver log files to an Amazon
S3 bucket. By default, when you create a trail in the console, the trail applies to all Amazon Web
Services Regions. The trail logs events from all Regions in the Amazon partition and delivers the
log files to the Amazon S3 bucket that you specify. Additionally, you can configure other Amazon

Monitoring with CloudTrail 631

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon OpenSearch Service Developer Guide

services to further analyze and act upon the event data collected in CloudTrail logs. For more
information, see the following:

• Creating a trail for your Amazon Web Services account

• Amazon service integrations with CloudTrail Logs

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from
multiple accounts

All OpenSearch Service configuration API actions are logged by CloudTrail and are documented in
the Amazon OpenSearch Service API Reference.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or Amazon Identity and Access Management (IAM) user
credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another Amazon service

For more information, see the CloudTrail userIdentity Element.

Understanding Amazon OpenSearch Service log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateDomain
operation:

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",

Understanding Amazon OpenSearch Service log file entries 632

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon OpenSearch Service Developer Guide

 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "access-key",
 "userName": "test-user",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-08-21T21:59:11Z"
 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2018-08-21T22:00:05Z",
 "eventSource": "es.amazonaws.com",
 "eventName": "CreateDomain",
 "awsRegion": "us-west-1",
 "sourceIPAddress": "123.123.123.123",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "engineVersion": "OpenSearch_1.0",
 "clusterConfig": {
 "instanceType": "m4.large.search",
 "instanceCount": 1
 },
 "snapshotOptions": {
 "automatedSnapshotStartHour": 0
 },
 "domainName": "test-domain",
 "encryptionAtRestOptions": {},
 "eBSOptions": {
 "eBSEnabled": true,
 "volumeSize": 10,
 "volumeType": "gp2"
 },
 "accessPolicies": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow
\",\"Principal\":{\"AWS\":[\"123456789012\"]},\"Action\":[\"es:*\"],\"Resource\":
\"arn:aws:es:us-west-1:123456789012:domain/test-domain/*\"}]}",
 "advancedOptions": {
 "rest.action.multi.allow_explicit_index": "true"
 }
 },
 "responseElements": {
 "domainStatus": {
 "created": true,

Understanding Amazon OpenSearch Service log file entries 633

Amazon OpenSearch Service Developer Guide

 "clusterConfig": {
 "zoneAwarenessEnabled": false,
 "instanceType": "m4.large.search",
 "dedicatedMasterEnabled": false,
 "instanceCount": 1
 },
 "cognitoOptions": {
 "enabled": false
 },
 "encryptionAtRestOptions": {
 "enabled": false
 },
 "advancedOptions": {
 "rest.action.multi.allow_explicit_index": "true"
 },
 "upgradeProcessing": false,
 "snapshotOptions": {
 "automatedSnapshotStartHour": 0
 },
 "eBSOptions": {
 "eBSEnabled": true,
 "volumeSize": 10,
 "volumeType": "gp2"
 },
 "engineVersion": "OpenSearch_1.0",
 "processing": true,
 "aRN": "arn:aws:es:us-west-1:123456789012:domain/test-domain",
 "domainId": "123456789012/test-domain",
 "deleted": false,
 "domainName": "test-domain",
 "accessPolicies": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow
\",\"Principal\":{\"AWS\":\"arn:aws:iam::123456789012:root\"},\"Action\":\"es:*\",
\"Resource\":\"arn:aws:es:us-west-1:123456789012:domain/test-domain/*\"}]}"
 }
 },
 "requestID": "12345678-1234-1234-1234-987654321098",
 "eventID": "87654321-4321-4321-4321-987654321098",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Understanding Amazon OpenSearch Service log file entries 634

Amazon OpenSearch Service Developer Guide

Security in Amazon OpenSearch Service

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. Third-party auditors regularly test and verify the effectiveness of our security as part
of the Amazon compliance programs. To learn about the compliance programs that apply to
Amazon OpenSearch Service, see Amazon Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you use.
You are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using OpenSearch Service. The following topics show you how to configure OpenSearch Service
to meet your security and compliance objectives. You also learn how to use other Amazon services
that help you to monitor and secure your OpenSearch Service resources.

Topics

• Data protection in Amazon OpenSearch Service

• Identity and Access Management in Amazon OpenSearch Service

• Cross-service confused deputy prevention

• Fine-grained access control in Amazon OpenSearch Service

• Compliance validation for Amazon OpenSearch Service

• Resilience in Amazon OpenSearch Service

• Infrastructure security in Amazon OpenSearch Service

• SAML authentication for OpenSearch Dashboards

• Configuring Amazon Cognito authentication for OpenSearch Dashboards

• Using service-linked roles for Amazon OpenSearch Service

635

https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/programs/
https://www.amazonaws.cn/compliance/services-in-scope/

Amazon OpenSearch Service Developer Guide

Data protection in Amazon OpenSearch Service

The Amazon shared responsibility model applies to data protection in Amazon OpenSearch Service.
As described in this model, Amazon is responsible for protecting the global infrastructure that
runs all of the Amazon Web Services Cloud. You are responsible for maintaining control over your
content that is hosted on this infrastructure. You are also responsible for the security configuration
and management tasks for the Amazon Web Services that you use. For more information about
data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and
Access Management (IAM). That way, each user is given only the permissions necessary to fulfill
their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS
1.3.

• Set up API and user activity logging with Amazon CloudTrail.

• Use Amazon encryption solutions, along with all default security controls within Amazon Web
Services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with OpenSearch Service or other Amazon Web Services using the console, API,
Amazon CLI, or Amazon SDKs. Any data that you enter into tags or free-form text fields used for
names may be used for billing or diagnostic logs. If you provide a URL to an external server, we
strongly recommend that you do not include credentials information in the URL to validate your
request to that server.

Data protection 636

https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq
https://www.amazonaws.cn/compliance/fips/

Amazon OpenSearch Service Developer Guide

Encryption of data at rest for Amazon OpenSearch Service

OpenSearch Service domains offer encryption of data at rest, a security feature that helps prevent
unauthorized access to your data. The feature uses Amazon Key Management Service (Amazon
KMS) to store and manage your encryption keys and the Advanced Encryption Standard algorithm
with 256-bit keys (AES-256) to perform the encryption. If enabled, the feature encrypts the
following aspects of a domain:

• All indexes (including those in UltraWarm storage)

• OpenSearch logs

• Swap files

• All other data in the application directory

• Automated snapshots

The following are not encrypted when you enable encryption of data at rest, but you can take
additional steps to protect them:

• Manual snapshots: You currently can't use Amazon KMS keys to encrypt manual snapshots. You
can, however, use server-side encryption with S3-managed keys or KMS keys to encrypt the
bucket you use as a snapshot repository. For instructions, see the section called “Registering a
manual snapshot repository”.

• Slow logs and error logs: If you publish logs and want to encrypt them, you can encrypt their
CloudWatch Logs log group using the same Amazon KMS key as the OpenSearch Service domain.
For more information, see Encrypt log data in CloudWatch Logs using Amazon KMS in the
Amazon CloudWatch Logs User Guide.

Note

You can't enable encryption at rest on an existing domain if UltraWarm or cold storage
is enabled on the domain. You must first disable UltraWarm or cold storage, enable
encryption at rest, and then re-enable UltraWarm or cold storage. If you want to retain
indexes in UltraWarm or cold storage, you must move them to hot storage before disabling
UltraWarm or cold storage.

Encryption at rest 637

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html

Amazon OpenSearch Service Developer Guide

OpenSearch Service supports only symmetric encryption KMS keys, not asymmetric ones. To learn
how to create symmetric keys, see Creating keys in the Amazon Key Management Service Developer
Guide.

Regardless of whether encryption at rest is enabled, all domains automatically encrypt custom
packages using AES-256 and OpenSearch Service-managed keys.

Permissions

To use the OpenSearch Service console to configure encryption of data at rest, you must have read
permissions to Amazon KMS, such as the following identity-based policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:List*",
 "kms:Describe*"
],
 "Resource": "*"
 }
]
}

If you want to use a key other than the Amazon owned key, you must also have permissions to
create grants for the key. These permissions typically take the form of a resource-based policy that
you specify when you create the key.

If you want to keep your key exclusive to OpenSearch Service, you can add the kms:ViaService
condition to that key policy:

"Condition": {
 "StringEquals": {
 "kms:ViaService": "es.us-west-1.amazonaws.com"
 },
 "Bool": {
 "kms:GrantIsForAWSResource": "true"
 }
}

Encryption at rest 638

https://docs.amazonaws.cn/kms/latest/developerguide/create-keys.html
https://docs.amazonaws.cn/kms/latest/developerguide/grants.html
https://docs.amazonaws.cn/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service

Amazon OpenSearch Service Developer Guide

For more information, see Using key policies in Amazon KMS in the Amazon Key Management
Service Developer Guide.

Enabling encryption of data at rest

Encryption of data at rest on new domains requires either OpenSearch or Elasticsearch 5.1 or later.
Enabling it on existing domains requires either OpenSearch or Elasticsearch 6.7 or later.

To enable encryption of data at rest (console)

1. Open the domain in the Amazon console, then choose Actions and Edit security
configuration.

2. Under Encryption, select Enable encryption of data at rest.

3. Choose an Amazon KMS key to use, then choose Save changes.

You can also enable encryption through the configuration API. The following request enables
encryption of data at rest on an existing domain:

{
 "ClusterConfig":{
 "EncryptionAtRestOptions":{
 "Enabled": true,
 "KmsKeyId":"arn:aws:kms:us-east-1:123456789012:alias/my-key"
 }
 }
}

Disabled or deleted KMS key

If you disable or delete the key that you used to encrypt a domain, the domain becomes
inaccessible. OpenSearch Service sends you a notification informing you that it can't access the
KMS key. Re-enable the key immediately to access your domain.

The OpenSearch Service team can't help you recover your data if your key is deleted. Amazon KMS
deletes keys only after a waiting period of at least seven days. If your key is pending deletion,
either cancel deletion or take a manual snapshot of the domain to prevent loss of data.

Encryption at rest 639

https://docs.amazonaws.cn/kms/latest/developerguide/key-policies.html

Amazon OpenSearch Service Developer Guide

Disabling encryption of data at rest

After you configure a domain to encrypt data at rest, you can't disable the setting. Instead, you
can take a manual snapshot of the existing domain, create another domain, migrate your data, and
delete the old domain.

Monitoring domains that encrypt data at rest

Domains that encrypt data at rest have two additional metrics: KMSKeyError and
KMSKeyInaccessible. These metrics appear only if the domain encounters a problem with your
encryption key. For full descriptions of these metrics, see the section called “Cluster metrics”. You
can view them using either the OpenSearch Service console or the Amazon CloudWatch console.

Tip

Each metric represents a significant problem for a domain, so we recommend that
you create CloudWatch alarms for both. For more information, see the section called
“Recommended CloudWatch alarms”.

Other considerations

• Automatic key rotation preserves the properties of your Amazon KMS keys, so the rotation
has no effect on your ability to access your OpenSearch data. Encrypted OpenSearch Service
domains don't support manual key rotation, which involves creating a new key and updating
any references to the old key. To learn more, see Rotating keys in the Amazon Key Management
Service Developer Guide.

• Certain instance types don't support encryption of data at rest. For details, see the section called
“Supported instance types”.

• Domains that encrypt data at rest use a different repository name for their automated
snapshots. For more information, see the section called “Restoring snapshots”.

• While we highly recommend enabling encryption at rest, it can add additional CPU overhead and
a few milliseconds of latency. Most use cases aren't sensitive to these differences, however, and
the magnitude of impact depends on the configuration of your cluster, clients, and usage profile.

Encryption at rest 640

https://docs.amazonaws.cn/kms/latest/developerguide/rotate-keys.html

Amazon OpenSearch Service Developer Guide

Node-to-node encryption for Amazon OpenSearch Service

Node-to-node encryption provides an additional layer of security on top of the default features of
Amazon OpenSearch Service.

Each OpenSearch Service domain—regardless of whether the domain uses VPC access—resides
within its own, dedicated VPC. This architecture prevents potential attackers from intercepting
traffic between OpenSearch nodes and keeps the cluster secure. By default, however, traffic
within the VPC is unencrypted. Node-to-node encryption enables TLS 1.2 encryption for all
communications within the VPC.

If you send data to OpenSearch Service over HTTPS, node-to-node encryption helps ensure that
your data remains encrypted as OpenSearch distributes (and redistributes) it throughout the
cluster. If data arrives unencrypted over HTTP, OpenSearch Service encrypts it after it reaches the
cluster. You can require that all traffic to the domain arrive over HTTPS using the console, Amazon
CLI, or configuration API.

Node-to-node encryption is required if you enable fine-grained access control.

Enabling node-to-node encryption

Node-to-node encryption on new domains requires any version of OpenSearch, or Elasticsearch
6.0 or later. Enabling node-to-node encryption on existing domains requires any version of
OpenSearch, or Elasticsearch 6.7 or later. Choose the existing domain in the Amazon console,
Actions, and Edit security configuration.

Alternatively, you can use the Amazon CLI or configuration API. For more information, see the
Amazon CLI Command Reference and OpenSearch Service API reference.

Disabling node-to-node encryption

After you configure a domain to use node-to-node encryption, you can't disable the setting.
Instead, you can take a manual snapshot of the encrypted domain, create another domain, migrate
your data, and delete the old domain.

Node-to-node encryption 641

https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_Welcome.html

Amazon OpenSearch Service Developer Guide

Identity and Access Management in Amazon OpenSearch
Service

Amazon OpenSearch Service offers several ways to control access to your domains. This topic
covers the various policy types, how they interact with each other, and how to create your own
custom policies.

Important

VPC support introduces some additional considerations to OpenSearch Service access
control. For more information, see the section called “About access policies on VPC
domains”.

Types of policies

OpenSearch Service supports three types of access policies:

• the section called “Resource-based policies”

• the section called “Identity-based policies”

• the section called “IP-based policies”

Resource-based policies

You add a resource-based policy, often called the domain access policy, when you create a domain.
These policies specify which actions a principal can perform on the domain's subresources (with
the exception of cross-cluster search). Subresources include OpenSearch indexes and APIs. The
Principal element specifies the accounts, users, or roles that are allowed access. The Resource
element specifies which subresources these principals can access.

For example, the following resource-based policy grants test-user full access (es:*) to the
subresources on test-domain:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Identity and Access Management 642

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_resource.html

Amazon OpenSearch Service Developer Guide

 "Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:user/test-user"
]
 },
 "Action": [
 "es:*"
],
 "Resource": "arn:aws:es:us-west-1:987654321098:domain/test-domain/*"
 }
]
}

Two important considerations apply to this policy:

• These privileges apply only to this domain. Unless you create similar policies on other domains,
test-user can only access test-domain.

• The trailing /* in the Resource element is significant and indicates that resource-based policies
only apply to the domain's subresources, not the domain itself. In resource-based policies, the
es:* action is equivalent to es:ESHttp*.

For example, test-user can make requests against an index (GET https://search-test-
domain.us-west-1.es.amazonaws.com/test-index), but can't update the domain's
configuration (POST https://es.us-west-1.amazonaws.com/2021-01-01/opensearch/
domain/test-domain/config). Note the difference between the two endpoints. Accessing the
configuration API requires an identity-based policy.

You can specify a partial index name by adding a wildcard. This example identifies any indexes
beginning with commerce:

arn:aws:es:us-west-1:987654321098:domain/test-domain/commerce*

In this case, the wildcard means that test-user can make requests to indexes within test-
domain that have names that begin with commerce.

To further restrict test-user, you can apply the following policy:

{
 "Version": "2012-10-17",
 "Statement": [

Types of policies 643

Amazon OpenSearch Service Developer Guide

 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:user/test-user"
]
 },
 "Action": [
 "es:ESHttpGet"
],
 "Resource": "arn:aws:es:us-west-1:987654321098:domain/test-domain/commerce-data/
_search"
 }
]
}

Now test-user can perform only one operation: searches against the commerce-data
index. All other indexes within the domain are inaccessible, and without permissions to use the
es:ESHttpPut or es:ESHttpPost actions, test-user can't add or modify documents.

Next, you might decide to configure a role for power users. This policy gives power-user-role
access to the HTTP GET and PUT methods for all URIs in the index:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:role/power-user-role"
]
 },
 "Action": [
 "es:ESHttpGet",
 "es:ESHttpPut"
],
 "Resource": "arn:aws:es:us-west-1:987654321098:domain/test-domain/commerce-data/
*"
 }
]
}

Types of policies 644

Amazon OpenSearch Service Developer Guide

If your domain is in a VPC or uses fine-grained access control, you can use an open domain access
policy. Otherwise, your domain access policy must contain some restriction, either by principal or IP
address.

For information about all available actions, see the section called “Policy element reference”. For
far more granular control over your data, use an open domain access policy with fine-grained
access control.

Identity-based policies

Unlike resource-based policies, which are a part of each OpenSearch Service domain, you attach
identity-based policies to users or roles using the Amazon Identity and Access Management (IAM)
service. Just like resource-based policies, identity-based policies specify who can access a service,
which actions they can perform, and if applicable, the resources on which they can perform those
actions.

While they certainly don't have to be, identity-based policies tend to be more generic. They often
govern only the configuration API actions a user can perform. After you have these policies in
place, you can use resource-based policies (or fine-grained access control) in OpenSearch Service to
offer users access to OpenSearch indexes and APIs.

Note

Users with the Amazon managed AmazonOpenSearchServiceReadOnlyAccess policy
can't see cluster health status on the console. To allow them to see cluster health status
(and other OpenSearch data), add the es:ESHttpGet action to an access policy and attach
it to their accounts or roles.

Because identity-based policies attach to users or roles (principals), the JSON doesn't specify a
principal. The following policy grants access to actions that begin with Describe and List. This
combination of actions provides read-only access to domain configurations, but not to the data
stored in the domain itself:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "es:Describe*",

Types of policies 645

Amazon OpenSearch Service Developer Guide

 "es:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

An administrator might have full access to OpenSearch Service and all data stored on all domains:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "es:*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Identity-based policies let you use tags to control access to the configuration API. The following
policy, for example, lets attached principals view and update a domain's configuration if the
domain has the team:devops tag:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "es:UpdateDomainConfig",
 "es:DescribeDomain",
 "es:DescribeDomainConfig"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:ResourceTag/team": [
 "devops"
]

Types of policies 646

Amazon OpenSearch Service Developer Guide

 }
 }
 }]
}

You can also use tags to control access to the OpenSearch API. Tag-based policies for
the OpenSearch API only apply to HTTP methods. For example, the following policy lets
attached principals send GET and PUT requests to the OpenSearch API if the domain has the
environment:production tag:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "es:ESHttpGet",
 "es:ESHttpPut"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:ResourceTag/environment": [
 "production"
]
 }
 }
 }]
}

For more granular control of the OpenSearch API, consider using fine-grained access control.

Note

After you add one or more OpenSearch APIs to any tag-based policy, you must perform a
single tag operation (such as adding, removing, or modifying a tag) in order for the changes
to take effect on a domain. You must be on service software R20211203 or later to include
OpenSearch API operations in tag-based policies.

OpenSearch Service supports the RequestTag and TagKeys global condition keys for the
configuration API, not the OpenSearch API. These conditions only apply to API calls that include

Types of policies 647

Amazon OpenSearch Service Developer Guide

tags within the request, such as CreateDomain, AddTags, and RemoveTags. The following policy
lets attached principals create domains, but only if they include the team:it tag in the request:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "es:CreateDomain",
 "es:AddTags"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/team": [
 "it"
]
 }
 }
 }
}

For more details on using tags for access control and the differences between resource-based and
identity-based policies, see the IAM User Guide.

IP-based policies

IP-based policies restrict access to a domain to one or more IP addresses or CIDR blocks.
Technically, IP-based policies are not a distinct type of policy. Instead, they are just resource-based
policies that specify an anonymous principal and include a special Condition element.

The primary appeal of IP-based policies is that they allow unsigned requests to an OpenSearch
Service domain, which lets you use clients like curl and OpenSearch Dashboards or access the
domain through a proxy server. To learn more, see the section called “Using a proxy to access
OpenSearch Service from OpenSearch Dashboards”.

Note

If you enabled VPC access for your domain, you can't configure an IP-based policy. Instead,
you can use security groups to control which IP addresses can access the domain. For more
information, see the section called “About access policies on VPC domains”.

Types of policies 648

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://curl.haxx.se/
https://docs.amazonaws.cn/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon OpenSearch Service Developer Guide

The following policy grants all HTTP requests that originate from the specified IP range access to
test-domain:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "es:ESHttp*"
],
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24"
]
 }
 },
 "Resource": "arn:aws:es:us-west-1:987654321098:domain/test-domain/*"
 }
]
}

If your domain has a public endpoint and doesn't use fine-grained access control, we recommend
combining IAM principals and IP addresses. This policy grants test-user HTTP access only if the
request originates from the specified IP range:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::987654321098:user/test-user"
]
 },
 "Action": [
 "es:ESHttp*"
],

Types of policies 649

Amazon OpenSearch Service Developer Guide

 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/24"
]
 }
 },
 "Resource": "arn:aws:es:us-west-1:987654321098:domain/test-domain/*"
 }]
}

Making and signing OpenSearch Service requests

Even if you configure a completely open resource-based access policy, all requests to the
OpenSearch Service configuration API must be signed. If your policies specify IAM roles or users,
requests to the OpenSearch APIs also must be signed using Amazon Signature Version 4. The
signing method differs by API:

• To make calls to the OpenSearch Service configuration API, we recommend that you use one of
the Amazon SDKs. The SDKs greatly simplify the process and can save you a significant amount
of time compared to creating and signing your own requests. The configuration API endpoints
use the following format:

es.region.amazonaws.com/2021-01-01/

For example, the following request makes a configuration change to the movies domain, but
you have to sign it yourself (not recommended):

POST https://es.us-east-1.amazonaws.com/2021-01-01/opensearch/domain/movies/config
{
 "ClusterConfig": {
 "InstanceType": "c5.xlarge.search"
 }
}

If you use one of the SDKs, such as Boto 3, the SDK automatically handles the request signing:

import boto3

client = boto3.client(es)

Making and signing OpenSearch Service requests 650

https://aws.amazon.com/tools/#sdk
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/opensearch.html#OpenSearchService.Client.update_domain_config

Amazon OpenSearch Service Developer Guide

response = client.update_domain_config(
 DomainName='movies',
 ClusterConfig={
 'InstanceType': 'c5.xlarge.search'
 }
)

For a Java code sample, see the section called “Using the Amazon SDKs”.

• To make calls to the OpenSearch APIs, you must sign your own requests. The OpenSearch APIs
use the following format:

domain-id.region.es.amazonaws.com

For example, the following request searches the movies index for thor:

GET https://my-domain.us-east-1.es.amazonaws.com/movies/_search?q=thor

Note

The service ignores parameters passed in URLs for HTTP POST requests that are signed
with Signature Version 4.

When policies collide

Complexities arise when policies disagree or make no explicit mention of a user. Understanding
how IAM works in the IAM User Guide provides a concise summary of policy evaluation logic:

• By default, all requests are denied.

• An explicit allow overrides this default.

• An explicit deny overrides any allows.

For example, if a resource-based policy grants you access to a domain subresource (an OpenSearch
index or API), but an identity-based policy denies you access, you are denied access. If an identity-
based policy grants access and a resource-based policy does not specify whether or not you should

When policies collide 651

https://docs.amazonaws.cn/IAM/latest/UserGuide/intro-structure.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/intro-structure.html

Amazon OpenSearch Service Developer Guide

have access, you are allowed access. See the following table of intersecting policies for a full
summary of outcomes for domain subresources.

Allowed in resource-
based policy

Denied in resource-
based policy

Neither allowed nor
denied in resource-
based policy

Allowed in identity-
based policy

Allow Deny Allow

Denied in identity-
based policy

Deny Deny Deny

Neither allowed nor
denied in identity-
based policy

Allow Deny Deny

Policy element reference

OpenSearch Service supports most policy elements in the IAM Policy Elements Reference, with the
exception of NotPrincipal. The following table shows the most common elements.

JSON policy element Summary

Version The current version of the policy language is 2012-10-17 . All access
policies should specify this value.

Effect This element specifies whether the statement allows or denies access
to the specified actions. Valid values are Allow or Deny.

Principal This element specifies the Amazon Web Services account or IAM role or
user that is allowed or denied access to a resource and can take several
forms:

• Amazon accounts: "Principal":{"AWS": ["1234567
89012"]} or "Principal":{"AWS": ["arn:aws
:iam::123456789012:root"]}

Policy element reference 652

http://docs.aws.amazon.com/IAM/latest/UserGuide/AccessPolicyLanguage_ElementDescriptions.html

Amazon OpenSearch Service Developer Guide

JSON policy element Summary

• IAM users: "Principal":{"AWS": ["arn:aws:iam::123
456789012:user/test-user"]}

• IAM roles: "Principal":{"AWS": ["arn:aws:iam::123
456789012:role/test-role"]}

Specifying the * wildcard enables anonymous access to the domain,
which we don't recommend unless you add an IP-based condition, use
VPC support, or enable fine-grained access control.

Policy element reference 653

Amazon OpenSearch Service Developer Guide

JSON policy element Summary

Action OpenSearch Service uses ESHttp* actions for OpenSearch HTTP
methods. The rest of the actions apply to the configuration API.

Certain es: actions support resource-level permissions. For example,
you can give a user permissions to delete one particular domain
without giving that user permissions to delete any domain. Other
actions apply only to the service itself. For example, es:ListDo
mainNames makes no sense in the context of a single domain and
thus requires a wildcard.

For a list of all available actions and whether they apply to the domain
subresources (test-domain/*), to the domain configuration (test-
domain), or only to the service (*), see Actions, resources, and
condition keys for Amazon OpenSearch Service in the Service Authoriza
tion Reference
Resource-based policies differ from resource-level permissions.
Resource-based policies are full JSON policies that attach to domains.
Resource-level permissions let you restrict actions to particular
domains or subresources. In practice, you can think of resource-level
permissions as an optional part of a resource- or identity-based policy.

While resource-level permissions for es:CreateDomain might seem
unintuitive—after all, why give a user permissions to create a domain
that already exists?—the use of a wildcard lets you enforce a simple
naming scheme for your domains, such as "Resource": "arn:aws:
es:us-west-1:987654321098:domain/my-team-name-
*".

Of course, nothing prevents you from including actions alongside less
restrictive resource elements, such as the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Policy element reference 654

https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchservice.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchservice.html

Amazon OpenSearch Service Developer Guide

JSON policy element Summary

 "es:ESHttpGet",
 "es:DescribeDomain"
],
 "Resource": "*"
 }
]
}

To learn more about pairing actions and resources, see the Resource
element in this table.

Condition OpenSearch Service supports most conditions that are described in
Amazon global condition context keys in the IAM User Guide. Notable
exceptions include the aws:PrincipalTag key, which OpenSearch
Service does not support.

When configuring an IP-based policy, you specify the IP addresses or
CIDR block as a condition, such as the following:

"Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "192.0.2.0/32"
]
 }
}

As noted in the section called “Identity-based policies”, the aws:Resou
rceTag , aws:RequestTag , and aws:TagKeys condition keys
apply to the configuration API as well as the OpenSearch APIs.

Policy element reference 655

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys

Amazon OpenSearch Service Developer Guide

JSON policy element Summary

Resource OpenSearch Service uses Resource elements in three basic ways:

• For actions that apply to OpenSearch Service itself, like es:ListDo
mainNames , or to allow full access, use the following syntax:

"Resource": "*"

• For actions that involve a domain's configuration, like es:Descri
beDomain , you can use the following syntax:

"Resource": "arn:aws:es: region:aws-account-
id:domain/domain-name "

• For actions that apply to a domain's subresources, like es:ESHttp
Get , you can use the following syntax:

"Resource": "arn:aws:es: region:aws-account-
id:domain/domain-name /*"

You don't have to use a wildcard. OpenSearch Service lets you define
a different access policy for each OpenSearch index or API. For
example, you might limit a user's permissions to the test-index
index:

"Resource": "arn:aws:es: region:aws-account-
id:domain/domain-name /test-index"

Instead of full access to test-index , you might prefer to limit the
policy to just the search API:

"Resource": "arn:aws:es: region:aws-account-
id:domain/domain-name /test-index/_search"

You can even control access to individual documents:

Policy element reference 656

Amazon OpenSearch Service Developer Guide

JSON policy element Summary

"Resource": "arn:aws:es: region:aws-account-
id:domain/domain-name /test-index/test-type/1"

Essentially, if OpenSearch expresses the subresource as a URI, you
can control access to it using an access policy. For even more control
over which resources a user can access, see the section called “Fine-
grained access control”.

For details about which actions support resource-level permissions, see
the Action element in this table.

Advanced options and API considerations

OpenSearch Service has several advanced options, one of which has access control implications:
rest.action.multi.allow_explicit_index. At its default setting of true, it allows users to
bypass subresource permissions under certain circumstances.

For example, consider the following resource-based policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:user/test-user"
]
 },
 "Action": [
 "es:ESHttp*"
],
 "Resource": [
 "arn:aws:es:us-west-1:987654321098:domain/test-domain/test-index/*",
 "arn:aws:es:us-west-1:987654321098:domain/test-domain/_bulk"
]
 },

Advanced options and API considerations 657

Amazon OpenSearch Service Developer Guide

 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:user/test-user"
]
 },
 "Action": [
 "es:ESHttpGet"
],
 "Resource": "arn:aws:es:us-west-1:987654321098:domain/test-domain/restricted-
index/*"
 }
]
}

This policy grants test-user full access to test-index and the OpenSearch bulk API. It also
allows GET requests to restricted-index.

The following indexing request, as you might expect, fails due to a permissions error:

PUT https://search-test-domain.us-west-1.es.amazonaws.com/restricted-index/movie/1
{
 "title": "Your Name",
 "director": "Makoto Shinkai",
 "year": "2016"
}

Unlike the index API, the bulk API lets you create, update, and delete many documents in a single
call. You often specify these operations in the request body, however, rather than in the request
URL. Because OpenSearch Service uses URLs to control access to domain subresources, test-user
can, in fact, use the bulk API to make changes to restricted-index. Even though the user lacks
POST permissions on the index, the following request succeeds:

POST https://search-test-domain.us-west-1.es.amazonaws.com/_bulk
{ "index" : { "_index": "restricted-index", "_type" : "movie", "_id" : "1" } }
{ "title": "Your Name", "director": "Makoto Shinkai", "year": "2016" }

In this situation, the access policy fails to fulfill its intent. To prevent users from bypassing these
kinds of restrictions, you can change rest.action.multi.allow_explicit_index to false.
If this value is false, all calls to the bulk, mget, and msearch APIs that specify index names in the

Advanced options and API considerations 658

Amazon OpenSearch Service Developer Guide

request body stop working. In other words, calls to _bulk no longer work, but calls to test-
index/_bulk do. This second endpoint contains an index name, so you don't need to specify one
in the request body.

OpenSearch Dashboards relies heavily on mget and msearch, so it is unlikely
to work properly after this change. For partial remediation, you can leave
rest.action.multi.allow_explicit_index as true and deny certain users access to one or
more of these APIs.

For information about changing this setting, see the section called “Advanced cluster settings”.

Similarly, the following resource-based policy contains two subtle issues:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:user/test-user"
 },
 "Action": "es:ESHttp*",
 "Resource": "arn:aws:es:us-west-1:987654321098:domain/test-domain/*"
 },
 {
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:user/test-user"
 },
 "Action": "es:ESHttp*",
 "Resource": "arn:aws:es:us-west-1:987654321098:domain/test-domain/restricted-
index/*"
 }
]
}

• Despite the explicit deny, test-user can still make calls such as GET https://search-test-
domain.us-west-1.es.amazonaws.com/_all/_search and GET https://search-
test-domain.us-west-1.es.amazonaws.com/*/_search to access the documents in
restricted-index.

Advanced options and API considerations 659

Amazon OpenSearch Service Developer Guide

• Because the Resource element references restricted-index/*, test-user doesn't have
permissions to directly access the index's documents. The user does, however, have permissions
to delete the entire index. To prevent access and deletion, the policy instead must specify
restricted-index*.

Rather than mixing broad allows and focused denies, the safest approach is to follow the principle
of least privilege and grant only the permissions that are required to perform a task. For more
information about controlling access to individual indexes or OpenSearch operations, see the
section called “Fine-grained access control”.

Configuring access policies

• For instructions on creating or modifying resource- and IP-based policies in OpenSearch Service,
see the section called “Configuring access policies”.

• For instructions on creating or modifying identity-based policies in IAM, see Creating IAM policies
in the IAM User Guide.

Additional sample policies

Although this chapter includes many sample policies, Amazon access control is a complex subject
that is best understood through examples. For more, see Example IAM identity-based policies in
the IAM User Guide.

Amazon OpenSearch Service API permissions reference

When you set up access control, you write permission policies that you can attach to an IAM
identity (identity-based policies). For detailed reference information, see the following topics in the
Service Authorization Reference:

• Actions, resources, and condition keys for OpenSearch Service.

• Actions, resources, and condition keys for OpenSearch Ingestion.

This reference contains information about which API operations can be used in an IAM policy. It
also includes the Amazon resource for which you can grant the permissions, and condition keys
that you can include for fine-grained access control.

Configuring access policies 660

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazonopensearchservice.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_opensearchingestionservice.html

Amazon OpenSearch Service Developer Guide

You specify the actions in the policy's Action field, the resource value in the policy's Resource
field, and conditions in the policy's Condition field. To specify an action for OpenSearch Service,
use the es: prefix followed by the API operation name (for example, es:CreateDomain). To
specify an action for OpenSearch Ingestion, use the osis: prefix followed by the API operation
(for example, osis:CreatePipeline).

Amazon managed policies for Amazon OpenSearch Service

An Amazon managed policy is a standalone policy that is created and administered by Amazon.
Amazon managed policies are designed to provide permissions for many common use cases so that
you can start assigning permissions to users, groups, and roles.

Keep in mind that Amazon managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all Amazon customers to use. We recommend that
you reduce permissions further by defining customer managed policies that are specific to your
use cases.

You cannot change the permissions defined in Amazon managed policies. If Amazon updates
the permissions defined in an Amazon managed policy, the update affects all principal identities
(users, groups, and roles) that the policy is attached to. Amazon is most likely to update an Amazon
managed policy when a new Amazon Web Service is launched or new API operations become
available for existing services.

For more information, see Amazon managed policies in the IAM User Guide.

AmazonOpenSearchServiceFullAccess

Grants full access to the OpenSearch Service configuration API operations and resources for an
Amazon Web Services account.

You can find the AmazonOpenSearchServiceFullAccess policy in the IAM console.

AmazonOpenSearchServiceReadOnlyAccess

Grants read-only access to all OpenSearch Service resources for an Amazon Web Services account.

You can find the AmazonOpenSearchServiceReadOnlyAccess policy in the IAM console.

Amazon managed policies 661

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchServiceFullAccess
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchServiceReadOnlyAccess

Amazon OpenSearch Service Developer Guide

AmazonOpenSearchServiceRolePolicy

You can't attach AmazonOpenSearchServiceRolePolicy to your IAM entities. This policy is
attached to a service-linked role that allows OpenSearch Service to access account resources. For
more information, see the section called “Permissions”.

You can find the AmazonOpenSearchServiceRolePolicy policy in the IAM console.

AmazonOpenSearchServiceCognitoAccess

Provides the minimum Amazon Cognito permissions necessary to enable Cognito authentication.

You can find the AmazonOpenSearchServiceCognitoAccess policy in the IAM console.

AmazonOpenSearchIngestionServiceRolePolicy

You can't attach AmazonOpenSearchIngestionServiceRolePolicy to your IAM entities. This
policy is attached to a service-linked role that allows OpenSearch Ingestion to enable VPC access
for ingestion pipelines, create tags, and publish ingestion-related CloudWatch metrics to your
account. For more information, see the section called “Using service-linked roles”.

You can find the AmazonOpenSearchIngestionServiceRolePolicy policy in the IAM console.

AmazonOpenSearchIngestionFullAccess

Grants full access to the OpenSearch Ingestion API operations and resources for an Amazon Web
Services account.

You can find the AmazonOpenSearchIngestionFullAccess policy in the IAM console.

AmazonOpenSearchIngestionReadOnlyAccess

Grants read-only access to all OpenSearch Ingestion resources for an Amazon Web Services
account.

You can find the AmazonOpenSearchIngestionReadOnlyAccess policy in the IAM console.

AmazonOpenSearchServerlessServiceRolePolicy

Provides the minimum Amazon CloudWatch permissions necessary to send OpenSearch Serverless
metric data to CloudWatch.

You can find the AmazonOpenSearchServerlessServiceRolePolicy policy in the IAM console.

Amazon managed policies 662

https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchServiceRolePolicy
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchServiceCognitoAccess
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchIngestionServiceRolePolicy
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchIngestionFullAccess
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchIngestionReadOnlyAccess
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchServerlessServiceRolePolicy

Amazon OpenSearch Service Developer Guide

OpenSearch Service updates to Amazon managed policies

View details about updates to Amazon managed policies for OpenSearch Service since this service
began tracking changes.

Change Description Date

Updated AmazonOpe
nSearchServiceRole
Policy and AmazonEla
sticsearchServiceR
olePolicy

Added the permissions
necessary for the service-
linked role to assign and
unassign IPv6 addresses.

The deprecated Elasticse
arch policy has also
been updated to ensure
backwards compatibility.

18 October 2023

Added AmazonOpenSearchIn
gestionServiceRole
Policy

A new policy that allows
OpenSearch Ingestion
to enable VPC access for
ingestion pipelines, create
tags, and publish ingestion-
related CloudWatch metrics
to your account.

For the policy JSON, see the
IAM console.

26 April 2023

Added AmazonOpenSearchIn
gestionFullAccess

A new policy that grants full
access to the OpenSearch
Ingestion API operations and
resources for an Amazon
Web Services account.

For the policy JSON, see the
IAM console.

26 April 2023

Added AmazonOpenSearchIn
gestionReadOnlyAccess

A new policy that grants
read-only access to all

26 April 2023

Amazon managed policies 663

https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchIngestionServiceRolePolicy
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchIngestionFullAccess

Amazon OpenSearch Service Developer Guide

Change Description Date

OpenSearch Ingestion
resources for an Amazon
Web Services account.

For the policy JSON, see the
IAM console.

Added AmazonOpenSearchSe
rverlessServiceRol
ePolicy

A new policy that provides
the minimum permissio
ns necessary to send
OpenSearch Serverless
metric data to Amazon
CloudWatch.

For the policy JSON, see the
IAM console.

29 November 2022

Updated AmazonOpe
nSearchServiceRole
Policy and AmazonEla
sticsearchServiceR
olePolicy

Added the permissions
necessary for the service-
linked role to create
OpenSearch Service-m
anaged VPC endpoints.
Some actions can only be
performed when the request
contains the tag OpenSearc
hManaged=true .

The deprecated Elasticse
arch policy has also
been updated to ensure
backwards compatibility.

7 November 2022

Amazon managed policies 664

https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchIngestionReadOnlyAccess
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchServerlessServiceRolePolicy

Amazon OpenSearch Service Developer Guide

Change Description Date

Updated AmazonOpe
nSearchServiceRole
Policy and AmazonEla
sticsearchServiceR
olePolicy

Added support for the
PutMetricData action,
which is required to publish
OpenSearch cluster metrics
to Amazon CloudWatch.

The deprecated Elasticse
arch policy has also
been updated to ensure
backwards compatibility.

For the policy JSON, see the
IAM console.

12 September 2022

Updated AmazonOpe
nSearchServiceRole
Policy and AmazonEla
sticsearchServiceR
olePolicy

Added support for the acm
resource type. The policy
provides the minimum
Amazon Certificate Manager
(ACM) read-only permissio
n necessary for the service-
linked role to verify and
validate ACM resources in
order to create and update
custom endpoint enabled
domains.

The deprecated Elasticse
arch policy has also
been updated to ensure
backwards compatibility.

28 July 2022

Amazon managed policies 665

https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchServiceRolePolicy

Amazon OpenSearch Service Developer Guide

Change Description Date

Updated AmazonOpe
nSearchServiceCogn
itoAccess and AmazonESC
ognitoAccess

Added support for the
UpdateUserPoolClie
nt action, which is required
to set Cognito user pool
configuration during
upgrade from Elasticsearch
to OpenSearch.

Corrected permissio
ns for the SetIdenti
tyPoolRoles action to
allow access to all resources.

The deprecated Elasticse
arch policy has also
been updated to ensure
backwards compatibility.

20 December 2021

Updated AmazonOpe
nSearchServiceRole
Policy

Added support for the
security-group resource
type. The policy provides
the minimum Amazon EC2
and Elastic Load Balancing
 permissions necessary for
the service-linked role to
enable VPC access.

9 September 2021

Amazon managed policies 666

Amazon OpenSearch Service Developer Guide

Change Description Date

• Added AmazonOpe
nSearchServiceFull
Access

• Deprecated AmazonESF
ullAccess

This new policy is meant
to replace the old policy.
Both policies provide full
access to the OpenSearch
Service configuration API
and all HTTP methods for
the OpenSearch APIs. Fine-
grained access control and
resource-based policies can
still restrict access.

7 September 2021

• Added AmazonOpe
nSearchServiceRead
OnlyAccess

• Deprecated AmazonESR
eadOnlyAccess

This new policy is meant to
replace the old policy. Both
policies provide read-only
access to the OpenSearc
h Service configuration
API (es:Describe* ,
es:List*, and es:Get*)
and no access to the HTTP
methods for the OpenSearc
h APIs.

7 September 2021

• Added AmazonOpe
nSearchServiceCogn
itoAccess

• Deprecated AmazonESC
ognitoAccess

This new policy is meant
to replace the old policy.
Both policies provide the
minimum Amazon Cognito
permissions necessary to
enable Cognito authentic
ation.

7 September 2021

Amazon managed policies 667

Amazon OpenSearch Service Developer Guide

Change Description Date

• Added AmazonOpenSearchSe
rviceRolePolicy

• Deprecated AmazonEla
sticsearchServiceR
olePolicy

This new policy is meant
to replace the old policy.
Both policies provide the
minimum Amazon EC2
and Elastic Load Balancing
permissions necessary for
the service-linked role to
enable VPC access.

7 September 2021

Started tracking changes Amazon OpenSearch Service
now tracks changes to
Amazon-managed policies.

7 September 2021

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In Amazon, cross-
service impersonation can result in the confused deputy problem. Cross-service impersonation can
occur when one service (the calling service) calls another service (the called service). The calling
service can be manipulated to use its permissions to act on another customer's resources in a way
it should not otherwise have permission to access. To prevent this, Amazon provides tools that
help you protect your data for all services with service principals that have been given access to
resources in your account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that Amazon OpenSearch Service gives another
service to the resource. If the aws:SourceArn value does not contain the account ID, such as an
Amazon S3 bucket ARN, you must use both global condition context keys to limit permissions. If
you use both global condition context keys and the aws:SourceArn value contains the account
ID, the aws:SourceAccount value and the account in the aws:SourceArn value must use the
same account ID when used in the same policy statement. Use aws:SourceArn if you want only
one resource to be associated with the cross-service access. Use aws:SourceAccount if you want
to allow any resource in that account to be associated with the cross-service use.

The value of aws:SourceArn must be the ARN of the OpenSearch Service domain.

Cross-service confused deputy prevention 668

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

Amazon OpenSearch Service Developer Guide

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws-cn:es:*:123456789012:*.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in OpenSearch Service to prevent the confused deputy problem.

{
 "Version":"2012-10-17",
 "Statement":{
 "Sid":"ConfusedDeputyPreventionExamplePolicy",
 "Effect":"Allow",
 "Principal":{
 "Service":"es.amazonaws.com"
 },
 "Action":"sts:AssumeRole",
 "Condition":{
 "StringEquals":{
 "aws:SourceAccount":"123456789012"
 },
 "ArnLike":{
 "aws:SourceArn":"arn:aws:es:region:123456789012:domain/my-domain"
 }
 }
 }
}

Fine-grained access control in Amazon OpenSearch Service

Fine-grained access control offers additional ways of controlling access to your data on Amazon
OpenSearch Service. For example, depending on who makes the request, you might want a search
to return results from only one index. You might want to hide certain fields in your documents or
exclude certain documents altogether.

Fine-grained access control offers the following benefits:

• Role-based access control

• Security at the index, document, and field level

Fine-grained access control 669

Amazon OpenSearch Service Developer Guide

• OpenSearch Dashboards multi-tenancy

• HTTP basic authentication for OpenSearch and OpenSearch Dashboards

Topics

• The bigger picture: fine-grained access control and OpenSearch Service security

• Key concepts

• About the master user

• Enabling fine-grained access control

• Accessing OpenSearch Dashboards as the master user

• Managing permissions

• Recommended configurations

• Limitations

• Modifying the master user

• Additional master users

• Manual snapshots

• Integrations

• REST API differences

• Tutorial: Configure a domain with an IAM master user and Amazon Cognito authentication

• Tutorial: Configure a domain with the internal user database and HTTP basic authentication

The bigger picture: fine-grained access control and OpenSearch Service
security

Amazon OpenSearch Service security has three main layers:

Network

The first security layer is the network, which determines whether requests reach an OpenSearch
Service domain. If you choose Public access when you create a domain, requests from any
internet-connected client can reach the domain endpoint. If you choose VPC access, clients
must connect to the VPC (and the associated security groups must permit it) for a request to
reach the endpoint. For more information, see the section called “VPC support”.

The bigger picture: fine-grained access control and OpenSearch Service security 670

Amazon OpenSearch Service Developer Guide

Domain access policy

The second security layer is the domain access policy. After a request reaches a domain
endpoint, the resource-based access policy allows or denies the request access to a given URI.
The access policy accepts or rejects requests at the "edge" of the domain, before they reach
OpenSearch itself.

Fine-grained access control

The third and final security layer is fine-grained access control. After a resource-based access
policy allows a request to reach a domain endpoint, fine-grained access control evaluates the
user credentials and either authenticates the user or denies the request. If fine-grained access
control authenticates the user, it fetches all roles mapped to that user and uses the complete
set of permissions to determine how to handle the request.

Note

If a resource-based access policy contains IAM roles or users, clients must send signed
requests using Amazon Signature Version 4. As such, access policies can conflict with
fine-grained access control, especially if you use the internal user database and HTTP
basic authentication. You can't sign a request with a username and password and IAM
credentials. In general, if you enable fine-grained access control, we recommend using a
domain access policy that doesn't require signed requests.

The following diagram illustrates a common configuration: a VPC access domain with fine-grained
access control enabled, an IAM-based access policy, and an IAM master user.

The following diagram illustrates another common configuration: a public access domain with fine-
grained access control enabled, an access policy that doesn't use IAM principals, and a master user
in the internal user database.

The bigger picture: fine-grained access control and OpenSearch Service security 671

Amazon OpenSearch Service Developer Guide

Example

Consider a GET request to movies/_search?q=thor. Does the user have permissions to search
the movies index? If so, does the user have permissions to see all documents within it? Should the
response omit or anonymize any fields? For the master user, the response might look like this:

{
 "hits": {
 "total": 7,
 "max_score": 8.772789,
 "hits": [{
 "_index": "movies",
 "_type": "_doc",
 "_id": "tt0800369",
 "_score": 8.772789,
 "_source": {
 "directors": [
 "Kenneth Branagh",
 "Joss Whedon"
],
 "release_date": "2011-04-21T00:00:00Z",
 "genres": [
 "Action",
 "Adventure",
 "Fantasy"
],
 "plot": "The powerful but arrogant god Thor is cast out of Asgard to
 live amongst humans in Midgard (Earth), where he soon becomes one of their finest
 defenders.",
 "title": "Thor",
 "actors": [
 "Chris Hemsworth",
 "Anthony Hopkins",
 "Natalie Portman"
],

The bigger picture: fine-grained access control and OpenSearch Service security 672

Amazon OpenSearch Service Developer Guide

 "year": 2011
 }
 },
 ...
]
 }
}

If a user with more limited permissions issues the exact same request, the response might look like
this:

{
 "hits": {
 "total": 2,
 "max_score": 8.772789,
 "hits": [{
 "_index": "movies",
 "_type": "_doc",
 "_id": "tt0800369",
 "_score": 8.772789,
 "_source": {
 "year": 2011,
 "release_date":
 "3812a72c6dd23eef3c750c2d99e205cbd260389461e19d610406847397ecb357",
 "plot": "The powerful but arrogant god Thor is cast out of Asgard to
 live amongst humans in Midgard (Earth), where he soon becomes one of their finest
 defenders.",
 "title": "Thor"
 }
 },
 ...
]
 }
}

The response has fewer hits and fewer fields for each hit. Also, the release_date field is
anonymized. If a user with no permissions makes the same request, the cluster returns an error:

{
 "error": {
 "root_cause": [{
 "type": "security_exception",

The bigger picture: fine-grained access control and OpenSearch Service security 673

Amazon OpenSearch Service Developer Guide

 "reason": "no permissions for [indices:data/read/search] and User [name=limited-
user, roles=[], requestedTenant=null]"
 }],
 "type": "security_exception",
 "reason": "no permissions for [indices:data/read/search] and User [name=limited-
user, roles=[], requestedTenant=null]"
 },
 "status": 403
}

If a user provides invalid credentials, the cluster returns an Unauthorized exception.

Key concepts

As you get started with fine-grained access control, consider the following concepts:

• Roles – The core way of using fine-grained access control. In this case, roles are distinct from IAM
roles. Roles contain any combination of permissions: cluster-wide, index-specific, document level,
and field level.

• Mapping – After you configure a role, you map it to one or more users. For example, you might
map three roles to a single user: one role that provides access to Dashboards, one that provides
read-only access to index1, and one that provides write access to index2. Or you could include
all of those permissions in a single role.

• Users – People or applications that make requests to the OpenSearch cluster. Users have
credentials—either IAM access keys or a username and password—that they specify when they
make requests.

About the master user

The master user in OpenSearch Service is either a username and password combination, or an
IAM principal, that has full permissions to the underlying OpenSearch cluster. A user is considered
a master user if they have all access to the OpenSearch cluster along with the ability to create
internal users, roles, and role mappings within OpenSearch Dashboards.

A master user created in the OpenSearch Service console or through the CLI is automatically
mapped to two predefined roles:

• all_access – Provides full access to all cluster-wide operations, permission to write to all
cluster indexes, and permission to write to all tenants.

Key concepts 674

Amazon OpenSearch Service Developer Guide

• security_manager – Provides access to the Security plugin and management of users and
permissions.

With these two roles, the user gains access to the Security tab in OpenSearch Dashboards, where
they can manage users and permissions. If you create another internal user and only map it to
the all_access role, the user doesn't have access to the Security tab. You can create additional
master users by explicitly mapping them to both the all_access and security_manager roles.
For instructions, see the section called “Additional master users”.

When you create a master user for your domain, you can specify either an existing IAM principal, or
create a master user within the internal user database. Consider the following when deciding which
to use:

• IAM principal – If you choose an IAM principal for your master user, all requests to the cluster
must be signed using Amazon Signature Version 4.

OpenSearch Service doesn't take any of the IAM principal's permissions into consideration.
The IAM user or role serves purely for authentication. The policies on that user or role have no
bearing on the authorization of the master user. Authorization is handled through the various
permissions in the OpenSearch Security plugin.

For example, you can assign zero IAM permissions to an IAM principal, and as long as the
machine or person can authenticate to that user or role, they have the power of the master user
in OpenSearch Service.

We recommend IAM if you want to use the same users on multiple clusters, if you want to use
Amazon Cognito to access Dashboards, or if you have OpenSearch clients that support Signature
Version 4 signing.

• Internal user database – If you create a master in the internal user database (with a username
and password combination), you can use HTTP basic authentication (as well as IAM credentials)
to make requests to the cluster. Most clients support basic authentication, including curl,
which also supports Amazon Signature Version 4 with the --aws-sigv4 option. The internal user
database is stored in an OpenSearch index, so you can't share it with other clusters.

We recommend the internal user database if you don't need to reuse users across multiple
clusters, if you want to use HTTP basic authentication to access Dashboards (rather than Amazon
Cognito), or if you have clients that only support basic authentication. The internal user database
is the simplest way to get started with OpenSearch Service.

About the master user 675

https://opensearch.org/docs/latest/security/
https://opensearch.org/docs/latest/security/access-control/permissions/
https://curl.haxx.se/
https://curl.se/docs/manpage.html

Amazon OpenSearch Service Developer Guide

Enabling fine-grained access control

Enable fine-grained access control using the console, Amazon CLI, or configuration API. For steps,
see Creating and managing domains.

Fine-grained access control requires OpenSearch or Elasticsearch 6.7 or later. It also requires HTTPS
for all traffic to the domain, Encryption of data at rest, and node-to-node encryption. Depending
on how you configure the advanced features of fine-grained access control, additional processing
of your requests may require compute and memory resources on individual data nodes. After you
enable fine-grained access control, you can't disable it.

Enabling fine-grained access control on existing domains

You can enable fine-grained access control on existing domains running OpenSearch or
Elasticsearch 6.7 or later.

To enable fine-grained access control on an existing domain (console)

1. Select your domain and choose Actions and Edit security configuration.

2. Select Enable fine-grained access control.

3. Choose how to create the master user:

• If you want to use IAM for user management, choose Set IAM ARN as master user and
specify the ARN for an IAM role.

• If you want to use the internal user database, choose Create master user and specify a
username and password.

4. (Optional) Select Enable migration period for open/IP-based access policy. This setting
enables a 30-day transition period during which your existing users can continue to access
the domain without disruptions, and existing open and IP-based access policies will continue
to work with your domain. During this migration period, we recommend that administrators
create the necessary roles and map them to users for the domain. If you use identity-based
policies instead of an open or IP-based access policy, you can disable this setting.

You also need to update your clients to work with fine-grained access control during the
migration period. For example, if you map IAM roles with fine-grained access control, you must
update your clients to start signing requests with Amazon Signature Version 4. If you configure
HTTP basic authentication with fine-grained access control, you must update your clients to
provide appropriate basic authentication credentials in requests.

Enabling fine-grained access control 676

Amazon OpenSearch Service Developer Guide

During the migration period, users who access the OpenSearch Dashboards endpoint for the
domain will land directly on the Discover page rather than the login page. Administrators and
master users can choose Login to log in with admin credentials and configure role mappings.

Important

OpenSearch Service automatically disables the migration period after 30 days. We
recommend ending it as soon as you create the necessary roles and map them to users.
After the migration period ends, you can't re-enable it.

5. Choose Save changes.

The change triggers a blue/green deployment during which the cluster health becomes red, but all
cluster operations remain unaffected.

To enable fine-grained access control on an existing domain (CLI)

Set AnonymousAuthEnabled to true to enable the migration period with fine-grained access
control:

aws opensearch update-domain-config --domain-name test-domain --region us-east-1 \
 --advanced-security-options '{ "Enabled": true,
 "InternalUserDatabaseEnabled":true, "MasterUserOptions": {"MasterUserName":"master-
username","MasterUserPassword":"master-password"},"AnonymousAuthEnabled": true}'

About the default_role

Fine-grained access control requires role mapping. If your domain uses identity-based access
policies, OpenSearch Service automatically maps your users to a new role called default_role
in order to help you properly migrate existing users. This temporary mapping ensures that your
users can still successfully send IAM-signed GET and PUT requests until you create your own role
mappings.

The role does not add any security vulnerabilities or flaws to your OpenSearch Service domain.
We recommend deleting the default role as soon as you set up your own roles and map them
accordingly.

Enabling fine-grained access control 677

Amazon OpenSearch Service Developer Guide

Migration scenarios

The following table describes the behavior for each authentication method before and after
enabling fine-grained access control on an existing domain, and the steps administrators must take
to properly map their users to roles:

Authentic
ation
method

Before
enabling
fine-grai
ned access
control

After enabling
fine-grained access
control

Administrator tasks

Identity-
based
policies

All users
satisfying the
IAM policy
can access
the domain.

You don't need to
enable the migration
period.

OpenSearch Service
automatically maps
all users that satisfy
the IAM policy to the
default_role so that
they can continue to
access the domain.

1. Create custom role mappings on
the domain.

2. Delete the default_role.

IP-based
policies

All users
from the
allowed IP
addresses or
CIDR blocks
can access
the domain.

During the 30-day
migration period,
all users from the
allowed IP addresses
or CIDR blocks can
continue to access the
domain.

1. Create custom role mappings on
the domain.

2. Update your clients to either
provide basic authentication
credentials or IAM credentials,
depending on your role mapping
configuration.

3. Disable the migration period. Users
from the allowed IP addresses
or CIDR blocks sending requests
without basic authentication or IAM
credentials will lose access to the
domain.

Enabling fine-grained access control 678

Amazon OpenSearch Service Developer Guide

Authentic
ation
method

Before
enabling
fine-grai
ned access
control

After enabling
fine-grained access
control

Administrator tasks

Open access
policies

All users over
the internet
can access
the domain.

During the 30-day
migration period,
all users over the
internet can continue
to access to domain.

1. Create role mappings on the
domain.

2. Update your clients to either
provide basic authentication
credentials or IAM credentials,
depending on your role mapping
configuration.

3. Disable the migration period. Users
sending requests without basic
authentication or IAM credentials
will lose access to the domain.

Accessing OpenSearch Dashboards as the master user

Fine-grained access control has an OpenSearch Dashboards plugin that simplifies management
tasks. You can use Dashboards to manage users, roles, mappings, action groups, and tenants. The
OpenSearch Dashboards sign-in page and underlying authentication method differs, however,
depending on how you manage users and configured your domain.

• If you want to use IAM for user management, use the section called “Amazon Cognito
authentication for OpenSearch Dashboards” to access Dashboards. Otherwise, Dashboards shows
a nonfunctional sign-in page. See the section called “Limitations”.

With Amazon Cognito authentication, one of the assumed roles from the identity pool must
match the IAM role that you specified for the master user. For more information about this
configuration, see the section called “(Optional) Configuring granular access” and the section
called “Tutorial: Fine-grained access control with Cognito authentication”.

Accessing OpenSearch Dashboards as the master user 679

Amazon OpenSearch Service Developer Guide

• If you choose to use the internal user database, you can sign in to Dashboards with your master
username and password. You must access Dashboards over HTTPS. Amazon Cognito and SAML
authentication for Dashboards both replace this login screen.

For more information about this configuration, see the section called “Tutorial: Internal user
database with basic authentication”.

Accessing OpenSearch Dashboards as the master user 680

Amazon OpenSearch Service Developer Guide

• If you choose to use SAML authentication, you can sign in using credentials from an external
identity provider. For more information, see the section called “SAML authentication for
OpenSearch Dashboards”.

Managing permissions

As noted in the section called “Key concepts”, you manage fine-grained access control permissions
using roles, users, and mappings. This section describes how to create and apply those resources.
We recommend that you sign in to Dashboards as the master user to perform these operations.

Managing permissions 681

Amazon OpenSearch Service Developer Guide

Note

The permissions that you choose to grant to your users vary widely based on use case. We
cannot feasibly cover all scenarios in this documentation. As you're determining which
permissions to grant your users, make sure to reference the OpenSearch cluster and index
permissions mentioned in the following sections, and always follow the principle of least
privilege.

Creating roles

You can create new roles for fine-grained access control using OpenSearch Dashboards or the
_plugins/_security operation in the REST API. For more information, see Create roles.

Fine-grained access control also includes a number of predefined roles. Clients such as OpenSearch
Dashboards and Logstash make a wide variety of requests to OpenSearch, which can make
it hard to manually create roles with the minimum set of permissions. For example, the
opensearch_dashboards_user role includes the permissions that a user needs to work with
index patterns, visualizations, dashboards, and tenants. We recommend mapping it to any user

Managing permissions 682

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://opensearch.org/docs/latest/security/access-control/users-roles/#create-roles
https://opensearch.org/docs/latest/security/access-control/users-roles/#predefined-roles

Amazon OpenSearch Service Developer Guide

or backend role that accesses Dashboards, along with additional roles that allow access to other
indices.

Amazon OpenSearch Service doesn't offer the following OpenSearch roles:

• observability_full_access

• observability_read_access

• reports_read_access

• reports_full_access

Amazon OpenSearch Service offers several roles that aren't available with OpenSearch:

• ultrawarm_manager

• ml_full_access

• cold_manager

• notifications_full_access

• notifications_read_access

Cluster-level security

Cluster-level permissions include the ability to make broad requests such as _mget, _msearch,
and _bulk, monitor health, take snapshots, and more. Manage these permissions using the Cluster
Permissions section when creating a role. For a full list of cluster-level permissions, see Cluster
permissions.

Rather than individual permissions, you can often achieve your desired security posture using a
combination of the default action groups. For a list of cluster-level action groups, see Cluster-level.

Index-level security

Index-level permissions include the ability to create new indices, search indices, read and write
documents, delete documents, manage aliases, and more. Manage these permissions using the
Index Permissions section when creating a role. For a full list of index-level permissions, see Index
permissions.

Rather than individual permissions, you can often achieve your desired security posture using a
combination of the default action groups. For a list of index-level action groups, see Index-level.

Managing permissions 683

https://opensearch.org/docs/latest/security/access-control/permissions/#cluster-permissions
https://opensearch.org/docs/latest/security/access-control/permissions/#cluster-permissions
https://opensearch.org/docs/latest/security/access-control/default-action-groups/#cluster-level
https://opensearch.org/docs/latest/security/access-control/permissions/#index-permissions
https://opensearch.org/docs/latest/security/access-control/permissions/#index-permissions
https://opensearch.org/docs/latest/security/access-control/default-action-groups/#index-level

Amazon OpenSearch Service Developer Guide

Document-level security

Document-level security lets you restrict which documents in an index a user can see. When
creating a role, specify an index pattern and an OpenSearch query. Any users that you map to that
role can see only the documents that match the query. Document-level security affects the number
of hits that you receive when you search.

For more information, see Document-level security.

Field-level security

Field-level security lets you control which document fields a user can see. When creating a role, add
a list of fields to either include or exclude. If you include fields, any users you map to that role can
see only those fields. If you exclude fields, they can see all fields except the excluded ones. Field-
level security affects the number of fields included in hits when you search.

For more information, see Field-level security.

Field masking

Field masking is an alternative to field-level security that lets you anonymize the data in a field
rather than remove it altogether. When creating a role, add a list of fields to mask. Field masking
affects whether you can see the contents of a field when you search.

Tip

If you apply the standard masking to a field, OpenSearch Service uses a secure, random
hash that can cause inaccurate aggregation results. To perform aggregations on masked
fields, use pattern-based masking instead.

Creating users

If you enabled the internal user database, you can create users using OpenSearch Dashboards or
the _plugins/_security operation in the REST API. For more information, see Create users.

If you chose IAM for your master user, ignore this portion of Dashboards. Create IAM roles instead.
For more information, see the IAM User Guide.

Managing permissions 684

https://opensearch.org/docs/latest/security/access-control/document-level-security/
https://opensearch.org/docs/latest/security/access-control/field-level-security/
https://opensearch.org/docs/latest/security/access-control/users-roles/#create-users
https://docs.amazonaws.cn/IAM/latest/UserGuide/

Amazon OpenSearch Service Developer Guide

Mapping roles to users

Role mapping is the most critical aspect of fine-grained access control. Fine-grained access control
has some predefined roles to help you get started, but unless you map roles to users, every request
to the cluster ends in a permissions error.

Backend roles can help simplify the role mapping process. Rather than mapping the same role
to 100 individual users, you can map the role to a single backend role that all 100 users share.
Backend roles can be IAM roles or arbitrary strings.

• Specify users, user ARNs, and Amazon Cognito user strings in the Users section. Cognito user
strings take the form of Cognito/user-pool-id/username.

• Specify backend roles and IAM role ARNs in the Backend roles section.

Managing permissions 685

Amazon OpenSearch Service Developer Guide

You can map roles to users using OpenSearch Dashboards or the _plugins/_security operation
in the REST API. For more information, see Map users to roles.

Creating action groups

Action groups are sets of permissions that you can reuse across different resources. You can create
new action groups using OpenSearch Dashboards or the _plugins/_security operation in the
REST API, although the default action groups suffice for most use cases. For more information
about the default action groups, see Default action groups.

Managing permissions 686

https://opensearch.org/docs/latest/security/access-control/users-roles/#map-users-to-roles
https://opensearch.org/docs/latest/security/access-control/default-action-groups/

Amazon OpenSearch Service Developer Guide

OpenSearch Dashboards multi-tenancy

Tenants are spaces for saving index patterns, visualizations, dashboards, and other Dashboards
objects. Dashboards multi-tenancy lets you safely share your work with other Dashboards users
(or keep it private) and dynamically configure tenants. You can control which roles have access to a
tenant and whether those roles have read or write access. The Global tenant is the default. To learn
more, see OpenSearch Dashboards multi-tenancy.

To view your current tenant or change tenants

1. Navigate to OpenSearch Dashboards and sign in.

2. Select your user icon in the upper-right and choose Switch tenants.

3. Verify your tenant before creating visualizations or dashboards. If you want to share your
work with all other Dashboards users, choose Global. To share your work with a subset of
Dashboards users, choose a different shared tenant. Otherwise, choose Private.

Note

OpenSearch Dashboards maintains a separate index for each tenant, and creates an index
template called tenant_template. Do not delete or modify the tenant_template
index, as it could cause OpenSearch Dashboards to malfunction if the tenant index
mapping is misconfigured.

Recommended configurations

Due to how fine-grained access control interacts with other security features, we recommend
several fine-grained access control configurations that work well for most use cases.

Description Master
user

Domain access policy

Use IAM credentials for
calls to the OpenSearc
h APIs, and use SAML
authentication to access
Dashboards. Manage

IAM role
or user

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Recommended configurations 687

https://opensearch.org/docs/latest/security/multi-tenancy/tenant-index/

Amazon OpenSearch Service Developer Guide

Description Master
user

Domain access policy

fine-grained access
control roles using
Dashboards or the REST
API.

 "Principal": {
 "AWS": "*"
 },
 "Action": "es:ESHttp*",
 "Resource": " domain-arn /*"
 }
]
}

Use IAM credentials or
basic authentication for
calls to the OpenSearc
h APIs. Manage fine-grai
ned access control roles
using Dashboards or the
REST API.

This configuration
offers a lot of flexiblit
y, especially if you have
OpenSearch clients
that only support basic
authentication.

If you have an existing
identity provider, use
SAML authentication
to access Dashboard
s. Otherwise, manage
Dashboards users in the
internal user database.

Username
and
password

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "es:ESHttp*",
 "Resource": " domain-arn /*"
 }
]
}

Recommended configurations 688

Amazon OpenSearch Service Developer Guide

Description Master
user

Domain access policy

Use IAM credentials for
calls to the OpenSearc
h APIs, and use Amazon
Cognito to access
Dashboards. Manage
fine-grained access
control roles using
Dashboards or the REST
API.

IAM role
or user

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "es:ESHttp*",
 "Resource": " domain-arn /*"
 }
]
}

Use IAM credentials for
calls to the OpenSearc
h APIs, and block most
access to Dashboards.
Manage fine-grained
access control roles using
the REST API.

IAM role
or user

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "es:ESHttp*",
 "Resource": " domain-arn /*"
 },
 {
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": "es:ESHttp*",
 "Resource": " domain-arn /_dashboards*"
 }
]
}

Recommended configurations 689

Amazon OpenSearch Service Developer Guide

Limitations

Fine-grained access control has several important limitations:

• The hosts aspect of role mappings, which maps roles to hostnames or IP addresses, doesn't
work if the domain is within a VPC. You can still map roles to users and backend roles.

• If you choose IAM for the master user and don't enable Amazon Cognito or SAML authentication,
Dashboards displays a nonfunctional sign-in page.

• If you choose IAM for the master user, you can still create users in the internal user database.
Because HTTP basic authentication is not enabled under this configuration, however, any
requests signed with those user credentials are rejected.

• If you use SQL to query an index that you don't have access to, you receive a "no permissions"
error. If the index doesn't exist, you receive a "no such index" error. This difference in error
messages means that you can confirm the existence of an index if you happen to guess its name.

To minimize the issue, don't include sensitive information in index names. To deny all access to
SQL, add the following element to your domain access policy:

{
 "Effect": "Deny",
 "Principal": {
 "AWS": [
 "*"
]
 },
 "Action": [
 "es:*"
],
 "Resource": "arn:aws:es:us-east-1:123456789012:domain/my-domain/_plugins/_sql"
}

• If your domain version is 2.3 or higher and you have fine-grained access control enabled, setting
max_clause_count to 1 causes issues with your domain. We recommend setting this account
to a higher number.

• If you are enabling fine-grained access control in a domain where fine-grained access control
is not set up, for data sources created for direct query, you need to setup fine-grained access
control roles yourself. For more information on how to set up fine-grained access roles, see
Creating Amazon OpenSearch Service data source integrations with Amazon S3.

Limitations 690

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/direct-query-s3-creating.html#direct-query-s3-prereq

Amazon OpenSearch Service Developer Guide

Modifying the master user

If you forget the details of the master user, you can reconfigure it using the console, Amazon CLI, or
configuration API.

To modify the master user (console)

1. Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home/.

2. Choose your domain and choose Actions, Edit security configuration.

3. Choose either Set IAM ARN as master user or Create master user.

• If you previously used an IAM master user, fine-grained access control re-maps the
all_access role to the new IAM ARN that you specify.

• If you previously used the internal user database, fine-grained access control creates a new
master user. You can use the new master user to delete the old one.

• Switching from the internal user database to an IAM master user does not delete any users
from the internal user database. Instead, it just disables HTTP basic authentication. Manually
delete users from the internal user database, or keep them in case you ever need to reenable
HTTP basic authentication.

4. Choose Save changes.

Additional master users

You designate a master user when you create a domain, but if you want, you can use this master
user to create additional master users. You have two options: OpenSearch Dashboards or the REST
API.

• In Dashboards, choose Security, Roles, and then map the new master user to the all_access
and security_manager roles.

Modifying the master user 691

https://console.aws.amazon.com/aos/home/
https://console.aws.amazon.com/aos/home/

Amazon OpenSearch Service Developer Guide

• To use the REST API, send the following requests:

PUT _plugins/_security/api/rolesmapping/all_access
{
 "backend_roles": [
 "arn:aws:iam::123456789012:role/fourth-master-user"
],
 "hosts": [],
 "users": [
 "master-user",
 "second-master-user",
 "arn:aws:iam::123456789012:user/third-master-user"
]
}

PUT _plugins/_security/api/rolesmapping/security_manager
{

Additional master users 692

Amazon OpenSearch Service Developer Guide

 "backend_roles": [
 "arn:aws:iam::123456789012:role/fourth-master-user"
],
 "hosts": [],
 "users": [
 "master-user",
 "second-master-user",
 "arn:aws:iam::123456789012:user/third-master-user"
]
}

These requests replace the current role mappings, so perform GET requests first so that you can
include all current roles in the PUT requests. The REST API is especially useful if you can't access
Dashboards and want to map an IAM role from Amazon Cognito to the all_access role.

Manual snapshots

Fine-grained access control introduces some additional complications with taking manual
snapshots. To register a snapshot repository—even if you use HTTP basic authentication for
all other purposes—you must map the manage_snapshots role to an IAM role that has
iam:PassRole permissions to assume TheSnapshotRole, as defined in the section called
“Prerequisites”.

Then use that IAM role to send a signed request to the domain, as outlined in the section called
“Registering a manual snapshot repository”.

Integrations

If you use other Amazon services with OpenSearch Service, you must provide the IAM roles for
those services with appropriate permissions. For example, Firehose delivery streams often use an
IAM role called firehose_delivery_role. In Dashboards, create a role for fine-grained access
control, and map the IAM role to it. In this case, the new role needs the following permissions:

{
 "cluster_permissions": [
 "cluster_composite_ops",
 "cluster_monitor"
],
 "index_permissions": [{
 "index_patterns": [

Manual snapshots 693

Amazon OpenSearch Service Developer Guide

 "firehose-index*"
],
 "allowed_actions": [
 "create_index",
 "manage",
 "crud"
]
 }]
}

Permissions vary based on the actions each service performs. An Amazon IoT rule or Amazon
Lambda function that indexes data likely needs similar permissions to Firehose, while a Lambda
function that only performs searches can use a more limited set.

REST API differences

The fine-grained access control REST API differs slightly depending on your OpenSearch/
Elasticsearch version. Prior to making a PUT request, make a GET request to verify the expected
request body. For example, a GET request to _plugins/_security/api/user returns all users,
which you can then modify and use to make valid PUT requests.

On Elasticsearch 6.x, requests to create users look like this:

PUT _opendistro/_security/api/user/new-user
{
 "password": "some-password",
 "roles": ["new-backend-role"]
}

On OpenSearch or Elasticsearch 7.x, requests look like this (change _plugins to _opendistro if
using Elasticsearch):

PUT _plugins/_security/api/user/new-user
{
 "password": "some-password",
 "backend_roles": ["new-backend-role"]
}

Further, tenants are properties of roles in Elasticsearch 6.x:

GET _opendistro/_security/api/roles/all_access

REST API differences 694

Amazon OpenSearch Service Developer Guide

{
 "all_access": {
 "cluster": ["UNLIMITED"],
 "tenants": {
 "admin_tenant": "RW"
 },
 "indices": {
 "*": {
 "*": ["UNLIMITED"]
 }
 },
 "readonly": "true"
 }
}

In OpenSearch and Elasticsearch 7.x, they're objects with their own URI (change _plugins to
_opendistro if using Elasticsearch)::

GET _plugins/_security/api/tenants

{
 "global_tenant": {
 "reserved": true,
 "hidden": false,
 "description": "Global tenant",
 "static": false
 }
}

For documentation on the OpenSearch REST API, see the Security plugin API reference.

Tip

If you use the internal user database, you can use curl to make requests and test your
domain. Try the following sample commands:

curl -XGET -u 'master-user:master-user-password' 'domain-endpoint/_search'
curl -XGET -u 'master-user:master-user-password' 'domain-endpoint/_plugins/
_security/api/user'

REST API differences 695

https://opensearch.org/docs/latest/security/access-control/api/
https://curl.haxx.se/

Amazon OpenSearch Service Developer Guide

Tutorial: Configure a domain with an IAM master user and Amazon
Cognito authentication

This tutorial covers a popular Amazon OpenSearch Service use case for fine-grained access control:
an IAM master user with Amazon Cognito authentication for OpenSearch Dashboards.

In the tutorial, we'll configure a master IAM role and a limited IAM role, which we'll then associate
with users in Amazon Cognito. The master user can then sign in to OpenSearch Dashboards, map
the limited user to a role, and use fine-grained access control to limit the user's permissions.

Although these steps use the Amazon Cognito user pool for authentication, this same basic process
works for any Cognito authentication provider that lets you assign different IAM roles to different
users.

You'll complete the following steps in this tutorial:

1. Create master and limited IAM roles

2. Create a domain with Cognito authentication

3. Configure a Cognito user pool and identity pool

4. Map roles in OpenSearch Dashboards

5. Test the permissions

Step 1: Create master and limited IAM roles

Navigate to the Amazon Identity and Access Management (IAM) console and create two separate
roles:

• MasterUserRole – The master user, which will have full permissions to the cluster and manage
roles and role mappings.

Tutorial: Fine-grained access control with Cognito authentication 696

Amazon OpenSearch Service Developer Guide

• LimitedUserRole – A more restricted role, which you'll grant limited access to as the master
user.

For instructions to create the roles, see Creating a role using custom trust policies.

Both roles must have the following trust policy, which allows your Cognito identity pool to assume
the roles:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Federated": "cognito-identity.amazonaws.com"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "cognito-identity.amazonaws.com:aud": "{identity-pool-id}"
 },
 "ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr": "authenticated"
 }
 }
 }]
}

Note

Replace identity-pool-id with the unique identifier of your Amazon Cognito identity
pool. For example, us-east-1:0c6cdba7-3c3c-443b-a958-fb9feb207aa6.

Step 2: Create a domain with Cognito authentication

Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home/ and create a domain with the following settings:

• OpenSearch 1.0 or later, or Elasticsearch 7.8 or later

• Public access

Tutorial: Fine-grained access control with Cognito authentication 697

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-custom.html
https://console.aws.amazon.com/aos/home/
https://console.aws.amazon.com/aos/home/

Amazon OpenSearch Service Developer Guide

• Fine-grained access control enabled with MasterUserRole as the master user (created in the
previous step)

• Amazon Cognito authentication enabled for OpenSearch Dashboards. For instructions to enable
Cognito authentication and select a user and identity pool, see the section called “Configuring a
domain to use Amazon Cognito authentication”.

• The following domain access policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::{account-id}:role/*"
]
 },
 "Action": [
 "es:ESHttp*"
],
 "Resource": "arn:aws:es:{region}:{account-id}:domain/{domain-name}/*"
 }
]
}

• HTTPS required for all traffic to the domain

• Node-to-node encryption

• Encryption of data at rest

Step 3: Configure Cognito users

While your domain is being created, configure the master and limited users within Amazon Cognito
by following Create a user pool in the Amazon Cognito Developer Guide. Lastly, configure your
identity pool by following the steps in Create an identity pool in Amazon Cognito. The user pool
and identity pool must be in the same Amazon Web Services Region.

Step 4: Map roles in OpenSearch Dashboards

Now that your users are configured, you can sign in to OpenSearch Dashboards as the master user
and map users to roles.

Tutorial: Fine-grained access control with Cognito authentication 698

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-with-identity-pools.html#create-identity-pool

Amazon OpenSearch Service Developer Guide

1. Go back to the OpenSearch Service console and navigate to the OpenSearch Dashboards
URL for the domain you created. The URL follows this format: domain-endpoint/
_dashboards/.

2. Sign in with the master-user credentials.

3. Choose Add sample data and add the sample flight data.

4. In the left navigation pane, choose Security, Roles, Create role.

5. Name the role new-role.

6. For Index, specify opensearch_dashboards_sample_data_fli*
(kibana_sample_data_fli* on Elasticsearch domains).

7. For Index permissions, choose read.

8. For Document level security, specify the following query:

{
 "match": {
 "FlightDelay": true
 }
}

9. For field-level security, choose Exclude and specify FlightNum.

10. For Anonymization, specify Dest.

11. Choose Create.

12. Choose Mapped users, Manage mapping. Add the Amazon Resource Name (ARN) for
LimitedUserRole as an external identity and choose Map.

13. Return to the list of roles and choose opensearch_dashboards_user. Choose Mapped users,
Manage mapping. Add the ARN for LimitedUserRole as a backend role and choose Map.

Step 5: Test the permissions

When your roles are mapped correctly, you can sign in as the limited user and test the permissions.

1. In a new, private browser window, navigate to the OpenSearch Dashboards URL for the
domain, sign in using the limited-user credentials, and choose Explore on my own.

2. Go to Dev Tools and run the default search:

GET _search

Tutorial: Fine-grained access control with Cognito authentication 699

Amazon OpenSearch Service Developer Guide

{
 "query": {
 "match_all": {}
 }
}

Note the permissions error. limited-user doesn't have permissions to run cluster-wide
searches.

3. Run another search:

GET opensearch_dashboards_sample_data_flights/_search
{
 "query": {
 "match_all": {}
 }
}

Note that all matching documents have a FlightDelay field of true, an anonymized Dest
field, and no FlightNum field.

4. In your original browser window, signed in as master-user, choose Dev Tools, and then
perform the same searches. Note the difference in permissions, number of hits, matching
documents, and included fields.

Tutorial: Configure a domain with the internal user database and HTTP
basic authentication

This tutorial covers another popular fine-grained access control use case: a master user in the
internal user database and HTTP basic authentication for OpenSearch Dashboards. The master user
can then sign in to OpenSearch Dashboards, create an internal user, map the user to a role, and use
fine-grained access control to limit the user's permissions.

You'll complete the following steps in this tutorial:

1. Create a domain with a master user

2. Configure an internal user in OpenSearch Dashboards

3. Map roles in OpenSearch Dashboards

4. Test the permissions

Tutorial: Internal user database with basic authentication 700

Amazon OpenSearch Service Developer Guide

Step 1: Create a domain

Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home/ and create a domain with the following settings:

• OpenSearch 1.0 or later, or Elasticsearch 7.9 or later

• Public access

• Fine-grained access control with a master user in the internal user database (TheMasterUser
for the rest of this tutorial)

• Amazon Cognito authentication for Dashboards disabled

• The following access policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::{account-id}:user/*"
]
 },
 "Action": [
 "es:ESHttp*"
],
 "Resource": "arn:aws:es:{region}:{account-id}:domain/{domain-name}/*"
 }
]
}

• HTTPS required for all traffic to the domain

• Node-to-node encryption

• Encryption of data at rest

Step 2: Create an internal user in OpenSearch Dashboards

Now that you have a domain, you can sign in to OpenSearch Dashboards and create an internal
user.

Tutorial: Internal user database with basic authentication 701

https://console.aws.amazon.com/aos/home/
https://console.aws.amazon.com/aos/home/

Amazon OpenSearch Service Developer Guide

1. Go back to the OpenSearch Service console and navigate to the OpenSearch Dashboards
URL for the domain you created. The URL follows this format: domain-endpoint/
_dashboards/.

2. Sign in with the TheMasterUser.

3. Choose Add sample data and add the sample flight data.

4. In the left navigation pane, choose Security, Internal users, Create internal user.

5. Name the user new-user and specify a password. Then choose Create.

Step 3: Map roles in OpenSearch Dashboards

Now that your user is configured, you can map your user to a role.

1. Stay in the Security section of OpenSearch Dashboards and choose Roles, Create role.

2. Name the role new-role.

3. For Index, specify opensearch_dashboards_sample_data_fli*
(kibana_sample_data_fli* on Elasticsearch domains) for the index pattern.

4. For the action group, choose read.

5. For Document level security, specify the following query:

{
 "match": {
 "FlightDelay": true
 }
}

6. For field-level security, choose Exclude and specify FlightNum.

7. For Anonymization, specify Dest.

8. Choose Create.

9. Choose Mapped users, Manage mapping. Then add new-user to Users and choose Map.

10. Return to the list of roles and choose opensearch_dashboards_user. Choose Mapped users,
Manage mapping. Then add new-user to Users and choose Map.

Step 4: Test the permissions

When your roles are mapped correctly, you can sign in as the limited user and test the permissions.

Tutorial: Internal user database with basic authentication 702

Amazon OpenSearch Service Developer Guide

1. In a new, private browser window, navigate to the OpenSearch Dashboards URL for the
domain, sign in using the new-user credentials, and choose Explore on my own.

2. Go to Dev Tools and run the default search:

GET _search
{
 "query": {
 "match_all": {}
 }
}

Note the permissions error. new-user doesn't have permissions to run cluster-wide searches.

3. Run another search:

GET dashboards_sample_data_flights/_search
{
 "query": {
 "match_all": {}
 }
}

Note that all matching documents have a FlightDelay field of true, an anonymized Dest
field, and no FlightNum field.

4. In your original browser window, signed in as TheMasterUser, choose Dev Tools and perform
the same searches. Note the difference in permissions, number of hits, matching documents,
and included fields.

Compliance validation for Amazon OpenSearch Service

Third-party auditors assess the security and compliance of Amazon OpenSearch Service as part of
multiple Amazon compliance programs. These programs include SOC, PCI, and HIPAA.

If you have compliance requirements, consider using any version of OpenSearch or Elasticsearch
6.0 or later. Earlier versions of Elasticsearch don't offer a combination of encryption of data at rest
and node-to-node encryption and are unlikely to meet your needs. You might also consider using
any version of OpenSearch or Elasticsearch 6.7 or later if fine-grained access control is important
to your use case. Regardless, choosing a particular OpenSearch or Elasticsearch version when you
create a domain does not guarantee compliance.

Compliance validation 703

Amazon OpenSearch Service Developer Guide

To learn whether an Amazon Web Service is within the scope of specific compliance programs, see
Amazon Web Services in Scope by Compliance Program and choose the compliance program that
you are interested in. For general information, see Amazon Web Services Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Your compliance responsibility when using Amazon Web Services is determined by the sensitivity
of your data, your company's compliance objectives, and applicable laws and regulations. Amazon
provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on Amazon that are
security and compliance focused.

• Amazon Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the Amazon Config Developer Guide – The Amazon Config
service assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• Amazon Security Hub – This Amazon Web Service provides a comprehensive view of your security
state within Amazon. Security Hub uses security controls to evaluate your Amazon resources
and to check your compliance against security industry standards and best practices. For a list of
supported services and controls, see Security Hub controls reference.

Resilience in Amazon OpenSearch Service

The Amazon global infrastructure is built around Amazon Web Services Regions and Availability
Zones. Amazon Web Services Regions provide multiple physically separated and isolated
Availability Zones, which are connected with low-latency, high-throughput, and highly redundant
networking. With Availability Zones, you can design and operate applications and databases that
automatically fail over between Availability Zones without interruption. Availability Zones are
more highly available, fault tolerant, and scalable than traditional single or multiple data center
infrastructures.

For more information about Amazon Web Services Regions and Availability Zones, see Amazon
Global Infrastructure.

Resilience 704

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html
https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html
https://docs.amazonaws.cn/securityhub/latest/userguide/securityhub-controls-reference.html
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/about-aws/global-infrastructure/

Amazon OpenSearch Service Developer Guide

In addition to the Amazon global infrastructure, OpenSearch Service offers several features to help
support your data resiliency and backup needs:

• Multi-AZ domains and replica shards

• Automated and manual snapshots

Infrastructure security in Amazon OpenSearch Service

As a managed service, Amazon OpenSearch Service is protected by Amazon global network
security. For information about Amazon security services and how Amazon protects infrastructure,
see Amazon Cloud Security. To design your Amazon environment using the best practices for
infrastructure security, see Infrastructure Protection in Security Pillar Amazon Well‐Architected
Framework.

You use Amazon published API calls to access OpenSearch Service through the network. Clients
must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

You use Amazon published API calls to access the OpenSearch Service configuration API
through the network. To configure the minimum required TLS version to accept, specify the
TLSSecurityPolicy value in the domain endpoint options:

aws opensearch update-domain-config --domain-name my-domain --domain-endpoint-options
 '{"TLSSecurityPolicy": "Policy-Min-TLS-1-2-2019-07"}'

For details, see the Amazon CLI command reference.

Depending on your domain configuration, you might also need to sign requests to the OpenSearch
APIs. For more information, see the section called “Making and signing OpenSearch Service
requests”.

Infrastructure security 705

https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/opensearch/update-domain-config.html

Amazon OpenSearch Service Developer Guide

OpenSearch Service supports public access domains, which can receive requests from any internet-
connected device, and VPC access domains, which are isolated from the public internet.

Access Amazon OpenSearch Service using an OpenSearch Service-
managed VPC endpoint (Amazon PrivateLink)

You can access an Amazon OpenSearch Service domain by setting up an OpenSearch Service-
managed VPC endpoint (powered by Amazon PrivateLink). These endpoints create a private
connection between your VPC and Amazon OpenSearch Service. You can access OpenSearch
Service VPC domains as if they were in your VPC, without the use of an internet gateway, NAT
device, VPN connection, or Amazon Direct Connect connection. Instances in your VPC don't need
public IP addresses to access OpenSearch Service.

You can configure OpenSearch Service domains to expose additional endpoints running on public
or private subnets within the same VPC, different VPC, or different Amazon Web Services accounts.
This enables you to add an additional layer of security to access your domains regardless of where
they run, with no infrastructure to manage. The following diagram illustrates OpenSearch Service-
managed VPC endpoints within the same VPC:

Working with OpenSearch Service-managed VPC endpoints 706

Amazon OpenSearch Service Developer Guide

You establish this private connection by creating an OpenSearch Service-managed interface VPC
endpoint, powered by Amazon PrivateLink. We create an endpoint network interface in each subnet
that you enable for the interface VPC endpoint. These are service-managed network interfaces that
serve as the entry point for traffic destined for OpenSearch Service. Standard Amazon PrivateLink
interface endpoint pricing applies for OpenSearch Service-managed VPC endpoints billed under
Amazon PrivateLink.

You can create VPC endpoints for domains running all versions of OpenSearch and legacy
Elasticsearch. For more information, see Access Amazon Web Services through Amazon PrivateLink
in the Amazon PrivateLink Guide.

Considerations and limitations for OpenSearch Service

Before you set up an interface VPC endpoint for OpenSearch Service, review Considerations in the
Amazon PrivateLink Guide.

When using OpenSearch Service-managed VPC endpoints, consider the following:

Working with OpenSearch Service-managed VPC endpoints 707

https://aws.amazon.com/privatelink/pricing/
https://aws.amazon.com/privatelink/pricing/
https://docs.amazonaws.cn/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints

Amazon OpenSearch Service Developer Guide

• You can only use interface VPC endpoints to connect to VPC domains. Public domains aren't
supported.

• VPC endpoints can only connect to domains within the same Amazon Web Services Region.

• HTTPS is the only supported protocol for VPC endpoints. HTTP is not allowed.

• OpenSearch Service supports making calls to all of the supported OpenSearch API operations
through an interface VPC endpoint.

• You can configure a maximum of 50 endpoints per account, and a maximum of 10 endpoints per
domain. A single domain can have a maximum of 10 authorized principals.

• You currently can't use Amazon CloudFormation to create interface VPC endpoints.

• You can only create interface VPC endpoints through the OpenSearch Service console or using
the OpenSearch Service API. You can't create interface VPC endpoints for OpenSearch Service
using the Amazon VPC console.

• OpenSearch Service-managed VPC endpoints aren't accessible from the internet. An OpenSearch
Service-managed VPC endpoint is accessible only within the VPC where the endpoint is
provisioned or any VPCs peered with the VPC where the endpoint is provisioned, as permitted by
the route tables and security groups.

• VPC endpoint policies are not supported for OpenSearch Service. You can associate a security
group with the endpoint network interfaces to control traffic to OpenSearch Service through the
interface VPC endpoint.

• Your service-linked role must be in the same Amazon account that you use to create the VPC
endpoint.

• To create, update, and delete the OpenSearch Service VPC endpoint, you must have the
following Amazon EC2 permissions in addition to your Amazon OpenSearch Service permissions:

• ec2:CreateVpcEndpoint

• ec2:DescribeVpcEndpoints

• ec2:ModifyVpcEndpoint

• ec2:DeleteVpcEndpoints

• ec2:CreateTags

• ec2:DescribeTags

• ec2:DescribeSubnets

• ec2:DescribeSecurityGroups

• ec2:DescribeVpcs
Working with OpenSearch Service-managed VPC endpoints 708

https://docs.aws.amazon.com/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/slr.html

Amazon OpenSearch Service Developer Guide

Note

Currently, you can't limit VPC endpoint creation to OpenSearch Service. We're working to
make this possible in a future update.

Provide access to a domain

If the VPC that you want to access your domain is in another Amazon Web Services account, you
need to authorize it from the owner's account before you can create an interface VPC endpoint.

To allow a VPC in another Amazon Web Services account to access your domain

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home/.

2. In the navigation pane, choose Domains and open the domain that you want to provide access
to.

3. Go to the VPC endpoints tab, which shows the accounts and corresponding VPCs that have
access to your domain.

4. Choose Authorize principal.

5. Enter the Amazon Web Services account ID of the account that will access your domain. This
step authorizes the specified account to create VPC endpoints against the domain.

6. Choose Authorize.

Create an interface VPC endpoint for a VPC domain

You can create an interface VPC endpoint for OpenSearch Service using either the OpenSearch
Service console or the Amazon Command Line Interface (Amazon CLI).

To create an interface VPC endpoint for an OpenSearch Service domain

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home/.

2. In the left navigation pane, choose VPC endpoints.

3. Choose Create endpoint.

4. Select whether to connect a domain in the current Amazon Web Services account or another
Amazon Web Services account.

Working with OpenSearch Service-managed VPC endpoints 709

https://console.aws.amazon.com/aos/home/
https://console.aws.amazon.com/aos/home/
https://console.aws.amazon.com/aos/home/
https://console.aws.amazon.com/aos/home/

Amazon OpenSearch Service Developer Guide

5. Select the domain that you connect to with this endpoint. If the domain is in the current
Amazon Web Services account, use the dropdown to choose the domain. If the domain is in
a different account, enter the Amazon Resource Name (ARN) of the domain to connect to. To
choose a domain in a different account, the owner needs to provide you access to the domain.

6. For VPC, select the VPC from which you'll access OpenSearch Service.

7. For Subnets, select one or more subnets from which you'll access OpenSearch Service.

8. For Security groups, select the security groups to associate with the endpoint network
interfaces. This is a critical step in which you limit what ports, protocols, and sources for
inbound traffic that you’re authorizing into your endpoint. The security group rules must allow
the resources that will use the VPC endpoint to communicate with OpenSearch Service to
communicate with the endpoint network interface.

9. Choose Create endpoint. The endpoint should be active within 2-5 minutes.

Working with OpenSearch Service-managed VPC endpoints using the
configuration API

Use the following API operations to create and manage OpenSearch Service-managed VPC
endpoints.

• CreateVpcEndpoint

• ListVpcEndpoints

• UpdateVpcEndpoint

• DeleteVpcEndpoint

Use the following API operations to manage endpoint access to VPC domains:

• AuthorizeVpcEndpointAccess

• ListVpcEndpointAccess

• ListVpcEndpointsForDomain

• RevokeVpcEndpointAccess

Working with OpenSearch Service-managed VPC endpoints 710

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_CreateVpcEndpoint.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_ListVpcEndpoints.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpdateVpcEndpoint.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_DeleteVpcEndpoint.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_AuthorizeVpcEndpointAccess.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_ListVpcEndpointAccess.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_ListVpcEndpointsForDomain.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_RevokeVpcEndpointAccess.html

Amazon OpenSearch Service Developer Guide

SAML authentication for OpenSearch Dashboards

SAML authentication for OpenSearch Dashboards lets you use your existing identity provider
to offer single sign-on (SSO) for Dashboards on Amazon OpenSearch Service domains running
OpenSearch or Elasticsearch 6.7 or later. To use SAML authentication, you must enable fine-grained
access control.

Rather than authenticating through Amazon Cognito or the internal user database, SAML
authentication for OpenSearch Dashboards lets you use third-party identity providers to log in
to Dashboards, manage fine-grained access control, search your data, and build visualizations.
OpenSearch Service supports providers that use the SAML 2.0 standard, such as Okta, Keycloak,
Active Directory Federation Services (ADFS), Auth0, and Amazon IAM Identity Center.

SAML authentication for Dashboards is only for accessing OpenSearch Dashboards through a web
browser. Your SAML credentials do not let you make direct HTTP requests to the OpenSearch or
Dashboards APIs.

SAML configuration overview

This documentation assumes that you have an existing identity provider and some familiarity with
it. We can't provide detailed configuration steps for your exact provider, only for your OpenSearch
Service domain.

The OpenSearch Dashboards login flow can take one of two forms:

• Service provider (SP) initiated: You navigate to Dashboards (for example, https://my-
domain.us-east-1.es.amazonaws.com/_dashboards), which redirects you to the login
screen. After you log in, the identity provider redirects you to Dashboards.

• Identity provider (IdP) initiated: You navigate to your identity provider, log in, and choose
OpenSearch Dashboards from an application directory.

OpenSearch Service provides two single sign-on URLs, SP-initiated and IdP-initiated, but you only
need the one that matches your desired OpenSearch Dashboards login flow.

Regardless of which authentication type you use, the goal is to log in through your identity
provider and receive a SAML assertion that contains your username (required) and any backend
roles (optional, but recommended). This information allows fine-grained access control to assign
permissions to SAML users. In external identity providers, backend roles are typically called "roles"
or "groups."

SAML authentication for OpenSearch Dashboards 711

Amazon OpenSearch Service Developer Guide

Considerations

Consider the following when you configure SAML authentication:

• Due to the size of the IdP metadata file, we highly recommend using the Amazon console to
configure SAML authentication.

• Domains only support one Dashboards authentication method at a time. If you have Amazon
Cognito authentication for OpenSearch Dashboards enabled, you must disable it before you can
enable SAML authentication.

• If you use a network load balancer with SAML, you must first create a custom endpoint. For more
information, see ???.

SAML authentication for VPC domains

SAML doesn't require direct communication between your identity provider and your service
provider. Therefore, even if your OpenSearch domain is hosted within a private VPC, you can still
use SAML as long as your browser can communicate with both your OpenSearch cluster and your
identity provider. Your browser essentially acts as the intermediary between your identity provider
and your service provider. For a useful diagram that explains the SAML authentication flow, see the
Okta documentation.

Modifying the domain access policy

Before you configure SAML authentication, you must update the domain access policy to allow
SAML users to access the domain. Otherwise, you'll see access denied errors.

We recommend the following domain access policy, which provides full access to the subresources
(/*) on the domain:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::{account-id}:user/{username-1}",
 "arn:aws:iam::{account-id}:user/{username-2}"
 ...

Considerations 712

https://developer.okta.com/docs/concepts/saml/#planning-for-saml

Amazon OpenSearch Service Developer Guide

]
 },
 "Action": "es:ESHttp*",
 "Resource": "arn:aws:es:{region}:{account-id}:domain/{domain-name}/*"
 }
]
}

Configuring SP- or IdP-initiated authentication

These steps explain how to enable SAML authentication with SP-initiated or IdP-initiated
authentication for OpenSearch Dashboards. For the extra step required to enable both, see
Configuring both SP- and IdP-initiated authentication.

Step 1: Enable SAML authentication

You can enable SAML authentication either during domain creation, or by choosing Actions, Edit
security configuration on an existing domain. The following steps vary slightly depending on
which one you choose.

Within the domain configuration, under SAML authentication for OpenSearch Dashboards/
Kibana, select Enable SAML authentication.

Step 2: Configure your identity provider

Perform the following steps depending on when you're configuring SAML authentication.

If you're creating a new domain

If you're in the process of creating a new domain, OpenSearch Service can't yet generate a service
provider entity ID or SSO URLs. Your identity provider requires these values in order to properly
enable SAML authentication, but they can only be generated after the domain is created. To work
around this interdependency during domain creation, you can provide temporary values into your
IdP configuration to generate the required metadata and then update them once your domain is
active.

If you're using a custom endpoint, you can infer what the URLs will be. For example, if your custom
endpoint is www.custom-endpoint.com, the service provider entity ID will be www.custom-
endpoint.com, the IdP-initiated SSO URL will be www.custom-endpoint.com/_dashboards/
_opendistro/_security/saml/acs/idpinitiated, and the SP-initiated SSO URL will be
www.custom-endpoint.com/_dashboards/_opendistro/_security/saml/acs. You

Configuring SP- or IdP-initiated authentication 713

Amazon OpenSearch Service Developer Guide

can use the values to configure your identity provider before the domain is created. See the next
section for examples.

If you're not using a custom endpoint, you can enter temporary values into your IdP to generate the
required metadata, and then update them later after the domain is active.

For example, within Okta, you can enter https://temp-endpoint.amazonaws.com into the
Single sign on URL and Audience URI (SP Entity ID) fields, which enables you to generate the
metadata. Then, after the domain is active, you can retrieve the correct values from OpenSearch
Service and update them in Okta. For instructions, see the section called “Step 6: Update your IdP
URLs”.

If you're editing an existing domain

If you're enabling SAML authentication on an existing domain, copy the service provider entity
ID and one of the SSO URLs. For guidance on which URL to use, see the section called “SAML
configuration overview”.

Use the values to configure your identity provider. This is the most complex part of the process,
and unfortunately, terminology and steps vary wildly by provider. Consult your provider's
documentation.

In Okta, for example, you create a SAML 2.0 web application. For Single sign on URL, specify the
SSO URL. For Audience URI (SP Entity ID), specify the SP entity ID.

Rather than users and backend roles, Okta has users and groups. For Group Attribute Statements,
we recommend that you add role to the Name field and the regular expression .+ to the Filter

Configuring SP- or IdP-initiated authentication 714

Amazon OpenSearch Service Developer Guide

field. This statement tells the Okta identity provider to include all user groups under the role field
of the SAML assertion after a user authenticates.

In IAM Identity Center, you specify the SP entity ID as the Application SAML audience. You
also need to specify the following attribute mappings: Subject=${user:name} and Role=
${user:groups}.

In Auth0, you create a regular web application and enable the SAML 2.0 add-on. In Keycloak, you
create a client.

Step 3: Import IdP metadata

After you configure your identity provider, it generates an IdP metadata file. This XML file contains
information about the provider, such as a TLS certificate, single sign-on endpoints, and the identity
provider's entity ID.

Copy the contents of the IdP metadata file and paste it into the Metadata from IdP field in the
OpenSearch Service console. Alternately, choose Import from XML file and upload the file. The
metadata file should look something like this:

<?xml version="1.0" encoding="UTF-8"?>
<md:EntityDescriptor entityID="entity-id"
 xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata">
 <md:IDPSSODescriptor WantAuthnRequestsSigned="false"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <md:KeyDescriptor use="signing">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>tls-certificate</ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </md:KeyDescriptor>
 <md:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified</
md:NameIDFormat>
 <md:NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress</
md:NameIDFormat>
 <md:SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="idp-sso-url"/>
 <md:SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Redirect" Location="idp-sso-url"/>
 </md:IDPSSODescriptor>
</md:EntityDescriptor>

Configuring SP- or IdP-initiated authentication 715

https://docs.amazonaws.cn/singlesignon/latest/userguide/attributemappingsconcept.html

Amazon OpenSearch Service Developer Guide

Step 4: Configure SAML fields

After you input your IdP metadata, configure the following additional fields within the OpenSearch
Service console:

• IdP entity ID – Copy the value of the entityID property from your metadata file and paste
it into this field. Many identity providers also display this value as part of a post-configuration
summary. Some providers call it the "issuer".

• SAML master username and SAML master backend role – The user and/or backend role that
you specify receive full permissions to the cluster, equivalent to a new master user, but can only
use those permissions within OpenSearch Dashboards.

In Okta, for example, you might have a user jdoe who belongs to the group admins. If you
add jdoe to the SAML master username field, only that user receives full permissions. If you
add admins to the SAML master backend role field, any user that belongs to the admins group
receives full permissions.

Note

The contents of the SAML assertion must exactly match the strings that you use for the
SAML master username and SAML master role. Some identity providers add a prefix
before their usernames, which can cause a hard-to-diagnose mismatch. In the identity
provider user interface, you might see jdoe, but the SAML assertion might contain
auth0|jdoe. Always use the string from the SAML assertion.

Many identity providers let you view a sample assertion during the configuration process, and tools
like SAML-tracer can help you examine and troubleshoot the contents of real assertions. Assertions
look something like this:

<?xml version="1.0" encoding="UTF-8"?>
<saml2:Assertion ID="id67229299299259351343340162"
 IssueInstant="2020-09-22T22:03:08.633Z" Version="2.0"
 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml2:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">idp-issuer</
saml2:Issuer>
 <saml2:Subject>
 <saml2:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified">username</saml2:NameID>

Configuring SP- or IdP-initiated authentication 716

https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/

Amazon OpenSearch Service Developer Guide

 <saml2:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml2:SubjectConfirmationData NotOnOrAfter="2020-09-22T22:08:08.816Z"
 Recipient="domain-endpoint/_dashboards/_opendistro/_security/saml/acs"/>
 </saml2:SubjectConfirmation>
 </saml2:Subject>
 <saml2:Conditions NotBefore="2020-09-22T21:58:08.816Z"
 NotOnOrAfter="2020-09-22T22:08:08.816Z">
 <saml2:AudienceRestriction>
 <saml2:Audience>domain-endpoint</saml2:Audience>
 </saml2:AudienceRestriction>
 </saml2:Conditions>
 <saml2:AuthnStatement AuthnInstant="2020-09-22T19:54:37.274Z">
 <saml2:AuthnContext>

 <saml2:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport</
saml2:AuthnContextClassRef>
 </saml2:AuthnContext>
 </saml2:AuthnStatement>
 <saml2:AttributeStatement>
 <saml2:Attribute Name="role" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified">
 <saml2:AttributeValue
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xs:string">GroupName Match Matches regex ".+" (case-sensitive)
 </saml2:AttributeValue>
 </saml2:Attribute>
 </saml2:AttributeStatement>
</saml2:Assertion>

Step 5: (Optional) Configure additional settings

Under Additional settings, configure the following optional fields:

• Subject key – You can leave this field empty to use the NameID element of the SAML assertion
for the username. If your assertion doesn't use this standard element and instead includes the
username as a custom attribute, specify that attribute here.

• Roles key – If you want to use backend roles (recommended), specify an attribute from the
assertion in this field, such as role or group. This is another situation in which tools like SAML-
tracer can help.

• Session time to live – By default, OpenSearch Dashboards logs users out after 24 hours. You can
configure this value to any number between 60 and 1,440 (24 hours) by specifying a new value.

Configuring SP- or IdP-initiated authentication 717

https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/
https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/

Amazon OpenSearch Service Developer Guide

After you're satisfied with your configuration, save the domain.

Step 6: Update your IdP URLs

If you enabled SAML authentication while creating a domain, you had to specify temporary URLs
within your IdP in order to generate the XML metadata file. After the domain status changes to
Active, you can get the correct URLs and modify your IdP.

To retrieve the URLs, select the domain and choose Actions, Edit security configuration. Under
SAML authentication for OpenSearch Dashboards/Kibana, you can find the correct service
provider entity ID and SSO URLs. Copy the values and use them to configure your identity provider,
replacing the temporary URLs that you provided in step 2.

Step 7: Map SAML users to roles

Once your domain status is Active and your IdP is configured correctly, navigate to OpenSearch
Dashboards.

• If you chose the SP-initiated URL, navigate to domain-endpoint/_dashboards. To log in to a
specific tenant directly, you can append ?security_tenant=tenant-name to the URL.

• If you chose the IdP-initiated URL, navigate to your identity provider's application directory.

In both cases, log in as either the SAML master user or a user who belongs to the SAML master
backend role. To continue the example from step 7, log in as either jdoe or a member of the
admins group.

After OpenSearch Dashboards loads, choose Security, Roles. Then, map roles to allow other users
to access OpenSearch Dashboards.

For example, you might map your trusted colleague jroe to the all_access and
security_manager roles. You might also map the backend role analysts to the readall and
kibana_user roles.

If you prefer to use the API rather than OpenSearch Dashboards, see the following sample request:

PATCH _plugins/_security/api/rolesmapping
[
 {
 "op": "add", "path": "/security_manager", "value": { "users": ["master-user",
 "jdoe", "jroe"], "backend_roles": ["admins"] }
 },

Configuring SP- or IdP-initiated authentication 718

Amazon OpenSearch Service Developer Guide

 {
 "op": "add", "path": "/all_access", "value": { "users": ["master-user", "jdoe",
 "jroe"], "backend_roles": ["admins"] }
 },
 {
 "op": "add", "path": "/readall", "value": { "backend_roles": ["analysts"] }
 },
 {
 "op": "add", "path": "/dashboards_user", "value": { "backend_roles": ["analysts"] }
 }
]

Configuring both SP- and IdP-initiated authentication

If you want to configure both SP- and IdP-initiated authentication, you must do so through your
identity provider. For example, in Okta, you can perform the following steps:

1. Within your SAML application, go to General, SAML settings.

2. For the Single sign on URL, provide your IdP-initiated SSO URL. For example,
https://search-domain-hash/_dashboards/_opendistro/_security/saml/
acs/idpinitiated.

3. Enable Allow this app to request other SSO URLs.

4. Under Requestable SSO URLs, add one or more SP-initiated SSO URLs. For example,
https://search-domain-hash/_dashboards/_opendistro/_security/saml/acs.

Configuring SAML authentication (Amazon CLI)

The following Amazon CLI command enables SAML authentication for OpenSearch Dashboards on
an existing domain:

aws opensearch update-domain-config \
 --domain-name my-domain \
 --advanced-security-options '{"SAMLOptions":{"Enabled":true,"MasterUserName":"my-
idp-user","MasterBackendRole":"my-idp-group-or-role","Idp":{"EntityId":"entity-
id","MetadataContent":"metadata-content-with-quotes-escaped"},"RolesKey":"optional-
roles-key","SessionTimeoutMinutes":180,"SubjectKey":"optional-subject-key"}}'

You must escape all quotes and newline characters in the metadata XML. For example, use
<KeyDescriptor use=\"signing\">\n instead of <KeyDescriptor use="signing"> and

Configuring both SP- and IdP-initiated authentication 719

Amazon OpenSearch Service Developer Guide

a line break. For detailed information about using the Amazon CLI, see the Amazon CLI Command
Reference.

Configuring SAML authentication (configuration API)

The following request to the configuration API enables SAML authentication for OpenSearch
Dashboards on an existing domain:

POST https://es.us-east-1.amazonaws.com/2021-01-01/opensearch/domain/my-domain/config
{
 "AdvancedSecurityOptions": {
 "SAMLOptions": {
 "Enabled": true,
 "MasterUserName": "my-idp-user",
 "MasterBackendRole": "my-idp-group-or-role",
 "Idp": {
 "EntityId": "entity-id",
 "MetadataContent": "metadata-content-with-quotes-escaped"
 },
 "RolesKey": "optional-roles-key",
 "SessionTimeoutMinutes": 180,
 "SubjectKey": "optional-subject-key"
 }
 }
}

You must escape all quotes and newline characters in the metadata XML. For example, use
<KeyDescriptor use=\"signing\">\n instead of <KeyDescriptor use="signing"> and a
line break. For detailed information about using the configuration API, see the OpenSearch Service
API reference.

SAML troubleshooting

Error Details

Your request: '/some/path ' is not
allowed.

Verify that you provided the correct SSO URL (step 3)
to your identity provider.

Configuring SAML authentication (configuration API) 720

https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_Welcome.html

Amazon OpenSearch Service Developer Guide

Error Details

Please provide valid identity provider
metadata document to enable SAML.

Your IdP metadata file does not conform to the
SAML 2.0 standard. Check for errors using a validatio
n tool.

SAML configuration options aren't
visible in the console.

Update to the latest service software.

SAML configuration error: Something
went wrong while retrieving the SAML
configuration, please check your
settings.

This generic error can occur for many reasons.

• Check that you provided your identity provider
with the correct SP entity ID and SSO URL.

• Regenerate the IdP metadata file, and verify the
IdP entity ID. Add any updated metadata in the
Amazon console.

• Verify that your domain access policy allows access
to OpenSearch Dashboards and _plugins/
_security/* . In general, we recommend an
open access policy for domains that use fine-grai
ned access control.

• Consult your identity provider's documentation for
steps on configuring SAML.

Missing role: No roles available for
this user, please contact your system
administrator.

You successfully authenticated, but the username
and any backend roles from the SAML assertion are
not mapped to any roles and thus have no permissio
ns. These mappings are case-sensitive.

Verify the contents of your SAML assertion using a
tool like SAML-tracer and your role mapping using
the following call:

GET _plugins/_security/api/rolesmapping

SAML troubleshooting 721

https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/

Amazon OpenSearch Service Developer Guide

Error Details

Your browser continuously redirects or
receives HTTP 500 errors when trying to
access OpenSearch Dashboards.

These errors can occur if your SAML assertion
contains a large number of roles totaling approxima
tely 1,500 characters. For example, if you pass 80
roles, the average length of which is 20 characters,
you might exceed the size limit for cookies in your
web browser. Starting with OpenSearch version 2.7,
SAML assertion supports roles up to 5000 characters.

You can't log out of ADFS. ADFS requires all logout request to be signed,
which OpenSearch Service doesn't support. Remove
<SingleLogoutService /> from the IdP
metadata file to force OpenSearch Service to use its
own internal logout mechanism.

Could not find entity
descriptor for __PATH__.

The entity ID of the IdP provided in the metadata
XML to OpenSearch Service is different than the one
in the SAML response. To fix this, make sure that
they match. Enable CW Application Error logs on
your domain to find the error message to debug the
SAML integration issue.

Signature validation failed.
SAML response rejected.

OpenSearch Service is unable to verify the signature
in the SAML response using the certificate of the
IdP provided in metadata XML. This could either be
a manual error, or your IdP has rotated its certifica
te. Update the latest certificate from your IdP in
the metadata XML provided to OpenSearch Service
through the Amazon Web Services Management
Console.

SAML troubleshooting 722

Amazon OpenSearch Service Developer Guide

Error Details

__PATH__ is not a valid
audience for this response.

The audience field in the SAML response doesn't
match the domain endpoint. To fix this error,
update the SP audience field to match your domain
endpoint. If you've enabled custom endpoints, the
audience field should match your custom endpoint.
Enable CW Application Error logs on your domain to
find the error message to debug the SAML integrati
on issue.

Your browser receives a HTTP 400 error
with Invalid Request Id in the
response.

This error generally happens if you've configured
the IdP-initiated URL with the format <Kibana/
OSDURL> /_opendistro/_security/saml
/acs . Instead, configure the URL with the format
<Kibana/OSDURL> /_opendistro/_secu
rity/saml/acs/idpinitiated .

The response was received at __PATH__
instead of __PATH__.

The destination field in SAML response doesn't
match one of the following URL formats:

• <Kibana/OSDURL> /_opendistro/_secu
rity/saml/acs

• <Kibana/OSDURL> /_opendistro/_secu
rity/saml/acs/idpinitiated .

Depending on the login flow you use (SP-initiated
or IdP-initiated), enter in a destination field that
matches one of the OpenSearch URLs.

The response has an InResponseTo
attribute, while no InResponseTo
was expected.

You're using the IdP-initiated URL for an SP-initiated
login flow. Use the SP-initiated URL instead.

SAML troubleshooting 723

Amazon OpenSearch Service Developer Guide

Disabling SAML authentication

To disable SAML authentication for OpenSearch Dashboards (console)

1. Choose the domain, Actions, and Edit security configuration.

2. Uncheck Enable SAML authentication.

3. Choose Save changes.

4. After the domain finishes processing, verify the fine-grained access control role mapping with
the following request:

GET _plugins/_security/api/rolesmapping

Disabling SAML authentication for Dashboards does not remove the mappings for the
SAML master username and/or the SAML master backend role. If you want to remove these
mappings, log in to Dashboards using the internal user database (if enabled), or use the API to
remove them:

PUT _plugins/_security/api/rolesmapping/all_access
{
 "users": [
 "master-user"
]
}

Configuring Amazon Cognito authentication for OpenSearch
Dashboards

You can authenticate and protect your Amazon OpenSearch Service default installation of
OpenSearch Dashboards using Amazon Cognito. Amazon Cognito authentication is optional and
available only for domains using OpenSearch or Elasticsearch 5.1 or later. If you don't configure
Amazon Cognito authentication, you can still protect Dashboards using an IP-based access policy
and a proxy server, HTTP basic authentication, or SAML.

Much of the authentication process occurs in Amazon Cognito, but this section offers guidelines
and requirements for configuring Amazon Cognito resources to work with OpenSearch Service
domains. Standard pricing applies to all Amazon Cognito resources.

Disabling SAML authentication 724

https://docs.amazonaws.cn/cognito/latest/developerguide/what-is-amazon-cognito.html
https://aws.amazon.com/cognito/pricing/

Amazon OpenSearch Service Developer Guide

Tip

The first time you configure a domain to use Amazon Cognito authentication for
OpenSearch Dashboards, we recommend using the console. Amazon Cognito resources are
extremely customizable, and the console can help you identify and understand the features
that matter to you.

Topics

• Prerequisites

• Configuring a domain to use Amazon Cognito authentication

• Allowing the authenticated role

• Configuring identity providers

• (Optional) Configuring granular access

• (Optional) Customizing the sign-in page

• (Optional) Configuring advanced security

• Testing

• Quotas

• Common configuration issues

• Disabling Amazon Cognito authentication for OpenSearch Dashboards

• Deleting domains that use Amazon Cognito authentication for OpenSearch Dashboards

Prerequisites

Before you can configure Amazon Cognito authentication for OpenSearch Dashboards, you must
fulfill several prerequisites. The OpenSearch Service console helps streamline the creation of
these resources, but understanding the purpose of each resource helps with configuration and
troubleshooting. Amazon Cognito authentication for Dashboards requires the following resources:

• Amazon Cognito user pool

• Amazon Cognito identity pool

• IAM role that has the AmazonOpenSearchServiceCognitoAccess policy attached
(CognitoAccessForAmazonOpenSearch)

Prerequisites 725

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-identity-pools.html
https://docs.amazonaws.cn/cognito/latest/developerguide/identity-pools.html

Amazon OpenSearch Service Developer Guide

Note

The user pool and identity pool must be in the same Amazon Web Services Region. You can
use the same user pool, identity pool, and IAM role to add Amazon Cognito authentication
for Dashboards to multiple OpenSearch Service domains. To learn more, see the section
called “Quotas”.

About the user pool

User pools have two main features: create and manage a directory of users, and let users sign up
and log in. For instructions to create a user pool, see Create a User Pool in the Amazon Cognito
Developer Guide.

When you create a user pool to use with OpenSearch Service, consider the following:

• Your Amazon Cognito user pool must have a domain name. OpenSearch Service uses this domain
name to redirect users to a login page for accessing Dashboards. Other than a domain name, the
user pool doesn't require any non-default configuration.

• You must specify the pool's required standard attributes—attributes like name, birth date, email
address, and phone number. You can't change these attributes after you create the user pool, so
choose the ones that matter to you at this time.

• While creating your user pool, choose whether users can create their own accounts, the minimum
password strength for accounts, and whether to enable multi-factor authentication. If you plan
to use an external identity provider, these settings are inconsequential. Technically, you can
enable the user pool as an identity provider and enable an external identity provider, but most
people prefer one or the other.

User pool IDs take the form of region_ID. If you plan to use the Amazon CLI or an Amazon SDK to
configure OpenSearch Service, make note of the ID.

About the identity pool

Identity pools let you assign temporary, limited-privilege roles to users after they log in. For
instructions about creating an identity pool, see Identity Pools in the Amazon Cognito Developer
Guide. When you create an identity pool to use with OpenSearch Service, consider the following:

Prerequisites 726

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-domain.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-attributes.html#cognito-user-pools-standard-attributes
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-identity-federation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/identity-pools.html

Amazon OpenSearch Service Developer Guide

• If you use the Amazon Cognito console, you must select the Enable access to unauthenticated
identities check box to create the identity pool. After you create the identity pool and configure
the OpenSearch Service domain, Amazon Cognito disables this setting.

• You don't need to add external identity providers to the identity pool. When you configure
OpenSearch Service to use Amazon Cognito authentication, it configures the identity pool to use
the user pool that you just created.

• After you create the identity pool, you must choose unauthenticated and authenticated
IAM roles. These roles specify the access policies that users have before and after they
log in. If you use the Amazon Cognito console, it can create these roles for you. After
you create the authenticated role, make note of the ARN, which takes the form of
arn:aws:iam::123456789012:role/Cognito_identitypoolnameAuth_Role.

Identity pool IDs take the form of region:ID-ID-ID-ID-ID. If you plan to use the Amazon CLI or
an Amazon SDK to configure OpenSearch Service, make note of the ID.

About the CognitoAccessForAmazonOpenSearch role

OpenSearch Service needs permissions to configure the Amazon Cognito user and identity pools
and use them for authentication. You can use AmazonOpenSearchServiceCognitoAccess,
which is an Amazon-managed policy, for this purpose. AmazonESCognitoAccess is a legacy
policy that was replaced by AmazonOpenSearchServiceCognitoAccess when the service was
renamed to Amazon OpenSearch Service. Both policies provide the minimum Amazon Cognito
permissions necessary to enable Cognito authentication. For the policy JSON, see the IAM console.

If you use the console to create or configure your OpenSearch Service domain, it creates an IAM
role for you and attaches the AmazonOpenSearchServiceCognitoAccess policy (or the
AmazonESCognitoAccess policy if it's an Elasticsearch domain) to the role. The default name for
this role is CognitoAccessForAmazonOpenSearch.

The role permissions policies AmazonOpenSearchServiceCognitoAccess and
AmazonESCognitoAccess both allow OpenSearch Service to complete the following actions on
all identity and user pools:

• Action: cognito-idp:DescribeUserPool

• Action: cognito-idp:CreateUserPoolClient

• Action: cognito-idp:DeleteUserPoolClient

• Action: cognito-idp:UpdateUserPoolClient

Prerequisites 727

https://docs.amazonaws.cn/cognito/latest/developerguide/external-identity-providers.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonOpenSearchServiceCognitoAccess

Amazon OpenSearch Service Developer Guide

• Action: cognito-idp:DescribeUserPoolClient

• Action: cognito-idp:AdminInitiateAuth

• Action: cognito-idp:AdminUserGlobalSignOut

• Action: cognito-idp:ListUserPoolClients

• Action: cognito-identity:DescribeIdentityPool

• Action: cognito-identity:SetIdentityPoolRoles

• Action: cognito-identity:GetIdentityPoolRoles

If you use the Amazon CLI or one of the Amazon SDKs, you must create your own role, attach the
policy, and specify the ARN for this role when you configure your OpenSearch Service domain. The
role must have the following trust relationship:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "opensearchservice.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

For instructions, see Creating a Role to Delegate Permissions to an Amazon Service and Attaching
and Detaching IAM Policies in the IAM User Guide.

Configuring a domain to use Amazon Cognito authentication

After you complete the prerequisites, you can configure an OpenSearch Service domain to use
Amazon Cognito for Dashboards.

Configuring a domain to use Amazon Cognito authentication 728

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon OpenSearch Service Developer Guide

Note

Amazon Cognito is not available in all Amazon Web Services Regions. For a list of
supported Regions, see Amazon Web Services Regions and Endpoints. You don't need to
use the same Region for Amazon Cognito that you use for OpenSearch Service.

Configuring Amazon Cognito authentication (console)

Because it creates the CognitoAccessForAmazonOpenSearch role for you, the console offers the
simplest configuration experience. In addition to the standard OpenSearch Service permissions,
you need the following set of permissions to use the console to create a domain that uses Amazon
Cognito authentication for OpenSearch Dashboards.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcs",
 "cognito-identity:ListIdentityPools",
 "cognito-idp:ListUserPools",
 "iam:CreateRole",
 "iam:AttachRolePolicy"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::123456789012:role/service-
role/CognitoAccessForAmazonOpenSearch"
 }
]
}

For instructions to add permissions to an identity (user, user group, or role), see Adding IAM
identity permissions (console).

Configuring a domain to use Amazon Cognito authentication 729

https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

Amazon OpenSearch Service Developer Guide

If CognitoAccessForAmazonOpenSearch already exists, you need fewer permissions:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcs",
 "cognito-identity:ListIdentityPools",
 "cognito-idp:ListUserPools"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::123456789012:role/service-
role/CognitoAccessForAmazonOpenSearch"
 }
]
}

To configure Amazon Cognito authentication for Dashboards (console)

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home/.

2. Under Domains, select the domain you want to configure.

3. Choose Actions, Edit security configuration.

4. Select Enable Amazon Cognito authentication.

5. For Region, select the Amazon Web Services Region that contains your Amazon Cognito user
pool and identity pool.

6. For Cognito user pool, select a user pool or create one. For guidance, see the section called
“About the user pool”.

7. For Cognito identity pool, select an identity pool or create one. For guidance, see the section
called “About the identity pool”.

Configuring a domain to use Amazon Cognito authentication 730

https://console.aws.amazon.com/aos/home/
https://console.aws.amazon.com/aos/home/

Amazon OpenSearch Service Developer Guide

Note

The Create user pool and Create identity pool links direct you to the Amazon
Cognito console and require you to create these resources manually. The process is not
automatic. To learn more, see the section called “Prerequisites”.

8. For IAM role name, use the default value of CognitoAccessForAmazonOpenSearch
(recommended) or enter a new name. To learn more about the purpose of this role, see the
section called “About the CognitoAccessForAmazonOpenSearch role”.

9. Choose Save changes.

After your domain finishes processing, see the section called “Allowing the authenticated role” and
the section called “Configuring identity providers” for additional configuration steps.

Configuring Amazon Cognito authentication (Amazon CLI)

Use the --cognito-options parameter to configure your OpenSearch Service domain. The
following syntax is used by both the create-domain and update-domain-config commands:

--cognito-options Enabled=true,UserPoolId="user-pool-id",IdentityPoolId="identity-pool-
id",RoleArn="arn:aws:iam::123456789012:role/CognitoAccessForAmazonOpenSearch"

Example

The following example creates a domain in the us-east-1 Region that enables Amazon Cognito
authentication for Dashboards using the CognitoAccessForAmazonOpenSearch role and
provides domain access to Cognito_Auth_Role:

aws opensearch create-domain --domain-name my-domain --region us-east-1 --access-
policies '{ "Version":"2012-10-17", "Statement":[{"Effect":"Allow","Principal":{"AWS":
 ["arn:aws:iam::123456789012:role/
Cognito_Auth_Role"]},"Action":"es:ESHttp*","Resource":"arn:aws:es:us-
east-1:123456789012:domain/*" }]}' --engine-version "OpenSearch_1.0"
 --cluster-config InstanceType=m4.xlarge.search,InstanceCount=1
 --ebs-options EBSEnabled=true,VolumeSize=10 --cognito-options
 Enabled=true,UserPoolId="us-east-1_123456789",IdentityPoolId="us-
east-1:12345678-1234-1234-1234-123456789012",RoleArn="arn:aws:iam::123456789012:role/
CognitoAccessForAmazonOpenSearch"

Configuring a domain to use Amazon Cognito authentication 731

Amazon OpenSearch Service Developer Guide

After your domain finishes processing, see the section called “Allowing the authenticated role” and
the section called “Configuring identity providers” for additional configuration steps.

Configuring Amazon Cognito Authentication (Amazon SDKs)

The Amazon SDKs (except the Android and iOS SDKs) support all the operations that are defined in
the Amazon OpenSearch Service API Reference, including the CognitoOptions parameter for the
CreateDomain and UpdateDomainConfig operations. For more information about installing and
using the Amazon SDKs, see Amazon Software Development Kits.

After your domain finishes processing, see the section called “Allowing the authenticated role” and
the section called “Configuring identity providers” for additional configuration steps.

Allowing the authenticated role

By default, the authenticated IAM role that you configured by following the guidelines in
the section called “About the identity pool” does not have the necessary privileges to access
OpenSearch Dashboards. You must provide the role with additional permissions.

Note

If you configured fine-grained access control and use an open or IP-based access policy, you
can skip this step.

You can include these permissions in an identity-based policy, but unless you want authenticated
users to have access to all OpenSearch Service domains, a resource-based policy attached to a
single domain is the better approach.

For the Principal, specify the ARN of the Cognito authenticated role that you configured with
the guidelines in the section called “About the identity pool”.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "AWS":[
 "arn:aws:iam::123456789012:role/Cognito_identitypoolnameAuth_Role"

Allowing the authenticated role 732

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
http://aws.amazon.com/code

Amazon OpenSearch Service Developer Guide

]
 },
 "Action":[
 "es:ESHttp*"
],
 "Resource":"arn:aws:es:region:123456789012:domain/domain-name/*"
 }
]
}

For instructions about adding a resource-based policy to an OpenSearch Service domain, see the
section called “Configuring access policies”.

Configuring identity providers

When you configure a domain to use Amazon Cognito authentication for Dashboards, OpenSearch
Service adds an app client to the user pool and adds the user pool to the identity pool as an
authentication provider.

Warning

Don't rename or delete the app client.

Depending on how you configured your user pool, you might need to create user accounts
manually, or users might be able to create their own. If these settings are acceptable, you don't
need to take further action. Many people, however, prefer to use external identity providers.

To enable a SAML 2.0 identity provider, you must provide a SAML metadata document. To enable
social identity providers like Login with Amazon, Facebook, and Google, you must have an app ID
and app secret from those providers. You can enable any combination of identity providers.

The easiest way to configure your user pool is to use the Amazon Cognito console. For instructions,
see Using Federation from a User Pool and Specifying Identity Provider Settings for Your User Pool
App in the Amazon Cognito Developer Guide.

(Optional) Configuring granular access

You might have noticed that the default identity pool settings assign every user who logs in the
same IAM role (Cognito_identitypoolAuth_Role), which means that every user can access the

Configuring identity providers 733

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-identity-federation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-app-idp-settings.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-app-idp-settings.html

Amazon OpenSearch Service Developer Guide

same Amazon resources. If you want to use fine-grained access control with Amazon Cognito—for
example, if you want your organization's analysts to have read-only access to several indices, but
developers to have write access to all indices—you have two options:

• Create user groups and configure your identity provider to choose the IAM role based on the
user's authentication token (recommended).

• Configure your identity provider to choose the IAM role based on one or more rules.

For a walkthrough that includes fine-grained access control, see the section called “Tutorial: Fine-
grained access control with Cognito authentication”.

Important

Just like the default role, Amazon Cognito must be part of each additional role's trust
relationship. For details, see Creating Roles for Role Mapping in the Amazon Cognito
Developer Guide.

User groups and tokens

When you create a user group, you choose an IAM role for members of the group. For information
about creating groups, see User Groups in the Amazon Cognito Developer Guide.

After you create one or more user groups, you can configure your authentication provider to assign
users their groups' roles rather than the identity pool's default role. Select Choose role from token,
then choose either Use default Authenticated role or DENY to specify how the identity pool
handles users who aren't part of a group.

Rules

Rules are essentially a series of if statements that Amazon Cognito evaluates sequentially. For
example, if a user's email address contains @corporate, Amazon Cognito assigns that user
Role_A. If a user's email address contains @subsidiary, it assigns that user Role_B. Otherwise, it
assigns the user the default authenticated role.

To learn more, see Using Rule-Based Mapping to Assign Roles to Users in the Amazon Cognito
Developer Guide.

(Optional) Configuring granular access 734

https://docs.amazonaws.cn/cognito/latest/developerguide/role-based-access-control.html#creating-roles-for-role-mapping
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.amazonaws.cn/cognito/latest/developerguide/role-based-access-control.html#using-rules-to-assign-roles-to-users

Amazon OpenSearch Service Developer Guide

(Optional) Customizing the sign-in page

You can use the Amazon Cognito console to upload a custom logo and make CSS changes to the
sign-in page. For instructions and a full list of CSS properties, see Specifying App UI Customization
Settings for Your User Pool in the Amazon Cognito Developer Guide.

(Optional) Configuring advanced security

Amazon Cognito user pools support advanced security features like multi-factor authentication,
compromised credential checking, and adaptive authentication. To learn more, see Managing
Security in the Amazon Cognito Developer Guide.

Testing

After you're satisfied with your configuration, verify that the user experience meets your
expectations.

To access OpenSearch Dashboards

1. Navigate to https://opensearch-domain/_dashboards in a web browser. To log in to a
specific tenant directly, append ?security_tenant=tenant-name to the URL.

2. Sign in using your preferred credentials.

3. After OpenSearch Dashboards loads, configure at least one index pattern. Dashboards uses
these patterns to identity which indices that you want to analyze. Enter *, choose Next step,
and then choose Create index pattern.

4. To search or explore your data, choose Discover.

If any step of this process fails, see the section called “Common configuration issues” for
troubleshooting information.

Quotas

Amazon Cognito has soft limits on many of its resources. If you want to enable Dashboards
authentication for a large number of OpenSearch Service domains, review Quotas in Amazon
Cognito and request limit increases as necessary.

Each OpenSearch Service domain adds an app client to the user pool, which adds an authentication
provider to the identity pool. If you enable OpenSearch Dashboards authentication for more
than 10 domains, you might encounter the "maximum Amazon Cognito user pool providers per

(Optional) Customizing the sign-in page 735

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-app-ui-customization.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-app-ui-customization.html
https://docs.amazonaws.cn/cognito/latest/developerguide/managing-security.html
https://docs.amazonaws.cn/cognito/latest/developerguide/managing-security.html
https://docs.aws.amazon.com/cognito/latest/developerguide/limits.html
https://docs.aws.amazon.com/cognito/latest/developerguide/limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.amazonaws.cn/cognito/latest/developerguide/external-identity-providers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/external-identity-providers.html

Amazon OpenSearch Service Developer Guide

identity pool" limit. If you exceed a limit, any OpenSearch Service domains that you try to configure
to use Amazon Cognito authentication for Dashboards can get stuck in a configuration state of
Processing.

Common configuration issues

The following tables list common configuration issues and solutions.

Configuring OpenSearch Service

Issue Solution

OpenSearch Service can't
create the role (console)

You don't have the correct IAM permissions. Add the
permissions specified in the section called “Configuring
Amazon Cognito authentication (console)”.

User is not authorize
d to perform: iam:PassR
ole on resource CognitoAc
cessForAmazonOpenSearch
(console)

You don't have iam:PassRole permissions for the
CognitoAccessForAmazonOpenSearch role. Attach the
following policy to your account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn:aws:iam:: 123456789
012:role/service-role/CognitoAccessF
orAmazonOpenSearch "
 }
]
}

Alternately, you can attach the IAMFullAccess policy.

User is not authorize
d to perform: cognito-
identity:ListIdenti
tyPools on resource

You don't have read permissions for Amazon Cognito.
Attach the AmazonCognitoReadOnly policy to your
account.

Common configuration issues 736

Amazon OpenSearch Service Developer Guide

Issue Solution

An error occurred (Validati
onException) when calling
the CreateDomain operation
: OpenSearch Service
must be allowed to use the
passed role

OpenSearch Service isn't specified in the trust relations
hip of the CognitoAccessForAmazonOpenSearch
role. Check that your role uses the trust relationship that
is specified in the section called “About the CognitoAc
cessForAmazonOpenSearch role”. Alternately, use the
console to configure Amazon Cognito authentication.
The console creates a role for you.

An error occurred (Validati
onException) when calling
the CreateDomain operation
: User is not authorize
d to perform: cognito-i
dp: action on resource:
user pool

The role specified in --cognito-options does not
have permissions to access Amazon Cognito. Check
that the role has the Amazon managed AmazonOpe
nSearchServiceCognitoAccess policy
attached. Alternately, use the console to configure
Amazon Cognito authentication. The console creates a
role for you.

An error occurred (Validati
onException) when calling
the CreateDomain operation
: User pool does not exist

OpenSearch Service can't find the user pool. Confirm
that you created one and have the correct ID. To find
the ID, you can use the Amazon Cognito console or the
following Amazon CLI command:

aws cognito-idp list-user-pools --max-results
 60 --region region

An error occurred (Validati
onException) when calling
the CreateDomain operation
: IdentityPool not found

OpenSearch Service can't find the identity pool. Confirm
that you created one and have the correct ID. To find
the ID, you can use the Amazon Cognito console or the
following Amazon CLI command:

aws cognito-identity list-identity-pools --
max-results 60 --region region

Common configuration issues 737

Amazon OpenSearch Service Developer Guide

Issue Solution

An error occurred (Validati
onException) when calling
the CreateDomain operation
: Domain needs to be
specified for user pool

The user pool does not have a domain name. You can
configure one using the Amazon Cognito console or the
following Amazon CLI command:

aws cognito-idp create-user-pool-domain --
domain name --user-pool-id id

Accessing OpenSearch Dashboards

Issue Solution

The login page doesn't show my
preferred identity providers.

Check that you enabled the identity provider for the
OpenSearch Service app client as specified in the section
called “Configuring identity providers”.

The login page doesn't look as if it's
associated with my organization.

See the section called “(Optional) Customizing the sign-
in page”.

My login credentials don't work. Check that you have configured the identity provider
as specified in the section called “Configuring identity
providers”.

If you use the user pool as your identity provider, check
that the account exists on the Amazon Cognito console.

OpenSearch Dashboards either
doesn't load at all or doesn't work
properly.

The Amazon Cognito authenticated role needs
es:ESHttp* permissions for the domain (/*) to access
and use Dashboards. Check that you added an access
policy as specified in the section called “Allowing the
authenticated role”.

When I sign out of OpenSearc
h Dashboards from one tab, the
remaining tabs display a message

When you sign out of an OpenSearch Dashboards
session while using Amazon Cognito authentication,
OpenSearch Service runs an AdminUserGlobalSignOut

Common configuration issues 738

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUserGlobalSignOut.html

Amazon OpenSearch Service Developer Guide

Issue Solution

stating that the refresh token has
been revoked.

operation, which signs you out of all active OpenSearch
Dashboards sessions.

Invalid identity pool
configuration. Check
assigned IAM roles for this
pool.

Amazon Cognito doesn't have permissions to assume
the IAM role on behalf of the authenticated user. Modify
the trust relationship for the role to include:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Federated": "cognito-identity.
amazonaws.com"
 },
 "Action": "sts:AssumeRoleWithWebIdent
ity",
 "Condition": {
 "StringEquals": {
 "cognito-identity.amazonaws.com:aud"
: " identity-pool-id "
 },
 "ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr"
: "authenticated"
 }
 }
 }]
}

Token is not from a
supported provider of this
identity pool.

This uncommon error can occur when you remove the
app client from the user pool. Try opening Dashboards
in a new browser session.

Disabling Amazon Cognito authentication for OpenSearch Dashboards

Use the following procedure to disable Amazon Cognito authentication for Dashboards.

Disabling Amazon Cognito authentication for OpenSearch Dashboards 739

Amazon OpenSearch Service Developer Guide

To disable Amazon Cognito authentication for Dashboards (console)

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/
home/.

2. Under Domains, choose the domain you want to configure.

3. Choose Actions, Edit security configuration.

4. Deselect Enable Amazon Cognito authentication.

5. Choose Save changes.

Important

If you no longer need the Amazon Cognito user pool and identity pool, delete them.
Otherwise, you continue to incur charges.

Deleting domains that use Amazon Cognito authentication for
OpenSearch Dashboards

To prevent domains that use Amazon Cognito authentication for Dashboards from becoming stuck
in a configuration state of Processing, delete OpenSearch Service domains before deleting their
associated Amazon Cognito user and identity pools.

Using service-linked roles for Amazon OpenSearch Service

Amazon OpenSearch Service uses Amazon Identity and Access Management (IAM) service-linked
roles. A service-linked role is a unique type of IAM role that is linked directly to OpenSearch
Service. Service-linked roles are predefined by OpenSearch Service and include all the permissions
that the service requires to call other Amazon services on your behalf.

A service-linked role makes setting up OpenSearch Service easier because you don’t have to
manually add the necessary permissions. OpenSearch Service defines the permissions of its service-
linked roles, and unless defined otherwise, only OpenSearch Service can assume its roles. The
defined permissions include the trust policy and the permissions policy, and that permissions policy
cannot be attached to any other IAM entity. For updates to service-linked roles and permissions
policies, see Document history for Amazon OpenSearch Service.

Deleting domains that use Amazon Cognito authentication for OpenSearch Dashboards 740

https://console.aws.amazon.com/aos/home/
https://console.aws.amazon.com/aos/home/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon OpenSearch Service Developer Guide

For information about other services that support service-linked roles, see Amazon services that
work with IAM and look for the services that have Yes in the Service-linked roles column. Choose a
Yes with a link to view the service-linked role documentation for that service.

Topics

• Using service-linked roles to create VPC domains

• Using service-linked roles to create OpenSearch Serverless collections

• Using service-linked roles to create OpenSearch Ingestion pipelines

Using service-linked roles to create VPC domains

Amazon OpenSearch Service uses Amazon Identity and Access Management (IAM) service-linked
roles. A service-linked role is a unique type of IAM role that is linked directly to OpenSearch
Service. Service-linked roles are predefined by OpenSearch Service and include all the permissions
that the service requires to call other Amazon services on your behalf.

OpenSearch Service uses the service-linked role named
AWSServiceRoleForAmazonOpenSearchService, which provides the minimum Amazon EC2 and
Elastic Load Balancing permissions necessary for the role to enable VPC access for a domain.

Legacy Elasticsearch role

Amazon OpenSearch Service uses a service-linked role called
AWSServiceRoleForAmazonOpenSearchService. Your accounts might also contain a legacy
service-linked role called AWSServiceRoleForAmazonElasticsearchService, which works
with the deprecated Elasticsearch API endpoints.

If the legacy Elasticsearch role doesn't exist in your account, OpenSearch Service automatically
creates a new OpenSearch service-linked role the first time you create an OpenSearch domain.
Otherwise your account continues to use the Elasticsearch role. In order for this automatic creation
to succeed, you must have permissions for the iam:CreateServiceLinkedRole action.

Permissions

The AWSServiceRoleForAmazonOpenSearchService service-linked role trusts the following
services to assume the role:

• opensearchservice.amazonaws.com

VPC domain creation role 741

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon OpenSearch Service Developer Guide

The role permissions policy named AmazonOpenSearchServiceRolePolicy allows OpenSearch
Service to complete the following actions on the specified resources:

• Action: acm:DescribeCertificate on *

• Action: cloudwatch:PutMetricData on *

• Action: ec2:CreateNetworkInterface on *

• Action: ec2:DeleteNetworkInterface on *

• Action: ec2:DescribeNetworkInterfaces on *

• Action: ec2:ModifyNetworkInterfaceAttribute on *

• Action: ec2:DescribeSecurityGroups on *

• Action: ec2:DescribeSubnets on *

• Action: ec2:DescribeVpcs on *

• Action: ec2:CreateTags on all network interfaces and VPC endpoints

• Action: ec2:DescribeTags on *

• Action: ec2:CreateVpcEndpoint on all VPCs, security groups, subnets, and route tables, as
well as all VPC endpoints when the request contains the tag OpenSearchManaged=true

• Action: ec2:ModifyVpcEndpoint on all VPCs, security groups, subnets, and route tables, as
well as all VPC endpoints when the request contains the tag OpenSearchManaged=true

• Action: ec2:DeleteVpcEndpoints on all endpoints when the request contains the tag
OpenSearchManaged=true

• Action: ec2:AssignIpv6Addresses on *

• Action: ec2:UnAssignIpv6Addresses on *

• Action: elasticloadbalancing:AddListenerCertificates on *

• Action: elasticloadbalancing:RemoveListenerCertificates on *

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

Creating the service-linked role

You don't need to manually create a service-linked role. When you create a VPC-enabled domain
using the Amazon Web Services Management Console, OpenSearch Service creates the service-

VPC domain creation role 742

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac-managed.html#AmazonOpenSearchServiceRolePolicy
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon OpenSearch Service Developer Guide

linked role for you. In order for this automatic creation to succeed, you must have permissions for
the iam:CreateServiceLinkedRole action.

You can also use the IAM console, the IAM CLI, or the IAM API to create a service-linked role
manually. For more information, see Creating a service-linked role in the IAM User Guide.

Editing the service-linked role

OpenSearch Service doesn't let you edit the AWSServiceRoleForAmazonOpenSearchService
service-linked role. After you create a service-linked role, you can't change the name of the role
because various entities might reference the role. However, you can edit the description of the role
using IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting the service-linked role

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up your service-linked role before you can manually delete
it.

Cleaning up the service-linked role

Before you can use IAM to delete a service-linked role, you must first confirm that the role has no
active sessions and remove any resources used by the role.

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the check
box) of the AWSServiceRoleForAmazonOpenSearchService role.

3. On the Summary page for the selected role, choose the Access Advisor tab.

4. On the Access Advisor tab, review recent activity for the service-linked role.

Note

If you're unsure whether OpenSearch Service is using the
AWSServiceRoleForAmazonOpenSearchService role, you can try to delete
the role. If the service is using the role, then the deletion fails and you can view the

VPC domain creation role 743

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.amazonaws.cn/iam/

Amazon OpenSearch Service Developer Guide

resources using the role. If the role is being used, then you must wait for the session
to end before you can delete the role, and/or delete the resources using the role. You
cannot revoke the session for a service-linked role.

Manually deleting a service-linked role

Delete service-linked roles from the IAM console, API, or Amazon CLI. For instructions, see Deleting
a service-linked role in the IAM User Guide.

Using service-linked roles to create OpenSearch Serverless collections

OpenSearch Serverless uses Amazon Identity and Access Management (IAM) service-linked roles.
A service-linked role is a unique type of IAM role that is linked directly to OpenSearch Service.
Service-linked roles are predefined by OpenSearch Service and include all the permissions that the
service requires to call other Amazon services on your behalf.

OpenSearch Serverless uses the service-linked role named
AWSServiceRoleForAmazonOpenSearchServerless, which provides the permissions necessary for
the role to publish serverless-related CloudWatch metrics to your account.

Service-linked role permissions for OpenSearch Serverless

OpenSearch Serverless uses the service-linked role named
AWSServiceRoleForAmazonOpenSearchServerless, which allows OpenSearch Serverless to call
Amazon services on your behalf.

The AWSServiceRoleForAmazonOpenSearchServerless service-linked role trusts the following
services to assume the role:

• observability.aoss.amazonaws.com

The role permissions policy named AmazonOpenSearchServerlessServiceRolePolicy allows
OpenSearch Serverless to complete the following actions on the specified resources:

• Action: cloudwatch:PutMetricData on all Amazon resources

Collection creation role 744

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon OpenSearch Service Developer Guide

Note

The policy includes the condition key {"StringEquals":
{"cloudwatch:namespace": "AWS/AOSS"}}, which means that the service-linked role
can only send metric data to the AWS/AOSS CloudWatch namespace.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

Creating the service-linked role for OpenSearch Serverless

You don't need to manually create a service-linked role. When you create an OpenSearch Serverless
collection in the Amazon Web Services Management Console, the Amazon CLI, or the Amazon API,
OpenSearch Serverless creates the service-linked role for you.

Note

The first time you create a collection, you must be assigned the
iam:CreateServiceLinkedRole in an identity-based policy.

If you delete this service-linked role, and then need to create it again, you can use the same
process to recreate the role in your account. When you create an OpenSearch Serverless collection,
OpenSearch Serverless creates the service-linked role for you again.

You can also use the IAM console to create a service-linked role with the Amazon OpenSearch
Serverless use case. In the Amazon CLI or the Amazon API, create a service-linked role with the
observability.aoss.amazonaws.com service name:

aws iam create-service-linked-role --aws-service-name
 "observability.aoss.amazonaws.com"

For more information, see Creating a service-linked role in the IAM User Guide. If you delete this
service-linked role, you can use this same process to create the role again.

Collection creation role 745

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role

Amazon OpenSearch Service Developer Guide

Editing the service-linked role for OpenSearch Serverless

OpenSearch Serverless does not allow you to edit the
AWSServiceRoleForAmazonOpenSearchServerless service-linked role. After you create a service-
linked role, you can't change the name of the role because various entities might reference the role.
However, you can edit the description of the role using IAM. For more information, see Editing a
service-linked role in the IAM User Guide.

Deleting the service-linked role for OpenSearch Serverless

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. This prevents you from having an unused entity that isn't actively
monitored or maintained. However, you must clean up the resources for your service-linked role
before you can manually delete it.

To delete the AWSServiceRoleForAmazonOpenSearchServerless, you must first delete all
OpenSearch Serverless collections in your Amazon Web Services account.

Note

If OpenSearch Serverless is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To manually delete the service-linked role using IAM

Use the IAM console, the Amazon CLI, or the Amazon API to delete the
AWSServiceRoleForAmazonOpenSearchServerless service-linked role. For more information, see
Deleting a service-linked role in the IAM User Guide.

Supported Regions for OpenSearch Serverless service-linked roles

OpenSearch Serverless supports using the AWSServiceRoleForAmazonOpenSearchServerless
service-linked role in every Region where OpenSearch Serverless is available. For a list of supported
Regions, see Amazon OpenSearch Serverless endpoints and quotas in the Amazon Web Services
General Reference.

Collection creation role 746

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html

Amazon OpenSearch Service Developer Guide

Using service-linked roles to create OpenSearch Ingestion pipelines

Amazon OpenSearch Ingestion uses Amazon Identity and Access Management (IAM) service-
linked roles. A service-linked role is a unique type of IAM role that is linked directly to OpenSearch
Ingestion. Service-linked roles are predefined by OpenSearch Ingestion and include all the
permissions that the service requires to call other Amazon services on your behalf.

OpenSearch Ingestion uses the service-linked role named
AWSServiceRoleForAmazonOpenSearchIngestion. The attached policy provides the permissions
necessary for the role to create a virtual private cloud (VPC) between your account and
OpenSearch Ingestion, and to publish CloudWatch metrics to your account.

Permissions

The AWSServiceRoleForAmazonOpenSearchIngestion service-linked role trusts the following
services to assume the role:

• osis.amazon.com

The role permissions policy named AmazonOpenSearchIngestionServiceRolePolicy allows
OpenSearch Ingestion to complete the following actions on the specified resources:

• Action: ec2:DescribeSubnets on *

• Action: ec2:DescribeSecurityGroups on *

• Action: ec2:DeleteVpcEndpoints on *

• Action: ec2:CreateVpcEndpoint on *

• Action: ec2:DescribeVpcEndpoints on *

• Action: ec2:CreateTags on arn:aws:ec2:*:*:network-interface/*

• Action: cloudwatch:PutMetricData on cloudwatch:namespace": "AWS/OSIS"

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

Pipeline creation role 747

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon OpenSearch Service Developer Guide

Creating the service-linked role for OpenSearch Ingestion

You don't need to manually create a service-linked role. When you create an OpenSearch Ingestion
pipeline in the Amazon Web Services Management Console, the Amazon CLI, or the Amazon API,
OpenSearch Ingestion creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same
process to recreate the role in your account. When you create an OpenSearch Ingestion pipeline,
OpenSearch Ingestion creates the service-linked role for you again.

Editing the service-linked role for OpenSearch Ingestion

OpenSearch Ingestion does not allow you to edit the
AWSServiceRoleForAmazonOpenSearchIngestion service-linked role. After you create
a service-linked role, you cannot change the name of the role because various entities might
reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a service-linked role in the IAM User Guide.

Deleting the service-linked role for OpenSearch Ingestion

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don't have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete any resources used by
the role.

Note

If OpenSearch Ingestion is using the role when you try to delete the resources, then the
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete OpenSearch Ingestion resources used by the
AWSServiceRoleForAmazonOpenSearchIngestion

1. Navigate to the Amazon OpenSearch Service console and choose Ingestion.

Pipeline creation role 748

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon OpenSearch Service Developer Guide

2. Delete all pipelines. For instructions, see the section called “Deleting pipelines”.

Delete the service-linked role for OpenSearch Ingestion

You can use the OpenSearch Ingestion console to delete a service-linked role.

To delete a service-linked role (console)

1. Navigate to the IAM console.

2. Choose Roles and search for the AWSServiceRoleForAmazonOpenSearchIngestion role.

3. Select the role and choose Delete.

Pipeline creation role 749

Amazon OpenSearch Service Developer Guide

Sample code for Amazon OpenSearch Service

This chapter contains common sample code for working with Amazon OpenSearch Service: HTTP
request signing in a variety of programming languages, compressing HTTP request bodies, and
using the Amazon SDKs to create domains.

Topics

• Elasticsearch client compatibility

• Compressing HTTP requests in Amazon OpenSearch Service

• Using the Amazon SDKs to interact with Amazon OpenSearch Service

Elasticsearch client compatibility

The latest versions of the Elasticsearch clients might include license or version checks that
artificially break compatibility. The following table includes recommendations around which
versions of those clients to use for best compatibility with OpenSearch Service.

Important

These client versions are out of date and are not updated with the latest dependencies,
including Log4j. We highly recommend using the OpenSearch versions of the clients when
possible.

Client Recommended version

Java low-level REST client 7.13.4

Java high-level REST client 7.13.4

Python Elasticsearch client 7.13.4

Ruby Elasticsearch client 7.13.3

Node.js Elasticsearch client 7.13.0

Elasticsearch client compatibility 750

Amazon OpenSearch Service Developer Guide

Compressing HTTP requests in Amazon OpenSearch Service

You can compress HTTP requests and responses in Amazon OpenSearch Service domains using
gzip compression. Gzip compression can help you reduce the size of your documents and lower
bandwidth utilization and latency, thereby leading to improved transfer speeds.

Gzip compression is supported for all domains running OpenSearch or Elasticsearch 6.0 or later.
Some OpenSearch clients have built-in support for gzip compression, and many programming
languages have libraries that simplify the process.

Enabling gzip compression

Not to be confused with similar OpenSearch settings, http_compression.enabled is specific
to OpenSearch Service and enables or disables gzip compression on a domain. Domains running
OpenSearch or Elasticsearch 7.x have the gzip compression enabled by default, whereas domains
running Elasticsearch 6.x have it disabled by default.

To enable gzip compression, send the following request:

PUT _cluster/settings
{
 "persistent" : {
 "http_compression.enabled": true
 }
}

Requests to _cluster/settings must be uncompressed, so you might need to use a separate
client or standard HTTP request to update cluster settings.

Required headers

When including a gzip-compressed request body, keep the standard Content-Type:
application/json header, and add the Content-Encoding: gzip header. To accept a gzip-
compressed response, add the Accept-Encoding: gzip header, as well. If an OpenSearch client
supports gzip compression, it likely includes these headers automatically.

Sample code (Python 3)

The following sample uses opensearch-py to perform the compression and send the request. This
code signs the request using your IAM credentials.

Compressing HTTP requests 751

https://pypi.org/project/opensearch-py/

Amazon OpenSearch Service Developer Guide

from opensearchpy import OpenSearch, RequestsHttpConnection
from requests_aws4auth import AWS4Auth
import boto3

host = '' # e.g. my-test-domain.us-east-1.es.amazonaws.com
region = '' # e.g. us-west-1
service = 'es'
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

Create the client.
search = OpenSearch(
 hosts = [{'host': host, 'port': 443}],
 http_auth = awsauth,
 use_ssl = True,
 verify_certs = True,
 http_compress = True, # enables gzip compression for request bodies
 connection_class = RequestsHttpConnection
)

document = {
 "title": "Moneyball",
 "director": "Bennett Miller",
 "year": "2011"
}

Send the request.
print(search.index(index='movies', id='1', body=document, refresh=True))

print(search.index(index='movies', doc_type='_doc', id='1', body=document,
 refresh=True))

Alternately, you can specify the proper headers, compress the request body yourself, and use a
standard HTTP library like Requests. This code signs the request using HTTP basic credentials,
which your domain might support if you use fine-grained access control.

import requests
import gzip
import json

Sample code (Python 3) 752

https://2.python-requests.org

Amazon OpenSearch Service Developer Guide

base_url = '' # The domain with https:// and a trailing slash. For example, https://my-
test-domain.us-east-1.es.amazonaws.com/
auth = ('master-user', 'master-user-password') # For testing only. Don't store
 credentials in code.

headers = {'Accept-Encoding': 'gzip', 'Content-Type': 'application/json',
 'Content-Encoding': 'gzip'}

document = {
 "title": "Moneyball",
 "director": "Bennett Miller",
 "year": "2011"
}

Compress the document.
compressed_document = gzip.compress(json.dumps(document).encode())

Send the request.
path = 'movies/_doc?refresh=true'
url = base_url + path
response = requests.post(url, auth=auth, headers=headers, data=compressed_document)
print(response.status_code)
print(response.text)

Using the Amazon SDKs to interact with Amazon OpenSearch
Service

This section includes examples of how to use the Amazon SDKs to interact with the Amazon
OpenSearch Service configuration API. These code samples show how to create, update, and delete
OpenSearch Service domains.

Java

This section includes examples for versions 1 and 2 of the Amazon SDK for Java.

Version 2

This example uses the OpenSearchClientBuilder constructor from version 2 of the Amazon SDK
for Java to create an OpenSearch domain, update its configuration, and delete it. Uncomment
the calls to waitForDomainProcessing (and comment the call to deleteDomain) to allow
the domain to come online and be useable.

Using the Amazon SDKs 753

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/opensearch/OpenSearchClientBuilder.html

Amazon OpenSearch Service Developer Guide

package com.example.samples;

import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.opensearch.OpenSearchClient;
import software.amazon.awssdk.services.opensearch.model.ClusterConfig;
import software.amazon.awssdk.services.opensearch.model.EBSOptions;
import software.amazon.awssdk.services.opensearch.model.CognitoOptions;
import software.amazon.awssdk.services.opensearch.model.NodeToNodeEncryptionOptions;
import software.amazon.awssdk.services.opensearch.model.CreateDomainRequest;
import software.amazon.awssdk.services.opensearch.model.CreateDomainResponse;
import software.amazon.awssdk.services.opensearch.model.DescribeDomainRequest;
import software.amazon.awssdk.services.opensearch.model.UpdateDomainConfigRequest;
import software.amazon.awssdk.services.opensearch.model.UpdateDomainConfigResponse;
import software.amazon.awssdk.services.opensearch.model.DescribeDomainResponse;
import software.amazon.awssdk.services.opensearch.model.DeleteDomainRequest;
import software.amazon.awssdk.services.opensearch.model.DeleteDomainResponse;
import software.amazon.awssdk.services.opensearch.model.OpenSearchException;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;

/**
 * Sample class demonstrating how to use the Amazon Web Services SDK for Java to
 create, update,
 * and delete Amazon OpenSearch Service domains.
 */

public class OpenSearchSample {

 public static void main(String[] args) {

 String domainName = "my-test-domain";

 // Build the client using the default credentials chain.
 // You can use the CLI and run `aws configure` to set access key, secret
 // key, and default region.

 OpenSearchClient client = OpenSearchClient.builder()
 // Unnecessary, but lets you use a region different than your default.
 .region(Region.US_EAST_1)
 // Unnecessary, but if desired, you can use a different provider chain.
 .credentialsProvider(DefaultCredentialsProvider.create())
 .build();

Java 754

Amazon OpenSearch Service Developer Guide

 // Create a new domain, update its configuration, and delete it.
 createDomain(client, domainName);
 //waitForDomainProcessing(client, domainName);
 updateDomain(client, domainName);
 //waitForDomainProcessing(client, domainName);
 deleteDomain(client, domainName);
 }

 /**
 * Creates an Amazon OpenSearch Service domain with the specified options.
 * Some options require other Amazon Web Services resources, such as an Amazon
 Cognito user pool
 * and identity pool, whereas others require just an instance type or instance
 * count.
 *
 * @param client
 * The client to use for the requests to Amazon OpenSearch Service
 * @param domainName
 * The name of the domain you want to create
 */

 public static void createDomain(OpenSearchClient client, String domainName) {

 // Create the request and set the desired configuration options

 try {

 ClusterConfig clusterConfig = ClusterConfig.builder()
 .dedicatedMasterEnabled(true)
 .dedicatedMasterCount(3)
 // Small, inexpensive instance types for testing. Not
 recommended for production.
 .dedicatedMasterType("t2.small.search")
 .instanceType("t2.small.search")
 .instanceCount(5)
 .build();

 // Many instance types require EBS storage.
 EBSOptions ebsOptions = EBSOptions.builder()
 .ebsEnabled(true)
 .volumeSize(10)
 .volumeType("gp2")
 .build();

Java 755

Amazon OpenSearch Service Developer Guide

 NodeToNodeEncryptionOptions encryptionOptions =
 NodeToNodeEncryptionOptions.builder()
 .enabled(true)
 .build();

 CreateDomainRequest createRequest = CreateDomainRequest.builder()
 .domainName(domainName)
 .engineVersion("OpenSearch_1.0")
 .clusterConfig(clusterConfig)
 .ebsOptions(ebsOptions)
 .nodeToNodeEncryptionOptions(encryptionOptions)
 // You can uncomment this line and add your account ID, a
 username, and the
 // domain name to add an access policy.
 // .accessPolicies("{\"Version\":\"2012-10-17\",
\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"AWS\":
[\"arn:aws:iam::123456789012:user/user-name\"]},\"Action\":[\"es:*\"],\"Resource\":
\"arn:aws:es:region:123456789012:domain/domain-name/*\"}]}")
 .build();

 // Make the request.
 System.out.println("Sending domain creation request...");
 CreateDomainResponse createResponse =
 client.createDomain(createRequest);
 System.out.println("Domain status:
 "+createResponse.domainStatus().toString());
 System.out.println("Domain ID:
 "+createResponse.domainStatus().domainId());

 } catch (OpenSearchException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 /**
 * Updates the configuration of an Amazon OpenSearch Service domain with the
 * specified options. Some options require other Amazon Web Services resources,
 such as an
 * Amazon Cognito user pool and identity pool, whereas others require just an
 * instance type or instance count.
 *
 * @param client

Java 756

Amazon OpenSearch Service Developer Guide

 * The client to use for the requests to Amazon OpenSearch Service
 * @param domainName
 * The name of the domain to update
 */

 public static void updateDomain(OpenSearchClient client, String domainName) {

 // Updates the domain to use three data instances instead of five.
 // You can uncomment the Cognito line and fill in the strings to enable
 Cognito
 // authentication for OpenSearch Dashboards.

 try {

 ClusterConfig clusterConfig = ClusterConfig.builder()
 .instanceCount(5)
 .build();

 CognitoOptions cognitoOptions = CognitoOptions.builder()
 .enabled(true)
 .userPoolId("user-pool-id")
 .identityPoolId("identity-pool-id")
 .roleArn("role-arn")
 .build();

 UpdateDomainConfigRequest updateRequest =
 UpdateDomainConfigRequest.builder()
 .domainName(domainName)
 .clusterConfig(clusterConfig)
 //.cognitoOptions(cognitoOptions)
 .build();

 System.out.println("Sending domain update request...");
 UpdateDomainConfigResponse updateResponse =
 client.updateDomainConfig(updateRequest);
 System.out.println("Domain config:
 "+updateResponse.domainConfig().toString());

 } catch (OpenSearchException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

Java 757

Amazon OpenSearch Service Developer Guide

 /**
 * Deletes an Amazon OpenSearch Service domain. Deleting a domain can take
 * several minutes.
 *
 * @param client
 * The client to use for the requests to Amazon OpenSearch Service
 * @param domainName
 * The name of the domain that you want to delete
 */

 public static void deleteDomain(OpenSearchClient client, String domainName) {

 try {

 DeleteDomainRequest deleteRequest = DeleteDomainRequest.builder()
 .domainName(domainName)
 .build();

 System.out.println("Sending domain deletion request...");
 DeleteDomainResponse deleteResponse =
 client.deleteDomain(deleteRequest);
 System.out.println("Domain status: "+deleteResponse.toString());

 } catch (OpenSearchException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 /**
 * Waits for the domain to finish processing changes. New domains typically take
 15-30 minutes
 * to initialize, but can take longer depending on the configuration. Most
 updates to existing domains
 * take a similar amount of time. This method checks every 15 seconds and
 finishes only when
 * the domain's processing status changes to false.
 *
 * @param client
 * The client to use for the requests to Amazon OpenSearch Service
 * @param domainName
 * The name of the domain that you want to check

Java 758

Amazon OpenSearch Service Developer Guide

 */

 public static void waitForDomainProcessing(OpenSearchClient client, String
 domainName) {
 // Create a new request to check the domain status.
 DescribeDomainRequest describeRequest = DescribeDomainRequest.builder()
 .domainName(domainName)
 .build();

 // Every 15 seconds, check whether the domain is processing.
 DescribeDomainResponse describeResponse =
 client.describeDomain(describeRequest);
 while (describeResponse.domainStatus().processing()) {
 try {
 System.out.println("Domain still processing...");
 TimeUnit.SECONDS.sleep(15);
 describeResponse = client.describeDomain(describeRequest);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 // Once we exit that loop, the domain is available
 System.out.println("Amazon OpenSearch Service has finished processing
 changes for your domain.");
 System.out.println("Domain description: "+describeResponse.toString());
 }
}

Version 1

This example uses the AWSElasticsearchClientBuilder constructor from version 1 of the
Amazon SDK for Java to create a legacy Elasticsearch domain, update its configuration, and
delete it. Uncomment the calls to waitForDomainProcessing (and comment the call to
deleteDomain) to allow the domain to come online and be useable.

package com.amazonaws.samples;

import java.util.concurrent.TimeUnit;
import com.amazonaws.auth.DefaultAWSCredentialsProviderChain;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.elasticsearch.AWSElasticsearch;
import com.amazonaws.services.elasticsearch.AWSElasticsearchClientBuilder;

Java 759

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/elasticsearch/AWSElasticsearchClientBuilder.html

Amazon OpenSearch Service Developer Guide

import com.amazonaws.services.elasticsearch.model.CreateElasticsearchDomainRequest;
import com.amazonaws.services.elasticsearch.model.CreateElasticsearchDomainResult;
import com.amazonaws.services.elasticsearch.model.DeleteElasticsearchDomainRequest;
import com.amazonaws.services.elasticsearch.model.DeleteElasticsearchDomainResult;
import
 com.amazonaws.services.elasticsearch.model.DescribeElasticsearchDomainRequest;
import com.amazonaws.services.elasticsearch.model.DescribeElasticsearchDomainResult;
import com.amazonaws.services.elasticsearch.model.EBSOptions;
import com.amazonaws.services.elasticsearch.model.ElasticsearchClusterConfig;
import com.amazonaws.services.elasticsearch.model.ResourceNotFoundException;
import
 com.amazonaws.services.elasticsearch.model.UpdateElasticsearchDomainConfigRequest;
import
 com.amazonaws.services.elasticsearch.model.UpdateElasticsearchDomainConfigResult;
import com.amazonaws.services.elasticsearch.model.VolumeType;

/**
 * Sample class demonstrating how to use the Amazon Web Services SDK for Java to
 create, update,
 * and delete Amazon OpenSearch Service domains.
 */

public class OpenSearchSample {

 public static void main(String[] args) {

 final String domainName = "my-test-domain";

 // Build the client using the default credentials chain.
 // You can use the CLI and run `aws configure` to set access key, secret
 // key, and default region.
 final AWSElasticsearch client = AWSElasticsearchClientBuilder
 .standard()
 // Unnecessary, but lets you use a region different than your
 default.
 .withRegion(Regions.US_WEST_2)
 // Unnecessary, but if desired, you can use a different provider
 chain.
 .withCredentials(new DefaultAWSCredentialsProviderChain())
 .build();

 // Create a new domain, update its configuration, and delete it.
 createDomain(client, domainName);
 // waitForDomainProcessing(client, domainName);

Java 760

Amazon OpenSearch Service Developer Guide

 updateDomain(client, domainName);
 // waitForDomainProcessing(client, domainName);
 deleteDomain(client, domainName);
 }

 /**
 * Creates an Amazon OpenSearch Service domain with the specified options.
 * Some options require other Amazon Web Services resources, such as an Amazon
 Cognito user pool
 * and identity pool, whereas others require just an instance type or instance
 * count.
 *
 * @param client
 * The client to use for the requests to Amazon OpenSearch Service
 * @param domainName
 * The name of the domain you want to create
 */
 private static void createDomain(final AWSElasticsearch client, final String
 domainName) {

 // Create the request and set the desired configuration options
 CreateElasticsearchDomainRequest createRequest = new
 CreateElasticsearchDomainRequest()
 .withDomainName(domainName)
 .withElasticsearchVersion("7.10")
 .withElasticsearchClusterConfig(new ElasticsearchClusterConfig()
 .withDedicatedMasterEnabled(true)
 .withDedicatedMasterCount(3)
 // Small, inexpensive instance types for testing. Not
 recommended for production
 // domains.
 .withDedicatedMasterType("t2.small.elasticsearch")
 .withInstanceType("t2.small.elasticsearch")
 .withInstanceCount(5))
 // Many instance types require EBS storage.
 .withEBSOptions(new EBSOptions()
 .withEBSEnabled(true)
 .withVolumeSize(10)
 .withVolumeType(VolumeType.Gp2));
 // You can uncomment this line and add your account ID, a username,
 and the
 // domain name to add an access policy.
 // .withAccessPolicies("{\"Version\":\"2012-10-17\",
\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"AWS\":

Java 761

Amazon OpenSearch Service Developer Guide

[\"arn:aws:iam::123456789012:user/user-name\"]},\"Action\":[\"es:*\"],\"Resource\":
\"arn:aws:es:region:123456789012:domain/domain-name/*\"}]}")

 // Make the request.
 System.out.println("Sending domain creation request...");
 CreateElasticsearchDomainResult createResponse =
 client.createElasticsearchDomain(createRequest);
 System.out.println("Domain creation response from Amazon OpenSearch
 Service:");
 System.out.println(createResponse.getDomainStatus().toString());
 }

 /**
 * Updates the configuration of an Amazon OpenSearch Service domain with the
 * specified options. Some options require other Amazon Web Services resources,
 such as an
 * Amazon Cognito user pool and identity pool, whereas others require just an
 * instance type or instance count.
 *
 * @param client
 * The client to use for the requests to Amazon OpenSearch Service
 * @param domainName
 * The name of the domain to update
 */
 private static void updateDomain(final AWSElasticsearch client, final String
 domainName) {
 try {
 // Updates the domain to use three data instances instead of five.
 // You can uncomment the Cognito lines and fill in the strings to enable
 Cognito
 // authentication for OpenSearch Dashboards.
 final UpdateElasticsearchDomainConfigRequest updateRequest = new
 UpdateElasticsearchDomainConfigRequest()
 .withDomainName(domainName)
 // .withCognitoOptions(new CognitoOptions()
 // .withEnabled(true)
 // .withUserPoolId("user-pool-id")
 // .withIdentityPoolId("identity-pool-id")
 // .withRoleArn("role-arn")
 .withElasticsearchClusterConfig(new ElasticsearchClusterConfig()
 .withInstanceCount(3));

 System.out.println("Sending domain update request...");

Java 762

Amazon OpenSearch Service Developer Guide

 final UpdateElasticsearchDomainConfigResult updateResponse = client
 .updateElasticsearchDomainConfig(updateRequest);
 System.out.println("Domain update response from Amazon OpenSearch
 Service:");
 System.out.println(updateResponse.toString());
 } catch (ResourceNotFoundException e) {
 System.out.println("Domain not found. Please check the domain name.");
 }
 }

 /**
 * Deletes an Amazon OpenSearch Service domain. Deleting a domain can take
 * several minutes.
 *
 * @param client
 * The client to use for the requests to Amazon OpenSearch Service
 * @param domainName
 * The name of the domain that you want to delete
 */
 private static void deleteDomain(final AWSElasticsearch client, final String
 domainName) {
 try {
 final DeleteElasticsearchDomainRequest deleteRequest = new
 DeleteElasticsearchDomainRequest()
 .withDomainName(domainName);

 System.out.println("Sending domain deletion request...");
 final DeleteElasticsearchDomainResult deleteResponse =
 client.deleteElasticsearchDomain(deleteRequest);
 System.out.println("Domain deletion response from Amazon OpenSearch
 Service:");
 System.out.println(deleteResponse.toString());
 } catch (ResourceNotFoundException e) {
 System.out.println("Domain not found. Please check the domain name.");
 }
 }

 /**
 * Waits for the domain to finish processing changes. New domains typically take
 15-30 minutes
 * to initialize, but can take longer depending on the configuration. Most
 updates to existing domains
 * take a similar amount of time. This method checks every 15 seconds and
 finishes only when

Java 763

Amazon OpenSearch Service Developer Guide

 * the domain's processing status changes to false.
 *
 * @param client
 * The client to use for the requests to Amazon OpenSearch Service
 * @param domainName
 * The name of the domain that you want to check
 */
 private static void waitForDomainProcessing(final AWSElasticsearch client, final
 String domainName) {
 // Create a new request to check the domain status.
 final DescribeElasticsearchDomainRequest describeRequest = new
 DescribeElasticsearchDomainRequest()
 .withDomainName(domainName);

 // Every 15 seconds, check whether the domain is processing.
 DescribeElasticsearchDomainResult describeResponse =
 client.describeElasticsearchDomain(describeRequest);
 while (describeResponse.getDomainStatus().isProcessing()) {
 try {
 System.out.println("Domain still processing...");
 TimeUnit.SECONDS.sleep(15);
 describeResponse =
 client.describeElasticsearchDomain(describeRequest);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 // Once we exit that loop, the domain is available
 System.out.println("Amazon OpenSearch Service has finished processing
 changes for your domain.");
 System.out.println("Domain description response from Amazon OpenSearch
 Service:");
 System.out.println(describeResponse.toString());
 }
}

Python

This example uses the OpenSearchService low-level Python client from the Amazon SDK for
Python (Boto) to create a domain, update its configuration, and delete it.

Python 764

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/opensearch.html

Amazon OpenSearch Service Developer Guide

import boto3
import botocore
from botocore.config import Config
import time

Build the client using the default credential configuration.
You can use the CLI and run 'aws configure' to set access key, secret
key, and default region.

my_config = Config(
 # Optionally lets you specify a region other than your default.
 region_name='us-west-2'
)

client = boto3.client('opensearch', config=my_config)

domainName = 'my-test-domain' # The name of the domain

def createDomain(client, domainName):
 """Creates an Amazon OpenSearch Service domain with the specified options."""
 response = client.create_domain(
 DomainName=domainName,
 EngineVersion='OpenSearch_1.0',
 ClusterConfig={
 'InstanceType': 't2.small.search',
 'InstanceCount': 5,
 'DedicatedMasterEnabled': True,
 'DedicatedMasterType': 't2.small.search',
 'DedicatedMasterCount': 3
 },
 # Many instance types require EBS storage.
 EBSOptions={
 'EBSEnabled': True,
 'VolumeType': 'gp2',
 'VolumeSize': 10
 },
 AccessPolicies="{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow
\",\"Principal\":{\"AWS\":[\"arn:aws:iam::123456789012:user/user-name\"]},\"Action\":
[\"es:*\"],\"Resource\":\"arn:aws:es:us-west-2:123456789012:domain/my-test-domain/*
\"}]}",
 NodeToNodeEncryptionOptions={
 'Enabled': True

Python 765

Amazon OpenSearch Service Developer Guide

 }
)
 print("Creating domain...")
 print(response)

def updateDomain(client, domainName):
 """Updates the domain to use three data nodes instead of five."""
 try:
 response = client.update_domain_config(
 DomainName=domainName,
 ClusterConfig={
 'InstanceCount': 3
 }
)
 print('Sending domain update request...')
 print(response)

 except botocore.exceptions.ClientError as error:
 if error.response['Error']['Code'] == 'ResourceNotFoundException':
 print('Domain not found. Please check the domain name.')
 else:
 raise error

def deleteDomain(client, domainName):
 """Deletes an OpenSearch Service domain. Deleting a domain can take several
 minutes."""
 try:
 response = client.delete_domain(
 DomainName=domainName
)
 print('Sending domain deletion request...')
 print(response)

 except botocore.exceptions.ClientError as error:
 if error.response['Error']['Code'] == 'ResourceNotFoundException':
 print('Domain not found. Please check the domain name.')
 else:
 raise error

def waitForDomainProcessing(client, domainName):
 """Waits for the domain to finish processing changes."""

Python 766

Amazon OpenSearch Service Developer Guide

 try:
 response = client.describe_domain(
 DomainName=domainName
)
 # Every 15 seconds, check whether the domain is processing.
 while response["DomainStatus"]["Processing"] == True:
 print('Domain still processing...')
 time.sleep(15)
 response = client.describe_domain(
 DomainName=domainName)

 # Once we exit the loop, the domain is available.
 print('Amazon OpenSearch Service has finished processing changes for your
 domain.')
 print('Domain description:')
 print(response)

 except botocore.exceptions.ClientError as error:
 if error.response['Error']['Code'] == 'ResourceNotFoundException':
 print('Domain not found. Please check the domain name.')
 else:
 raise error

def main():
 """Create a new domain, update its configuration, and delete it."""
 createDomain(client, domainName)
 waitForDomainProcessing(client, domainName)
 updateDomain(client, domainName)
 waitForDomainProcessing(client, domainName)
 deleteDomain(client, domainName)

Node

This example uses the version 3 of the SDK for JavaScript in Node.js OpenSearch client to create a
domain, update its configuration, and delete it.

var {
 OpenSearchClient,
 CreateDomainCommand,
 DescribeDomainCommand,
 UpdateDomainConfigCommand,
 DeleteDomainCommand

Node 767

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-opensearch/

Amazon OpenSearch Service Developer Guide

} = require("@aws-sdk/client-opensearch");
var sleep = require('sleep');

var client = new OpenSearchClient();

var domainName = 'my-test-domain'

// Create a new domain, update its configuration, and delete it.
createDomain(client, domainName)
waitForDomainProcessing(client, domainName)
updateDomain(client, domainName)
waitForDomainProcessing(client, domainName)
deleteDomain(client, domainName)

async function createDomain(client, domainName) {
 // Creates an Amazon OpenSearch Service domain with the specified options.
 var command = new CreateDomainCommand({
 DomainName: domainName,
 EngineVersion: 'OpenSearch_1.0',
 ClusterConfig: {
 'InstanceType': 't2.small.search',
 'InstanceCount': 5,
 'DedicatedMasterEnabled': 'True',
 'DedicatedMasterType': 't2.small.search',
 'DedicatedMasterCount': 3
 },
 EBSOptions:{
 'EBSEnabled': 'True',
 'VolumeType': 'gp2',
 'VolumeSize': 10
 },
 AccessPolicies: "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow
\",\"Principal\":{\"AWS\":[\"arn:aws:iam::123456789012:user/user-name\"]},\"Action\":
[\"es:*\"],\"Resource\":\"arn:aws:es:us-east-1:123456789012:domain/my-test-domain/*
\"}]}",
 NodeToNodeEncryptionOptions:{
 'Enabled': 'True'
 }
 });
 const response = await client.send(command);
 console.log("Creating domain...");
 console.log(response);
}

Node 768

Amazon OpenSearch Service Developer Guide

async function updateDomain(client, domainName) {
 // Updates the domain to use three data nodes instead of five.
 var command = new UpdateDomainConfigCommand({
 DomainName: domainName,
 ClusterConfig: {
 'InstanceCount': 3
 }
 });
 const response = await client.send(command);
 console.log('Sending domain update request...');
 console.log(response);
}

async function deleteDomain(client, domainName) {
 // Deletes an OpenSearch Service domain. Deleting a domain can take several
 minutes.
 var command = new DeleteDomainCommand({
 DomainName: domainName
 });
 const response = await client.send(command);
 console.log('Sending domain deletion request...');
 console.log(response);
}

async function waitForDomainProcessing(client, domainName) {
 // Waits for the domain to finish processing changes.
 try {
 var command = new DescribeDomainCommand({
 DomainName: domainName
 });
 var response = await client.send(command);

 while (response.DomainStatus.Processing == true) {
 console.log('Domain still processing...')
 await sleep(15000) // Wait for 15 seconds, then check the status again
 function sleep(ms) {
 return new Promise((resolve) => {
 setTimeout(resolve, ms);
 });
 }
 var response = await client.send(command);
 }
 // Once we exit the loop, the domain is available.

Node 769

Amazon OpenSearch Service Developer Guide

 console.log('Amazon OpenSearch Service has finished processing changes for your
 domain.');
 console.log('Domain description:');
 console.log(response);

 } catch (error) {
 if (error.name === 'ResourceNotFoundException') {
 console.log('Domain not found. Please check the domain name.');
 }
 };
}

Node 770

Amazon OpenSearch Service Developer Guide

Indexing data in Amazon OpenSearch Service

Because Amazon OpenSearch Service uses a REST API, numerous methods exist for indexing
documents. You can use standard clients like curl or any programming language that can send
HTTP requests. To further simplify the process of interacting with it, OpenSearch Service has
clients for many programming languages. Advanced users can skip directly to the section called
“Loading streaming data into OpenSearch Service”.

We strongly recommend that you use Amazon OpenSearch Ingestion to ingest data, which is a
fully managed data collector built within OpenSearch Service. For more information, see Amazon
OpenSearch Ingestion.

For an introduction to indexing, see the OpenSearch documentation.

Naming restrictions for indexes

OpenSearch Service indexes have the following naming restrictions:

• All letters must be lowercase.

• Index names cannot begin with _ or -.

• Index names can't contain spaces, commas, :, ", *, +, /, \, |, ?, #, >, or <.

Don't include sensitive information in index, type, or document ID names. OpenSearch Service uses
these names in its Uniform Resource Identifiers (URIs). Servers and applications often log HTTP
requests, which can lead to unnecessary data exposure if URIs contain sensitive information:

2018-10-03T23:39:43 198.51.100.14 200 "GET https://opensearch-domain/dr-jane-doe/flu-
patients-2018/202-555-0100/ HTTP/1.1"

Even if you don't have permissions to view the associated JSON document, you could infer from
this fake log line that one of Dr. Doe's patients with a phone number of 202-555-0100 had the flu
in 2018.

If OpenSearch Service detects a real or percieved IP address in an index name (for example, my-
index-12.34.56.78.91), it masks the IP address. A call to _cat/indices yields the following
response:

Naming restrictions for indexes 771

https://curl.haxx.se/
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ingestion.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ingestion.html
https://opensearch.org/docs/opensearch/index-data/

Amazon OpenSearch Service Developer Guide

green open my-index-x.x.x.x.91 soY19tBERoKo71WcEScidw 5 1 0 0 2kb 1kb

To prevent unnecessary confusion, avoid including IP addresses in index names.

Reducing response size

Responses from the _index and _bulk APIs contain quite a bit of information. This information
can be useful for troubleshooting requests or for implementing retry logic, but can use
considerable bandwidth. In this example, indexing a 32 byte document results in a 339 byte
response (including headers):

PUT opensearch-domain/more-movies/_doc/1
{"title": "Back to the Future"}

Response

{
 "_index": "more-movies",
 "_type": "_doc",
 "_id": "1",
 "_version": 4,
 "result": "updated",
 "_shards": {
 "total": 2,
 "successful": 2,
 "failed": 0
 },
 "_seq_no": 3,
 "_primary_term": 1
}

This response size might seem minimal, but if you index 1,000,000 documents per day—
approximately 11.5 documents per second—339 bytes per response works out to 10.17 GB of
download traffic per month.

If data transfer costs are a concern, use the filter_path parameter to reduce the size of the
OpenSearch Service response, but be careful not to filter out fields that you need in order to
identify or retry failed requests. These fields vary by client. The filter_path parameter works for

Reducing response size 772

Amazon OpenSearch Service Developer Guide

all OpenSearch Service REST APIs, but is especially useful with APIs that you call frequently, such as
the _index and _bulk APIs:

PUT opensearch-domain/more-movies/_doc/1?filter_path=result,_shards.total
{"title": "Back to the Future"}

Response

{
 "result": "updated",
 "_shards": {
 "total": 2
 }
}

Instead of including fields, you can exclude fields with a - prefix. filter_path also supports
wildcards:

POST opensearch-domain/_bulk?filter_path=-took,-items.index._*
{ "index": { "_index": "more-movies", "_id": "1" } }
{"title": "Back to the Future"}
{ "index": { "_index": "more-movies", "_id": "2" } }
{"title": "Spirited Away"}

Response

{
 "errors": false,
 "items": [
 {
 "index": {
 "result": "updated",
 "status": 200
 }
 },
 {
 "index": {
 "result": "updated",
 "status": 200
 }
 }
]

Reducing response size 773

Amazon OpenSearch Service Developer Guide

}

Index codecs

Index codecs determine how the stored fields on an index are compressed and stored on disk. The
index codec is controlled by the static index.codec setting, which specifies the compression
algorithm. This setting impacts the index shard size and operation performance.

For a list of supported codecs and their performance characteristics, see Supported codecs in the
OpenSearch documentation.

When you choose an index codec, consider the following:

• To avoid the challenges of changing the codec setting of an existing index, test a representative
workload in a non-production environment before using a new codec setting. For more
information, see Changing an index codec.

• You can't use the zstd and zstd_no_dict compression codecs for k-NN or Security Analytics
indexes.

• Migration to UltraWarm instances is disabled for ZStandard indexes.

Loading streaming data into Amazon OpenSearch Service

You can use OpenSearch Ingestion to directly load streaming data into your Amazon OpenSearch
Service domain, without needing to use third-party solutions. To send data to OpenSearch
Ingestion, you configure your data producers and the service automatically delivers the data to the
domain or collection that you specify. To get started with OpenSearch Ingestion, see the section
called “Tutorial: Ingest data into a collection”.

You can still use other sources to load streaming data, such as Amazon Data Firehose and Amazon
CloudWatch Logs, which have built-in support for OpenSearch Service. Others, like Amazon S3,
Amazon Kinesis Data Streams, and Amazon DynamoDB, use Amazon Lambda functions as event
handlers. The Lambda functions respond to new data by processing it and streaming it to your
domain.

Note

Lambda supports several popular programming languages and is available in most Amazon
Web Services Regions. For more information, see Getting started with Lambda in the

Index codecs 774

https://opensearch.org/docs/latest/im-plugin/index-codecs/#supported-codecs
https://opensearch.org/docs/latest/im-plugin/index-codecs/#changing-an-index-codec
https://opensearch.org/docs/latest/search-plugins/knn/index/
https://opensearch.org/docs/latest/security-analytics/index/
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ultrawarm.html
http://aws.amazon.com/streaming-data/
https://docs.amazonaws.cn/lambda/latest/dg/lambda-app.html

Amazon OpenSearch Service Developer Guide

Amazon Lambda Developer Guide and Amazon service endpoints in the Amazon Web
Services General Reference.

Topics

• Loading streaming data from OpenSearch Ingestion

• Loading streaming data from Amazon S3

• Loading streaming data from Amazon Kinesis Data Streams

• Loading streaming data from Amazon DynamoDB

• Loading streaming data from Amazon Data Firehose

• Loading streaming data from Amazon CloudWatch

• Loading streaming data from Amazon IoT

Loading streaming data from OpenSearch Ingestion

You can use Amazon OpenSearch Ingestion to load data into an OpenSearch Service domain.
You configure your data producers to send data to OpenSearch Ingestion, and it automatically
delivers the data to the collection that you specify. You can also configure OpenSearch Ingestion to
transform your data before delivering it. For more information, see Amazon OpenSearch Ingestion.

Loading streaming data from Amazon S3

You can use Lambda to send data to your OpenSearch Service domain from Amazon S3. New data
that arrives in an S3 bucket triggers an event notification to Lambda, which then runs your custom
code to perform the indexing.

This method of streaming data is extremely flexible. You can index object metadata, or if the
object is plaintext, parse and index some elements of the object body. This section includes some
unsophisticated Python sample code that uses regular expressions to parse a log file and index the
matches.

Prerequisites

Before proceeding, you must have the following resources.

Loading streaming data from OpenSearch Ingestion 775

https://docs.amazonaws.cn/general/latest/gr/rande.html#lambda_region
https://aws.amazon.com/blogs/database/indexing-metadata-in-amazon-elasticsearch-service-using-aws-lambda-and-python/

Amazon OpenSearch Service Developer Guide

Prerequisite Description

Amazon S3 bucket For more information, see Create your first S3 bucket in the Amazon
Simple Storage Service User Guide. The bucket must reside in the same
Region as your OpenSearch Service domain.

OpenSearch Service
domain

The destination for data after your Lambda function processes it.
For more information, see the section called “ Creating OpenSearch
Service domains”.

Create the Lambda deployment package

Deployment packages are ZIP or JAR files that contain your code and its dependencies. This
section includes Python sample code. For other programming languages, see Lambda deployment
packages in the Amazon Lambda Developer Guide.

1. Create a directory. In this sample, we use the name s3-to-opensearch.

2. Create a file within the directory named sample.py:

import boto3
import re
import requests
from requests_aws4auth import AWS4Auth

region = '' # e.g. us-west-1
service = 'es'
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

host = '' # the OpenSearch Service domain, e.g. https://search-mydomain.us-
west-1.es.amazonaws.com
index = 'lambda-s3-index'
datatype = '_doc'
url = host + '/' + index + '/' + datatype

headers = { "Content-Type": "application/json" }

s3 = boto3.client('s3')

Loading streaming data from Amazon S3 776

https://docs.amazonaws.cn/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.amazonaws.cn/lambda/latest/dg/gettingstarted-package.html
https://docs.amazonaws.cn/lambda/latest/dg/gettingstarted-package.html

Amazon OpenSearch Service Developer Guide

Regular expressions used to parse some simple log lines
ip_pattern = re.compile('(\d+\.\d+\.\d+\.\d+)')
time_pattern = re.compile('\[(\d+\/\w\w\w\/\d\d\d\d:\d\d:\d\d:\d\d\s-\d\d\d\d)\]')
message_pattern = re.compile('\"(.+)\"')

Lambda execution starts here
def handler(event, context):
 for record in event['Records']:

 # Get the bucket name and key for the new file
 bucket = record['s3']['bucket']['name']
 key = record['s3']['object']['key']

 # Get, read, and split the file into lines
 obj = s3.get_object(Bucket=bucket, Key=key)
 body = obj['Body'].read()
 lines = body.splitlines()

 # Match the regular expressions to each line and index the JSON
 for line in lines:
 line = line.decode("utf-8")
 ip = ip_pattern.search(line).group(1)
 timestamp = time_pattern.search(line).group(1)
 message = message_pattern.search(line).group(1)

 document = { "ip": ip, "timestamp": timestamp, "message": message }
 r = requests.post(url, auth=awsauth, json=document, headers=headers)

Edit the variables for region and host.

3. Install pip if you haven't already, then install the dependencies to a new package directory:

cd s3-to-opensearch

pip install --target ./package requests
pip install --target ./package requests_aws4auth

All Lambda execution environments have Boto3 installed, so you don't need to include it in
your deployment package.

4. Package the application code and dependencies:

cd package

Loading streaming data from Amazon S3 777

https://pip.pypa.io/en/stable/installation/
https://aws.amazon.com/sdk-for-python/

Amazon OpenSearch Service Developer Guide

zip -r ../lambda.zip .

cd ..
zip -g lambda.zip sample.py

Create the Lambda function

After you create the deployment package, you can create the Lambda function. When you create
a function, choose a name, runtime (for example, Python 3.8), and IAM role. The IAM role defines
the permissions for your function. For detailed instructions, see Create a Lambda function with the
console in the Amazon Lambda Developer Guide.

This example assumes you're using the console. Choose Python 3.9 and a role that has S3 read
permissions and OpenSearch Service write permissions, as shown in the following screenshot:

Loading streaming data from Amazon S3 778

https://docs.amazonaws.cn/lambda/latest/dg/get-started-create-function.html
https://docs.amazonaws.cn/lambda/latest/dg/get-started-create-function.html

Amazon OpenSearch Service Developer Guide

After you create the function, you must add a trigger. For this example, we want the code to run
whenever a log file arrives in an S3 bucket:

1. Choose Add trigger and select S3.

2. Choose your bucket.

3. For Event type, choose PUT.

4. For Prefix, type logs/.

5. For Suffix, type .log.

6. Acknowledge the recursive invocation warning and choose Add.

Loading streaming data from Amazon S3 779

Amazon OpenSearch Service Developer Guide

Finally, you can upload your deployment package:

1. Choose Upload from and .zip file, then follow the prompts to upload your deployment
package.

2. After the upload finishes, edit the Runtime settings and change the Handler to
sample.handler. This setting tells Lambda the file (sample.py) and method (handler)
that it should run after a trigger.

At this point, you have a complete set of resources: a bucket for log files, a function that runs
whenever a log file is added to the bucket, code that performs the parsing and indexing, and an
OpenSearch Service domain for searching and visualization.

Testing the Lambda Function

After you create the function, you can test it by uploading a file to the Amazon S3 bucket. Create a
file named sample.log using following sample log lines:

12.345.678.90 - [10/Oct/2000:13:55:36 -0700] "PUT /some-file.jpg"
12.345.678.91 - [10/Oct/2000:14:56:14 -0700] "GET /some-file.jpg"

Upload the file to the logs folder of your S3 bucket. For instructions, see Upload an object to your
bucket in the Amazon Simple Storage Service User Guide.

Then use the OpenSearch Service console or OpenSearch Dashboards to verify that the lambda-
s3-index index contains two documents. You can also make a standard search request:

GET https://domain-name/lambda-s3-index/_search?pretty
{
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [
 {
 "_index" : "lambda-s3-index",
 "_type" : "_doc",
 "_id" : "vTYXaWIBJWV_TTkEuSDg",
 "_score" : 1.0,
 "_source" : {
 "ip" : "12.345.678.91",
 "message" : "GET /some-file.jpg",

Loading streaming data from Amazon S3 780

https://docs.amazonaws.cn/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
https://docs.amazonaws.cn/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html

Amazon OpenSearch Service Developer Guide

 "timestamp" : "10/Oct/2000:14:56:14 -0700"
 }
 },
 {
 "_index" : "lambda-s3-index",
 "_type" : "_doc",
 "_id" : "vjYmaWIBJWV_TTkEuCAB",
 "_score" : 1.0,
 "_source" : {
 "ip" : "12.345.678.90",
 "message" : "PUT /some-file.jpg",
 "timestamp" : "10/Oct/2000:13:55:36 -0700"
 }
 }
]
 }
}

Loading streaming data from Amazon Kinesis Data Streams

You can load streaming data from Kinesis Data Streams to OpenSearch Service. New data that
arrives in the data stream triggers an event notification to Lambda, which then runs your custom
code to perform the indexing. This section includes some unsophisticated Python sample code.

Prerequisites

Before proceeding, you must have the following resources.

Prerequisite Description

Amazon Kinesis Data
Stream

The event source for your Lambda function. To learn more, see Kinesis
Data Streams.

OpenSearch Service
Domain

The destination for data after your Lambda function processes it.
For more information, see the section called “ Creating OpenSearch
Service domains”

IAM Role This role must have basic OpenSearch Service, Kinesis, and Lambda
permissions, such as the following:

{

Loading streaming data from Amazon Kinesis Data Streams 781

https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html
https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html

Amazon OpenSearch Service Developer Guide

Prerequisite Description

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "es:ESHttpPost",
 "es:ESHttpPut",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:DescribeStream",
 "kinesis:ListStreams"
],
 "Resource": "*"
 }
]
}

The role must have the following trust relationship:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

To learn more, see Creating IAM roles in the IAM User Guide.

Loading streaming data from Amazon Kinesis Data Streams 782

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create.html

Amazon OpenSearch Service Developer Guide

Create the Lambda function

Follow the instructions in the section called “Create the Lambda deployment package”, but create a
directory named kinesis-to-opensearch and use the following code for sample.py:

import base64
import boto3
import json
import requests
from requests_aws4auth import AWS4Auth

region = '' # e.g. us-west-1
service = 'es'
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

host = '' # the OpenSearch Service domain, e.g. https://search-mydomain.us-
west-1.es.amazonaws.com
index = 'lambda-kine-index'
datatype = '_doc'
url = host + '/' + index + '/' + datatype + '/'

headers = { "Content-Type": "application/json" }

def handler(event, context):
 count = 0
 for record in event['Records']:
 id = record['eventID']
 timestamp = record['kinesis']['approximateArrivalTimestamp']

 # Kinesis data is base64-encoded, so decode here
 message = base64.b64decode(record['kinesis']['data'])

 # Create the JSON document
 document = { "id": id, "timestamp": timestamp, "message": message }
 # Index the document
 r = requests.put(url + id, auth=awsauth, json=document, headers=headers)
 count += 1
 return 'Processed ' + str(count) + ' items.'

Edit the variables for region and host.

Loading streaming data from Amazon Kinesis Data Streams 783

Amazon OpenSearch Service Developer Guide

Install pip if you haven't already, then use the following commands to install your dependencies:

cd kinesis-to-opensearch

pip install --target ./package requests
pip install --target ./package requests_aws4auth

Then follow the instructions in the section called “Create the Lambda function”, but specify the
IAM role from the section called “Prerequisites” and the following settings for the trigger:

• Kinesis stream: your Kinesis stream

• Batch size: 100

• Starting position: Trim horizon

To learn more, see What is Amazon Kinesis Data Streams? in the Amazon Kinesis Data Streams
Developer Guide.

At this point, you have a complete set of resources: a Kinesis data stream, a function that runs
after the stream receives new data and indexes that data, and an OpenSearch Service domain for
searching and visualization.

Test the Lambda Function

After you create the function, you can test it by adding a new record to the data stream using the
Amazon CLI:

aws kinesis put-record --stream-name test --data "My test data." --partition-key
 partitionKey1 --region us-west-1

Then use the OpenSearch Service console or OpenSearch Dashboards to verify that lambda-
kine-index contains a document. You can also use the following request:

GET https://domain-name/lambda-kine-index/_search
{
 "hits" : [
 {
 "_index": "lambda-kine-index",
 "_type": "_doc",
 "_id":
 "shardId-000000000000:49583511615762699495012960821421456686529436680496087042",

Loading streaming data from Amazon Kinesis Data Streams 784

https://pip.pypa.io/en/stable/installation/
https://docs.amazonaws.cn/streams/latest/dev/working-with-kinesis.html

Amazon OpenSearch Service Developer Guide

 "_score": 1,
 "_source": {
 "timestamp": 1523648740.051,
 "message": "My test data.",
 "id":
 "shardId-000000000000:49583511615762699495012960821421456686529436680496087042"
 }
 }
]
}

Loading streaming data from Amazon DynamoDB

You can use Amazon Lambda to send data to your OpenSearch Service domain from Amazon
DynamoDB. New data that arrives in the database table triggers an event notification to Lambda,
which then runs your custom code to perform the indexing.

Prerequisites

Before proceeding, you must have the following resources.

Prerequisite Description

DynamoDB table The table contains your source data. For more information, see Basic
Operations on DynamoDB Tables in the Amazon DynamoDB Developer
Guide.

The table must reside in the same Region as your OpenSearch Service
domain and have a stream set to New image. To learn more, see
Enabling a Stream.

OpenSearch Service
domain

The destination for data after your Lambda function processes it.
For more information, see the section called “ Creating OpenSearch
Service domains”.

IAM role This role must have basic OpenSearch Service, DynamoDB, and
Lambda execution permissions, such as the following:

{
 "Version": "2012-10-17",
 "Statement": [

Loading streaming data from Amazon DynamoDB 785

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html#Streams.Enabling

Amazon OpenSearch Service Developer Guide

Prerequisite Description

 {
 "Effect": "Allow",
 "Action": [
 "es:ESHttpPost",
 "es:ESHttpPut",
 "dynamodb:DescribeStream",
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:ListStreams",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
}

The role must have the following trust relationship:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

To learn more, see Creating IAM roles in the IAM User Guide.

Create the Lambda function

Follow the instructions in the section called “Create the Lambda deployment package”, but create a
directory named ddb-to-opensearch and use the following code for sample.py:

Loading streaming data from Amazon DynamoDB 786

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create.html

Amazon OpenSearch Service Developer Guide

import boto3
import requests
from requests_aws4auth import AWS4Auth

region = '' # e.g. us-east-1
service = 'es'
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

host = '' # the OpenSearch Service domain, e.g. https://search-mydomain.us-
west-1.es.amazonaws.com
index = 'lambda-index'
datatype = '_doc'
url = host + '/' + index + '/' + datatype + '/'

headers = { "Content-Type": "application/json" }

def handler(event, context):
 count = 0
 for record in event['Records']:
 # Get the primary key for use as the OpenSearch ID
 id = record['dynamodb']['Keys']['id']['S']

 if record['eventName'] == 'REMOVE':
 r = requests.delete(url + id, auth=awsauth)
 else:
 document = record['dynamodb']['NewImage']
 r = requests.put(url + id, auth=awsauth, json=document, headers=headers)
 count += 1
 return str(count) + ' records processed.'

Edit the variables for region and host.

Install pip if you haven't already, then use the following commands to install your dependencies:

cd ddb-to-opensearch

pip install --target ./package requests
pip install --target ./package requests_aws4auth

Loading streaming data from Amazon DynamoDB 787

https://pip.pypa.io/en/stable/installation/

Amazon OpenSearch Service Developer Guide

Then follow the instructions in the section called “Create the Lambda function”, but specify the
IAM role from the section called “Prerequisites” and the following settings for the trigger:

• Table: your DynamoDB table

• Batch size: 100

• Starting position: Trim horizon

To learn more, see Process New Items with DynamoDB Streams and Lambda in the Amazon
DynamoDB Developer Guide.

At this point, you have a complete set of resources: a DynamoDB table for your source data, a
DynamoDB stream of changes to the table, a function that runs after your source data changes and
indexes those changes, and an OpenSearch Service domain for searching and visualization.

Test the Lambda function

After you create the function, you can test it by adding a new item to the DynamoDB table using
the Amazon CLI:

aws dynamodb put-item --table-name test --item '{"director": {"S": "Kevin
 Costner"},"id": {"S": "00001"},"title": {"S": "The Postman"}}' --region us-west-1

Then use the OpenSearch Service console or OpenSearch Dashboards to verify that lambda-
index contains a document. You can also use the following request:

GET https://domain-name/lambda-index/_doc/00001
{
 "_index": "lambda-index",
 "_type": "_doc",
 "_id": "00001",
 "_version": 1,
 "found": true,
 "_source": {
 "director": {
 "S": "Kevin Costner"
 },
 "id": {
 "S": "00001"
 },
 "title": {

Loading streaming data from Amazon DynamoDB 788

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.Lambda.Tutorial.html

Amazon OpenSearch Service Developer Guide

 "S": "The Postman"
 }
 }
}

Loading streaming data from Amazon Data Firehose

Firehose supports OpenSearch Service as a delivery destination. For instructions about how to load
streaming data into OpenSearch Service, see Creating a Kinesis Data Firehose Delivery Stream and
Choose OpenSearch Service for Your Destination in the Amazon Data Firehose Developer Guide.

Before you load data into OpenSearch Service, you might need to perform transforms on the
data. To learn more about using Lambda functions to perform this task, see Amazon Kinesis Data
Firehose Data Transformation in the same guide.

As you configure a delivery stream, Firehose features a "one-click" IAM role that gives it the
resource access it needs to send data to OpenSearch Service, back up data on Amazon S3, and
transform data using Lambda. Because of the complexity involved in creating such a role manually,
we recommend using the provided role.

Loading streaming data from Amazon CloudWatch

You can load streaming data from CloudWatch Logs to your OpenSearch Service domain by using
a CloudWatch Logs subscription. For information about Amazon CloudWatch subscriptions, see
Real-time processing of log data with subscriptions. For configuration information, see Streaming
CloudWatch Logs data to Amazon OpenSearch Service in the Amazon CloudWatch Developer Guide.

Loading streaming data from Amazon IoT

You can send data from Amazon IoT using rules. To learn more, see the OpenSearch action in the
Amazon IoT Developer Guide.

Loading data into Amazon OpenSearch Service with Logstash

The open source version of Logstash (Logstash OSS) provides a convenient way to use the bulk API
to upload data into your Amazon OpenSearch Service domain. The service supports all standard
Logstash input plugins, including the Amazon S3 input plugin. OpenSearch Service supports the
logstash-output-opensearch output plugin, which supports both basic authentication and IAM
credentials. The plugin works with version 8.1 and lower of Logstash OSS.

Loading streaming data from Amazon Data Firehose 789

https://docs.amazonaws.cn/firehose/latest/dev/basic-create.html
https://docs.amazonaws.cn/firehose/latest/dev/create-destination.html#create-destination-elasticsearch
https://docs.amazonaws.cn/firehose/latest/dev/data-transformation.html
https://docs.amazonaws.cn/firehose/latest/dev/data-transformation.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/Subscriptions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_OpenSearch_Stream.html
https://docs.amazonaws.cn/iot/latest/developerguide/iot-rules.html
https://docs.amazonaws.cn/iot/latest/developerguide/opensearch-rule-action.html
https://github.com/opensearch-project/logstash-output-opensearch

Amazon OpenSearch Service Developer Guide

Configuration

Logstash configuration varies based on the type of authentication your domain uses.

No matter which authentication method you use, you must set ecs_compatibility to
disabled in the output section of the configuration file. Logstash 8.0 introduced a breaking
change where all plugins are run in ECS compatibility mode by default. You must override the
default value to maintain legacy behavior.

Fine-grained access control configuration

If your OpenSearch Service domain uses fine-grained access control with HTTP basic
authentication, configuration is similar to any other OpenSearch cluster. This example
configuration file takes its input from the open source version of Filebeat (Filebeat OSS):

input {
 beats {
 port => 5044
 }
}

output {
 opensearch {
 hosts => "https://domain-endpoint:443"
 user => "my-username"
 password => "my-password"
 index => "logstash-logs-%{+YYYY.MM.dd}"
 ecs_compatibility => disabled
 ssl_certificate_verification => false
 }
}

Configuration varies by Beats application and use case, but your Filebeat OSS configuration might
look like this:

filebeat.inputs:
- type: log
 enabled: true
 paths:
 - /path/to/logs/dir/*.log
filebeat.config.modules:

Configuration 790

https://www.elastic.co/guide/en/logstash/current/ecs-ls.html#_specific_plugin_instance

Amazon OpenSearch Service Developer Guide

 path: ${path.config}/modules.d/*.yml
 reload.enabled: false
setup.ilm.enabled: false
setup.ilm.check_exists: false
setup.template.settings:
 index.number_of_shards: 1
output.logstash:
 hosts: ["logstash-host:5044"]

IAM configuration

If your domain uses an IAM-based domain access policy or fine-grained access control with a
master user, you must sign all requests to OpenSearch Service using IAM credentials. The following
identity-based policy grants all HTTP requests to your domain's subresources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "es:ESHttp*"
],
 "Resource": "arn:aws:es:region:aws-account-id:domain/domain-name/*"
 }
]
}

To set up your Logstash configuration, change your configuration file to use the plugin for its
output. This example configuration file takes its input from files in an S3 bucket:

input {
 s3 {
 bucket => "my-s3-bucket"
 region => "us-east-1"
 }
}

output {
 opensearch {
 hosts => ["domain-endpoint:443"]
 auth_type => {

Configuration 791

Amazon OpenSearch Service Developer Guide

 type => 'aws_iam'
 aws_access_key_id => 'your-access-key'
 aws_secret_access_key => 'your-secret-key'
 region => 'us-east-1'
 }
 index => "logstash-logs-%{+YYYY.MM.dd}"
 ecs_compatibility => disabled
 }
}

If you don't want to provide your IAM credentials within the configuration file, you can export them
(or run aws configure):

export AWS_ACCESS_KEY_ID="your-access-key"
export AWS_SECRET_ACCESS_KEY="your-secret-key"
export AWS_SESSION_TOKEN="your-session-token"

If your OpenSearch Service domain is in a VPC, the Logstash OSS machine must be able to connect
to the VPC and have access to the domain through the VPC security groups. For more information,
see the section called “About access policies on VPC domains”.

Configuration 792

Amazon OpenSearch Service Developer Guide

Searching data in Amazon OpenSearch Service

There are several common methods for searching documents in Amazon OpenSearch Service,
including URI searches and request body searches. OpenSearch Service offers additional
functionality that improves the search experience, such as custom packages, SQL support, and
asynchronous search. For a comprehensive OpenSearch search API reference, see the OpenSearch
documentation.

Note

The following sample requests work with OpenSearch APIs. Some requests might not work
with older Elasticsearch versions.

Topics

• URI searches

• Request body searches

• Paginating search results

• Dashboards Query Language

• Custom packages for Amazon OpenSearch Service

• Querying your Amazon OpenSearch Service data with SQL

• k-Nearest Neighbor (k-NN) search in Amazon OpenSearch Service

• Cross-cluster search in Amazon OpenSearch Service

• Learning to Rank for Amazon OpenSearch Service

• Asynchronous search in Amazon OpenSearch Service

• Point in time in Amazon OpenSearch Service

• Semantic search in Amazon OpenSearch Service

URI searches

Universal Resource Identifier (URI) searches are the simplest form of search. In a URI search, you
specify the query as an HTTP request parameter:

URI searches 793

https://opensearch.org/docs/opensearch/query-dsl/full-text/
https://opensearch.org/docs/opensearch/query-dsl/full-text/

Amazon OpenSearch Service Developer Guide

GET https://search-my-domain.us-west-1.es.amazonaws.com/_search?q=house

A sample response might look like the following:

{
 "took": 25,
 "timed_out": false,
 "_shards": {
 "total": 10,
 "successful": 10,
 "skipped": 0,
 "failed": 0
 },
 "hits": {
 "total": {
 "value": 85,
 "relation": "eq",
 },
 "max_score": 6.6137657,
 "hits": [
 {
 "_index": "movies",
 "_type": "movie",
 "_id": "tt0077975",
 "_score": 6.6137657,
 "_source": {
 "directors": [
 "John Landis"
],
 "release_date": "1978-07-27T00:00:00Z",
 "rating": 7.5,
 "genres": [
 "Comedy",
 "Romance"
],
 "image_url": "http://ia.media-imdb.com/images/M/
MV5BMTY2OTQxNTc1OF5BMl5BanBnXkFtZTYwNjA3NjI5._V1_SX400_.jpg",
 "plot": "At a 1962 College, Dean Vernon Wormer is determined to expel the
 entire Delta Tau Chi Fraternity, but those troublemakers have other plans for him.",
 "title": "Animal House",
 "rank": 527,
 "running_time_secs": 6540,
 "actors": [

URI searches 794

Amazon OpenSearch Service Developer Guide

 "John Belushi",
 "Karen Allen",
 "Tom Hulce"
],
 "year": 1978,
 "id": "tt0077975"
 }
 },
 ...
]
 }
}

By default, this query searches all fields of all indices for the term house. To narrow the search,
specify an index (movies) and a document field (title) in the URI:

GET https://search-my-domain.us-west-1.es.amazonaws.com/movies/_search?q=title:house

You can include additional parameters in the request, but the supported parameters provide only a
small subset of the OpenSearch search options. The following request returns 20 results (instead of
the default of 10) and sorts by year (rather than by _score):

GET https://search-my-domain.us-west-1.es.amazonaws.com/movies/_search?
q=title:house&size=20&sort=year:desc

Request body searches

To perform more complex searches, use the HTTP request body and the OpenSearch domain-
specific language (DSL) for queries. The query DSL lets you specify the full range of OpenSearch
search options.

Note

You can't include Unicode special characters in a text field value, or the value will be
parsed as multiple values separated by the special character. This incorrect parsing can
lead to unintentional filtering of documents and potentially compromise control over their
access. For more information, see A note on Unicode special characters in text fields in the
OpenSearch documentation.

Request body searches 795

https://opensearch.org/docs/latest/opensearch/query-dsl/index/#a-note-on-unicode-special-characters-in-text-fields

Amazon OpenSearch Service Developer Guide

The following match query is similar to the final URI search example:

POST https://search-my-domain.us-west-1.es.amazonaws.com/movies/_search
{
 "size": 20,
 "sort": {
 "year": {
 "order": "desc"
 }
 },
 "query": {
 "query_string": {
 "default_field": "title",
 "query": "house"
 }
 }
}

Note

The _search API accepts HTTP GET and POST for request body searches, but not all HTTP
clients support adding a request body to a GET request. POST is the more universal choice.

In many cases, you might want to search several fields, but not all fields. Use the multi_match
query:

POST https://search-my-domain.us-west-1.es.amazonaws.com/movies/_search
{
 "size": 20,
 "query": {
 "multi_match": {
 "query": "house",
 "fields": ["title", "plot", "actors", "directors"]
 }
 }
}

Request body searches 796

Amazon OpenSearch Service Developer Guide

Boosting fields

You can improve search relevancy by "boosting" certain fields. Boosts are multipliers that weigh
matches in one field more heavily than matches in other fields. In the following example, a match
for john in the title field influences _score twice as much as a match in the plot field and four
times as much as a match in the actors or directors fields. The result is that films like John
Wick and John Carter are near the top of the search results, and films starring John Travolta are
near the bottom.

POST https://search-my-domain.us-west-1.es.amazonaws.com/movies/_search
{
 "size": 20,
 "query": {
 "multi_match": {
 "query": "john",
 "fields": ["title^4", "plot^2", "actors", "directors"]
 }
 }
}

Search result highlighting

The highlight option tells OpenSearch to return an additional object inside of the hits array if
the query matched one or more fields:

POST https://search-my-domain.us-west-1.es.amazonaws.com/movies/_search
{
 "size": 20,
 "query": {
 "multi_match": {
 "query": "house",
 "fields": ["title^4", "plot^2", "actors", "directors"]
 }
 },
 "highlight": {
 "fields": {
 "plot": {}
 }
 }
}

Boosting fields 797

Amazon OpenSearch Service Developer Guide

If the query matched the content of the plot field, a hit might look like the following:

{
 "_index": "movies",
 "_type": "movie",
 "_id": "tt0091541",
 "_score": 11.276199,
 "_source": {
 "directors": [
 "Richard Benjamin"
],
 "release_date": "1986-03-26T00:00:00Z",
 "rating": 6,
 "genres": [
 "Comedy",
 "Music"
],
 "image_url": "http://ia.media-imdb.com/images/M/
MV5BMTIzODEzODE2OF5BMl5BanBnXkFtZTcwNjQ3ODcyMQ@@._V1_SX400_.jpg",
 "plot": "A young couple struggles to repair a hopelessly dilapidated house.",
 "title": "The Money Pit",
 "rank": 4095,
 "running_time_secs": 5460,
 "actors": [
 "Tom Hanks",
 "Shelley Long",
 "Alexander Godunov"
],
 "year": 1986,
 "id": "tt0091541"
 },
 "highlight": {
 "plot": [
 "A young couple struggles to repair a hopelessly dilapidated house."
]
 }
}

By default, OpenSearch wraps the matching string in tags, provides up to 100 characters of
context around the match, and breaks content into sentences by identifying punctuation marks,
spaces, tabs, and line breaks. All of these settings are customizable:

POST https://search-my-domain.us-west-1.es.amazonaws.com/movies/_search

Search result highlighting 798

Amazon OpenSearch Service Developer Guide

{
 "size": 20,
 "query": {
 "multi_match": {
 "query": "house",
 "fields": ["title^4", "plot^2", "actors", "directors"]
 }
 },
 "highlight": {
 "fields": {
 "plot": {}
 },
 "pre_tags": "",
 "post_tags": "",
 "fragment_size": 200,
 "boundary_chars": ".,!? "
 }
}

Count API

If you're not interested in the contents of your documents and just want to know the number of
matches, you can use the _count API instead of the _search API. The following request uses the
query_string query to identify romantic comedies:

POST https://search-my-domain.us-west-1.es.amazonaws.com/movies/_count
{
 "query": {
 "query_string": {
 "default_field": "genres",
 "query": "romance AND comedy"
 }
 }
}

A sample response might look like the following:

{
 "count": 564,
 "_shards": {
 "total": 5,
 "successful": 5,

Count API 799

Amazon OpenSearch Service Developer Guide

 "skipped": 0,
 "failed": 0
 }
}

Paginating search results

If you need to display a large number of search results, you can implement pagination using several
different methods.

Point in time

The point in time (PIT) feature is a type of search that lets you run different queries against a
dataset that's fixed in time. This is the preferred pagination method in OpenSearch, especially
for deep pagination. You can use PIT with OpenSearch Service version 2.5 and later. For more
information about PIT, see ???.

The from and size parameters

The simplest way to paginate is with the from and size parameters. The following request returns
results 20–39 of the zero-indexed list of search results:

POST https://search-my-domain.us-west-1.es.amazonaws.com/movies/_search
{
 "from": 20,
 "size": 20,
 "query": {
 "multi_match": {
 "query": "house",
 "fields": ["title^4", "plot^2", "actors", "directors"]
 }
 }
}

For more information about search pagination, see Paginate results in the OpenSearch
documentation.

Paginating search results 800

https://opensearch.org/docs/latest/opensearch/search/paginate/

Amazon OpenSearch Service Developer Guide

Dashboards Query Language

You can use the Dashboards Query Language (DQL) to search for data and visualizations in
OpenSearch Dashboards. DQL uses four primary query types: terms, Boolean, date and range, and
nested field.

Terms query

A terms query requires you to specify the term that you're searching for.

To perform a terms query, enter the following:

host:www.example.com

Boolean query

You can use the Boolean operators AND, or, and not to combine multiple queries.

To perform a Boolean query, paste the following:

host.keyword:www.example.com and response.keyword:200

Date and range query

You can use a date and range query to find a date before or after your query.

• > indicates a search for a date after your specified date.

• < indicates a search for a date before your specified date.

@timestamp > "2020-12-14T09:35:33"

Nested field query

If you have a document with nested fields, you have to specify which parts of the document that
you want to retrieve. The following is a sample document that contains nested fields:

{"NBA players":[
 {"player-name": "Lebron James",
 "player-position": "Power forward",
 "points-per-game": "30.3"
 },

Dashboards Query Language 801

https://opensearch.org/docs/latest/dashboards/dql/#terms-query

Amazon OpenSearch Service Developer Guide

 {"player-name": "Kevin Durant",
 "player-position": "Power forward",
 "points-per-game": "27.1"
 },
 {"player-name": "Anthony Davis",
 "player-position": "Power forward",
 "points-per-game": "23.2"
 },
 {"player-name": "Giannis Antetokounmpo",
 "player-position": "Power forward",
 "points-per-game":"29.9"
 }
]
}

To retrieve a specific field using DQL, paste the following:

NBA players: {player-name: Lebron James}

To retrieve multiple objects from the nested document, paste the following:

NBA players: {player-name: Lebron James} and NBA players: {player-name: Giannis
 Antetokounmpo}

To search within a range, paste the following:

NBA players: {player-name: Lebron James} and NBA players: {player-name: Giannis
 Antetokounmpo and < 30}

If your document has an object nested within another object, you can still retrieve data by
specifying all of the levels. To do this, paste the following:

Top-Power-forwards.NBA players: {player-name:Lebron James}

Custom packages for Amazon OpenSearch Service

Amazon OpenSearch Service lets you upload custom dictionary files, such as stop words and
synonyms, and also provides several pre-packaged, optional plugins that you can associate with
your domain. The generic term for both these types of files is packages.

Custom packages 802

Amazon OpenSearch Service Developer Guide

Dictionary files improve your search results by telling OpenSearch to ignore certain high-frequency
words or to treat terms like "frozen custard," "gelato," and "ice cream" as equivalent. They can also
improve stemming, such as in the Japanese (kuromoji) Analysis plugin.

Optional plugins can provide added functionality to your domain. For example, you can use the
Amazon Personalize plugin to give you personalized search results. Optional plugins use the ZIP-
PLUGIN package type. For more information about optional plugins, see the section called “Plugins
by engine version”.

Topics

• Package permissions requirements

• Uploading packages to Amazon S3

• Importing and associating packages

• Using packages with OpenSearch

• Updating packages

• Manual index updates for dictionaries

• Dissociating and removing packages

Package permissions requirements

Users without administrator access require certain Amazon Identity and Access Management (IAM)
actions in order to manage packages:

• es:CreatePackage - create a package in an OpenSearch Service Region

• es:DeletePackage - delete a package from an OpenSearch Service Region

• es:AssociatePackage - associate a package to a domain

• es:DissociatePackage - dissociate a package from a domain

You also need permissions on the Amazon S3 bucket path or object where the custom package
resides.

Grant all permission within IAM, not in the domain access policy. For more information, see the
section called “Identity and Access Management”.

Package permissions requirements 803

https://en.wikipedia.org/wiki/Stemming

Amazon OpenSearch Service Developer Guide

Uploading packages to Amazon S3

This section covers how to up upload custom dictionary packages, since optional plugin packages
are already pre-installed. Before you can associate a custom dictionary with your domain, you must
upload it to an Amazon S3 bucket. For instructions, see Uploading objects in the Amazon Simple
Storage Service User Guide. Supported plugins don't need to be uploaded.

If your dictionary contains sensitive information, specify server-side encryption with S3-managed
keys when you upload it. OpenSearch Service can't access files on S3 that you protect using an
Amazon KMS key.

After you upload the file, make note of its S3 path. The path format is s3://bucket-
name/file-path/file-name.

You can use the following synonyms file for testing purposes. Save it as synonyms.txt.

danish, croissant, pastry
ice cream, gelato, frozen custard
sneaker, tennis shoe, running shoe
basketball shoe, hightop

Certain dictionaries, such as Hunspell dictionaries, use multiple files and require their own
directories on the file system. At this time, OpenSearch Service only supports single-file
dictionaries.

Importing and associating packages

The console is the simplest way to import a custom dictionary into OpenSearch Service. When you
import a dictionary from Amazon S3, OpenSearch Service stores its own copy of the package and
automatically encrypts that copy using AES-256 with OpenSearch Service-managed keys.

Optional plugins are already pre-installed in OpenSearch Service so you don't need to upload them
yourself, but you do need to associate a plugin with a domain. Available plugins are listed on the
Packages screen in the console.

Import and associate a package with a domain with the Amazon Web Services Management
Console

1. In the Amazon OpenSearch Service console, choose Packages.

2. Choose Import package.

Uploading packages to Amazon S3 804

https://docs.amazonaws.cn/AmazonS3/latest/user-guide/upload-objects.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.amazonaws.cn/AmazonS3/latest/dev/UsingServerSideEncryption.html

Amazon OpenSearch Service Developer Guide

3. Give the custom dictionary a descriptive name.

4. Provide the S3 path to the file, and then choose Submit.

5. Return to the Packages screen.

6. When the package status is Available, select it. Optional plugins will automatically be
Available.

7. Choose Associate to a domain.

8. Select a domain, and then choose Associate.

9. In the navigation pane, choose your domain and go to the Packages tab.

10. If the package is a custom dictionary, note the ID when the package becomes Available. Use
analyzers/id as the file path in requests to OpenSearch.

Alternately, use the Amazon CLI, SDKs, or configuration API to import and associate packages. For
more information, see the Amazon CLI Command Reference and Amazon OpenSearch Service API
Reference.

Using packages with OpenSearch

This section covers how to use both types of packages: custom dictionaries and optional plugins.

Using custom dictionaries

After you associate a file with a domain, you can use it in parameters such as synonyms_path,
stopwords_path, and user_dictionary when you create tokenizers and token filters. The
exact parameter varies by object. Several objects support synonyms_path and stopwords_path,
but user_dictionary is exclusive to the kuromoji plugin.

For the IK (Chinese) Analysis plugin, you can upload a custom dictionary file as a custom package
and associate it to a domain, and the plugin automatically picks it up without requiring a
user_dictionary parameter. If your file is a synonyms file, use the synonyms_path parameter.

The following example adds a synonyms file to a new index:

PUT my-index
{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {

Using packages with OpenSearch 805

https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

 "my_analyzer": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["my_filter"]
 }
 },
 "filter": {
 "my_filter": {
 "type": "synonym",
 "synonyms_path": "analyzers/F111111111",
 "updateable": true
 }
 }
 }
 }
 },
 "mappings": {
 "properties": {
 "description": {
 "type": "text",
 "analyzer": "standard",
 "search_analyzer": "my_analyzer"
 }
 }
 }
}

This request creates a custom analyzer for the index that uses the standard tokenizer and a
synonym token filter.

• Tokenizers break streams of characters into tokens (typically words) based on some set of rules.
The simplest example is the whitespace tokenizer, which breaks the preceding characters into a
token each time it encounters a whitespace character. A more complex example is the standard
tokenizer, which uses a set of grammar-based rules to work across many languages.

• Token filters add, modify, or delete tokens. For example, a synonym token filter adds tokens
when it finds a word in the synonyms list. The stop token filter removes tokens when finds a
word in the stop words list.

This request also adds a text field (description) to the mapping and tells OpenSearch to use the
new analyzer as its search analyzer. You can see that it still uses the standard analyzer as its index
analyzer.

Using packages with OpenSearch 806

Amazon OpenSearch Service Developer Guide

Finally, note the line "updateable": true in the token filter. This field only applies to search
analyzers, not index analyzers, and is critical if you later want to update the search analyzer
automatically.

For testing purposes, add some documents to the index:

POST _bulk
{ "index": { "_index": "my-index", "_id": "1" } }
{ "description": "ice cream" }
{ "index": { "_index": "my-index", "_id": "2" } }
{ "description": "croissant" }
{ "index": { "_index": "my-index", "_id": "3" } }
{ "description": "tennis shoe" }
{ "index": { "_index": "my-index", "_id": "4" } }
{ "description": "hightop" }

Then search them using a synonym:

GET my-index/_search
{
 "query": {
 "match": {
 "description": "gelato"
 }
 }
}

In this case, OpenSearch returns the following response:

{
 "hits": {
 "total": {
 "value": 1,
 "relation": "eq"
 },
 "max_score": 0.99463606,
 "hits": [{
 "_index": "my-index",
 "_type": "_doc",
 "_id": "1",
 "_score": 0.99463606,
 "_source": {

Using packages with OpenSearch 807

Amazon OpenSearch Service Developer Guide

 "description": "ice cream"
 }
 }]
 }
}

Tip

Dictionary files use Java heap space proportional to their size. For example, a 2 GiB
dictionary file might consume 2 GiB of heap space on a node. If you use large files,
ensure that your nodes have enough heap space to accommodate them. Monitor the
JVMMemoryPressure metric, and scale your cluster as necessary.

Using optional plugins

OpenSearch Service lets you associate pre-installed, optional OpenSearch plugins to use with your
domain. An optional plugin package is compatible with a specific OpenSearch version, and can only
be associated to domains with that version. The list of available packages for your domain includes
all supported plugins that are compatible with your domain version. After you associate a plugin to
a domain, an installation process on the domain begins. Then, you can reference and use the plugin
when you make requests to OpenSearch Service.

Associating and dissociating a plugin requires a blue/green deployment. For more information, see
the section called “Changes that usually cause blue/green deployments”.

Optional plugins include language analyzers and customized search results. For example, the
Amazon Personalize Search Ranking plugin uses machine learning to personalize search results
for your customers. For more information about this plugin, see Personalizing search results from
OpenSearch. For a list of all supported plugins, see the section called “Plugins by engine version”.

Sudachi plugin

For the Sudachi plugin, when you reassociate a dictionary file, it doesn't immediately reflect on
the domain. The dictionary refreshes when the next blue/green deployment runs on the domain
as part of a configuration change or other update. Alternatively, you can create a new index,
reindex the existing index to the new index, and then delete the old index. If you prefer to use the
reindexing approach, use an index alias so that there's no disruption to your traffic.

Using packages with OpenSearch 808

https://docs.amazonaws.cn/personalize/latest/dg/personalize-opensearch.html
https://docs.amazonaws.cn/personalize/latest/dg/personalize-opensearch.html
https://github.com/WorksApplications/elasticsearch-sudachi

Amazon OpenSearch Service Developer Guide

Additionally, the Sudachi plugin only supports binary Sudachi dictionaries, which you can upload
with the CreatePackage API operation. For information on the pre-built system dictionary and
process for compiling user dictionaries, see the Sudachi documentation.

The following example demonstrates how to use system and user dictionaries with the Sudachi
tokenizer. You must upload these dictionaries as custom packages with type TXT-DICTIONARY and
provide their package IDs in the additional settings.

PUT sudachi_sample
{
 "settings": {
 "index": {
 "analysis": {
 "tokenizer": {
 "sudachi_tokenizer": {
 "type": "sudachi_tokenizer",
 "additional_settings": "{\"systemDict\": \"<system-dictionary-package-
id>\",\"userDict\": [\"<user-dictionary-package-id>\"]}"
 }
 },
 "analyzer": {
 "sudachi_analyzer": {
 "filter": ["my_searchfilter"],
 "tokenizer": "sudachi_tokenizer",
 "type": "custom"
 }
 },
 "filter":{
 "my_searchfilter": {
 "type": "sudachi_split",
 "mode": "search"
 }
 }
 }
 }
 }
}

Updating packages

This section only covers how to update a custom dictionary package, because optional plugin
packages are already updated for you. Uploading a new version of a dictionary to Amazon S3 does

Updating packages 809

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_CreatePackage.html
https://github.com/WorksApplications/elasticsearch-sudachi

Amazon OpenSearch Service Developer Guide

not automatically update the package on Amazon OpenSearch Service. OpenSearch Service stores
its own copy of the file, so if you upload a new version to S3, you must manually update it.

Each of your associated domains stores its own copy of the file, as well. To keep search behavior
predictable, domains continue to use their current package version until you explicitly update
them. To update a custom package, modify the file in Amazon S3 Control, update the package in
OpenSearch Service, and then apply the update.

Update a package with the Amazon Web Services Management Console

1. In the OpenSearch Service console, choose Packages.

2. Choose a package and Update.

3. Provide the S3 path to the file, and then choose Update package.

4. Return to the Packages screen.

5. When the package status changes to Available, select it. Then choose one or more associated
domains, Apply update, and confirm. Wait for the association status to change to Active.

6. The next steps vary depending on how you configured your indices:

• If your domain is running OpenSearch or Elasticsearch 7.8 or later, and only uses search
analyzers with the updateable field set to true, you don't need to take any further
action. OpenSearch Service automatically updates your indices using the _plugins/
_refresh_search_analyzers API.

• If your domain is running Elasticsearch 7.7 or earlier, uses index analyzers, or doesn't use the
updateable field, see the section called “Manual index updates for dictionaries”.

Although the console is the simplest method, you can also use the Amazon CLI, SDKs, or
configuration API to update OpenSearch Service packages. For more information, see the Amazon
CLI Command Reference and Amazon OpenSearch Service API Reference.

Update a package with the Amazon SDK

Instead of manually updating a package in the console, you can use the SDKs to automate the
update process. The following sample Python script uploads a new package file to Amazon S3,
updates the package in OpenSearch Service, and applies the new package to the specified domain.
After confirming the update was successful, it makes a sample call to OpenSearch demonstrating
the new synonyms have been applied.

Updating packages 810

https://opensearch.org/docs/im-plugin/refresh-analyzer/index/
https://opensearch.org/docs/im-plugin/refresh-analyzer/index/
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

You must provide values for host, region, file_name, bucket_name, s3_key, package_id,
domain_name, and query.

from requests_aws4auth import AWS4Auth
import boto3
import requests
import time
import json
import sys

host = '' # The OpenSearch domain endpoint with https:// and a trailing slash. For
 example, https://my-test-domain.us-east-1.es.amazonaws.com/
region = '' # For example, us-east-1
file_name = '' # The path to the file to upload
bucket_name = '' # The name of the S3 bucket to upload to
s3_key = '' # The name of the S3 key (file name) to upload to
package_id = '' # The unique identifier of the OpenSearch package to update
domain_name = '' # The domain to associate the package with
query = '' # A test query to confirm the package has been successfully updated

service = 'es'
credentials = boto3.Session().get_credentials()
client = boto3.client('opensearch')
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key,
 region, service, session_token=credentials.token)

def upload_to_s3(file_name, bucket_name, s3_key):
 """Uploads file to S3"""
 s3 = boto3.client('s3')
 try:
 s3.upload_file(file_name, bucket_name, s3_key)
 print('Upload successful')
 return True
 except FileNotFoundError:
 sys.exit('File not found. Make sure you specified the correct file path.')

def update_package(package_id, bucket_name, s3_key):
 """Updates the package in OpenSearch Service"""
 print(package_id, bucket_name, s3_key)
 response = client.update_package(
 PackageID=package_id,

Updating packages 811

Amazon OpenSearch Service Developer Guide

 PackageSource={
 'S3BucketName': bucket_name,
 'S3Key': s3_key
 }
)
 print(response)

def associate_package(package_id, domain_name):
 """Associates the package to the domain"""
 response = client.associate_package(
 PackageID=package_id, DomainName=domain_name)
 print(response)
 print('Associating...')

def wait_for_update(domain_name, package_id):
 """Waits for the package to be updated"""
 response = client.list_packages_for_domain(DomainName=domain_name)
 package_details = response['DomainPackageDetailsList']
 for package in package_details:
 if package['PackageID'] == package_id:
 status = package['DomainPackageStatus']
 if status == 'ACTIVE':
 print('Association successful.')
 return
 elif status == 'ASSOCIATION_FAILED':
 sys.exit('Association failed. Please try again.')
 else:
 time.sleep(10) # Wait 10 seconds before rechecking the status
 wait_for_update(domain_name, package_id)

def sample_search(query):
 """Makes a sample search call to OpenSearch"""
 path = '_search'
 params = {'q': query}
 url = host + path
 response = requests.get(url, params=params, auth=awsauth)
 print('Searching for ' + '"' + query + '"')
 print(response.text)

Updating packages 812

Amazon OpenSearch Service Developer Guide

Note

If you receive a "package not found" error when you run the script using the Amazon CLI, it
likely means Boto3 is using whichever Region is specified in ~/.aws/config, which isn't the
Region your S3 bucket is in. Either run aws configure and specify the correct Region, or
explicitly add the Region to the client:

client = boto3.client('opensearch', region_name='us-east-1')

Manual index updates for dictionaries

Manual index updates only apply to custom dictionaries, not optional plugins. To use an updated
dictionary, you must manually update your indexes if you meet any of the following conditions:

• Your domain runs Elasticsearch 7.7 or earlier.

• You use custom packages as index analyzers.

• You use custom packages as search analyzers, but don't include the updateable field.

To update analyzers with the new package files, you have two options:

• Close and open any indexes that you want to update:

POST my-index/_close
POST my-index/_open

• Reindex the indexes. First, create an index that uses the updated synonyms file (or an entirely
new file). Note that only UTF-8 is supported.

PUT my-new-index
{
 "settings": {
 "index": {
 "analysis": {
 "analyzer": {
 "synonym_analyzer": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["synonym_filter"]

Manual index updates for dictionaries 813

Amazon OpenSearch Service Developer Guide

 }
 },
 "filter": {
 "synonym_filter": {
 "type": "synonym",
 "synonyms_path": "analyzers/F222222222"
 }
 }
 }
 }
 },
 "mappings": {
 "properties": {
 "description": {
 "type": "text",
 "analyzer": "synonym_analyzer"
 }
 }
 }
}

Then reindex the old index to that new index:

POST _reindex
{
 "source": {
 "index": "my-index"
 },
 "dest": {
 "index": "my-new-index"
 }
}

If you frequently update index analyzers, use index aliases to maintain a consistent path to the
latest index:

POST _aliases
{
 "actions": [
 {
 "remove": {
 "index": "my-index",

Manual index updates for dictionaries 814

https://opensearch.org/docs/opensearch/reindex-data/
https://opensearch.org/docs/opensearch/index-alias/

Amazon OpenSearch Service Developer Guide

 "alias": "latest-index"
 }
 },
 {
 "add": {
 "index": "my-new-index",
 "alias": "latest-index"
 }
 }
]
}

If you don't need the old index, delete it:

DELETE my-index

Dissociating and removing packages

Dissociating a package, whether it's a custom dictionary or optional plugin, from a domain
means that you can no longer use that package when you create new indexes. After a package is
dissociated, existing indexes that were using the package can no longer use it. You must remove
the package from any index before you can dissociate it, otherwise the dissociation fails.

The console is the simplest way to dissociate a package from a domain and remove it from
OpenSearch Service. Removing a package from OpenSearch Service does not remove it from its
original location on Amazon S3.

Dissociate a package from a domain with the Amazon Web Services Management Console

1. Go to https://aws.amazon.com, and then choose Sign In to the Console.

2. Under Analytics, choose Amazon OpenSearch Service.

3. In the navigation pane, choose your domain, and then choose the Packages tab.

4. Select a package, Actions, and then choose Dissociate. Confirm your choice.

5. Wait for the package to disappear from the list. You might need to refresh your browser.

6. If you want to use the package with other domains, stop here. To continue with removing the
package (if it's a custom dictionary), choose Packages in the navigation pane.

7. Select the package and choose Delete.

Dissociating and removing packages 815

https://aws.amazon.com

Amazon OpenSearch Service Developer Guide

Alternately, use the Amazon CLI, SDKs, or configuration API to dissociate and remove packages. For
more information, see the Amazon CLI Command Reference and Amazon OpenSearch Service API
Reference.

Querying your Amazon OpenSearch Service data with SQL

You can use SQL to query your Amazon OpenSearch Service, rather than using the JSON-based
OpenSearch query DSL. Querying with SQL is useful if you're already familiar with the language or
want to integrate your domain with an application that uses it.

Use the following table to find the version of the SQL plugin that's supported by each OpenSearch
and Elasticsearch version.

OpenSearch

OpenSearch
version

SQL plugin
version

Notable features

2.11.0 2.11.0.0 Add support for PPL language and queries

2.9.0 2.9.0.0 Add Spark connector, and support table and PromQL
functions

2.7.0 2.7.0.0 Add datasource API

2.5.0 2.5.0.0

2.3.0 2.3.0.0 Add maketime and makedate datetime functions

1.3.0 1.3.0.0 Support default query limit size, and IN clause to select
from within a value list

1.2.0 1.2.0.0 Add new protocol for visualization response format

1.1.0 1.1.0.0 Support match function as filter in SQL and PPL

1.0.0 1.0.0.0 Support querying a data stream

SQL support 816

https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://opensearch.org/docs/opensearch/query-dsl/full-text/
https://github.com/opensearch-project/sql/releases/tag/2.11.0.0
https://github.com/opensearch-project/sql/releases/tag/2.9.0.0
https://github.com/opensearch-project/sql/releases/tag/2.7.0.0
https://github.com/opensearch-project/sql/releases/tag/2.5.0.0
https://github.com/opensearch-project/sql/releases/tag/2.3.0.0
https://github.com/opensearch-project/sql/releases/tag/1.3.0.0
https://github.com/opensearch-project/sql/releases/tag/1.2.0.0
https://github.com/opensearch-project/sql/releases/tag/1.1.0.0
https://github.com/opensearch-project/sql/releases/tag/1.0.0.0

Amazon OpenSearch Service Developer Guide

Open Distro for Elasticsearch

Elasticsearch
version

SQL plugin
version

Notable features

7.10 1.13.0 NULL FIRST and LAST for window functions, CAST()
function, SHOW and DESCRIBE commands

7.9 1.11.0 Add additional date/time functions, ORDER BY keyword

7.8 1.9.0

7.7 1.8.0

7.3 1.3.0 Multiple string and number operators

7.1 1.1.0

SQL support is available on domains running OpenSearch or Elasticsearch 6.5 or higher. Full
documentation of the SQL plugin is available in the OpenSearch documentation.

Sample call

To query your data with SQL, send HTTP requests to _sql using the following format:

POST domain-endpoint/_plugins/_sql
{
 "query": "SELECT * FROM my-index LIMIT 50"
}

Note

If your domain is running Elasticsearch rather than OpenSearch, the format is
_opendistro/_sql.

Sample call 817

https://github.com/opendistro-for-elasticsearch/sql/releases/tag/v1.13.0.0
https://github.com/opendistro-for-elasticsearch/sql/releases/tag/v1.11.0.0
https://github.com/opendistro-for-elasticsearch/sql/releases/tag/v1.9.0.0
https://github.com/opendistro-for-elasticsearch/sql/releases/tag/v1.8.0.0
https://github.com/opendistro-for-elasticsearch/sql/releases/tag/v1.3.0.0
https://github.com/opendistro-for-elasticsearch/sql/releases/tag/v1.1.0.0
https://opensearch.org/docs/search-plugins/sql/index/

Amazon OpenSearch Service Developer Guide

Notes and differences

Calls to _plugins/_sql include index names in the request body, so they have the same access
policy considerations as the bulk, mget, and msearch operations. As always, follow the principle of
least privilege when you grant permissions to API operations.

For security considerations related to using SQL with fine-grained access control, see the section
called “Fine-grained access control”.

The OpenSearch SQL plugin includes many tunable settings. In OpenSearch Service, use the
_cluster/settings path, not the plugin settings path (_plugins/_query/settings):

PUT _cluster/settings
{
 "transient" : {
 "plugins.sql.enabled" : true
 }
}

For legacy Elasticsearch domains, replace plugins with opendistro:

PUT _cluster/settings
{
 "transient" : {
 "opendistro.sql.enabled" : true
 }
}

SQL Workbench

The SQL Workbench is an OpenSearch Dashboards user interface that lets you run on-demand SQL
queries, translate SQL into its REST equivalent, and view and save results as text, JSON, JDBC, or
CSV. For more information, see Query Workbench.

SQL CLI

The SQL CLI is a standalone Python application that you can launch with the opensearchsql
command. For steps to install, configure, and use, see SQL CLI.

Notes and differences 818

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://opensearch.org/docs/search-plugins/sql/settings/
https://opensearch.org/docs/search-plugins/sql/workbench/
https://opensearch.org/docs/search-plugins/sql/cli/

Amazon OpenSearch Service Developer Guide

JDBC driver

The Java Database Connectivity (JDBC) driver lets you integrate OpenSearch Service domains with
your favorite business intelligence (BI) applications. To download the driver, click here. For more
information, see the GitHub repository.

The following tables summarize version compatibility for the driver.

OpenSearch

OpenSearch version JDBC driver version

2.11 1.1.0.1

2.9 1.1.0.1

2.7 1.1.0.1

2.5 1.1.0.1

2.3 1.1.0.1

1.3 1.1.0.1

1.2 1.1.0.1

1.1 1.1.0.1

1.0 1.1.0.1

Open Distro for Elasticsearch

Elasticsearch version JDBC driver version

7.10 1.13.0

7.9 1.11.0

7.8 1.9.0

7.7 1.8.0

JDBC driver 819

https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://github.com/opensearch-project/sql-jdbc
https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://artifacts.opensearch.org/opensearch-clients/jdbc/opensearch-sql-jdbc-1.1.0.1.jar
https://d3g5vo6xdbdb9a.cloudfront.net/downloads/elasticsearch-clients/opendistro-sql-jdbc/opendistro-sql-jdbc-1.13.0.0.jar
https://d3g5vo6xdbdb9a.cloudfront.net/downloads/elasticsearch-clients/opendistro-sql-jdbc/opendistro-sql-jdbc-1.11.0.0.jar
https://d3g5vo6xdbdb9a.cloudfront.net/downloads/elasticsearch-clients/opendistro-sql-jdbc/opendistro-sql-jdbc-1.9.0.0.jar
https://d3g5vo6xdbdb9a.cloudfront.net/downloads/elasticsearch-clients/opendistro-sql-jdbc/opendistro-sql-jdbc-1.8.0.0.jar

Amazon OpenSearch Service Developer Guide

Elasticsearch version JDBC driver version

7.4 1.4.0

7.1 1.0.0

6.8 0.9.0

6.7 0.9.0

6.5 0.9.0

ODBC driver

The Open Database Connectivity (ODBC) driver is a read-only ODBC driver for Windows and macOS
that lets you connect business intelligence and data visualization applications like Microsoft Excel
to the SQL plugin.

You can download an example working driver file on the OpenSearch artifacts page. For
information about installing the driver, see the SQL repository on GitHub.

k-Nearest Neighbor (k-NN) search in Amazon OpenSearch
Service

Short for its associated k-nearest neighbors algorithm, k-NN for Amazon OpenSearch Service
lets you search for points in a vector space and find the "nearest neighbors" for those points by
Euclidean distance or cosine similarity. Use cases include recommendations (for example, an "other
songs you might like" feature in a music application), image recognition, and fraud detection.

Use the following tables to find the version of the k-NN plugin running on your Amazon
OpenSearch Service domain. Each k-NN plugin version corresponds to an OpenSearch or
Elasticsearch version.

ODBC driver 820

https://d3g5vo6xdbdb9a.cloudfront.net/downloads/elasticsearch-clients/opendistro-sql-jdbc/opendistro-sql-jdbc-1.4.0.0.jar
https://d3g5vo6xdbdb9a.cloudfront.net/downloads/elasticsearch-clients/opendistro-sql-jdbc/opendistro-sql-jdbc-1.0.0.0.jar
https://d3g5vo6xdbdb9a.cloudfront.net/downloads/elasticsearch-clients/opendistro-sql-jdbc/opendistro-sql-jdbc-0.9.0.0.jar
https://d3g5vo6xdbdb9a.cloudfront.net/downloads/elasticsearch-clients/opendistro-sql-jdbc/opendistro-sql-jdbc-0.9.0.0.jar
https://d3g5vo6xdbdb9a.cloudfront.net/downloads/elasticsearch-clients/opendistro-sql-jdbc/opendistro-sql-jdbc-0.9.0.0.jar
https://github.com/opensearch-project/sql-odbc/blob/main/docs/user/microsoft_excel_support.md
https://opensearch.org/artifacts/opensearch/opensearch-sql-odbc-win64-1-4-0-0.html
https://github.com/opensearch-project/sql-odbc
https://opensearch.org/docs/version-history/
https://opendistro.github.io/for-elasticsearch-docs/version-history/

Amazon OpenSearch Service Developer Guide

OpenSearch

OpenSearch
version

k-NN plugin
version

Notable features

2.11 2.11.0.0 Added support for ignore_unmapped in k-NN queries

2.9 2.9.0.0 Implemented k-NN byte vectors and efficient filtering
with the Faiss engine

2.7 2.7.0.0

2.5 2.5.0.0 Extended SystemIndexPlugin for k-NN model system
index, added Lucene-specific file extensions to core
HybridFS

2.3 2.3.0.0

1.3 1.3.0.0

1.2 1.2.0.0 Added support for the Faiss library

1.1 1.1.0.0

1.0 1.0.0.0 Renamed REST APIs while supporting backwards
compatibility, renamed namespace from opendistro
to opensearch

Elasticsearch

Elasticsearch
version

k-NN plugin
version

Notable features

7.1 1.3.0.0 Euclidean distance

7.4 1.4.0.0

7.7 1.8.0.0 Cosine similarity

7.8 1.9.0.0

k-NN search 821

https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

Amazon OpenSearch Service Developer Guide

Elasticsearch
version

k-NN plugin
version

Notable features

7.9 1.11.0.0 Warmup API, custom scoring

7.10 1.13.0.0 Hamming distance, L1 Norm distance, Painless scripting

Full documentation for the k-NN plugin is available in the OpenSearch documentation. For
background information about the k-nearest neighbors algorithm, see Wikipedia.

Getting started with k-NN

To use k-NN, you must create an index with the index.knn setting and add one or more fields of
the knn_vector data type.

PUT my-index
{
 "settings": {
 "index.knn": true
 },
 "mappings": {
 "properties": {
 "my_vector1": {
 "type": "knn_vector",
 "dimension": 2
 },
 "my_vector2": {
 "type": "knn_vector",
 "dimension": 4
 }
 }
 }
}

The knn_vector data type supports a single list of up to 10,000 floats, with the number of floats
defined by the required dimension parameter. After you create the index, add some data to it.

POST _bulk
{ "index": { "_index": "my-index", "_id": "1" } }
{ "my_vector1": [1.5, 2.5], "price": 12.2 }

Getting started with k-NN 822

https://opensearch.org/docs/search-plugins/knn/
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Amazon OpenSearch Service Developer Guide

{ "index": { "_index": "my-index", "_id": "2" } }
{ "my_vector1": [2.5, 3.5], "price": 7.1 }
{ "index": { "_index": "my-index", "_id": "3" } }
{ "my_vector1": [3.5, 4.5], "price": 12.9 }
{ "index": { "_index": "my-index", "_id": "4" } }
{ "my_vector1": [5.5, 6.5], "price": 1.2 }
{ "index": { "_index": "my-index", "_id": "5" } }
{ "my_vector1": [4.5, 5.5], "price": 3.7 }
{ "index": { "_index": "my-index", "_id": "6" } }
{ "my_vector2": [1.5, 5.5, 4.5, 6.4], "price": 10.3 }
{ "index": { "_index": "my-index", "_id": "7" } }
{ "my_vector2": [2.5, 3.5, 5.6, 6.7], "price": 5.5 }
{ "index": { "_index": "my-index", "_id": "8" } }
{ "my_vector2": [4.5, 5.5, 6.7, 3.7], "price": 4.4 }
{ "index": { "_index": "my-index", "_id": "9" } }
{ "my_vector2": [1.5, 5.5, 4.5, 6.4], "price": 8.9 }

Then you can search the data using the knn query type.

GET my-index/_search
{
 "size": 2,
 "query": {
 "knn": {
 "my_vector2": {
 "vector": [2, 3, 5, 6],
 "k": 2
 }
 }
 }
}

In this case, k is the number of neighbors you want the query to return, but you must also include
the size option. Otherwise, you get k results for each shard (and each segment) rather than k
results for the entire query. k-NN supports a maximum k value of 10,000.

If you mix the knn query with other clauses, you might receive fewer than k results. In this
example, the post_filter clause reduces the number of results from 2 to 1.

GET my-index/_search
{
 "size": 2,

Getting started with k-NN 823

Amazon OpenSearch Service Developer Guide

 "query": {
 "knn": {
 "my_vector2": {
 "vector": [2, 3, 5, 6],
 "k": 2
 }
 }
 },
 "post_filter": {
 "range": {
 "price": {
 "gte": 6,
 "lte": 10
 }
 }
 }
}

If you need to handle a large volume of queries while maintaining optimal performance, you can
use the _msearch API to construct a bulk search with JSON and send a single request to perform
multiple searches:

GET _msearch
{ "index": "my-index"}
{ "query": { "knn": {"my_vector2":{"vector": [2, 3, 5, 6],"k":2 }} } }
{ "index": "my-index", "search_type": "dfs_query_then_fetch"}
{ "query": { "knn": {"my_vector1":{"vector": [2, 3],"k":2 }} } }

The following video demonstrates how to set up bulk vector searches for K-NN queries.

k-NN differences, tuning, and limitations

OpenSearch lets you modify all k-NN settings using the _cluster/settings API. On OpenSearch
Service, you can change all settings except knn.memory.circuit_breaker.enabled and
knn.circuit_breaker.triggered. k-NN statistics are included as Amazon CloudWatch
metrics.

In particular, check the KNNGraphMemoryUsage metric on each data node against the
knn.memory.circuit_breaker.limit statistic and the available RAM for the instance type.
OpenSearch Service uses half of an instance's RAM for the Java heap (up to a heap size of 32 GiB).
By default, k-NN uses up to 50% of the remaining half, so an instance type with 32 GiB of RAM

k-NN differences, tuning, and limitations 824

https://opensearch.org/docs/latest/api-reference/multi-search/
https://opensearch.org/docs/search-plugins/knn/settings/

Amazon OpenSearch Service Developer Guide

can accommodate 8 GiB of graphs (32 * 0.5 * 0.5). Performance can suffer if graph memory usage
exceeds this value.

You can't migrate a k-NN index to UltraWarm or cold storage if the index uses approximate k-NN
("index.knn": true). If index.knn is set to false (exact k-NN), you can still move the index to
other storage tiers.

Cross-cluster search in Amazon OpenSearch Service

Cross-cluster search in Amazon OpenSearch Service lets you perform queries and aggregations
across multiple connected domains. It often makes more sense to use multiple smaller domains
instead of a single large domain, especially when you're running different types of workloads.

Workload-specific domains enable you to perform the following tasks:

• Optimize each domain by choosing instance types for specific workloads.

• Establish fault-isolation boundaries across workloads. This means that if one of your workloads
fails, the fault is contained within that specific domain and doesn't impact your other workloads.

• Scale more easily across domains.

Cross-cluster search supports OpenSearch Dashboards, so you can create visualizations and
dashboards across all your domains. You pay standard Amazon data transfer charges for search
results transferred between domains.

Topics

• Limitations

• Cross-cluster search prerequisites

• Cross-cluster search pricing

• Setting up a connection

• Removing a connection

• Setting up security and sample walkthrough

• OpenSearch Dashboards

Limitations

Cross-cluster search has several important limitations:

Cross-cluster search 825

https://opensearch.org/docs/latest/search-plugins/knn/approximate-knn/
https://opensearch.org/docs/latest/search-plugins/knn/knn-score-script/
https://aws.amazon.com/opensearch-service/pricing/

Amazon OpenSearch Service Developer Guide

• You can't connect an Elasticsearch domain to an OpenSearch domain.

• You can't connect to self-managed OpenSearch/Elasticsearch clusters.

• To connect domains across Regions, both domains must be on Elasticsearch 7.10 or later or
OpenSearch.

• A domain can have a maximum of 20 outgoing connections. Similarly, a domain can have a
maximum of 20 incoming connections. In other words, one domain can connect to a maximum of
20 other domains.

• The source domain must be on the same or a higher version than the destination domain.

• You can't use custom dictionaries or SQL with cross-cluster search.

• You can't use Amazon CloudFormation to connect domains.

• You can't use cross-cluster search on M3 or burstable (T2 and T3) instances.

Cross-cluster search prerequisites

Before you set up cross-cluster search, make sure that your domains meet the following
requirements:

• Two OpenSearch domains, or Elasticsearch domains on version 6.7 or later

• Fine-grained access control enabled

• Node-to-node encryption enabled

Cross-cluster search pricing

There is no additional charge for searching across domains.

Setting up a connection

The “source” domain refers to the domain that a cross-cluster search request originates from. In
other words, the source domain is the one that you send the initial search request to.

The “destination” domain is the domain that the source domain queries.

A cross-cluster connection is unidirectional from the source to the destination domain. This means
that the destination domain can’t query the source domain. However, you can set up another
connection in the opposite direction.

Cross-cluster search prerequisites 826

Amazon OpenSearch Service Developer Guide

The source domain creates an "outbound" connection to the destination domain. The destination
domain receives an "inbound" connection request from the source domain.

To set up a connection

1. On your domain dashboard, choose a domain and go to the Connections tab.

2. In the Outbound connections section, choose Request.

3. For Connection alias, enter a name for your connection.

4. Choose between connecting to a domain in your Amazon Web Services account and Region or
in another account or Region.

• To connect to a cluster in your Amazon Web Services account and Region, select the domain
from the dropdown menu and choose Request.

• To connect to a cluster in another Amazon Web Services account or Region, select the
ARN of the remote domain and choose Request. To connect domains across Regions, both
domains must be running Elasticsearch version 7.10 or later or OpenSearch.

5. To skip unavailable clusters for cluster queries, select Skip unavailable. This setting ensures
that your cross-cluster queries return partial results despite failures on one or more remote
clusters.

6. Cross-cluster search first validates the connection request to make sure the prerequisites
are met. If the domains are found to be incompatible, the connection request enters the
Validation failed state.

7. After the connection request is validated successfully, it is sent to the destination domain,
where it needs to be approved. Until this approval happens, the connection remains in a
Pending acceptance state. When the connection request is accepted at the destination
domain, the state changes to Active and the destination domain becomes available for
queries.

Setting up a connection 827

Amazon OpenSearch Service Developer Guide

• The domain page shows you the overall domain health and instance health details of your
destination domain. Only domain owners have the flexibility to create, view, remove, and
monitor connections to or from their domains.

After the connection is established, any traffic that flows between the nodes of the connected
domains is encrypted. If you connect a VPC domain to a non-VPC domain and the non-VPC domain
is a public endpoint that can receive traffic from the internet, the cross-cluster traffic between the
domains is still encrypted and secure.

Removing a connection

Removing a connection stops any cross-cluster operation on its indices.

1. On your domain dashboard, go to the Connections tab.

2. Select the domain connections that you want to remove and choose Delete, then confirm
deletion.

You can perform these steps on either the source or destination domain to remove the connection.
After you remove the connection, it's still visible with a Deleted status for a period of 15 days.

You can't delete a domain with active cross-cluster connections. To delete a domain, first remove
all incoming and outgoing connections from that domain. This ensures you take into account the
cross-cluster domain users before deleting the domain.

Setting up security and sample walkthrough

1. You send a cross-cluster search request to the source domain.

2. The source domain evaluates that request against its domain access policy. Because cross-
cluster search requires fine-grained access control, we recommend an open access policy on
the source domain.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [

Removing a connection 828

Amazon OpenSearch Service Developer Guide

 "*"
]
 },
 "Action": [
 "es:ESHttp*"
],
 "Resource": "arn:aws:es:region:account:domain/src-domain/*"
 }
]
}

Note

If you include remote indexes in the path, you must URL-encode the URI in the domain
ARN. For example, use arn:aws:es:us-east-1:123456789012:domain/my-
domain/local_index,dst%3Aremote_index rather than arn:aws:es:us-
east-1:123456789012:domain/my-domain/local_index,dst:remote_index.

If you choose to use a restrictive access policy in addition to fine-grained access control, your
policy must allow access to es:ESHttpGet at a minimum.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:user/test-user"
]
 },
 "Action": "es:ESHttpGet",
 "Resource": "arn:aws:es:region:account:domain/src-domain/*"
 }
]
}

3. Fine-grained access control on the source domain evaluates the request:

• Is the request signed with valid IAM or HTTP basic credentials?

Setting up security and sample walkthrough 829

Amazon OpenSearch Service Developer Guide

• If so, does the user have permission to perform the search and access the data?

If the request only searches data on the destination domain (for example, dest-
alias:dest-index/_search), you only need permissions on the destination domain.

If the request searches data on both domains (for example, source-index,dest-
alias:dest-index/_search), you need permissions on both domains.

In fine-grained access control, users must have the indices:admin/shards/
search_shards permission in addition to standard read or search permissions for the
relevant indices.

4. The source domain passes the request to the destination domain. The destination
domain evaluates this request against its domain access policy. You must include the
es:ESCrossClusterGet permission on the destination domain:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "es:ESCrossClusterGet",
 "Resource": "arn:aws:es:region:account:domain/dst-domain"
 }
]
}

Make sure that the es:ESCrossClusterGet permission is applied for /dst-domain and not
/dst-domain/*.

However, this minimum policy only allows cross-cluster searches. To perform other operations,
such as indexing documents and performing standard searches, you need additional
permissions. We recommend the following policy on the destination domain:

{
 "Version": "2012-10-17",
 "Statement": [

Setting up security and sample walkthrough 830

Amazon OpenSearch Service Developer Guide

 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "*"
]
 },
 "Action": [
 "es:ESHttp*"
],
 "Resource": "arn:aws:es:region:account:domain/dst-domain/*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "es:ESCrossClusterGet",
 "Resource": "arn:aws:es:region:account:domain/dst-domain"
 }
]
}

Note

All cross-cluster search requests between domains are encrypted in transit by default
as part of node-to-node encryption.

5. The destination domain performs the search and returns the results to the source domain.

6. The source domain combines its own results (if any) with the results from the destination
domain and returns them to you.

7. We recommend Postman for testing requests:

• On the destination domain, index a document:

POST https://dst-domain.us-east-1.es.amazonaws.com/books/_doc/1

{
 "Dracula": "Bram Stoker"
}

Setting up security and sample walkthrough 831

https://www.postman.com/

Amazon OpenSearch Service Developer Guide

• To query this index from the source domain, include the connection alias of the destination
domain within the query.

GET https://src-domain.us-east-1.es.amazonaws.com/<connection_alias>:books/
_search

{
 ...
 "hits": [
 {
 "_index": "source-destination:books",
 "_type": "_doc",
 "_id": "1",
 "_score": 1,
 "_source": {
 "Dracula": "Bram Stoker"
 }
 }
]
}

You can find the connection alias on the Connections tab on your domain dashboard.

• If you set up a connection between domain-a -> domain-b with connection alias
cluster_b and domain-a -> domain-c with connection alias cluster_c, search
domain-a, domain-b, and domain-c as follows:

GET https://src-domain.us-east-1.es.amazonaws.com/
local_index,cluster_b:b_index,cluster_c:c_index/_search
{
 "query": {
 "match": {
 "user": "domino"
 }
 }
}

Response

{
 "took": 150,
 "timed_out": false,

Setting up security and sample walkthrough 832

Amazon OpenSearch Service Developer Guide

 "_shards": {
 "total": 3,
 "successful": 3,
 "failed": 0,
 "skipped": 0
 },
 "_clusters": {
 "total": 3,
 "successful": 3,
 "skipped": 0
 },
 "hits": {
 "total": 3,
 "max_score": 1,
 "hits": [
 {
 "_index": "local_index",
 "_type": "_doc",
 "_id": "0",
 "_score": 1,
 "_source": {
 "user": "domino",
 "message": "Lets unite the new mutants",
 "likes": 0
 }
 },
 {
 "_index": "cluster_b:b_index",
 "_type": "_doc",
 "_id": "0",
 "_score": 2,
 "_source": {
 "user": "domino",
 "message": "I'm different",
 "likes": 0
 }
 },
 {
 "_index": "cluster_c:c_index",
 "_type": "_doc",
 "_id": "0",
 "_score": 3,
 "_source": {
 "user": "domino",

Setting up security and sample walkthrough 833

Amazon OpenSearch Service Developer Guide

 "message": "So am I",
 "likes": 0
 }
 }
]
 }
}

If you did not choose to skip unavailable clusters in your connection setup, all destination
clusters that you search must be available for your search request to run successfully.
Otherwise, the whole request fails—even if one of the domains is not available, no search
results are returned.

OpenSearch Dashboards

You can visualize data from multiple connected domains in the same way as from a single domain,
except that you must access the remote indexes using connection-alias:index. So, your index
pattern must match connection-alias:index.

Learning to Rank for Amazon OpenSearch Service

OpenSearch uses a probabilistic ranking framework called BM-25 to calculate relevance scores. If
a distinctive keyword appears more frequently in a document, BM-25 assigns a higher relevance
score to that document. This framework, however, doesn’t take into account user behavior like
click-through data, which can further improve relevance.

Learning to Rank is an open-source plugin that lets you use machine learning and behavioral data
to tune the relevance of documents. It uses models from the XGBoost and Ranklib libraries to
rescore the search results. The Elasticsearch LTR plugin was initially developed by OpenSource
Connections, with significant contributions by Wikimedia Foundation, Snagajob Engineering,
Bonsai, and Yelp Engineering. The OpenSearch version of the plugin is derived from the
Elasticsearch LTR plugin. Full documentation, including detailed steps and API descriptions, is
available in the Learning to Rank documentation.

Learning to Rank requires OpenSearch or Elasticsearch 7.7 or later.

OpenSearch Dashboards 834

https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/index.html
https://opensourceconnections.com/
https://opensourceconnections.com/
https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/index.html

Amazon OpenSearch Service Developer Guide

Note

To use the Learning to Rank plugin, you must have full admin permissions. To learn more,
see the section called “Modifying the master user”.

Topics

• Getting started with Learning to Rank

• Learning to Rank API

Getting started with Learning to Rank

You need to provide a judgment list, prepare a training dataset, and train the model outside of
Amazon OpenSearch Service. The parts in blue occur outside of OpenSearch Service:

Getting started with Learning to Rank 835

Amazon OpenSearch Service Developer Guide

Step 1: Initialize the plugin

To initialize the Learning to Rank plugin, send the following request to your OpenSearch Service
domain:

PUT _ltr

{
 "acknowledged" : true,
 "shards_acknowledged" : true,
 "index" : ".ltrstore"
}

This command creates a hidden .ltrstore index that stores metadata information such as
feature sets and models.

Step 2: Create a judgment list

Note

You must perform this step outside of OpenSearch Service.

A judgment list is a collection of examples that a machine learning model learns from. Your
judgment list should include keywords that are important to you and a set of graded documents
for each keyword.

In this example, we have a judgment list for a movie dataset. A grade of 4 indicates a perfect
match. A grade of 0 indicates the worst match.

Grade Keyword Doc ID Movie name

4 rambo 7555 Rambo

3 rambo 1370 Rambo III

3 rambo 1369 Rambo: First Blood
Part II

Getting started with Learning to Rank 836

Amazon OpenSearch Service Developer Guide

Grade Keyword Doc ID Movie name

3 rambo 1368 First Blood

Prepare your judgment list in the following format:

4 qid:1 # 7555 Rambo
3 qid:1 # 1370 Rambo III
3 qid:1 # 1369 Rambo: First Blood Part II
3 qid:1 # 1368 First Blood

where qid:1 represents "rambo"

For a more complete example of a judgment list, see movie judgments.

You can create this judgment list manually with the help of human annotators or infer it
programmatically from analytics data.

Step 3: Build a feature set

A feature is a field that corresponds to the relevance of a document—for example, title,
overview, popularity score (number of views), and so on.

Build a feature set with a Mustache template for each feature. For more information about
features, see Working with Features.

In this example, we build a movie_features feature set with the title and overview fields:

POST _ltr/_featureset/movie_features
{
 "featureset" : {
 "name" : "movie_features",
 "features" : [
 {
 "name" : "1",
 "params" : [
 "keywords"
],
 "template_language" : "mustache",
 "template" : {
 "match" : {

Getting started with Learning to Rank 837

https://github.com/o19s/elasticsearch-ltr-demo/blob/master/train/movie_judgments.txt
https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/building-features.html

Amazon OpenSearch Service Developer Guide

 "title" : "{{keywords}}"
 }
 }
 },
 {
 "name" : "2",
 "params" : [
 "keywords"
],
 "template_language" : "mustache",
 "template" : {
 "match" : {
 "overview" : "{{keywords}}"
 }
 }
 }
]
 }
}

If you query the original .ltrstore index, you get back your feature set:

GET _ltr/_featureset

Step 4: Log the feature values

The feature values are the relevance scores calculated by BM-25 for each feature.

Combine the feature set and judgment list to log the feature values. For more information about
logging features, see Logging Feature Scores.

In this example, the bool query retrieves the graded documents with the filter, and then selects
the feature set with the sltr query. The ltr_log query combines the documents and the
features to log the corresponding feature values:

POST tmdb/_search
{
 "_source": {
 "includes": [
 "title",
 "overview"
]

Getting started with Learning to Rank 838

https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/logging-features.html

Amazon OpenSearch Service Developer Guide

 },
 "query": {
 "bool": {
 "filter": [
 {
 "terms": {
 "_id": [
 "7555",
 "1370",
 "1369",
 "1368"
]
 }
 },
 {
 "sltr": {
 "_name": "logged_featureset",
 "featureset": "movie_features",
 "params": {
 "keywords": "rambo"
 }
 }
 }
]
 }
 },
 "ext": {
 "ltr_log": {
 "log_specs": {
 "name": "log_entry1",
 "named_query": "logged_featureset"
 }
 }
 }
}

A sample response might look like the following:

{
 "took" : 7,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,

Getting started with Learning to Rank 839

Amazon OpenSearch Service Developer Guide

 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 4,
 "relation" : "eq"
 },
 "max_score" : 0.0,
 "hits" : [
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "1368",
 "_score" : 0.0,
 "_source" : {
 "overview" : "When former Green Beret John Rambo is harassed by local law
 enforcement and arrested for vagrancy, the Vietnam vet snaps, runs for the hills and
 rat-a-tat-tats his way into the action-movie hall of fame. Hounded by a relentless
 sheriff, Rambo employs heavy-handed guerilla tactics to shake the cops off his tail.",
 "title" : "First Blood"
 },
 "fields" : {
 "_ltrlog" : [
 {
 "log_entry1" : [
 {
 "name" : "1"
 },
 {
 "name" : "2",
 "value" : 10.558305
 }
]
 }
]
 },
 "matched_queries" : [
 "logged_featureset"
]
 },
 {
 "_index" : "tmdb",

Getting started with Learning to Rank 840

Amazon OpenSearch Service Developer Guide

 "_type" : "movie",
 "_id" : "7555",
 "_score" : 0.0,
 "_source" : {
 "overview" : "When governments fail to act on behalf of captive missionaries,
 ex-Green Beret John James Rambo sets aside his peaceful existence along the Salween
 River in a war-torn region of Thailand to take action. Although he's still haunted
 by violent memories of his time as a U.S. soldier during the Vietnam War, Rambo can
 hardly turn his back on the aid workers who so desperately need his help.",
 "title" : "Rambo"
 },
 "fields" : {
 "_ltrlog" : [
 {
 "log_entry1" : [
 {
 "name" : "1",
 "value" : 11.2569065
 },
 {
 "name" : "2",
 "value" : 9.936821
 }
]
 }
]
 },
 "matched_queries" : [
 "logged_featureset"
]
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "1369",
 "_score" : 0.0,
 "_source" : {
 "overview" : "Col. Troutman recruits ex-Green Beret John Rambo for a highly
 secret and dangerous mission. Teamed with Co Bao, Rambo goes deep into Vietnam to
 rescue POWs. Deserted by his own team, he's left in a hostile jungle to fight for his
 life, avenge the death of a woman and bring corrupt officials to justice.",
 "title" : "Rambo: First Blood Part II"
 },
 "fields" : {

Getting started with Learning to Rank 841

Amazon OpenSearch Service Developer Guide

 "_ltrlog" : [
 {
 "log_entry1" : [
 {
 "name" : "1",
 "value" : 6.334839
 },
 {
 "name" : "2",
 "value" : 10.558305
 }
]
 }
]
 },
 "matched_queries" : [
 "logged_featureset"
]
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "1370",
 "_score" : 0.0,
 "_source" : {
 "overview" : "Combat has taken its toll on Rambo, but he's finally begun to
 find inner peace in a monastery. When Rambo's friend and mentor Col. Trautman asks for
 his help on a top secret mission to Afghanistan, Rambo declines but must reconsider
 when Trautman is captured.",
 "title" : "Rambo III"
 },
 "fields" : {
 "_ltrlog" : [
 {
 "log_entry1" : [
 {
 "name" : "1",
 "value" : 9.425955
 },
 {
 "name" : "2",
 "value" : 11.262714
 }
]

Getting started with Learning to Rank 842

Amazon OpenSearch Service Developer Guide

 }
]
 },
 "matched_queries" : [
 "logged_featureset"
]
 }
]
 }
}

In the previous example, the first feature doesn’t have a feature value because the keyword
“rambo” doesn’t appear in the title field of the document with an ID equal to 1368. This is a
missing feature value in the training data.

Step 5: Create a training dataset

Note

You must perform this step outside of OpenSearch Service.

The next step is to combine the judgment list and feature values to create a training dataset. If
your original judgment list looks like this:

4 qid:1 # 7555 Rambo
3 qid:1 # 1370 Rambo III
3 qid:1 # 1369 Rambo: First Blood Part II
3 qid:1 # 1368 First Blood

Convert it into the final training dataset, which looks like this:

4 qid:1 1:12.318474 2:10.573917 # 7555 rambo
3 qid:1 1:10.357875 2:11.950391 # 1370 rambo
3 qid:1 1:7.010513 2:11.220095 # 1369 rambo
3 qid:1 1:0.0 2:11.220095 # 1368 rambo

You can perform this step manually or write a program to automate it.

Getting started with Learning to Rank 843

Amazon OpenSearch Service Developer Guide

Step 6: Choose an algorithm and build the model

Note

You must perform this step outside of OpenSearch Service.

With the training dataset in place, the next step is to use XGBoost or Ranklib libraries to build a
model. XGBoost and Ranklib libraries let you build popular models such as LambdaMART, Random
Forests, and so on.

For steps to use XGBoost and Ranklib to build the model, see the XGBoost and RankLib
documentation, respectively. To use Amazon SageMaker to build the XGBoost model, see XGBoost
Algorithm.

Step 7: Deploy the model

After you have built the model, deploy it into the Learning to Rank plugin. For more information
about deploying a model, see Uploading A Trained Model.

In this example, we build a my_ranklib_model model using the Ranklib library:

POST _ltr/_featureset/movie_features/_createmodel?pretty
{
 "model": {
 "name": "my_ranklib_model",
 "model": {
 "type": "model/ranklib",
 "definition": """## LambdaMART
No. of trees = 10
No. of leaves = 10
No. of threshold candidates = 256
Learning rate = 0.1
Stop early = 100

<ensemble>
 <tree id="1" weight="0.1">
 <split>
 <feature>1</feature>
 <threshold>10.357875</threshold>
 <split pos="left">
 <feature>1</feature>

Getting started with Learning to Rank 844

https://xgboost.readthedocs.io/en/latest/index.html
https://sourceforge.net/p/lemur/wiki/RankLib/
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/training-models.html

Amazon OpenSearch Service Developer Guide

 <threshold>0.0</threshold>
 <split pos="left">
 <output>-2.0</output>
 </split>
 <split pos="right">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">
 <output>-2.0</output>
 </split>
 <split pos="right">
 <output>-2.0</output>
 </split>
 </split>
 </split>
 <split pos="right">
 <output>2.0</output>
 </split>
 </split>
 </tree>
 <tree id="2" weight="0.1">
 <split>
 <feature>1</feature>
 <threshold>10.357875</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>0.0</threshold>
 <split pos="left">
 <output>-1.67031991481781</output>
 </split>
 <split pos="right">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">
 <output>-1.67031991481781</output>
 </split>
 <split pos="right">
 <output>-1.6703200340270996</output>
 </split>
 </split>
 </split>
 <split pos="right">
 <output>1.6703201532363892</output>
 </split>

Getting started with Learning to Rank 845

Amazon OpenSearch Service Developer Guide

 </split>
 </tree>
 <tree id="3" weight="0.1">
 <split>
 <feature>2</feature>
 <threshold>10.573917</threshold>
 <split pos="left">
 <output>1.479954481124878</output>
 </split>
 <split pos="right">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>0.0</threshold>
 <split pos="left">
 <output>-1.4799546003341675</output>
 </split>
 <split pos="right">
 <output>-1.479954481124878</output>
 </split>
 </split>
 <split pos="right">
 <output>-1.479954481124878</output>
 </split>
 </split>
 </split>
 </tree>
 <tree id="4" weight="0.1">
 <split>
 <feature>1</feature>
 <threshold>10.357875</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>0.0</threshold>
 <split pos="left">
 <output>-1.3569872379302979</output>
 </split>
 <split pos="right">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">
 <output>-1.3569872379302979</output>
 </split>

Getting started with Learning to Rank 846

Amazon OpenSearch Service Developer Guide

 <split pos="right">
 <output>-1.3569872379302979</output>
 </split>
 </split>
 </split>
 <split pos="right">
 <output>1.3569873571395874</output>
 </split>
 </split>
 </tree>
 <tree id="5" weight="0.1">
 <split>
 <feature>1</feature>
 <threshold>10.357875</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>0.0</threshold>
 <split pos="left">
 <output>-1.2721362113952637</output>
 </split>
 <split pos="right">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">
 <output>-1.2721363306045532</output>
 </split>
 <split pos="right">
 <output>-1.2721363306045532</output>
 </split>
 </split>
 </split>
 <split pos="right">
 <output>1.2721362113952637</output>
 </split>
 </split>
 </tree>
 <tree id="6" weight="0.1">
 <split>
 <feature>1</feature>
 <threshold>10.357875</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">

Getting started with Learning to Rank 847

Amazon OpenSearch Service Developer Guide

 <feature>1</feature>
 <threshold>0.0</threshold>
 <split pos="left">
 <output>-1.2110036611557007</output>
 </split>
 <split pos="right">
 <output>-1.2110036611557007</output>
 </split>
 </split>
 <split pos="right">
 <output>-1.2110037803649902</output>
 </split>
 </split>
 <split pos="right">
 <output>1.2110037803649902</output>
 </split>
 </split>
 </tree>
 <tree id="7" weight="0.1">
 <split>
 <feature>1</feature>
 <threshold>10.357875</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>0.0</threshold>
 <split pos="left">
 <output>-1.165616512298584</output>
 </split>
 <split pos="right">
 <output>-1.165616512298584</output>
 </split>
 </split>
 <split pos="right">
 <output>-1.165616512298584</output>
 </split>
 </split>
 <split pos="right">
 <output>1.165616512298584</output>
 </split>
 </split>
 </tree>

Getting started with Learning to Rank 848

Amazon OpenSearch Service Developer Guide

 <tree id="8" weight="0.1">
 <split>
 <feature>1</feature>
 <threshold>10.357875</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>0.0</threshold>
 <split pos="left">
 <output>-1.131177544593811</output>
 </split>
 <split pos="right">
 <output>-1.131177544593811</output>
 </split>
 </split>
 <split pos="right">
 <output>-1.131177544593811</output>
 </split>
 </split>
 <split pos="right">
 <output>1.131177544593811</output>
 </split>
 </split>
 </tree>
 <tree id="9" weight="0.1">
 <split>
 <feature>2</feature>
 <threshold>10.573917</threshold>
 <split pos="left">
 <output>1.1046180725097656</output>
 </split>
 <split pos="right">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>0.0</threshold>
 <split pos="left">
 <output>-1.1046180725097656</output>
 </split>
 <split pos="right">
 <output>-1.1046180725097656</output>

Getting started with Learning to Rank 849

Amazon OpenSearch Service Developer Guide

 </split>
 </split>
 <split pos="right">
 <output>-1.1046180725097656</output>
 </split>
 </split>
 </split>
 </tree>
 <tree id="10" weight="0.1">
 <split>
 <feature>1</feature>
 <threshold>10.357875</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>7.010513</threshold>
 <split pos="left">
 <feature>1</feature>
 <threshold>0.0</threshold>
 <split pos="left">
 <output>-1.0838804244995117</output>
 </split>
 <split pos="right">
 <output>-1.0838804244995117</output>
 </split>
 </split>
 <split pos="right">
 <output>-1.0838804244995117</output>
 </split>
 </split>
 <split pos="right">
 <output>1.0838804244995117</output>
 </split>
 </split>
 </tree>
</ensemble>
"""
 }
 }
}

To see the model, send the following request:

GET _ltr/_model/my_ranklib_model

Getting started with Learning to Rank 850

Amazon OpenSearch Service Developer Guide

Step 8: Search with learning to rank

After you deploy the model, you’re ready to search.

Perform the sltr query with the features that you’re using and the name of the model that you
want to execute:

POST tmdb/_search
{
 "_source": {
 "includes": ["title", "overview"]
 },
 "query": {
 "multi_match": {
 "query": "rambo",
 "fields": ["title", "overview"]
 }
 },
 "rescore": {
 "query": {
 "rescore_query": {
 "sltr": {
 "params": {
 "keywords": "rambo"
 },
 "model": "my_ranklib_model"
 }
 }
 }
 }
}

With Learning to Rank, you see “Rambo” as the first result because we have assigned it the highest
grade in the judgment list:

{
 "took" : 12,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0

Getting started with Learning to Rank 851

Amazon OpenSearch Service Developer Guide

 },
 "hits" : {
 "total" : {
 "value" : 7,
 "relation" : "eq"
 },
 "max_score" : 13.096414,
 "hits" : [
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "7555",
 "_score" : 13.096414,
 "_source" : {
 "overview" : "When governments fail to act on behalf of captive missionaries,
 ex-Green Beret John James Rambo sets aside his peaceful existence along the Salween
 River in a war-torn region of Thailand to take action. Although he's still haunted
 by violent memories of his time as a U.S. soldier during the Vietnam War, Rambo can
 hardly turn his back on the aid workers who so desperately need his help.",
 "title" : "Rambo"
 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "1370",
 "_score" : 11.17245,
 "_source" : {
 "overview" : "Combat has taken its toll on Rambo, but he's finally begun to
 find inner peace in a monastery. When Rambo's friend and mentor Col. Trautman asks for
 his help on a top secret mission to Afghanistan, Rambo declines but must reconsider
 when Trautman is captured.",
 "title" : "Rambo III"
 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "1368",
 "_score" : 10.442155,
 "_source" : {
 "overview" : "When former Green Beret John Rambo is harassed by local law
 enforcement and arrested for vagrancy, the Vietnam vet snaps, runs for the hills and

Getting started with Learning to Rank 852

Amazon OpenSearch Service Developer Guide

 rat-a-tat-tats his way into the action-movie hall of fame. Hounded by a relentless
 sheriff, Rambo employs heavy-handed guerilla tactics to shake the cops off his tail.",
 "title" : "First Blood"
 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "1369",
 "_score" : 10.442155,
 "_source" : {
 "overview" : "Col. Troutman recruits ex-Green Beret John Rambo for a highly
 secret and dangerous mission. Teamed with Co Bao, Rambo goes deep into Vietnam to
 rescue POWs. Deserted by his own team, he's left in a hostile jungle to fight for his
 life, avenge the death of a woman and bring corrupt officials to justice.",
 "title" : "Rambo: First Blood Part II"
 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "31362",
 "_score" : 7.424202,
 "_source" : {
 "overview" : "It is 1985, and a small, tranquil Florida town is being rocked
 by a wave of vicious serial murders and bank robberies. Particularly sickening to the
 authorities is the gratuitous use of violence by two “Rambo” like killers who dress
 themselves in military garb. Based on actual events taken from FBI files, the movie
 depicts the Bureau’s efforts to track down these renegades.",
 "title" : "In the Line of Duty: The F.B.I. Murders"
 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "13258",
 "_score" : 6.43182,
 "_source" : {
 "overview" : """Will Proudfoot (Bill Milner) is looking for an escape from
 his family's stifling home life when he encounters Lee Carter (Will Poulter), the
 school bully. Armed with a video camera and a copy of "Rambo: First Blood", Lee plans
 to make cinematic history by filming his own action-packed video epic. Together, these
 two newfound friends-turned-budding-filmmakers quickly discover that their imaginative

Getting started with Learning to Rank 853

Amazon OpenSearch Service Developer Guide

 ― and sometimes mishap-filled ― cinematic adventure has begun to take on a life of its
 own!""",
 "title" : "Son of Rambow"
 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "61410",
 "_score" : 3.9719706,
 "_source" : {
 "overview" : "It's South Africa 1990. Two major events are about to happen:
 The release of Nelson Mandela and, more importantly, it's Spud Milton's first year
 at an elite boys only private boarding school. John Milton is a boy from an ordinary
 background who wins a scholarship to a private school in Kwazulu-Natal, South Africa.
 Surrounded by boys with nicknames like Gecko, Rambo, Rain Man and Mad Dog, Spud has
 his hands full trying to adapt to his new home. Along the way Spud takes his first
 tentative steps along the path to manhood. (The path it seems could be a rather long
 road). Spud is an only child. He is cursed with parents from well beyond the lunatic
 fringe and a senile granny. His dad is a fervent anti-communist who is paranoid that
 the family domestic worker is running a shebeen from her room at the back of the
 family home. His mom is a free spirit and a teenager's worst nightmare, whether it's
 shopping for Spud's underwear in the local supermarket",
 "title" : "Spud"
 }
 }
]
 }
}

If you search without using the Learning to Rank plugin, OpenSearch returns different results:

POST tmdb/_search
{
 "_source": {
 "includes": ["title", "overview"]
 },
 "query": {
 "multi_match": {
 "query": "Rambo",
 "fields": ["title", "overview"]
 }
 }

Getting started with Learning to Rank 854

Amazon OpenSearch Service Developer Guide

}

{
 "took" : 5,
 "timed_out" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "skipped" : 0,
 "failed" : 0
 },
 "hits" : {
 "total" : {
 "value" : 5,
 "relation" : "eq"
 },
 "max_score" : 11.262714,
 "hits" : [
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "1370",
 "_score" : 11.262714,
 "_source" : {
 "overview" : "Combat has taken its toll on Rambo, but he's finally begun to
 find inner peace in a monastery. When Rambo's friend and mentor Col. Trautman asks for
 his help on a top secret mission to Afghanistan, Rambo declines but must reconsider
 when Trautman is captured.",
 "title" : "Rambo III"
 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "7555",
 "_score" : 11.2569065,
 "_source" : {
 "overview" : "When governments fail to act on behalf of captive missionaries,
 ex-Green Beret John James Rambo sets aside his peaceful existence along the Salween
 River in a war-torn region of Thailand to take action. Although he's still haunted
 by violent memories of his time as a U.S. soldier during the Vietnam War, Rambo can
 hardly turn his back on the aid workers who so desperately need his help.",
 "title" : "Rambo"

Getting started with Learning to Rank 855

Amazon OpenSearch Service Developer Guide

 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "1368",
 "_score" : 10.558305,
 "_source" : {
 "overview" : "When former Green Beret John Rambo is harassed by local law
 enforcement and arrested for vagrancy, the Vietnam vet snaps, runs for the hills and
 rat-a-tat-tats his way into the action-movie hall of fame. Hounded by a relentless
 sheriff, Rambo employs heavy-handed guerilla tactics to shake the cops off his tail.",
 "title" : "First Blood"
 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "1369",
 "_score" : 10.558305,
 "_source" : {
 "overview" : "Col. Troutman recruits ex-Green Beret John Rambo for a highly
 secret and dangerous mission. Teamed with Co Bao, Rambo goes deep into Vietnam to
 rescue POWs. Deserted by his own team, he's left in a hostile jungle to fight for his
 life, avenge the death of a woman and bring corrupt officials to justice.",
 "title" : "Rambo: First Blood Part II"
 }
 },
 {
 "_index" : "tmdb",
 "_type" : "movie",
 "_id" : "13258",
 "_score" : 6.4600153,
 "_source" : {
 "overview" : """Will Proudfoot (Bill Milner) is looking for an escape from
 his family's stifling home life when he encounters Lee Carter (Will Poulter), the
 school bully. Armed with a video camera and a copy of "Rambo: First Blood", Lee plans
 to make cinematic history by filming his own action-packed video epic. Together, these
 two newfound friends-turned-budding-filmmakers quickly discover that their imaginative
 ― and sometimes mishap-filled ― cinematic adventure has begun to take on a life of its
 own!""",
 "title" : "Son of Rambow"
 }
 }

Getting started with Learning to Rank 856

Amazon OpenSearch Service Developer Guide

]
 }
}

Based on how well you think the model is performing, adjust the judgment list and features. Then,
repeat steps 2–8 to improve the ranking results over time.

Learning to Rank API

Use the Learning to Rank operations to programmatically work with feature sets and models.

Create store

Creates a hidden .ltrstore index that stores metadata information such as feature sets and
models.

PUT _ltr

Delete store

Deletes the hidden .ltrstore index and resets the plugin.

DELETE _ltr

Create feature set

Creates a feature set.

POST _ltr/_featureset/<name_of_features>

Delete feature set

Deletes a feature set.

DELETE _ltr/_featureset/<name_of_feature_set>

Get feature set

Retrieves a feature set.

Learning to Rank API 857

Amazon OpenSearch Service Developer Guide

GET _ltr/_featureset/<name_of_feature_set>

Create model

Creates a model.

POST _ltr/_featureset/<name_of_feature_set>/_createmodel

Delete model

Deletes a model.

DELETE _ltr/_model/<name_of_model>

Get model

Retrieves a model.

GET _ltr/_model/<name_of_model>

Get stats

Provides information about how the plugin is behaving.

GET _ltr/_stats

You can also use filters to retrieve a single stat:

GET _ltr/_stats/<stat>

Futthermore, you can limit the information to a single node in the cluster:

GET _ltr/_stats/<stat>/nodes/<nodeId>

{
 "_nodes" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0

Learning to Rank API 858

Amazon OpenSearch Service Developer Guide

 },
 "cluster_name" : "873043598401:ltr-77",
 "stores" : {
 ".ltrstore" : {
 "model_count" : 1,
 "featureset_count" : 1,
 "feature_count" : 2,
 "status" : "green"
 }
 },
 "status" : "green",
 "nodes" : {
 "DjelK-_ZSfyzstO5dhGGQA" : {
 "cache" : {
 "feature" : {
 "eviction_count" : 0,
 "miss_count" : 0,
 "entry_count" : 0,
 "memory_usage_in_bytes" : 0,
 "hit_count" : 0
 },
 "featureset" : {
 "eviction_count" : 2,
 "miss_count" : 2,
 "entry_count" : 0,
 "memory_usage_in_bytes" : 0,
 "hit_count" : 0
 },
 "model" : {
 "eviction_count" : 2,
 "miss_count" : 3,
 "entry_count" : 1,
 "memory_usage_in_bytes" : 3204,
 "hit_count" : 1
 }
 },
 "request_total_count" : 6,
 "request_error_count" : 0
 }
 }
}

The statistics are provided at two levels, node and cluster, as specified in the following tables:

Learning to Rank API 859

Amazon OpenSearch Service Developer Guide

Node-level stats

Field name Description

request_total_count Total count of ranking requests.

request_error_count Total count of unsuccessful requests.

cache Statistics across all caches (features, featurese
ts, models). A cache hit occurs when a user
queries the plugin and the model is already
loaded into memory.

cache.eviction_count Number of cache evictions.

cache.hit_count Number of cache hits.

cache.miss_count Number of cache misses. A cache miss occurs
when a user queries the plugin and the model
has not yet been loaded into memory.

cache.entry_count Number of entries in the cache.

cache.memory_usage_in_bytes Total memory used in bytes.

cache.cache_capacity_reached Indicates if the cache limit is reached.

Cluster-level stats

Field name Description

stores Indicates where the feature sets and model
metadata are stored. (The default is “.ltrstore”.
Otherwise, it's prefixed with “.ltrstore_”, with a
user supplied name).

stores.status Status of the index.

stores.feature_sets Number of feature sets.

Learning to Rank API 860

Amazon OpenSearch Service Developer Guide

Field name Description

stores.features_count Number of features.

stores.model_count Number of models.

status The plugin status based on the status of the
feature store indices (red, yellow, or green)
and circuit breaker state (open or closed).

cache.cache_capacity_reached Indicates if the cache limit is reached.

Get cache stats

Returns statistics about the cache and memory usage.

GET _ltr/_cachestats

{
 "_nodes": {
 "total": 2,
 "successful": 2,
 "failed": 0
 },
 "cluster_name": "opensearch-cluster",
 "all": {
 "total": {
 "ram": 612,
 "count": 1
 },
 "features": {
 "ram": 0,
 "count": 0
 },
 "featuresets": {
 "ram": 612,
 "count": 1
 },
 "models": {
 "ram": 0,
 "count": 0

Learning to Rank API 861

Amazon OpenSearch Service Developer Guide

 }
 },
 "stores": {
 ".ltrstore": {
 "total": {
 "ram": 612,
 "count": 1
 },
 "features": {
 "ram": 0,
 "count": 0
 },
 "featuresets": {
 "ram": 612,
 "count": 1
 },
 "models": {
 "ram": 0,
 "count": 0
 }
 }
 },
 "nodes": {
 "ejF6uutERF20wOFNOXB61A": {
 "name": "opensearch1",
 "hostname": "172.18.0.4",
 "stats": {
 "total": {
 "ram": 612,
 "count": 1
 },
 "features": {
 "ram": 0,
 "count": 0
 },
 "featuresets": {
 "ram": 612,
 "count": 1
 },
 "models": {
 "ram": 0,
 "count": 0
 }
 }

Learning to Rank API 862

Amazon OpenSearch Service Developer Guide

 },
 "Z2RZNWRLSveVcz2c6lHf5A": {
 "name": "opensearch2",
 "hostname": "172.18.0.2",
 "stats": {
 ...
 }
 }
 }
}

Clear cache

Clears the plugin cache. Use this to refresh the model.

POST _ltr/_clearcache

Asynchronous search in Amazon OpenSearch Service

With asynchronous search for Amazon OpenSearch Service you can submit a search query that gets
executed in the background, monitor the progress of the request, and retrieve results at a later
stage. You can retrieve partial results as they become available before the search has completed.
After the search finishes, save the results for later retrieval and analysis.

Asynchronous search requires OpenSearch 1.0 or later, or Elasticsearch 7.10 or later. Full
documentation for asynchronous search, including detailed steps and API descriptions, is available
in the OpenSearch documentation.

Sample search call

To perform an asynchronous search, send HTTP requests to _plugins/_asynchronous_search
using the following format:

POST opensearch-domain/_plugins/_asynchronous_search

Note

If you're using Elasticsearch 7.10 instead of an OpenSearch version, replace _plugins with
_opendistro in all asynchronous search requests.

Asynchronous search 863

https://opensearch.org/docs/search-plugins/async/index/

Amazon OpenSearch Service Developer Guide

You can specify the following asynchronous search options:

Options Description Default
value

Required

wait_for_
completio
n_timeout

Specifies the amount of time that you plan
to wait for the results. You can see whatever
results you get within this time just like in a
normal search. You can poll the remaining
results based on an ID. The maximum value is
300 seconds.

1 second No

keep_on_c
ompletion

Specifies whether you want to save the results
in the cluster after the search is complete. You
can examine the stored results at a later time.

false No

keep_aliv
e

Specifies the amount of time that the result
is saved in the cluster. For example, 2d means
that the results are stored in the cluster for
48 hours. The saved search results are deleted
after this period or if the search is canceled.
Note that this includes the query runtime.
If the query overruns this time, the process
cancels this query automatically.

12 hours No

Sample request

POST _plugins/_asynchronous_search/?
pretty&size=10&wait_for_completion_timeout=1ms&keep_on_completion=true&request_cache=false
{
 "aggs": {
 "city": {
 "terms": {
 "field": "city",
 "size": 10
 }
 }
 }

Sample search call 864

Amazon OpenSearch Service Developer Guide

}

Note

All request parameters that apply to a standard _search query are supported. If you're
using Elasticsearch 7.10 instead of an OpenSearch version, replace _plugins with
_opendistro.

Asynchronous search permissions

Asynchronous search supports fine-grained access control. For details on mixing and matching
permissions to fit your use case, see Asynchronous search security.

For domains with fine-grained access control enabled, you need the following minimum
permissions for a role:

Allows users to use all asynchronous search functionality
asynchronous_search_full_access:
 reserved: true
 cluster_permissions:
 - 'cluster:admin/opensearch/asynchronous-search/*'
 index_permissions:
 - index_patterns:
 - '*'
 allowed_actions:
 - 'indices:data/read/search*'

Allows users to read stored asynchronous search results
asynchronous_search_read_access:
 reserved: true
 cluster_permissions:
 - 'cluster:admin/opensearch/asynchronous-search/get'

For domains with fine-grained access control disabled, use your IAM access and secret key to sign
all requests. You can access the results with the asynchronous search ID.

Asynchronous search settings

OpenSearch lets you change all available asynchronous search settings using the _cluster/
settings API. In OpenSearch Service, you can only change the following settings:

Asynchronous search permissions 865

https://opensearch.org/docs/search-plugins/async/security/
https://opensearch.org/docs/search-plugins/async/settings/

Amazon OpenSearch Service Developer Guide

• plugins.asynchronous_search.node_concurrent_running_searches

• plugins.asynchronous_search.persist_search_failures

Cross-cluster search

You can perform an asynchronous search across clusters with the following minor limitations:

• You can run an asynchronous search only on the source domain.

• You can't minimize network round trips as part of a cross-cluster search query.

If you set up a connection between domain-a -> domain-b with connection alias cluster_b
and domain-a -> domain-c with connection alias cluster_c, asynchronously search domain-
a, domain-b, and domain-c as follows:

POST https://src-domain.us-east-1.es.amazonaws.com/
local_index,cluster_b:b_index,cluster_c:c_index/_plugins/_asynchronous_search/?
pretty&size=10&wait_for_completion_timeout=500ms&keep_on_completion=true&request_cache=false
{
 "size": 0,
 "_source": {
 "excludes": []
 },
 "aggs": {
 "2": {
 "terms": {
 "field": "clientip",
 "size": 50,
 "order": {
 "_count": "desc"
 }
 }
 }
 },
 "stored_fields": [
 "*"
],
 "script_fields": {},
 "docvalue_fields": [
 "@timestamp"
],

Cross-cluster search 866

Amazon OpenSearch Service Developer Guide

 "query": {
 "bool": {
 "must": [
 {
 "query_string": {
 "query": "status:404",
 "analyze_wildcard": true,
 "default_field": "*"
 }
 },
 {
 "range": {
 "@timestamp": {
 "gte": 1483747200000,
 "lte": 1488326400000,
 "format": "epoch_millis"
 }
 }
 }
],
 "filter": [],
 "should": [],
 "must_not": []
 }
 }
}

Response

{
 "id" :
 "Fm9pYzJyVG91U19xb0hIQUJnMHJfRFEAAAAAAAknghQ1OWVBczNZQjVEa2dMYTBXaTdEagAAAAAAAAAB",
 "state" : "RUNNING",
 "start_time_in_millis" : 1609329314796,
 "expiration_time_in_millis" : 1609761314796
}

For more information, see the section called “Cross-cluster search”.

UltraWarm

Asynchronous searches with UltraWarm indexes continue to work. For more information, see the
section called “UltraWarm storage”.

UltraWarm 867

Amazon OpenSearch Service Developer Guide

Note

You can monitor asynchronous search statistics in CloudWatch. For a full list of metrics, see
the section called “Asynchronous search metrics”.

Point in time in Amazon OpenSearch Service

The point in time (PIT) feature is a type of search that lets you run different queries against a
dataset that's fixed in time. Typically, when you run the same query on the same index at different
points in time, you receive different results because documents are constantly indexed, updated,
and deleted. With PIT, you can query against a constant state of your dataset.

The main use of the PIT feature is to couple it with search_after functionality. This is the
preferred pagination method in OpenSearch, especially for deep pagination, because it operates
on a dataset that is frozen in time, it is not bound to a query, and it supports consistent pagination
going forward and backward. You can use PIT with OpenSearch Service version 2.5 and later.

For more information about PIT, see Point in Time in the OpenSearch documentation.

Considerations

Consider the following when you configure your PIT searches:

• If you're upgrading from a 2.3 domain and need fine-grain access control on PIT actions, you
need to manually add those actions and roles.

• There's no resiliency for PIT. Node reboot, node termination, blue/green deployments, and ES
process restarts cause all PIT data to be lost.

• If a shard relocates during blue/green deployment, only live data segments are transferred to
the new node. Segments of shards held by PIT (both exclusively and the one shared with lived
data) remain on the old node.

• PIT searches currently don't work with asynchronous search.

Create a PIT

To create a PIT, send HTTP requests to _search/point_in_time using the following format:

Point in time 868

https://opensearch.org/docs/latest/opensearch/point-in-time/

Amazon OpenSearch Service Developer Guide

POST opensearch-domain/my-index/_search/point_in_time?keep_alive=time

You can specify the following PIT options:

Options Description Default
value

Required

keep_aliv
e

The amount of time to keep the PIT. Every
time you access a PIT with a search request,
the PIT lifetime is extended by the amount of
time equal to the keep_alive parameter
. This query parameter is required when you
create a PIT, but optional in a search request.

 Yes

preferenc
e

A string that specifies the node or the shard
used to perform the search.

Random No

routing A string that specifies to route search requests
to a specific shard.

The
document’s
_id

No

expand_wi
ldcards

A string that specifies type of index that
can match the wildcard pattern. Supports
comma-separated values. Valid values are the
following:

• all: Match any index or data stream,
including hidden ones.

• open: Match open, non-hidden indexes or
non-hidden data streams.

• closed: Match closed, non-hidden indexes
or non-hidden data streams.

• hidden: Match hidden indexes or data
streams. Must be combined with open,
closed or both open and closed.

• none: No wildcard patterns are accepted.

open No

Create a PIT 869

Amazon OpenSearch Service Developer Guide

Options Description Default
value

Required

allow_par
tial_pit_
creation

A boolean that specifies whether to create a
PIT with partial failures.

true No

Sample response

{
 "pit_id":
 "o463QQEPbXktaW5kZXgtMDAwMDAxFnNOWU43ckt3U3IyaFVpbGE1UWEtMncAFjFyeXBsRGJmVFM2RTB6eVg1aVVqQncAAAAAAAAAAAIWcDVrM3ZIX0pRNS1XejE5YXRPRFhzUQEWc05ZTjdyS3dTcjJoVWlsYTVRYS0ydwAA",
 "_shards": {
 "total": 1,
 "successful": 1,
 "skipped": 0,
 "failed": 0
 },
 "creation_time": 1658146050064
}

When you create a PIT, you receive a PIT ID in the response. This is the ID that you use to perform
searches with the PIT.

Point in time permissions

PIT supports fine-grained access control. If you're upgrading to a 2.5 domain and need fine-grain
access control, you need to manually create roles with the following permissions:

Allows users to use all point in time search search functionality
point_in_time_full_access:
 reserved: true
 index_permissions:
 - index_patterns:
 - '*'
 allowed_actions:
 - "indices:data/read/point_in_time/create"
 - "indices:data/read/point_in_time/delete"
 - "indices:data/read/point_in_time/readall"
 - "indices:data/read/search"

Point in time permissions 870

Amazon OpenSearch Service Developer Guide

 - "indices:monitor/point_in_time/segments"

Allows users to use point in time search search functionality for specific index
All type operations like list all PITs, delete all PITs are not supported in this
 case

point_in_time_index_access:
 reserved: true
 index_permissions:
 - index_patterns:
 - 'my-index-1'
 allowed_actions:
 - "indices:data/read/point_in_time/create"
 - "indices:data/read/point_in_time/delete"
 - "indices:data/read/search"
 - "indices:monitor/point_in_time/segments"

For domains with version 2.5 and above, you can use the built-in point_in_time_full_access
role. For more information, see Security model in the OpenSearch documentation.

PIT settings

OpenSearch lets you change all available PIT settings using the _cluster/settings API. In
OpenSearch Service, you can't currently modify settings.

Cross-cluster search

You can create PITs, search with PIT IDs, list PITs, and delete PITs across clusters with the following
minor limitations:

• You can list all and delete all PITs only on the source domain.

• You can't minimize network round trips as part of a cross-cluster search query.

For more information, see the section called “Cross-cluster search”.

UltraWarm

PIT searches with UltraWarm indexes continue to work. For more information, see the section
called “UltraWarm storage”.

PIT settings 871

https://opensearch.org/docs/latest/search-plugins/point-in-time/#security-model
https://opensearch.org/docs/latest/search-plugins/point-in-time-api/#pit-settings

Amazon OpenSearch Service Developer Guide

Note

You can monitor PIT search statistics in CloudWatch. For a full list of metrics, see the
section called “Point in time metrics”.

Semantic search in Amazon OpenSearch Service

Starting with OpenSearch Service version 2.9, you can use semantic search to help you understand
search queries and improve search relevance. You can use semantic search in one of two ways –
with neural search and with k-NN.

With OpenSearch Service, you can set up AI connectors for Amazon Web Services and external
services. Using the console, you can also create an ML model with a Amazon CloudFormation
template. For more information, see the section called “CloudFormation template integrations”.

Semantic search 872

https://opensearch.org/docs/latest/search-plugins/semantic-search/
https://opensearch.org/docs/latest/search-plugins/neural-search/
https://opensearch.org/docs/latest/search-plugins/knn/index/

Amazon OpenSearch Service Developer Guide

Using OpenSearch Dashboards with Amazon OpenSearch
Service

OpenSearch Dashboards is an open-source visualization tool designed to work with OpenSearch.
Amazon OpenSearch Service provides an installation of OpenSearch Dashboards with every
OpenSearch Service domain.

You can find a link to OpenSearch Dashboards on your domain dashboard in the OpenSearch
Service console. For domains running OpenSearch, the URL is domain-endpoint/
_dashboards/. For domains running legacy Elasticsearch, the URL is domain-endpoint/
_plugin/kibana.

Queries using this default OpenSearch Dashboards installation have a 300-second timeout.

The following sections address some common use cases for OpenSearch Dashboards:

• the section called “Controlling access to OpenSearch Dashboards”

• the section called “Configuring OpenSearch Dashboards to use a WMS map server”

• the section called “Connecting a local Dashboards server to OpenSearch Service”

Controlling access to OpenSearch Dashboards

Dashboards does not natively support IAM users and roles, but OpenSearch Service offers several
solutions for controlling access to Dashboards:

• Enable SAML authentication for Dashboards.

• Use fine-grained access control with HTTP basic authentication.

• Configure Cognito authentication for Dashboards.

• For public access domains, configure an IP-based access policy that either uses or does not use a
proxy server.

• For VPC access domains, use an open access policy that either uses or does not use a proxy
server, and security groups to control access. To learn more, see the section called “About access
policies on VPC domains”.

Controlling access to OpenSearch Dashboards 873

https://docs.amazonaws.cn/vpc/latest/userguide/VPC_SecurityGroups.html

Amazon OpenSearch Service Developer Guide

Using a proxy to access OpenSearch Service from OpenSearch
Dashboards

Note

This process is only applicable if your domain uses public access and you don't want to
use Cognito authentication. See the section called “Controlling access to OpenSearch
Dashboards”.

Because Dashboards is a JavaScript application, requests originate from the user's IP address. IP-
based access control might be impractical due to the sheer number of IP addresses you would need
to allow in order for each user to have access to Dashboards. One workaround is to place a proxy
server between OpenSearch Dashboards and OpenSearch Service. Then you can add an IP-based
access policy that allows requests from only one IP address, the proxy's. The following diagram
shows this configuration.

Using a proxy to access OpenSearch Service from OpenSearch Dashboards 874

Amazon OpenSearch Service Developer Guide

1. This is your OpenSearch Service domain. IAM provides authorized access to this domain. An
additional, IP-based access policy provides access to the proxy server.

2. This is the proxy server, running on an Amazon EC2 instance.

3. Other applications can use the Signature Version 4 signing process to send authenticated
requests to OpenSearch Service.

4. OpenSearch Dashboards clients connect to your OpenSearch Service domain through the proxy.

Using a proxy to access OpenSearch Service from OpenSearch Dashboards 875

Amazon OpenSearch Service Developer Guide

To enable this sort of configuration, you need a resource-based policy that specifies roles and IP
addresses. Here's a sample policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Resource": "arn:aws:es:us-west-2:111111111111:domain/my-domain/*",
 "Principal": {
 "AWS": "arn:aws:iam::111111111111:role/allowedrole1"
 },
 "Action": [
 "es:ESHttpGet"
],
 "Effect": "Allow"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "es:*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "123.456.789.123"
]
 }
 },
 "Resource": "arn:aws:es:us-west-2:111111111111:domain/my-domain/*"
 }
]
}

We recommend that you configure the EC2 instance running the proxy server with an Elastic IP
address. This way, you can replace the instance when necessary and still attach the same public
IP address to it. To learn more, see Elastic IP Addresses in the Amazon EC2 User Guide for Linux
Instances.

If you use a proxy server and Cognito authentication, you might need to add settings for
Dashboards and Amazon Cognito to avoid redirect_mismatch errors. See the following
nginx.conf example:

Using a proxy to access OpenSearch Service from OpenSearch Dashboards 876

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

Amazon OpenSearch Service Developer Guide

server {
 listen 443;
 server_name $host;
 rewrite ^/$ https://$host/_plugin/_dashboards redirect;

 ssl_certificate /etc/nginx/cert.crt;
 ssl_certificate_key /etc/nginx/cert.key;

 ssl on;
 ssl_session_cache builtin:1000 shared:SSL:10m;
 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_ciphers HIGH:!aNULL:!eNULL:!EXPORT:!CAMELLIA:!DES:!MD5:!PSK:!RC4;
 ssl_prefer_server_ciphers on;

 location /_plugin/_dashboards {
 # Forward requests to Dashboards
 proxy_pass https://$dashboards_host/_plugin/_dashboards;

 # Handle redirects to Cognito
 proxy_redirect https://$cognito_host https://$host;

 # Update cookie domain and path
 proxy_cookie_domain $dashboards_host $host;
 proxy_cookie_path / /_plugin/_dashboards/;

 # Response buffer settings
 proxy_buffer_size 128k;
 proxy_buffers 4 256k;
 proxy_busy_buffers_size 256k;
 }

 location ~ \/(log|sign|fav|forgot|change|saml|oauth2) {
 # Forward requests to Cognito
 proxy_pass https://$cognito_host;

 # Handle redirects to Dashboards
 proxy_redirect https://$dashboards_host https://$host;

 # Update cookie domain
 proxy_cookie_domain $cognito_host $host;
 }
}

Using a proxy to access OpenSearch Service from OpenSearch Dashboards 877

Amazon OpenSearch Service Developer Guide

Configuring OpenSearch Dashboards to use a WMS map server

The default installation of OpenSearch Dashboards for OpenSearch Service includes a map service,
except for domains in the India and China Regions. The map service supports up to 10 zoom levels.

Regardless of your Region, you can configure Dashboards to use a different Web Map Service
(WMS) server for coordinate map visualizations. Region map visualizations only support the default
map service.

To configure Dashboards to use a WMS map server:

1. Open Dashboards.

2. Choose Stack Management.

3. Choose Advanced Settings.

4. Locate visualization:tileMap:WMSdefaults.

5. Change enabled to true and url to the URL of a valid WMS map server:

{
 "enabled": true,
 "url": "wms-server-url",
 "options": {
 "format": "image/png",
 "transparent": true
 }
}

6. Choose Save changes.

To apply the new default value to visualizations, you might need to reload Dashboards. If you have
saved visualizations, choose Options after opening the visualization. Verify that WMS map server
is enabled and WMS url contains your preferred map server, and then choose Apply changes.

Note

Map services often have licensing fees or restrictions. You are responsible for all such
considerations on any map server that you specify. You might find the map services from
the U.S. Geological Survey useful for testing.

Configuring OpenSearch Dashboards to use a WMS map server 878

https://viewer.nationalmap.gov/services/

Amazon OpenSearch Service Developer Guide

Connecting a local Dashboards server to OpenSearch Service

If you already invested significant time into configuring your own OpenSearch Dashboards
instance, you can use it instead of (or in addition to) the default Dashboards instance that
OpenSearch Service provides. The following procedure works for domains that use fine-grained
access control with an open access policy.

To connect a local OpenSearch Dashboards server to OpenSearch Service

1. On your OpenSearch Service domain, create a user with the appropriate permissions:

a. In Dashboards, go to Security, Internal users, and choose Create internal user.

b. Provide a username and password and choose Create.

c. Go to Roles and select a role.

d. Select Mapped users and choose Manage mapping.

e. In Users, add your username and choose Map.

2. Download and install the appropriate version of the OpenSearch security plugin on your self-
managed Dashboards OSS installation.

3. On your local Dashboards server, open the config/opensearch_dashboards.yml file and
add your OpenSearch Service endpoint with the username and password you created earlier:

opensearch.hosts: ['https://domain-endpoint']
opensearch.username: 'username'
opensearch.password: 'password'

You can use the following sample opensearch_dashboards.yml file:

server.host: '0.0.0.0'

opensearch.hosts: ['https://domain-endpoint']

opensearch_dashboards.index: ".username"

opensearch.ssl.verificationMode: none # if not using HTTPS

opensearch_security.auth.type: basicauth
opensearch_security.auth.anonymous_auth_enabled: false
opensearch_security.cookie.secure: false # set to true when using HTTPS
opensearch_security.cookie.ttl: 3600000

Connecting a local Dashboards server to OpenSearch Service 879

https://opensearch.org/docs/dashboards/install/plugins/#install

Amazon OpenSearch Service Developer Guide

opensearch_security.session.ttl: 3600000
opensearch_security.session.keepalive: false
opensearch_security.multitenancy.enabled: false
opensearch_security.readonly_mode.roles: ['opensearch_dashboards_read_only']
opensearch_security.auth.unauthenticated_routes: []
opensearch_security.basicauth.login.title: 'Please log in using your username and
 password'

opensearch.username: 'username'
opensearch.password: 'password'
opensearch.requestHeadersWhitelist:
[
authorization,
securitytenant,
security_tenant,
]

To see your OpenSearch Service indices, start your local Dashboards server, go to Dev Tools and
run the following command:

GET _cat/indices

Managing indexes in OpenSearch Dashboards

The OpenSearch Dashboards installation on your OpenSearch Service domain provides a useful
UI for managing indexes in different storage tiers on your domain. Choose Index Management
from the Dashboards main menu to view all indexes in hot, UltraWarm, and cold storage, as well
as indexes managed by Index State Management (ISM) policies. Use index management to move
indexes between warm and cold storage, and to monitor migrations between the three tiers.

Managing indexes in OpenSearch Dashboards 880

Amazon OpenSearch Service Developer Guide

Note that you won't see the hot, warm, and cold index options unless you have UltraWarm and/or
cold storage enabled.

Additional features

The default OpenSearch Dashboards installation on each OpenSearch Service domain has some
additional features:

• User interfaces for the various OpenSearch plugins

• Tenants

• Reports

Use the Reporting menu to generate on-demand CSV reports from the Discover page and PDF or
PNG reports of dashboards or visualizations. CSV reports have a 10,000 row limit.

• Gantt charts

• Notebooks

Additional features 881

https://opensearch.org/docs/latest/dashboards/reporting/
https://opensearch.org/docs/dashboards/gantt/
https://opensearch.org/docs/latest/observability-plugin/notebooks/

Amazon OpenSearch Service Developer Guide

Managing indexes in Amazon OpenSearch Service

After you add data to Amazon OpenSearch Service, you often need to reindex that data, work with
index aliases, move an index to more cost-effective storage, or delete it altogether. This chapter
covers UltraWarm storage, cold storage, and Index State Management. For information on the
OpenSearch index APIs, see the OpenSearch documentation.

Topics

• UltraWarm storage for Amazon OpenSearch Service

• Cold storage for Amazon OpenSearch Service

• OR1 storage for Amazon OpenSearch Service

• Index State Management in Amazon OpenSearch Service

• Summarizing indexes in Amazon OpenSearch Service with index rollups

• Transforming indexes in Amazon OpenSearch Service

• Cross-cluster replication for Amazon OpenSearch Service

• Migrating Amazon OpenSearch Service indexes using remote reindex

• Managing time-series data in Amazon OpenSearch Service with data streams

UltraWarm storage for Amazon OpenSearch Service

UltraWarm provides a cost-effective way to store large amounts of read-only data on Amazon
OpenSearch Service. Standard data nodes use "hot" storage, which takes the form of instance
stores or Amazon EBS volumes attached to each node. Hot storage provides the fastest possible
performance for indexing and searching new data.

Rather than attached storage, UltraWarm nodes use Amazon S3 and a sophisticated caching
solution to improve performance. For indexes that you are not actively writing to, query less
frequently, and don't need the same performance from, UltraWarm offers significantly lower
costs per GiB of data. Because warm indexes are read-only unless you return them to hot storage,
UltraWarm is best-suited to immutable data, such as logs.

In OpenSearch, warm indexes behave just like any other index. You can query them using the same
APIs or use them to create visualizations in OpenSearch Dashboards.

Topics

UltraWarm storage 882

https://opensearch.org/docs/opensearch/reindex-data/

Amazon OpenSearch Service Developer Guide

• Prerequisites

• UltraWarm storage requirements and performance considerations

• UltraWarm pricing

• Enabling UltraWarm

• Migrating indexes to UltraWarm storage

• Automating migrations

• Migration tuning

• Cancelling migrations

• Listing hot and warm indexes

• Returning warm indexes to hot storage

• Restoring warm indexes from snapshots

• Manual snapshots of warm indexes

• Migrating warm indexes to cold storage

• Disabling UltraWarm

Prerequisites

UltraWarm has a few important prerequisites:

• UltraWarm requires OpenSearch or Elasticsearch 6.8 or higher.

• To use warm storage, domains must have dedicated master nodes.

• If your domain uses a T2 or T3 instance type for your data nodes, you can't use warm storage.

• If your index uses Zstandard compression codecs ("index.codec": "zstd" or
"index.codec": "zstd_no_dict"), you can't move it to warm storage.

• If your index uses approximate k-NN ("index.knn": true), you can't move it to warm storage.

• If the domain uses fine-grained access control, users must be mapped to the
ultrawarm_manager role in OpenSearch Dashboards to make UltraWarm API calls.

Note

The ultrawarm_manager role might not be defined on some preexisting OpenSearch
Service domains. If you don't see the role in Dashboards, you need to manually create it.

Prerequisites 883

https://opensearch.org/docs/latest/im-plugin/index-codecs/
https://opensearch.org/docs/latest/search-plugins/knn/approximate-knn/

Amazon OpenSearch Service Developer Guide

Configure permissions

If you enable UltraWarm on a preexisting OpenSearch Service domain, the ultrawarm_manager
role might not be defined on the domain. Non-admin users must be mapped to this role in order
to manage warm indexes on domains using fine-grained access control. To manually create the
ultrawarm_manager role, perform the following steps:

1. In OpenSearch Dashboards, go to Security and choose Permissions.

2. Choose Create action group and configure the following groups:

Group name Permissions

ultrawarm
_cluster

• cluster:admin/ultrawarm/migration/list

• cluster:monitor/nodes/stats

ultrawarm
_index_read

• indices:admin/ultrawarm/migration/get

• indices:admin/get

ultrawarm
_index_write

• indices:admin/ultrawarm/migration/warm

• indices:admin/ultrawarm/migration/hot

• indices:monitor/stats

• indices:admin/ultrawarm/migration/cancel

3. Choose Roles and Create role.

4. Name the role ultrawarm_manager.

5. For Cluster permissions, select ultrawarm_cluster and cluster_monitor.

6. For Index, type *.

7. For Index permissions, select ultrawarm_index_read, ultrawarm_index_write, and
indices_monitor.

8. Choose Create.

9. After you create the role, map it to any user or backend role that will manage UltraWarm
indexes.

Prerequisites 884

Amazon OpenSearch Service Developer Guide

UltraWarm storage requirements and performance considerations

As covered in the section called “Calculating storage requirements”, data in hot storage incurs
significant overhead: replicas, Linux reserved space, and OpenSearch Service reserved space. For
example, a 20 GiB primary shard with one replica shard requires roughly 58 GiB of hot storage.

Because it uses Amazon S3, UltraWarm incurs none of this overhead. When calculating UltraWarm
storage requirements, you consider only the size of the primary shards. The durability of data
in S3 removes the need for replicas, and S3 abstracts away any operating system or service
considerations. That same 20 GiB shard requires 20 GiB of warm storage. If you provision an
ultrawarm1.large.search instance, you can use all 20 TiB of its maximum storage for primary
shards. See the section called “UltraWarm storage quotas” for a summary of instance types and the
maximum amount of storage that each can address.

With UltraWarm, we still recommend a maximum shard size of 50 GiB. The number of CPU cores
and amount of RAM allocated to each UltraWarm instance type gives you an idea of the number
of shards they can simultaneously search. Note that while only primary shards count toward
UltraWarm storage in S3, OpenSearch Dashboards and _cat/indices still report UltraWarm
index size as the total of all primary and replica shards.

For example, each ultrawarm1.medium.search instance has two CPU cores and can address
up to 1.5 TiB of storage on S3. Two of these instances have a combined 3 TiB of storage, which
works out to approximately 62 shards if each shard is 50 GiB. If a request to the cluster only
searches four of these shards, performance might be excellent. If the request is broad and
searches all 62 of them, the four CPU cores might struggle to perform the operation. Monitor the
WarmCPUUtilization and WarmJVMMemoryPressure UltraWarm metrics to understand how
the instances handle your workloads.

If your searches are broad or frequent, consider leaving the indexes in hot storage. Just like any
other OpenSearch workload, the most important step to determining if UltraWarm meets your
needs is to perform representative client testing using a realistic dataset.

UltraWarm pricing

With hot storage, you pay for what you provision. Some instances require an attached Amazon EBS
volume, while others include an instance store. Whether that storage is empty or full, you pay the
same price.

UltraWarm storage requirements and performance considerations 885

Amazon OpenSearch Service Developer Guide

With UltraWarm storage, you pay for what you use. An ultrawarm1.large.search instance can
address up to 20 TiB of storage on S3, but if you store only 1 TiB of data, you're only billed for 1
TiB of data. Like all other node types, you also pay an hourly rate for each UltraWarm node. For
more information, see the section called “Pricing for Amazon OpenSearch Service”.

Enabling UltraWarm

The console is the simplest way to create a domain that uses warm storage. While creating the
domain, choose Enable UltraWarm data nodes and the number of warm nodes that you want. The
same basic process works on existing domains, provided they meet the prerequisites. Even after
the domain state changes from Processing to Active, UltraWarm might not be available to use for
several hours.

You can also use the Amazon CLI or configuration API to enable UltraWarm, specifically the
WarmEnabled, WarmCount, and WarmType options in ClusterConfig.

Note

Domains support a maximum number of warm nodes. For details, see the section called
“Quotas”.

Sample CLI command

The following Amazon CLI command creates a domain with three data nodes, three dedicated
master nodes, six warm nodes, and fine-grained access control enabled:

aws opensearch create-domain \
 --domain-name my-domain \
 --engine-version Opensearch_1.0 \
 --cluster-config
 InstanceCount=3,InstanceType=r6g.large.search,DedicatedMasterEnabled=true,DedicatedMasterType=r6g.large.search,DedicatedMasterCount=3,ZoneAwarenessEnabled=true,ZoneAwarenessConfig={AvailabilityZoneCount=3},WarmEnabled=true,WarmCount=6,WarmType=ultrawarm1.medium.search
 \
 --ebs-options EBSEnabled=true,VolumeType=gp2,VolumeSize=11 \
 --node-to-node-encryption-options Enabled=true \
 --encryption-at-rest-options Enabled=true \
 --domain-endpoint-options EnforceHTTPS=true,TLSSecurityPolicy=Policy-Min-
TLS-1-2-2019-07 \
 --advanced-security-options
 Enabled=true,InternalUserDatabaseEnabled=true,MasterUserOptions='{MasterUserName=master-
user,MasterUserPassword=master-password}' \

Enabling UltraWarm 886

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/opensearch/index.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

 --access-policies '{"Version":"2012-10-17","Statement":
[{"Effect":"Allow","Principal":{"AWS":["123456789012"]},"Action":
["es:*"],"Resource":"arn:aws:es:us-west-1:123456789012:domain/my-domain/*"}]}' \
 --region us-east-1

For detailed information, see the Amazon CLI Command Reference.

Sample configuration API request

The following request to the configuration API creates a domain with three data nodes, three
dedicated master nodes, and six warm nodes with fine-grained access control enabled and a
restrictive access policy:

POST https://es.us-east-2.amazonaws.com/2021-01-01/opensearch/domain
{
 "ClusterConfig": {
 "InstanceCount": 3,
 "InstanceType": "r6g.large.search",
 "DedicatedMasterEnabled": true,
 "DedicatedMasterType": "r6g.large.search",
 "DedicatedMasterCount": 3,
 "ZoneAwarenessEnabled": true,
 "ZoneAwarenessConfig": {
 "AvailabilityZoneCount": 3
 },
 "WarmEnabled": true,
 "WarmCount": 6,
 "WarmType": "ultrawarm1.medium.search"
 },
 "EBSOptions": {
 "EBSEnabled": true,
 "VolumeType": "gp2",
 "VolumeSize": 11
 },
 "EncryptionAtRestOptions": {
 "Enabled": true
 },
 "NodeToNodeEncryptionOptions": {
 "Enabled": true
 },
 "DomainEndpointOptions": {
 "EnforceHTTPS": true,
 "TLSSecurityPolicy": "Policy-Min-TLS-1-2-2019-07"

Enabling UltraWarm 887

https://docs.amazonaws.cn/cli/latest/reference/

Amazon OpenSearch Service Developer Guide

 },
 "AdvancedSecurityOptions": {
 "Enabled": true,
 "InternalUserDatabaseEnabled": true,
 "MasterUserOptions": {
 "MasterUserName": "master-user",
 "MasterUserPassword": "master-password"
 }
 },
 "EngineVersion": "Opensearch_1.0",
 "DomainName": "my-domain",
 "AccessPolicies": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow
\",\"Principal\":{\"AWS\":[\"123456789012\"]},\"Action\":[\"es:*\"],\"Resource\":
\"arn:aws:es:us-east-1:123456789012:domain/my-domain/*\"}]}"
}

For detailed information, see the Amazon OpenSearch Service API Reference.

Migrating indexes to UltraWarm storage

If you finished writing to an index and no longer need the fastest possible search performance,
migrate it from hot to UltraWarm:

POST _ultrawarm/migration/my-index/_warm

Then check the status of the migration:

GET _ultrawarm/migration/my-index/_status

{
 "migration_status": {
 "index": "my-index",
 "state": "RUNNING_SHARD_RELOCATION",
 "migration_type": "HOT_TO_WARM",
 "shard_level_status": {
 "running": 0,
 "total": 5,
 "pending": 3,
 "failed": 0,
 "succeeded": 2
 }
 }

Migrating indexes to UltraWarm storage 888

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

}

Index health must be green to perform a migration. If you migrate several indexes in quick
succession, you can get a summary of all migrations in plaintext, similar to the _cat API:

GET _ultrawarm/migration/_status?v

index migration_type state
my-index HOT_TO_WARM RUNNING_SHARD_RELOCATION

OpenSearch Service migrates one index at a time to UltraWarm. You can have up to 200 migrations
in the queue. Any request that exceeds the limit will be rejected. To check the current number of
migrations in the queue, monitor the HotToWarmMigrationQueueSize metric. Indexes remain
available throughout the migration process—no downtime.

The migration process has the following states:

PENDING_INCREMENTAL_SNAPSHOT
RUNNING_INCREMENTAL_SNAPSHOT
FAILED_INCREMENTAL_SNAPSHOT
PENDING_FORCE_MERGE
RUNNING_FORCE_MERGE
FAILED_FORCE_MERGE
PENDING_FULL_SNAPSHOT
RUNNING_FULL_SNAPSHOT
FAILED_FULL_SNAPSHOT
PENDING_SHARD_RELOCATION
RUNNING_SHARD_RELOCATION
FINISHED_SHARD_RELOCATION

As these states indicate, migrations might fail during snapshots, shard relocations, or force merges.
Failures during snapshots or shard relocation are typically due to node failures or S3 connectivity
issues. Lack of disk space is usually the underlying cause of force merge failures.

After a migration finishes, the same _status request returns an error. If you check the index at
that time, you can see some settings that are unique to warm indexes:

GET my-index/_settings

{

Migrating indexes to UltraWarm storage 889

Amazon OpenSearch Service Developer Guide

 "my-index": {
 "settings": {
 "index": {
 "refresh_interval": "-1",
 "auto_expand_replicas": "false",
 "provided_name": "my-index",
 "creation_date": "1599241458998",
 "unassigned": {
 "node_left": {
 "delayed_timeout": "5m"
 }
 },
 "number_of_replicas": "1",
 "uuid": "GswyCdR0RSq0SJYmzsIpiw",
 "version": {
 "created": "7070099"
 },
 "routing": {
 "allocation": {
 "require": {
 "box_type": "warm"
 }
 }
 },
 "number_of_shards": "5",
 "merge": {
 "policy": {
 "max_merge_at_once_explicit": "50"
 }
 }
 }
 }
 }
}

• number_of_replicas, in this case, is the number of passive replicas, which don't consume disk
space.

• routing.allocation.require.box_type specifies that the index should use warm nodes
rather than standard data nodes.

• merge.policy.max_merge_at_once_explicit specifies the number of segments to
simultaneously merge during the migration.

Migrating indexes to UltraWarm storage 890

Amazon OpenSearch Service Developer Guide

Indexes in warm storage are read-only unless you return them to hot storage, which makes
UltraWarm best-suited to immutable data, such as logs. You can query the indexes and delete
them, but you can't add, update, or delete individual documents. If you try, you might encounter
the following error:

{
 "error" : {
 "root_cause" : [
 {
 "type" : "cluster_block_exception",
 "reason" : "index [indexname] blocked by: [TOO_MANY_REQUESTS/12/disk usage
 exceeded flood-stage watermark, index has read-only-allow-delete block];"
 }
],
 "type" : "cluster_block_exception",
 "reason" : "index [indexname] blocked by: [TOO_MANY_REQUESTS/12/disk usage exceeded
 flood-stage watermark, index has read-only-allow-delete block];"
 },
 "status" : 429
}

Automating migrations

We recommend using the section called “Index State Management” to automate the migration
process after an index reaches a certain age or meets other conditions. See the sample policy that
demonstrates this workflow.

Migration tuning

Index migrations to UltraWarm storage require a force merge. Each OpenSearch index is composed
of some number of shards, and each shard is composed of some number of Lucene segments. The
force merge operation purges documents that were marked for deletion and conserves disk space.
By default, UltraWarm merges indexes into one segment.

You can change this value up to 1,000 segments using the
index.ultrawarm.migration.force_merge.max_num_segments setting. Higher values
speed up the migration process, but increase query latency for the warm index after the migration
finishes. To change the setting, make the following request:

PUT my-index/_settings
{

Automating migrations 891

Amazon OpenSearch Service Developer Guide

 "index": {
 "ultrawarm": {
 "migration": {
 "force_merge": {
 "max_num_segments": 1
 }
 }
 }
 }
}

To check how long this stage of the migration process takes, monitor the
HotToWarmMigrationForceMergeLatency metric.

Cancelling migrations

UltraWarm handles migrations sequentially, in a queue. If a migration is in the queue, but has not
yet started, you can remove it from the queue using the following request:

POST _ultrawarm/migration/_cancel/my-index

If your domain uses fine-grained access control, you must have the indices:admin/ultrawarm/
migration/cancel permission to make this request.

Listing hot and warm indexes

UltraWarm adds two additional options, similar to _all, to help manage hot and warm indexes.
For a list of all warm or hot indexes, make the following requests:

GET _warm
GET _hot

You can use these options in other requests that specify indexes, such as:

_cat/indices/_warm
_cluster/state/_all/_hot

Returning warm indexes to hot storage

If you need to write to an index again, migrate it back to hot storage:

Cancelling migrations 892

Amazon OpenSearch Service Developer Guide

POST _ultrawarm/migration/my-index/_hot

You can have up to 10 queued migrations from warm to hot storage at a time. OpenSearch Service
processes migration requests one at a time, in the order that they were queued. To check the
current number, monitor the WarmToHotMigrationQueueSize metric.

After the migration finishes, check the index settings to make sure they meet your needs. Indexes
return to hot storage with one replica.

Restoring warm indexes from snapshots

In addition to the standard repository for automated snapshots, UltraWarm adds a second
repository for warm indexes, cs-ultrawarm. Each snapshot in this repository contains only one
index. If you delete a warm index, its snapshot remains in the cs-ultrawarm repository for 14
days, just like any other automated snapshot.

When you restore a snapshot from cs-ultrawarm, it restores to warm storage, not hot storage.
Snapshots in the cs-automated and cs-automated-enc repositories restore to hot storage.

To restore an UltraWarm snapshot to warm storage

1. Identify the latest snapshot that contains the index you want to restore:

GET _snapshot/cs-ultrawarm/_all?verbose=false

{
 "snapshots": [{
 "snapshot": "snapshot-name",
 "version": "1.0",
 "indices": [
 "my-index"
]
 }]
}

Note

By default, the GET _snapshot/<repo> operation displays verbose data information
such as start time, end time, and duration for each snapshot within a repository.
The GET _snapshot/<repo> operation retrieves information from the files of

Restoring warm indexes from snapshots 893

Amazon OpenSearch Service Developer Guide

each snapshot contained in a repository. If you do not need the start time, end time,
and duration and require only the name and index information of a snapshot, we
recommend using the verbose=false parameter when listing snapshots to minimize
processing time and prevent timing out.

2. If the index already exists, delete it:

DELETE my-index

If you don't want to delete the index, return it to hot storage and reindex it.

3. Restore the snapshot:

POST _snapshot/cs-ultrawarm/snapshot-name/_restore

UltraWarm ignores any index settings you specify in this restore request, but you can specify
options like rename_pattern and rename_replacement. For a summary of OpenSearch
snapshot restore options, see the OpenSearch documentation.

Manual snapshots of warm indexes

You can take manual snapshots of warm indexes, but we don't recommend it. The automated
cs-ultrawarm repository already contains a snapshot for each warm index, taken during the
migration, at no additional charge.

By default, OpenSearch Service does not include warm indexes in manual snapshots. For example,
the following call only includes hot indexes:

PUT _snapshot/my-repository/my-snapshot

If you choose to take manual snapshots of warm indexes, several important considerations apply.

• You can't mix hot and warm indexes. For example, the following request fails:

PUT _snapshot/my-repository/my-snapshot
{
 "indices": "warm-index-1,hot-index-1",
 "include_global_state": false
}

Manual snapshots of warm indexes 894

https://opensearch.org/docs/opensearch/reindex-data/
https://opensearch.org/docs/opensearch/snapshot-restore/#restore-snapshots

Amazon OpenSearch Service Developer Guide

If they include a mix of hot and warm indexes, wildcard (*) statements fail, as well.

• You can only include one warm index per snapshot. For example, the following request fails:

PUT _snapshot/my-repository/my-snapshot
{
 "indices": "warm-index-1,warm-index-2,other-warm-indices-*",
 "include_global_state": false
}

This request succeeds:

PUT _snapshot/my-repository/my-snapshot
{
 "indices": "warm-index-1",
 "include_global_state": false
}

• Manual snapshots always restore to hot storage, even if they originally included a warm index.

Migrating warm indexes to cold storage

If you have data in UltraWarm that you query infrequently, consider migrating it to cold storage.
Cold storage is meant for data you only access occasionally or is no longer in active use. You can't
read from or write to cold indexes, but you can migrate them back to warm storage at no cost
whenever you need to query them. For instructions, see the section called “Migrating indexes to
cold storage”.

Disabling UltraWarm

The console is the simplest way to disable UltraWarm. Choose the domain, Actions, and Edit
cluster configuration. Deselect Enable UltraWarm data nodes and choose Save changes. You can
also use the WarmEnabled option in the Amazon CLI and configuration API.

Before you disable UltraWarm, you must either delete all warm indexes or migrate them back
to hot storage. After warm storage is empty, wait five minutes before attempting to disable
UltraWarm.

Migrating warm indexes to cold storage 895

https://opensearch.org/docs/latest/opensearch/rest-api/index-apis/delete-index/

Amazon OpenSearch Service Developer Guide

Cold storage for Amazon OpenSearch Service

Cold storage lets you store any amount of infrequently accessed or historical data on your Amazon
OpenSearch Service domain and analyze it on demand, at a lower cost than other storage tiers.
Cold storage is appropriate if you need to do periodic research or forensic analysis on your older
data. Practical examples of data suitable for cold storage include infrequently accessed logs, data
that must be preserved to meet compliance requirements, or logs that have historical value.

Similar to UltraWarm storage, cold storage is backed by Amazon S3. When you need to query cold
data, you can selectively attach it to existing UltraWarm nodes. You can manage the migration and
lifecycle of your cold data manually or with Index State Management policies.

Topics

• Prerequisites

• Cold storage requirements and performance considerations

• Cold storage pricing

• Enabling cold storage

• Managing cold indexes in OpenSearch Dashboards

• Migrating indexes to cold storage

• Automating migrations to cold storage

• Canceling migrations to cold storage

• Listing cold indexes

• Migrating cold indexes to warm storage

• Restoring cold indexes from snapshots

• Canceling migrations from cold to warm storage

• Updating cold index metadata

• Deleting cold indexes

• Disabling cold storage

Prerequisites

Cold storage has the following prerequisites:

Cold storage 896

Amazon OpenSearch Service Developer Guide

• Cold storage requires OpenSearch or Elasticsearch version 7.9 or later.

• To enable cold storage on an OpenSearch Service domain, you must also enable UltraWarm on
the same domain.

• To use cold storage, domains must have dedicated master nodes.

• If your domain uses a T2 or T3 instance type for your data nodes, you can't use cold storage.

• If your index uses Zstandard compression codecs ("index.codec": "zstd" or
"index.codec": "zstd_no_dict"), you can't move it to cold storage.

• If your index uses approximate k-NN ("index.knn": true), you can't move it to cold storage.

• If the domain uses fine-grained access control, non-admin users must be mapped to the
cold_manager role in OpenSearch Dashboards in order to manage cold indexes.

Note

The cold_manager role might not exist on some preexisting OpenSearch Service domains.
If you don't see the role in Dashboards, you need to manually create it.

Configure permissions

If you enable cold storage on a preexisting OpenSearch Service domain, the cold_manager
role might not be defined on the domain. If the domain uses fine-grained access control, non-
admin users must be mapped to this role in order to manage cold indexes. To manually create the
cold_manager role, perform the following steps:

1. In OpenSearch Dashboards, go to Security and choose Permissions.

2. Choose Create action group and configure the following groups:

Group name Permissions

cold_cluster • cluster:monitor/nodes/stats

• cluster:admin/ultrawarm*

• cluster:admin/cold/*

cold_index • indices:monitor/stats

• indices:data/read/minmax

Prerequisites 897

https://opensearch.org/docs/latest/im-plugin/index-codecs/
https://opensearch.org/docs/latest/search-plugins/knn/approximate-knn/

Amazon OpenSearch Service Developer Guide

Group name Permissions

• indices:admin/ultrawarm/migration/get

• indices:admin/ultrawarm/migration/cancel

3. Choose Roles and Create role.

4. Name the role cold_manager.

5. For Cluster permissions, choose the cold_cluster group you created.

6. For Index, enter *.

7. For Index permissions, choose the cold_index group you created.

8. Choose Create.

9. After you create the role, map it to any user or backend role that manages cold indexes.

Cold storage requirements and performance considerations

Because cold storage uses Amazon S3, it incurs none of the overhead of hot storage, such as
replicas, Linux reserved space, and OpenSearch Service reserved space. Cold storage doesn't have
specific instance types because it doesn't have any compute capacity attached to it. You can store
any amount of data in cold storage. Monitor the ColdStorageSpaceUtilization metric in
Amazon CloudWatch to see how much cold storage space you're using.

Cold storage pricing

Similar to UltraWarm storage, with cold storage you only pay for data storage. There's no compute
cost for cold data and you wont get billed if theres no data in cold storage.

You don't incur any transfer charges when moving data between cold and warm storage. While
indexes are being migrated between warm and cold storage, you continue to pay for only one copy
of the index. After the migration completes, the index is billed according to the storage tier it was
migrated to. For more information about cold storage pricing, see Amazon OpenSearch Service
pricing.

Enabling cold storage

The console is the simplest way to create a domain that uses cold storage. While creating the
domain, choose Enable cold storage. The same process works on existing domains as long as

Cold storage requirements and performance considerations 898

https://aws.amazon.com/opensearch-service/pricing/
https://aws.amazon.com/opensearch-service/pricing/

Amazon OpenSearch Service Developer Guide

you meet the prerequisites. Even after the domain state changes from Processing to Active, cold
storage might not be available for several hours.

You can also use the Amazon CLI or configuration API to enable cold storage.

Sample CLI command

The following Amazon CLI command creates a domain with three data nodes, three dedicated
master nodes, cold storage enabled, and fine-grained access control enabled:

aws opensearch create-domain \
 --domain-name my-domain \
 --engine-version Opensearch_1.0 \
 --cluster-
config ColdStorageOptions={Enabled=true},WarmEnabled=true,WarmCount=4,WarmType=ultrawarm1.medium.search,InstanceType=r6g.large.search,DedicatedMasterEnabled=true,DedicatedMasterType=r6g.large.search,DedicatedMasterCount=3,InstanceCount=3
 \
 --ebs-options EBSEnabled=true,VolumeType=gp2,VolumeSize=11 \
 --node-to-node-encryption-options Enabled=true \
 --encryption-at-rest-options Enabled=true \
 --domain-endpoint-options EnforceHTTPS=true,TLSSecurityPolicy=Policy-Min-
TLS-1-2-2019-07 \
 --advanced-security-options
 Enabled=true,InternalUserDatabaseEnabled=true,MasterUserOptions='{MasterUserName=master-
user,MasterUserPassword=master-password}' \
 --region us-east-2

For detailed information, see the Amazon CLI Command Reference.

Sample configuration API request

The following request to the configuration API creates a domain with three data nodes, three
dedicated master nodes, cold storage enabled, and fine-grained access control enabled:

POST https://es.us-east-2.amazonaws.com/2021-01-01/opensearch/domain
{
 "ClusterConfig": {
 "InstanceCount": 3,
 "InstanceType": "r6g.large.search",
 "DedicatedMasterEnabled": true,
 "DedicatedMasterType": "r6g.large.search",
 "DedicatedMasterCount": 3,
 "ZoneAwarenessEnabled": true,

Enabling cold storage 899

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/opensearch/index.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cli/latest/reference/

Amazon OpenSearch Service Developer Guide

 "ZoneAwarenessConfig": {
 "AvailabilityZoneCount": 3
 },
 "WarmEnabled": true,
 "WarmCount": 4,
 "WarmType": "ultrawarm1.medium.search",
 "ColdStorageOptions": {
 "Enabled": true
 }
 },
 "EBSOptions": {
 "EBSEnabled": true,
 "VolumeType": "gp2",
 "VolumeSize": 11
 },
 "EncryptionAtRestOptions": {
 "Enabled": true
 },
 "NodeToNodeEncryptionOptions": {
 "Enabled": true
 },
 "DomainEndpointOptions": {
 "EnforceHTTPS": true,
 "TLSSecurityPolicy": "Policy-Min-TLS-1-2-2019-07"
 },
 "AdvancedSecurityOptions": {
 "Enabled": true,
 "InternalUserDatabaseEnabled": true,
 "MasterUserOptions": {
 "MasterUserName": "master-user",
 "MasterUserPassword": "master-password"
 }
 },
 "EngineVersion": "Opensearch_1.0",
 "DomainName": "my-domain"
}

For detailed information, see the Amazon OpenSearch Service API Reference.

Managing cold indexes in OpenSearch Dashboards

You can manage hot, warm and cold indexes with the existing Dashboards interface in your
OpenSearch Service domain. Dashboards enables you to migrate indexes between warm and cold

Managing cold indexes in OpenSearch Dashboards 900

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

storage, and monitor index migration status, without using the CLI or configuration API. For more
information, see Managing indexes in OpenSearch Dashboards.

Migrating indexes to cold storage

When you migrate indexes to cold storage, you provide a time range for the data to make discovery
easier. You can select a timestamp field based on the data in your index, manually provide a start
and end timestamp, or choose to not specify one.

Parameter Supported value Description

timestamp_field The date/time field from the
index mapping.

The minimum and maximum
values of the provided field
are computed and stored
as the start_time and
end_time metadata for the
cold index.

start_time and end_time One of the following formats:

• strict_date_optional_time.
For example: yyyy-MM-d
d'T'HH:mm:ss.SSSZ or
yyyy-MM-dd

• Epoch time in milliseconds

The provided values are
stored as the start_time
and end_time metadata for
the cold index.

If you don't want to specify a timestamp, add ?ignore=timestamp to the request instead.

The following request migrates a warm index to cold storage and provides start and end times for
the data in that index:

POST _ultrawarm/migration/my-index/_cold
 {
 "start_time": "2020-03-09",
 "end_time": "2020-03-09T23:00:00Z"
 }

Then check the status of the migration:

Migrating indexes to cold storage 901

Amazon OpenSearch Service Developer Guide

GET _ultrawarm/migration/my-index/_status

{
 "migration_status": {
 "index": "my-index",
 "state": "RUNNING_METADATA_RELOCATION",
 "migration_type": "WARM_TO_COLD"
 }
}

OpenSearch Service migrates one index at a time to cold storage. You can have up to 100
migrations in the queue. Any request that exceeds the limit will be rejected. To check the current
number of migrations in the queue, monitor the WarmToColdMigrationQueueSize metric. The
migration process has the following states:

ACCEPTED_COLD_MIGRATION - Migration request is accepted and queued.
RUNNING_METADATA_MIGRATION - The migration request was selected for execution and
 metadata is migrating to cold storage.
FAILED_METADATA_MIGRATION - The attempt to add index metadata has failed and all
 retries are exhausted.
PENDING_INDEX_DETACH - Index metadata migration to cold storage is completed. Preparing
 to detach the warm index state from the local cluster.
RUNNING_INDEX_DETACH - Local warm index state from the cluster is being removed. Upon
 success, the migration request will be completed.
FAILED_INDEX_DETACH - The index detach process failed and all retries are exhausted.

Automating migrations to cold storage

You can use Index State Management to automate the migration process after an index reaches
a certain age or meets other conditions. See the sample policy, which demonstrates how to
automatically migrate indexes from hot to UltraWarm to cold storage.

Note

An explicit timestamp_field is required in order to move indexes to cold storage using
an Index State Management policy.

Automating migrations to cold storage 902

Amazon OpenSearch Service Developer Guide

Canceling migrations to cold storage

If a migration to cold storage is queued or in a failed state, you can cancel the migration using the
following request:

POST _ultrawarm/migration/_cancel/my-index

{
 "acknowledged" : true
}

If your domain uses fine-grained access control, you need the indices:admin/ultrawarm/
migration/cancel permission to make this request.

Listing cold indexes

Before querying, you can list the indexes in cold storage to decide which ones to migrate to
UltraWarm for further analysis. The following request lists all cold indexes, sorted by index name:

GET _cold/indices/_search

Sample response

{
 "pagination_id" : "je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY",
 "total_results" : 3,
 "indices" : [
 {
 "index" : "my-index-1",
 "index_cold_uuid" : "hjEoh26mRRCFxRIMdgvLmg",
 "size" : 10339,
 "creation_date" : "2021-06-28T20:23:31.206Z",
 "start_time" : "2020-03-09T00:00Z",
 "end_time" : "2020-03-09T23:00Z"
 },
 {
 "index" : "my-index-2",
 "index_cold_uuid" : "0vIS2n-oROmOWDFmwFIgdw",
 "size" : 6068,
 "creation_date" : "2021-07-15T19:41:18.046Z",
 "start_time" : "2020-03-09T00:00Z",

Canceling migrations to cold storage 903

Amazon OpenSearch Service Developer Guide

 "end_time" : "2020-03-09T23:00Z"
 },
 {
 "index" : "my-index-3",
 "index_cold_uuid" : "EaeXOBodTLiDYcivKsXVLQ",
 "size" : 32403,
 "creation_date" : "2021-07-08T00:12:01.523Z",
 "start_time" : "2020-03-09T00:00Z",
 "end_time" : "2020-03-09T23:00Z"
 }
]
}

Filtering

You can filter cold indexes based on a prefix-based index pattern and time range offsets.

The following request lists indexes that match the prefix pattern of event-*:

GET _cold/indices/_search
 {
 "filters":{
 "index_pattern": "event-*"
 }
 }

Sample response

{
 "pagination_id" : "je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY",
 "total_results" : 1,
 "indices" : [
 {
 "index" : "events-index",
 "index_cold_uuid" : "4eFiab7rRfSvp3slrIsIKA",
 "size" : 32263273,
 "creation_date" : "2021-08-18T18:25:31.845Z",
 "start_time" : "2020-03-09T00:00Z",
 "end_time" : "2020-03-09T23:00Z"
 }
]
}

Listing cold indexes 904

Amazon OpenSearch Service Developer Guide

The following request returns indexes with start_time and end_time metadata fields between
2019-03-01 and 2020-03-01:

GET _cold/indices/_search
{
 "filters": {
 "time_range": {
 "start_time": "2019-03-01",
 "end_time": "2020-03-01"
 }
 }
}

Sample response

{
 "pagination_id" : "je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY",
 "total_results" : 1,
 "indices" : [
 {
 "index" : "my-index",
 "index_cold_uuid" : "4eFiab7rRfSvp3slrIsIKA",
 "size" : 32263273,
 "creation_date" : "2021-08-18T18:25:31.845Z",
 "start_time" : "2019-05-09T00:00Z",
 "end_time" : "2019-09-09T23:00Z"
 }
]
}

Sorting

You can sort cold indexes by metadata fields such as index name or size. The following request lists
all indexes sorted by size in descending order:

GET _cold/indices/_search
 {
 "sort_key": "size:desc"
 }

Sample response

Listing cold indexes 905

Amazon OpenSearch Service Developer Guide

{
 "pagination_id" : "je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY",
 "total_results" : 5,
 "indices" : [
 {
 "index" : "my-index-6",
 "index_cold_uuid" : "4eFiab7rRfSvp3slrIsIKA",
 "size" : 32263273,
 "creation_date" : "2021-08-18T18:25:31.845Z",
 "start_time" : "2020-03-09T00:00Z",
 "end_time" : "2020-03-09T23:00Z"
 },
 {
 "index" : "my-index-9",
 "index_cold_uuid" : "mbD3ZRVDRI6ONqgEOsJyUA",
 "size" : 57922,
 "creation_date" : "2021-07-07T23:41:35.640Z",
 "start_time" : "2020-03-09T00:00Z",
 "end_time" : "2020-03-09T23:00Z"
 },
 {
 "index" : "my-index-5",
 "index_cold_uuid" : "EaeXOBodTLiDYcivKsXVLQ",
 "size" : 32403,
 "creation_date" : "2021-07-08T00:12:01.523Z",
 "start_time" : "2020-03-09T00:00Z",
 "end_time" : "2020-03-09T23:00Z"
 }
]
}

Other valid sort keys are start_time:asc/desc, end_time:asc/desc, and index_name:asc/
desc.

Pagination

You can paginate a list of cold indexes. Configure the number of indexes to be returned per page
with the page_size parameter (default is 10). Every _search request on your cold indexes
returns a pagination_id which you can use for subsequent calls.

The following request paginates the results of a _search request of your cold indexes and displays
the next 100 results:

Listing cold indexes 906

Amazon OpenSearch Service Developer Guide

GET _cold/indices/_search?page_size=100
{
"pagination_id": "je7MtGbClwBF/2Zp9Utk/h3yCo8nvbEXAMPLEKEY"
}

Migrating cold indexes to warm storage

After you narrow down your list of cold indexes with the filtering criteria in the previous section,
migrate them back to UltraWarm where you can query the data and use it to create visualizations.

The following request migrates two cold indexes back to warm storage:

POST _cold/migration/_warm
 {
 "indices": "my-index1,my-index2"
 }

{
 "acknowledged" : true
}

To check the status of the migration and retrieve the migration ID, send the following request:

GET _cold/migration/_status

Sample response

{
 "cold_to_warm_migration_status" : [
 {
 "migration_id" : "tyLjXCA-S76zPQbPVHkOKA",
 "indices" : [
 "my-index1,my-index2"
],
 "state" : "RUNNING_INDEX_CREATION"
 }
]
}

To get index-specific migration information, include the index name:

Migrating cold indexes to warm storage 907

Amazon OpenSearch Service Developer Guide

GET _cold/migration/my-index/_status

Rather than specifying an index, you can list the indexes by their current migration status. Valid
values are _failed, _accepted, and _all.

The following command gets the status of all indexes in a single migration request:

GET _cold/migration/_status?migration_id=my-migration-id

Retrieve the migration ID using the status request. For detailed migration information, add
&verbose=true.

You can migrate indexes from cold to warm storage in batches of 10 or less, with a maximum
of 100 indexes being migrated simultaneously. Any request that exceeds the limit will be
rejected. To check the current number of migrations currently taking place, monitor the
ColdToWarmMigrationQueueSize metric. The migration process has the following states:

ACCEPTED_MIGRATION_REQUEST - Migration request is accepted and queued.
RUNNING_INDEX_CREATION - Migration request is picked up for processing and will create
 warm indexes in the cluster.
PENDING_COLD_METADATA_CLEANUP - Warm index is created and the migration service will
 attempt to clean up cold metadata.
RUNNING_COLD_METADATA_CLEANUP - Cleaning up cold metadata from the indexes migrated to
 warm storage.
FAILED_COLD_METADATA_CLEANUP - Failed to clean up metadata in the cold tier.
FAILED_INDEX_CREATION - Failed to create an index in the warm tier.

Restoring cold indexes from snapshots

If you need to restore a deleted cold index, you can restore it back to the warm tier by following
the instructions in the section called “Restoring warm indexes from snapshots” and then migrating
the index back to cold tier again. You can't restore a deleted cold index directly back to the cold
tier. OpenSearch Service retains cold indexes for 14 days after they've been deleted.

Canceling migrations from cold to warm storage

If an index migration from cold to warm storage is queued or in a failed state, you can cancel it
with the following request:

POST _cold/migration/my-index/_cancel

Restoring cold indexes from snapshots 908

Amazon OpenSearch Service Developer Guide

{
 "acknowledged" : true
}

To cancel migration for a batch of indexes (maximum of 10 at a time), specify the migration ID:

POST _cold/migration/_cancel?migration_id=my-migration-id

{
 "acknowledged" : true
}

Retrieve the migration ID using the status request.

Updating cold index metadata

You can update the start_time and end_time fields for a cold index:

PATCH _cold/my-index
 {
 "start_time": "2020-01-01",
 "end_time": "2020-02-01"
 }

You can't update the timestamp_field of an index in cold storage.

Note

OpenSearch Dashboards doesn't support the PATCH method. Use curl, Postman, or some
other method to update cold metadata.

Deleting cold indexes

If you're not using an ISM policy you can delete cold indexes manually. The following request
deletes a cold index:

DELETE _cold/my-index

Updating cold index metadata 909

https://curl.haxx.se/
https://www.getpostman.com/

Amazon OpenSearch Service Developer Guide

{
 "acknowledged" : true
}

Disabling cold storage

The OpenSearch Service console is the simplest way to disable cold storage. Select the domain and
choose Actions, Edit cluster configuration, then deselect Enable cold storage.

To use the Amazon CLI or configuration API, under ColdStorageOptions, set
"Enabled"="false".

Before you disable cold storage, you must either delete all cold indexes or migrate them back to
warm storage, otherwise the disable action fails.

OR1 storage for Amazon OpenSearch Service

OR1 is an instance family for Amazon OpenSearch Service that provides a cost-effective way
to store large amounts of data. A domain with OR1 instances uses Amazon Elastic Block Store
(Amazon EBS) gp3 or io1 volumes for primary storage, with data copied synchronously to
Amazon S3 as it arrives. This storage structure provides increased indexing throughput with high
durability. The OR1 instance family also supports automatic data recovery in the event of failure.
For information about OR1 instance type options, see the section called “Current generation
instance types”.

If you're running indexing heavy operational analytics workloads such as log analytics,
observability, or security analytics, you can benefit from the improved performance and compute
efficiency of OR1 instances. In addition, the automatic data recovery offered by OR1 instances
improves the overall reliability of your domain.

OpenSearch Service sends storage-related OR1 metrics to Amazon CloudWatch. For a list of
available metrics, see ???.

OR1 instances are available on-demand or with Reserved Instance pricing, with an hourly rate for
the instances and storage provisioned in Amazon EBS and Amazon S3.

Topics

• Limitations

• How OR1 differs from UltraWarm storage

Disabling cold storage 910

Amazon OpenSearch Service Developer Guide

• Using OR1 instances

Limitations

Consider the following limitations when using OR1 instances for your domain.

• Your domain must be running OpenSearch version 2.11 or higher.

• Your domain must have encryption at rest enabled. For more information, see ???.

• Your domain must be a new domain. You can't modify an existing domain to use OR1 instances.

• If your domain uses dedicated master nodes, they must use Graviton instances. For more
information about dedicated master nodes, see ???.

• Shard sizes on OR1 instances must be smaller than 100 GiB. Shards larger than 100 GiB can slow
recovery times. If you create shards larger than 100 GiB on OR1 instances, OpenSearch Service
blocks write requests to the domain. If you still want to use shards larger than 100 GiB, contact
Amazon Web Services Support to request a quota increase.

• The refresh interval for indexes on OR1 instances must be 10 seconds or higher. The default
refresh interval for OR1 instances is 10 seconds.

How OR1 differs from UltraWarm storage

OpenSearch Service provides UltraWarm instances that are optimized to reduce the cost of storing
warm data. Both OR1 and UltraWarm instances store data locally in Amazon EBS and remotely in
Amazon S3. However, OR1 and UltraWarm instances differ in several important ways:

• OR1 instances keep a copy of the data in both local and remote storage. UltraWarm instances, to
reduce storage costs, keep data primarily in remote storage. Depending on usage patterns, they
might move it to local storage.

• OR1 instances are active and can accept read and write operations, whereas the data on
UltraWarm instances is read-only until you manually move it back to hot storage.

• UltraWarm relies on index snapshots for data durability. OR1 instances, by comparison,
performs replication and recovery behind the scenes. In the event of a red index, OR1 instances
automatically restore the missing shards from remote storage in Amazon S3. The recovery time
varies depending on the volume of data to be recovered.

For more information about UltraWarm storage, see ???.

Limitations 911

https://aws.amazon.com/premiumsupport/

Amazon OpenSearch Service Developer Guide

Using OR1 instances

You can select OR1 instances for your data nodes when you create a new domain with the Amazon
Web Services Management Console, the Amazon Command Line Interface (Amazon CLI), or the
Amazon SDK. You can then index and query the data using your existing tools.

Console

1. Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/
aos/.

2. In the left navigation pane, choose Domains.

3. Choose Create domain.

4. Enter a name for your domain along with your other preferred options. Under Instance family,
choose OR1. Choose Create to start the domain creation process.

Amazon CLI

1. Navigate to your Amazon CLI terminal. If you need to install the Amazon CLI, see Install or
update the latest version of the Amazon CLI.

2. To use OR1 storage, you must provide the value of the specific OR1 instance type size in the
InstanceType field when you create a domain. You must also enable encryption at rest.

The following example creates a domain with OR1 instances of size 2xlarge.

aws opensearch create-domain \
 --domain-name test-domain \
 --engine-version OpenSearch_2.11 \
 --cluster-config
 "InstanceType=or1.2xlarge.search,InstanceCount=3,DedicatedMasterEnabled=true,DedicatedMasterType=r6g.large.search,DedicatedMasterCount=3"
 \
 --ebs-options "EBSEnabled=true,VolumeType=gp3,VolumeSize=200" \
 --encryption-at-rest-options Enabled=true \
 --advanced-security-options
 "Enabled=true,InternalUserDatabaseEnabled=true,MasterUserOptions={MasterUserName=test-
user,MasterUserPassword=test-password}" \
 --node-to-node-encryption-options Enabled=true \
 --domain-endpoint-options EnforceHTTPS=true \
 --access-policies '{"Version":"2012-10-17","Statement":
[{"Effect":"Allow","Principal":

Using OR1 instances 912

https://console.aws.amazon.com/aos/
https://console.aws.amazon.com/aos/
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html
https://docs.amazonaws.cn/cli/latest/userguide/getting-started-install.html

Amazon OpenSearch Service Developer Guide

{"AWS":"*"},"Action":"es:*","Resource":"arn:aws:es:us-east-1:account-
id:domain/test-domain/*"}]}'

Index State Management in Amazon OpenSearch Service

Index State Management (ISM) in Amazon OpenSearch Service lets you define custom
management policies that automate routine tasks, and apply them to indexes and index patterns.
You no longer need to set up and manage external processes to run your index operations.

A policy contains a default state and a list of states for the index to transition between. Within each
state, you can define a list of actions to perform and conditions that trigger these transitions. A
typical use case is to periodically delete old indexes after a certain period of time. For example,
you can define a policy that moves your index into a read_only state after 30 days and then
ultimately deletes it after 90 days.

After you attach a policy to an index, ISM creates a job that runs every 5 to 8 minutes (or 30 to 48
minutes for pre-1.3 clusters) to perform policy actions, check conditions, and transition the index
into different states. The base time for this job to run is every 5 minutes, plus a random 0-60%
jitter is added to it to make sure you do not see a surge of activity from all your indexes at the
same time. ISM doesn't run jobs if the cluster state is red.

ISM requires OpenSearch or Elasticsearch 6.8 or later. Full documentation is available in the
OpenSearch documentation.

Important

You can no longer use index templates to apply ISM policies to newly created indexes. You
can continue to automatically manage newly created indexes with the ISM template field.
This update introduces a breaking change that affects existing CloudFormation templates
using this setting.

Create an ISM policy

To get started with Index State Management

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. Select the domain that you want to create an ISM policy for.

Index State Management 913

https://opensearch.org/docs/im-plugin/ism/index/
https://opensearch.org/docs/latest/im-plugin/ism/policies/#sample-policy-with-ism-template-for-auto-rollover
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

3. From the domain's dashboard, navigate to the OpenSearch Dashboards URL and sign in with
your master username and password. The URL follows this format:

domain-endpoint/_dashboards/

4. Open the left navigation panel within OpenSearch Dashboards and choose Index
Management, then Create policy.

5. Use the visual editor or JSON editor to create policies. We recommend using the visual editor
as it offers a more structured way of defining policies. For help creating policies, see the
sample policies below.

6. After you create a policy, attach it to one or more indexes:

POST _plugins/_ism/add/my-index
{
 "policy_id": "my-policy-id"
}

Note

If your domain is running a legacy Elasticsearch version, use _opendistro instead of
_plugins.

Alternatively, select the index in OpenSearch Dashboards and choose Apply policy.

Sample policies

The following sample policies demonstrate how to automate common ISM use cases.

Hot to warm to cold storage

This sample policy moves an index from hot storage to UltraWarm, and eventually to
cold storage. Then, it deletes the index.

The index is initially in the hot state. After ten days, ISM moves it
to the warm state. 80 days later, after the index is 90 days old, ISM moves the index to the
cold state. After a year, the service sends a notification to an Amazon Chime room that the index
is being deleted and then permanently deletes it.

Sample policies 914

https://opensearch.org/docs/latest/im-plugin/ism/index/#visual-editor
https://opensearch.org/docs/latest/im-plugin/ism/index/#json-editor

Amazon OpenSearch Service Developer Guide

Note that cold indexes require the cold_delete operation rather than the normal delete
operation. Also note that an explicit timestamp_field is required in your data in order to
manage cold indexes with ISM.

{
 "policy": {
 "description": "Demonstrate a hot-warm-cold-delete workflow.",
 "default_state": "hot",
 "schema_version": 1,
 "states": [{
 "name": "hot",
 "actions": [],
 "transitions": [{
 "state_name": "warm",
 "conditions": {
 "min_index_age": "10d"
 }
 }]
 },
 {
 "name": "warm",
 "actions": [{
 "warm_migration": {},
 "retry": {
 "count": 5,
 "delay": "1h"
 }
 }],
 "transitions": [{
 "state_name": "cold",
 "conditions": {
 "min_index_age": "90d"
 }
 }]
 },
 {
 "name": "cold",
 "actions": [{
 "cold_migration": {
 "timestamp_field": "<your timestamp field>"
 }
 }
],

Sample policies 915

Amazon OpenSearch Service Developer Guide

 "transitions": [{
 "state_name": "delete",
 "conditions": {
 "min_index_age": "365d"
 }
 }]
 },
 {
 "name": "delete",
 "actions": [{
 "notification": {
 "destination": {
 "chime": {
 "url": "<URL>"
 }
 },
 "message_template": {
 "source": "The index {{ctx.index}} is being deleted."
 }
 }
 },
 {
 "cold_delete": {}
 }]
 }
]
 }
}

Reduce replica count

This sample policy reduces replica count to zero after seven days to conserve disk space and
then deletes the index after 21 days. This policy assumes your index is non-critical and no longer
receiving write requests; having zero replicas carries some risk of data loss.

{
 "policy": {
 "description": "Changes replica count and deletes.",
 "schema_version": 1,
 "default_state": "current",
 "states": [{
 "name": "current",
 "actions": [],

Sample policies 916

Amazon OpenSearch Service Developer Guide

 "transitions": [{
 "state_name": "old",
 "conditions": {
 "min_index_age": "7d"
 }
 }]
 },
 {
 "name": "old",
 "actions": [{
 "replica_count": {
 "number_of_replicas": 0
 }
 }],
 "transitions": [{
 "state_name": "delete",
 "conditions": {
 "min_index_age": "21d"
 }
 }]
 },
 {
 "name": "delete",
 "actions": [{
 "delete": {}
 }],
 "transitions": []
 }
]
 }
}

Take an index snapshot

This sample policy uses the snapshot operation to take a snapshot of an index as soon as it
contains at least one document. repository is the name of the manual snapshot repository you
registered in Amazon S3. snapshot is the name of the snapshot. For snapshot prerequisites and
steps to register a repository, see the section called “Creating index snapshots”.

{
 "policy": {
 "description": "Takes an index snapshot.",
 "schema_version": 1,

Sample policies 917

https://opensearch.org/docs/im-plugin/ism/policies/#snapshot

Amazon OpenSearch Service Developer Guide

 "default_state": "empty",
 "states": [{
 "name": "empty",
 "actions": [],
 "transitions": [{
 "state_name": "occupied",
 "conditions": {
 "min_doc_count": 1
 }
 }]
 },
 {
 "name": "occupied",
 "actions": [{
 "snapshot": {
 "repository": "<my-repository>",
 "snapshot": "<my-snapshot>"
 }
 }],
 "transitions": []
 }
]
 }
}

ISM templates

You can set up an ism_template field in a policy so when you create an index that matches the
template pattern, the policy is automatically attached to that index. In this example, any index you
create with a name that begins with "log" is automatically matched to the ISM policy my-policy-
id:

PUT _plugins/_ism/policies/my-policy-id
{
 "policy": {
 "description": "Example policy.",
 "default_state": "...",
 "states": [...],
 "ism_template": {
 "index_patterns": ["log*"],
 "priority": 100
 }
 }

ISM templates 918

Amazon OpenSearch Service Developer Guide

}

For a more detailed example, see Sample policy with ISM template for auto rollover.

Differences

Compared to OpenSearch and Elasticsearch, ISM for Amazon OpenSearch Service has several
differences.

ISM operations

• OpenSearch Service supports three unique ISM operations, warm_migration,
cold_migration, and cold_delete:

• If your domain has UltraWarm enabled, the warm_migration action transitions the index to
warm storage.

• If your domain has cold storage enabled, the cold_migration action transitions the index to
cold storage, and the cold_delete action deletes the index from cold storage.

Even if one of these actions doesn’t complete within the set timeout period, the migration or
deletion of indexes still continues. Setting an error_notification for one of the above actions
will notify you that the action failed if it didn’t complete within the timeout period, but the
notification is only for your own reference. The actual operation has no inherent timeout and
continues to run until it eventually succeeds or fails.

• If your domain runs OpenSearch or Elasticsearch 7.4 or later, OpenSearch Service supports the
ISM open and close operations.

• If your domain runs OpenSearch or Elasticsearch 7.7 or later, OpenSearch Service supports the
ISM snapshot operation.

Cold storage ISM operations

For cold indexes, you must specify a ?type=_cold parameter when you use the following ISM
APIs:

• Add policy

• Remove policy

• Update policy

Differences 919

https://opensearch.org/docs/latest/im-plugin/ism/policies/#sample-policy-with-ism-template-for-auto-rollover
https://opensearch.org/docs/im-plugin/ism/policies/#actions
https://opensearch.org/docs/latest/im-plugin/ism/policies/#error-notifications
https://opensearch.org/docs/latest/im-plugin/ism/api/#add-policy
https://opensearch.org/docs/latest/im-plugin/ism/api/#remove-policy-from-index
https://opensearch.org/docs/latest/im-plugin/ism/api/#update-policy

Amazon OpenSearch Service Developer Guide

• Retry failed index

• Explain index

These APIs for cold indexes have the following additional differences:

• Wildcard operators are not supported except when you use it at the end. For example,
_plugins/_ism/<add, remove, change_policy, retry, explain>/logstash-* is
supported but _plugins/_ism/<add, remove, change_policy, retry, explain>/
iad-*-prod isn’t supported.

• Multiple index names and patterns are not supported. For example, _plugins/_ism/<add,
remove, change_policy, retry, explain>/app-logs is supported but _plugins/
_ism/<add, remove, change_policy, retry, explain>/app-logs,sample-data
isn’t supported.

ISM settings

OpenSearch and Elasticsearch let you change all available ISM settings using the _cluster/
settings API. On Amazon OpenSearch Service, you can only change the following ISM settings:

• Cluster-level settings:

• plugins.index_state_management.enabled

• plugins.index_state_management.history.enabled

• Index-level settings:

• plugins.index_state_management.rollover_alias

Tutorial: Automating Index State Management processes

This tutorial demonstrates how to implement an ISM policy that automates routine index
management tasks and apply them to indexes and index patterns.

Index State Management (ISM) in Amazon OpenSearch Service lets you automate recurring index
management activities, so you can avoid using additional tools to manage index lifecycles. You can
create a policy that automates these operations based on index age, size, and other conditions, all
from within your Amazon OpenSearch Service domain.

Tutorial: Automating ISM processes 920

https://opensearch.org/docs/latest/im-plugin/ism/api/#retry-failed-index
https://opensearch.org/docs/latest/im-plugin/ism/api/#explain-index
https://opensearch.org/docs/latest/im-plugin/ism/settings/

Amazon OpenSearch Service Developer Guide

OpenSearch Service supports three storage tiers: the default "hot" state for active writing and
low-latency analytics, UltraWarm for read-only data up to three petabytes, and cold storage for
unlimited long-term archival.

This tutorial presents a sample use case of handling time-series data in daily indexes. In this
tutorial, you set up a policy that takes an automated snapshot of each attached index after 24
hours. It then migrates the index from the default hot state to UltraWarm storage after two days,
cold storage after 30 days, and finally deletes the index after 60 days.

Prerequisites

• Your OpenSearch Service domain must be running Elasticsearch version 6.8 or later.

• Your domain must have UltraWarm and cold storage enabled.

• You must register a manual snapshot repository for your domain.

• Your user role needs sufficient permissions to access the OpenSearch Service console. If
necessary, validate and configure access to your domain.

Step 1: Configure the ISM policy

First, configure an ISM policy in OpenSearch Dashboards.

1. From your domain dashboard in the OpenSearch Service console, navigate to the OpenSearch
Dashboards URL and sign in with your master username and password. The URL follows this
format: domain-endpoint/_dashboards/.

2. In OpenSearch Dashboards, choose Add sample data and add one or more of the sample
indexes to your domain.

3. Open the left navigation panel and choose Index Management, then choose Create policy.

4. Name the policy ism-policy-example.

5. Replace the default policy with the following policy:

{
 "policy": {
 "description": "Move indexes between storage tiers",
 "default_state": "hot",
 "states": [
 {
 "name": "hot",
 "actions": [],

Tutorial: Automating ISM processes 921

Amazon OpenSearch Service Developer Guide

 "transitions": [
 {
 "state_name": "snapshot",
 "conditions": {
 "min_index_age": "24h"
 }
 }
]
 },
 {
 "name": "snapshot",
 "actions": [
 {
 "retry": {
 "count": 5,
 "backoff": "exponential",
 "delay": "30m"
 },
 "snapshot": {
 "repository": "snapshot-repo",
 "snapshot": "ism-snapshot"
 }
 }
],
 "transitions": [
 {
 "state_name": "warm",
 "conditions": {
 "min_index_age": "2d"
 }
 }
]
 },
 {
 "name": "warm",
 "actions": [
 {
 "retry": {
 "count": 5,
 "backoff": "exponential",
 "delay": "1h"
 },
 "warm_migration": {}
 }

Tutorial: Automating ISM processes 922

Amazon OpenSearch Service Developer Guide

],
 "transitions": [
 {
 "state_name": "cold",
 "conditions": {
 "min_index_age": "30d"
 }
 }
]
 },
 {
 "name": "cold",
 "actions": [
 {
 "retry": {
 "count": 5,
 "backoff": "exponential",
 "delay": "1h"
 },
 "cold_migration": {
 "start_time": null,
 "end_time": null,
 "timestamp_field": "@timestamp",
 "ignore": "none"
 }
 }
],
 "transitions": [
 {
 "state_name": "delete",
 "conditions": {
 "min_index_age": "60d"
 }
 }
]
 },
 {
 "name": "delete",
 "actions": [
 {
 "cold_delete": {}
 }
],
 "transitions": []

Tutorial: Automating ISM processes 923

Amazon OpenSearch Service Developer Guide

 }
],
 "ism_template": [
 {
 "index_patterns": [
 "index-*"
],
 "priority": 100
 }
]
 }
}

Note

The ism_template field automatically attaches the policy to any newly created index
that matches one of the specified index_patterns. In this case, all indexes that start
with index-. You can modify this field to match an index format in your environment.
For more information, see ISM templates.

6. In the snapshot section of the policy, replace snapshot-repo with the name of the
snapshot repository that you registered for your domain. You can also optionally replace ism-
snapshot, which will be the name of snapshot when it's created.

7. Choose Create. The policy is now visible on the State management policies page.

Step 2: Attach the policy to one or more indexes

Now that you created your policy, attach it to one or more indexes in your cluster.

1. Go to the Hot indicies tab and search for opensearch_dashboards_sample, which lists all
of the sample indexes that you added in step 1.

2. Select all of the indexes and choose Apply policy, then choose the ism-policy-example policy
that you just created.

3. Choose Apply.

You can monitor the indexes as they move through the various states on the Policy managed
indices page.

Tutorial: Automating ISM processes 924

Amazon OpenSearch Service Developer Guide

Summarizing indexes in Amazon OpenSearch Service with
index rollups

Index rollups in Amazon OpenSearch Service let you reduce storage costs by periodically rolling up
old data into summarized indices.

You pick the fields that interest you and use an index rollup to create a new index with only those
fields aggregated into coarser time buckets. You can store months or years of historical data at a
fraction of the cost with the same query performance.

Index rollups requires OpenSearch or Elasticsearch 7.9 or later. Full documentation for the feature
is available in the OpenSearch documentation.

Creating an index rollup job

To get started, choose Index Management in OpenSearch Dashboards. Select Rollup Jobs and
choose Create rollup job.

Step 1: Set up indices

Set up the source and target indices. The source index is the one that you want to roll up. The
target index is where the index rollup results are saved.

After you create an index rollup job, you can’t change your index selections.

Step 2: Define aggregations and metrics

Select the attributes with the aggregations (terms and histograms) and metrics (avg, sum, max,
min, and value count) that you want to roll up. Make sure you don’t add a lot of highly granular
attributes, because you won’t save much space.

Step 3: Specify schedules

Specify a schedule to roll up your indexes as it’s being ingested. The index rollup job is enabled by
default.

Step 4: Review and create

Review your configuration and select Create.

Index rollups 925

https://opensearch.org/docs/im-plugin/index-rollups/

Amazon OpenSearch Service Developer Guide

Step 5: Search the target index

You can use the standard _search API to search the target index. You can’t access the internal
structure of the data in the target index because the plugin automatically rewrites the query in the
background to suit the target index. This is to make sure you can use the same query for the source
and target index.

To query the target index, set size to 0:

GET target_index/_search
{
 "size": 0,
 "query": {
 "match_all": {}
 },
 "aggs": {
 "avg_cpu": {
 "avg": {
 "field": "cpu_usage"
 }
 }
 }
}

Note

OpenSearch versions 2.2 and later support searching multiple rollup indexes in one
request. OpenSearch versions prior to 2.2 and legacy Elasticsearch OSS versions only
support one rollup index per search.

Transforming indexes in Amazon OpenSearch Service

Whereas index rollup jobs let you reduce data granularity by rolling up old data into condensed
indices, transform jobs let you create a different, summarized view of your data centered around
certain fields, so you can visualize or analyze the data in different ways.

Index transforms have an OpenSearch Dashboards user interface and REST API. The feature
requires OpenSearch 1.0 or later. Full documentation is available in the OpenSearch
documentation.

Index transforms 926

https://opensearch.org/docs/im-plugin/index-transforms/
https://opensearch.org/docs/im-plugin/index-transforms/

Amazon OpenSearch Service Developer Guide

Creating an index transform job

If you don’t have any data in your cluster, use the sample flight data within OpenSearch
Dashboards to try out transform jobs. After adding the data, launch OpenSearch Dashboards. Then
choose Index Management, Transform Jobs, and Create Transform Job.

Step 1: Choose indices

In the Indices section, select the source and target index. You can either select an existing target
index or create a new one by entering a name for it.

If you want to transform just a subset of your source index, choose Add Data Filter, and use the
OpenSearch query DSL to specify a subset of your source index.

Step 2: Choose fields

After choosing your indices, choose the fields you want to use in your transform job, as well as
whether to use groupings or aggregations.

• You can use groupings to place your data into separate buckets in your transformed index. For
example, if you want to group all of the airport destinations within the sample flight data, group
the DestAirportID field into a target field of DestAirportID_terms field, and you can find
the grouped airport IDs in your transformed index after the transform job finishes.

• On the other hand, aggregations let you perform simple calculations. For example,
you might include an aggregation in your transform job to define a new field of
sum_of_total_ticket_price that calculates the sum of all airplane tickets. Then you can
analyze the new data in your transformed index.

Step 3: Specify a schedule

Transform jobs are enabled by default and run on schedules. For transform execution interval,
specify an interval in minutes, hours, or days.

Step 4: Review and monitor

Review your configuration and select Create. Then monitor the Transform job status column.

Step 5: Search the target index

After the job finishes, you can use the standard _search API to search the target index.

Creating an index transform job 927

https://opensearch.org/docs/opensearch/query-dsl/

Amazon OpenSearch Service Developer Guide

For example, after running a transform job that transforms the flight data based on the
DestAirportID field, you can run the following request to return all fields that have a value of
SFO:

GET target_index/_search
{
 "query": {
 "match": {
 "DestAirportID_terms" : "SFO"
 }
 }
}

Cross-cluster replication for Amazon OpenSearch Service

With cross-cluster replication in Amazon OpenSearch Service, you can replicate user indexes,
mappings, and metadata from one OpenSearch Service domain to another. Using cross-cluster
replication helps to ensure disaster recovery if there is an outage, and allows you to replicate
data across geographically distant data centers to reduce latency. You pay standard Amazon data
transfer charges for the data transferred between domains.

Cross-cluster replication follows an active-passive replication model where the local or follower
index pulls data from the remote or leader index. The leader index refers to the source of the data,
or the index that you want to replicate data from. The follower index refers to the target for the
data, or the index that you want to replicate data to.

Cross-cluster replication is available on domains running Elasticsearch 7.10 or OpenSearch
1.1 or later. Full documentation for cross-cluster replication is available in the OpenSearch
documentation.

Topics

• Limitations

• Prerequisites

• Permissions requirements

• Set up a cross-cluster connection

• Start replication

• Confirm replication

Cross-cluster replication 928

https://aws.amazon.com/opensearch-service/pricing/
https://aws.amazon.com/opensearch-service/pricing/
https://opensearch.org/docs/replication-plugin/index/
https://opensearch.org/docs/replication-plugin/index/

Amazon OpenSearch Service Developer Guide

• Pause and resume replication

• Stop replication

• Auto-follow

• Upgrading connected domains

Limitations

Cross-cluster replication has the following limitations:

• You can't replicate data between Amazon OpenSearch Service domains and self-managed
OpenSearch or Elasticsearch clusters.

• You can't replicate an index from a follower domain to another follower domain. If you want to
replicate an index to multiple follower domains, you can only replicate it from the single leader
domain.

• A domain can be connected, through a combination of inbound and outbound connections, to a
maximum of 20 other domains.

• When you initially set up a cross-cluster connection, the leader domain must be on the same or a
higher version than the follower domain.

• You can't use Amazon CloudFormation to connect domains.

• You can't use cross-cluster replication on M3 or burstable (T2 and T3) instances.

• You can't replicate data between UltraWarm or cold indexes. Both indexes must be in hot
storage.

• When you delete an index from the leader domain, the corresponding index on the follower
domain isn't automatically deleted.

Prerequisites

Before you set up cross-cluster replication, make sure that your domains meet the following
requirements:

• Elasticsearch 7.10 or OpenSearch 1.1 or later

• Fine-grained access control enabled

• Node-to-node encryption enabled

Limitations 929

Amazon OpenSearch Service Developer Guide

Permissions requirements

In order to start replication, you must include the es:ESCrossClusterGet permission on
the remote (leader) domain. We recommend the following IAM policy on the remote domain.
This policy also lets you perform other operations, such as indexing documents and performing
standard searches:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "*"
]
 },
 "Action": [
 "es:ESHttp*"
],
 "Resource": "arn:aws:es:region:account:domain/leader-domain/*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "es:ESCrossClusterGet",
 "Resource": "arn:aws:es:region:account:domain/leader-domain"
 }
]
}

Make sure that the es:ESCrossClusterGet permission is applied for /leader-domain and not
/leader-domain/*.

In order for non-admin users to perform replication activities, they also need to be mapped to
the appropriate permissions. Most permissions correspond to specific REST API operations. For
example, the indices:admin/plugins/replication/index/_resume permission lets you
resume replication of an index. For a full list of permissions, see Replication permissions in the
OpenSearch documentation.

Permissions requirements 930

https://opensearch.org/docs/replication-plugin/api/
https://opensearch.org/docs/replication-plugin/permissions/#replication-permissions

Amazon OpenSearch Service Developer Guide

Note

The commands to start replication and create a replication rule are special cases. Because
they invoke background processes on the leader and follower domains, you must pass a
leader_cluster_role and follower_cluster_role in the request. OpenSearch
Service uses these roles in all backend replication tasks. For information about mapping
and using these roles, see Map the leader and follower cluster roles in the OpenSearch
documentation.

Set up a cross-cluster connection

To replicate indexes from one domain to another, you need to set up a cross-cluster connection
between the domains. The easiest way to connect domains is through the Connections tab of
the domain dashboard. You can also use the configuration API or the Amazon CLI. Because cross-
cluster replication follows a "pull" model, you initate connections from the follower domain.

Note

If you previously connected two domains to perform cross-cluster searches, you can't
use that same connection for replication. The connection is marked as SEARCH_ONLY in
the console. In order to perform replication between two previously connected domains,
you must delete the connection and recreate it. When you've done this, the connection is
available for both cross-cluster search and cross-cluster replication.

To set up a connection

1. In the Amazon OpenSearch Service console, select the follower domain, go to the Connections
tab, and choose Request.

2. For Connection alias, enter a name for your connection.

3. Choose between connecting to a domain in your Amazon Web Services account and Region or
in another account or Region.

• To connect to a domain in your Amazon Web Services account and Region, select the domain
and choose Request.

Set up a cross-cluster connection 931

https://opensearch.org/docs/replication-plugin/permissions/#map-the-leader-and-follower-cluster-roles
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/opensearch/create-outbound-connection.html

Amazon OpenSearch Service Developer Guide

• To connect to a domain in another Amazon Web Services account or Region, specify the ARN
of the remote domain and choose Request.

OpenSearch Service validates the connection request. If the domains are incompatible, the
connection fails. If validation succeeds, it's sent to the destination domain for approval. When the
destination domain approves the request, you can begin replication.

Cross-cluster replication supports bidirectional replication. This means that you can create an
outbound connection from domain A to domain B, and another outbound connection from domain
B to domain A. You can then set up replication so that domain A follows an index in domain B, and
domain B follows an index in domain A.

Start replication

After you establish a cross-cluster connection, you can begin to replicate data. First, create an index
on the leader domain to replicate:

PUT leader-01

To replicate that index, send this command to the follower domain:

PUT _plugins/_replication/follower-01/_start
{
 "leader_alias": "connection-alias",
 "leader_index": "leader-01",
 "use_roles":{
 "leader_cluster_role": "all_access",
 "follower_cluster_role": "all_access"
 }
}

You can find the connection alias on the Connections tab on your domain dashboard.

This example assumes that an admin is issuing the request and uses all_access for the
leader_cluster_role and follower_cluster_role for simplicity. In production
environments, however, we recommend that you create replication users on both the leader and
follower indexes, and map them accordingly. The usernames must be identical. For information
about these roles and how to map them, see Map the leader and follower cluster roles in the
OpenSearch documentation.

Start replication 932

https://opensearch.org/docs/replication-plugin/permissions/#map-the-leader-and-follower-cluster-roles

Amazon OpenSearch Service Developer Guide

Confirm replication

To confirm that replication is happening, get the replication status:

GET _plugins/_replication/follower-01/_status

{
 "status" : "SYNCING",
 "reason" : "User initiated",
 "leader_alias" : "connection-alias",
 "leader_index" : "leader-01",
 "follower_index" : "follower-01",
 "syncing_details" : {
 "leader_checkpoint" : -5,
 "follower_checkpoint" : -5,
 "seq_no" : 0
 }
}

The leader and follower checkpoint values begin as negative integers and reflect the number of
shards you have (-1 for one shard, -5 for five shards, and so on). The values increment to positive
integers with each change that you make. If the values are the same, it means that the indexes
are fully synced. You can use these checkpoint values to measure replication latency across your
domains.

To further validate replication, add a document to the leader index:

PUT leader-01/_doc/1
{
 "Doctor Sleep":"Stephen King"
}

And confirm that it shows up on the follower index:

GET follower-01/_search

{
 ...
 "max_score" : 1.0,
 "hits" : [
 {

Confirm replication 933

Amazon OpenSearch Service Developer Guide

 "_index" : "follower-01",
 "_type" : "_doc",
 "_id" : "1",
 "_score" : 1.0,
 "_source" : {
 "Doctor Sleep" : "Stephen King"
 }
 }
]
 }
}

Pause and resume replication

You can temporarily pause replication if you need to remediate issues or reduce load on the leader
domain. Send this request to the follower domain. Make sure to include an empty request body:

POST _plugins/_replication/follower-01/_pause
{}

Then get the status to ensure that replication is paused:

GET _plugins/_replication/follower-01/_status

{
 "status" : "PAUSED",
 "reason" : "User initiated",
 "leader_alias" : "connection-alias",
 "leader_index" : "leader-01",
 "follower_index" : "follower-01"
}

When you're done making changes, resume replication. Send this request to the follower domain.
Make sure to include an empty request body:

POST _plugins/_replication/follower-01/_resume
{}

You can't resume replication after it's been paused for more than 12 hours. You must stop
replication, delete the follower index, and restart replication of the leader.

Pause and resume replication 934

Amazon OpenSearch Service Developer Guide

Stop replication

When you stop replication completely, the follower index unfollows the leader and becomes a
standard index. You can't restart replication after you stop it.

Stop replication from the follower domain. Make sure to include an empty request body:

POST _plugins/_replication/follower-01/_stop
{}

Auto-follow

You can define a set of replication rules against a single leader domain that automatically replicate
indexes that match a specified pattern. When an index on the leader domain matches one of the
patterns (for example, books*), a matching follower index is created on the follower domain.
OpenSearch Service replicates any existing indexes that match the pattern, as well as new indexes
that you create. It does not replicate indexes that already exist on the follower domain.

To replicate all indexes (with the exception of system-created indexes, and those that already exist
on the follower domain), use a wildcard (*) pattern.

Create a replication rule

Create a replication rule on the follower domain, and specify the name of the cross-cluster
connection:

POST _plugins/_replication/_autofollow
{
 "leader_alias" : "connection-alias",
 "name": "rule-name",
 "pattern": "books*",
 "use_roles":{
 "leader_cluster_role": "all_access",
 "follower_cluster_role": "all_access"
 }
}

You can find the connection alias on the Connections tab on your domain dashboard.

This example assumes that an admin is issuing the request, and it uses all_access as the
leader and follower domain roles for simplicity. In production environments, however, we

Stop replication 935

Amazon OpenSearch Service Developer Guide

recommend that you create replication users on both the leader and follower indexes and map
them accordingly. The usernames must be identical. For information about these roles and how to
map them, see Map the leader and follower cluster roles in the OpenSearch documentation.

To retrieve a list of existing replication rules on a domain, use the auto-follow stats API operation.

To test the rule, create an index that matches the pattern on the leader domain:

PUT books-are-fun

And check that its replica appears on the follower domain:

GET _cat/indices

health status index uuid pri rep docs.count docs.deleted
 store.size pri.store.size
green open books-are-fun ldfHO78xYYdxRMULuiTvSQ 1 1 0 0
 208b 208b

Delete a replication rule

When you delete a replication rule, OpenSearch Service stops replicating new indices that match
the pattern, but continues existing replication activity until you stop replication of those indexes.

Delete replication rules from the follower domain:

DELETE _plugins/_replication/_autofollow
{
 "leader_alias" : "connection-alias",
 "name": "rule-name"
}

Upgrading connected domains

In order to upgrade the engine version of two domains that have a cross-cluster connection,
upgrade the follower domain first and then the leader domain. Do not delete the connection
between them, otherwise replication pauses and you won't be able to resume it.

Upgrading connected domains 936

https://opensearch.org/docs/replication-plugin/permissions/#map-the-leader-and-follower-cluster-roles
https://opensearch.org/docs/replication-plugin/api/#get-auto-follow-stats

Amazon OpenSearch Service Developer Guide

Migrating Amazon OpenSearch Service indexes using remote
reindex

Remote reindex lets you copy indexes from one Amazon OpenSearch Service domain to another.
You can migrate indexes from any OpenSearch Service domains or self-managed OpenSearch and
Elasticsearch clusters.

A remote domain and index refers to the source of the data, or the domain and index that you want
to copy data from. A local domain and index refers to the target for the data, or the domain and
index that you want to copy data to.

Remote reindexing requires OpenSearch 1.0 or later, or Elasticsearch 6.7 or later, on the local
domain. The remote domain must be lower or the same major version as the local domain.
Elasticsearch versions are considered to be lower than OpenSearch versions, meaning you can
reindex data from Elasticsearch domains to OpenSearch domains. Within the same major version,
the remote domain can be any minor version. For example, remote reindexing from Elasticsearch
7.10.x to 7.9 is supported, but OpenSearch 1.0 to Elasticsearch 7.10.x isn't supported.

Full documentation for the reindex operation, including detailed steps and supported options, is
available in the OpenSearch documentation.

Topics

• Prerequisites

• Reindex data between OpenSearch Service internet domains

• Reindex data between OpenSearch Service domains when the remote is in a VPC

• Reindex data between non-OpenSearch Service domains

• Reindex large datasets

• Remote reindex settings

Prerequisites

Remote reindex has the following requirements:

• The remote domain must be accessible from the local domain. For a remote domain that resides
within a VPC, the local domain must have access to the VPC. This process varies by network
configuration, but likely involves connecting to a VPN or managed network, or using the native
VPC endpoint connection. To learn more, see the section called “VPC support”.

Remote reindex 937

https://opensearch.org/docs/opensearch/reindex-data/

Amazon OpenSearch Service Developer Guide

• The request must be authorized by the remote domain like any other REST request. If the remote
domain has fine-grained access control enabled, you must have permission to perform reindex
on the remote domain and read the index on the local domain. For more security considerations,
see the section called “Fine-grained access control”.

• We recommend you create an index with the desired setting on your local domain before you
start the reindex process.

• If your domain uses a T2 or T3 instance type for your data nodes, you can't use remote reindex.

Reindex data between OpenSearch Service internet domains

The most basic scenario is that the remote index is in the same Amazon Web Services Region as
your local domain with a publicly accessible endpoint and you have signed IAM credentials.

From the remote domain, specify the remote index to reindex from and the local index to reindex
to:

POST _reindex
{
 "source": {
 "remote": {
 "host": "https://remote-domain-endpoint:443"
 },
 "index": "remote_index"
 },
 "dest": {
 "index": "local_index"
 }
}

You must add 443 at the end of the remote domain endpoint for a validation check.

To verify that the index is copied over to the local domain, send this request to the local domain:

GET local_index/_search

If the remote index is in a Region different from your local domain, pass in its Region name, such as
in this sample request:

POST _reindex

Reindex data between OpenSearch Service internet domains 938

Amazon OpenSearch Service Developer Guide

{
 "source": {
 "remote": {
 "host": "https://remote-domain-endpoint:443",
 "region": "eu-west-1"
 },
 "index": "remote_index"
 },
 "dest": {
 "index": "local_index"
 }
}

In case of isolated Region like Amazon GovCloud (US) or China Regions, the endpoint might not be
accessible because your IAM user is not recognized in those Regions.

If the remote domain is secured with basic authentication, specify the username and password:

POST _reindex
{
 "source": {
 "remote": {
 "host": "https://remote-domain-endpoint:443",
 "username": "username",
 "password": "password"
 },
 "index": "remote_index"
 },
 "dest": {
 "index": "local_index"
 }
}

Reindex data between OpenSearch Service domains when the remote is
in a VPC

Every OpenSearch Service domain is made up of its own internal virtual private cloud (VPC)
infrastructure. When you create a new domain in an existing OpenSearch Service VPC, an elastic
network interface is created for each data node in the VPC.

Because the remote reindex operation is performed from the remote OpenSearch Service domain,
and therefore within its own private VPC, you need a way to access the local domain’s VPC. You

Reindex data when the remote domain is in a VPC 939

Amazon OpenSearch Service Developer Guide

can either do this by using the built-in VPC endpoint connection feature to establish a connection
through Amazon PrivateLink, or by configuring a proxy.

If your local domain uses OpenSearch version 1.0 or later, you can use the console or the Amazon
CLI to create an Amazon PrivateLink connection. An Amazon PrivateLink connection allows
resources in the local VPC to privately connect to resources in the remote VPC within the same
Amazon Web Services Region.

Reindex data with the Amazon Web Services Management Console

You can use remote reindex with the console to copy indexes between two domains that share a
VPC endpoint connection.

1. Navigate to the Amazon OpenSearch Service console at https://console.aws.amazon.com/
aos/.

2. In the left navigation pane, choose Domains.

3. Select the local domain, or the domain that you want to copy data to. This opens the domain
details page. Choose the Connections tab below the general information and choose Request.

4. On the Request connection page, select VPC Endpoint Connection for your connection mode
and enter other relevant details. These details include the remote domain, which is the domain
that you want to copy data from. Then, choose Request.

5. Navigate to the remote domain's details page, choose the Connections tab, and find the
Inbound connections table. Select the check box next to the name of the domain that you just
created the connection from (the local domain). Choose Approve.

6. Navigate back to the local domain, choose the Connections tab, and find the Outbound
connections table. After the connection between the two domains is active, an endpoint
becomes available in the Endpoint column in the table. Copy the endpoint.

7. Open the dashboard for the local domain and choose Dev Tools in the left navigation.
To confirm that the remote domain index doesn't exist on your local domain yet, run the
following GET request. Replace remote-domain-index-name with your own index name.

GET remote-domain-index-name/_search
{
 "query":{
 "match_all":{}
 }
}

Reindex data when the remote domain is in a VPC 940

https://console.aws.amazon.com/aos/
https://console.aws.amazon.com/aos/

Amazon OpenSearch Service Developer Guide

In the output, you should see an error that indicates that the index wasn't found.

8. Below your GET request, create a POST request and use your endpoint as the remote host, as
follows.

POST _reindex
{
 "source":{
 "remote":{
 "host":"endpoint",
 "username":"username",
 "password":"password"
 },
 "index":"remote-domain-index-name"
 },
 "dest":{
 "index":"local-domain-index-name"
 }
}

Run this request.

9. Run the GET request again. The output should now indicate that the local index exists. You can
query this index to verify that OpenSearch copied all the data from the remote index.

Reindex data with OpenSearch Service API operations

You can use remote reindex with the API to copy indexes between two domains that share a VPC
endpoint connection.

1. Use the CreateOutboundConnection API operation to request a new connection from your
local domain to your remote domain.

POST https://es.region.amazonaws.com/2021-01-01/opensearch/cc/outboundConnection

{
 "ConnectionAlias": "remote-reindex-example",
 "ConnectionMode": "VPC_ENDPOINT",
 "LocalDomainInfo": {
 "AWSDomainInformation": {
 "DomainName": "local-domain-name",
 "OwnerId": "aws-account-id",

Reindex data when the remote domain is in a VPC 941

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_CreateOutboundConnection.html

Amazon OpenSearch Service Developer Guide

 "Region": "region"
 }
 },
 "RemoteDomainInfo": {
 "AWSDomainInformation": {
 "DomainName": "remote-domain-name",
 "OwnerId": "aws-account-id",
 "Region": "region"
 }
 }
}

You receive a ConnectionId in the response. Save this ID to use in the next step.

2. Use the AcceptInboundConnection API operation with your connection ID to approve the
request from the local domain.

PUT https://es.region.amazonaws.com/2021-01-01/opensearch/cc/
inboundConnection/ConnectionId/accept

3. Use the DescribeOutboundConnections API operation to retrieve the endpoint for your remote
domain.

{
 "Connections": [
 {
 "ConnectionAlias": "remote-reindex-example",
 "ConnectionId": "connection-id",
 "ConnectionMode": "VPC_ENDPOINT",
 "ConnectionProperties": {
 "Endpoint": "connection-endpoint"
 },
 ...
 }
]
}

Save the connection-endpoint to use in Step 5.

4. To confirm that the remote domain index doesn't exist on your local domain yet, run the
following GET request. Replace remote-domain-index-name with your own index name.

GET local-domain-endpoint/remote-domain-index-name/_search

Reindex data when the remote domain is in a VPC 942

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_AcceptInboundConnection.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_DescribeOutboundConnections.html

Amazon OpenSearch Service Developer Guide

{
 "query":{
 "match_all":{}
 }
}

In the output, you should see an error that indicates that the index wasn't found.

5. Create a POST request and use your endpoint as the remote host, as follows.

POST local-domain-endpoint/_reindex
{
 "source":{
 "remote":{
 "host":"connection-endpoint",
 "username":"username",
 "password":"password"
 },
 "index":"remote-domain-index-name"
 },
 "dest":{
 "index":"local-domain-index-name"
 }
}

Run this request.

6. Run the GET request again. The output should now indicate that the local index exists. You can
query this index to verify that OpenSearch copied all the data from the remote index.

If the remote domain is hosted inside a VPC and you don't want to use the VPC endpoint
connection feature, you must configure a proxy with a publicly accessible endpoint. In this case,
OpenSearch Service requires a public endpoint because it doesn't have the ability to send traffic
into your VPC.

When you run a domain in VPC mode, one or more endpoints are placed in your VPC. However,
these endpoints are only for traffic coming into the domain within the VPC, and they don't permit
traffic into the VPC itself.

The remote reindex command is run from the local domain, so the originating traffic isn't able to
use those endpoints to access the remote domain. That's why a proxy is required in this use case.

Reindex data when the remote domain is in a VPC 943

Amazon OpenSearch Service Developer Guide

The proxy domain must have a certificate signed by a public certificate authority (CA). Self-signed
or private CA-signed certificates are not supported.

Reindex data between non-OpenSearch Service domains

If the remote index is hosted outside of OpenSearch Service, like in a self-managed EC2 instance,
set the external parameter to true:

POST _reindex
{
 "source": {
 "remote": {
 "host": "https://remote-domain-endpoint:443",
 "username": "username",
 "password": "password",
 "external": true
 },
 "index": "remote_index"
 },
 "dest": {
 "index": "local_index"
 }
}

In this case, only basic authentication with a username and password is supported. The remote
domain must have a publicly accessible endpoint (even if it's in the same VPC as the local
OpenSearch Service domain) and a certificate signed by a public CA. Self-signed or private CA-
signed certificates aren't supported.

Reindex large datasets

Remote reindex sends a scroll request to the remote domain with the following default values:

• Search context of 5 minutes

• Socket timeout of 30 seconds

• Batch size of 1,000

We recommend tuning these parameters to accommodate your data. For large documents,
consider a smaller batch size and/or longer timeout. For more information, see Scroll search.

Reindex data between non-OpenSearch Service domains 944

https://opensearch.org/docs/opensearch/ux/#scroll-search

Amazon OpenSearch Service Developer Guide

POST _reindex?pretty=true&scroll=10h&wait_for_completion=false
{
 "source": {
 "remote": {
 "host": "https://remote-domain-endpoint:443",
 "socket_timeout": "60m"
 },
 "size": 100,
 "index": "remote_index"
 },
 "dest": {
 "index": "local_index"
 }
}

We also recommend adding the following settings to the local index for better performance:

PUT local_index
{
 "settings": {
 "refresh_interval": -1,
 "number_of_replicas": 0
 }
}

After the reindex process is complete, you can set your desired replica count and remove the
refresh interval setting.

To reindex only a subset of documents that you select through a query, send this request to the
local domain:

POST _reindex
{
 "source": {
 "remote": {
 "host": "https://remote-domain-endpoint:443"
 },
 "index": "remote_index",
 "query": {
 "match": {
 "field_name": "text"
 }

Reindex large datasets 945

Amazon OpenSearch Service Developer Guide

 }
 },
 "dest": {
 "index": "local_index"
 }
}

Remote reindex doesn't support slicing, so you can't perform multiple scroll operations for the
same request in parallel.

Remote reindex settings

In addition to the standard reindexing options, OpenSearch Service supports the following options:

Options Valid values Description Required

external Boolean If the remote domain
is not an OpenSearc
h Service domain, or
if you're reindexin
g between two VPC
domains, specify as
true.

No

region String If the remote domain
is in a different
Region, specify the
Region name.

No

Managing time-series data in Amazon OpenSearch Service with
data streams

A typical workflow to manage time-series data involves multiple steps, such as creating a rollover
index alias, defining a write index, and defining common mappings and settings for the backing
indices.

Remote reindex settings 946

Amazon OpenSearch Service Developer Guide

Data streams in Amazon OpenSearch Service help simplify this initial setup process. Data streams
work out of the box for time-based data such as application logs that are typically append-only in
nature.

Data streams requires OpenSearch 1.0 or later. Full documentation for the feature is available in
the OpenSearch documentation.

Getting started with data streams

A data stream is internally composed of multiple backing indices. Search requests are routed to all
the backing indices, while indexing requests are routed to the latest write index.

Step 1: Create an index template

To create a data stream, you first need to create an index template that configures a set of indexes
as a data stream. The data_stream object indicates that it’s a data stream and not a regular index
template. The index pattern matches with the name of the data stream:

PUT _index_template/logs-template
{
 "index_patterns": [
 "my-data-stream",
 "logs-*"
],
 "data_stream": {},
 "priority": 100
}

In this case, each ingested document must have an @timestamp field. You can also define your
own custom timestamp field as a property in the data_stream object:

PUT _index_template/logs-template
{
 "index_patterns": "my-data-stream",
 "data_stream": {
 "timestamp_field": {
 "name": "request_time"
 }
 }
}

Getting started with data streams 947

https://opensearch.org/docs/opensearch/data-streams/

Amazon OpenSearch Service Developer Guide

Step 2: Create a data stream

After you create an index template, you can directly start ingesting data without creating a data
stream.

Because we have a matching index template with a data_stream object, OpenSearch
automatically creates the data stream:

POST logs-staging/_doc
{
 "message": "login attempt failed",
 "@timestamp": "2013-03-01T00:00:00"
}

Step 3: Ingest data into the data stream

To ingest data into a data stream, you can use the regular indexing APIs. Make sure every
document that you index has a timestamp field. If you try to ingest a document that doesn’t have a
timestamp field, you get an error.

POST logs-redis/_doc
{
 "message": "login attempt",
 "@timestamp": "2013-03-01T00:00:00"
}

Step 4: Searching a data stream

You can search a data stream just like you search a regular index or an index alias. The search
operation applies to all of the backing indexes (all data present in the stream).

GET logs-redis/_search
{
 "query": {
 "match": {
 "message": "login"
 }
 }
}

Getting started with data streams 948

Amazon OpenSearch Service Developer Guide

Step 5: Rollover a data stream

You can set up an Index State Management (ISM) policy to automate the rollover process for the
data stream. The ISM policy is applied to the backing indexes at the time of their creation. When
you associate a policy to a data stream, it only affects the future backing indexes of that data
stream. You also don’t need to provide the rollover_alias setting, because the ISM policy infers
this information from the backing index.

Note

If you migrate a backing index to cold storage, OpenSearch removes this index from
the data stream. Even if you move the index back to UltraWarm, the index remains
independent and not part of the original data stream. After an index has been removed
from the data stream, searching against the stream won't return any data from the index.

Warning

The write index for a data stream can't be migrated to cold storage. If you wish to migrate
data in your data stream to cold storage, you must rollover the data stream before
migration.

Step 6: Manage data streams in OpenSearch Dashboards

To manage data streams from OpenSearch Dashboards, open OpenSearch Dashboards, choose
Index Management, select Indices or Policy managed indices.

Step 7: Delete a data stream

The delete operation first deletes the backing indexes of a data stream and then deletes the data
stream itself.

To delete a data stream and all of its hidden backing indices:

DELETE _data_stream/name_of_data_stream

Getting started with data streams 949

Amazon OpenSearch Service Developer Guide

Monitoring data in Amazon OpenSearch Service
Proactively monitor your data in Amazon OpenSearch Service with alerting and anomaly detection.
Set up alerts to receive notifications when your data exceeds certain thresholds. Anomaly detection
uses machine learning to automatically detect any outliers in your streaming data. You can pair
anomaly detection with alerting to ensure you're notified as soon as an anomaly is detected.

Topics

• Configuring alerts in Amazon OpenSearch Service

• Anomaly detection in Amazon OpenSearch Service

Configuring alerts in Amazon OpenSearch Service

Configure alerts in Amazon OpenSearch Service to get notified when data from one or more
indices meets certain conditions. For example, you might want to receive an email if your
application logs more than five HTTP 503 errors in one hour, or you might want to page a
developer if no new documents have been indexed in the last 20 minutes.

Alerting requires OpenSearch or Elasticsearch 6.2 or later. For full documentation, including API
descriptions, see Alerting in the OpenSearch documentation. This topic highlights the differences
in alerting in OpenSearch Service compared to the open-source version.

Getting started with alerting

To create an alert, you configure a monitor, which is a job that runs on a defined schedule and
queries OpenSearch indexes. You also configure one or more triggers, which define the conditions
that generate events. Finally, you configure actions, which is what happens after an alert is
triggered.

To get started with alerting

1. Choose Alerting from the OpenSearch Dashboards main menu and choose Create monitor.

2. Create a per-query, per-bucket, per-cluster metrics, or per-document monitor. For instructions,
see Create a monitor.

3. For Triggers, create one or more triggers. For instructions, see Create triggers.

4. For Actions, set up a notification channel for the alert. Choose between Slack, Amazon Chime,
a custom webhook, or Amazon SNS. As you might imagine, notifications require connectivity

Alerting 950

https://opensearch.org/docs/latest/monitoring-plugins/alerting/index/
https://opensearch.org/docs/latest/monitoring-plugins/alerting/monitors/#create-a-monitor
https://opensearch.org/docs/latest/monitoring-plugins/alerting/monitors/#create-triggers

Amazon OpenSearch Service Developer Guide

to the channel. For example, your OpenSearch Service domain must be able to connect to
the internet to notify a Slack channel or send a custom webhook to a third-party server. The
custom webhook must have a public IP address in order for an OpenSearch Service domain to
send alerts to it.

Tip

After an action successfully sends a message, securing access to that message (for
example, access to a Slack channel) is your responsibility. If your domain contains
sensitive data, consider using triggers without actions and periodically checking
Dashboards for alerts.

Notifications

Alerting integrates with Notifications, which is a unified system for OpenSearch notifications.
Notifications let you configure which communication service you want to use and see relevant
statistics and troubleshooting information. For comprehensive documentation, see Notifications in
the OpenSearch documentation.

Your domain must be running OpenSearch version 2.3 or later to use notifications.

Note

OpenSearch notifications are separate from OpenSearch Service notifications, which
provide details about service software updates, Auto-Tune enhancements, and other
important domain-level information. OpenSearch notifications are plugin-specific.

Notification channels replaced alerting destinations starting with OpenSearch version 2.0.
Destinations were officially deprecated, and all alerting notification will be managed through
channels going forward.

When you upgrade your domains to version 2.3 or later (since OpenSearch Service support for 2.x
starts with 2.3), your existing destinations are automatically migrated to notification channels. If
a destination fails to migrate, the monitor will continue to use it until the monitor is migrated to
a notification channel. For more inforation, see Questions about destinations in the OpenSearch
documentation.

Notifications 951

https://opensearch.org/docs/latest/notifications-plugin/index/
https://opensearch.org/docs/latest/observing-your-data/alerting/monitors/#questions-about-destinations

Amazon OpenSearch Service Developer Guide

To get started with notifications, sign in to OpenSearch Dashboards and choose Notifications,
Channels, and Create channel.

Amazon Simple Notification Service (Amazon SNS) is a supported channel type for notifications.
In order to authenticate users, you either need to provide the user with full access to Amazon SNS,
or let them assume an IAM role that has permissions to access Amazon SNS. For instructions, see
Amazon SNS as a channel type.

Differences

Compared to the open-source version of OpenSearch, alerting in Amazon OpenSearch Service has
some notable differences.

Alerting settings

OpenSearch Service lets you modify the following alerting settings:

• plugins.scheduled_jobs.enabled

• plugins.alerting.alert_history_enabled

• plugins.alerting.alert_history_max_age

• plugins.alerting.alert_history_max_docs

• plugins.alerting.alert_history_retention_period

• plugins.alerting.alert_history_rollover_period

• plugins.alerting.filter_by_backend_roles

All other settings use the default values which you can't change.

To disable alerting, send the following request:

PUT _cluster/settings
{
 "persistent" : {
 "plugins.scheduled_jobs.enabled" : false
 }
}

The following request configures alerting to automatically delete history indices after seven days,
rather than the default 30 days:

Differences 952

https://opensearch.org/docs/latest/observing-your-data/notifications/index/#amazon-sns-as-a-channel-type
https://opensearch.org/docs/latest/observing-your-data/alerting/settings/#alerting-settings

Amazon OpenSearch Service Developer Guide

PUT _cluster/settings
{
 "persistent": {
 "plugins.alerting.alert_history_retention_period": "7d"
 }
}

If you previously created monitors and want to stop the creation of daily alerting indices, delete all
alert history indices:

DELETE .plugins-alerting-alert-history-*

To reduce shard count for history indices, create an index template. The following request sets
history indexes for alerting to one shard and one replica:

PUT _index_template/template-name
{
 "index_patterns": [".opendistro-alerting-alert-history-*"],
 "template": {
 "settings": {
 "number_of_shards": 1,
 "number_of_replicas": 1
 }
 }
}

Depending on your tolerance for data loss, you might even consider using zero replicas. For more
information about creating and managing index templates, see Index templates in the OpenSearch
documentation.

Alerting permissions

Alerting supports fine-grained access control. For details on mixing and matching permissions to fit
your use case, see Alerting security in the OpenSearch documentation.

Anomaly detection in Amazon OpenSearch Service

Anomaly detection in Amazon OpenSearch Service automatically detects anomalies in your
OpenSearch data in near-real time by using the Random Cut Forest (RCF) algorithm. RCF is an

Anomaly detection 953

https://opensearch.org/docs/latest/opensearch/index-templates/
https://opensearch.org/docs/latest/monitoring-plugins/alerting/security/

Amazon OpenSearch Service Developer Guide

unsupervised machine learning algorithm that models a sketch of your incoming data stream. The
algorithm computes an anomaly grade and confidence score value for each incoming data
point. Anomaly detection uses these values to differentiate an anomaly from normal variations in
your data.

You can pair the anomaly detection plugin with the the section called “Alerting” plugin to notify
you as soon as an anomaly is detected.

Anomaly detection is available on domains running any OpenSearch version or Elasticsearch 7.4
or later. All instance types support anomaly detection except for t2.micro and t2.small. Full
documentation for anomaly detection, including detailed steps and API descriptions, is available in
the OpenSearch documentation.

Prerequisites

Anomaly detection has the following prerequisites:

• Anomaly detection requires OpenSearch or Elasticsearch 7.4 or later.

• Anomaly detection only supports fine-grained access control on Elasticsearch versions 7.9 and
later and all versions of OpenSearch. Prior to Elasticsearch 7.9, only admin users can create, view,
and manage detectors.

• If your domain uses fine-grained access control, non-admin users must be mapped to the
anomaly_read_access role in OpenSearch Dashboards in order to view detectors, or
anomaly_full_access in order to create and manage detectors.

Getting started with anomaly detection

To get started, choose Anomaly Detection in OpenSearch Dashboards.

Step 1: Create a detector

A detector is an individual anomaly detection task. You can create multiple detectors, and all the
detectors can run simultaneously, with each analyzing data from different sources.

Step 2: Add features to your detector

A feature is the field in your index that you check for anomalies. A detector can discover anomalies
across one or more features. You must choose one of the following aggregations for each feature:
average(), sum(), count(), min(), or max().

Anomaly detection 954

https://opensearch.org/docs/latest/monitoring-plugins/ad/index/

Amazon OpenSearch Service Developer Guide

Note

The count() aggregation method is only available in OpenSearch and Elasticsearch 7.7 or
later. For Elasticsearch 7.4, use a custom expression like the following:

{
 "aggregation_name": {
 "value_count": {
 "field": "field_name"
 }
 }
}

The aggregation method determines what constitutes an anomaly. For example, if you choose
min(), the detector focuses on finding anomalies based on the minimum values of your feature. If
you choose average(), the detector finds anomalies based on the average values of your feature.
You can add a maximum of five features per detector.

You can configure the following optional settings (available in Elasticsearch 7.7 and later):

• Category field - Categorize or slice your data with a dimension like IP address, product ID,
country code, and so on.

• Window size - Set the number of aggregation intervals from your data stream to consider in a
detection window.

After you set up your features, preview sample anomalies and adjust the feature settings if
necessary.

Anomaly detection 955

Amazon OpenSearch Service Developer Guide

Step 3: Observe the results

Anomaly detection 956

Amazon OpenSearch Service Developer Guide

• Live anomalies - displays the live anomaly results for the last 60 intervals. For example, if the
interval is set to 10, it shows the results for the last 600 minutes. This chart refreshes every 30
seconds.

• Anomaly history - plots the anomaly grade with the corresponding measure of confidence.

• Feature breakdown - plots the features based on the aggregation method. You can vary the
date-time range of the detector.

• Anomaly occurrence - shows the Start time, End time, Data confidence, and Anomaly
grade for each anomaly detected.

If you set the category field, you see an additional Heat map chart that correlates results for
anomalous entities. Choose a filled rectangle to see a more detailed view of the anomaly.

Step 4: Set up alerts

To create a monitor to send you notifications when any anomalies are detected, choose Set up
alerts. The plugin redirects you to the Add monitor page where you can configure an alert.

Tutorial: Detect high CPU usage with anomaly detection

This tutorial demonstrates how to create an anomaly detector in Amazon OpenSearch Service to
detect high CPU usage. You'll use OpenSearch Dashboards to configure a detector to monitor CPU
usage, and generate an alert when your CPU usage rises above a specified threshold.

Note

These steps apply to the latest version of OpenSearch and might differ slightly for past
versions.

Prerequisites

• You must have an OpenSearch Service domain running Elasticsearch 7.4 or later, or any
OpenSearch version.

• You must be ingesting application log files into your cluster that contain CPU usage data.

Tutorial: Detect high CPU usage with anomaly detection 957

https://opensearch.org/docs/monitoring-plugins/alerting/monitors/#create-monitors

Amazon OpenSearch Service Developer Guide

Step 1: Create a detector

First, create a detector that identifies anomalies in your CPU usage data.

1. Open the left panel menu in OpenSearch Dashboards and choose Anomaly Detection, then
choose Create detector.

2. Name the detector high-cpu-usage.

3. For your data source, choose your index that contains CPU usage log files where you want to
identify anomalies.

4. Choose the Timestamp field from your data. Optionally, you can add a data filter. This data
filter analyzes only a subset of the data source and reduces the noise from data that's not
relevant.

5. Set the Detector interval to 2 minutes. This interval defines the time (by minute interval) for
the detector to collect the data.

6. In Window delay, add a 1-minute delay. This delay adds extra processing time to ensure that
all data within the window is present.

7. Choose Next. On the anomaly detection dashboard, under the detector name, choose
Configure model.

8. For Feature name, enter max_cpu_usage. For Feature state, select Enable feature.

9. For Find anomalies based on, choose Field value.

10. For Aggregation method, choose max().

11. For Field, select the field in your data to check for anomalies. For example, it might be called
cpu_usage_percentage.

12. Keep all other settings as their defaults and choose Next.

13. Ignore the detector jobs setup and choose Next.

14. In the pop-up window, choose when to start the detector (automatically or manually), and
then choose Confirm.

Now that the detector is configured, after it initializes, you will be able to see real-time results of
the CPU usage in the Real-time results section of your detector panel. The Live anomalies section
displays any anomalies that occur as data is being ingested in real time.

Tutorial: Detect high CPU usage with anomaly detection 958

Amazon OpenSearch Service Developer Guide

Step 2: Configure an alert

Now that you've created a detector, create a monitor that invokes an alert to send a message to
Slack when it detects CPU usage that meets the conditions specified in the detector settings. You'll
receive Slack notifications when data from one or more indexes meets the conditions that invoke
the alert.

1. Open the left panel menu in OpenSearch Dashboards and choose Alerting, then choose Create
monitor.

2. Provide a name for the monitor.

3. For Monitor type, choose Per-query monitor. A per-query monitor runs a specified query and
defines the triggers.

4. For Monitor defining method, choose Anomaly detector, then select the detector that you
created in the previous section from the Detector dropdown menu.

5. For Schedule, choose how often the monitor collects data and how often you receive alerts. For
the purposes of this tutorial, set the schedule to run every 7 minutes.

6. In the Triggers section, choose Add trigger. For Trigger name, enter High CPU usage. For this
tutorial, for Severity level, choose 1, which is the highest level of severity.

7. For Anomaly grade threshold, choose IS ABOVE. On the menu under that, choose the grade
threshold to apply. For this tutorial, set the Anomaly grade to 0.7.

8. For Anomaly confidence threshold, choose IS ABOVE. On the menu under that, enter the same
number as your Anomaly grade. For this tutorial, set the Anomaly confidence threshold to 0.7.

9. In the Actions section, choose Destination. In the Name field, choose the name of the
destination. On the Type menu, choose Slack. In the Webhook URL field, enter a webhook URL
to receive alerts to. For more information, see Sending messages using incoming webhooks.

10.Choose Create.

Related resources

• the section called “Alerting”

• the section called “Anomaly detection”

• Anomaly detection API

Tutorial: Detect high CPU usage with anomaly detection 959

https://api.slack.com/messaging/webhooks
https://opensearch.org/docs/latest/monitoring-plugins/ad/api/

Amazon OpenSearch Service Developer Guide

Machine learning for Amazon OpenSearch Service

ML Commons is an OpenSearch plugin that provides a set of common machine learning (ML)
algorithms through transport and REST API calls. Those calls choose the right nodes and resources
for each ML request and monitors ML tasks to ensure uptime. This allows you to leverage existing
open-source ML algorithms and reduce the effort required to develop new ML features. For more
about the plugin, see Machine learning in the OpenSearch documentation. This chapter covers how
to use the plugin with Amazon OpenSearch Service.

Topics

• Amazon OpenSearch Service ML connectors for Amazon Web Services

• Amazon OpenSearch Service ML connectors for third-party platforms

• Using Amazon CloudFormation to set up remote inference for semantic search

• Unsupported ML Commons settings

Amazon OpenSearch Service ML connectors for Amazon Web
Services

When you use Amazon OpenSearch Service machine learning (ML) connectors with another
Amazon Web Service, you need to set up an IAM role to securely connect OpenSearch Service to
that service. Amazon Web Services that you can set up a connector to include Amazon SageMaker
and Amazon Bedrock. In this tutorial, we cover how to create a connector from OpenSearch Service
to SageMaker Runtime. For more information about connectors, see Supported connectors.

Topics

• Prerequisites

• Create an OpenSearch Service connector

Prerequisites

To create a connector, you must have an Amazon SageMaker Domain endpoint and an IAM role
that grants OpenSearch Service access.

Connectors for Amazon Web Services 960

https://opensearch.org/docs/latest/ml-commons-plugin/index/
https://opensearch.org/docs/latest/ml-commons-plugin/remote-models/connectors/#supported-connectors

Amazon OpenSearch Service Developer Guide

Set up an Amazon SageMaker Domain

See Deploy a Model in Amazon SageMaker in the Amazon SageMaker Developer Guide to deploy
your machine learning model. Note the endpoint URL for your model, which you need in order to
create an AI connector.

Create an IAM role

Set up an IAM role to delegate SageMaker Runtime permissions to OpenSearch Service. To create
a new role, see Creating an IAM role (console) in the IAM User Guide. Optionally, you could use an
existing role as long as it has the same set of privileges. If you do create a new role instead of using
an Amazon managed role, replace opensearch-sagemaker-role in this tutorial with the name
of your own role.

1. Attach the following managed IAM policy to your new role to allow OpenSearch Service to
access to your SageMaker endpoint. To attach a policy to a role, see Adding IAM identity
permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sagemaker:InvokeEndpointAsync",
 "sagemaker:InvokeEndpoint"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

2. Follow the instructions in Modifying a role trust policy to edit the trust relationship of the role.
You must specify OpenSearch Service in the Principal statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"

Prerequisites 961

https://docs.amazonaws.cn/sagemaker/latest/dg/how-it-works-deployment.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy

Amazon OpenSearch Service Developer Guide

],
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "opensearchservice.amazonaws.com"
]
 }
 }
]
}

We recommend that you use the aws:SourceAccount and aws:SourceArn condition keys
to limit access to a specific domain. The SourceAccount is the Amazon Web Services account
ID that belongs to the owner of the domain, and the SourceArn is the ARN of the domain. For
example, you can add the following condition block to the trust policy:

"Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:es:region:account-id:domain/domain-name"
 }
}

Configure permissions

In order to create the connector, you need permission to pass the IAM role to OpenSearch Service.
You also need access to the es:ESHttpPost action. To grant both of these permissions, attach the
following policy to the IAM role whose credentials are being used to sign the request:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::account-id:role/opensearch-sagemaker-role"
 },
 {
 "Effect": "Allow",

Prerequisites 962

Amazon OpenSearch Service Developer Guide

 "Action": "es:ESHttpPost",
 "Resource": "arn:aws:es:region:account-id:domain/domain-name/*"
 }
]
}

If your user or role doesn't have iam:PassRole permissions to pass your role, you might
encounter an authorization error when you try to register a repository in the next step.

Map the ML role in OpenSearch Dashboards (if using fine-grained access control)

Fine-grained access control introduces an additional step when setting up a connector. Even if you
use HTTP basic authentication for all other purposes, you need to map the ml_full_access role
to your IAM role that has iam:PassRole permissions to pass opensearch-sagemaker-role.

1. Navigate to the OpenSearch Dashboards plugin for your OpenSearch Service domain. You can
find the Dashboards endpoint on your domain dashboard on the OpenSearch Service console.

2. From the main menu choose Security, Roles, and select the ml_full_access role.

3. Choose Mapped users, Manage mapping.

4. Under Backend roles, add the ARN of the role that has permissions to pass opensearch-
sagemaker-role.

arn:aws:iam::account-id:role/role-name

5. Select Map and confirm the user or role shows up under Mapped users.

Create an OpenSearch Service connector

To create a connector, send a POST request to the OpenSearch Service domain endpoint. You can
use curl, the sample Python client, Postman, or another method to send a signed request. Note
that you can't use a POST request in the Kibana console. The request takes the following format:

POST domain-endpoint/_plugins/_ml/connectors/_create
{
 "name": "sagemaker: embedding",
 "description": "Test connector for Sagemaker embedding model",
 "version": 1,
 "protocol": "aws_sigv4",
 "credential": {

Create an OpenSearch Service connector 963

Amazon OpenSearch Service Developer Guide

 "roleArn": "arn:aws:iam::account-id:role/opensearch-sagemaker-role"
 },
 "parameters": {
 "region": "region",
 "service_name": "sagemaker"
 },
 "actions": [
 {
 "action_type": "predict",
 "method": "POST",
 "headers": {
 "content-type": "application/json"
 },
 "url": "https://runtime.sagemaker.region.amazonaws.com/endpoints/endpoint-id/
invocations",
 "request_body": "{ \"inputs\": { \"question\": \"${parameters.question}\",
 \"context\": \"${parameters.context}\" } }"
 }
]
}

If your domain resides within a virtual private cloud (VPC), your computer must be connected
to the VPC for the request to successfully create the AI connector. Accessing a VPC varies by
network configuration, but usually involves connecting to a VPN or corporate network. To
check that you can reach your OpenSearch Service domain, navigate to https://your-vpc-
domain.region.es.amazonaws.com in a web browser and verify that you receive the default
JSON response.

Sample Python client

The Python client is simpler to automate than a HTTP request and has better reusability. To create
the AI connector with the Python client, save the following sample code to a Python file. The client
requires the Amazon SDK for Python (Boto3), requests, and requests-aws4auth packages.

import boto3
import requests
from requests_aws4auth import AWS4Auth

host = 'domain-endpoint/'
region = 'region'
service = 'es'
credentials = boto3.Session().get_credentials()

Create an OpenSearch Service connector 964

https://aws.amazon.com/sdk-for-python/
https://requests.readthedocs.io/en/latest/
https://pypi.org/project/requests-aws4auth/

Amazon OpenSearch Service Developer Guide

awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

Register repository
path = '_plugins/_ml/connectors/_create'
url = host + path

payload = {
 "name": "sagemaker: embedding",
 "description": "Test connector for Sagemaker embedding model",
 "version": 1,
 "protocol": "aws_sigv4",
 "credential": {
 "roleArn": "arn:aws:iam::account-id:role/opensearch-sagemaker-role"
 },
 "parameters": {
 "region": "region",
 "service_name": "sagemaker"
 },
 "actions": [
 {
 "action_type": "predict",
 "method": "POST",
 "headers": {
 "content-type": "application/json"
 },
 "url": "https://runtime.sagemaker.region.amazonaws.com/endpoints/endpoint-id/
invocations",
 "request_body": "{ \"inputs\": { \"question\": \"${parameters.question}\",
 \"context\": \"${parameters.context}\" } }"
 }
]
}
headers = {"Content-Type": "application/json"}

r = requests.post(url, auth=awsauth, json=payload, headers=headers)
print(r.status_code)
print(r.text)

Create an OpenSearch Service connector 965

Amazon OpenSearch Service Developer Guide

Amazon OpenSearch Service ML connectors for third-party
platforms

In this tutorial, we cover how to create a connector from OpenSearch Service to Cohere. For more
information about connectors, see Supported connectors.

When you use an Amazon OpenSearch Service machine learning (ML) connector with an external
remote model, you need to store your specific authorization credentials in Amazon Secrets
Manager. This could be an API key, or a username and password combination. This means you also
need to create an IAM role that allows OpenSearch Service access to read from Secrets Manager.

Topics

• Prerequisites

• Create an OpenSearch Service connector

Prerequisites

To create a connector for Cohere or any external provider with OpenSearch Service, you must have
an IAM role that grants OpenSearch Service access to Amazon Secrets Manager, where you store
your credentials. You must also store your credentials in Secrets Manager.

Create an IAM role

Set up an IAM role to delegate Secrets Manager permissions to OpenSearch Service. You can also
use the existing SecretManagerReadWrite role. To create a new role, see Creating an IAM role
(console) in the IAM User Guide. If you do create a new role instead of using an Amazon managed
role, replace opensearch-secretmanager-role in this tutorial with the name of your own role.

1. Attach the following managed IAM policy to your new role to allow OpenSearch Service to
access to your Secrets Manager values. To attach a policy to a role, see Adding IAM Identity
Permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "secretsmanager:GetSecretValue"

Connectors for external platforms 966

https://opensearch.org/docs/latest/ml-commons-plugin/remote-models/connectors/#supported-connectors
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-user.html#roles-creatingrole-user-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console

Amazon OpenSearch Service Developer Guide

],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

2. Follow the instructions in Modifying a role trust policy to edit the trust relationship of the role.
You must specify OpenSearch Service in the Principal statement:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "opensearchservice.amazonaws.com"
]
 }
 }
]
}

We recommend that you use the aws:SourceAccount and aws:SourceArn condition keys
to limit access to specific domain. The SourceAccount is the Amazon Web Services account
ID that belongs to the owner of the domain, and the SourceArn is the ARN of the domain. For
example, you can add the following condition block to the trust policy:

"Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:es:region:account-id:domain/domain-name"
 }
}

Prerequisites 967

https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy

Amazon OpenSearch Service Developer Guide

Configure permissions

In order to create the connector, you need permission to pass the IAM role to OpenSearch Service.
You also need access to the es:ESHttpPost action. To grant both of these permissions, attach the
following policy to the IAM role whose credentials are being used to sign the request:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::account-id:role/opensearch-secretmanager-role"
 },
 {
 "Effect": "Allow",
 "Action": "es:ESHttpPost",
 "Resource": "arn:aws:es:region:account-id:domain/domain-name/*"
 }
]
}

If your user or role doesn't have iam:PassRole permissions to pass your role, you might
encounter an authorization error when you try to register a repository in the next step.

Set up Amazon Secrets Manager

To store your authorization credentials in Secrets Manager, see Create an Amazon Secrets Manager
secret in the Amazon Secrets Manager User Guide.

After Secrets Manager accepts your key-value pair as a secret, you receive an ARN with the format:
arn:aws:secretsmanager:us-west-2:123456789012:secret:MySecret-a1b2c3. Keep a
record of this ARN, as you use it and your key when you create a connector in the next step.

Map the ML role in OpenSearch Dashboards (if using fine-grained access control)

Fine-grained access control introduces an additional step when setting up a connector. Even if you
use HTTP basic authentication for all other purposes, you need to map the ml_full_access role
to your IAM role that has iam:PassRole permissions to pass opensearch-sagemaker-role.

1. Navigate to the OpenSearch Dashboards plugin for your OpenSearch Service domain. You can
find the Dashboards endpoint on your domain dashboard on the OpenSearch Service console.

Prerequisites 968

https://docs.amazonaws.cn/secretsmanager/latest/userguide/create_secret.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/create_secret.html

Amazon OpenSearch Service Developer Guide

2. From the main menu choose Security, Roles, and select the ml_full_access role.

3. Choose Mapped users, Manage mapping.

4. Under Backend roles, add the ARN of the role that has permissions to pass opensearch-
sagemaker-role.

arn:aws:iam::account-id:role/role-name

5. Select Map and confirm the user or role shows up under Mapped users.

Create an OpenSearch Service connector

To create a connector, send a POST request to the OpenSearch Service domain endpoint. You can
use curl, the sample Python client, Postman, or another method to send a signed request. Note
that you can't use a POST request in the Kibana console. The request takes the following format:

POST domain-endpoint/_plugins/_ml/connectors/_create
{
 "name": "Cohere Connector: embedding",
 "description": "The connector to cohere embedding model",
 "version": 1,
 "protocol": "http",
 "credential": {
 "secretArn": "arn:aws:secretsmanager:region:account-id:secret:cohere-key-id",
 "roleArn": "arn:aws:iam::account-id:role/opensearch-secretmanager-role"
 },
 "actions": [
 {
 "action_type": "predict",
 "method": "POST",
 "url": "https://api.cohere.ai/v1/embed",
 "headers": {
 "Authorization": "Bearer ${credential.secretArn.cohere-key-used-in-
secrets-manager}"
 },
 "request_body": "{ \"texts\": ${parameters.texts}, \"truncate\": \"END\" }"
 }
]
}

Create an OpenSearch Service connector 969

Amazon OpenSearch Service Developer Guide

The request body for this request is different than that of an open-source connector request in two
ways. Inside the credential field, you pass the ARN for the IAM role that permits OpenSearch
Service to read from Secrets Manager, along with the ARN for the what secret. In the headers
field, you refer to the secret using the secret key and the fact its coming from an ARN.

If your domain resides within a virtual private cloud (VPC), your computer must be connected
to the VPC for the request to successfully create the AI connetor. Accessing a VPC varies by
network configuration, but usually involves connecting to a VPN or corporate network. To
check that you can reach your OpenSearch Service domain, navigate to https://your-vpc-
domain.region.es.amazonaws.com in a web browser and verify that you receive the default
JSON response.

Sample Python client

The Python client is simpler to automate than a HTTP request and has better reusability. To create
the AI connector with the Python client, save the following sample code to a Python file. The client
requires the Amazon SDK for Python (Boto3), requests, and requests-aws4auth packages.

import boto3
import requests
from requests_aws4auth import AWS4Auth

host = 'domain-endpoint/'
region = 'region'
service = 'es'
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

path = '_plugins/_ml/connectors/_create'
url = host + path

payload = {
 "name": "Cohere Connector: embedding",
 "description": "The connector to cohere embedding model",
 "version": 1,
 "protocol": "http",
 "credential": {
 "secretArn": "arn:aws:secretsmanager:region:account-id:secret:cohere-key-id",
 "roleArn": "arn:aws:iam::account-id:role/opensearch-secretmanager-role"
 },
 "actions": [

Create an OpenSearch Service connector 970

https://aws.amazon.com/sdk-for-python/
https://requests.readthedocs.io/en/latest/
https://pypi.org/project/requests-aws4auth/

Amazon OpenSearch Service Developer Guide

 {
 "action_type": "predict",
 "method": "POST",
 "url": "https://api.cohere.ai/v1/embed",
 "headers": {
 "Authorization": "Bearer ${credential.secretArn.cohere-key-used-in-
secrets-manager}"
 },
 "request_body": "{ \"texts\": ${parameters.texts}, \"truncate\": \"END\" }"
 }
]
}

headers = {"Content-Type": "application/json"}

r = requests.post(url, auth=awsauth, json=payload, headers=headers)
print(r.status_code)
print(r.text)

Using Amazon CloudFormation to set up remote inference for
semantic search

Starting with OpenSearch version 2.9, you can use remote inference with semantic search to
host your own machine learning (ML) models. Remote inference uses the ML Commons plugin to
allow you to host your model inferences remotely on ML services, such as Amazon SageMaker and
Amazon BedRock, and connect them to Amazon OpenSearch Service with ML connectors.

To ease the setup of remote inference, Amazon OpenSearch Service provides an Amazon
CloudFormation template in the console. CloudFormation is an Amazon Web Service that lets you
model, provision, and manage Amazon and third-party resources by treating infrastructure as code.

The OpenSearch CloudFormation template automates the model provisioning process for you, so
that you can easily create a model in your OpenSearch Service domain and then use the model ID
to ingest data and run neural search queries.

Topics

• Prerequisites

• Amazon SageMaker templates

• Amazon Bedrock templates

CloudFormation template integrations 971

https://opensearch.org/docs/latest/search-plugins/semantic-search/
https://opensearch.org/docs/latest/ml-commons-plugin/index/
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/Welcome.html

Amazon OpenSearch Service Developer Guide

Prerequisites

To use a CloudFormation template with OpenSearch Service, complete the following prerequisites.

Set up an OpenSearch Service domain

Before you can use a CloudFormation template, you must set up an Amazon OpenSearch Service
domain with version 2.9 or later and fine-grained access control enabled. Create an OpenSearch
Service backend role to give the ML Commons plugin permission to create your connector for you.

The CloudFormation template creates a Lambda IAM role for you with the default name
LambdaInvokeOpenSearchMLCommonsRole, which you can override if you want to choose
a different name. After the template creates this IAM role, you need to give the Lambda
function permission to call your OpenSearch Service domain. To do so, map the role named
ml_full_access to your OpenSearch Service backend role with the following steps:

1. Navigate to the OpenSearch Dashboards plugin for your OpenSearch Service domain. You can
find the Dashboards endpoint on your domain dashboard on the OpenSearch Service console.

2. From the main menu choose Security, Roles, and select the ml_full_access role.

3. Choose Mapped users, Manage mapping.

4. Under Backend roles, add the ARN of the Lambda role that needs permission to call your
domain.

arn:aws:iam::account-id:role/role-name

5. Select Map and confirm the user or role shows up under Mapped users.

After you've mapped the role, navigate to the security configuration of your domain and add the
Lambda IAM role to your OpenSearch Service access policy.

Enable permissions on your Amazon Web Services account

Your Amazon Web Services account must have permission to access CloudFormation and Lambda,
along with whichever Amazon Web Service you choose for your template – either SageMaker
Runtime or Amazon BedRock.

If you're using Amazon Bedrock, you must also register your model. See Model access in the
Amazon Bedrock User Guide to register your model.

Prerequisites 972

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/osis-get-started.html#osis-get-started-access
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/osis-get-started.html#osis-get-started-access
https://docs.amazonaws.cn/bedrock/latest/userguide/model-access.html

Amazon OpenSearch Service Developer Guide

If you're using your own Amazon S3 bucket to provide model artifacts, you must add the
CloudFormation IAM role to your S3 access policy. For more information, see Adding and removing
IAM identity permissions in the IAM User Guide.

Amazon SageMaker templates

The Amazon SageMaker CloudFormation templates define multiple Amazon resources in order to
set up the neural plugin and semantic search for you.

First, use the Integration with text embedding models through Amazon SageMaker template to
deploy a text embedding model in SageMaker Runtime as a server. If you don't provide a model
endpoint, CloudFormation creates an IAM role that allows SageMaker Runtime to download
model artifacts from Amazon S3 and deploy them to the server. If you provide an endpoint,
CloudFormation creates an IAM role that allows the Lambda function to access the OpenSearch
Service domain or, if the role already exists, updates and reuses the role. The endpoint serves the
remote model that is used for the ML connector with the ML Commons plugin.

Next, use the Integration with Sparse Encoders through Amazon Sagemaker template to create
a Lambda function that has your domain set up remote inference connectors. After the connector
is created in OpenSearch Service, the remote inference can run semantic search using the remote
model in SageMaker Runtime. The template returns the model ID in your domain back to you to so
you can start searching.

To use the Amazon SageMaker CloudFormation templates

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. In the left navigation, choose Integrations.

3. Under each of the Amazon SageMaker templates, choose Configure domain, Configure public
domain.

4. Follow the prompt in the CloudFormation console to provision your stack and set up a model.

Note

OpenSearch Service also provides a separate template to configure VPC domain. If you use
this template, you need to provide the VPC ID for the Lambda function.

Amazon SageMaker templates 973

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

Amazon Bedrock templates

Similar to the Amazon SageMaker CloudFormation templates, the Amazon Bedrock
CloudFormation template provisions the Amazon resources needed to create connectors between
OpenSearch Service and Amazon Bedrock.

First, the template creates an IAM role that allows the future Lambda function to access your
OpenSearch Service domain. The template then creates the Lambda function, which has the
domain create a connector using the ML Commons plugin. After OpenSearch Service creates the
connector, the remote inference set up is finished and you can run semantic searches using the
Amazon Bedrock API operations.

Note that since Amazon Bedrock hosts its own ML models, you don’t need to deploy a model to
SageMaker Runtime. Instead, the template uses a predetermined endpoint for Amazon Bedrock
and skips the endpoint provision steps.

To use the Amazon Bedrock CloudFormation template

1. Open the Amazon OpenSearch Service console at https://console.aws.amazon.com/aos/home.

2. In the left navigation, choose Integrations.

3. Under Integrate with Amazon Titan Text Embeddings model through Amazon Bedrock,
choose Configure domain, Configure public domain.

4. Follow the prompt to set up your model.

Note

OpenSearch Service also provides a separate template to configure VPC domain. If you use
this template, you need to provide the VPC ID for the Lambda function.

In addition, OpenSearch Service provides the following Amazon Bedrock templates to connect to
the Cohere model and the Amazon Titan multimodal embeddings model:

• Integration with Cohere Embed through Amazon Bedrock

• Integrate with Amazon Bedrock Titan Multi-modal

Amazon Bedrock templates 974

https://console.aws.amazon.com/aos/home

Amazon OpenSearch Service Developer Guide

Unsupported ML Commons settings

Amazon OpenSearch Service doesn't support use of the following ML Commons settings:

• plugins.ml_commons.allow_registering_model_via_url

• plugins.ml_commons.allow_registering_model_via_local_file

For more information on ML Commons settings, see ML Commons cluster settings.

Unsupported ML Commons settings 975

https://opensearch.org/docs/latest/ml-commons-plugin/cluster-settings/

Amazon OpenSearch Service Developer Guide

Security Analytics for Amazon OpenSearch Service

Security Analytics is an OpenSearch solution that provides visibility into your organization's
infrastructure, monitors for anomalous activity, detects potential security threats in real time,
and trigger alerts to pre-configured destinations. You can monitor for malicious activity from
your security event logs by continuously evaluating security rules and reviewing auto-generated
security findings. In addition, Security Analytics can generate automated alerts and send them to a
specified notification channel, such as Slack or email.

You can use the Security Analytics plugin to detect common threats out-of-the-box and generate
critical security insights from your existing security event logs, such as firewall logs, windows logs,
and authentication audit logs. To use Security Analytics, your domain must be running OpenSearch
version 2.5 or later.

For more information about configuring the Security Analytics plugin, see Security Analytics in the
OpenSearch documentation.

Security analytics components and concepts

A number of tools and features provide the foundation to the operation of Security Analytics. The
major components that compose the plugin include detectors, log types, rules, findings, and alerts.

Log types

OpenSearch supports several types of logs and provides out-of-the-box mappings for each type.
You specify the log type and configure a time interval when you create a detector, and from there
Security Analytics automatically activates a relevant set of rules that run at that interval.

Security analytics components and concepts 976

https://opensearch.org/docs/latest/security-analytics/

Amazon OpenSearch Service Developer Guide

Detectors

Detectors identify a range of cybersecurity threats for a log type across your data indexes. You
configure your detector to use both custom rules and pre-packaged Sigma rules that evaluate
events occurring in the system. The detector then generates security findings from these events.
For more information about detectors, see Creating detectors in the OpenSearch documentation.

Rules

Threat detection rules define the conditions that detectors apply to ingested log data to identify
a security event. Security Analytics supports importing, creating, and customizing rules to meet
your requirements, and also provides prepackaged, open-source Sigma rules to detect common
threats from your logs. Security Analytics maps many rules to an ever-growing knowledge base of
adversary tactics and techniques maintained by the MITRE ATT&CK organization. You can use both
OpenSearch Dashboards or the APIs to create and use rules. For more information about rules, see
Working with rules in the OpenSearch documentation.

Findings

When a detector matches a rule with a log event, it generates a finding. Each finding includes
a unique combination of select rules, a log type, and a rule severity. Findings don’t necessarily
point to imminent threats within the system, but they always isolate an event of interest. For more
information about findings, see Working with findings in the OpenSearch documentation.

Alerts

When you create a detector, you can specify one or more conditions that trigger an alert. An alert
is a notification sent to a preferred channel, such as Slack or email. You set the alert to be triggered
when the detector matches one or multiple rules, and can customize the notification message. For
more information about alerts, see Working with alerts in the OpenSearch documentation.

Exploring Security Analytics

You can use OpenSearch Dashboards to visualize and gain insight into your Security Analytics
plugin. The Overview view provides information such as findings and alert counts, recent findings
and alerts, frequent detection rules, and a list of your detectors. You can see a summary view
comprised of multiple visualizations. The following chart, for example, shows the findings and
alerts trend for various log types over a given period of time.

Detectors 977

https://opensearch.org/docs/latest/security-analytics/sec-analytics-config/detectors-config/
https://opensearch.org/docs/latest/security-analytics/usage/rules/
https://opensearch.org/docs/latest/security-analytics/usage/findings/
https://opensearch.org/docs/latest/security-analytics/usage/alerts/

Amazon OpenSearch Service Developer Guide

Further down the page, you can review your most recent findings and alerts.

Additionally, you can see a distribution of the most frequently triggered rules across all the active
detectors. This can help you detect and investigate different types of malicious activities across log
types.

Exploring Security Analytics 978

Amazon OpenSearch Service Developer Guide

Finally, you can view the status of configured detectors. From this panel, you can also navigate to
the create detector workflow.

To configure your Security Analytics setup, create rules with the Rules page and use those rules to
write detectors in the Detectors page. For a more focused view of your Security Analytics results,
you can use the Findings and Alerts pages.

Configure permissions

If you enable Security Analytics on a preexisting OpenSearch Service domain, the
security_analytics_manager role might not be defined on the domain. Non-admin users
must be mapped to this role in order to manage warm indexes on domains using fine-grained
access control. To manually create the security_analytics_manager role, perform the
following steps:

1. In OpenSearch Dashboards, go to Security and choose Permissions.

2. Choose Create action group and configure the following groups:

Configure permissions 979

Amazon OpenSearch Service Developer Guide

Group name Permissions

security_
analytics
_full_access

• cluster:admin/opensearch/securityanalytics/al
erts/*

• cluster:admin/opensearch/securityanalytics/de
tector/*

• cluster:admin/opensearch/securityanalytics/fi
ndings/*

• cluster:admin/opensearch/securityanalytics/ma
pping/*

• cluster:admin/opensearch/securityanalytics/ru
le/*

security_
analytics
_read_access

• cluster:admin/opensearch/securityanalytics/al
erts/get

• cluster:admin/opensearch/securityanalytics/de
tector/get

• cluster:admin/opensearch/securityanalytics/de
tector/search

• cluster:admin/opensearch/securityanalytics/fi
ndings/get

• cluster:admin/opensearch/securityanalytics/ma
pping/get

• cluster:admin/opensearch/securityanalytics/ma
pping/view/get

• cluster:admin/opensearch/securityanalytics/ru
le/get

• cluster:admin/opensearch/securityanalytics/ru
le/search

3. Choose Roles and Create role.

4. Name the role security_analytics_manager.

Configure permissions 980

Amazon OpenSearch Service Developer Guide

5. For Cluster permissions, select security_analytics_full_access and
security_analytics_read_access.

6. For Index, type *.

7. For Index permissions, select indices:admin/mapping/put and indices:admin/
mappings/get.

8. Choose Create.

9. After you create the role, map it to any user or backend role that will manage Security
Analytics indexes.

Troubleshooting

No such index error

If you have no detectors and you open the Security Analytics dashboard, you might see a
notification on the bottom right that says [index_not_found_exception] no such index
[.opensearch-sap-detectors-config]. You can disregard this notification, which disappears
within a few seconds and won't appear again once you create a detector.

Troubleshooting 981

Amazon OpenSearch Service Developer Guide

Observability in Amazon OpenSearch Service

The default installation of OpenSearch Dashboards for Amazon OpenSearch Service includes the
Observability plugin, which you can use to visualize data-driven events using Piped Processing
Language (PPL) in order to explore, discover, and query data stored in OpenSearch. The plugin
requires OpenSearch 1.2 or later.

The Observability plugin provides a unified experience for collecting and monitoring metrics,
logs, and traces from common data sources. Data collection and monitoring in one place enables
full-stack, end-to-end observability of your entire infrastructure. Full documentation for the
Observability plugin is in the OpenSearch documentation.

Everyone's process for exploring data is different. If you’re new to exploring data and creating
visualizations, we recommend trying a workflow like the following:

Explore your data with event analytics

To start, let's say that you're collecting flight data in your OpenSearch Service domain and you
want to find out which airline had the most flights arriving in Pittsburgh International Airport last
month. You write the following PPL query:

source=opensearch_dashboards_sample_data_flights |
 stats count() by Dest, Carrier |
 where Dest = "Pittsburgh International Airport"

This query pulls data from the index named opensearch_dashboards_sample_data_flights.
It then uses the stats command to get a total count of flights and groups it according to
destination airport and carrier. Finally, it uses the where clause to filter the results to flights
arriving in Pittsburgh International Airport.

Here's what the data looks like when displayed over the last month:

Explore your data with event analytics 982

https://opensearch.org/docs/latest/observability-plugin/index/

Amazon OpenSearch Service Developer Guide

You can choose the PPL button in the query editor to get usage information and examples for each
PPL command:

Explore your data with event analytics 983

Amazon OpenSearch Service Developer Guide

Let's look at a more complex example, which queries for information about flight delays:

source=opensearch_dashboards_sample_data_flights |
 where FlightDelayMin > 0 |
 stats sum(FlightDelayMin) as minimum_delay, count() as total_delayed by Carrier,
 Dest |
 eval avg_delay=minimum_delay / total_delayed |
 sort - avg_delay

Each command in the query impacts the final output:

• source=opensearch_dashboards_sample_data_flights - pulls data from the same index
as the previous example

• where FlightDelayMin > 0 - filters the data to flights that were delayed

• stats sum(FlightDelayMin) as minimum_delay, count() as total_delayed by
Carrier - for each carrier, gets the total minimum delay time and the total count of delayed
flights

• eval avg_delay=minimum_delay / total_delayed - calculates the average delay time for
each carrier by dividing the minimum delay time by the total number of delayed flights

• sort - avg_delay - sorts the results by average delay in descending order

With this query, you can determine that OpenSearch Dashboards Airlines has, on average, fewer
delays.

You can find more sample PPL queries under Queries and Visualizations on the Event analytics
page.

Create visualizations

Once you correctly query the data that you're interested in, you can save those queries as
visualizations:

Create visualizations 984

Amazon OpenSearch Service Developer Guide

Then add those visualizations to operational panels to compare different pieces of data. Leverage
notebooks to combine different visualizations and code blocks that you can share with team
members.

Dive deeper with Trace Analytics

Trace Analytics provides a way to visualize the flow of events in your OpenSearch data to identify
and fix performance problems in distributed applications.

Dive deeper with Trace Analytics 985

https://opensearch.org/docs/latest/observability-plugin/operational-panels
https://opensearch.org/docs/latest/observability-plugin/notebooks

Amazon OpenSearch Service Developer Guide

Trace Analytics for Amazon OpenSearch Service

You can use Trace Analytics, which is part of the OpenSearch Observability plugin, to analyze trace
data from distributed applications. Trace Analytics requires OpenSearch or Elasticsearch 7.9 or
later.

In a distributed application, a single operation, such as a user clicking a button, can trigger an
extended series of events. For example, the application front end might call a backend service,
which calls another service, which queries a database, which processes the query and returns a
result. Then the first backend service sends a confirmation to the front end, which updates the UI.

You can use Trace Analytics to help you visualize this flow of events and identify performance
problems.

Trace Analytics 986

Amazon OpenSearch Service Developer Guide

Prerequisites

Trace Analytics requires you to add instrumentation to your application and generate trace data
using an OpenTelemetry-supported library such as Jaeger or Zipkin. This step occurs entirely
outside of OpenSearch Service. The Amazon Distro for OpenTelemetry documentation contains
example applications for many programming languages that can help you get started, including
Java, Python, Go, and JavaScript.

After you add instrumentation to your application, the OpenTelemetry Collector receives data
from the application and formats it into OpenTelemetry data. See the list of receivers on GitHub.
Amazon Distro for OpenTelemetry includes a receiver for Amazon X-Ray.

Finally, Data Prepper, an independent OpenSearch component, formats that OpenTelemetry data
for use with OpenSearch. Data Prepper runs on a machine outside of the OpenSearch Service
cluster, similar to Logstash.

For a Docker Compose file that demonstrates the end-to-end flow of data, see the OpenSearch
documentation.

Prerequisites 987

https://opentelemetry.io/docs/concepts/instrumenting/
https://www.jaegertracing.io
https://zipkin.io
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/getting-started/collector
https://github.com/open-telemetry/opentelemetry-collector/blob/main/receiver/README.md
https://aws-otel.github.io/docs/components/x-ray-receiver
https://opensearch.org/docs/latest/clients/data-prepper/index/
https://opensearch.org/docs/latest/clients/data-prepper/get-started/
https://opensearch.org/docs/latest/clients/data-prepper/get-started/

Amazon OpenSearch Service Developer Guide

OpenTelemetry Collector sample configuration

To use the OpenTelemetry Collector with Amazon OpenSearch Ingestion, try the following sample
configuration:

extensions:
 sigv4auth:
 region: "us-east-1"
 service: "osis"

receivers:
 jaeger:
 protocols:
 grpc:

exporters:
 otlphttp:
 traces_endpoint: "https://pipeline-endpoint.us-east-1.osis.amazonaws.com/
opentelemetry.proto.collector.trace.v1.TraceService/Export"
 auth:
 authenticator: sigv4auth
 compression: none

service:
 extensions: [sigv4auth]
 pipelines:
 traces:
 receivers: [jaeger]
 exporters: [otlphttp]

OpenSearch Ingestion sample configuration

To send trace data to an OpenSearch Service domain, try the following sample OpenSearch
Ingestion pipeline configuration. For instructions to create a pipeline, see Creating Amazon
OpenSearch Ingestion pipelines.

version: "2"
otel-trace-pipeline:
 source:
 otel_trace_source:
 "/${pipelineName}/ingest"
 processor:

OpenTelemetry Collector sample configuration 988

https://docs.aws.amazon.com/opensearch-service/latest/ingestion/ingestion.html
https://docs.aws.amazon.com/opensearch-service/latest/ingestion/creating-pipeline.html
https://docs.aws.amazon.com/opensearch-service/latest/ingestion/creating-pipeline.html

Amazon OpenSearch Service Developer Guide

 - trace_peer_forwarder:
 sink:
 - pipeline:
 name: "trace_pipeline"
 - pipeline:
 name: "service_map_pipeline"
trace-pipeline:
 source:
 pipeline:
 name: "otel-trace-pipeline"
 processor:
 - otel_traces:
 sink:
 - opensearch:
 hosts: ["https://domain-endpoint"]
 index_type: trace-analytics-raw
 aws:
 # IAM role that OpenSearch Ingestion assumes to access the domain sink
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 region: "us-east-1"

service-map-pipeline:
 source:
 pipeline:
 name: "otel-trace-pipeline"
 processor:
 - service_map:
 sink:
 - opensearch:
 hosts: ["https://domain-endpoint"]
 index_type: trace-analytics-service-map
 aws:
 # IAM role that the pipeline assumes to access the domain sink
 sts_role_arn: "arn:aws:iam::{account-id}:role/pipeline-role"
 region: "us-east-1"

The pipeline role that you specify in the sts_role_arn option must have write permissions to the
domain sink. For instructions to configure permissions for the pipeline role, see Allowing Amazon
OpenSearch Ingestion pipelines to write to domains.

OpenSearch Ingestion sample configuration 989

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/pipeline-domain-access.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/pipeline-domain-access.html

Amazon OpenSearch Service Developer Guide

Exploring trace data

The Dashboard view groups traces together by HTTP method and path so that you can see the
average latency, error rate, and trends associated with a particular operation. For a more focused
view, try filtering by trace group name.

To drill down on the traces that make up a trace group, choose the number of traces in the right-
hand column. Then choose an individual trace for a detailed summary.

The Services view lists all services in the application, plus an interactive map that shows how the
various services connect to each other. In contrast to the dashboard (which helps identify problems
by operation), the service map helps you identify problems by service. Try sorting by error rate or
latency to get a sense of potential problem areas of your application.

Exploring trace data 990

Amazon OpenSearch Service Developer Guide

Querying Amazon OpenSearch Service data using Piped
Processing Language

Piped Processing Language (PPL) is a query language that lets you use pipe (|) syntax to query
data stored in Amazon OpenSearch Service.

The PPL syntax consists of commands delimited by a pipe character (|) where data flows from left
to right through each pipeline. For example, the PPL syntax to find the number of hosts with HTTP
403 or 503 errors, aggregate them per host, and sort them in the order of impact is as follows:

source = dashboards_sample_data_logs | where response='403' or response='503' | stats
 count(request) as request_count by host, response | sort -request_count

PPL requires either OpenSearch or Elasticsearch 7.9 or later. Detailed steps and command
descriptions are available in the OpenSearch PPL reference manual.

To get started, choose Query Workbench in OpenSearch Dashboards and select PPL. Use the bulk
operation to index some sample data:

Piped Processing Language 991

https://github.com/opensearch-project/sql/blob/2.x/docs/user/ppl/index.rst

Amazon OpenSearch Service Developer Guide

PUT accounts/_bulk?refresh
{"index":{"_id":"1"}}
{"account_number":1,"balance":39225,"firstname":"Amber","lastname":"Duke","age":32,"gender":"M","address":"880
 Holmes
 Lane","employer":"Pyrami","email":"amberduke@pyrami.com","city":"Brogan","state":"IL"}
{"index":{"_id":"6"}}
{"account_number":6,"balance":5686,"firstname":"Hattie","lastname":"Bond","age":36,"gender":"M","address":"671
 Bristol
 Street","employer":"Netagy","email":"hattiebond@netagy.com","city":"Dante","state":"TN"}
{"index":{"_id":"13"}}
{"account_number":13,"balance":32838,"firstname":"Nanette","lastname":"Bates","age":28,"gender":"F","address":"789
 Mady Street","employer":"Quility","city":"Nogal","state":"VA"}
{"index":{"_id":"18"}}
{"account_number":18,"balance":4180,"firstname":"Dale","lastname":"Adams","age":33,"gender":"M","address":"467
 Hutchinson Court","email":"daleadams@boink.com","city":"Orick","state":"MD"}

The following example returns firstname and lastname fields for documents in an accounts
index with age greater than 18:

search source=accounts | where age > 18 | fields firstname, lastname

Sample Response

id firstname lastname

0 Amber Duke

1 Hattie Bond

2 Nanette Bates

3 Dale Adams

You can use a complete set of read-only commands like search, where, fields, rename, dedup,
stats, sort, eval, head, top, and rare. For descriptions and examples of each command, see
the OpenSearch PPL reference manual.

The PPL plugin supports all SQL functions, including mathematical, trigonometric, date-time,
string, aggregate, and advanced operators and expressions. To learn more, see the OpenSearch PPL
reference manual.

Piped Processing Language 992

https://github.com/opensearch-project/sql/blob/2.x/docs/user/ppl/index.rst
https://github.com/opensearch-project/sql/blob/2.x/docs/user/ppl/index.rst
https://github.com/opensearch-project/sql/blob/2.x/docs/user/ppl/index.rst

Amazon OpenSearch Service Developer Guide

Operational best practices for Amazon OpenSearch
Service

This chapter provides best practices for operating Amazon OpenSearch Service domains and
includes general guidelines that apply to many use cases. Each workload is unique, with unique
characteristics, so no generic recommendation is exactly right for every use case. The most
important best practice is to deploy, test, and tune your domains in a continuous cycle to find the
optimal configuration, stability, and cost for your workload.

Topics

• Monitoring and alerting

• Shard strategy

• Stability

• Performance

• Security

• Cost optimization

• Sizing Amazon OpenSearch Service domains

• Petabyte scale in Amazon OpenSearch Service

• Dedicated master nodes in Amazon OpenSearch Service

• Recommended CloudWatch alarms for Amazon OpenSearch Service

Monitoring and alerting

The following best practices apply to monitoring your OpenSearch Service domains.

Configure CloudWatch alarms

OpenSearch Service emits performance metrics to Amazon CloudWatch. Regularly review your
cluster and instance metrics and configure recommended CloudWatch alarms based on your
workload performance.

Monitoring and alerting 993

Amazon OpenSearch Service Developer Guide

Enable log publishing

OpenSearch Service exposes OpenSearch error logs, search slow logs, indexing slow logs, and audit
logs in Amazon CloudWatch Logs. Search slow logs, indexing slow logs, and error logs are useful
for troubleshooting performance and stability issues. Audit logs, which are only available if you
enable fine-grained access control to track user activity. For more information, see Logs in the
OpenSearch documentation.

Search slow logs and indexing slow logs are an important tool for understanding and
troubleshooting the performance of your search and indexing operations. Enable search and
index slow log delivery for all production domains. You must also configure logging thresholds—
otherwise, CloudWatch won't capture the logs.

Shard strategy

Shards distribute your workload across the data nodes in your OpenSearch Service domain.
Properly configured indexes can help boost overall domain performance.

When you send data to OpenSearch Service, you send that data to an index. An index is analogous
to a database table, with documents as the rows, and fields as the columns. When you create the
index, you tell OpenSearch how many primary shards you want to create. The primary shards are
independent partitions of the full dataset. OpenSearch Service automatically distributes your data
across the primary shards in an index. You can also configure replicas of the index. Each replica
shard comprises a full set of copies of the primary shards for that index.

OpenSearch Service maps the shards for each index across the data nodes in your cluster. It ensures
that the primary and replica shards for the index reside on different data nodes. The first replica
ensures that you have two copies of the data in the index. You should always use at least one
replica. Additional replicas provide additional redundancy and read capacity.

OpenSearch sends indexing requests to all of the data nodes that contain shards that belong to the
index. It sends indexing requests first to data nodes that contain primary shards, and then to data
nodes that contain replica shards. Search requests are routed by the coordinator node to either a
primary or replica shard for all shards belonging to the index.

For example, for an index with five primary shards and one replica, each indexing request touches
10 shards. In contrast, search requests are sent to n shards, where n is the number of primary
shards. For an index with five primary shards and one replica, each search query touches five shards
(primary or replica) from that index.

Enable log publishing 994

https://opensearch.org/docs/latest/monitoring-your-cluster/logs/

Amazon OpenSearch Service Developer Guide

Determine shard and data node counts

Use the following best practices to determine shard and data node counts for your domain.

Shard size – The size of data on disk is a direct result of the size of your source data, and it changes
as you index more data. The source-to-index ratio can vary wildly, from 1:10 to 10:1 or more, but
usually it's around 1:1.10. You can use that ratio to predict the index size on disk. You can also
index some data and retrieve the actual index sizes to determine the ratio for your workload. After
you have a predicted index size, set a shard count so that each shard will be between 10–30 GiB
(for search workloads), or between 30–50 GiB (for logs workloads). 50 GiB should be the maximum
—be sure to plan for growth.

Shard count – The distribution of shards to data nodes has a large impact on a domain’s
performance. When you have indexes with multiple shards, try to make the shard count an even
multiple of the data node count. This helps to ensure that shards are evenly distributed across data
nodes, and prevents hot nodes. For example, if you have 12 primary shards, your data node count
should be 2, 3, 4, 6, or 12. However, shard count is secondary to shard size—if you have 5 GiB of
data, you should still use a single shard.

Shards per data node – The total number of shards that a node can hold is proportional to the
node’s Java virtual machine (JVM) heap memory. Aim for 25 shards or fewer per GiB of heap
memory. For example, a node with 32 GiB of heap memory should hold no more than 800 shards.
Although shard distribution can vary based on your workload patterns, there's a limit of 1,000
shards per node. The cat/allocation API provides a quick view of the number of shards and total
shard storage across data nodes.

Shard to CPU ratio – When a shard is involved in an indexing or search request, it uses a vCPU
to process the request. As a best practice, use an initial scale point of 1.5 vCPU per shard. If your
instance type has 8 vCPUs, set your data node count so that each node has no more than six
shards. Note that this is an approximation. Be sure to test your workload and scale your cluster
accordingly.

For storage volume, shard size, and instance type recommendations, see the following resources:

• the section called “Sizing domains”

• the section called “Petabyte scale”

Determine shard and data node counts 995

https://opensearch.org/docs/latest/api-reference/cat/cat-allocation/

Amazon OpenSearch Service Developer Guide

Avoid storage skew

Storage skew occurs when one or more nodes within a cluster holds a higher proportion of
storage for one or more indexes than the others. Indications of storage skew include uneven CPU
utilization, intermittent and uneven latency, and uneven queueing across data nodes. To determine
whether you have skew issues, see the following troubleshooting sections:

• the section called “Node shard and storage skew”

• the section called “Index shard and storage skew”

Stability

The following best practices apply to maintaining a stable and healthy OpenSearch Service
domain.

Keep current with OpenSearch

Service software updates

OpenSearch Service regularly releases software updates that add features or otherwise improve
your domains. Updates don't change the OpenSearch or Elasticsearch engine version. We
recommend that you schedule a recurring time to run the DescribeDomain API operation, and
initiate a service software update if the UpdateStatus is ELIGIBLE. If you don't update your
domain within a certain time frame (typically two weeks), OpenSearch Service automatically
performs the update.

OpenSearch version upgrades

OpenSearch Service regularly adds support for community-maintained versions of OpenSearch.
Always upgrade to the latest OpenSearch versions when they're available.

OpenSearch Service simultaneously upgrades both OpenSearch and OpenSearch Dashboards
(or Elasticsearch and Kibana if your domain is running a legacy engine). If the cluster has
dedicated master nodes, upgrades complete without downtime. Otherwise, the cluster might
be unresponsive for several seconds post-upgrade while it elects a master node. OpenSearch
Dashboards might be unavailable during some or all of the upgrade.

There are two ways to upgrade a domain:

• In-place upgrade – This option is easier because you keep the same cluster.

Avoid storage skew 996

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_DescribeDomain.html

Amazon OpenSearch Service Developer Guide

• Snapshot/restore upgrade – This option is good for testing new versions on a new cluster or
migrating between clusters.

Regardless of which upgrade process you use, we recommend that you maintain a domain that is
solely for development and testing, and upgrade it to the new version before you upgrade your
production domain. Choose Development and testing for the deployment type when you're
creating the test domain. Make sure to upgrade all clients to compatible versions immediately
following the domain upgrade.

Improve snapshot performance

To prevent your snapshot from getting stuck in processing, the instance type for the dedicated
master node should match the shard count. For more information, see the section called “Choosing
instance types for dedicated master nodes”. Additionally, each node should have no more than
the recommended 25 shards per GiB of Java heap memory. For more information, see the section
called “Choosing the number of shards”.

Enable dedicated master nodes

Dedicated master nodes improve cluster stability. A dedicated master node performs cluster
management tasks, but doesn't hold index data or respond to client requests. This offloading of
cluster management tasks increases the stability of your domain and makes it possible for some
configuration changes to happen without downtime.

Enable and use three dedicated master nodes for optimal domain stability across three Availability
Zones. Deploying with Multi-AZ with Standby configures three dedicated master nodes for you.
For instance type recommendations, see the section called “Choosing instance types for dedicated
master nodes”.

Deploy across multiple Availability Zones

To prevent data loss and minimize cluster downtime in the event of a service disruption, you
can distribute nodes across two or three Availability Zones in the same Amazon Web Services
Region. Best practice is to deploy using Multi-AZ with Standby, which configures three Availability
Zones, with two zones active and one acting as a standby, and with and two replica shards per
index. This configuration lets OpenSearch Service distribute replica shards to different AZs than
their corresponding primary shards. There are no cross-AZ data transfer charges for cluster
communications between Availability Zones.

Improve snapshot performance 997

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-multiaz.html#managedomains-za-standby
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-multiaz.html#managedomains-za-standby

Amazon OpenSearch Service Developer Guide

Availability Zones are isolated locations within each Region. With a two-AZ configuration, losing
one Availability Zone means that you lose half of all domain capacity. Moving to three Availability
Zones further reduces the impact of losing a single Availability Zone.

Control ingest flow and buffering

We recommend that you limit the overall request count using the _bulk API operation. It's more
efficient to send one _bulk request that contains 5,000 documents than it is to send 5,000
requests that contain a single document.

For optimal operational stability, it's sometimes necessary to limit or even pause the upstream flow
of indexing requests. Limiting the rate of index requests is an important mechanism for dealing
with unexpected or occasional spikes in requests that might otherwise overwhelm the cluster.
Consider building a flow control mechanism into your upstream architecture.

The following diagram shows multiple component options for a log ingest architecture. Configure
the aggregation layer to allow sufficient space to buffer incoming data for sudden traffic spikes and
brief domain maintenance.

Create mappings for search workloads

For search workloads, create mappings that define how OpenSearch stores and indexes documents
and their fields. Set dynamic to strict in order to prevent new fields from being added
accidentally.

PUT my-index

Control ingest flow and buffering 998

https://opensearch.org/docs/latest/api-reference/document-apis/bulk/
https://opensearch.org/docs/latest/field-types/index/

Amazon OpenSearch Service Developer Guide

{
 "mappings": {
 "dynamic": "strict",
 "properties": {
 "title": { "type" : "text" },
 "author": { "type" : "integer" },
 "year": { "type" : "text" }
 }
 }
}

Use index templates

You can use an index template as a way to tell OpenSearch how to configure an index when it's
created. Configure index templates before creating indexes. Then, when you create an index, it
inherits the settings and mappings from the template. You can apply more than one template to
a single index, so you can specify settings in one template and mappings in another. This strategy
allows one template for common settings across multiple indexes, and separate templates for
more specific settings and mappings.

The following settings are helpful to configure in templates:

• Number of primary and replica shards

• Refresh interval (how often to refresh and make recent changes to the index available to search)

• Dynamic mapping control

• Explicit field mappings

The following example template contains each of these settings:

{
 "index_patterns":[
 "index-*"
],
 "order": 0,
 "settings": {
 "index": {
 "number_of_shards": 3,
 "number_of_replicas": 1,
 "refresh_interval": "60s"
 }

Use index templates 999

https://opensearch.org/docs/latest/opensearch/index-templates/

Amazon OpenSearch Service Developer Guide

 },
 "mappings": {
 "dynamic": false,
 "properties": {
 "field_name1": {
 "type": "keyword"
 }
 }
 }
}

Even if they rarely change, having settings and mappings defined centrally in OpenSearch is
simpler to manage than updating multiple upstream clients.

Manage indexes with Index State Management

If you're managing logs or time-series data, we recommend using Index State Management (ISM).
ISM lets you automate regular index lifecycle management tasks. With ISM, you can create policies
that invoke index alias rollovers, take index snapshots, move indexes between storage tiers, and
delete old indexes. You can even use the ISM rollover operation as an alternative data lifecycle
management strategy to avoid shard skew.

First, set up an ISM policy. For example, see the section called “Sample policies”. Then, attach
the policy to one or more indexes. If you include an ISM template field in the policy, OpenSearch
Service automatically applies the policy to any index that matches the specified pattern.

Remove unused indexes

Regularly review the indexes in your cluster and identify any that aren't in use. Take a snapshot
of those indexes so that they're stored in S3, and then delete them. When you remove unused
indexes, you reduce the shard count, and make it possible to have more balanced storage
distribution and resource utilization across nodes. Even when they're idle, indexes consume some
resources during internal index maintenance activities.

Rather than manually deleting unused indexes, you can use ISM to automatically take a snapshot
and delete indexes after a certain period of time.

Use multiple domains for high availability

To achieve high availability beyond 99.9% uptime across multiple Regions, consider using two
domains. For small or slowly changing datasets, you can set up cross-cluster replication to maintain

Manage indexes with Index State Management 1000

https://opensearch.org/docs/latest/im-plugin/ism/policies/#rollover
https://aws.amazon.com/opensearch-service/sla/

Amazon OpenSearch Service Developer Guide

an active-passive model. In this model, only the leader domain is written to, but either domain can
be read from. For larger data sets and quickly changing data, configure dual delivery in your ingest
pipeline so that all data is written independently to both domains in an active-active model.

Architect your upstream and downstream applications with failover in mind. Make sure to test the
failover process along with other disaster recovery processes.

Performance

The following best practices apply to tuning your domains for optimal performance.

Optimize bulk request size and compression

Bulk sizing depends on your data, analysis, and cluster configuration, but a good starting point is
3–5 MiB per bulk request.

Send requests and receive responses from your OpenSearch domains by using gzip compression
to reduce the payload size of requests and responses. You can use gzip compression with the
OpenSearch Python client, or by including the following headers from the client side:

• 'Accept-Encoding': 'gzip'

• 'Content-Encoding': 'gzip'

To optimize your bulk request sizes, start with a bulk request size of 3 MiB. Then, slowly increase
the request size until indexing performance stops improving.

Note

To enable gzip compression on domains running Elasticsearch version 6.x, you must set
http_compression.enabled at the cluster level. This setting is true by default in
Elasticsearch versions 7.x and all versions of OpenSearch.

Reduce the size of bulk request responses

To reduce the size of OpenSearch responses, exclude unnecessary fields with the filter_path
parameter. Make sure that you don't filter out any fields that are required to identify or retry failed
requests. For more information and examples, see the section called “Reducing response size”.

Performance 1001

Amazon OpenSearch Service Developer Guide

Tune refresh intervals

OpenSearch indexes have eventual read consistency. A refresh operation makes all the updates
that are performed on an index available for search. The default refresh interval is one second,
which means that OpenSearch performs a refresh every second while an index is being written to.

The less frequently that you refresh an index (higher refresh interval), the better the overall
indexing performance is. The trade-off of increasing the refresh interval is that there’s a longer
delay between an index update and when the new data is available for search. Set your refresh
interval as high as you can tolerate to improve overall performance.

We recommend setting the refresh_interval parameter for all of your indexes to 30 seconds or
more.

Enable Auto-Tune

Auto-Tune uses performance and usage metrics from your OpenSearch cluster to suggest changes
to queue sizes, cache sizes, and Java virtual machine (JVM) settings on your nodes. These optional
changes improve cluster speed and stability. You can revert to the default OpenSearch Service
settings at any time. Auto-Tune is enabled by default on new domains unless you explicitly disable
it.

We recommend that you enable Auto-Tune on all domains, and either set a recurring maintenance
window or periodically review its recommendations.

Security

The following best practices apply to securing your domains.

Enable fine-grained access control

Fine-grained access control lets you control who can access certain data within an OpenSearch
Service domain. Compared to generalized access control, fine-grained access control gives each
cluster, index, document, and field its own specified policy for access. Access criteria can be based
on a number of factors, including the role of the person who is requesting access and the action
that they intend to perform on the data. For example, you might give one user access to write to an
index, and another user access only to read the data on the index without making any changes.

Fine-grained access control allows data with different access requirements to exist in the same
storage space without running into security or compliance issues.

Tune refresh intervals 1002

Amazon OpenSearch Service Developer Guide

We recommend enabling fine-grained access control on your domains.

Deploy domains within a VPC

Placing your OpenSearch Service domain within a virtual private cloud (VPC) helps enable secure
communication between OpenSearch Service and other services within the VPC—without the need
for an internet gateway, NAT device, or VPN connection. All traffic remains securely within the
Amazon Cloud. Because of their logical isolation, domains that reside within a VPC have an extra
layer of security compared to domains that use public endpoints.

We recommend that you create your domains within a VPC.

Apply a restrictive access policy

Even if your domain is deployed within a VPC, it's a best practice to implement security in layers.
Make sure to check the configuration of your current access policies.

Apply a restrictive resource-based access policy to your domains and follow the principle of least
privilege when granting access to the configuration API and the OpenSearch API operations. As a
general rule, avoid using the anonymous user principal "Principal": {"AWS": "*" } in your
access policies.

There are some situations, however, where it's acceptable to use an open access policy, such as
when you enable fine-grained access control. An open access policy can enable you to access the
domain in cases where request signing is difficult or impossible, such as from certain clients and
tools.

Enable encryption at rest

OpenSearch Service domains offer encryption of data at rest to help prevent unauthorized access
to your data. Encryption at rest uses Amazon Key Management Service (Amazon KMS) to store and
manage your encryption keys, and the Advanced Encryption Standard algorithm with 256-bit keys
(AES-256) to perform the encryption.

If your domain stores sensitive data, enable encryption of data at rest.

Enable node-to-node encryption

Node-to-node encryption provides an additional layer of security on top of the default security
features within OpenSearch Service. It implements Transport Layer Security (TLS) for all

Deploy domains within a VPC 1003

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon OpenSearch Service Developer Guide

communications between the nodes that are provisioned within OpenSearch. Node-to-node
encryption, any data sent to your OpenSearch Service domain over HTTPS remains encrypted in
transit while it's being distributed and replicated between nodes.

If your domain stores sensitive data, enable node-to-node encryption.

Monitor with Amazon Security Hub

Monitor your usage of OpenSearch Service as it relates to security best practices by using Amazon
Security Hub. Security Hub uses security controls to evaluate resource configurations and security
standards to help you comply with various compliance frameworks. For more information about
using Security Hub to evaluate OpenSearch Service resources, see Amazon OpenSearch Service
controls in the Amazon Security Hub User Guide.

Cost optimization

The following best practices apply to optimizing and saving on your OpenSearch Service costs.

Use the latest generation instance types

OpenSearch Service is always adopting new Amazon EC2 instances types that deliver better
performance at a lower cost. We recommend always using the latest generation instances.

Avoid using T2 or t3.small instances for production domains because they can become unstable
under sustained heavy load. t3.medium instances are an option for small production workloads
(both as data nodes and as dedicated master nodes).

Use the latest Amazon EBS gp3 volumes

OpenSearch data nodes require low latency and high throughput storage to provide fast indexing
and query. By using Amazon EBS gp3 volumes, you get higher baseline performance (IOPS and
throughput) at a 9.6% lower cost than with the previously-offered Amazon EBS gp2 volume type.
You can provision additional IOPS and throughput independent of volume size using gp3. These
volumes are also more stable than previous generation volumes as they do not use burst credits.
The gp3 volume type also doubles the per-data-node volume size limits of the gp2 volume type.
With these larger volumes, you can reduce the cost of passive data by increasing the amount of
storage per data node.

Monitor with Amazon Security Hub 1004

https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html
https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html
https://docs.amazonaws.cn/securityhub/latest/userguide/opensearch-controls.html
https://docs.amazonaws.cn/securityhub/latest/userguide/opensearch-controls.html

Amazon OpenSearch Service Developer Guide

Use UltraWarm and cold storage for time-series log data

If you're using OpenSearch for log analytics, move your data to UltraWarm or cold storage to
reduce costs. Use Index State Management (ISM) to migrate data between storage tiers and
manage data retention.

UltraWarm provides a cost-effective way to store large amounts of read-only data in OpenSearch
Service. UltraWarm uses Amazon S3 for storage, which means that the data is immutable and only
one copy is needed. You only pay for storage that's equivalent to the size of the primary shards
in your indexes. Latencies for UltraWarm queries grow with the amount of S3 data that's needed
to service the query. After the data has been cached on the nodes, queries to UltraWarm indexes
perform similar to queries to hot indexes.

Cold storage is also backed by S3. When you need to query cold data, you can selectively attach it
to existing UltraWarm nodes. Cold data incurs the same managed storage cost as UltraWarm, but
objects in cold storage don't consume UltraWarm node resources. Therefore, cold storage provides
a significant amount of storage capacity without impacting UltraWarm node size or count.

UltraWarm becomes cost-effective when you have roughly 2.5 TiB of data to migrate from hot
storage. Monitor your fill rate and plan to move indexes to UltraWarm before you reach that
volume of data.

Review recommendations for Reserved Instances

Consider purchasing Reserved Instances (RIs) after you have a good baseline on your performance
and compute consumption. Discounts start at around 30% for no-upfront, 1-year reservations and
can increase up to 50% for all-upfront, 3-year commitments.

After you observe stable operation for at least 14 days, review Reserved Instance recommendations
in Cost Explorer. The Amazon OpenSearch Service heading displays specific RI purchase
recommendations and projected savings.

Sizing Amazon OpenSearch Service domains

There's no perfect method of sizing Amazon OpenSearch Service domains. However, by starting
with an understanding of your storage needs, the service, and OpenSearch itself, you can make
an educated initial estimate on your hardware needs. This estimate can serve as a useful starting
point for the most critical aspect of sizing domains: testing them with representative workloads
and monitoring their performance.

Use UltraWarm and cold storage for time-series log data 1005

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ri-recommendations.html

Amazon OpenSearch Service Developer Guide

Topics

• Calculating storage requirements

• Choosing the number of shards

• Choosing instance types and testing

Calculating storage requirements

Most OpenSearch workloads fall into one of two broad categories:

• Long-lived index: You write code that processes data into one or more OpenSearch indexes and
then updates those indexes periodically as the source data changes. Some common examples are
website, document, and ecommerce search.

• Rolling indexes: Data continuously flows into a set of temporary indexes, with an indexing
period and retention window (such as a set of daily indexes that is retained for two weeks). Some
common examples are log analytics, time-series processing, and clickstream analytics.

For long-lived index workloads, you can examine the source data on disk and easily determine how
much storage space it consumes. If the data comes from multiple sources, just add those sources
together.

For rolling indexes, you can multiply the amount of data generated during a representative time
period by the retention period. For example, if you generate 200 MiB of log data per hour, that's
4.7 GiB per day, which is 66 GiB of data at any given time if you have a two-week retention period.

The size of your source data, however, is just one aspect of your storage requirements. You also
have to consider the following:

• Number of replicas: Each replica is a full copy of an index and needs the same amount of disk
space. By default, each OpenSearch index has one replica. We recommend at least one to prevent
data loss. Replicas also improve search performance, so you might want more if you have a
read-heavy workload. Use PUT /my-index/_settings to update the number_of_replicas
setting for your index.

• OpenSearch indexing overhead: The on-disk size of an index varies. The total size of the source
data plus the index is often 110% of the source, with the index up to 10% of the source data.
After you index your data, you can use the _cat/indices?v API and pri.store.size value
to calculate the exact overhead. _cat/allocation?v also provides a useful summary.

Calculating storage requirements 1006

Amazon OpenSearch Service Developer Guide

• Operating system reserved space: By default, Linux reserves 5% of the file system for the
root user for critical processes, system recovery, and to safeguard against disk fragmentation
problems.

• OpenSearch Service overhead: OpenSearch Service reserves 20% of the storage space of each
instance (up to 20 GiB) for segment merges, logs, and other internal operations.

Because of this 20 GiB maximum, the total amount of reserved space can vary dramatically
depending on the number of instances in your domain. For example, a domain might have
three m6g.xlarge.search instances, each with 500 GiB of storage space, for a total of
1.46 TiB. In this case, the total reserved space is only 60 GiB. Another domain might have 10
m3.medium.search instances, each with 100 GiB of storage space, for a total of 0.98 TiB. Here,
the total reserved space is 200 GiB, even though the first domain is 50% larger.

In the following formula, we apply a "worst-case" estimate for overhead. This estimate includes
additional free space to help minimize the impact of node failures and Availability Zone outages.

In summary, if you have 66 GiB of data at any given time and want one replica, your minimum
storage requirement is closer to 66 * 2 * 1.1 / 0.95 / 0.8 = 191 GiB. You can generalize this
calculation as follows:

Source data * (1 + number of replicas) * (1 + indexing overhead) / (1 - Linux reserved space) / (1
- OpenSearch Service overhead) = minimum storage requirement

Or you can use this simplified version:

Source data * (1 + number of replicas) * 1.45 = minimum storage requirement

Insufficient storage space is one of the most common causes of cluster instability. So you should
cross-check the numbers when you choose instance types, instance counts, and storage volumes.

Other storage considerations exist:

• If your minimum storage requirement exceeds 1 PB, see the section called “Petabyte scale”.

• If you have rolling indexes and want to use a hot-warm architecture, see the section called
“UltraWarm storage”.

Calculating storage requirements 1007

Amazon OpenSearch Service Developer Guide

Choosing the number of shards

After you understand your storage requirements, you can investigate your indexing strategy.
By default in OpenSearch Service, each index is divided into five primary shards and one replica
(total of 10 shards). This behavior differs from open source OpenSearch, which defaults to one
primary and one replica shard. Because you can't easily change the number of primary shards for
an existing index, you should decide about shard count before indexing your first document.

The overall goal of choosing a number of shards is to distribute an index evenly across all data
nodes in the cluster. However, these shards shouldn't be too large or too numerous. A general
guideline is to try to keep shard size between 10–30 GiB for workloads where search latency is a
key performance objective, and 30–50 GiB for write-heavy workloads such as log analytics.

Large shards can make it difficult for OpenSearch to recover from failure, but because each shard
uses some amount of CPU and memory, having too many small shards can cause performance
issues and out of memory errors. In other words, shards should be small enough that the
underlying OpenSearch Service instance can handle them, but not so small that they place
needless strain on the hardware.

For example, suppose you have 66 GiB of data. You don't expect that number to increase over time,
and you want to keep your shards around 30 GiB each. Your number of shards therefore should be
approximately 66 * 1.1 / 30 = 3. You can generalize this calculation as follows:

(Source data + room to grow) * (1 + indexing overhead) / desired shard size = approximate
number of primary shards

This equation helps compensate for data growth over time. If you expect those same 66 GiB of
data to quadruple over the next year, the approximate number of shards is (66 + 198) * 1.1 / 30 =
10. Remember, though, you don't have those extra 198 GiB of data yet. Check to make sure that
this preparation for the future doesn't create unnecessarily tiny shards that consume huge amounts
of CPU and memory in the present. In this case, 66 * 1.1 / 10 shards = 7.26 GiB per shard, which
will consume extra resources and is below the recommended size range. You might consider the
more middle-of-the-road approach of six shards, which leaves you with 12-GiB shards today and
48-GiB shards in the future. Then again, you might prefer to start with three shards and reindex
your data when the shards exceed 50 GiB.

A far less common issue involves limiting the number of shards per node. If you size your shards
appropriately, you typically run out of disk space long before encountering this limit. For example,
an m6g.large.search instance has a maximum disk size of 512 GiB. If you stay below 80% disk

Choosing the number of shards 1008

Amazon OpenSearch Service Developer Guide

usage and size your shards at 20 GiB, it can accommodate approximately 20 shards. Elasticsearch
7.x and later, and all versions of OpenSearch, have a limit of 1,000 shards per node. To adjust
the maximum shards per node, configure the cluster.max_shards_per_node setting. For an
example, see Cluster settings.

Sizing shards appropriately almost always keeps you below this limit, but you can also consider the
number of shards for each GiB of Java heap. On a given node, have no more than 25 shards per GiB
of Java heap. For example, an m5.large.search instance has a 4-GiB heap, so each node should
have no more than 100 shards. At that shard count, each shard is roughly 5 GiB in size, which is
well below our recommendation.

Choosing instance types and testing

After you calculate your storage requirements and choose the number of shards that you need, you
can start to make hardware decisions. Hardware requirements vary dramatically by workload, but
we can still offer some basic recommendations.

In general, the storage limits for each instance type map to the amount of CPU and memory that
you might need for light workloads. For example, an m6g.large.search instance has a maximum
EBS volume size of 512 GiB, 2 vCPU cores, and 8 GiB of memory. If your cluster has many shards,
performs taxing aggregations, updates documents frequently, or processes a large number of
queries, those resources might be insufficient for your needs. If your cluster falls into one of these
categories, try starting with a configuration closer to 2 vCPU cores and 8 GiB of memory for every
100 GiB of your storage requirement.

Tip

For a summary of the hardware resources that are allocated to each instance type, see
Amazon OpenSearch Service pricing.

Still, even those resources might be insufficient. Some OpenSearch users report that they need
many times those resources to fulfill their requirements. To find the right hardware for your
workload, you have to make an educated initial estimate, test with representative workloads,
adjust, and test again.

Choosing instance types and testing 1009

https://opensearch.org/docs/latest/opensearch/rest-api/cluster-settings/#request-body
https://aws.amazon.com/opensearch-service/pricing/

Amazon OpenSearch Service Developer Guide

Step 1: Make an initial estimate

To start, we recommend a minimum of three nodes to avoid potential OpenSearch issues, such as
a split brain state (when a lapse in communication leads to a cluster having two master nodes).
If you have three dedicated master nodes, we still recommend a minimum of two data nodes for
replication.

Step 2: Calculate storage requirements per node

If you have a 184-GiB storage requirement and the recommended minimum number of three
nodes, use the equation 184 / 3 = 61 GiB to find the amount of storage that each node needs.
In this example, you might select three m6g.large.search instances, where each uses a 90-
GiB EBS storage volume, so that you have a safety net and some room for growth over time. This
configuration provides 6 vCPU cores and 24 GiB of memory, so it's suited to lighter workloads.

For a more substantial example, consider a 14 TiB (14,336 GiB) storage requirement and a heavy
workload. In this case, you might choose to begin testing with 2 * 144 = 288 vCPU cores and 8 *
144 = 1152 GiB of memory. These numbers work out to approximately 18 i3.4xlarge.search
instances. If you don't need the fast, local storage, you could also test 18 r6g.4xlarge.search
instances, each using a 1-TiB EBS storage volume.

If your cluster includes hundreds of terabytes of data, see the section called “Petabyte scale”.

Step 3: Perform representative testing

After configuring the cluster, you can add your indexes using the number of shards you calculated
earlier, perform some representative client testing using a realistic dataset, and monitor
CloudWatch metrics to see how the cluster handles the workload.

Step 4: Succeed or iterate

If performance satisfies your needs, tests succeed, and CloudWatch metrics are normal, the cluster
is ready to use. Remember to set CloudWatch alarms to detect unhealthy resource usage.

If performance isn't acceptable, tests fail, or CPUUtilization or JVMMemoryPressure are high,
you might need to choose a different instance type (or add instances) and continue testing. As you
add instances, OpenSearch automatically rebalances the distribution of shards throughout the
cluster.

Because it's easier to measure the excess capacity in an overpowered cluster than the deficit in an
underpowered one, we recommend starting with a larger cluster than you think you need. Next,

Choosing instance types and testing 1010

Amazon OpenSearch Service Developer Guide

test and scale down to an efficient cluster that has the extra resources to ensure stable operations
during periods of increased activity.

Production clusters or clusters with complex states benefit from dedicated master nodes, which
improve performance and cluster reliability.

Petabyte scale in Amazon OpenSearch Service

Amazon OpenSearch Service domains offer attached storage of up to 3 PB. You can configure a
domain with 200 i3.16xlarge.search instance types, each with 15 TB of storage. Because of
the sheer difference in scale, recommendations for domains of this size differ from our general
recommendations. This section discusses considerations for creating domains, costs, storage, and
shard size.

While this section frequently references the i3.16xlarge.search instance types, you can use
several other instance types to reach 1 PB of total domain storage.

Creating domains

Domains of this size exceed the default limit of 80 instances per domain. To request a service
limit increase of up to 200 instances per domain, open a case at the Amazon Support Center.

Pricing

Before creating a domain of this size, check the Amazon OpenSearch Service pricing page
to ensure that the associated costs match your expectations. Examine the section called
“UltraWarm storage” to see if a hot-warm architecture fits your use case.

Storage

The i3 instance types are designed to provide fast, local non-volatile memory express (NVMe)
storage. Because this local storage tends to offer performance benefits when compared to
Amazon Elastic Block Store, EBS volumes are not an option when you select these instance
types in OpenSearch Service. If you prefer EBS storage, use another instance type, such as
r6.12xlarge.search.

Shard size and count

A common OpenSearch guideline is not to exceed 50 GB per shard. Given the number
of shards necessary to accommodate large domains and the resources available to
i3.16xlarge.search instances, we recommend a shard size of 100 GB.

Petabyte scale 1011

https://console.amazonaws.cn/support/home#/
https://aws.amazon.com/opensearch-service/pricing/

Amazon OpenSearch Service Developer Guide

For example, if you have 450 TB of source data and want one replica, your minimum storage
requirement is closer to 450 TB * 2 * 1.1 / 0.95 = 1.04 PB. For an explanation of this calculation,
see the section called “Calculating storage requirements”. Although 1.04 PB / 15 TB = 70
instances, you might select 90 or more i3.16xlarge.search instances to give yourself a
storage safety net, deal with node failures, and account for some variance in the amount of
data over time. Each instance adds another 20 GiB to your minimum storage requirement, but
for disks of this size, those 20 GiB are almost negligible.

Controlling the number of shards is tricky. OpenSearch users often rotate indexes on a daily
basis and retain data for a week or two. In this situation, you might find it useful to distinguish
between "active" and "inactive" shards. Active shards are, well, actively being written to or read
from. Inactive shards might service some read requests, but are largely idle. In general, you
should keep the number of active shards below a few thousand. As the number of active shards
approaches 10,000, considerable performance and stability risks emerge.

To calculate the number of primary shards, use this formula: 450,000 GB * 1.1 / 100 GB per
shard = 4,950 shards. Doubling that number to account for replicas is 9,900 shards, which
represents a major concern if all shards are active. But if you rotate indexes and only 1/7th or
1/14th of the shards are active on any given day (1,414 or 707 shards, respectively), the cluster
might work well. As always, the most important step of sizing and configuring your domain is to
perform representative client testing using a realistic dataset.

Dedicated master nodes in Amazon OpenSearch Service

Amazon OpenSearch Service uses dedicated master nodes to increase cluster stability. A dedicated
master node performs cluster management tasks, but does not hold data or respond to data
upload requests. This offloading of cluster management tasks increases the stability of your
domain. Just like all other node types, you pay an hourly rate for each dedicated master node.

Dedicated master nodes perform the following cluster management tasks:

• Track all nodes in the cluster.

• Track the number of indexes in the cluster.

• Track the number of shards belonging to each index.

• Maintain routing information for nodes in the cluster.

• Update the cluster state after state changes, such as creating an index and adding or removing
nodes in the cluster.

Dedicated master nodes 1012

Amazon OpenSearch Service Developer Guide

• Replicate changes to the cluster state across all nodes in the cluster.

• Monitor the health of all cluster nodes by sending heartbeat signals, periodic signals that
monitor the availability of the data nodes in the cluster.

The following illustration shows an OpenSearch Service domain with 10 instances. Seven of the
instances are data nodes and three are dedicated master nodes. Only one of the dedicated master
nodes is active. The two gray dedicated master nodes wait as backup in case the active dedicated
master node fails. All data upload requests are served by the seven data nodes, and all cluster
management tasks are offloaded to the active dedicated master node.

Choosing the number of dedicated master nodes

We recommend that you use Multi-AZ with Standby, which adds three dedicated master nodes
to each production OpenSearch Service domain. If you deploy with Multi-AZ without Standby or
single-AZ, we still recommend three dedicated master nodes. Never choose an even number of

Choosing the number of dedicated master nodes 1013

Amazon OpenSearch Service Developer Guide

dedicated master nodes. Consider the following when choosing the number of dedicated master
nodes:

• One dedicated master node is explicitly prohibited by OpenSearch Service because you have no
backup in the event of a failure. You receive a validation exception if you try to create a domain
with only one dedicated master node.

• If you have two dedicated master nodes, your cluster doesn't have the necessary quorum of
nodes to elect a new master node in the event of a failure.

A quorum is the number of dedicated master nodes / 2 + 1 (rounded down to the nearest whole
number). In this case, 2 / 2 + 1 = 2. Because one dedicated master node has failed and only one
backup exists, the cluster doesn't have a quorum and can't elect a new master.

• Three dedicated master nodes, the recommended number, provides two backup nodes in the
event of a master node failure and the necessary quorum (2) to elect a new master.

• Four dedicated master nodes are not better than three and can cause issues if you use multiple
Availability Zones.

• If one master node fails, you have the quorum (3) to elect a new master. If two nodes fail, you
lose that quorum, just as you do with three dedicated master nodes.

• In a three Availability Zone configuration, two AZs have one dedicated master node, and
one AZ has two. If that AZ experiences a disruption, the remaining two AZs don't have the
necessary quorum (3) to elect a new master.

• Having five dedicated master nodes works as well as three and allows you to lose two nodes
while maintaining a quorum. But because only one dedicated master node is active at any given
time, this configuration means that you pay for four idle nodes. Many users find this level of
failover protection excessive.

If a cluster has an even number of master-eligible nodes, OpenSearch and Elasticsearch versions
7.x and later ignore one node so that the voting configuration is always an odd number. In this
case, four dedicated master nodes are essentially equivalent to three (and two to one).

Note

If your cluster doesn't have the necessary quorum to elect a new master node, write and
read requests to the cluster both fail. This behavior differs from the OpenSearch default.

Choosing the number of dedicated master nodes 1014

Amazon OpenSearch Service Developer Guide

Choosing instance types for dedicated master nodes

Although dedicated master nodes don't process search and query requests, their size is highly
correlated with the instance size and number of instances, indexes, and shards that they can
manage. For production clusters, we recommend, at a minimum, the following instance types for
dedicated master nodes.

These recommendations are based on typical workloads and can vary based on your needs.
Clusters with many shards or field mappings can benefit from larger instance types. Monitor the
dedicated master node metrics to see if you need to use a larger instance type.

Instance count Master node RAM
size

Maximum supported
shard count

Recommended
minimum dedicated
master instance type

1–10 8 GiB 10K m5.large.search
or m6g.large
.search

11–30 16 GiB 30K c5.2xlarg
e.search
or c6g.2xlar
ge.search

31–75 32 GiB 40K r5.xlarge
.search or
r6g.xlarg
e.search

76 – 125 64 GiB 75K r5.2xlarg
e.search
or r6g.2xlar
ge.search

126 – 200 128 GiB 75K r5.4xlarg
e.search
or r6g.4xlar
ge.search

Choosing instance types for dedicated master nodes 1015

Amazon OpenSearch Service Developer Guide

• For information about how certain configuration changes can affect dedicated master nodes, see
the section called “Configuration changes”.

• For clarification on instance count limits, see OpenSearch Service domain and instance quotas.

• For more information about specific instance types, including vCPU, memory, and pricing, see
Amazon OpenSearch Service prices.

Recommended CloudWatch alarms for Amazon OpenSearch
Service

CloudWatch alarms perform an action when a CloudWatch metric exceeds a specified value for
some amount of time. For example, you might want Amazon to email you if your cluster health
status is red for longer than one minute. This section includes some recommended alarms for
Amazon OpenSearch Service and how to respond to them.

You can automatically deploy these alarms using Amazon CloudFormation. For a sample stack, see
the related GitHub repository.

Note

If you deploy the CloudFormation stack, the KMSKeyError and KMSKeyInaccessible
alarms will exists in an Insufficient Data state because these metrics only appear if a
domain encounters a problem with its encryption key.

For more information about configuring alarms, see Creating Amazon CloudWatch Alarms in the
Amazon CloudWatch User Guide.

Alarm Issue

ClusterSt
atus.red maximum
is >= 1 for 1 minute, 1
consecutive time

At least one primary shard and its replicas are not allocated to a node.
See the section called “Red cluster status”.

ClusterSt
atus.yellow

At least one replica shard is not allocated to a node. See the section
called “Yellow cluster status”.

Recommended CloudWatch alarms 1016

https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html#opensearch-limits-domain
http://www.amazonaws.cn/opensearch-service/pricing/
https://github.com/ev2900/OpenSearch_CloudWatch_Alarms
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon OpenSearch Service Developer Guide

Alarm Issue

maximum is >= 1 for 1
minute, 5 consecutive
times

FreeStorageSpace
minimum is <= 20480
for 1 minute, 1
consecutive time

A node in your cluster is down to 20 GiB of free storage space. See the
section called “Lack of available storage space”. This value is in MiB,
so rather than 20480, we recommend setting it to 25% of the storage
space for each node.

ClusterIn
dexWrites
Blocked is >= 1 for
5 minutes, 1 consecuti
ve time

Your cluster is blocking write requests. See the section called “ClusterB
lockException”.

Nodes minimum is < x
for 1 day, 1 consecuti
ve time

x is the number of nodes in your cluster. This alarm indicates that at
least one node in your cluster has been unreachable for one day. See
the section called “Failed cluster nodes”.

Automated
SnapshotFailure
maximum is >= 1 for 1
minute, 1 consecutive
time

An automated snapshot failed. This failure is often the result of a red
cluster health status. See the section called “Red cluster status”.

For a summary of all automated snapshots and some information
about failures, try one of the following requests:

GET domain_endpoint /_snapshot/cs-automated/_all
GET domain_endpoint /_snapshot/cs-automated-enc/_all

CPUUtilization
or WarmCPUUt
ilization
maximum is >= 80%
for 15 minutes, 3
consecutive times

100% CPU utilization might occur sometimes, but sustained high
usage is problematic. Consider using larger instance types or adding
instances.

Recommended CloudWatch alarms 1017

Amazon OpenSearch Service Developer Guide

Alarm Issue

JVMMemory
Pressure maximum
is >= 95% for 1
minute, 3 consecutive
times

OldGenJVM
MemoryPressure
maximum is >=
80% for 1 minute, 3
consecutive times

The cluster could encounter out of memory errors if usage increases
. Consider scaling vertically. OpenSearch Service uses half of an
instance's RAM for the Java heap, up to a heap size of 32 GiB. You can
scale instances vertically up to 64 GiB of RAM, at which point you can
scale horizontally by adding instances.

MasterCPU
Utilization
maximum is >= 50%
for 15 minutes, 3
consecutive times

MasterJVM
MemoryPressure
maximum is >=
95% for 1 minute, 3
consecutive times

MasterOld
GenJVMMem
oryPressure
maximum is >=
80% for 1 minute, 3
consecutive times

Consider using larger instance types for your dedicated master nodes.
Because of their role in cluster stability and blue/green deploymen
ts, dedicated master nodes should have lower CPU usage than data
nodes.

KMSKeyError is
>= 1 for 1 minute, 1
consecutive time

The Amazon KMS encryption key that is used to encrypt data at rest in
your domain is disabled. Re-enable it to restore normal operations. For
more information, see the section called “Encryption at rest”.

Recommended CloudWatch alarms 1018

Amazon OpenSearch Service Developer Guide

Alarm Issue

KMSKeyIna
ccessible is >=
1 for 1 minute, 1
consecutive time

The Amazon KMS encryption key that is used to encrypt data at rest in
your domain has been deleted or has revoked its grants to OpenSearc
h Service. You can't recover domains that are in this state. However,
if you have a manual snapshot, you can use it to migrate to a new
domain. To learn more, see the section called “Encryption at rest”.

shards.active
is >= 30000 for 1
minute, 1 consecutive
time

The total number of active primary and replica shards is greater than
30,000. You might be rotating your indexes too frequently. Consider
using ISM to remove indexes once they reach a specific age.

5xx alarms >= 10%
of OpenSearc
hRequests

One or more data nodes might be overloaded, or requests are failing
to complete within the idle timeout period. Consider switching to
larger instance types or adding more nodes to the cluster. Confirm that
you're following best practices for shard and cluster architecture.

MasterRea
chableFromNode
maximum is < 1 for 5
minutes, 1 consecuti
ve time

This alarm indicates that the master node stopped or is unreachable.
These failures are usually the result of a network connectivity issue or
an Amazon dependency problem.

Threadpoo
lWriteQueue
average is >= 100 for
1 minute, 1 consecuti
ve time

The cluster is experiencing high indexing concurrency. Review and
control indexing requests, or increase cluster resources.

Threadpoo
lSearchQueue
average is >= 500 for
1 minute, 1 consecuti
ve time

The cluster is experiencing high search concurrency. Consider scaling
your cluster. You can also increase the search queue size, but increasin
g it excessively can cause out of memory errors.

Recommended CloudWatch alarms 1019

Amazon OpenSearch Service Developer Guide

Alarm Issue

Threadpoo
lSearchQueue
maximum is >=
5000 for 1 minute, 1
consecutive time

Increase in
Threadpoo
lSearchRejected
SUM is >=1{ math
expression DIFF ()} for
1 minute, 1 consecuti
ve time

Increase in
Threadpoo
lWriteRejected
SUM is >=1{ math
expression DIFF ()} for
1 minute, 1 consecuti
ve time

These alarms notify you of domain issues that might impact
performance and stability.

Note

If you just want to view metrics, see the section called “Monitoring cluster metrics”.

Other alarms you might consider

Consider configuring the following alarms depending on which OpenSearch Service features you
regularly use.

Other alarms you might consider 1020

Amazon OpenSearch Service Developer Guide

Alarm Issue

WarmFreeS
torageSpace
minimum is <= 10240
for 1 minute, 1
consecutive time

An UltraWarm node in your cluster is down to 10 GiB of free storage
space. See the section called “Lack of available storage space”. This
value is in MiB, so rather than 10240, we recommend setting it to 10%
of the storage space for each UltraWarm node.

HotToWarm
Migration
QueueSize is >=
20 for 1 minute, 3
consecutive times

A high number of indexes are concurrently moving from hot to
UltraWarm storage. Consider scaling your cluster.

HotToWarm
Migration
SuccessLa
tency is >= 1 day, 1
consecutive time

Configure this alarm so that you're notified if the HotToWarm
MigrationSuccessCount x latency is greater than 24 hours if
you’re trying to roll daily indexes.

WarmJVMMe
moryPressure
maximum is >=
95% for 1 minute, 3
consecutive times

WarmOldGe
nJVMMemor
yPressure
maximum is >=
80% for 1 minute, 3
consecutive times

The cluster could encounter out of memory errors if usage increases
. Consider scaling vertically. OpenSearch Service uses half of an
instance's RAM for the Java heap, up to a heap size of 32 GiB. You can
scale instances vertically up to 64 GiB of RAM, at which point you can
scale horizontally by adding instances.

WarmToCol
dMigratio
nQueueSize is >=

A high number of indexes are concurrently moving from UltraWarm to
cold storage. Consider scaling your cluster.

Other alarms you might consider 1021

Amazon OpenSearch Service Developer Guide

Alarm Issue

20 for 1 minute, 3
consecutive times

HotToWarm
Migration
FailureCount is
>= 1 for 1 minute, 1
consecutive time

Migrations might fail during snapshots, shard relocations, or force
merges. Failures during snapshots or shard relocation are typically due
to node failures or S3 connectivity issues. Lack of disk space is usually
the underlying cause of force merge failures.

WarmToCol
dMigratio
nFailureCount is
>= 1 for 1 minute, 1
consecutive time

Migrations usually fail when attempts to migrate index metadata
to cold storage fail. Failures can also happen when the warm index
cluster state is being removed.

WarmToCol
dMigratio
nLatency is >= 1
day, 1 consecutive
time

Configure this alarm so that you're notified if the WarmToCol
dMigrationSuccessCount x latency is greater than 24 hours if
you’re trying to roll daily indexes.

AlertingDegraded
is >= 1 for 1 minute, 1
consecutive time

Either the alerting index is red, or one or more nodes is not on
schedule.

ADPluginU
nhealthy is >= 1 for
1 minute, 1 consecuti
ve time

The anomaly detection plugin isn't functioning properly, either
because of high failure rates or because one of the indexes being used
is red.

Asynchron
ousSearch
FailureRate is
>= 1 for 1 minute, 1
consecutive time

At least one asynchronous search failed in the last minute, which likely
means the coordinator node failed. The lifecycle of an asynchronous
search request is managed solely on the coordinator node, so if the
coordinator goes down, the request fails.

Other alarms you might consider 1022

Amazon OpenSearch Service Developer Guide

Alarm Issue

Asynchron
ousSearch
StoreHealth is
>= 1 for 1 minute, 1
consecutive time

The health of the asynchronous search response store in the persisted
index is red. You might be storing large asynchronous responses,
which can destabilize a cluster. Try to limit your asynchronous search
responses to 10 MB or less.

SQLUnhealthy is
>= 1 for 1 minute, 3
consecutive times

The SQL plugin is returning 5xx response codes or passing invalid
query DSL to OpenSearch. Troubleshoot the requests that your clients
are making to the plugin.

LTRStatus.red is
>= 1 for 1 minute, 1
consecutive time

At least one of the indexes needed to run the Learning to Rank plugin
has missing primary shards and isn't functional.

Other alarms you might consider 1023

Amazon OpenSearch Service Developer Guide

General reference for Amazon OpenSearch Service

Amazon OpenSearch Service supports a variety of instances, operations, plugins, and other
resources.

Topics

• Supported instance types in Amazon OpenSearch Service

• Features by engine version in Amazon OpenSearch Service

• Plugins by engine version in Amazon OpenSearch Service

• Supported operations in Amazon OpenSearch Service

• Amazon OpenSearch Service quotas

• Reserved Instances in Amazon OpenSearch Service

• Other supported resources in Amazon OpenSearch Service

Supported instance types in Amazon OpenSearch Service

Amazon OpenSearch Service supports the following instance types. Not all Regions support all
instance types. For availability details, see Amazon OpenSearch Service pricing.

For information about which instance type is appropriate for your use case, see the section called
“Sizing domains”, the section called “EBS volume size quotas”, and the section called “Network
quotas”.

Current generation instance types

For the best performance, we recommend that you use the following instance types when you
create new OpenSearch Service domains.

Instance
type

Instances Restrictions

OR1 or1.mediu
m.search

or1.large
.search

• The OR1 instance types require OpenSearch 2.11 or later.

• OR1 instances are only compatible with other Graviton instance
types master nodes (C6g, M6g, R6g).

Supported instance types 1024

https://aws.amazon.com/opensearch-service/pricing/

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

or1.xlarg
e.search

or1.2xlar
ge.search

or1.4xlar
ge.search

or1.8xlar
ge.search

or1.12xla
rge.searc
h

or1.16xla
rge.searc
h

Current generation instance types 1025

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

Im4gn im4gn.lar
ge.search

im4gn.xla
rge.searc
h

im4gn.2xl
arge.sear
ch

im4gn.4xl
arge.sear
ch

im4gn.8xl
arge.sear
ch

im4gn.16x
large.sea
rch

• The Im4gn instance types require Elasticsearch 7.9 or later or
any version of OpenSearch, and do not support EBS storage
volumes.

• Im4gn instances are only compatible with other Graviton
instance types (C6g, M6g, R6g, R6gd). You can't combine
Graviton and non-Graviton instances in the same cluster.

Current generation instance types 1026

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

C5 c5.large.
search

c5.xlarge
.search

c5.2xlarg
e.search

c5.4xlarg
e.search

c5.9xlarg
e.search

c5.18xlar
ge.search

The C5 instance types require Elasticsearch 5.1 or later or any
version of OpenSearch.

Current generation instance types 1027

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

C6g c6g.large
.search

c6g.xlarg
e.search

c6g.2xlar
ge.search

c6g.4xlar
ge.search

c6g.8xlar
ge.search

c6g.12xla
rge.searc
h

• The C6g instance types require Elasticsearch 7.9 or later or any
version of OpenSearch.

• C6g instances are only compatible with other Graviton instance
types (Im4gn, M6g, R6g, R6gd). You can't combine Graviton and
non-Graviton instances in the same cluster.

Current generation instance types 1028

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

I3 i3.large.
search

i3.xlarge
.search

i3.2xlarg
e.search

i3.4xlarg
e.search

i3.8xlarg
e.search

i3.16xlar
ge.search

The I3 instance types require Elasticsearch 5.1 or later or any
version of OpenSearch, and do not support EBS storage volumes.

M5 m5.large.
search

m5.xlarge
.search

m5.2xlarg
e.search

m5.4xlarg
e.search

m5.12xlar
ge.search

The M5 instance types require Elasticsearch 5.1 or later or any
version of OpenSearch.

Current generation instance types 1029

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

M6g m6g.large
.search

m6g.xlarg
e.search

m6g.2xlar
ge.search

m6g.4xlar
ge.search

m6g.8xlar
ge.search

m6g.12xla
rge.searc
h

• The M6g instance types require Elasticsearch 7.9 or later or any
version of OpenSearch.

• M6g instances are only compatible with other Graviton instance
types (Im4gn, C6g, R6g, R6gd). You can't combine Graviton and
non-Graviton instances in the same cluster.

Current generation instance types 1030

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

R5 r5.large.
search

r5.xlarge
.search

r5.2xlarg
e.search

r5.4xlarg
e.search

r5.12xlar
ge.search

The R5 instance types require Elasticsearch 5.1 or later or any
version of OpenSearch.

Current generation instance types 1031

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

R6g r6g.large
.search

r6g.xlarg
e.search

r6g.2xlar
ge.search

r6g.4xlar
ge.search

r6g.8xlar
ge.search

r6g.12xla
rge.searc
h

• The R6g instance types require Elasticsearch 7.9 or later or any
version of OpenSearch.

• R6g instances are only compatible with other Graviton instance
types (Im4gn, C6g, M6g, R6gd). You can't combine Graviton and
non-Graviton instances in the same cluster.

Current generation instance types 1032

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

R6gd r6gd.larg
e.search

r6gd.xlar
ge.search

r6gd.2xla
rge.searc
h

r6gd.4xla
rge.searc
h

r6gd.8xla
rge.searc
h

r6gd.12xl
arge.sear
ch

r6gd.16xl
arge.sear
ch

• The R6gd instance types require Elasticsearch 7.9 or later or
any version of OpenSearch, and do not support EBS storage
volumes.

• R6gd instances are only compatible with other Graviton
instance types (Im4gn, C6g, M6g, R6g). You can't combine
Graviton and non-Graviton instances in the same cluster.

Current generation instance types 1033

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

T3 t3.small.
search

t3.medium
.search

• The T3 instance types require Elasticsearch 5.6 or later or any
version of OpenSearch.

• You can use T3 instance types only if your domain is provision
ed without standby. For more information, see the section
called “Multi-AZ without Standby”.

• You can use T3 instance types only if the instance count for
your domain is 10 or fewer.

• The T3 instance types do not support UltraWarm storage, cold
storage, or Auto-Tune.

Previous generation instance types

OpenSearch Service offers previous generation instance types for users who have optimized their
applications around them and have yet to upgrade. We encourage you to use current generation
instance types to get the best performance, but we continue to support the following previous
generation instance types.

Instance
type

Instances Restrictions

C4 c4.large.
search

c4.xlarge
.search

c4.2xlarg
e.search

c4.4xlarg
e.search

Previous generation instance types 1034

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

c4.8xlarg
e.search

I2 i2.xlarge
.search

i2.2xlarg
e.search

M3 m3.medium
.search

m3.large.
search

m3.xlarge
.search

m3.2xlarg
e.search

• The M3 instance types do not support encryption of data at
rest, fine-grained access control, or cross-cluster search.

• The M3 instance types have additional restrictions by
OpenSearch version. To learn more, see the section called
“Invalid M3 instance type”.

M4 m4.large.
search

m4.xlarge
.search

m4.2xlarg
e.search

m4.4xlarg
e.search

m4.10xlar
ge.search

Previous generation instance types 1035

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

R3 r3.large.
search

r3.xlarge
.search

r3.2xlarg
e.search

r3.4xlarg
e.search

r3.8xlarg
e.search

The R3 instance types do not support encryption of data at rest or
fine-grained access control.

R4 r4.large.
search

r4.xlarge
.search

r4.2xlarg
e.search

r4.4xlarg
e.search

r4.8xlarg
e.search

r4.16xlar
ge.search

Previous generation instance types 1036

Amazon OpenSearch Service Developer Guide

Instance
type

Instances Restrictions

T2 t2.micro.
search

t2.small.
search

t2.medium
.search

• You can use the T2 instance types only if the instance count for
your domain is 10 or fewer.

• The t2.micro.search instance type supports only Elasticse
arch 1.5 and 2.3.

• The T2 instance types do not support encryption of data at rest,
fine-grained access control, UltraWarm storage, cold storage,
cross-cluster search, or Auto-Tune.

Tip

We often recommend different instance types for dedicated master nodes and data nodes.

Features by engine version in Amazon OpenSearch Service

Many OpenSearch Service features have a minimum OpenSearch version requirement or legacy
Elasticsearch OSS version requirement. If you meet the minimum version for a feature, but the
feature isn't available on your domain, update your domain's service software.

Feature Minimum required OpenSearch version Minimum required Elasticsearch
version

VPC
support

Require
HTTPS for
all traffic to
the domain

Multi-AZ
support

1.0 1.0

Features by engine version 1037

Amazon OpenSearch Service Developer Guide

Feature Minimum required OpenSearch version Minimum required Elasticsearch
version

Dedicated
master
nodes

Custom
packages

Custom
endpoints

Slow log
publishing

Error log
publishing

Encryption
of data at
rest

Cognito
authentic
ation for
OpenSearch
Dashboards

In-place
upgrades

1.0 5.1

Curator
support

Not included 5.1

Hourly
automated
snapshots

1.0 5.3

Features by engine version 1038

Amazon OpenSearch Service Developer Guide

Feature Minimum required OpenSearch version Minimum required Elasticsearch
version

Node-
to-node
encryption

Java high-
level REST
client
support

HTTP
request and
response
compressi
on

1.0 6.0

Alerting 1.0 6.2

SQL 1.0 6.5

Cross-clu
ster search

Fine-grai
ned access
control

SAML
authentic
ation for
OpenSearch
Dashboards

Auto-Tune

Remote
reindex

1.0 6.7

Features by engine version 1039

Amazon OpenSearch Service Developer Guide

Feature Minimum required OpenSearch version Minimum required Elasticsearch
version

UltraWarm

Index State
Managemen
t

1.0 6.8

k-NN by
Euclidean
distance

1.0 7.1

Anomaly
Detection

1.0 7.4

k-NN by
cosine
similarity

Learning to
Rank

1.0 7.7

Piped
processing
language

OpenSearch
Dashboards
reports

OpenSearch
Dashboard
s Trace
Analytics

ARM-based
Graviton
instances

1.0 7.9

Features by engine version 1040

Amazon OpenSearch Service Developer Guide

Feature Minimum required OpenSearch version Minimum required Elasticsearch
version

Cold
storage

Hamming
distance,
L1 Norm
distance,
and
Painless
scripting for
k-NN

Asynchron
ous search

1.0 7.10

Index
transforms

1.0 Not included

Cross-
cluster
replication

1.1 7.10

ML
Commons

1.3 Not included

Notificat
ions

2.3 Not included

Point in
time search

2.5 Not included

Search
pipelines

2.9 Not included

Features by engine version 1041

Amazon OpenSearch Service Developer Guide

Feature Minimum required OpenSearch version Minimum required Elasticsearch
version

Machine
learning
connectors

2.9 Not included

Multimoda
l semantic
search

2.11 Not included

Direct-qu
ery data
sources for
Amazon S3

2.11 Not included

For information about plugins, which enable some of these features and additional functionality,
see the section called “Plugins by engine version”. For information about the OpenSearch API for
each version, see the section called “Supported operations”.

Plugins by engine version in Amazon OpenSearch Service

Amazon OpenSearch Service domains come prepackaged with plugins from the OpenSearch
community. The service automatically deploys and manages plugins for you, but it deploys
different plugins depending on the version of OpenSearch or legacy Elasticsearch OSS you choose
for your domain.

The following table lists plugins by OpenSearch version, as well as compatible versions of legacy
Elasticsearch OSS. It only includes plugins that you might interact with—it’s not comprehensive.
OpenSearch Service uses additional plugins to enable core service functionality, such as the S3
Repository plugin for snapshots and the OpenSearch Performance Analyzer plugin for optimization
and monitoring. For a complete list of all plugins running on your domain, make the following
request:

GET _cat/plugins?v

Plugins by engine version 1042

https://opensearch.org/docs/latest/monitoring-plugins/pa/index/

Amazon OpenSearch Service Developer Guide

Plugin Minimum required OpenSearch
version

Minimum required Elasticsearch
version

ICU Analysis

Japanese
(kuromoji)
Analysis

1.0 Included on all domains

Phonetic
Analysis

1.0 2.3

Seunjeon
Korean
Analysis

Smart
Chinese
Analysis

Stempel
Polish
Analysis

Ingest
Attachment
Processor

Ingest
User Agent
Processor

Mapper
Murmur3

1.0 5.1

Mapper Size

Ukrainian
Analysis

1.0 5.3

Plugins by engine version 1043

https://bitbucket.org/eunjeon/seunjeon/src/master/elasticsearch/
https://bitbucket.org/eunjeon/seunjeon/src/master/elasticsearch/
https://bitbucket.org/eunjeon/seunjeon/src/master/elasticsearch/

Amazon OpenSearch Service Developer Guide

Plugin Minimum required OpenSearch
version

Minimum required Elasticsearch
version

OpenSearch
alerting

1.0 6.2

OpenSearch
SQL

1.0 6.5

OpenSearch
security

1.0 6.7

OpenSearch
Index State
Managemen
t

1.0 6.8

OpenSearch
k-NN

1.0 7.1

OpenSearc
h anomaly
detection

1.0 7.4

IK (Chinese)
Analysis

Vietnamese
Analysis

Thai
analysis

Learning to
Rank

1.0 7.7

OpenSearc
h asynchron
ous search

1.0 7.10

Plugins by engine version 1044

https://github.com/medcl/elasticsearch-analysis-ik
https://github.com/medcl/elasticsearch-analysis-ik
https://github.com/duydo/elasticsearch-analysis-vietnamese
https://github.com/duydo/elasticsearch-analysis-vietnamese
https://github.com/tlefsad/elasticsearch-analysis-thaichub2
https://github.com/tlefsad/elasticsearch-analysis-thaichub2

Amazon OpenSearch Service Developer Guide

Plugin Minimum required OpenSearch
version

Minimum required Elasticsearch
version

OpenSearc
h cross-
cluster
replication

1.1 7.10

OpenSearc
h observabi
lity

1.2 Not supported

Nori
(optional)

1.3 Not supported

Pinyin
(optional)

1.3 Not supported

STConvert
(optional)

1.3 Not supported

Sudachi
(optional)

1.3 Not supported

ML
Commons

1.3 Not supported

OpenSearc
h notificat
ions

2.3 Not supported

Security
Analytics

2.5 Not supported

Neural
Search

2.9 Not supported

Plugins by engine version 1045

https://github.com/opensearch-project/OpenSearch/tree/main/plugins/analysis-nori
https://github.com/opensearch-project/OpenSearch/tree/main/plugins/analysis-nori
https://github.com/aparo/opensearch-analysis-pinyin
https://github.com/aparo/opensearch-analysis-pinyin
https://github.com/aparo/opensearch-analysis-stconvert
https://github.com/aparo/opensearch-analysis-stconvert
https://github.com/WorksApplications/elasticsearch-sudachi
https://github.com/WorksApplications/elasticsearch-sudachi
https://opensearch.org/docs/latest/ml-commons-plugin/index/
https://opensearch.org/docs/latest/ml-commons-plugin/index/
https://opensearch.org/docs/latest/notifications-plugin/index/
https://opensearch.org/docs/latest/notifications-plugin/index/
https://opensearch.org/docs/latest/notifications-plugin/index/
https://opensearch.org/docs/latest/security-analytics/index/
https://opensearch.org/docs/latest/security-analytics/index/
https://opensearch.org/docs/latest/search-plugins/neural-search/
https://opensearch.org/docs/latest/search-plugins/neural-search/

Amazon OpenSearch Service Developer Guide

Plugin Minimum required OpenSearch
version

Minimum required Elasticsearch
version

Amazon
Personali
ze Search
Ranking
(optional)

2.9 Not supported

Optional plugins

In addition to the default plugins that come pre-installed, Amazon OpenSearch Service supports
several language analyzer plugins. These plugins are marked as optional in the above table. You
can use the Amazon Web Services Management Console and Amazon CLI to associate a plugin to
a domain, disassociate a plugin from a domain, and list all plugins. An optional plugin package is
compatible with a specific OpenSearch version, and can only be associated to domains with that
version.

Note that for the Sudachi plugin, when you reassociate a dictionary file, it doesn't immediately
reflect on the domain. The dictionary refreshes when the next blue/green deployment runs on
the domain as part of a configuration change or other update. Alternatively, you can create a new
index, reindex the existing index to the new index, and then delete the old index. If you prefer to
use the reindexing approach, use an index alias so that there's no disruption to your traffic.

Optional plugins use the ZIP-PLUGIN package type. For more information about optional plugins,
see the section called “Custom packages”.

Supported operations in Amazon OpenSearch Service

OpenSearch Service supports many versions of OpenSearch and legacy Elasticsearch OSS. The
following sections show the operations that OpenSearch Service supports for each version.

Topics

• Notable API differences

• OpenSearch version 2.11

• OpenSearch version 2.9

Optional plugins 1046

https://docs.amazonaws.cn/personalize/latest/dg/personalize-opensearch.html
https://docs.amazonaws.cn/personalize/latest/dg/personalize-opensearch.html
https://docs.amazonaws.cn/personalize/latest/dg/personalize-opensearch.html
https://docs.amazonaws.cn/personalize/latest/dg/personalize-opensearch.html
https://docs.amazonaws.cn/personalize/latest/dg/personalize-opensearch.html
https://github.com/WorksApplications/elasticsearch-sudachi

Amazon OpenSearch Service Developer Guide

• OpenSearch version 2.7

• OpenSearch version 2.5

• OpenSearch version 2.3

• OpenSearch version 1.3

• OpenSearch version 1.2

• OpenSearch version 1.1

• OpenSearch version 1.0

• Elasticsearch version 7.10

• Elasticsearch version 7.9

• Elasticsearch version 7.8

• Elasticsearch version 7.7

• Elasticsearch version 7.4

• Elasticsearch version 7.1

• Elasticsearch version 6.8

• Elasticsearch version 6.7

• Elasticsearch version 6.5

• Elasticsearch version 6.4

• Elasticsearch version 6.3

• Elasticsearch version 6.2

• Elasticsearch version 6.0

• Elasticsearch version 5.6

• Elasticsearch version 5.5

• Elasticsearch version 5.3

• Elasticsearch version 5.1

• Elasticsearch version 2.3

• Elasticsearch version 1.5

Supported operations 1047

Amazon OpenSearch Service Developer Guide

Notable API differences

Settings and statistics

OpenSearch Service only accepts PUT requests to the _cluster/settings API that use the "flat"
settings form. It rejects requests that use the expanded settings form.

// Accepted
PUT _cluster/settings
{
 "persistent" : {
 "action.auto_create_index" : false
 }
}

// Rejected
PUT _cluster/settings
{
 "persistent": {
 "action": {
 "auto_create_index": false
 }
 }
}

The high-level Java REST client uses the expanded form, so if you need to send settings requests,
use the low-level client.

Prior to Elasticsearch 5.3, the _cluster/settings API on OpenSearch Service domains
supported only the HTTP PUT method, not the GET method. OpenSearch and later versions of
Elasticsearch support the GET method, as shown in the following example:

GET https://domain-name.region.es.amazonaws.com/_cluster/settings?pretty

Here is a return example:

{
 "persistent": {
 "cluster": {
 "routing": {
 "allocation": {

Notable API differences 1048

Amazon OpenSearch Service Developer Guide

 "cluster_concurrent_rebalance": "2",
 "node_concurrent_recoveries": "2",
 "disk": {
 "watermark": {
 "low": "1.35gb",
 "flood_stage": "0.45gb",
 "high": "0.9gb"
 }
 },
 "node_initial_primarirecoveries": "4"
 }
 }
 },
 "indices": {
 "recovery": {
 "max_bytper_sec": "40mb"
 }
 }
 }
}

If you compare responses from an open source OpenSearch cluster and OpenSearch Service for
certain settings and statistics APIs, you might notice missing fields. OpenSearch Service redacts
certain information that exposes service internals, such as the file system data path from _nodes/
stats or the operating system name and version from _nodes.

Shrink

The _shrink API can cause upgrades, configuration changes, and domain deletions to fail. We
don't recommend using it on domains that run Elasticsearch versions 5.3 or 5.1. These versions
have a bug that can cause snapshot restoration of shrunken indices to fail.

If you use the _shrink API on other Elasticsearch or OpenSearch versions, make the following
request before starting the shrink operation:

PUT https://domain-name.region.es.amazonaws.com/source-index/_settings
{
 "settings": {
 "index.routing.allocation.require._name": "name-of-the-node-to-shrink-to",
 "index.blocks.read_only": true
 }
}

Notable API differences 1049

Amazon OpenSearch Service Developer Guide

Then make the following requests after completing the shrink operation:

PUT https://domain-name.region.es.amazonaws.com/source-index/_settings
{
 "settings": {
 "index.routing.allocation.require._name": null,
 "index.blocks.read_only": false
 }
}

PUT https://domain-name.region.es.amazonaws.com/shrunken-index/_settings
{
 "settings": {
 "index.routing.allocation.require._name": null,
 "index.blocks.read_only": false
 }
}

OpenSearch version 2.11

For OpenSearch 2.11, OpenSearch Service supports the following operations. For information
about most of the operations, see the OpenSearch REST API reference, or the API reference for the
specific plugin.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search/pipeline

• /_search/point_in_
time

• /_search profile

• /_shard_stores

• /_shrink5

OpenSearch version 2.11 1050

https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_dashboards

• /_plugins/_asynchr
onous_search

• /_plugins/_alertin
g

• /_plugins/_anomaly
_detection

• /_plugins/_ism

• /_plugins/_ml

• /_plugins/_notific
ations

• /_plugins/_ppl

• /_plugins/_securit
y

• /_plugins/_securit
y_analytics

• /_plugins/_sm

• /_plugins/_sql

• /_percolate

• /_rank_eval

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that

OpenSearch version 2.11 1051

Amazon OpenSearch Service Developer Guide

OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

OpenSearch version 2.9

For OpenSearch 2.9, OpenSearch Service supports the following operations. For information
about most of the operations, see the OpenSearch REST API reference, or the API reference for the
specific plugin.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_plugins/_asynchr
onous_search

• /_plugins/_alertin
g

• /_plugins/_anomaly
_detection

• /_plugins/_ism

• /_plugins/_ml

• /_plugins/_notific
ations

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search/pipeline

• /_search/point_in_
time

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

OpenSearch version 2.9 1052

https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_dashboards

• /_plugins/_ppl

• /_plugins/_securit
y

• /_plugins/_securit
y_analytics

• /_plugins/_sm

• /_plugins/_sql

• /_percolate

• /_rank_eval

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

OpenSearch version 2.7

For OpenSearch 2.7, OpenSearch Service supports the following operations. For information
about most of the operations, see the OpenSearch REST API reference, or the API reference for the
specific plugin.

OpenSearch version 2.7 1053

https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_plugins/_asynchr
onous_search

• /_plugins/_alertin
g

• /_plugins/_anomaly
_detection

• /_plugins/_ism

• /_plugins/_ml

• /_plugins/_notific
ations

• /_plugins/_ppl

• /_plugins/_securit
y

• /_plugins/_securit
y_analytics

• /_plugins/_sm

• /_plugins/_sql

• /_percolate

• /_rank_eval

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search/point_in_
time

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

OpenSearch version 2.7 1054

Amazon OpenSearch Service Developer Guide

• /_count

• /_dashboards

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

OpenSearch version 2.5

For OpenSearch 2.5, OpenSearch Service supports the following operations. For information
about most of the operations, see the OpenSearch REST API reference, or the API reference for the
specific plugin.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search/point_in_
time

OpenSearch version 2.5 1055

https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_dashboards

• /_msearch

• /_mtermvectors

• /_nodes

• /_plugins/_asynchr
onous_search

• /_plugins/_alertin
g

• /_plugins/_anomaly
_detection

• /_plugins/_ism

• /_plugins/_ml

• /_plugins/_notific
ations

• /_plugins/_ppl

• /_plugins/_securit
y

• /_plugins/_securit
y_analytics

• /_plugins/_sm

• /_plugins/_sql

• /_percolate

• /_rank_eval

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

OpenSearch version 2.5 1056

Amazon OpenSearch Service Developer Guide

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

OpenSearch version 2.3

For OpenSearch 2.3, OpenSearch Service supports the following operations. For information
about most of the operations, see the OpenSearch REST API reference, or the API reference for the
specific plugin.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_plugins/_asynchr
onous_search

• /_plugins/_alertin
g

• /_plugins/_anomaly
_detection

• /_plugins/_ism

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

OpenSearch version 2.3 1057

https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_dashboards

• /_plugins/_ml

• _plugins/_notifica
tions

• /_plugins/_ppl

• /_plugins/_securit
y

• /_plugins/_sql

• /_percolate

• /_rank_eval

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

OpenSearch version 2.3 1058

Amazon OpenSearch Service Developer Guide

OpenSearch version 1.3

For OpenSearch 1.3, OpenSearch Service supports the following operations. For information
about most of the operations, see the OpenSearch REST API reference, or the API reference for the
specific plugin.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_plugins/_asynchr
onous_search

• /_plugins/_alertin
g

• /_plugins/_anomaly
_detection

• /_plugins/_ism

• /_plugins/_ml

• /_plugins/_ppl

• /_plugins/_securit
y

• /_plugins/_sql

• /_percolate

• /_rank_eval

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

OpenSearch version 1.3 1059

https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_dashboards

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

OpenSearch version 1.2

For OpenSearch 1.2, OpenSearch Service supports the following operations. For information
about most of the operations, see the OpenSearch REST API reference, or the API reference for the
specific plugin.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

OpenSearch version 1.2 1060

https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_dashboards

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_plugins/_asynchr
onous_search

• /_plugins/_alertin
g

• /_plugins/_anomaly
_detection

• /_plugins/_ism

• /_plugins/_ppl

• /_plugins/_securit
y

• /_plugins/_sql

• /_percolate

• /_rank_eval

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

OpenSearch version 1.2 1061

Amazon OpenSearch Service Developer Guide

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

OpenSearch version 1.1

For OpenSearch 1.1, OpenSearch Service supports the following operations. For information
about most of the operations, see the OpenSearch REST API reference, or the API reference for the
specific plugin.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

OpenSearch version 1.1 1062

https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_dashboards

• /_plugins/_asynchr
onous_search

• /_plugins/_alertin
g

• /_plugins/_anomaly
_detection

• /_plugins/_ism

• /_plugins/_ppl

• /_plugins/_securit
y

• /_plugins/_sql

• /_plugins/_transfo
rms

• /_percolate

• /_rank_eval

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that

OpenSearch version 1.1 1063

Amazon OpenSearch Service Developer Guide

OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

OpenSearch version 1.0

For OpenSearch 1.0, OpenSearch Service supports the following operations. For information
about most of the operations, see the OpenSearch REST API reference, or the API reference for the
specific plugin.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_plugins/_asynchr
onous_search

• /_plugins/_alertin
g

• /_plugins/_anomaly
_detection

• /_plugins/_ism

• /_plugins/_ppl

• /_plugins/_securit
y

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

OpenSearch version 1.0 1064

https://opensearch.org/docs/latest/opensearch/rest-api/index/

Amazon OpenSearch Service Developer Guide

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_dashboards

• /_plugins/_sql

• /_plugins/_transfo
rms

• /_percolate

• /_rank_eval

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 7.10

For Elasticsearch 7.10, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /

• /_delete_by_query 1

• /_explain

• /_refresh

• /_reindex 1

Elasticsearch version 7.10 1065

Amazon OpenSearch Service Developer Guide

_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_field_caps

• /_field_stats

• /_flush

• /_index_template 6

• /_ingest/pipeline

• /_index_template

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_opendistro/_asyn
chronous_search

• /_opendistro/_anom
aly_detection

• /_opendistro/_ism

• /_opendistro/_ppl

• /_opendistro/_secu
rity

• /_opendistro/_sql

• /_percolate

• /_plugin/kibana

• /_plugins/_replica
tion

• /_rank_eval

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template 6

• /_update_by_query 1

• /_validate

Elasticsearch version 7.10 1066

Amazon OpenSearch Service Developer Guide

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

6. Legacy index templates (_template) were replaced by composable templates
(_index_template) starting with Elasticsearch 7.8. Composable templates take precedence
over legacy templates. If no composable template matches a given index, a legacy template
can still match and be applied. The _template operation still works on OpenSearch and later
versions of Elasticsearch OSS, but GET calls to the two template types return different results.

Elasticsearch version 7.9

For Elasticsearch 7.9, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_index_template 6

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_refresh

• /_reindex 1

• /_render

• /_resolve/index

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

Elasticsearch version 7.9 1067

Amazon OpenSearch Service Developer Guide

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_cluster/state

• /_cluster/stats

• /_count

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_opendistro/_anom
aly_detection

• /_opendistro/_ism

• /_opendistro/_ppl

• /_opendistro/_secu
rity

• /_opendistro/_sql

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template 6

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

Elasticsearch version 7.9 1068

Amazon OpenSearch Service Developer Guide

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic OpenSearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

6. Legacy index templates (_template) were replaced by composable templates
(_index_template) starting with Elasticsearch 7.8. Composable templates take precedence
over legacy templates. If no composable template matches a given index, a legacy template
can still match and be applied. The _template operation still works on OpenSearch and later
versions of Elasticsearch OSS, but GET calls to the two template types return different results.

Elasticsearch version 7.8

For Elasticsearch 7.8, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_index_template 6

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template 6

• /_update_by_query 1

• /_validate

Elasticsearch version 7.8 1069

Amazon OpenSearch Service Developer Guide

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_opendistro/_aler
ting

• /_opendistro/_anom
aly_detection

• /_opendistro/_ism

• /_opendistro/_secu
rity

• /_opendistro/_sql

• /_percolate

• /_plugin/kibana

• /_rank_eval

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

6. Legacy index templates (_template) were replaced by composable templates
(_index_template) starting with Elasticsearch 7.8. Composable templates take precedence
over legacy templates. If no composable template matches a given index, a legacy template
can still match and be applied. The _template operation still works on OpenSearch and later
versions of Elasticsearch OSS, but GET calls to the two template types return different results.

Elasticsearch version 7.8 1070

Amazon OpenSearch Service Developer Guide

Elasticsearch version 7.7

For Elasticsearch 7.7, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_ltr

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_opendistro/_anom
aly_detection

• /_opendistro/_ism

• /_opendistro/_secu
rity

• /_opendistro/_sql

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

Elasticsearch version 7.7 1071

Amazon OpenSearch Service Developer Guide

• cluster.max_shards
_per_node

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 7.4

For Elasticsearch 7.4, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge , /index-nam
e /update/id, and /index-
name /_close)

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

Elasticsearch version 7.4 1072

Amazon OpenSearch Service Developer Guide

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_opendistro/_anom
aly_detection

• /_opendistro/_ism

• /_opendistro/_secu
rity

• /_opendistro/_sql

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

Elasticsearch version 7.4 1073

Amazon OpenSearch Service Developer Guide

5. See the section called “Shrink”.

Elasticsearch version 7.1

For Elasticsearch 7.1, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_opendistro/_ism

• /_opendistro/_secu
rity

• /_opendistro/_sql

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

Elasticsearch version 7.1 1074

Amazon OpenSearch Service Developer Guide

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 6.8

For Elasticsearch 6.8, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

Elasticsearch version 6.8 1075

Amazon OpenSearch Service Developer Guide

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

• cluster.blocks.rea
d_only

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_opendistro/_ism

• /_opendistro/_secu
rity

• /_opendistro/_sql

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that

Elasticsearch version 6.8 1076

Amazon OpenSearch Service Developer Guide

OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 6.7

For Elasticsearch 6.7, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_opendistro/_secu
rity

• /_opendistro/_sql

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

Elasticsearch version 6.7 1077

Amazon OpenSearch Service Developer Guide

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• cluster.max_shards
_per_node

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 6.5

For Elasticsearch 6.5, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

Elasticsearch version 6.5 1078

Amazon OpenSearch Service Developer Guide

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_opendistro/_sql

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

Elasticsearch version 6.5 1079

Amazon OpenSearch Service Developer Guide

5. See the section called “Shrink”.

Elasticsearch version 6.4

For Elasticsearch 6.4, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

Elasticsearch version 6.4 1080

Amazon OpenSearch Service Developer Guide

• indices.breaker.to
tal.limit

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 6.3

For Elasticsearch 6.3, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

Elasticsearch version 6.3 1081

Amazon OpenSearch Service Developer Guide

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 6.3 1082

Amazon OpenSearch Service Developer Guide

Elasticsearch version 6.2

For Elasticsearch 6.2, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_opendistro/_aler
ting

• /_percolate

• /_plugin/kibana

• /_rank_eval

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_split

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

Elasticsearch version 6.2 1083

Amazon OpenSearch Service Developer Guide

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 6.0

For Elasticsearch 6.0, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

Elasticsearch version 6.0 1084

Amazon OpenSearch Service Developer Guide

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• /_percolate

• /_plugin/kibana

• /_refresh

• /_reindex 1

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 5.6

For Elasticsearch 5.6, OpenSearch Service supports the following operations.

Elasticsearch version 5.6 1085

Amazon OpenSearch Service Developer Guide

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_percolate

• /_plugin/kibana

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

Elasticsearch version 5.6 1086

Amazon OpenSearch Service Developer Guide

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 5.5

For Elasticsearch 5.5, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties4:

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_percolate

• /_plugin/kibana

• /_refresh

• /_render

• /_rollover

• /_scripts 3

• /_search2

• /_search profile

• /_shard_stores

• /_shrink5

• /_snapshot

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

Elasticsearch version 5.5 1087

Amazon OpenSearch Service Developer Guide

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• /_reindex 1

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. For considerations about using scripts, see the section called “Other supported resources”.

4. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

5. See the section called “Shrink”.

Elasticsearch version 5.3

For Elasticsearch 5.3, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_render

• /_rollover

• /_search2

• /_search profile

Elasticsearch version 5.3 1088

Amazon OpenSearch Service Developer Guide

name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties3:

• action.auto_create
_index

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_percolate

• /_plugin/kibana

• /_refresh

• /_reindex 1

• /_shard_stores

• /_shrink4

• /_snapshot

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =

Elasticsearch version 5.3 1089

Amazon OpenSearch Service Developer Guide

characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. Refers to the PUT method. For information about the GET method, see the section called
“Notable API differences”. This list only refers to the generic Elasticsearch operations that
OpenSearch Service supports and does not include plugin-specific supported operations for
anomaly detection, ISM, and so on.

4. See the section called “Shrink”.

Elasticsearch version 5.1

For Elasticsearch 5.1, OpenSearch Service supports the following operations.

• All operations in the index
path (such as /index-name /
_forcemerge and /index-
name /update/id) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat (except /_cat/nod
eattrs)

• /_cluster/allocation/
explain

• /_cluster/health

• /_cluster/pending_tasks

• /_cluster/settings for
several properties (PUT only):

• action.auto_create
_index

• /_cluster/state

• /_cluster/stats

• /_count

• /_delete_by_query 1

• /_explain

• /_field_caps

• /_field_stats

• /_flush

• /_ingest/pipeline

• /_mapping

• /_mget

• /_msearch

• /_mtermvectors

• /_nodes

• /_percolate

• /_plugin/kibana

• /_refresh

• /_reindex 1

• /_render

• /_rollover

• /_search2

• /_search profile

• /_shard_stores

• /_shrink3

• /_snapshot

• /_stats

• /_status

• /_tasks

• /_template

• /_update_by_query 1

• /_validate

Elasticsearch version 5.1 1090

Amazon OpenSearch Service Developer Guide

• action.search.shar
d_count.limit

• indices.breaker.fi
elddata.limit

• indices.breaker.re
quest.limit

• indices.breaker.to
tal.limit

1. Cluster configuration changes might interrupt these operations before completion. We
recommend that you use the /_tasks operation along with these operations to verify that the
requests completed successfully.

2. DELETE requests to /_search/scroll with a message body must specify "Content-
Length" in the HTTP header. Most clients add this header by default. To avoid a problem with =
characters in scroll_id values, use the request body, not the query string, to pass scroll_id
values to OpenSearch Service.

3. See the section called “Shrink”.

Elasticsearch version 2.3

For Elasticsearch 2.3, OpenSearch Service supports the following operations.

• All operations in the index path (such as
/index-name /_forcemerge and
/index-name /_recovery) except
/index-name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cache/clear (index only)

• /_cat (except /_cat/nodeattrs)

• /_cluster/stats

• /_count

• /_flush

• /_mapping

• /_mget

• /_msearch

• /_nodes

• /_percolate

• /_plugin/kibana

• /_refresh

Elasticsearch version 2.3 1091

Amazon OpenSearch Service Developer Guide

• /_cluster/health

• /_cluster/settings for several
properties (PUT only):

• indices.breaker.fielddata.l
imit

• indices.breaker.request.limit

• indices.breaker.total.limit

• threadpool.get.queue_size

• threadpool.bulk.queue_size

• threadpool.index.queue_size

• threadpool.percolate.queue_
size

• threadpool.search.queue_size

• threadpool.suggest.queue_size

• /_render

• /_search

• /_snapshot

• /_stats

• /_status

• /_template

Elasticsearch version 1.5

For Elasticsearch 1.5, OpenSearch Service supports the following operations.

• All operations in the index path, such
as /index-name /_optimize and
/index-name /_warmer, except /index-
name /_close

• /_alias

• /_aliases

• /_all

• /_analyze

• /_bulk

• /_cat

• /_cluster/health

• /_cluster/settings for several
properties (PUT only):

• /_cluster/stats

• /_count

• /_flush

• /_mapping

• /_mget

• /_msearch

• /_nodes

• /_percolate

• /_plugin/kibana

• /_plugin/kibana3

• /_plugin/migration

• /_refresh

Elasticsearch version 1.5 1092

Amazon OpenSearch Service Developer Guide

• indices.breaker.fielddata.l
imit

• indices.breaker.request.limit

• indices.breaker.total.limit

• threadpool.get.queue_size

• threadpool.bulk.queue_size

• threadpool.index.queue_size

• threadpool.percolate.queue_
size

• threadpool.search.queue_size

• threadpool.suggest.queue_size

• /_search

• /_snapshot

• /_stats

• /_status

• /_template

Amazon OpenSearch Service quotas

Your Amazon account has default quotas, formerly referred to as limits, for each Amazon service.
Unless otherwise noted, each quota is Region-specific.

To view the quotas for OpenSearch Service domains and instances, Amazon OpenSearch
Serverless, and Amazon OpenSearch Ingestion, see Amazon OpenSearch Service quotas in the
Amazon Web Services General Reference.

To view the quotas for OpenSearch Service in the Amazon Web Services Management Console,
open the Service Quotas console. In the navigation pane, choose Amazon services and select
Amazon OpenSearch Service. To request a quota increase, see Requesting a quota increase in the
Service Quotas User Guide.

Topics

• UltraWarm storage quotas

• EBS volume size quotas

• Network quotas

• Shard size quotas

• Java process quota

• Domain policy quota

Quotas 1093

https://docs.amazonaws.cn/general/latest/gr/opensearch-service.html#opensearch-limits
https://console.amazonaws.cn/servicequotas/home
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html

Amazon OpenSearch Service Developer Guide

UltraWarm storage quotas

The following table lists the UltraWarm instance types and the maximum amount of storage that
each type can use. For more information about UltraWarm, see the section called “UltraWarm
storage”.

Instance type Maximum storage

ultrawarm1.medium.search 1.5 TiB

ultrawarm1.large.search 20 TiB

EBS volume size quotas

The following table shows the minimum and maximum sizes for EBS volumes for each instance
type that OpenSearch Service supports. For information about which instance types include
instance storage and additional hardware details, see Amazon OpenSearch Service pricing.

• If you choose magnetic storage under EBS volume type when creating your domain, the
maximum volume size is 100 GiB for all instance types except t2.small and t2.medium, and
all Graviton instances (M6g, C6g, R6g, and R6gd), which don't support magnetic storage. For the
maximum sizes listed in the following table, choose one of the SSD options.

• Some older-generation instance types include instance storage, but also support EBS storage.
If you choose EBS storage for one of these instance types, the storage volumes are not additive.
You can use either an EBS volume or the instance storage, not both.

Instance type Minimum
EBS size

Maximum
EBS size
(gp2)

Maximum EBS size (gp3)

t2.micro.search 10 GiB 35 GiB N/A

t2.small.search 10 GiB 35 GiB N/A

t2.medium.search 10 GiB 35 GiB N/A

UltraWarm storage quotas 1094

https://aws.amazon.com/elasticsearch-service/pricing/

Amazon OpenSearch Service Developer Guide

Instance type Minimum
EBS size

Maximum
EBS size
(gp2)

Maximum EBS size (gp3)

t3.small.search 10 GiB 100 GiB 100 GiB

t3.medium.search 10 GiB 200 GiB 200 GiB

m3.medium.search 10 GiB 100 GiB N/A

m3.large.search 10 GiB 512 GiB N/A

m3.xlarge.search 10 GiB 512 GiB N/A

m3.2xlarge.search 10 GiB 512 GiB N/A

m4.large.search 10 GiB 512 GiB N/A

m4.xlarge.search 10 GiB 1 TiB N/A

m4.2xlarge.search 10 GiB 1.5 TiB N/A

m4.4xlarge.search 10 GiB 1.5 TiB N/A

m4.10xlarge.search 10 GiB 1.5 TiB N/A

m5.large.search 10 GiB 512 GiB 1 TiB

m5.xlarge.search 10 GiB 1 TiB 2 TiB

m5.2xlarge.search 10 GiB 1.5 TiB 3 TiB

m5.4xlarge.search 10 GiB 3 TiB 6 TiB

m5.12xlarge.search 10 GiB 9 TiB 18 TiB

m6g.large.search 10 GiB 512 GiB 1 TiB

m6g.xlarge.search 10 GiB 1 TiB 2 TiB

m6g.2xlarge.search 10 GiB 1.5 TiB 3 TiB

EBS volume size quotas 1095

Amazon OpenSearch Service Developer Guide

Instance type Minimum
EBS size

Maximum
EBS size
(gp2)

Maximum EBS size (gp3)

m6g.4xlarge.search 10 GiB 3 TiB 6 TiB

m6g.8xlarge.search 10 GiB 6 TiB 12 TiB

m6g.12xlarge.search 10 GiB 9 TiB 18 TiB

c4.large.search 10 GiB 100 GiB N/A

c4.xlarge.search 10 GiB 512 GiB N/A

c4.2xlarge.search 10 GiB 1 TiB N/A

c4.4xlarge.search 10 GiB 1.5 TiB N/A

c4.8xlarge.search 10 GiB 1.5 TiB N/A

c5.large.search 10 GiB 256 GiB 256 GiB

c5.xlarge.search 10 GiB 512 GiB 512 GiB

c5.2xlarge.search 10 GiB 1 TiB 1 TiB

c5.4xlarge.search 10 GiB 1.5 TiB 1.5 TiB

c5.9xlarge.search 10 GiB 3.5 TiB 3.5 TiB

c5.18xlarge.search 10 GiB 7 TiB 7 TiB

c6g.large.search 10 GiB 256 GiB 256 GiB

c6g.xlarge.search 10 GiB 512 GiB 512 GiB

c6g.2xlarge.search 10 GiB 1 TiB 1 TiB

c6g.4xlarge.search 10 GiB 1.5 TiB 1.5 TiB

c6g.8xlarge.search 10 GiB 3 TiB 3 TiB

EBS volume size quotas 1096

Amazon OpenSearch Service Developer Guide

Instance type Minimum
EBS size

Maximum
EBS size
(gp2)

Maximum EBS size (gp3)

c6g.12xlarge.search 10 GiB 4.5 TiB 4.5 TiB

r3.large.search 10 GiB 512 GiB N/A

r3.xlarge.search 10 GiB 512 GiB N/A

r3.2xlarge.search 10 GiB 512 GiB N/A

r3.4xlarge.search 10 GiB 512 GiB N/A

r3.8xlarge.search 10 GiB 512 GiB N/A

r4.large.search 10 GiB 1 TiB N/A

r4.xlarge.search 10 GiB 1.5 TiB N/A

r4.2xlarge.search 10 GiB 1.5 TiB N/A

r4.4xlarge.search 10 GiB 1.5 TiB N/A

r4.8xlarge.search 10 GiB 1.5 TiB N/A

r4.16xlarge.search 10 GiB 1.5 TiB N/A

r5.large.search 10 GiB 1 TiB 2 TiB

r5.xlarge.search 10 GiB 1.5 TiB 3 TiB

r5.2xlarge.search 10 GiB 3 TiB 6 TiB

r5.4xlarge.search 10 GiB 6 TiB 12 TiB

r5.12xlarge.search 10 GiB 12 TiB 24 TiB

r6g.large.search 10 GiB 1 TiB 2 TiB

r6g.xlarge.search 10 GiB 1.5 TiB 3 TiB

EBS volume size quotas 1097

Amazon OpenSearch Service Developer Guide

Instance type Minimum
EBS size

Maximum
EBS size
(gp2)

Maximum EBS size (gp3)

r6g.2xlarge.search 10 GiB 3 TiB 6 TiB

r6g.4xlarge.search 10 GiB 6 TiB 12 TiB

r6g.8xlarge.search 10 GiB 8 TiB 16 TiB

r6g.12xlarge.search 10 GiB 12 TiB 24 TiB

r6gd.large.search N/A N/A N/A

r6gd.xlarge.search N/A N/A N/A

r6gd.2xlarge.search N/A N/A N/A

r6gd.4xlarge.search N/A N/A N/A

r6gd.8xlarge.search N/A N/A N/A

r6gd.12xlarge.search N/A N/A N/A

r6gd.16xlarge.search N/A N/A N/A

i2.xlarge.search 10 GiB 512 GiB N/A

i2.2xlarge.search 10 GiB 512 GiB N/A

i3.large.search N/A N/A N/A

i3.xlarge.search N/A N/A N/A

i3.2xlarge.search N/A N/A N/A

i3.4xlarge.search N/A N/A N/A

i3.8xlarge.search N/A N/A N/A

i3.16xlarge.search N/A N/A N/A

EBS volume size quotas 1098

Amazon OpenSearch Service Developer Guide

Instance type Minimum
EBS size

Maximum
EBS size
(gp2)

Maximum EBS size (gp3)

or1.medium.search 20 GiB N/A 400 GiB

or1.large.search 20 GiB N/A 800 GiB

or1.xlarge.search 20 GiB N/A 1.5 TiB

or1.2xlarge.search 20 GiB N/A 3 TiB

or1.4xlarge.search 20 GiB N/A 6 TiB

or1.8xlarge.search 20 GiB N/A 12 TiB

or1.12xlarge.search 20 GiB N/A 18 TiB

or1.16xlarge.search 20 GiB N/A 24 TiB

im4gn.large.search N/A N/A N/A

im4gn.xlarge.search N/A N/A N/A

im4gn.2xlarge.search N/A N/A N/A

im4gn.4xlarge.search N/A N/A N/A

im4gn.8xlarge.search N/A N/A N/A

im4gn.16xlarge.sea
rch

N/A N/A N/A

Network quotas

The following table shows the maximum size of HTTP request payloads.

Network quotas 1099

Amazon OpenSearch Service Developer Guide

Instance type Maximum size of HTTP request payloads

t2.micro.search 10 MiB

t2.small.search 10 MiB

t2.medium.search 10 MiB

t3.small.search 10 MiB

t3.medium.search 10 MiB

m3.medium.search 10 MiB

m3.large.search 10 MiB

m3.xlarge.search 100 MiB

m3.2xlarge.search 100 MiB

m4.large.search 10 MiB

m4.xlarge.search 100 MiB

m4.2xlarge.search 100 MiB

m4.4xlarge.search 100 MiB

m4.10xlarge.search 100 MiB

m5.large.search 10 MiB

m5.xlarge.search 100 MiB

m5.2xlarge.search 100 MiB

m5.4xlarge.search 100 MiB

m5.12xlarge.search 100 MiB

Network quotas 1100

Amazon OpenSearch Service Developer Guide

Instance type Maximum size of HTTP request payloads

m6g.large.search 10 MiB

m6g.xlarge.search 100 MiB

m6g.2xlarge.search 100 MiB

m6g.4xlarge.search 100 MiB

m6g.8xlarge.search 100 MiB

m6g.12xlarge.searc
h

100 MiB

c4.large.search 10 MiB

c4.xlarge.search 100 MiB

c4.2xlarge.search 100 MiB

c4.4xlarge.search 100 MiB

c4.8xlarge.search 100 MiB

c5.large.search 10 MiB

c5.xlarge.search 100 MiB

c5.2xlarge.search 100 MiB

c5.4xlarge.search 100 MiB

c5.9xlarge.search 100 MiB

c5.18xlarge.search 100 MiB

Network quotas 1101

Amazon OpenSearch Service Developer Guide

Instance type Maximum size of HTTP request payloads

c6g.large.search 10 MiB

c6g.xlarge.search 100 MiB

c6g.2xlarge.search 100 MiB

c6g.4xlarge.search 100 MiB

c6g.8xlarge.search 100 MiB

c6g.12xlarge.searc
h

100 MiB

r3.large.search 10 MiB

r3.xlarge.search 100 MiB

r3.2xlarge.search 100 MiB

r3.4xlarge.search 100 MiB

r3.8xlarge.search 100 MiB

r4.large.search 100 MiB

r4.xlarge.search 100 MiB

r4.2xlarge.search 100 MiB

r4.4xlarge.search 100 MiB

r4.8xlarge.search 100 MiB

r4.16xlarge.search 100 MiB

Network quotas 1102

Amazon OpenSearch Service Developer Guide

Instance type Maximum size of HTTP request payloads

r5.large.search 100 MiB

r5.xlarge.search 100 MiB

r5.2xlarge.search 100 MiB

r5.4xlarge.search 100 MiB

r5.12xlarge.search 100 MiB

r6g.large.search 100 MiB

r6g.xlarge.search 100 MiB

r6g.2xlarge.search 100 MiB

r6g.4xlarge.search 100 MiB

r6g.8xlarge.search 100 MiB

r6g.12xlarge.searc
h

100 MiB

r6gd.large.search 100 MiB

r6gd.xlarge.search 100 MiB

r6gd.2xlarge.searc
h

100 MiB

r6gd.4xlarge.searc
h

100 MiB

Network quotas 1103

Amazon OpenSearch Service Developer Guide

Instance type Maximum size of HTTP request payloads

r6gd.8xlarge.searc
h

100 MiB

r6gd.12xlarge.sear
ch

100 MiB

r6gd.16xlarge.sear
ch

100 MiB

i2.xlarge.search 100 MiB

i2.2xlarge.search 100 MiB

i3.large.search 100 MiB

i3.xlarge.search 100 MiB

i3.2xlarge.search 100 MiB

i3.4xlarge.search 100 MiB

i3.8xlarge.search 100 MiB

i3.16xlarge.search 100 MiB

or1.medium.search 10 MiB

or1.large.search 100 MiB

or1.xlarge.search 100 MiB

or1.2xlarge.search 100 MiB

or1.4xlarge.search 100 MiB

Network quotas 1104

Amazon OpenSearch Service Developer Guide

Instance type Maximum size of HTTP request payloads

or1.8xlarge.search 100 MiB

or1.12xlarge.searc
h

100 MiB

or1.16xlarge.searc
h

100 MiB

im4gn.large.search 100 MiB

im4gn.xlarge.searc
h

100 MiB

im4gn.2xlarge.sear
ch

100 MiB

im4gn.4xlarge.sear
ch

100 MiB

im4gn.8xlarge.sear
ch

100 MiB

im4gn.16xlarge.sea
rch

100 MiB

Shard size quotas

The following section lists the maximum shard sizes for various instance families.

Instance type Multi-AZ without Standby Multi-AZ with Standby

R5, C5, M5 N/A 65 GiB

I3 N/A 65 GiB

Shard size quotas 1105

Amazon OpenSearch Service Developer Guide

Instance type Multi-AZ without Standby Multi-AZ with Standby

R6g, C6g, M6g, R6gd N/A 65 GiB

OR1 100 GiB 65 GiB

Im4gn N/A 65 GiB

To request a quota increase, contact Amazon Support.

Java process quota

OpenSearch Service limits Java processes to a heap size of 32 GiB. Advanced users can specify the
percentage of the heap used for field data. For more information, see the section called “Advanced
cluster settings” and the section called “JVM OutOfMemoryError”.

Domain policy quota

OpenSearch Service limits access policies on domains to 100 KiB.

Reserved Instances in Amazon OpenSearch Service

Reserved Instances (RIs) in Amazon OpenSearch Service offer significant discounts compared
to standard On-Demand Instances. The instances themselves are identical; RIs are just a billing
discount applied to On-Demand Instances in your account. For long-lived applications with
predictable usage, RIs can provide considerable savings over time.

OpenSearch Service RIs require one- or three-year terms and have three payment options that
affect the discount rate:

• No Upfront – You pay nothing upfront. You pay a discounted hourly rate for every hour within
the term.

• Partial Upfront – You pay a portion of the cost upfront, and you pay a discounted hourly rate for
every hour within the term.

• All Upfront – You pay the entirety of the cost upfront. You don't pay an hourly rate for the term.

Java process quota 1106

https://aws.amazon.com/premiumsupport/

Amazon OpenSearch Service Developer Guide

Generally speaking, a larger upfront payment means a larger discount. You can't cancel Reserved
Instances—when you reserve them, you commit to paying for the entire term—and upfront
payments are nonrefundable.

RIs are not flexible; they only apply to the exact instance type that you reserve. For
example, a reservation for eight c5.2xlarge.search instances does not apply to sixteen
c5.xlarge.search instances or four c5.4xlarge.search instances. For full details, see
Amazon OpenSearch Service pricing and FAQ.

Topics

• Purchasing Reserved Instances (console)

• Purchasing Reserved Instances (Amazon CLI)

• Purchasing Reserved Instances (Amazon SDKs)

• Examining costs

Purchasing Reserved Instances (console)

The console lets you view your existing Reserved Instances and purchase new ones.

To purchase a reservation

1. Go to https://aws.amazon.com, and then choose Sign In to the Console.

2. Under Analytics, choose Amazon OpenSearch Service.

3. Choose Reserved Instance Leases from the navigation pane.

On this page, you can view your existing reservations. If you have many reservations, you can
filter them to more easily identify and view a particular reservation.

Tip

If you don't see the Reserved Instance Leases link, create a domain in the Amazon
Web Services Region.

4. Choose Order Reserved Instance.

5. Provide a unique and descriptive name.

6. Choose an instance type and the number of instances. For guidance, see the section called
“Sizing domains”.

Purchasing Reserved Instances (console) 1107

https://aws.amazon.com/elasticsearch-service/pricing/
https://aws.amazon.com/elasticsearch-service/faqs/
https://aws.amazon.com

Amazon OpenSearch Service Developer Guide

7. Choose a term length and payment option. Review the payment details carefully.

8. Choose Next.

9. Review the purchase summary carefully. Purchases of Reserved Instances are non-refundable.

10. Choose Order.

Purchasing Reserved Instances (Amazon CLI)

The Amazon CLI has commands for viewing offerings, purchasing a reservation, and viewing your
reservations. The following command and sample response show the offerings for a given Amazon
Web Services Region:

aws opensearch describe-reserved-instance-offerings --region us-east-1
{
 "ReservedInstanceOfferings": [
 {
 "FixedPrice": x,
 "ReservedInstanceOfferingId": "1a2a3a4a5-1a2a-3a4a-5a6a-1a2a3a4a5a6a",
 "RecurringCharges": [
 {
 "RecurringChargeAmount": y,
 "RecurringChargeFrequency": "Hourly"
 }
],
 "UsagePrice": 0.0,
 "PaymentOption": "PARTIAL_UPFRONT",
 "Duration": 31536000,
 "InstanceType": "m4.2xlarge.search",
 "CurrencyCode": "USD"
 }
]
}

For an explanation of each return value, see the following table.

Field Description

FixedPrice The upfront cost of the reservation.

Purchasing Reserved Instances (Amazon CLI) 1108

Amazon OpenSearch Service Developer Guide

Field Description

ReservedInstanceOfferingId The offering ID. Make note of this value if you
want to reserve the offering.

RecurringCharges The hourly rate for the reservation.

UsagePrice A legacy field. For OpenSearch Service, this
value is always 0.

PaymentOption No Upfront, Partial Upfront, or All Upfront.

Duration Length of the term in seconds:

• 31536000 seconds is one year.

• 94608000 seconds is three years.

InstanceType The instance type for the reservation. For
information about the hardware resources
that are allocated to each instance type, see
Amazon OpenSearch Service pricing.

CurrencyCode The currency for FixedPrice and
RecurringChargeAmount .

This next example purchases a reservation:

aws opensearch purchase-reserved-instance-offering --reserved-instance-offering-
id 1a2a3a4a5-1a2a-3a4a-5a6a-1a2a3a4a5a6a --reservation-name my-reservation --instance-
count 3 --region us-east-1
{
 "ReservationName": "my-reservation",
 "ReservedInstanceId": "9a8a7a6a-5a4a-3a2a-1a0a-9a8a7a6a5a4a"
}

Finally, you can list your reservations for a given Region using the following example:

aws opensearch describe-reserved-instances --region us-east-1
{
 "ReservedInstances": [

Purchasing Reserved Instances (Amazon CLI) 1109

https://aws.amazon.com/elasticsearch-service/pricing/

Amazon OpenSearch Service Developer Guide

 {
 "FixedPrice": x,
 "ReservedInstanceOfferingId": "1a2a3a4a5-1a2a-3a4a-5a6a-1a2a3a4a5a6a",
 "ReservationName": "my-reservation",
 "PaymentOption": "PARTIAL_UPFRONT",
 "UsagePrice": 0.0,
 "ReservedInstanceId": "9a8a7a6a-5a4a-3a2a-1a0a-9a8a7a6a5a4a",
 "RecurringCharges": [
 {
 "RecurringChargeAmount": y,
 "RecurringChargeFrequency": "Hourly"
 }
],
 "State": "payment-pending",
 "StartTime": 1522872571.229,
 "InstanceCount": 3,
 "Duration": 31536000,
 "InstanceType": "m4.2xlarge.search",
 "CurrencyCode": "USD"
 }
]
}

Note

StartTime is Unix epoch time, which is the number of seconds that have passed since
midnight UTC of 1 January 1970. For example, 1522872571 epoch time is 20:09:31 UTC of
4 April 2018. You can use online converters.

To learn more about the commands used in the preceding examples, see the Amazon CLI
Command Reference.

Purchasing Reserved Instances (Amazon SDKs)

The Amazon SDKs (except the Android and iOS SDKs) support all the operations that are defined in
the Amazon OpenSearch Service API Reference, including the following:

• DescribeReservedInstanceOfferings

• PurchaseReservedInstanceOffering

• DescribeReservedInstances

Purchasing Reserved Instances (Amazon SDKs) 1110

https://docs.amazonaws.cn/cli/latest/reference/es/index.html
https://docs.amazonaws.cn/cli/latest/reference/es/index.html
https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

This sample script uses the OpenSearchService low-level Python client from the Amazon SDK for
Python (Boto3) to purchase Reserved Instances. You must provide a value for instance_type.

import boto3
from botocore.config import Config

Build the client using the default credential configuration.
You can use the CLI and run 'aws configure' to set access key, secret
key, and default region.

my_config = Config(
 # Optionally lets you specify a region other than your default.
 region_name='us-east-1'
)

client = boto3.client('opensearch', config=my_config)

instance_type = '' # e.g. m4.2xlarge.search

def describe_RI_offerings(client):
 """Gets the Reserved Instance offerings for this account"""

 response = client.describe_reserved_instance_offerings()
 offerings = (response['ReservedInstanceOfferings'])
 return offerings

def check_instance(offering):
 """Returns True if instance type is the one you specified above"""

 if offering['InstanceType'] == instance_type:
 return True

 return False

def get_instance_id():
 """Iterates through the available offerings to find the ID of the one you
 specified"""

 instance_type_iterator = filter(
 check_instance, describe_RI_offerings(client))

Purchasing Reserved Instances (Amazon SDKs) 1111

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/opensearch.html

Amazon OpenSearch Service Developer Guide

 offering = list(instance_type_iterator)
 id = offering[0]['ReservedInstanceOfferingId']
 return id

def purchase_RI_offering(client):
 """Purchase Reserved Instances"""

 response = client.purchase_reserved_instance_offering(
 ReservedInstanceOfferingId = get_instance_id(),
 ReservationName = 'my-reservation',
 InstanceCount = 1
)
 print('Purchased reserved instance offering of type ' + instance_type)
 print(response)

def main():
 """Purchase Reserved Instances"""
 purchase_RI_offering(client)

For more information about installing and using the Amazon SDKs, see Amazon Software
Development Kits.

Examining costs

Cost Explorer is a free tool that you can use to view your spending data for the past 13 months.
Analyzing this data helps you identify trends and understand if RIs fit your use case. If you already
have RIs, you can group by Purchase Option and show amortized costs to compare that spending
to your spending for On-Demand Instances. You can also set usage budgets to make sure you are
taking full advantage of your reservations. For more information, see Analyzing Your Costs with
Cost Explorer in the Amazon Billing User Guide.

Other supported resources in Amazon OpenSearch Service

This topic describes additional resources that Amazon OpenSearch Service supports.

Examining costs 1112

http://aws.amazon.com/code
http://aws.amazon.com/code
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/groupdata.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/advanced.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-explorer-what-is.html
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-explorer-what-is.html

Amazon OpenSearch Service Developer Guide

bootstrap.memory_lock

OpenSearch Service enables bootstrap.memory_lock in opensearch.yml, which locks
JVM memory and prevents the operating system from swapping it to disk. This applies to all
supported instance types except for the following:

• t2.micro.search

• t2.small.search

• t2.medium.search

• t3.small.search

• t3.medium.search

Scripting module

OpenSearch Service supports scripting for Elasticsearch 5.x and later domains. It does not
support scripting for 1.5 or 2.3.

Supported scripting options include the following:

• Painless

• Lucene Expressions

• Mustache

For Elasticsearch 5.5 and later domains, and all OpenSearch domains, OpenSearch Service
supports stored scripts using the _scripts endpoint. Elasticsearch 5.3 and 5.1 domains
support inline scripts only.

TLS transport

OpenSearch Service supports HTTP on port 80 and HTTPS over port 443, but does not support
TLS transport.

Other supported resources 1113

Amazon OpenSearch Service Developer Guide

Amazon OpenSearch Service tutorials

This chapter includes several start-to-finish tutorials for working with Amazon OpenSearch
Service, including how to migrate to the service, build a simple search application, and create a
visualization in OpenSearch Dashboards.

Topics

• Tutorial: Creating and searching for documents in Amazon OpenSearch Service

• Tutorial: Migrating to Amazon OpenSearch Service

• Tutorial: Creating a search application with Amazon OpenSearch Service

• Tutorial: Visualizing customer support calls with OpenSearch Service and OpenSearch
Dashboards

Tutorial: Creating and searching for documents in Amazon
OpenSearch Service

In this tutorial, you learn how to create and search for a document in Amazon OpenSearch Service.
You add data to an index in the form of a JSON document. OpenSearch Service creates an index
around the first document that you add.

This tutorial explains how to make HTTP requests to create documents, automatically generate an
ID for a document, and perform basic and advanced searches on your documents.

Note

This tutorial uses a domain with open access. For the highest level of security, we
recommend that you put your domain inside a virtual private cloud (VPC).

Prerequisites

This tutorial has the following prerequisites:

• You must have an Amazon Web Services account.

• You must have an active OpenSearch Service domain.

Creating and searching for documents 1114

Amazon OpenSearch Service Developer Guide

Adding a document to an index

To add a document to an index, you can use any HTTP tool, such as Postman, cURL, or the
OpenSearch Dashboards console. These examples assume that you’re using the developer console
in OpenSearch Dashboards. If you’re using a different tool, adjust accordingly by providing the full
URL and credentials, if necessary.

To add a document to an index

1. Navigate to the OpenSearch Dashboards URL for your domain. You can find the URL on the
domain's dashboard in the OpenSearch Service console. The URL follows this format:

domain-endpoint/_dashboards/

2. Sign in using your primary username and password.

3. Open the left navigation panel and choose Dev Tools.

4. The HTTP verb for creating a new resource is PUT, which is what you use to create a new
document and index. Enter the following command in the console:

PUT fruit/_doc/1
{
 "name":"strawberry",
 "color":"red"
}

The PUT request creates an index named fruit and adds a single document to the index with an
ID of 1. It produces the following response:

{
 "_index" : "fruit",
 "_type" : "_doc",
 "_id" : "1",
 "_version" : 1,
 "result" : "created",
 "_shards" : {
 "total" : 2,
 "successful" : 2,
 "failed" : 0
 },
 "_seq_no" : 0,

Adding a document to an index 1115

https://www.getpostman.com/

Amazon OpenSearch Service Developer Guide

 "_primary_term" : 1
}

Creating automatically generated IDs

OpenSearch Service can automatically generate an ID for your documents. The command to
generate IDs uses a POST request instead of a PUT request, and it requires no document ID (in
comparison to the previous request).

Enter the following request in the developer console:

POST veggies/_doc
{
 "name":"beet",
 "color":"red",
 "classification":"root"
}

This request creates an index named veggies and adds the document to the index. It produces the
following response:

{
 "_index" : "veggies",
 "_type" : "_doc",
 "_id" : "3WgyS4IB5DLqbRIvLxtF",
 "_version" : 1,
 "result" : "created",
 "_shards" : {
 "total" : 2,
 "successful" : 2,
 "failed" : 0
 },
 "_seq_no" : 0,
 "_primary_term" : 1
}

Note that addditional _id field in the response, which indicates that an ID was automatically
created.

Creating automatically generated IDs 1116

Amazon OpenSearch Service Developer Guide

Note

You don't provide anything after _doc in the URL, where the ID normally goes. Because
you’re creating a document with a generated ID, you don’t provide one yet. That’s reserved
for updates.

Updating a document with a POST command

To update a document, you use an HTTP POST command with the ID number.

First, create a document with an ID of 42:

POST fruits/_doc/42
{
 "name":"banana",
 "color":"yellow"
}

Then use that ID to update the document:

POST fruits/_doc/42
{
 "name":"banana",
 "color":"yellow",
 "classification":"berries"
}

This command updates the document with the new field classification. It produces the
following response:

{
 "_index" : "fruits",
 "_type" : "_doc",
 "_id" : "42",
 "_version" : 2,
 "result" : "updated",
 "_shards" : {
 "total" : 2,
 "successful" : 2,

Updating a document with a POST command 1117

Amazon OpenSearch Service Developer Guide

 "failed" : 0
 },
 "_seq_no" : 1,
 "_primary_term" : 1
}

Note

If you try to update a document that does not exist, OpenSearch Service creates the
document.

Performing bulk actions

You can use the POST _bulk API operation to perform multiple actions on one or more indexes in
one request. Bulk action commands take the following format:

POST /_bulk
<action_meta>\n
<action_data>\n
<action_meta>\n
<action_data>\n

Each action requires two lines of JSON. First, you provide the action description or metadata. On
the next line, you provide the data. Each part is separated by a newline (\n). An action description
for an insert might look like this:

{ "create" : { "_index" : "veggies", "_type" : "_doc", "_id" : "7" } }

And the next line containing the data might look like this:

{ "name":"kale", "color":"green", "classification":"leafy-green" }

Taken together, the metadata and the data represent a single action in a bulk operation. You can
perform many operations in one request, like this:

POST /_bulk
{ "create" : { "_index" : "veggies", "_id" : "35" } }

Performing bulk actions 1118

Amazon OpenSearch Service Developer Guide

{ "name":"kale", "color":"green", "classification":"leafy-green" }
{ "create" : { "_index" : "veggies", "_id" : "36" } }
{ "name":"spinach", "color":"green", "classification":"leafy-green" }
{ "create" : { "_index" : "veggies", "_id" : "37" } }
{ "name":"arugula", "color":"green", "classification":"leafy-green" }
{ "create" : { "_index" : "veggies", "_id" : "38" } }
{ "name":"endive", "color":"green", "classification":"leafy-green" }
{ "create" : { "_index" : "veggies", "_id" : "39" } }
{ "name":"lettuce", "color":"green", "classification":"leafy-green" }
{ "delete" : { "_index" : "vegetables", "_id" : "1" } }

Notice that the last action is a delete. There’s no data following the delete action.

Searching for documents

Now that data exists in your cluster, you can search for it. For example, you might want to search
for all root vegetables, or get a count of all leafy greens, or find the number of errors logged per
hour.

Basic searches

A basic search looks something like this:

GET veggies/_search?q=name:l*

The request produces a JSON response that contains the lettuce document.

Advanced searches

You can perform more advanced searches by providing the query options as JSON in the request
body:

GET veggies/_search
{
 "query": {
 "term": {
 "name": "lettuce"
 }
 }
}

Searching for documents 1119

Amazon OpenSearch Service Developer Guide

This example also produces a JSON response with the lettuce document.

Sorting

You can perform more of this type of query using sorting. First, you need to recreate the index,
because the automatic field mapping chose types that can’t be sorted by default. Send the
following requests to delete and recreate the index:

DELETE /veggies

PUT /veggies
{
 "mappings":{
 "properties":{
 "name":{
 "type":"keyword"
 },
 "color":{
 "type":"keyword"
 },
 "classification":{
 "type":"keyword"
 }
 }
 }
}

Then repopulate the index with data:

POST /_bulk
{ "create" : { "_index" : "veggies", "_id" : "7" } }
{ "name":"kale", "color":"green", "classification":"leafy-green" }
{ "create" : { "_index" : "veggies", "_id" : "8" } }
{ "name":"spinach", "color":"green", "classification":"leafy-green" }
{ "create" : { "_index" : "veggies", "_id" : "9" } }
{ "name":"arugula", "color":"green", "classification":"leafy-green" }
{ "create" : { "_index" : "veggies", "_id" : "10" } }
{ "name":"endive", "color":"green", "classification":"leafy-green" }
{ "create" : { "_index" : "veggies", "_id" : "11" } }
{ "name":"lettuce", "color":"green", "classification":"leafy-green" }

Now you can search with a sort. This request adds an ascending sort by the classification:

Searching for documents 1120

Amazon OpenSearch Service Developer Guide

GET veggies/_search
{
 "query" : {
 "term": { "color": "green" }
 },
 "sort" : [
 "classification"
]
}

Related resources

For more information, see the following resources:

• Getting started

• Indexing data

• Searching data

Tutorial: Migrating to Amazon OpenSearch Service

Index snapshots are a popular way to migrate from a self-managed OpenSearch or legacy
Elasticsearch cluster to Amazon OpenSearch Service. Broadly, the process consists of the following
steps:

1. Take a snapshot of the existing cluster, and upload the snapshot to an Amazon S3 bucket.

2. Create an OpenSearch Service domain.

3. Give OpenSearch Service permissions to access the bucket, and ensure you have permissions to
work with snapshots.

4. Restore the snapshot on the OpenSearch Service domain.

This walkthrough provides more detailed steps and alternate options, where applicable.

Take and upload the snapshot

Although you can use the repository-s3 plugin to take snapshots directly to S3, you have to
install the plugin on every node, tweak opensearch.yml (or elasticsearch.yml if using

Related resources 1121

https://opensearch.org/docs/opensearch/snapshot-restore/#amazon-s3

Amazon OpenSearch Service Developer Guide

an Elasticsearch cluster), restart each node, add your Amazon credentials, and finally take the
snapshot. The plugin is a great option for ongoing use or for migrating larger clusters.

For smaller clusters, a one-time approach is to take a shared file system snapshot and then use the
Amazon CLI to upload it to S3. If you already have a snapshot, skip to step 4.

To take a snapshot and upload it to Amazon S3

1. Add the path.repo setting to opensearch.yml (or Elasticsearch.yml) on all nodes, and
then restart each node.

path.repo: ["/my/shared/directory/snapshots"]

2. Register a snapshot repository, which is required before you take a snapshot. A repository
is just a storage location: a shared file system, Amazon S3, Hadoop Distributed File System
(HDFS), etc. In this case, we'll use a shared file system ("fs"):

PUT _snapshot/my-snapshot-repo-name
{
 "type": "fs",
 "settings": {
 "location": "/my/shared/directory/snapshots"
 }
}

3. Take the snapshot:

PUT _snapshot/my-snapshot-repo-name/my-snapshot-name
{
 "indices": "migration-index1,migration-index2,other-indices-*",
 "include_global_state": false
}

4. Install the Amazon CLI, and run aws configure to add your credentials.

5. Navigate to the snapshot directory. Then run the following commands to create a new S3
bucket and upload the contents of the snapshot directory to that bucket:

aws s3 mb s3://bucket-name --region us-west-2
aws s3 sync . s3://bucket-name --sse AES256

Take and upload the snapshot 1122

https://opensearch.org/docs/opensearch/snapshot-restore/#shared-file-system
https://opensearch.org/docs/latest/opensearch/snapshot-restore/#register-repository
https://aws.amazon.com/cli/

Amazon OpenSearch Service Developer Guide

Depending on the size of the snapshot and the speed of your internet connection, this
operation can take a while.

Create a domain

Although the console is the easiest way to create a domain, in this case, you already have the
terminal open and the Amazon CLI installed. Modify the following command to create a domain
that fits your needs:

aws opensearch create-domain \
 --domain-name migration-domain \
 --engine-version OpenSearch_1.0 \
 --cluster-config InstanceType=c5.large.search,InstanceCount=2 \
 --ebs-options EBSEnabled=true,VolumeType=gp2,VolumeSize=100 \
 --node-to-node-encryption-options Enabled=true \
 --encryption-at-rest-options Enabled=true \
 --domain-endpoint-options EnforceHTTPS=true,TLSSecurityPolicy=Policy-Min-
TLS-1-2-2019-07 \
 --advanced-security-options
 Enabled=true,InternalUserDatabaseEnabled=true,MasterUserOptions='{MasterUserName=master-
user,MasterUserPassword=master-user-password}' \
 --access-policies '{"Version":"2012-10-17","Statement":
[{"Effect":"Allow","Principal":{"AWS":["*"]},"Action":
["es:ESHttp*"],"Resource":"arn:aws:es:us-west-2:123456789012:domain/migration-domain/
*"}]}' \
 --region us-west-2

As is, the command creates an internet-accessible domain with two data nodes, each with 100
GiB of storage. It also enables fine-grained access control with HTTP basic authentication and all
encryption settings. Use the OpenSearch Service console if you need a more advanced security
configuration, such as a VPC.

Before issuing the command, change the domain name, master user credentials, and account
number. Specify the same Amazon Web Services Region that you used for the S3 bucket and an
OpenSearch/Elasticsearch version that is compatible with your snapshot.

Important

Snapshots are only forward-compatible, and only by one major version. For example, you
can't restore a snapshot from an OpenSearch 1.x cluster on an Elasticsearch 7.x cluster, only

Create a domain 1123

Amazon OpenSearch Service Developer Guide

an OpenSearch 1.x or 2.x cluster. Minor version matters, too. You can't restore a snapshot
from a self-managed 5.3.3 cluster on a 5.3.2 OpenSearch Service domain. We recommend
choosing the most recent version of OpenSearch or Elasticsearch that your snapshot
supports. For a table of compatible versions, see the section called “Using a snapshot to
migrate data”.

Provide permissions to the S3 bucket

In the Amazon Identity and Access Management (IAM) console, create a role with the following
permissions and trust relationship. When creating the role, choose S3 as the Amazon Service.
Name the role OpenSearchSnapshotRole so it's easy to find.

Permissions

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "s3:ListBucket"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::bucket-name"
]
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::bucket-name/*"
]
 }
]
}

Trust relationship

Provide permissions to the S3 bucket 1124

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy

Amazon OpenSearch Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "es.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Then give your personal IAM role permissions to assume OpenSearchSnapshotRole. Create the
following policy and attach it to your identity:

Permissions

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::123456789012:role/OpenSearchSnapshotRole"
 }
]
}

Map the snapshot role in OpenSearch Dashboards (if using fine-grained access
control)

If you enabled fine-grained access control, even if you use HTTP basic authentication for all other
purposes, you need to map the manage_snapshots role to your IAM role so you can work with
snapshots.

To give your identity permissions to work with snapshots

1. Log in to Dashboards using the master user credentials you specified when you created the
OpenSearch Service domain. You can find the Dashboards URL in the OpenSearch Service
console. It takes the form of https://domain-endpoint/_dashboards/.

2. From the main menu choose Security, Roles, and select the manage_snapshots role.

Provide permissions to the S3 bucket 1125

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Amazon OpenSearch Service Developer Guide

3. Choose Mapped users, Manage mapping.

4. Add the domain ARN of your personal IAM role in the appropriate field. The ARN takes one of
the following formats:

arn:aws:iam::123456789123:user/user-name

arn:aws:iam::123456789123:role/role-name

5. Select Map and confirm role shows up under Mapped users.

Restore the snapshot

At this point, you have two ways to access your OpenSearch Service domain: HTTP basic
authentication with your master user credentials or Amazon authentication using your IAM
credentials. Because snapshots use Amazon S3, which has no concept of the master user, you must
use your IAM credentials to register the snapshot repository with your OpenSearch Service domain.

Most programming languages have libraries to assist with signing requests, but the simpler
approach is to use a tool like Postman and put your IAM credentials into the Authorization section.

To restore the snapshot

1. Regardless of how you choose to sign your requests, the first step is to register the repository:

Restore the snapshot 1126

https://www.postman.com/downloads/

Amazon OpenSearch Service Developer Guide

PUT _snapshot/my-snapshot-repo-name
{
 "type": "s3",
 "settings": {
 "bucket": "bucket-name",
 "region": "us-west-2",
 "role_arn": "arn:aws:iam::123456789012:role/OpenSearchSnapshotRole"
 }
}

2. Then list the snapshots in the repository, and find the one you want to restore. At this point,
you can continue using Postman or switch to a tool like curl.

Shorthand

GET _snapshot/my-snapshot-repo-name/_all

curl

curl -XGET -u 'master-user:master-user-password' https://domain-endpoint/
_snapshot/my-snapshot-repo-name/_all

3. Restore the snapshot.

Shorthand

POST _snapshot/my-snapshot-repo-name/my-snapshot-name/_restore
{
 "indices": "migration-index1,migration-index2,other-indices-*",
 "include_global_state": false
}

curl

curl -XPOST -u 'master-user:master-user-password' https://domain-endpoint/
_snapshot/my-snapshot-repo-name/my-snapshot-name/_restore \
 -H 'Content-Type: application/json' \
 -d '{"indices":"migration-index1,migration-index2,other-indices-
*","include_global_state":false}'

4. Finally, verify that your indexes restored as expected.

Restore the snapshot 1127

https://curl.haxx.se/

Amazon OpenSearch Service Developer Guide

Shorthand

GET _cat/indices?v

curl

curl -XGET -u 'master-user:master-user-password' https://domain-endpoint/_cat/
indices?v

At this point, the migration is complete. You might configure your clients to use the new
OpenSearch Service endpoint, resize the domain to suit your workload, check the shard count
for your indexes, switch to an IAM master user, or start building visualizations in OpenSearch
Dashboards.

Tutorial: Creating a search application with Amazon
OpenSearch Service

A common way to create a search application with Amazon OpenSearch Service is to use web
forms to send user queries to a server. Then you can authorize the server to call the OpenSearch
APIs directly and have the server send requests to OpenSearch Service. However, if you want to
write client-side code that doesn't rely on a server, you should compensate for the security and
performance risks. Allowing unsigned, public access to the OpenSearch APIs is inadvisable. Users
might access unsecured endpoints or impact cluster performance through overly broad queries (or
too many queries).

This chapter presents a solution: use Amazon API Gateway to restrict users to a subset of the
OpenSearch APIs and Amazon Lambda to sign requests from API Gateway to OpenSearch Service.

Creating a search application 1128

Amazon OpenSearch Service Developer Guide

Note

Standard API Gateway and Lambda pricing applies, but within the limited usage of this
tutorial, costs should be negligible.

Prerequisites

A prerequisite for this tutorial is an OpenSearch Service domain. If you don't already have one,
follow the steps in Create an OpenSearch Service domain to create one.

Step 1: Index sample data

Download sample-movies.zip, unzip it, and then use the _bulk API operation to add the 5,000
documents to the movies index:

POST https://search-my-domain.us-west-1.es.amazonaws.com/_bulk
{ "index": { "_index": "movies", "_id": "tt1979320" } }
{"directors":["Ron
 Howard"],"release_date":"2013-09-02T00:00:00Z","rating":8.3,"genres":
["Action","Biography","Drama","Sport"],"image_url":"http://ia.media-imdb.com/images/

Prerequisites 1129

samples/sample-movies.zip
https://opensearch.org/docs/latest/api-reference/document-apis/bulk/

Amazon OpenSearch Service Developer Guide

M/MV5BMTQyMDE0MTY0OV5BMl5BanBnXkFtZTcwMjI2OTI0OQ@@._V1_SX400_.jpg","plot":"A re-
creation of the merciless 1970s rivalry between Formula One rivals James Hunt and
 Niki Lauda.","title":"Rush","rank":2,"running_time_secs":7380,"actors":["Daniel
 Brühl","Chris Hemsworth","Olivia Wilde"],"year":2013,"id":"tt1979320","type":"add"}
{ "index": { "_index": "movies", "_id": "tt1951264" } }
{"directors":["Francis Lawrence"],"release_date":"2013-11-11T00:00:00Z","genres":
["Action","Adventure","Sci-Fi","Thriller"],"image_url":"http://ia.media-imdb.com/
images/M/
MV5BMTAyMjQ3OTAxMzNeQTJeQWpwZ15BbWU4MDU0NzA1MzAx._V1_SX400_.jpg","plot":"Katniss
 Everdeen and Peeta Mellark become targets of the Capitol after
 their victory in the 74th Hunger Games sparks a rebellion in
 the Districts of Panem.","title":"The Hunger Games: Catching
 Fire","rank":4,"running_time_secs":8760,"actors":["Jennifer Lawrence","Josh
 Hutcherson","Liam Hemsworth"],"year":2013,"id":"tt1951264","type":"add"}
...

Note that the above is an example command with a small subset of the available data. To perform
the _bulk operation, you need to copy and paste the entire contents of the sample-movies file.
For futher instructions, see the section called “Option 2: Upload multiple documents”.

You can also use the following curl command to achieve the same result:

curl -XPOST -u 'master-user:master-user-password' 'domain-endpoint/_bulk' --data-binary
 @bulk_movies.json -H 'Content-Type: application/json'

Step 2: Create and deploy the Lambda function

Before you create your API in API Gateway, create the Lambda function that it passes requests to.

Create the Lambda function

In this solution, API Gateway passes requests to a Lambda function, which queries OpenSearch
Service and returns results. Because this sample function uses external libraries, you need to create
a deployment package and upload it to Lambda.

To create the deployment package

1. Open a command prompt and create a my-opensearch-function project directory. For
example, on macOS:

mkdir my-opensearch-function

Step 2: Create and deploy the Lambda function 1130

Amazon OpenSearch Service Developer Guide

2. Navigate to the my-sourcecode-function project directory.

cd my-opensearch-function

3. Copy the contents of the following sample Python code and save it in a new file named
opensearch-lambda.py. Add your Region and host endpoint to the file.

import boto3
import json
import requests
from requests_aws4auth import AWS4Auth

region = '' # For example, us-west-1
service = 'es'
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

host = '' # The OpenSearch domain endpoint with https:// and without a trailing
 slash
index = 'movies'
url = host + '/' + index + '/_search'

Lambda execution starts here
def lambda_handler(event, context):

 # Put the user query into the query DSL for more accurate search results.
 # Note that certain fields are boosted (^).
 query = {
 "size": 25,
 "query": {
 "multi_match": {
 "query": event['queryStringParameters']['q'],
 "fields": ["title^4", "plot^2", "actors", "directors"]
 }
 }
 }

 # Elasticsearch 6.x requires an explicit Content-Type header
 headers = { "Content-Type": "application/json" }

 # Make the signed HTTP request
 r = requests.get(url, auth=awsauth, headers=headers, data=json.dumps(query))

Step 2: Create and deploy the Lambda function 1131

Amazon OpenSearch Service Developer Guide

 # Create the response and add some extra content to support CORS
 response = {
 "statusCode": 200,
 "headers": {
 "Access-Control-Allow-Origin": '*'
 },
 "isBase64Encoded": False
 }

 # Add the search results to the response
 response['body'] = r.text
 return response

4. Install the external libraries to a new package directory.

pip3 install --target ./package boto3
pip3 install --target ./package requests
pip3 install --target ./package requests_aws4auth

5. Create a deployment package with the installed library at the root. The following command
generates a my-deployment-package.zip file in your project directory.

cd package
zip -r ../my-deployment-package.zip .

6. Add the opensearch-lambda.py file to the root of the zip file.

cd ..
zip my-deployment-package.zip opensearch-lambda.py

For more information about creating Lambda functions and deployment packages, see Deploy
Python Lambda functions with .zip file archives in the Amazon Lambda Developer Guide and the
section called “Create the Lambda deployment package” in this guide.

To create your function using the Lambda console

1. Navigate to the Lambda console at https://console.aws.amazon.com/lambda/home. On the
left navigation pane, choose Functions.

2. Select Create function.

Step 2: Create and deploy the Lambda function 1132

https://docs.amazonaws.cn/lambda/latest/dg/lambda-python-how-to-create-deployment-package.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-python-how-to-create-deployment-package.html
https://console.aws.amazon.com/lambda/home

Amazon OpenSearch Service Developer Guide

3. Configure the following fields:

• Function name: opensearch-function

• Runtime: Python 3.9

• Architecture: x86_64

Keep all other default options and choose Create function.

4. In the Code source section of the function summary page, choose the Upload from dropdown
and select .zip file. Locate the my-deployment-package.zip file that you created and
choose Save.

5. The handler is the method in your function code that processes events. Under Runtime
settings, choose Edit and change the handler name according to the name of the file in
your deployment package where the Lambda function is located. Since your file is named
opensearch-lambda.py, rename the handler to opensearch-lambda.lambda_handler.
For more information, see Lambda function handler in Python.

Step 3: Create the API in API Gateway

Using API Gateway lets you create a more limited API and simplifies the process of interacting with
the OpenSearch _search API. API Gateway lets you enable security features like Amazon Cognito
authentication and request throttling. Perform the following steps to create and deploy an API:

Create and configure the API

To create your API using the API Gateway console

1. Navigate to the API Gateway console at https://console.aws.amazon.com/apigateway/home.
On the left navigation pane, choose APIs.

2. Locate REST API (not private) and choose Build.

3. On the following page, locate the Create new API section and make sure New API is selected.

4. Configure the following fields:

• API name: opensearch-api

• Description: Public API for searching an Amazon OpenSearch Service domain

• Endpoint Type: Regional

Step 3: Create the API in API Gateway 1133

https://docs.aws.amazon.com/lambda/latest/dg/python-handler.html
https://console.aws.amazon.com/apigateway/home

Amazon OpenSearch Service Developer Guide

5. Choose Create API.

6. Choose Actions and Create Method.

7. Select GET in the dropdown and click the checkmark to confirm.

8. Configure the following settings, then choose Save:

Setting Value

Integration type Lambda function

Use Lambda proxy integration Yes

Lambda region us-west-1

Lambda function opensearch-lambda

Use default timeout Yes

Configure the method request

Choose Method Request and configure the following settings:

Setting Value

Authorization NONE

Request Validator Validate query string parameters and headers

API Key Required false

Under URL Query String Parameters, choose Add query string and configure the following
parameter:

Setting Value

Name q

Step 3: Create the API in API Gateway 1134

Amazon OpenSearch Service Developer Guide

Setting Value

Required Yes

Deploy the API and configure a stage

The API Gateway console lets you deploy an API by creating a deployment and associating it with a
new or existing stage.

1. Choose Actions and Deploy API.

2. For Deployment stage choose New Stage and name the stage opensearch-api-test.

3. Choose Deploy.

4. Configure the following settings in the stage editor, then choose Save Changes:

Setting Value

Enable throttling Yes

Rate 1000

Burst 500

These settings configure an API that has only one method: a GET request to the endpoint root
(https://some-id.execute-api.us-west-1.amazonaws.com/search-es-api-test).
The request requires a single parameter (q), the query string to search for. When called, the
method passes the request to Lambda, which runs the opensearch-lambda function. For more
information, see Creating an API in Amazon API Gateway and Deploying a REST API in Amazon API
Gateway.

Step 4: (Optional) Modify the domain access policy

Your OpenSearch Service domain must allow the Lambda function to make GET requests to the
movies index. If your domain has an open access policy with fine-grained access control enabled,
you can leave it as-is:

{

Step 4: (Optional) Modify the domain access policy 1135

https://docs.amazonaws.cn/apigateway/latest/developerguide/how-to-create-api.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/how-to-deploy-api.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/how-to-deploy-api.html

Amazon OpenSearch Service Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "es:*",
 "Resource": "arn:aws:es:us-west-1:123456789012:domain/domain-name/*"
 }
]
}

Alternatively, you can choose to make your domain access policy more granular. For example, the
following minimum policy provides opensearch-lambda-role (created through Lambda) read
access to the movies index. To get the exact name of the role that Lambda automatically creates,
go to the Amazon Identity and Access Management (IAM) console, choose Roles, and search for
"lambda".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/service-role/opensearch-lambda-
role-1abcdefg"
 },
 "Action": "es:ESHttpGet",
 "Resource": "arn:aws:es:us-west-1:123456789012:domain/domain-name/movies/_search"
 }
]
}

Important

If you have fine-grained access control enabled for the domain, you also need to map the
role to a user in OpenSearch Dashboards, otherwise you'll see permissions errors.

For more information about access policies, see the section called “Configuring access policies”.

Step 4: (Optional) Modify the domain access policy 1136

Amazon OpenSearch Service Developer Guide

Map the Lambda role (if using fine-grained access control)

Fine-grained access control introduces an additional step before you can test the application. Even
if you use HTTP basic authentication for all other purposes, you need to map the Lambda role to a
user, otherwise you'll see permissions errors.

1. Navigate to the OpenSearch Dashboards URL for the domain.

2. From the main menu, choose Security, Roles, and select the link to all_access, the role you
need to map the Lambda role to.

3. Choose Mapped users, Manage mapping.

4. Under Backend roles, add the Amazon Resource Name (ARN) of the Lambda role.
The ARN should take the form of arn:aws:iam::123456789123:role/service-
role/opensearch-lambda-role-1abcdefg.

5. Select Map and confirm the user or role shows up under Mapped users.

Step 5: Test the web application

To test the web application

1. Download sample-site.zip, unzip it, and open scripts/search.js in your favorite text
editor.

2. Update the apigatewayendpoint variable to point to your API Gateway endpoint and add
a backslash to the end of the given path. You can quickly find the endpoint in API Gateway
by choosing Stages and selecting the name of the API. The apigatewayendpoint variable
should take the form of https://some-id.execute-api.us-west-1.amazonaws.com/
opensearch-api-test/.

3. Open index.html and try running searches for thor, house, and a few other terms.

Map the Lambda role (if using fine-grained access control) 1137

samples/sample-site.zip

Amazon OpenSearch Service Developer Guide

Step 5: Test the web application 1138

Amazon OpenSearch Service Developer Guide

Troubleshoot CORS errors

Even though the Lambda function includes content in the response to support CORS, you still
might see the following error:

Access to XMLHttpRequest at '<api-gateway-endpoint>' from origin 'null' has been
 blocked by CORS policy: No 'Access-Control-Allow-Origin' header is present in the
 requested resource.

If this happens, try the following:

1. Enable CORS on the GET resource. Under Advanced, set Access-Control-Allow-Credentials to
'true'.

2. Redeploy your API in API Gateway (Actions, Deploy API).

3. Delete and re-add your Lambda function trigger. Add re-add it, choose Add trigger and
create the HTTP endpoint that invokes your function. The trigger must have the following
configuration:

Trigger API Deployment Stage Security

API Gateway opensearch-api opensearch-api-test Open

Next steps

This chapter is just a starting point to demonstrate a concept. You might consider the following
modifications:

• Add your own data to the OpenSearch Service domain.

• Add methods to your API.

• In the Lambda function, modify the search query or boost different fields.

• Style the results differently or modify search.js to display different fields to the user.

Next steps 1139

https://docs.amazonaws.cn/apigateway/latest/developerguide/how-to-cors-console.html

Amazon OpenSearch Service Developer Guide

Tutorial: Visualizing customer support calls with OpenSearch
Service and OpenSearch Dashboards

This chapter is a full walkthrough of the following situation: a business receives some number of
customer support calls and wants to analyze them. What is the subject of each call? How many
were positive? How many were negative? How can managers search or review the the transcripts of
these calls?

A manual workflow might involve employees listening to recordings, noting the subject of each
call, and deciding whether or not the customer interaction was positive.

Such a process would be extremely labor-intensive. Assuming an average time of 10 minutes
per call, each employee could listen to only 48 calls per day. Barring human bias, the data they
generate would be highly accurate, but the amount of data would be minimal: just the subject of
the call and a boolean for whether or not the customer was satisfied. Anything more involved, such
as a full transcript, would take a huge amount of time.

Using Amazon S3, Amazon Transcribe, Amazon Comprehend, and Amazon OpenSearch Service,
you can automate a similar process with very little code and end up with much more data. For
example, you can get a full transcript of the call, keywords from the transcript, and an overall
"sentiment" of the call (positive, negative, neutral, or mixed). Then you can use OpenSearch and
OpenSearch Dashboards to search and visualize the data.

While you can use this walkthrough as-is, the intent is to spark ideas about how to enrich your
JSON documents before you index them in OpenSearch Service.

Estimated Costs

In general, performing the steps in this walkthrough should cost less than $2. The walkthrough
uses the following resources:

• S3 bucket with less than 100 MB transferred and stored

To learn more, see Amazon S3 Pricing.

• OpenSearch Service domain with one t2.medium instance and 10 GiB of EBS storage for several
hours

To learn more, see Amazon OpenSearch Service Pricing.

• Several calls to Amazon Transcribe

Visualizing support calls 1140

https://aws.amazon.com/s3/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/elasticsearch-service/pricing/

Amazon OpenSearch Service Developer Guide

To learn more, see Amazon Transcribe Pricing.

• Several natural language processing calls to Amazon Comprehend

To learn more, see Amazon Comprehend Pricing.

Topics

• Step 1: Configure prerequisites

• Step 2: Copy sample code

• (Optional) Step 3: Index sample data

• Step 4: Analyze and visualize your data

• Step 5: Clean up resources and next steps

Step 1: Configure prerequisites

Before proceeding, you must have the following resources.

Prerequisite Description

Amazon S3 bucket For more information, see Creating a Bucket in the Amazon Simple
Storage Service User Guide.

OpenSearch Service
domain

The destination for data. For more information, see Creating
OpenSearch Service domains.

If you don't already have these resources, you can create them using the following Amazon CLI
commands:

aws s3 mb s3://my-transcribe-test --region us-west-2

aws opensearch create-domain --domain-name my-transcribe-test --engine-version
 OpenSearch_1.0 --cluster-config InstanceType=t2.medium.search,InstanceCount=1
 --ebs-options EBSEnabled=true,VolumeType=standard,VolumeSize=10 --access-
policies '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Principal":
{"AWS":"arn:aws:iam::123456789012:root"},"Action":"es:*","Resource":"arn:aws:es:us-
west-2:123456789012:domain/my-transcribe-test/*"}]}' --region us-west-2

Step 1: Configure prerequisites 1141

https://aws.amazon.com/transcribe/pricing/
https://aws.amazon.com/comprehend/pricing/
https://docs.amazonaws.cn/AmazonS3/latest/gsg/CreatingABucket.html

Amazon OpenSearch Service Developer Guide

Note

These commands use the us-west-2 Region, but you can use any Region that Amazon
Comprehend supports. To learn more, see the Amazon Web Services General Reference.

Step 2: Copy sample code

1. Copy and paste the following Python 3 sample code into a new file named call-center.py:

import boto3
import datetime
import json
import requests
from requests_aws4auth import AWS4Auth
import time
import urllib.request

Variables to update
audio_file_name = '' # For example, 000001.mp3
bucket_name = '' # For example, my-transcribe-test
domain = '' # For example, https://search-my-transcribe-test-12345.us-
west-2.es.amazonaws.com
index = 'support-calls'
type = '_doc'
region = 'us-west-2'

Upload audio file to S3.
s3_client = boto3.client('s3')

audio_file = open(audio_file_name, 'rb')

print('Uploading ' + audio_file_name + '...')
response = s3_client.put_object(
 Body=audio_file,
 Bucket=bucket_name,
 Key=audio_file_name
)

Build the URL to the audio file on S3.
Only for the us-east-1 region.
mp3_uri = 'https://' + bucket_name + '.s3.amazonaws.com/' + audio_file_name

Step 2: Copy sample code 1142

https://docs.aws.amazon.com/general/latest/gr/rande.html#comprehend_region

Amazon OpenSearch Service Developer Guide

Get the necessary details and build the URL to the audio file on S3.
For all other regions.
response = s3_client.get_bucket_location(
 Bucket=bucket_name
)
bucket_region = response['LocationConstraint']
mp3_uri = 'https://' + bucket_name + '.s3-' + bucket_region + '.amazonaws.com/' +
 audio_file_name

Start transcription job.
transcribe_client = boto3.client('transcribe')

print('Starting transcription job...')
response = transcribe_client.start_transcription_job(
 TranscriptionJobName=audio_file_name,
 LanguageCode='en-US',
 MediaFormat='mp3',
 Media={
 'MediaFileUri': mp3_uri
 },
 Settings={
 'ShowSpeakerLabels': True,
 'MaxSpeakerLabels': 2 # assumes two people on a phone call
 }
)

Wait for the transcription job to finish.
print('Waiting for job to complete...')
while True:
 response =
 transcribe_client.get_transcription_job(TranscriptionJobName=audio_file_name)
 if response['TranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED',
 'FAILED']:
 break
 else:
 print('Still waiting...')
 time.sleep(10)

transcript_uri = response['TranscriptionJob']['Transcript']['TranscriptFileUri']

Open the JSON file, read it, and get the transcript.
response = urllib.request.urlopen(transcript_uri)
raw_json = response.read()

Step 2: Copy sample code 1143

Amazon OpenSearch Service Developer Guide

loaded_json = json.loads(raw_json)
transcript = loaded_json['results']['transcripts'][0]['transcript']

Send transcript to Comprehend for key phrases and sentiment.
comprehend_client = boto3.client('comprehend')

If necessary, trim the transcript.
If the transcript is more than 5 KB, the Comprehend calls fail.
if len(transcript) > 5000:
 trimmed_transcript = transcript[:5000]
else:
 trimmed_transcript = transcript

print('Detecting key phrases...')
response = comprehend_client.detect_key_phrases(
 Text=trimmed_transcript,
 LanguageCode='en'
)

keywords = []
for keyword in response['KeyPhrases']:
 keywords.append(keyword['Text'])

print('Detecting sentiment...')
response = comprehend_client.detect_sentiment(
 Text=trimmed_transcript,
 LanguageCode='en'
)

sentiment = response['Sentiment']

Build the Amazon OpenSearch Service URL.
id = audio_file_name.strip('.mp3')
url = domain + '/' + index + '/' + type + '/' + id

Create the JSON document.
json_document = {'transcript': transcript, 'keywords': keywords, 'sentiment':
 sentiment, 'timestamp': datetime.datetime.now().isoformat()}

Provide all details necessary to sign the indexing request.
credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region,
 'opensearchservice', session_token=credentials.token)

Step 2: Copy sample code 1144

Amazon OpenSearch Service Developer Guide

Index the document.
print('Indexing document...')
response = requests.put(url, auth=awsauth, json=json_document, headers=headers)

print(response)
print(response.json())

2. Update the initial six variables.

3. Install the required packages using the following commands:

pip install boto3
pip install requests
pip install requests_aws4auth

4. Place your MP3 in the same directory as call-center.py and run the script. A sample
output follows:

$ python call-center.py
Uploading 000001.mp3...
Starting transcription job...
Waiting for job to complete...
Still waiting...
Still waiting...
Still waiting...
Still waiting...
Still waiting...
Still waiting...
Still waiting...
Detecting key phrases...
Detecting sentiment...
Indexing document...
<Response [201]>
{u'_type': u'call', u'_seq_no': 0, u'_shards': {u'successful': 1, u'failed': 0,
 u'total': 2}, u'_index': u'support-calls4', u'_version': 1, u'_primary_term': 1,
 u'result': u'created', u'_id': u'000001'}

call-center.py performs a number of operations:

1. The script uploads an audio file (in this case, an MP3, but Amazon Transcribe supports several
formats) to your S3 bucket.

2. It sends the audio file's URL to Amazon Transcribe and waits for the transcription job to finish.

Step 2: Copy sample code 1145

Amazon OpenSearch Service Developer Guide

The time to finish the transcription job depends on the length of the audio file. Assume minutes,
not seconds.

Tip

To improve the quality of the transcription, you can configure a custom vocabulary for
Amazon Transcribe.

3. After the transcription job finishes, the script extracts the transcript, trims it to 5,000 characters,
and sends it to Amazon Comprehend for keyword and sentiment analysis.

4. Finally, the script adds the full transcript, keywords, sentiment, and current time stamp to a
JSON document and indexes it in OpenSearch Service.

Tip

LibriVox has public domain audiobooks that you can use for testing.

(Optional) Step 3: Index sample data

If you don't have a bunch of call recordings handy—and who does?—you can index the sample
documents in sample-calls.zip, which are comparable to what call-center.py produces.

1. Create a file named bulk-helper.py:

import boto3
from opensearchpy import OpenSearch, RequestsHttpConnection
import json
from requests_aws4auth import AWS4Auth

host = '' # For example, my-test-domain.us-west-2.es.amazonaws.com
region = '' # For example, us-west-2
service = 'es'

bulk_file = open('sample-calls.bulk', 'r').read()

credentials = boto3.Session().get_credentials()
awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service,
 session_token=credentials.token)

(Optional) Step 3: Index sample data 1146

https://docs.aws.amazon.com/transcribe/latest/dg/API_CreateVocabulary.html
https://librivox.org/
samples/sample-calls.zip

Amazon OpenSearch Service Developer Guide

search = OpenSearch(
 hosts = [{'host': host, 'port': 443}],
 http_auth = awsauth,
 use_ssl = True,
 verify_certs = True,
 connection_class = RequestsHttpConnection
)

response = search.bulk(bulk_file)
print(json.dumps(response, indent=2, sort_keys=True))

2. Update the initial two variables for host and region.

3. Install the required package using the following command:

pip install opensearch-py

4. Download and unzip sample-calls.zip.

5. Place sample-calls.bulk in the same directory as bulk-helper.py and run the helper. A
sample output follows:

$ python bulk-helper.py
{
 "errors": false,
 "items": [
 {
 "index": {
 "_id": "1",
 "_index": "support-calls",
 "_primary_term": 1,
 "_seq_no": 42,
 "_shards": {
 "failed": 0,
 "successful": 1,
 "total": 2
 },
 "_type": "_doc",
 "_version": 9,
 "result": "updated",
 "status": 200
 }
 },

(Optional) Step 3: Index sample data 1147

samples/sample-calls.zip

Amazon OpenSearch Service Developer Guide

 ...
],
 "took": 27
}

Step 4: Analyze and visualize your data

Now that you have some data in OpenSearch Service, you can visualize it using OpenSearch
Dashboards.

1. Navigate to https://search-domain.region.es.amazonaws.com/_dashboards.

2. Before you can use OpenSearch Dashboards, you need an index pattern. Dashboards uses
index patterns to narrow your analysis to one or more indices. To match the support-calls
index that call-center.py created, go to Stack Management, Index Patterns, and define
an index pattern of support*, and then choose Next step.

3. For Time Filter field name, choose timestamp.

4. Now you can start creating visualizations. Choose Visualize, and then add a new visualization.

5. Choose the pie chart and the support* index pattern.

6. The default visualization is basic, so choose Split Slices to create a more interesting
visualization.

For Aggregation, choose Terms. For Field, choose sentiment.keyword. Then choose Apply
changes and Save.

Step 4: Analyze and visualize your data 1148

Amazon OpenSearch Service Developer Guide

7. Return to the Visualize page, and add another visualization. This time, choose the horizontal
bar chart.

8. Choose Split Series.

For Aggregation, choose Terms. For Field, choose keywords.keyword and change Size to 20.
Then choose Apply Changes and Save.

Step 4: Analyze and visualize your data 1149

Amazon OpenSearch Service Developer Guide

9. Return to the Visualize page and add one final visualization, a vertical bar chart.

10. Choose Split Series. For Aggregation, choose Date Histogram. For Field, choose timestamp
and change Interval to Daily.

11. Choose Metrics & Axes and change Mode to normal.

12. Choose Apply Changes and Save.

Step 4: Analyze and visualize your data 1150

Amazon OpenSearch Service Developer Guide

13. Now that you have three visualizations, you can add them to a Dashboards visualization.
Choose Dashboard, create a dashboard, and add your visualizations.

Step 4: Analyze and visualize your data 1151

Amazon OpenSearch Service Developer Guide

Step 5: Clean up resources and next steps

To avoid unnecessary charges, delete the S3 bucket and OpenSearch Service domain. To learn
more, see Delete a Bucket in the Amazon Simple Storage Service User Guide and Delete an
OpenSearch Service domain in this guide.

Transcripts require much less disk space than MP3 files. You might be able to shorten your MP3
retention window—for example, from three months of call recordings to one month—retain years
of transcripts, and still save on storage costs.

Step 5: Clean up resources and next steps 1152

https://docs.amazonaws.cn/AmazonS3/latest/dev/delete-or-empty-bucket.html#delete-bucket

Amazon OpenSearch Service Developer Guide

You could also automate the transcription process using Amazon Step Functions and Lambda, add
additional metadata before indexing, or craft more complex visualizations to fit your exact use
case.

Step 5: Clean up resources and next steps 1153

Amazon OpenSearch Service Developer Guide

Amazon OpenSearch Service rename - Summary of
changes

On September 8, 2021, our search and analytics suite was renamed to Amazon OpenSearch
Service. OpenSearch Service supports OpenSearch as well as legacy Elasticsearch OSS. The
following sections describe the different parts of the service that changed with the rename, and
what actions you need to take to ensure that your domains continue to function properly.

Some of these changes only apply when you upgrade your domains from Elasticsearch to
OpenSearch. In other cases, such as in the Billing and Cost Management console, the experience
changes immediately.

Note that this list is not exhaustive. While other parts of the product also changed, these updates
are the most relevant.

Topics

• New API version

• Renamed instance types

• Access policy changes

• New resource types

• Kibana renamed to OpenSearch Dashboards

• Renamed CloudWatch metrics

• Billing and Cost Management console changes

• New event format

• What's staying the same?

• Get started: Upgrade your domains to OpenSearch 1.x

New API version

The new version of the OpenSearch Service configuration API (2021-01-01) works with
OpenSearch as well as legacy Elasticsearch OSS. 21 API operations were replaced with more
concise and engine-agnostic names (for example, CreateElasticsearchDomain changed to
CreateDomain), but OpenSearch Service continues to support both API versions.

New API version 1154

Amazon OpenSearch Service Developer Guide

We recommend that you use the new API operations to create and manage domains going forward.
Note that when you use the new API operations to create a domain, you need to specify the
EngineVersion parameter in the format Elasticsearch_X.Y or OpenSearch_X.Y, rather
than just the version number. If you don't specify a version, it defaults to the latest version of
OpenSearch.

Upgrade your Amazon CLI to version 1.20.40 or later in order to use aws opensearch ... to
create and manage your domains. For the new CLI format, see the OpenSearch CLI reference.

Renamed instance types

Instance types in Amazon OpenSearch Service are now in the format <type>.<size>.search—
for example, m6g.large.search rather than m6g.large.elasticsearch. You don't need to
take any action. Existing domains will start automatically referring to the new instance types within
the API and in the Billing and Cost Management console.

If you have Reserved Instances (RIs), your contract won't be impacted by the change. The old
configuration API version is still compatible with the old naming format, but if you want to use the
new API version, you need to use the new format.

Access policy changes

The following sections describe what actions you need to take to update your access policies.

IAM policies

We recommend that you update your IAM policies to use the renamed API operations.
However, OpenSearch Service will continue to respect existing policies by internally
replicating the old API permissions. For example, if you currently have permission to
perform the CreateElasticsearchDomain operation, you can now make calls to both
CreateElasticsearchDomain (old API operation) and CreateDomain (new API operation).
The same applies to explicit denies. For a list of updated API operations, see the policy element
reference.

SCP policies

Service control policies (SCPs) introduce an additional layer of complexity compared to standard
IAM. To prevent your SCP policies from breaking, you need to add both the old and the new API
operations to each of your SCP policies. For example, if a user currently has allow permissions

Renamed instance types 1155

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/opensearch/index.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

Amazon OpenSearch Service Developer Guide

for CreateElasticsearchDomain, you also need to grant them allow permissions for
CreateDomain so they can retain the ability to create domains. The same applies to explicit
denies.

For example:

"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "es:CreateElasticsearchDomain",
 "es:CreateDomain"
 ...
],
 },
 "Effect": "Deny",
 "Action:" [
 "es:DeleteElasticsearchDomain",
 "es:DeleteDomain"
 ...

New resource types

OpenSearch Service introduces the following new resource types:

Resource Description

AWS::OpenSearchService::Domain Represents an Amazon OpenSearch Service
domain. This resource exists at the service
level and isn't specific to the software running
on the domain. It applies to services like
Amazon CloudFormation and Amazon
Resource Groups, in which you create and
manage resources for the service as a whole.

For instructions to upgrade domains defined
within CloudFormation from Elasticsearch to
OpenSearch, see Remarks in the CloudForm
ation User Guide.

New resource types 1156

https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-opensearchservice-domain.html#aws-resource-opensearchservice-domain--remarks

Amazon OpenSearch Service Developer Guide

Resource Description

AWS::OpenSearch::Domain Represents OpenSearch/Elasticsearch
software running on a domain. This resource
applies to services like Amazon CloudTrai
l and Amazon Config, which reference the
software running on the domain rather
than OpenSearch Service as a whole. These
services now contain separate resource
types for domains running Elasticsearch
(AWS::Elasticsearch::Domain) versus
domains running OpenSearch (AWS::Open
Search::Domain).

Note

In Amazon Config, you'll continue to see your data under the existing
AWS::Elasticsearch::Domain resource type for several weeks, even if you upgrade one
or more domains to OpenSearch.

Kibana renamed to OpenSearch Dashboards

OpenSearch Dashboards, the Amazon alternative to Kibana, is an open-source visualization tool
designed to work with OpenSearch. After you upgrade a domain from Elasticsearch to OpenSearch,
the /_plugin/kibana endpoint changes to /_dashboards. OpenSearch Service will redirect
all requests to the new endpoint, but if you use the Kibana endpoint in any of your IAM policies,
update those policies to include the new /_dashboards endpoint as well.

If you're using the section called “SAML authentication for OpenSearch Dashboards”, before you
upgrade your domain to OpenSearch, you need to change all Kibana URLs configured in your
identity provider (IdP) from /_plugin/kibana to /_dashboards. The most common URLs are
assertion consumer service (ACS) URLs and recipient URLs.

The default kibana_read_only role for OpenSearch Dashboards was renamed to
opensearch_dashboards_read_only, and the kibana_user role was renamed to
opensearch_dashboards_user. The change applies to all newly-created OpenSearch 1.x

Kibana renamed to OpenSearch Dashboards 1157

http://aws.amazon.com/documentation/cloudtrail/
http://aws.amazon.com/documentation/cloudtrail/
http://aws.amazon.com/config/
http://aws.amazon.com/config/

Amazon OpenSearch Service Developer Guide

domains running service software R20211203 or later. If you upgrade an existing domain to service
software R20211203, the role names remain the same.

Renamed CloudWatch metrics

Several CloudWatch metrics change for domains running OpenSearch. When you upgrade a
domain to OpenSearch, the metrics change automatically and your current CloudWatch alarms will
break. Before upgrading your cluster from an Elasticsearch version to an OpenSearch version, make
sure to update your CloudWatch alarms to use the new metrics.

The following metrics changed:

Original metric name New name

KibanaHealthyNodes OpenSearchDashboardsHealthyNodes

KibanaConcurrentConnections OpenSearchDashboardsConcurr
entConnections

KibanaHeapTotal OpenSearchDashboardsHeapTotal

KibanaHeapUsed OpenSearchDashboardsHeapUsed

KibanaHeapUtilization OpenSearchDashboardsHeapUti
lization

KibanaOS1MinuteLoad OpenSearchDashboardsOS1Minu
teLoad

KibanaRequestTotal OpenSearchDashboardsRequestTotal

KibanaResponseTimesMaxInMillis OpenSearchDashboardsRespons
eTimesMaxInMillis

ESReportingFailedRequestSys
ErrCount

KibanaReportingFailedReques
tSysErrCount

ESReportingRequestCount KibanaReportingRequestCount

Renamed CloudWatch metrics 1158

Amazon OpenSearch Service Developer Guide

Original metric name New name

ESReportingFailedRequestUse
rErrCount

KibanaReportingFailedReques
tUserErrCount

ESReportingSuccessCount KibanaReportingSuccessCount

ElasticsearchRequests OpenSearchRequests

For a full list of metrics that OpenSearch Service sends to Amazon CloudWatch, see the section
called “Monitoring cluster metrics”.

Billing and Cost Management console changes

Historic data in the Billing and Cost Management console and in Cost and Usage Reports
will continue to use the old service name, so you need to start using filters for both Amazon
OpenSearch Service and the legacy Elasticsearch name when searching for data. If you have
existing saved reports, update the filters to make sure they also include OpenSearch Service.
You might initially receive an alert when your usage decreases for Elasticsearch and increases for
OpenSearch, but it disappears within several days.

In addition to the service name, the following fields will change for all reports, bills, and price list
API operations:

Field Old format New format

Instance type m5.large.elasticse
arch

m5.large.search

Product family Elasticsearch Instance

Elasticsearch Volume

Amazon OpenSearch Service
Instance

Amazon OpenSearch Service
Volume

Pricing description $5.098 per c5.18xlarge.elasti
csearch instance hour (or
partial hour) - EU

$5.098 per c5.18xlarge.search
instance hour (or partial hour)
- EU

Billing and Cost Management console changes 1159

https://console.aws.amazon.com/billing/home
https://aws.amazon.com/aws-cost-management/aws-cost-and-usage-reporting/

Amazon OpenSearch Service Developer Guide

Field Old format New format

Instance family ultrawarm.elastics
earch

ultrawarm.search

New event format

The format of events that OpenSearch Service sends to Amazon EventBridge and Amazon
CloudWatch has changed, specifically the detail-type field. The source field (aws.es) remains
the same. For the complete format for each event type, see the section called “Monitoring events”.
If you have existing event rules that depend on the old format, make sure to update them to
conform to the new format.

What's staying the same?

The following features and functionality, among others not listed, will remain the same:

• Service principal (es.amazonaws.com)

• Vendor code

• Domain ARNs

• Domain endpoints

Get started: Upgrade your domains to OpenSearch 1.x

OpenSearch 1.x supports upgrades from Elasticsearch versions 6.8 and 7.x. For instructions
to upgrade your domain, see the section called “Starting an upgrade (console)”. If you're
using the Amazon CLI or configuration API to upgrade your domain, you need to specify the
TargetVersion as OpenSearch_1.x.

OpenSearch 1.x introduces an additional domain setting called Enable compatibility mode.
Because certain Elasticsearch OSS clients and plugins check the cluster version before connecting,
compatibility mode sets OpenSearch to report its version as 7.10 so these clients continue to work.

You can enable compatibility mode when you create OpenSearch domains for the first time, or
when you upgrade to OpenSearch from an Elasticsearch version. If it's not set, the parameter
defaults to false when you create a domain, and true when you upgrade a domain.

New event format 1160

Amazon OpenSearch Service Developer Guide

To enable compatibility mode using the configuration API, set
override_main_response_version to true:

POST https://es.us-east-1.amazonaws.com/2021-01-01/opensearch/upgradeDomain
{
 "DomainName": "domain-name",
 "TargetVersion": "OpenSearch_1.0",
 "AdvancedOptions": {
 "override_main_response_version": "true"
 }
}

To enable or disable compatibility mode on existing OpenSearch domains, you need to use the
OpenSearch _cluster/settings API operation:

PUT /_cluster/settings
{
 "persistent" : {
 "compatibility.override_main_response_version" : true
 }
}

Get started: Upgrade your domains to OpenSearch 1.x 1161

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/API_UpgradeDomain.html
https://opensearch.org/docs/opensearch/rest-api/cluster-settings/

Amazon OpenSearch Service Developer Guide

Troubleshooting Amazon OpenSearch Service

This topic describes how to identify and solve common Amazon OpenSearch Service issues. Consult
the information in this section before contacting Amazon Support.

Can't access OpenSearch Dashboards

The OpenSearch Dashboards endpoint doesn't support signed requests. If the access control
policy for your domain only grants access to certain IAM roles and you haven't configured Amazon
Cognito authentication, you might receive the following error when you attempt to access
Dashboards:

"User: anonymous is not authorized to perform: es:ESHttpGet"

If your OpenSearch Service domain uses VPC access, you might not receive this error, but the
request might time out. To learn more about correcting this issue and the various configuration
options available to you, see the section called “Controlling access to OpenSearch Dashboards”, the
section called “About access policies on VPC domains”, and the section called “Identity and Access
Management”.

Can't access VPC domain

See the section called “About access policies on VPC domains” and the section called “Testing VPC
domains”.

Cluster in read-only state

Compared to earlier Elasticsearch versions, OpenSearch and Elasticsearch 7.x use a different
system for cluster coordination. In this new system, when the cluster loses quorum, the cluster is
unavailable until you take action. Loss of quorum can take two forms:

• If your cluster uses dedicated master nodes, quorum loss occurs when half or more are
unavailable.

• If your cluster does not use dedicated master nodes, quorum loss occurs when half or more of
your data nodes are unavailable.

Can't access OpenSearch Dashboards 1162

https://aws.amazon.com/premiumsupport/

Amazon OpenSearch Service Developer Guide

If quorum loss occurs and your cluster has more than one node, OpenSearch Service restores
quorum and places the cluster into a read-only state. You have two options:

• Remove the read-only state and use the cluster as-is.

• Restore the cluster or individual indexes from a snapshot.

If you prefer to use the cluster as-is, verify that cluster health is green using the following request:

GET _cat/health?v

If cluster health is red, we recommend restoring the cluster from a snapshot. You can also see the
section called “Red cluster status” for troubleshooting steps. If cluster health is green, check that
all expected indexes are present using the following request:

GET _cat/indices?v

Then run some searches to verify that the expected data is present. If it is, you can remove the
read-only state using the following request:

PUT _cluster/settings
{
 "persistent": {
 "cluster.blocks.read_only": false
 }
}

If quorum loss occurs and your cluster has only one node, OpenSearch Service replaces the node
and does not place the cluster into a read-only state. Otherwise, your options are the same: use the
cluster as-is or restore from a snapshot.

In both situations, OpenSearch Service sends two events to your Amazon Health Dashboard. The
first informs you of the loss of quorum. The second occurs after OpenSearch Service successfully
restores quorum. For more information about using the Amazon Health Dashboard, see the
Amazon Health User Guide.

Cluster in read-only state 1163

https://phd.aws.amazon.com/phd/home#/
https://docs.amazonaws.cn/health/latest/ug/

Amazon OpenSearch Service Developer Guide

Red cluster status

A red cluster status means that at least one primary shard and its replicas are not allocated to a
node. OpenSearch Service keeps trying to take automated snapshots of all indexes regardless of
their status, but the snapshots fail while the red cluster status persists.

The most common causes of a red cluster status are failed cluster nodes and the OpenSearch
process crashing due to a continuous heavy processing load.

Note

OpenSearch Service stores automated snapshots for 14 days regardless of the cluster
status. Therefore, if the red cluster status persists for more than two weeks, the last healthy
automated snapshot will be deleted and you could permanently lose your cluster's data. If
your OpenSearch Service domain enters a red cluster status, Amazon Web Services Support
might contact you to ask whether you want to address the problem yourself or you want
the support team to assist. You can set a CloudWatch alarm to notify you when a red
cluster status occurs.

Ultimately, red shards cause red clusters, and red indexes cause red shards. To identify the indexes
causing the red cluster status, OpenSearch has some helpful APIs.

• GET /_cluster/allocation/explain chooses the first unassigned shard that it finds and
explains why it cannot be allocated to a node:

{
 "index": "test4",
 "shard": 0,
 "primary": true,
 "current_state": "unassigned",
 "can_allocate": "no",
 "allocate_explanation": "cannot allocate because allocation is not permitted to
 any of the nodes"
}

• GET /_cat/indices?v shows the health status, number of documents, and disk usage for
each index:

Red cluster status 1164

Amazon OpenSearch Service Developer Guide

health status index uuid pri rep docs.count docs.deleted
 store.size pri.store.size
green open test1 30h1EiMvS5uAFr2t5CEVoQ 5 0 820 0
 14mb 14mb
green open test2 sdIxs_WDT56afFGu5KPbFQ 1 0 0 0
 233b 233b
green open test3 GGRZp_TBRZuSaZpAGk2pmw 1 1 2 0
 14.7kb 7.3kb
red open test4 BJxfAErbTtu5HBjIXJV_7A 1 0
green open test5 _8C6MIXOSxCqVYicH3jsEA 1 0 7 0
 24.3kb 24.3kb

Deleting red indexes is the fastest way to fix a red cluster status. Depending on the reason for the
red cluster status, you might then scale your OpenSearch Service domain to use larger instance
types, more instances, or more EBS-based storage and try to recreate the problematic indexes.

If deleting a problematic index isn't feasible, you can restore a snapshot, delete documents from
the index, change the index settings, reduce the number of replicas, or delete other indexes to
free up disk space. The important step is to resolve the red cluster status before reconfiguring
your OpenSearch Service domain. Reconfiguring a domain with a red cluster status can compound
the problem and lead to the domain being stuck in a configuration state of Processing until you
resolve the status.

Automatic remediation of red clusters

If your cluster's status is continuously red for more than an hour, OpenSearch Service attempts to
automatically fix it by rerouting unallocated shards or restoring from past snapshots.

If it fails to fix one or more red indexes and the cluster status remains red for a total of 14 days,
OpenSearch Service takes further action only if the cluster meets at least one of the following
criteria:

• Has only one availability zone

• Has no dedicated master nodes

• Contains burstable instance types (T2 or T3)

At this time, if your cluster meets one of these criteria, OpenSearch Service sends you daily
notifications over the next 7 days explaining that if you don't fix these indexes, all unassigned

Automatic remediation of red clusters 1165

Amazon OpenSearch Service Developer Guide

shards will be deleted. If your cluster status is still red after 21 days, OpenSearch Service deletes
the unassigned shards (storage and compute) on all red indexes. You receive notifications in
the Notifications panel of the OpenSearch Service console for each of these events. For more
information, see the section called “Cluster health events”.

Recovering from a continuous heavy processing load

To determine if a red cluster status is due to a continuous heavy processing load on a data node,
monitor the following cluster metrics.

Relevant metric Description Recovery

JVMMemoryPressure Specifies the percentage of the
Java heap used for all data nodes
in a cluster. View the Maximum
statistic for this metric, and look
for smaller and smaller drops
in memory pressure as the Java
garbage collector fails to reclaim
sufficient memory. This pattern
likely is due to complex queries or
large data fields.

x86 instance types use the
Concurrent Mark Sweep (CMS)
garbage collector, which runs
alongside application threads to
keep pauses short. If CMS is unable
to reclaim enough memory during
its normal collections, it triggers a
full garbage collection, which can
lead to long application pauses and
impact cluster stability.

ARM-based Graviton instance types
use the Garbage-First (G1) garbage
collector, which is similar to CMS,
but uses additional short pauses and

Set memory circuit breakers
for the JVM. For more
information, see the section
called “JVM OutOfMemo
ryError”.

If the problem persists,
delete unnecessary indexes,
reduce the number or
complexity of requests to
the domain, add instances,
or use larger instance types.

Recovering from a continuous heavy processing load 1166

Amazon OpenSearch Service Developer Guide

Relevant metric Description Recovery

heap defragmentation to further
reduce the need for full garbage
collections.

In either case, if memory usage
continues to grow beyond what the
garbage collector can reclaim during
full garbage collections, OpenSearc
h crashes with an out of memory
error. On all instance types, a good
rule of thumb is to keep usage
below 80%.

The _nodes/stats/jvm API
offers a useful summary of JVM
statistics, memory pool usage, and
garbage collection information:

GET domain-endpoint /_nodes/s
tats/jvm?pretty

CPUUtilization Specifies the percentage of CPU
resources used for data nodes
in a cluster. View the Maximum
statistic for this metric, and look for
a continuous pattern of high usage.

Add data nodes or increase
the size of the instance
types of existing data
nodes.

Nodes Specifies the number of nodes in a
cluster. View the Minimum statistic
for this metric. This value fluctuate
s when the service deploys a new
fleet of instances for a cluster.

Add data nodes.

Recovering from a continuous heavy processing load 1167

Amazon OpenSearch Service Developer Guide

Yellow cluster status

A yellow cluster status means the primary shards for all indexes are allocated to nodes in a cluster,
but the replica shards for at least one index aren't. Single-node clusters always initialize with a
yellow cluster status because there's no other node to which OpenSearch Service can assign a
replica. To achieve green cluster status, increase your node count. For more information, see the
section called “Sizing domains”.

Multi-node clusters might briefly have a yellow cluster status after creating a new index or after a
node failure. This status self-resolves as OpenSearch replicates data across the cluster. Lack of disk
space can also cause yellow cluster status; the cluster can only distribute replica shards if nodes
have the disk space to accommodate them.

ClusterBlockException

You might receive a ClusterBlockException error for the following reasons.

Lack of available storage space

If one or more nodes in your cluster has storage space less than the minimum value of 1) 20% of
available storage space, or 2) 20 GB of storage space, basic write operations like adding documents
and creating indexes can start to fail. the section called “Calculating storage requirements”
provides a summary of how OpenSearch Service uses disk space.

To avoid issues, monitor the FreeStorageSpace metric in the OpenSearch Service console and
create CloudWatch alarms to trigger when FreeStorageSpace drops below a certain threshold.
GET /_cat/allocation?v also provides a useful summary of shard allocation and disk usage. To
resolve issues associated with a lack of storage space, scale your OpenSearch Service domain to use
larger instance types, more instances, or more EBS-based storage.

High JVM memory pressure

When the JVMMemoryPressure metric exceeds 92% for 30 minutes, OpenSearch Service triggers
a protection mechanism and blocks all write operations to prevent the cluster from reaching red
status. When the protection is on, write operations fail with a ClusterBlockException error,
new indexes can't be created, and the IndexCreateBlockException error is thrown.

When the JVMMemoryPressure metric returns to 88% or lower for five minutes, the protection is
disabled, and write operations to the cluster are unblocked.

Yellow cluster status 1168

Amazon OpenSearch Service Developer Guide

High JVM memory pressure can be caused by spikes in the number of requests to the cluster,
unbalanced shard allocations across nodes, too many shards in a cluster, field data or index
mapping explosions, or instance types that can't handle incoming loads. It can also be caused by
using aggregations, wildcards, or wide time ranges in queries.

To reduce traffic to the cluster and resolve high JVM memory pressure issues, try one or more of
the following:

• Scale the domain so that the maximum heap size per node is 32 GB.

• Reduce the number of shards by deleting old or unused indexes.

• Clear the data cache with the POST index-name/_cache/clear?fielddata=true API
operation. Note that clearing the cache can disrupt in-progress queries.

In general, to avoid high JVM memory pressure in the future, follow these best practices:

• Avoid aggregating on text fields, or change the mapping type for your indexes to keyword.

• Optimize search and indexing requests by choosing the correct number of shards.

• Set up Index State Management (ISM) policies to regularly remove unused indexes.

Error migrating to Multi-AZ with Standby

The following issues might occur when you migrate an existing domain to Multi-AZ with standby.

Creating an index, index template, or ISM policy during migration from
domains without standby to domains with standby

If you create an index while migrating a domain from Multi-AZ without Standby to with Standby,
and the index template or ISM policy doesn't follow the recommended data copy guidelines, this
can cause a data inconsistency and the migration may fail. To avoid this situation, create the new
index with a data copy count (including both primary nodes and replicas) that is multiple of three.
You can check the migratation progress using the DescribeDomainChangeProgress API. If
you encounter a replica count error, fix the error and then contact Amazon Support to retry the
migration.

Error migrating to Multi-AZ with Standby 1169

https://opensearch.org/docs/latest/opensearch/mappings/#dynamic-mapping
https://aws.amazon.com/premiumsupport/

Amazon OpenSearch Service Developer Guide

Incorrect number of data copies

If you don't have the right number of data copies in your domain, the migrating to Multi-AZ with
Standby will fail.

JVM OutOfMemoryError

A JVM OutOfMemoryError typically means that one of the following JVM circuit breakers was
reached.

Circuit breaker Description Cluster setting property

Parent Breaker Total percentage of JVM
heap memory allowed for
all circuit breakers. The
default value is 95%.

indices.breaker.total.limit

Field Data Breaker Percentage of JVM heap
memory allowed to load
a single data field into
memory. The default
value is 40%. If you
upload data with large
fields, you might need to
raise this limit.

indices.breaker.fielddata.l
imit

Request Breaker Percentage of JVM heap
memory allowed for
data structures used
to respond to a service
request. The default value
is 60%. If your service
requests involve calculati
ng aggregations, you
might need to raise this
limit.

indices.breaker.request.limit

Incorrect number of data copies 1170

Amazon OpenSearch Service Developer Guide

Failed cluster nodes

Amazon EC2 instances might experience unexpected terminations and restarts. Typically,
OpenSearch Service restarts the nodes for you. However, it's possible for one or more nodes in an
OpenSearch cluster to remain in a failed condition.

To check for this condition, open your domain dashboard on the OpenSearch Service console. Go
to the Cluster health tab and find the Total nodes metric. See if the reported number of nodes is
fewer than the number that you configured for your cluster. If the metric shows that one or more
nodes is down for more than one day, contact Amazon Support.

You can also set a CloudWatch alarm to notify you when this issue occurs.

Note

The Total nodes metric is not accurate during changes to your cluster configuration and
during routine maintenance for the service. This behavior is expected. The metric will
report the correct number of cluster nodes soon. To learn more, see the section called
“Configuration changes”.

To protect your clusters from unexpected node terminations and restarts, create at least one
replica for each index in your OpenSearch Service domain.

Exceeded maximum shard limit

OpenSearch as well as 7.x versions of Elasticsearch have a default setting of no more than 1,000
shards per node. OpenSearch/Elasticsearch throw an error if a request, such as creating a new
index, would cause you to exceed this limit. If you encounter this error, you have several options:

• Add more data nodes to the cluster.

• Increase the _cluster/settings/cluster.max_shards_per_node setting.

• Use the _shrink API to reduce the number of shards on the node.

Domain stuck in processing state

Your OpenSearch Service domain enters the "Processing" state when it's in the middle of a
configuration change. When you initiate a configuration change, the domain status changes to

Failed cluster nodes 1171

https://aws.amazon.com/premiumsupport/

Amazon OpenSearch Service Developer Guide

"Processing" while OpenSearch Service creates a new environment. In the new environment,
OpenSearch Service launches a new set of applicable nodes (such as data, master, or UltraWarm).
After the migration completes, the older nodes are terminated.

The cluster can get stuck in the "Processing" state if either of these situations occurs:

• A new set of data nodes fails to launch.

• Shard migration to the new set of data nodes is unsuccessful.

• Validation check has failed with errors.

For detailed resolution steps in each of these situations, see Why is my Amazon OpenSearch
Service domain stuck in the "Processing" state?.

Low EBS burst balance

OpenSearch Service sends you a console notification when the EBS burst balance on one of your
General Purpose (SSD) volumes is below 70%, and a follow-up notification if the balance falls
below 20%. To fix this issue, you can either scale up your cluster, or reduce the read and write
IOPS so that the burst balance can be credited. The burst balance stays at 0 for domains with gp3
volumes types, and domains with gp2 volumes that have a volume size above 1000 GiB. For more
information, see General Purpose SSD volumes (gp2). You can monitor EBS burst balance with the
BurstBalance CloudWatch metric.

Can't enable audit logs

You might encounter the following error when you try to enable audit log publishing using the
OpenSearch Service console:

The Resource Access Policy specified for the CloudWatch Logs log group does not grant sufficient
permissions for Amazon OpenSearch Service to create a log stream. Please check the Resource
Access Policy.

If you encounter this error, verify that the resource element of your policy includes the correct
log group ARN. If it does, take the following steps:

1. Wait several minutes.

Low EBS burst balance 1172

https://aws.amazon.com/premiumsupport/knowledge-center/opensearch-domain-stuck-processing/
https://aws.amazon.com/premiumsupport/knowledge-center/opensearch-domain-stuck-processing/
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ebs-volume-types.html#EBSVolumeTypes_gp2

Amazon OpenSearch Service Developer Guide

2. Refresh the page in your web browser.

3. Choose Select existing group.

4. For Existing log group, choose the log group that you created before receiving the error
message.

5. In the access policy section, choose Select existing policy.

6. For Existing policy, choose the policy that you created before receiving the error message.

7. Choose Enable.

If the error persists after repeating the process several times, contact Amazon Support.

Can't close index

OpenSearch Service supports the _close API only for OpenSearch and Elasticsearch versions
7.4 and later. If you're using an older version and are restoring an index from a snapshot, you can
delete the existing index (before or after reindexing it).

Client license checks

The default distributions of Logstash and Beats include a proprietary license check and fail to
connect to the open source version of OpenSearch. Make sure you use the Apache 2.0 (OSS)
distributions of these clients with OpenSearch Service.

Request throttling

If you receive persistent 403 Request throttled due to too many requests or 429 Too
Many Requests errors, consider scaling vertically. Amazon OpenSearch Service throttles requests
if the payload would cause memory usage to exceed the maximum size of the Java heap.

Can't SSH into node

You can't use SSH to access any of the nodes in your OpenSearch cluster, and you can't directly
modify opensearch.yml. Instead, use the console, Amazon CLI, or SDKs to configure your
domain. You can specify a few cluster-level settings using the OpenSearch REST APIs, as well. To

Can't close index 1173

https://aws.amazon.com/premiumsupport/
https://opensearch.org/docs/latest/api-reference/index-apis/close-index/

Amazon OpenSearch Service Developer Guide

learn more, see the Amazon OpenSearch Service API Reference and the section called “Supported
operations”.

If you need more insight into the performance of the cluster, you can publish error logs and slow
logs to CloudWatch.

"Not Valid for the Object's Storage Class" snapshot error

OpenSearch Service snapshots do not support the S3 Glacier storage class. You might encounter
this error when you attempt to list snapshots if your S3 bucket includes a lifecycle rule that
transitions objects to the S3 Glacier storage class.

If you need to restore a snapshot from the bucket, restore the objects from S3 Glacier, copy the
objects to a new bucket, and register the new bucket as a snapshot repository.

Invalid host header

OpenSearch Service requires that clients specify Host in the request headers. A valid Host value is
the domain endpoint without https://, such as:

Host: search-my-sample-domain-ih2lhn2ew2scurji.us-west-2.es.amazonaws.com

If you receive an Invalid Host Header error when making a request, check that your client or
proxy includes the OpenSearch Service domain endpoint (and not, for example, its IP address) in
the Host header.

Invalid M3 instance type

OpenSearch Service doesn't support adding or modifying M3 instances to existing domains
running OpenSearch or Elasticsearch versions 6.7 and later. You can continue to use M3 instances
with Elasticsearch 6.5 and earlier.

We recommend choosing a newer instance type. For domains running OpenSearch or Elasticsearch
6.7 or later, the following restriction apply:

• If your existing domain does not use M3 instances, you can no longer change to them.

• If you change an existing domain from an M3 instance type to another instance type, you can't
switch back.

"Not Valid for the Object's Storage Class" snapshot error 1174

https://docs.amazonaws.cn/opensearch-service/latest/APIReference/Welcome.html

Amazon OpenSearch Service Developer Guide

Hot queries stop working after enabling UltraWarm

When you enable UltraWarm on a domain, if there are no preexisting overrides to the
search.max_buckets setting, OpenSearch Service automatically sets the value to 10000 to
prevent memory-heavy queries from saturating warm nodes. If your hot queries are using more
than 10,000 buckets, they might stop working when you enable UltraWarm.

Because you can't modify this setting due to the managed nature of Amazon OpenSearch Service,
you need to open a support case to increase the limit. Limit increases don't require a premium
support subscription.

Can't downgrade after upgrade

In-place upgrades are irreversible, but if you contact Amazon Support, they can help you restore
the automatic, pre-upgrade snapshot on a new domain. For example, if you upgrade a domain
from Elasticsearch 5.6 to 6.4, Amazon Support can help you restore the pre-upgrade snapshot on
a new Elasticsearch 5.6 domain. If you took a manual snapshot of the original domain, you can
perform that step yourself.

Need summary of domains for all Amazon Web Services
Regions

The following script uses the Amazon EC2 describe-regions Amazon CLI command to create a list
of all Regions in which OpenSearch Service could be available. Then it calls list-domain-names for
each Region:

for region in `aws ec2 describe-regions --output text | cut -f4`
do
 echo "\nListing domains in region '$region':"
 aws opensearch list-domain-names --region $region --query 'DomainNames'
done

You receive the following output for each Region:

Listing domains in region:'us-west-2'...
[
 {

Hot queries stop working after enabling UltraWarm 1175

https://aws.amazon.com/premiumsupport/
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-regions.html
https://docs.aws.amazon.com/cli/latest/reference/es/list-domain-names.html

Amazon OpenSearch Service Developer Guide

 "DomainName": "sample-domain"
 }
]

Regions in which OpenSearch Service is not available return "Could not connect to the endpoint
URL."

Browser error when using OpenSearch Dashboards

Your browser wraps service error messages in HTTP response objects when you use Dashboards to
view data in your OpenSearch Service domain. You can use developer tools commonly available in
web browsers, such as Developer Mode in Chrome, to view the underlying service errors and assist
your debugging efforts.

To view service errors in Chrome

1. From the Chrome top menu bar, choose View, Developer, Developer Tools.

2. Choose the Network tab.

3. In the Status column, choose any HTTP session with a status of 500.

To view service errors in Firefox

1. From the menu, choose Tools, Web Developer, Network.

2. Choose any HTTP session with a status of 500.

3. Choose the Response tab to view the service response.

Node shard and storage skew

Node shard skew is when one or more nodes within a cluster has significantly more shards than
the other nodes. Node storage skew is when one or more nodes within a cluster has significantly
more storage (disk.indices) than the other nodes. While both of these conditions can occur
temporarily, like when a domain has replaced a node and is still allocating shards to it, you should
address them if they persist.

To identify both types of skew, run the _cat/allocation API operation and compare the shards and
disk.indices entries in the response:

Browser error when using OpenSearch Dashboards 1176

https://opensearch.org/docs/latest/opensearch/rest-api/cat/cat-allocation/

Amazon OpenSearch Service Developer Guide

 shards | disk.indices | disk.used | disk.avail | disk.total | disk.percent |
 host | ip | node
 264 | 465.3mb | 229.9mb | 1.4tb | 1.5tb | 0 |
 x.x.x.x | x.x.x.x | node1
 115 | 7.9mb | 83.7mb | 49.1gb | 49.2gb | 0 |
 x.x.x.x | x.x.x.x | node2
 264 | 465.3mb | 235.3mb | 1.4tb | 1.5tb | 0 |
 x.x.x.x | x.x.x.x | node3
 116 | 7.9mb | 82.8mb | 49.1gb | 49.2gb | 0 |
 x.x.x.x | x.x.x.x | node4
 115 | 8.4mb | 85mb | 49.1gb | 49.2gb | 0 |
 x.x.x.x | x.x.x.x | node5

While some storage skew is normal, anything over 10% from the average is significant. When shard
distribution is skewed, CPU, network, and disk bandwidth usage can also become skewed. Because
more data generally means more indexing and search operations, the heaviest nodes also tend to
be the most resource-strained nodes, while the lighter nodes represent underutilized capacity.

Remediation: Use shard counts that are multiples of the data node count to ensure that each index
is distributed evenly across data nodes.

Index shard and storage skew

Index shard skew is when one or more nodes hold more of an index's shards than the other nodes.
Index storage skew is when one or more nodes hold a disproportionately large amount of an index's
total storage.

Index skew is harder to identify than node skew because it requires some manipulation of the _cat/
shards API output. Investigate index skew if there's some indication of skew in the cluster or node
metrics. The following are common indications of index skew:

• HTTP 429 errors occurring on a subset of data nodes

• Uneven index or search operation queueing across data nodes

• Uneven JVM heap and/or CPU utilization across data nodes

Remediation: Use shard counts that are multiples of the data node count to ensure that each index
is distributed evenly across data nodes. If you still see index storage or shard skew, you might need
to force a shard reallocation, which occurs with every blue/green deployment of your OpenSearch
Service domain.

Index shard and storage skew 1177

https://opensearch.org/docs/latest/opensearch/rest-api/cat/cat-shards/
https://opensearch.org/docs/latest/opensearch/rest-api/cat/cat-shards/

Amazon OpenSearch Service Developer Guide

Unauthorized operation after selecting VPC access

When you create a new domain using the OpenSearch Service console, you have the option
to select VPC or public access. If you select VPC access, OpenSearch Service queries for VPC
information and fails if you don't have the proper permissions:

You are not authorized to perform this operation. (Service: AmazonEC2; Status Code:
 403; Error Code: UnauthorizedOperation

To enable this query, you must have access to the ec2:DescribeVpcs, ec2:DescribeSubnets,
and ec2:DescribeSecurityGroups operations. This requirement is only for the console. If you
use the Amazon CLI to create and configure a domain with a VPC endpoint, you don't need access
to those operations.

Stuck at loading after creating VPC domain

After creating a new domain that uses VPC access, the domain's Configuration state might never
progress beyond Loading. If this issue occurs, you likely have Amazon Security Token Service
(Amazon STS) disabled for your Region.

To add VPC endpoints to your VPC, OpenSearch Service needs to assume the
AWSServiceRoleForAmazonOpenSearchService role. Thus, Amazon STS must be enabled
to create new domains that use VPC access in a given Region. To learn more about enabling and
disabling Amazon STS, see the IAM User Guide.

Denied requests to the OpenSearch API

With the introduction of tag-based access control for the OpenSearch API, you might start seeing
access denied errors where you didn't before. This might be because one or more of your access
policies contains Deny using the ResourceTag condition, and those conditions are now being
honored.

For example, the following policy used to only deny access to the CreateDomain action from the
configuration API, if the domain had the tag environment=production. Even though the action
list also includes ESHttpPut, the deny statement didn't apply to that action or any other ESHttp*
actions.

Unauthorized operation after selecting VPC access 1178

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

Amazon OpenSearch Service Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "es:CreateDomain",
 "es:ESHttpPut"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:ResourceTag/environment": [
 "production"
]
 }
 }
 }]
}

With the added support of tags for OpenSearch HTTP methods, an IAM identity-based policy
like the above will result in the attached user being denied access to the ESHttpPut action.
Previously, in the absence of tags validation, the attached user would have still been able to send
PUT requests.

If you start seeing access denied errors after updating your domains to service software
R20220323 or later, check your identity-based access policies to see if this is the case and update
them if necessary to allow access.

Can't connect from Alpine Linux

Alpine Linux limits DNS response size to 512 bytes. If you try to connect to your OpenSearch
Service domain from Alpine Linux version 3.18.0 or lower, DNS resolution can fail if the domain is
in a VPC and has more than 20 nodes. If you use an Alpine Linux version higher than 3.18.0, you
should to be able to resolve more than 20 hosts. For more information, see the Alpine Linux 3.18.0
release notes.

If your domain is in a VPC, we recommend using other Linux distributions, such as Debian, Ubuntu,
CentOS, Red Hat Enterprise Linux, or Amazon Linux 2, to connect to it.

Can't connect from Alpine Linux 1179

https://alpinelinux.org/posts/Alpine-3.18.0-released.html
https://alpinelinux.org/posts/Alpine-3.18.0-released.html

Amazon OpenSearch Service Developer Guide

Too many requests for Search Backpressure

CPU-based admission control is a gatekeeping mechanism that proactively limits the number of
requests to a node based on its current capacity, both for organic increases and spikes in traffic.
Excessive requests return an HTTP 429 “Too Many Requests” status code upon rejection. This errors
indicates either insufficient cluster resources, resource-intensive search requests, or an unintended
spike in the workload.

Search Backpressure provides the reason for rejection, which can help fine-tune resource-intensive
search requests. For traffic spikes, we recommend client-side retries with exponential backoff and
jitter.

Certificate error when using SDK

Because Amazon SDKs use the CA certificates from your computer, changes to the certificates on
the Amazon servers can cause connection failures when you attempt to use an SDK. Error messages
vary, but typically contain the following text:

Failed to query OpenSearch
...
SSL3_GET_SERVER_CERTIFICATE:certificate verify failed

You can prevent these failures by keeping your computer's CA certificates and operating system
up-to-date. If you encounter this issue in a corporate environment and do not manage your own
computer, you might need to ask an administrator to assist with the update process.

The following list shows minimum operating system and Java versions:

• Microsoft Windows versions that have updates from January 2005 or later installed contain at
least one of the required CAs in their trust list.

• Mac OS X 10.4 with Java for Mac OS X 10.4 Release 5 (February 2007), Mac OS X 10.5 (October
2007), and later versions contain at least one of the required CAs in their trust list.

• Red Hat Enterprise Linux 5 (March 2007), 6, and 7 and CentOS 5, 6, and 7 all contain at least one
of the required CAs in their default trusted CA list.

• Java 1.4.2_12 (May 2006), 5 Update 2 (March 2005), and all later versions, including Java 6
(December 2006), 7, and 8, contain at least one of the required CAs in their default trusted CA
list.

Too many requests for Search Backpressure 1180

Amazon OpenSearch Service Developer Guide

The three certificate authorities are:

• Amazon Root CA 1

• Starfield Services Root Certificate Authority - G2

• Starfield Class 2 Certification Authority

Root certificates from the first two authorities are available from Amazon Trust Services, but
keeping your computer up-to-date is the more straightforward solution. To learn more about ACM-
provided certificates, see Amazon Certificate Manager FAQs.

Note

Currently, OpenSearch Service domains in the us-east-1 Region use certificates from a
different authority. We plan to update the Region to use these new certificate authorities in
the near future.

Certificate error when using SDK 1181

https://www.amazontrust.com/repository/
https://aws.amazon.com/certificate-manager/faqs/#certificates

Amazon OpenSearch Service Developer Guide

Document history for Amazon OpenSearch Service

This topic describes important changes to Amazon OpenSearch Service. Service software updates
add support for new features, security patches, bug fixes, and other improvements. To use new
features, you might need to update the service software on your domain. For more information,
see the section called “Service software updates”.

Service features are rolled out incrementally to the Amazon Web Services Regions where a service
is available. We update this documentation for the first release only. We don't provide information
about Region availability or announce subsequent Region rollouts. For information about Region
availability of service features, and to subscribe to notifications about updates, see What's New
with Amazon?

Relevant dates to this history:

• Current product version—2021-01-01

• Latest product release—February 14, 2024

• Latest documentation update—February 14, 2024

For notifications about updates, you can subscribe to the RSS feed.

Note

Patch releases: Service software versions that end in "-P" and a number, such
as R20211203-P4, are patch releases. Patches are likely to include performance
improvements, minor bug fixes, and security fixes or posture improvements. Since patches
do not include new features or breaking changes, they generally do not have direct user
or documentation impact, which is why the specifics of each patch are not included in this
document history.

Change Description Date

EBS in-place update You can now make some EBS
changes to your domains
without causing blue/gree

February 14, 2024

1182

https://aws.amazon.com/new
https://aws.amazon.com/new
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-configuration-changes.html

Amazon OpenSearch Service Developer Guide

n deployment in Amazon
OpenSearch Service.

Configuration change visibilit
y

You can now track domain
configuration changes in
the Amazon OpenSearch
Service console and using the
configuration API.

February 6, 2024

Vector search collections
general availability

Amazon OpenSearch
Serverless vector search
collections are now generally
available. The following
notable improvements were
made during the preview
phase:

• Vector search collections
now supports workloads
with billion of vectors, each
with up to 128 dimensions.

• OpenSearch Dashboards
now supports vector search
collections.

November 29, 2023

OR1 instances Amazon OpenSearch Service
now supports the OR1
instance types.

November 29, 2023

Direct queries with Amazon
S3 (preview)

Direct queries provide a fully
managed solution for making
transactional data available in
Amazon OpenSearch Service
within seconds of it being
written to an Amazon S3
bucket.

November 29, 2023

1183

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-configuration-changes.html#initiating-tracking-configuration-changes
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-configuration-changes.html#initiating-tracking-configuration-changes
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-vector-search.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-vector-search.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/or1.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/direct-query-s3.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/direct-query-s3.html

Amazon OpenSearch Service Developer Guide

10 TiB capacity for time series
collections

Amazon OpenSearch
Serverless adds support for
up to 10 TiB of index data
for time series collections.
This release also supports a
maximum allowed capacity
of 200 OCUs for all types of
collections and the ability
to disable standby replicas
when you create a collection.

November 29, 2023

OpenSearch 2.11 support Amazon OpenSearch Service
now supports OpenSearch
version 2.11, with software
release version R20231113
. This version includes all
features that were part of
versions 2.10 and 2.11. For
more information, see the
2.10 and 2.11 release notes.

November 17, 2023

Amazon OpenSearch
Ingestion support for Data
Prepper version 2.5

Amazon OpenSearch
Ingestion adds support for
Data Prepper version 2.5. For
more information, see the
2.5 release notes. In addition,
you can now specify an
OpenSearch Service domain
 or OpenSearch Serverless
collection as a pipeline source.
For more information, see the
OpenSearch source plugin in
the Data Prepper documenta
ion.

November 17, 2023

1184

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-scaling-limits.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-scaling-limits.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.10.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.11.0.md
https://docs.aws.amazon.com/opensearch-service/latest/ingestion/ingestion.html#ingestion-supported-versions
https://docs.aws.amazon.com/opensearch-service/latest/ingestion/ingestion.html#ingestion-supported-versions
https://docs.aws.amazon.com/opensearch-service/latest/ingestion/ingestion.html#ingestion-supported-versions
https://github.com/opensearch-project/data-prepper/releases/tag/2.5.0
https://opensearch.org/docs/latest/data-prepper/pipelines/configuration/sources/opensearch/

Amazon OpenSearch Service Developer Guide

CloudFormation template for
remote inference

To ease the setup of remote
inference for semantic
search, Amazon OpenSearch
Service provides an Amazon
CloudFormation template in
the console that automates
the model provisioning
process for you.

November 7, 2023

Update to service-linked role
policy

Adds the permissions
necessary for the service-l
inked role policy AmazonOpe
nSearchServiceRole
Policy to assign and
unassign IPv6 addresses.
The deprecated Elasticse
arch policy AmazonEla
sticsearchServiceR
olePolicy has also been
updated to ensure backwards
compatibility.

October 26, 2023

Amazon OpenSearch
Serverless lifecycle policies

Amazon OpenSearch
Serverless introduces index
lifecycle policies to streamlin
e the management of d
ata retention and deletion.
You can now use APIs or
a configuration interface
 in the console to set data
retention polices for time
 series collections, eliminati
ng the need for creating daily
 indexes or scripts to delete
old data.

October 25, 2023

1185

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/cfn-template.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/cfn-template.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac-managed.html#AmazonOpenSearchServiceRolePolicy
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac-managed.html#AmazonOpenSearchServiceRolePolicy
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/slr-aos.html#slr-permissions
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/slr-aos.html#slr-permissions
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-lifecycle.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-lifecycle.html

Amazon OpenSearch Service Developer Guide

Im4gn instances Amazon OpenSearch Service
now supports Im4gn instance
types. Im4gn instances are
optimized for workloads that
manage large datasets and
need high storage density
per vCPU.

October 20, 2023

Administrative options Amazon OpenSearch Service
now offers several administr
ative options that provide
granular control if you need
to troubleshoot issues with
your domain. These options
 include the ability to restart
the OpenSearch process on a
data node and the ability to
restart a data node.

October 17, 2023

Optional plugins Amazon OpenSearch Service
adds support for four new
language analyzer plugins:
Nori (Korean), Sudachi
(Japanese), Pinyin (Chinese)
, and STConvert Analysis
(Chinese) plugins. These are
available as optional plugins
that you can associate with
your OpenSearch Service
 domains. Along with this,
Amazon Personalize is also
now available as an optional
plugin in OpenSearch Service.

October 16, 2023

1186

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/supported-instance-types.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/admin-options.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/supported-plugins.html

Amazon OpenSearch Service Developer Guide

OpenSearch 2.9 support Amazon OpenSearch Service
now supports OpenSearch
version 2.9, with software
release version R20230926.
This version includes all
features that were part of
versions 2.8 and 2.9. For more
information, see the 2.8 and
2.9 release notes.

October 2, 2023

ML connectors Amazon OpenSearch Service
adds support for machine
learning (ML) connectors.
Connectors facilitate access
to ML models hosted on other
Amazon Web Services, or on
third-party machine learning
 (ML) platforms.

September 6, 2023

Amazon OpenSearch
Ingestion adds support for
Data Prepper version 2.4

Amazon OpenSearch
Ingestion adds support for
Amazon MSK pipelines and
Data Prepper version 2.4. For
more information, see the 2.4
release notes.

August 31, 2023

6 TiB capacity for time series
collections

Amazon OpenSearch
Serverless adds support for
up to 6 TiB of index data
for time series collections.
This release also supports a
maximum allowed capacity
of 100 OCUs for both search
and time series collections.

August 15, 2023

1187

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.8.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.9.0.md
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ml-amazon-connector.html
https://docs.aws.amazon.com/opensearch-service/latest/ingestion/ingestion.html#ingestion-supported-versions
https://docs.aws.amazon.com/opensearch-service/latest/ingestion/ingestion.html#ingestion-supported-versions
https://docs.aws.amazon.com/opensearch-service/latest/ingestion/ingestion.html#ingestion-supported-versions
https://github.com/opensearch-project/data-prepper/releases/tag/2.4.0
https://github.com/opensearch-project/data-prepper/releases/tag/2.4.0
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-scaling-limits.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-scaling-limits.html

Amazon OpenSearch Service Developer Guide

Vector search collections Amazon OpenSearch
Serverless adds the option
to create a vector search col
lection, which you can use
to store vector embedding
s to power similiarity and
semantic searches.

July 26, 2023

OpenSearch 2.7 support Amazon OpenSearch Service
now supports OpenSearc
h version 2.7. This version
includes all features that were
part of versions 2.6 and 2.7.
For more information, see
the 2.6 and 2.7 release notes.

July 10, 2023

Data Prepper 2.3 support Amazon OpenSearch
Ingestion adds support
for Amazon Security Lake
pipelines and Data Prepper
version 2.3. For more
information, see the 2.3
release notes.

June 26, 2023

Multi-AZ with Standby Amazon OpenSearch Service
adds the option to deploy a
domain across three Availabil
ity Zones (AZ), with each AZ
containing a complete copy of
data and with nodes in one of
these AZs acting as a standby.
The Multi-AZ with Standby
deployment option provid
es 99.99% availability and
consistent performance in
the event of an infrastructure
failure.

May 3, 2023

1188

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-vector-search.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.6.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.7.0.md
https://docs.aws.amazon.com/opensearch-service/latest/ingestion/ingestion.html#ingestion-supported-versions
https://github.com/opensearch-project/data-prepper/releases/tag/2.3.0
https://github.com/opensearch-project/data-prepper/releases/tag/2.3.0
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-multiaz.html#managedomains-za-standby.html

Amazon OpenSearch Service Developer Guide

New service-linked role Amazon OpenSearch
Service adds a service-linked
role called AWSServic
eRoleForAmazonOpen
SearchIngestion , which
allows Amazon OpenSearch
Ingestion to send metric data
to Amazon CloudWatch.

April 26, 2023

Amazon OpenSearch
Ingestion

Amazon OpenSearch
Ingestion is a fully managed
data collector that delivers
real-time log and trace
data to OpenSearch Service
domains and OpenSearc
h Serverless collections.
OpenSearch Ingestion eli
minates the need for you to
use third-party solutions like
Logstash or Jaeger to ingest
data into your domains and
collections.

April 26, 2023

OpenSearch 2.5 support Amazon OpenSearch Service
now supports OpenSearc
h version 2.5. This version
includes all features that were
part of versions 2.4 and 2.5.
For more information, see
the 2.4 and 2.5 release notes.

March 13, 2023

1189

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/slr-osis.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ingestion.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ingestion.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.4.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.5.0.md

Amazon OpenSearch Service Developer Guide

Off-peak maintenance
windows

Amazon OpenSearch Service
adds off-peak windows, which
are daily 10-hour, low-traffic
time blocks during which it
can schedule service software
updates and Auto-Tune opt
imizations that require a
blue/green deployment.
Off-peak updates help to m
inimize strain on a cluster's
dedicated master nodes
during higher traffic periods.

For new domains created
after February 16, the off-
peak window is automatically
configured for between 10:00
P.M. and 8:00 A.M. local time.
 For existing domains, you
need to explicitly enable the
window.

February 16, 2023

Configure SAML authentic
ation during domain creation

Amazon OpenSearch Service
now supports configuring
SAML authentication during
domain creation. Previously,
you had to configure SAML
options after the domain was
already created.

February 1, 2023

1190

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/off-peak.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/off-peak.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/saml.html#saml-configure-new
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/saml.html#saml-configure-new

Amazon OpenSearch Service Developer Guide

Remote reindex for VPC
domains

Amazon OpenSearch Service
adds the option for a VPC
endpoint connection between
two domains. You can now
use remote reindex to copy
indexes from one VPC domain
to another without a reverse
proxy. Your VPC domains
must be running service
software R20221114 or later
to use this feature.

January 31, 2023

1191

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/remote-reindex.html#remote-reindex-vpc
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/remote-reindex.html#remote-reindex-vpc

Amazon OpenSearch Service Developer Guide

Amazon OpenSearch
Serverless general availability

Amazon OpenSearch
Serverless is now generally
available. The following
notable improvements were
 made during the preview
phase:

• Capacity can now scale
down to the minimum co
nfigured OCUs when there's
a decrease in traffic on the
collection endpoint.

• The maximum allowed
OCUs for both indexing
and search was increa
sed from 20 to 50. Each
OCU includes enough hot
ephemeral storage for 120
GiB of index data.

• You can now configure
data access settings while
creating collections, rather
than having to configure
them in a separate w
orkflow.

January 25, 2023

Async dry run Amazon OpenSearch Service
now supports async dry
run, which allows you to
perform a validation check
prior to making a configura
tion change, and notifies you
if your changes will cause a
blue/green deployment.

January 19, 2023

1192

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-configuration-changes.html#dryrun

Amazon OpenSearch Service Developer Guide

New service-linked role Amazon OpenSearch
Service adds a service-l
inked role called AWSServic
eRoleForAmazonOpen
SearchServerless ,
which allows OpenSearch
Serverless to send metric data
to Amazon CloudWatch.

November 29, 2022

Amazon OpenSearch
Serverless preview

Amazon OpenSearch
Serverless is an on-demand
, auto scaling, serverless
configuration for Amazon
OpenSearch Service. Serverles
s removes the operational
complexities of provisioning,
 configuring, and tuning your
OpenSearch clusters.

November 29, 2022

OpenSearch 2.3 support Amazon OpenSearch Service
now supports OpenSearc
h version 2.3. This version
includes all features that were
part versions 2.0, 2.1, and 2.2.
For more information, see the
2.0, 2.1, 2.2, and 2.3 release
notes. Version 2.3 contains a
breaking change. For more
information, see Supported
upgrade paths.

November 15, 2022

1193

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless-service-linked-roles.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/serverless.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.0.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.1.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.2.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-2.3.0.md
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/version-migration.html#supported-upgrade-paths
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/version-migration.html#supported-upgrade-paths

Amazon OpenSearch Service Developer Guide

Notifications plugin support Amazon OpenSearch Service
now supports the Notificat
ions plugin, which offers
a central location for all
of your notifications from
OpenSearch plugins. Starting
with version 2.0, alerting
destinations were deprecate
d and replaced with notifica
tion channels.

November 15, 2022

Kibana 7.1.1 support Amazon OpenSearch Service
domains running Elasticse
arch 7.1 now support the
latest patch release for
Kibana 7.1.1, which adds bug
fixes and improves security.
When you update your 7.1
domains to service software
R20221114, OpenSearch
Service will automatically
 upgrade them to this patch
release.

November 15, 2022

Kibana 6.8.13 support Amazon OpenSearch Service
domains running Elasticsearch
6.8 now support the latest
patch release for Kibana
6.8.13, which adds bug
fixes and improves security.
When you update your 6.8
domains to service software
R20221114, OpenSearch
Service will automatically
 upgrade them to this patch
release.

November 15, 2022

1194

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/alerting.html#alerting-notifications
https://www.elastic.co/guide/en/kibana/7.1/release-notes-7.1.1.html
https://www.elastic.co/guide/en/kibana/6.8/release-notes-6.8.13.html

Amazon OpenSearch Service Developer Guide

Kibana 6.3.2 support Amazon OpenSearch Service
domains running Elasticse
arch 6.3 now support the
latest patch release for
Kibana 6.3.2, which adds bug
fixes and improves security.
When you update your 6.3
domains to service software
R20221114, OpenSearch
Service will automatically
 upgrade them to this patch
release.

November 15, 2022

Amazon PrivateLink With Amazon OpenSearc
h Service-managed VPC
endpoints, you can connect
directly to OpenSearch
Service VPC domains by using
an interface VPC endpoint
instead of connecting over
the internet. An OpenSearc
h Service-managed VPC
endpoint is accessible only
within the VPC where the
endpoint is provisioned, or
from any VPCs peered with
the VPC where the endpoint is
provisioned, as permitted by
the route tables and security
groups. Your VPC domain
must be running service
software R20220928 or later
to connect to an interface
VPC endpoint.

November 7, 2022

1195

https://www.elastic.co/guide/en/kibana/6.3/release-notes-6.3.2.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/vpc-interface-endpoints.html

Amazon OpenSearch Service Developer Guide

Bug fixes and performance
improvements

Service software R20220928
includes bug fixes and
performance enhancements,
 including improved SAML
logging. The update also
changes the default tenant to
Global rather than Private.

October 3, 2022

Improved API reference Amazon OpenSearch Service
offers an improved, all-encom
passing configuration API
reference. The new reference
s contains all available actions
and data types, sample
request and response syntax,
and links to the correspon
ding SDK references for all
supported languages.

September 13, 2022

Blue/green validation Amazon OpenSearch Service
now performs a validation
check prior to blue/green
deployments, and surfaces
validation errors if your
domain is not eligible for an
update.

August 16, 2022

OpenSearch 1.3 support Amazon OpenSearch Service
now supports OpenSearc
h version 1.3. For more
information, see the 1.3
release notes.

July 27, 2022

1196

https://docs.aws.amazon.com/opensearch-service/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-configuration-changes.html#validation
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-1.3.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-1.3.0.md

Amazon OpenSearch Service Developer Guide

ML Commons plugin support Amazon OpenSearch Service
adds support for the ML
Commons plugin, which
provides a set of common
machine learning algorithm
s through transport and
REST API calls. You can
also interact with the ML
Commons plugin through
PPL commands.

July 27, 2022

gp3 volume support Amazon OpenSearch Service
adds support for the gp3
EBS General Purpose SSD
volume type. You can specify
additional provisioned IOPS
and throughput when you
create or modify the domain.

July 26, 2022

Enhanced best practices
documentation

The Amazon OpenSearc
h Service documentation
provides improved operation
al best practices and general
recommendations for creating
and operating OpenSearch
Service domains.

July 6, 2022

Integration with Service
Quotas

You can now view quotas for
Amazon OpenSearch Service,
and request quota increases
, from the Service Quotas
console.

June 29, 2022

1197

https://opensearch.org/docs/latest/ml-commons-plugin/index/
https://opensearch.org/docs/latest/ml-commons-plugin/api
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/limits.html#ebsresource
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/bp.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/bp.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/limits.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/limits.html

Amazon OpenSearch Service Developer Guide

Tag-based access control for
the OpenSearch API

You can now use tags
to control access to the
OpenSearch APIs. Previousl
y, you could only use tags
to control access to the
configuration API.

June 16, 2022

Cross-cluster search across
Regions

Cross-cluster search is now
supported across Amazon
Web Services Regions as long
as both domains are running
Elasticsearch version 7.10
or later, or any version of O
penSearch.

June 14, 2022

Single Kibana 5.6 support Amazon OpenSearch Service
adds support for single
Kibana 5.6.16. With single
Kibana 5.6.16, you can use
Kibana 5.6 as your front end
while connecting to Elasticse
arch versions 5.1, 5.3, 5.5,
and 5.6. You must be on
service software R20220323
or later to use single Kibana
5.6.

April 4, 2022

R20220323-P1 Amazon OpenSearch Service
recently released service
software update R20220323
, but the update was
subsequently rolled back
because of an issue. We
recommend that you update
your domains to patch release
R20220323-P1 or later, which
fixes the issue.

April 4, 2022

1198

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac.html#ac-types-identity
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac.html#ac-types-identity
https://www.elastic.co/guide/en/kibana/5.6/release-notes-5.6.16.html

Amazon OpenSearch Service Developer Guide

OpenSearch 1.2 support Amazon OpenSearch Service
now supports OpenSearc
h version 1.2. For more
information, see the 1.2
release notes.

April 4, 2022

Observability The default installation of
OpenSearch Dashboards for
Amazon OpenSearch Service
includes the Observability
plugin, which you can use to
visualize data-driven events
using Piped Processing
Language (PPL) to explore
and query your data. The
plugin requires OpenSearc
h 1.2 or later and service
software R20220323 or later.

April 4, 2022

Kibana 7.7.1 support Amazon OpenSearch Service
domains running Elasticsearch
7.7 now support the latest
patch release for Kibana 7.7,
which adds bug fixes and
improves security. When you
update your 7.7 domains to
service software R20220323
or later, OpenSearch Service
will automatically upgrade
them to this patch release.

April 4, 2022

1199

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-1.2.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-1.2.0.md
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/observability.html
https://www.elastic.co/guide/en/kibana/7.7/release-notes-7.7.1.html

Amazon OpenSearch Service Developer Guide

JVM memory pressure metric
changes

Amazon OpenSearch Service
changed the logic for the
JVMMemoryPressure
CloudWatch metrics to more
accurately reflect memory
utilization. Previously, the
metrics only considered
the old generation memory
pool of JVM heap. With
this change, the metric also
considers the young generatio
n memory pool. After you
update your domain to
service software R20220323
, you might see an increase in
the JVMMemoryPressure ,
MasterJVMMemoryPre
ssure , and/or WarmJVMMe
moryPressure metrics.

April 4, 2022

Custom dictionaries with the
IK (Chinese) Analysis plugin

Amazon OpenSearch Service
now supports using custom
dictionaries with the IK
(Chinese) Analysis plugin.

April 4, 2022

1200

https://aws.amazon.com//blogs/big-data/understanding-the-jvmmemorypressure-metric-changes-in-amazon-opensearch-service/
https://aws.amazon.com//blogs/big-data/understanding-the-jvmmemorypressure-metric-changes-in-amazon-opensearch-service/
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/custom-packages.html#custom-packages-using
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/custom-packages.html#custom-packages-using

Amazon OpenSearch Service Developer Guide

Cross-cluster replication on
existing domains

Amazon OpenSearch Service
removed the limitation that
you can only implement
cross-cluster search and
cross-cluster replication on
domains created on or after
June 3rd, 2020. You can now
enable these features on all
domains regardless of when
they were created. Both
domains must be on service
software R20220323 or later.

April 4, 2022

Blue/green deployment
visibility

Amazon OpenSearch Service
now offers more visibility into
the progress of blue/green de
ployments. You can monitor
these details in the console or
using the configuration API.

January 27, 2022

Fine-grained access control on
existing domains

You can now enable fine-grai
ned access control on existing
domains. You can enable a
temporary migration period
for open/IP-based access
policies to ensure that users
can continue to access your
domain while you create and
map roles. Enabling fine-grai
ned access control on existing
domains requires service
 software R20211203 or later.

January 6, 2022

1201

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-configuration-changes.html#managedomains-config-stages
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-configuration-changes.html#managedomains-config-stages
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/fgac.html#fgac-enabling
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/fgac.html#fgac-enabling

Amazon OpenSearch Service Developer Guide

Renamed OpenSearch
Dashboards roles

With service software
R20211203, the kibana_us
er role was renamed to
opensearch_dashboa
rds_user , and kibana_re
ad_only was renamed to
opensearch_dashboa
rds_read_only . This
change applies to all
newly-created OpenSearc
h 1.x domains. For existing
OpenSearch domains that
 you upgrade to service
software R20211203, the
roles remain the same.

January 4, 2022

OpenSearch 1.1 support Amazon OpenSearch Service
now supports OpenSearc
h version 1.1. For more
information, see the 1.1
release notes.

January 4, 2022

ISM visual editor The default installation of
OpenSearch Dashboards for
Amazon OpenSearch Service
now supports the visual
editor for ISM policies. This
feature requires OpenSearch
1.1 or later.

January 4, 2022

1202

https://opensearch.org/docs/latest/security-plugin/access-control/users-roles/#predefined-roles
https://opensearch.org/docs/latest/security-plugin/access-control/users-roles/#predefined-roles
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-1.1.0.md
https://github.com/opensearch-project/opensearch-build/blob/main/release-notes/opensearch-release-notes-1.1.0.md
https://opensearch.org/docs/latest/im-plugin/ism/index/#visual-editor

Amazon OpenSearch Service Developer Guide

Cross-service confused deputy
prevention update

Amazon OpenSearch
Service supports using the
aws:SourceArn and
 aws:SourceAccount
global condition context keys
in IAM resource policies to
prevent the confused deputy
problem. You must be on
service software R20211203
or later to use these condition
keys.

January 4, 2022

1203

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/cross-service-confused-deputy-prevention.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/cross-service-confused-deputy-prevention.html

Amazon OpenSearch Service Developer Guide

Log4j patch Service software R20211203
-P2 updates the version of
Log4j used in OpenSearch
Service as recommended by
the advisories in CVE-2021-
44228 and CVE-2021-45046.
The patch applies to domains
running all versions of
OpenSearch and Elasticse
arch. OpenSearch Service will
continue to update various
Log4j versions internally, and
they will not necessarily be
restricted to the latest versio
n of Log4j. The Log4j version
on your domain depends on
the software version that the
domain is running. However,
irrespective of the Log4j
version, as long as you're
running R20211203-P2 or
later, your domains contain
the Log4j update required to
address CVE-2021-44228 and
CVE-2021-45046.

December 15, 2021

Cross-cluster replication Cross-cluster replication
lets you replicate indices,
mappings, and metadata
 from one OpenSearch Service
domain to another. Cross-
cluster replication requires
a domain running Elasticse
arch 7.10 or OpenSearch 1.1
or later.

October 5, 2021

1204

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45046
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/replication.html

Amazon OpenSearch Service Developer Guide

New Amazon-managed
policies

The launch of Amazon
OpenSearch Service includes
new Amazon-managed
policies and the deprecation o
f old policies.

September 8, 2021

Kibana 6.4.3 support Amazon OpenSearch Service
domains running legacy
Elasticsearch version 6.4
now support the latest patch
release for Kibana 6.4, which
adds bug fixes and improves
security. OpenSearch Service
will automatically upgrade
domains to this patch release.

September 8, 2021

Data streams Amazon OpenSearch Service
adds support for data
streams, which simplify the
process of managing time-
series data. Your domain must
be running OpenSearch 1.0 or
later to use data streams.

September 8, 2021

1205

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac-managed.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac-managed.html
https://www.elastic.co/guide/en/kibana/6.4/release-notes-6.4.3.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/data-streams.html

Amazon OpenSearch Service Developer Guide

Amazon OpenSearch Service Amazon renames Amazon
OpenSearch Service to
remove the legacy "Elastics
earch" branding. Amazon
OpenSearch Service suppo
rts OpenSearch and legacy
Elasticsearch OSS. When you
create a cluster, you have the
option of which search engine
to use. OpenSearch Service
offers broad compatibility
with Elasticsearch OSS 7.10,
the final open source version
of the software.

September 8, 2021

Cold storage Cold storage is a new storage
tier for infrequently accessed
or historical data. Cold indices
only occupy S3 storage and
have no compute attached to
them. Cold storage requires a
domain running Elasticsearch
7.9 or later and service softw
are R20210426 or later.

May 13, 2021

ARM-based Graviton
instances

Amazon OpenSearch Service
now supports ARM-based
Graviton instance types
(M6G, C6G, R6G, and R6GD).
Graviton instance types
are available on new and
existing domains running
 Elasticsearch 7.9 or later and
service software R20210331
or later.

May 4, 2021

1206

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/rename.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/cold-storage.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/supported-instance-types.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/supported-instance-types.html

Amazon OpenSearch Service Developer Guide

ISM templates Amazon OpenSearch Service
adds support for ISM
templates, which let you
automatically attach an I
SM policy to an index if the
index matches a pattern
defined in the policy. ISM
templates require service
software R20210426 or later.
This update also deprecat
es the policy_id setting,
meaning you can no longer
use index templates to apply
ISM policies to newly created
indices. The update introd
uces a breaking change for
existing CloudFormation
templates using this setting.

April 27, 2021

Elasticsearch 7.10 support Amazon OpenSearch Service
now supports Elasticse
arch version 7.10. For more
information, see 7.10 release
notes.

April 21, 2021

Asynchronous search Amazon OpenSearch Service
now supports asynchron
ous search, which lets you
run search requests in the
background. Asynchronous
search requires a domain
running Elasticsearch 7.10
or later and service software
R20210331 or later.

April 21, 2021

1207

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ism.html#ism-template.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/release-notes-7.10.0.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/release-notes-7.10.0.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/asynchronous-search.html

Amazon OpenSearch Service Developer Guide

Tag-based access control for
the configuration API

You can now use Amazon
tags to control access to the
Amazon ES configuration API.

March 2, 2021

Auto-Tune Amazon OpenSearch Service
adds Auto-Tune, which uses
performance and usage
metrics from your cluster
to suggest changes to the
JVM settings on your nodes.
Auto-Tune requires a domain
running Elasticsearch 6.7 or
later and service software
R20201117 or later.

February 24, 2021

Trace Analytics The default installation
of Kibana for Amazon
OpenSearch Service now
includes the trace analyti
cs plugin, which lets you
monitor trace data from your
distributed applications. The
plugin requires a domain
running Elasticsearch 7.9 or
later and service software
R20210201 or later.

February 17, 2021

1208

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ac.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/auto-tune.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/trace-analytics.html

Amazon OpenSearch Service Developer Guide

Shard metrics Amazon OpenSearch Service
adds the following CloudWatc
h metrics for tracking shard
status: Shards.active ,
Shards.unassigned ,
Shards.delayedUnas
signed Shards.ac
tivePrimary , Shards.in
itializing , Shards.re
locating . The metrics are
available on domains running
service software R20210201
or later.

February 17, 2021

Kibana reports The default installation
of Kibana for Amazon
OpenSearch Service now
supports on-demand reports
 for the Discover, Visualize
, and Dashboard pages.
This feature requires Elas
ticsearch 7.9 or later and
service software R20210201
or later.

February 17, 2021

Kibana 5.6.16 support Amazon OpenSearch Service
domains running Elasticsearch
5.6 now support the latest
patch release for Kibana 5.6,
which adds bug fixes and
improves security. Amazon
ES will automatically upgrade
domains to this patch release.

February 17, 2021

1209

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-cloudwatchmetrics.html#managedomains-cloudwatchmetrics-cluster-metrics
https://opensearch.org/docs/latest/dashboards/reporting/

Amazon OpenSearch Service Developer Guide

Encryption for existing
domains

Amazon OpenSearch Service
now supports enabling
encryption of data at rest
and node-to-node encryption
on existing domains running
Elasticsearch 6.7 or later.
After you enable these
settings, you can't disable
them.

January 27, 2021

Remote reindex Amazon OpenSearch Service
now supports remote reindex,
which lets you migrate indices
from remote domains. This
feature requires service
software R20201117 or later.

November 24, 2020

Piped Processing Language Amazon OpenSearch Service
now supports Piped Processin
g Language (PPL), a query
language that lets you use
pipe (|) syntax to query data
stored in Elasticsearch. This
feature requires service
software R20201117 or later.
To learn more, see .

November 24, 2020

Kibana notebooks Amazon OpenSearch Service
adds support for Kibana
notebooks, which lets you
combine live visualizations
and narrative text in a
single interface. This feature
requires service software
R20201117 or later.

November 24, 2020

1210

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/trace-analytics.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/trace-analytics.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/remote-reindex.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ppl-support.html
https://opensearch.org/docs/latest/observability/notebooks/

Amazon OpenSearch Service Developer Guide

Gantt charts The default installation
of Kibana for Amazon
OpenSearch Service now
supports a new visualiza
tion type, Gantt charts. This
feature requires service
software R20201117 or later.

November 24, 2020

Elasticsearch 7.9 support Amazon OpenSearch Service
now supports Elasticse
arch version 7.9. For more
information, see 7.9 release
notes.

November 24, 2020

Anomaly detection updates Anomaly detection for
Amazon OpenSearch Service
adds support for high
cardinality, which lets you
categorize anomalies with
a dimension like IP address,
product ID, country code, and
so on. This feature requires
service software R20201117
or later.

November 24, 2020

Dynamic dictionary updates Amazon OpenSearch Service
now lets you update your
search analyzers without
reindexing. You can update
the dictionary files on some
or all of your domains, and
Amazon ES tracks packag
e versions over time so that
you have a history of what
changed and when. This
feature requires service
software R20201019 or later.

November 17, 2020

1211

https://opensearch.org/docs/latest/dashboards/gantt/
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/release-notes-7.9.0.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/release-notes-7.9.0.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ad.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/custom-packages.html

Amazon OpenSearch Service Developer Guide

Custom endpoints Amazon OpenSearch Service
now supports custom
endpoints, which let you give
your Amazon ES domain a
new URL. If you ever swap
domains, you can maintain
the same URL. This feature
requires service software
R20201019 or later.

November 5, 2020

New language plugins Amazon OpenSearch Service
now supports IK (Chinese)
Analysis, Vietnamese Analysis,
and Thai Analysis plugins on
domains running Elasticsearch
7.7 or later with service softw
are R20201019 or later.

October 28, 2020

Elasticsearch 7.8 support Amazon OpenSearch Service
now supports Elasticse
arch version 7.8. For more
information, see 7.8 release
notes.

October 28, 2020

SAML authentication for
Kibana

Amazon OpenSearch Service
now supports SAML authentic
ation for Kibana, which lets
you use third-party identity
providers to log in to Kibana,
manage fine-grained access
 control, search your data,
and build visualizations.
This feature requires service
software R20201019 or later.

October 27, 2020

1212

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/customendpoint.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/supported-plugins.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/release-notes-7.8.0.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/release-notes-7.8.0.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/saml.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/saml.html

Amazon OpenSearch Service Developer Guide

T3 instances Amazon OpenSearch Service
now supports the t3.small
and t3.medium instance
types.

September 23, 2020

Audit logs Amazon OpenSearch Service
now supports audit logs for
your data, which lets you
track failed login attempts,
user access to indices,
documents, and fields, and
much more. This feature
requires service software
R20200910 or later.

September 16, 2020

UltraWarm updates UltraWarm for Amazon
OpenSearch Service adds
new metrics, new settings,
a larger migration queue,
and a cancellation API. These
updates require service
software R20200910 or later.
For more information, see .

September 14, 2020

Learning to Rank Amazon OpenSearch Service
now supports the open source
Learning to Rank plugin,
which lets you use machine
learning technologies to
improve search relevance.
This feature requires service
software R20200721 or later.

July 27, 2020

1213

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/bp.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/audit-logs.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ultrawarm.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/learning-to-rank.html

Amazon OpenSearch Service Developer Guide

k-NN cosine similarity k-Nearest Neighbor (k-NN)
now lets you search for
"nearest neighbors" by c
osine similarity in addition
to Euclidean distance. This
feature requires service
software R20200721 or later.

July 23, 2020

gzip compression Amazon OpenSearch Service
now supports gzip compressi
on for most HTTP requests
and responses, which can
reduce latency and conserve
bandwidth. This feature
requires service software
R20200721 or later.

July 23, 2020

Elasticsearch 7.7 support Amazon OpenSearch Service
now supports Elasticse
arch version 7.7. For more
information, see 7.7 release
notes.

July 23, 2020

Kibana map service The default installation
of Kibana for Amazon
OpenSearch Service now
includes a WMS map server,
 except for domains in the
India and China Regions.

June 18, 2020

SQL improvements SQL support for Amazon
OpenSearch Service now
supports many new operation
s, a dedicated Kibana user
interface for data explorati
on, and an interactive CLI. For
more information, see .

June 3, 2020

1214

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/knn.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/gzip.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/release-notes-7.7.0.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.17/release-notes-7.7.0.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/dashboards.html#dashboards-map-server
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/sql-support.html

Amazon OpenSearch Service Developer Guide

Cross-cluster search Amazon OpenSearch Service
lets you perform cross-clu
ster queries and aggregations
across multiple connected
domains.

June 3, 2020

Anomaly detection Amazon OpenSearch Service
lets you automatically detect
anomalies in near-real time.

June 3, 2020

UltraWarm UltraWarm storage for
Amazon OpenSearch Service
has left public preview and is
now generally available. The
feature now supports a wider
range of versions and Amazon
Web Services Regions. For
more information, see .

May 5, 2020

Custom dictionaries Amazon OpenSearch Service
lets you upload custom
dictionary files for use with
your cluster. These files
improve your search results
by telling Elasticsearch to
ignore certain high-frequency
words or to treat terms as
equivalent.

April 21, 2020

Elasticsearch 7.4 Support Amazon OpenSearch Service
now supports Elasticse
arch version 7.4. For more
information, see Supported
 versions.

March 12, 2020

1215

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/cross-cluster-search.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ad.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ultrawarm.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/custom-packages.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version

Amazon OpenSearch Service Developer Guide

k-NN Amazon OpenSearch Service
adds support for k-Nearest
Neighbor (k-NN) search. k-
NN requires service software
R20200302 or later.

March 3, 2020

Index State Management Amazon OpenSearch Service
adds Index State Managemen
t (ISM), which lets you
automate routine tasks, such
as deleting indices when
they reach a certain age.
This feature requires service
software R20200302 or later.

March 3, 2020

Elasticsearch 5.6.16 support Amazon OpenSearch Service
now supports the latest
patch release for version 5.6,
which adds bug fixes and
improves security. Amazon
ES will automatically upgrade
existing 5.6 domains to
this release. Note that this
Elasticsearch release incorrect
ly reports its version as
5.6.17.

March 2, 2020

Fine-grained access control Amazon OpenSearch Service
now supports fine-grai
ned access control, which
offers security at the index,
document, and field level,
Kibana multi-tenancy,
and optional HTTP basic
authentication for your
cluster.

February 11, 2020

1216

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/knn.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ism.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/fgac.html

Amazon OpenSearch Service Developer Guide

UltraWarm storage (preview) Amazon OpenSearch Service
adds UltraWarm, a new warm
storage tier that uses Amazon
S3 and a sophisticated
caching solution to improve
performance. For indices that
you are not actively writing
to and query less frequentl
y, UltraWarm storage offers
 significantly lower costs per
GiB.

December 3, 2019

Encryption features for China
Regions

Encryption of data at rest
and node-to-node encryptio
n are now available in the
cn-north-1 China (Beijing)
Region and cn-northw
est-1 China (Ningxia)
Region.

November 20, 2019

Require HTTPS You can now require that all
traffic to your Amazon ES
domains arrive over HTTPS.
When configuring your
domain, check the Require
 HTTPS box. This feature
requires service software
R20190808 or later.

October 3, 2019

Elasticsearch 7.1 and 6.8
support

Amazon OpenSearch Service
now supports Elasticsearch
version 7.1 and 6.8. For more
information, see Supported
 versions.

August 13, 2019

1217

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ultrawarm.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version

Amazon OpenSearch Service Developer Guide

Hourly snapshots Rather than daily snapshots,
Amazon OpenSearch Service
now takes hourly snapshots
of domains running Elasticse
arch 5.3 and later so that you
have more frequent backups
from which to restore your
data.

July 8, 2019

Elasticsearch 6.7 support Amazon OpenSearch Service
now supports Elasticse
arch version 6.7. For more
information, see Supported
 versions.

May 29, 2019

SQL support Amazon OpenSearch Service
now lets you query your
data using SQL. SQL support
requires service software
R20190418 or later.

May 15, 2019

5-series instance types Amazon OpenSearch Service
now supports M5, C5, and R5
instance types. Compared to
previous-generation instance
types, these new types offer
better performance at lower
prices. For more information,
see Limits.

April 24, 2019

Elasticsearch 6.5 support Amazon OpenSearch Service
now supports Elasticsearch
version 6.5.

April 8, 2019

1218

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-snapshots.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/sql-support.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/supported-instance-types.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/limits.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version

Amazon OpenSearch Service Developer Guide

Alerting Alerting for Amazon
OpenSearch Service notifies
you when data from one
or more Amazon ES indices
meets certain conditions.
Alerting requires service
software R20190221 or later.

March 25, 2019

Three Availability Zone
support

Amazon OpenSearch Service
now supports three Availabil
ity Zones in many Regions.
This release also includes a
streamlined console exper
ience. This multi-AZ requires
service software R20181023
or later.

February 7, 2019

Elasticsearch 6.4 support Amazon OpenSearch Service
now supports Elasticsearch
version 6.4.

January 23, 2019

200-node clusters Amazon ES now lets you
create clusters with up to 200
data nodes for a total of 3 PB
of storage.

January 22, 2019

Service software updates Amazon ES now lets you
manually update the service
software for your domain in
order to benefit from new
features more quickly or
update at a low traffic time.
 To learn more, see .

November 20, 2018

1219

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/alerting.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-multiaz.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-multiaz.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/petabyte-scale.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/service-software.html

Amazon OpenSearch Service Developer Guide

New CloudWatch metrics Amazon ES now offers
node-level metrics and new
Cluster health and Instance
health tabs in the Amazon ES
console.

November 20, 2018

China (Beijing) support Amazon OpenSearch Service
is now available in the cn-
north-1 Region, where it s
upports the M4, C4, and R4
instance types.

October 17, 2018

Node-to-node encryption Amazon OpenSearch Service
now supports node-to-node
encryption, which keeps your
data encrypted as Amazon ES
distributes it throughout your
cluster.

September 18, 2018

In-place version upgrades Amazon OpenSearch Service
now supports in-place version
upgrades.

August 14, 2018

Elasticsearch 6.3 and 5.6
support

Amazon OpenSearch Service
now supports Elasticsearch
version 6.3 and 5.6.

August 14, 2018

Error logs Amazon ES now lets you
publish Elasticsearch error
logs to Amazon CloudWatch.

July 31, 2018

China (Ningxia) Reserved
Instances

Amazon ES now offers
Reserved Instances in the
China (Ningxia) Region.

May 29, 2018

Reserved Instances Amazon ES now offers
support for Reserved
Instances.

May 7, 2018

1220

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/managedomains-cloudwatchmetrics.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ntn.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/version-migration.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/what-is.html#choosing-version
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/createdomain-configure-slow-logs.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/ri.html

Amazon OpenSearch Service Developer Guide

Earlier updates

The following table describes important changes Amazon ES before May 2018.

Change Description Date

Amazon Cognito
Authentication for
Kibana

Amazon ES now offers login page protection for Kibana.
To learn more, see the section called “Amazon Cognito
authentication for OpenSearch Dashboards”.

April 2,
2018

Elasticsearch 6.2
Support

Amazon OpenSearch Service now supports Elasticsearch
version 6.2.

March 14,
2018

Korean Analysis
Plugin

Amazon ES now supports a memory-optimized version of
the Seunjeon Korean analysis plugin.

March 13,
2018

Instant Access
Control Updates

Changes to the access control policies on Amazon ES
domains now take effect instantly.

March 7,
2018

Petabyte Scale Amazon ES now supports I3 instance types and total
domain storage of up to 1.5 PB. To learn more, see the
section called “Petabyte scale”.

19
December
2017

Encryption of Data
at Rest

Amazon ES now supports encryption of data at rest. To
learn more, see the section called “Encryption at rest”.

December
7, 2017

Elasticsearch 6.0
Support

Amazon ES now supports Elasticsearch version 6.0. For
migration considerations and instructions, see the section
called “Upgrading domains”.

December
6, 2017

VPC Support Amazon ES now lets you launch domains within an
Amazon Virtual Private Cloud. VPC support provides
an additional layer of security and simplifies communic
ations between Amazon ES and other services within a
VPC. To learn more, see the section called “VPC support”.

October 17,
2017

Slow Logs Publishin
g

Amazon ES now supports the publishing of slow logs to
CloudWatch Logs. To learn more, see the section called
“Monitoring logs”.

October 16,
2017

Earlier updates 1221

https://bitbucket.org/eunjeon/seunjeon/src/master/elasticsearch/

Amazon OpenSearch Service Developer Guide

Change Description Date

Elasticsearch 5.5
Support

Amazon ES now supports Elasticsearch version 5.5.

You can now restore automated snapshots without
contacting Amazon Web Services Support and store
scripts using the _scripts API.

September
7, 2017

Elasticsearch 5.3
Support

Amazon ES added support for Elasticsearch version 5.3. June 1,
2017

More Instances and
EBS Capacity per
Cluster

Amazon ES now supports up to 100 nodes and 150 TB
EBS capacity per cluster.

April 5,
2017

Canada (Central)
and EU (London)
Support

Amazon ES added support for the following Regions: Ca
nada (Central), ca-central-1, and EU (London), eu-west-2.

March 20,
2017

More Instances and
Larger EBS Volumes

Amazon ES added support for more instances and larger
EBS volumes.

February
21, 2017

Elasticsearch 5.1
Support

Amazon ES added support for Elasticsearch version 5.1. January 30,
2017

Support for the
Phonetic Analysis
Plugin

Amazon ES now provides built-in integration with the
Phonetic Analysis plugin, which allows you to run
“sounds-like” queries on your data.

December
22, 2016

US East (Ohio)
Support

Amazon ES added support for the following Region: US
 East (Ohio), us-east-2.

October 17,
2016

New Performance
Metric

Amazon ES added a performance metric, ClusterUs
edSpace .

July 29,
2016

Elasticsearch 2.3
Support

Amazon ES added support for Elasticsearch version 2.3. July 27,
2016

Earlier updates 1222

Amazon OpenSearch Service Developer Guide

Change Description Date

Asia Pacific
(Mumbai) Support

Amazon ES added support for the following Region: Asia
Pacific (Mumbai), ap-south-1.

June 27,
2016

More Instances per
Cluster

Amazon ES increased the maximum number of instances
(instance count) per cluster from 10 to 20.

May 18,
2016

Asia Pacific (Seoul)
Support

Amazon ES added support for the following Region: Asia
Pacific (Seoul), ap-northeast-2.

January 28,
2016

Amazon ES Initial release. October 1,
2015

Earlier updates 1223

Amazon OpenSearch Service Developer Guide

Amazon Glossary

For the latest Amazon terminology, see the Amazon glossary in the Amazon Web Services Glossary
Reference.

1224

https://docs.amazonaws.cn/glossary/latest/reference/glos-chap.html

	Amazon OpenSearch Service
	Table of Contents
	What is Amazon OpenSearch Service?
	Features of Amazon OpenSearch Service
	Amazon OpenSearch Serverless
	Amazon OpenSearch Ingestion
	Supported versions of OpenSearch and Elasticsearch
	Pricing for Amazon OpenSearch Service
	Getting started with Amazon OpenSearch Service
	Related services

	Amazon OpenSearch Serverless
	Benefits
	What is Amazon OpenSearch Serverless?
	Use cases for OpenSearch Serverless
	Getting started
	How it works
	Choosing a collection type
	Pricing for OpenSearch Serverless
	Supported Amazon Web Services Regions
	Limitations
	Comparing OpenSearch Service and OpenSearch Serverless

	Getting started with Amazon OpenSearch Serverless
	Step 1: Configure permissions
	Step 2: Create a collection
	Step 3: Upload and search data
	Step 4: Delete the collection
	Next steps

	Creating and managing Amazon OpenSearch Serverless collections
	Creating, listing, and deleting Amazon OpenSearch Serverless collections
	Permissions required
	Creating collections
	Create a collection (console)
	Create a collection (CLI)

	Accessing OpenSearch Dashboards
	Viewing collections
	Deleting collections

	Working with vector search collections
	Getting started with vector search collections
	Step 1: Configure permissions
	Step 2: Create a collection
	Step 3: Upload and search data
	Step 4: Delete the collection

	Filtered search
	Billion scale workloads
	Limitations
	Next steps

	Using data lifecycle policies with Amazon OpenSearch Serverless
	Data lifecycle policies
	Permissions required
	Policy precedence
	Policy syntax
	Creating data lifecycle policies (Amazon CLI)
	Viewing data lifecycle policies
	Updating data lifecycle policies
	Deleting data lifecycle policies

	Using the Amazon SDKs to interact with Amazon OpenSearch Serverless
	Python
	JavaScript

	Using Amazon CloudFormation to create Amazon OpenSearch Serverless collections

	Managing capacity limits for Amazon OpenSearch Serverless
	Configuring capacity settings
	Maximum capacity limits
	Monitoring capacity usage

	Ingesting data into Amazon OpenSearch Serverless collections
	Minimum required permissions
	OpenSearch Ingestion
	Fluent Bit
	Amazon Data Firehose
	Fluentd
	Go
	Java
	JavaScript
	Logstash
	Python
	Ruby
	Signing HTTP requests with other clients

	Overview of security in Amazon OpenSearch Serverless
	Encryption policies
	Network policies
	Data access policies
	IAM and SAML authentication
	Infrastructure security
	Getting started with security in Amazon OpenSearch Serverless
	Tutorial: Getting started with security in Amazon OpenSearch Serverless (console)
	Step 1: Configure permissions
	Step 2: Create an encryption policy
	Step 3: Create a network policy
	Step 4: Create a data access policy
	Step 5: Create a collection
	Step 6: Upload and search data

	Tutorial: Getting started with security in Amazon OpenSearch Serverless (CLI)

	Identity and Access Management for Amazon OpenSearch Serverless
	Identity-based policies for OpenSearch Serverless
	Identity-based policy examples for OpenSearch Serverless

	Policy actions for OpenSearch Serverless
	Policy resources for OpenSearch Serverless
	Policy condition keys for Amazon OpenSearch Serverless
	ABAC with OpenSearch Serverless
	Using temporary credentials with OpenSearch Serverless
	Service-linked roles for OpenSearch Serverless
	Identity-based policy examples for OpenSearch Serverless
	Policy best practices
	Using OpenSearch Serverless in the console
	Administering OpenSearch Serverless collections
	Viewing OpenSearch Serverless collections
	Using OpenSearch API operations

	Encryption in Amazon OpenSearch Serverless
	Encryption at rest
	Encryption policies
	Considerations
	Permissions required
	Key policy for a customer managed key
	How OpenSearch Serverless uses grants in Amazon KMS
	Creating encryption policies (console)
	Next step: Create collections

	Creating encryption policies (Amazon CLI)
	Viewing encryption policies
	Updating encryption policies
	Deleting encryption policies

	Encryption in transit

	Network access for Amazon OpenSearch Serverless
	Network policies
	Considerations
	Permissions required
	Policy precedence
	Creating network policies (console)
	Creating network policies (Amazon CLI)
	Viewing network policies
	Updating network policies
	Deleting network policies

	Data access control for Amazon OpenSearch Serverless
	Data access policies versus IAM policies
	IAM permissions required
	Policy syntax
	Supported policy permissions
	Sample datasets on OpenSearch Dashboards
	Creating data access policies (console)
	Creating data access policies (Amazon CLI)
	Viewing data access policies
	Updating data access policies
	Deleting data access policies

	Access Amazon OpenSearch Serverless using an interface endpoint (Amazon PrivateLink)
	DNS resolution of collection endpoints
	VPCs and network access policies
	VPCs and endpoint policies
	Considerations
	Permissions required
	Create an interface endpoint for OpenSearch Serverless
	Next step: Grant the endpoint access to a collection

	SAML authentication for Amazon OpenSearch Serverless
	Considerations
	Permissions required
	Creating SAML providers (console)
	Accessing OpenSearch Dashboards
	Granting SAML identities access to collection data
	Creating SAML providers (Amazon CLI)
	Viewing SAML providers
	Updating SAML providers
	Deleting SAML providers

	Compliance validation for Amazon OpenSearch Serverless

	Tagging Amazon OpenSearch Serverless collections
	Permissions required
	Working with tags (console)
	Working with tags (Amazon CLI)

	Supported operations and plugins in Amazon OpenSearch Serverless
	Supported OpenSearch API operations and permissions
	Supported OpenSearch plugins

	Monitoring Amazon OpenSearch Serverless
	Monitoring OpenSearch Serverless with Amazon CloudWatch
	Logging OpenSearch Serverless API calls using Amazon CloudTrail
	OpenSearch Serverless information in CloudTrail
	Understanding OpenSearch Serverless log file entries

	Monitoring OpenSearch Serverless events using Amazon EventBridge
	Setting up notifications
	OpenSearch Compute Units (OCU) events
	OCU usage approaching maximum limit
	OCU usage reached maximum limit

	Amazon OpenSearch Ingestion
	Key concepts
	Benefits of OpenSearch Ingestion
	Limitations
	Supported Data Prepper versions
	Scaling pipelines
	OpenSearch Ingestion pricing
	Supported Amazon Web Services Regions
	OpenSearch Ingestion quotas
	Setting up roles and users in Amazon OpenSearch Ingestion
	Management role
	Pipeline role
	Writing to a domain sink
	Writing to a collection sink
	Writing to a dead-letter queue

	Ingestion role
	Cross-account ingestion

	Allowing Amazon OpenSearch Ingestion pipelines to write to domains
	Step 1: Create a pipeline role
	Step 2: Include the pipeline role in the domain access policy
	Step 3: Map the pipeline role (only for domains that use fine-grained access control)
	Step 4: Specify the role in the pipeline configuration

	Allowing Amazon OpenSearch Ingestion pipelines to write to collections
	Limitations
	Step 1: Create a pipeline role
	Step 2: Create a collection
	Step 3: Create a pipeline

	Getting started with Amazon OpenSearch Ingestion
	Tutorial: Ingesting data into a domain using Amazon OpenSearch Ingestion
	Required permissions
	Step 1: Create the pipeline role
	Step 2: Create a domain
	Step 3: Create a pipeline
	Step 4: Ingest some sample data
	Fixing permissions issues
	Related resources

	Tutorial: Ingesting data into a collection using Amazon OpenSearch Ingestion
	Required permissions
	Step 1: Create the pipeline role
	Step 2: Create a collection
	Step 3: Create a pipeline
	Step 4: Ingest some sample data
	Related resources

	Overview of pipeline features in Amazon OpenSearch Ingestion
	Persistent buffering
	Splitting
	Chaining
	Dead-letter queues
	Configuration
	Example

	Index management
	Creating indexes
	Generating index names and patterns
	Generating document IDs
	Generating routing IDs

	End-to-end acknowledgement
	Source back pressure
	HTTP source
	OTel source
	S3 source

	Creating Amazon OpenSearch Ingestion pipelines
	Prerequisites and required roles
	Permissions required
	Specifying the pipeline version
	Specifying the ingestion path
	Creating pipelines
	Console
	Amazon CLI
	OpenSearch Ingestion API

	Tracking the status of pipeline creation
	Console
	CLI
	OpenSearch Ingestion API

	Using blueprints to create a pipeline
	Console
	CLI
	OpenSearch Ingestion API

	Viewing Amazon OpenSearch Ingestion pipelines
	Console
	CLI
	OpenSearch Ingestion API

	Updating Amazon OpenSearch Ingestion pipelines
	Considerations
	Permissions required
	Updating pipelines
	Console
	CLI
	OpenSearch Ingestion API

	Blue/green deployments for pipeline updates

	Stopping and starting Amazon OpenSearch Ingestion pipelines
	Overview of stopping and starting an OpenSearch Ingestion pipeline
	Stopping an OpenSearch Ingestion pipeline
	Console
	Amazon CLI
	OpenSearch Ingestion API

	Starting an OpenSearch Ingestion pipeline
	Console
	Amazon CLI
	OpenSearch Ingestion API

	Deleting Amazon OpenSearch Ingestion pipelines
	Console
	CLI
	OpenSearch Ingestion API

	Supported plugins and options for Amazon OpenSearch Ingestion pipelines
	Supported plugins
	Stateless versus stateful processors
	Configuration requirements and constraints
	General pipeline options
	Grok processor
	HTTP source
	OpenSearch sink
	OTel metrics source, OTel trace source, and OTel logs source
	OTel trace group processor
	OTel trace processor
	Service-map processor
	S3 source

	Working with Amazon OpenSearch Ingestion pipeline integrations
	Constructing the ingestion endpoint
	Creating an ingestion role
	Providing cross-account ingestion access

	Using an OpenSearch Ingestion pipeline with Amazon DynamoDB
	Prerequisites
	Step 1: Configure the pipeline role
	Step 2: Create the pipeline
	Data consistency
	Mapping data types
	Limitations

	Using an OpenSearch Ingestion pipeline with Amazon Managed Streaming for Apache Kafka
	Prerequisites
	Step 1: Configure the pipeline role
	Step 2: Create the pipeline
	Step 3: (Optional) Use the Amazon Glue Schema Registry
	Step 4: (Optional) Configure recommended compute units (OCUs) for the Amazon MSK pipeline

	Using an OpenSearch Ingestion pipeline with Amazon OpenSearch Service
	OpenSearch Service as a source
	Creating a pipeline role in IAM
	Creating a pipeline

	Using multiple OpenSearch Service domains as a destination
	Ingesting data into an OpenSearch Serverless VPC collection
	Limitations

	Using an OpenSearch Ingestion pipeline with Amazon S3
	Amazon S3 as a source
	Prerequisites
	Step 1: Configure the pipeline role
	Step 2: Create the pipeline
	S3-SQS processing
	Scheduled scan

	Amazon S3 as a destination
	Amazon S3 cross account as a source

	Using an OpenSearch Ingestion pipeline with Amazon Security Lake
	Prerequisites
	Step 1: Configure the pipeline role
	Step 2: Create the pipeline

	Using an OpenSearch Ingestion pipeline with Fluent Bit
	Using an OpenSearch Ingestion pipeline with OpenTelemetry Collector
	Next steps

	Using the Amazon SDKs to interact with Amazon OpenSearch Ingestion
	Python

	Use cases for Amazon OpenSearch Ingestion
	Grok pattern matching with Amazon OpenSearch Ingestion
	Basic usage
	Including named and empty captures
	Overwriting keys
	Using custom patterns
	Storing captures with a parent key

	Log enrichment with Amazon OpenSearch Ingestion
	Filtering
	Extracting key-value pairs from strings
	Mutating events
	Mutating strings
	Converting lists to maps
	Processing incoming timestamps
	Generating timestamps
	Deriving punctuation patterns

	Event aggregation with Amazon OpenSearch Ingestion
	Basic usage
	Removing duplicates
	Log aggregation and conditional routing

	Deriving metrics from logs with Amazon OpenSearch Ingestion
	Trace Analytics with Amazon OpenSearch Ingestion
	OpenTelemetry trace source
	Processors
	OpenSearch sink
	Pipeline configuration

	Deriving metrics from traces with Amazon OpenSearch Ingestion
	Anomaly detection with Amazon OpenSearch Ingestion
	Metrics from logs
	Metrics from traces
	OpenTelemetry metrics

	Sampling with Amazon OpenSearch Ingestion
	Time sampling
	Percentage sampling
	Tail sampling

	Selective download with Amazon OpenSearch Ingestion

	Security in Amazon OpenSearch Ingestion
	Securing Amazon OpenSearch Ingestion pipelines within a VPC
	Considerations
	Limitations
	Prerequisites
	Configuring VPC access for a pipeline
	Console
	CLI

	Service-linked role for VPC access

	Identity and Access Management for Amazon OpenSearch Ingestion
	Identity-based policies for OpenSearch Ingestion
	Identity-based policy examples for OpenSearch Ingestion

	Policy actions for OpenSearch Ingestion
	Policy resources for OpenSearch Ingestion
	Policy condition keys for Amazon OpenSearch Ingestion
	ABAC with OpenSearch Ingestion
	Using temporary credentials with OpenSearch Ingestion
	Service-linked roles for OpenSearch Ingestion
	Identity-based policy examples for OpenSearch Ingestion
	Policy best practices
	Using OpenSearch Ingestion in the console
	Administering OpenSearch Ingestion pipelines
	Ingesting data into an OpenSearch Ingestion pipeline

	Logging Amazon OpenSearch Ingestion API calls using Amazon CloudTrail
	OpenSearch Ingestion information in CloudTrail
	Understanding OpenSearch Ingestion log file entries

	Tagging Amazon OpenSearch Ingestion pipelines
	Permissions required
	Working with tags (console)
	Working with tags (Amazon CLI)

	Logging and monitoring Amazon OpenSearch Ingestion with Amazon CloudWatch
	Monitoring pipeline logs
	Permissions required
	Enabling log publishing
	Console
	CLI

	Monitoring pipeline metrics
	Common metrics
	Buffer metrics
	Signature V4 metrics
	Bounded blocking buffer metrics
	Otel trace source metrics
	Otel metrics source metrics
	Http metrics
	S3 metrics
	Aggregate metrics
	Date metrics
	Grok metrics
	Otel trace raw metrics
	Otel trace group metrics
	Service map stateful metrics
	OpenSearch metrics
	System and metering metrics

	Best practices for Amazon OpenSearch Ingestion
	General best practices
	Recommended CloudWatch alarms
	Other alarms you might consider

	Setting up Amazon OpenSearch Service
	Sign up for an Amazon Web Services account
	Secure IAM users
	Grant permissions
	Grant programmatic access

	Install and configure the Amazon CLI
	Open the console

	Getting started with Amazon OpenSearch Service
	Step 1: Create an Amazon OpenSearch Service domain
	Step 2: Upload data to Amazon OpenSearch Service for indexing
	Option 1: Upload a single document
	Option 2: Upload multiple documents

	Step 3: Search documents in Amazon OpenSearch Service
	Search documents from the command line
	Search documents using OpenSearch Dashboards

	Step 4: Delete an Amazon OpenSearch Service domain
	Next steps

	Creating and managing Amazon OpenSearch Service domains
	Creating OpenSearch Service domains
	Creating OpenSearch Service domains (console)
	Creating OpenSearch Service domains (Amazon CLI)
	Example commands

	Creating OpenSearch Service domains (Amazon SDKs)
	Creating OpenSearch Service domains (Amazon CloudFormation)

	Configuring access policies
	Advanced cluster settings
	Making configuration changes in Amazon OpenSearch Service
	Changes that usually cause blue/green deployments
	Changes that usually don't cause blue/green deployments
	Determining whether a change will cause a blue/green deployment
	

	Initiating and tracking a configuration change
	Stages of a configuration change
	Charges for configuration changes
	Troubleshooting validation errors

	Service software updates in Amazon OpenSearch Service
	Optional versus required updates
	Optional updates
	Required updates

	Patch updates
	Considerations
	Starting a service software update
	Console
	Amazon CLI
	Amazon SDKs

	Scheduling software updates during off-peak windows
	Console
	CLI

	Monitoring service software updates
	When domains are ineligible for an update

	Defining off-peak windows for Amazon OpenSearch Service
	Off-peak service software updates
	Off-peak Auto-Tune optimizations
	Enabling the off-peak window
	Console
	CLI

	Configuring a custom off-peak window
	Console
	CLI

	Viewing scheduled actions
	Console
	CLI

	Rescheduling actions
	Console
	CLI

	Migrating from Auto-Tune maintenance windows
	Console
	CLI

	Notifications in Amazon OpenSearch Service
	Getting started with notifications
	Notification severities
	Sample EventBridge event

	Configuring a multi-AZ domain in Amazon OpenSearch Service
	Multi-AZ with Standby
	Limitations

	Multi-AZ without Standby
	Shard distribution
	Dedicated master node distribution

	Availability zone disruptions

	Launching your Amazon OpenSearch Service domains within a VPC
	VPC versus public domains
	Limitations
	Architecture
	Migrating from public access to VPC access
	About access policies on VPC domains
	Before you begin: prerequisites for VPC access
	Testing VPC domains
	Reserving IP addresses in a VPC subnet
	Service-linked role for VPC access

	Creating index snapshots in Amazon OpenSearch Service
	Prerequisites
	Registering a manual snapshot repository
	Step 1: Map the snapshot role in OpenSearch Dashboards (if using fine-grained access control)
	Step 2: Register a repository
	Using the sample Python client

	Taking manual snapshots
	Snapshot storage and performance
	Take a snapshot

	Restoring snapshots
	Deleting manual snapshots
	Automating snapshots with Snapshot Management
	Configure permissions
	Considerations

	Automating snapshots with Index State Management
	Using Curator for snapshots

	Upgrading Amazon OpenSearch Service domains
	Supported upgrade paths
	Starting an upgrade (console)
	Starting an upgrade (CLI)
	Starting an upgrade (SDK)
	Troubleshooting validation failures
	Troubleshooting an upgrade
	Using a snapshot to migrate data

	Creating a custom endpoint for Amazon OpenSearch Service
	Custom endpoints for new domains
	Custom endpoints for existing domains
	Next steps

	Auto-Tune for Amazon OpenSearch Service
	Types of changes
	Enabling or disabling Auto-Tune
	Console
	CLI

	Scheduling Auto-Tune enhancements
	Console
	CLI

	Monitoring Auto-Tune changes

	Tagging Amazon OpenSearch Service domains
	Tagging examples
	Working with tags (console)
	Working with tags (Amazon CLI)
	Working with tags (Amazon SDKs)
	Python

	Performing administrative actions on Amazon OpenSearch Service domains
	Restart the OpenSearch process on a node
	Reboot a data node
	Restart the Dashboard or Kibana process on a node
	Limitations

	Working with Amazon OpenSearch Service direct queries with Amazon S3 (preview)
	Pricing
	Limitations
	Quotas
	Supported Regions
	Creating Amazon OpenSearch Service data source integrations with Amazon S3
	Prerequisites
	Required permissions
	Map the Amazon Glue Data Catalog role (if fine-grained access control is enabled after creating data source)

	Set up a new direct-query data source
	Amazon Web Services Management Console
	OpenSearch Service API

	Next steps

	Configuring your data source in OpenSearch Dashboards
	Set up access control
	Define Amazon Glue Data Catalog tables
	Accelerate your queries
	Skipping indexes
	Materialized views
	Covering indexes

	Querying data in OpenSearch Dashboards
	SQL
	PPL

	Deleting an Amazon OpenSearch Service data source with Amazon S3
	Amazon Web Services Management Console
	OpenSearch Service API

	Monitoring Amazon OpenSearch Service domains
	Monitoring OpenSearch cluster metrics with Amazon CloudWatch
	Viewing metrics in CloudWatch
	Interpreting health charts in OpenSearch Service
	Cluster metrics
	Dedicated master node metrics
	EBS volume metrics
	Instance metrics
	UltraWarm metrics
	Cold storage metrics
	OR1 metrics
	Alerting metrics
	Anomaly detection metrics
	Asynchronous search metrics
	Auto-Tune metrics
	Multi-AZ with Standby metrics
	Point in time metrics
	SQL metrics
	k-NN metrics
	Cross-cluster search metrics
	Cross-cluster replication metrics
	Learning to Rank metrics
	Piped Processing Language metrics

	Monitoring OpenSearch logs with Amazon CloudWatch Logs
	Enabling log publishing (console)
	Enabling log publishing (Amazon CLI)
	Enabling log publishing (Amazon SDKs)
	Enabling log publishing (CloudFormation)
	Setting OpenSearch logging thresholds for slow logs
	Viewing logs

	Monitoring audit logs in Amazon OpenSearch Service
	Limitations
	Enabling audit logs
	Step 1: Enable audit logs and configure an access policy
	Step 2: Turn on audit logs in OpenSearch Dashboards

	Enable audit logging using the Amazon CLI
	Enable audit logging using the configuration API
	Audit log layers and categories
	Audit log settings
	General settings
	Compliance settings

	Audit log example
	Step 1: Configure audit logs
	Step 2: Perform read and write events
	Step 3: Observe the logs

	Configuring audit logs using the REST API

	Monitoring OpenSearch Service events with Amazon EventBridge
	Service software update events
	Service software update available
	Service software update scheduled
	Service software update rescheduled
	Service software update started
	Service software update completed
	Service software update cancelled
	Scheduled service software update cancelled
	Service software update unexecuted
	Service software update failed
	Service software update required

	Auto-Tune events
	Auto-Tune pending
	Auto-Tune started
	Auto-Tune requires a scheduled blue/green deployment
	Auto-Tune cancelled
	Auto-Tune completed
	Auto-Tune disabled and changes reverted
	Auto-Tune disabled and changes retained

	Cluster health events
	Red cluster recovery started
	Red cluster recovery partially completed
	Red cluster recovery failed
	Shards to be deleted
	Shards deleted
	High shard count warning
	Shard count limit exceeded
	Low disk space
	Low disk watermark breach
	EBS burst balance below 70%
	EBS burst balance below 20%
	Disk throughput throttle
	Large shard size
	High JVM usage
	Insufficient GC
	Custom index routing warning
	Failed shard lock

	VPC endpoint events
	VPC endpoint creation failed
	VPC endpoint update failed
	VPC endpoint deletion failed

	Node retirement events
	Node retirement scheduled
	Node retirement completed
	Node retirement failed
	

	Domain error events
	Domain update validation failure
	KMS key inaccessible
	Domain isolation

	Tutorial: Listening for Amazon OpenSearch Service EventBridge events
	Prerequisites
	Step 1: Create the Lambda function
	Step 2: Register an event rule
	Step 3: Test your configuration

	Tutorial: Sending Amazon SNS alerts for available software updates
	Prerequisites
	Step 1: Create and subscribe to an Amazon SNS topic
	Step 2: Register an event rule

	Monitoring Amazon OpenSearch Service API calls with Amazon CloudTrail
	Amazon OpenSearch Service information in CloudTrail
	Understanding Amazon OpenSearch Service log file entries

	Security in Amazon OpenSearch Service
	Data protection in Amazon OpenSearch Service
	Encryption of data at rest for Amazon OpenSearch Service
	Permissions
	Enabling encryption of data at rest
	Disabled or deleted KMS key
	Disabling encryption of data at rest
	Monitoring domains that encrypt data at rest
	Other considerations

	Node-to-node encryption for Amazon OpenSearch Service
	Enabling node-to-node encryption
	Disabling node-to-node encryption

	Identity and Access Management in Amazon OpenSearch Service
	Types of policies
	Resource-based policies
	Identity-based policies
	IP-based policies

	Making and signing OpenSearch Service requests
	When policies collide
	Policy element reference
	Advanced options and API considerations
	Configuring access policies
	Additional sample policies
	Amazon OpenSearch Service API permissions reference
	Amazon managed policies for Amazon OpenSearch Service
	AmazonOpenSearchServiceFullAccess
	AmazonOpenSearchServiceReadOnlyAccess
	AmazonOpenSearchServiceRolePolicy
	AmazonOpenSearchServiceCognitoAccess
	AmazonOpenSearchIngestionServiceRolePolicy
	AmazonOpenSearchIngestionFullAccess
	AmazonOpenSearchIngestionReadOnlyAccess
	AmazonOpenSearchServerlessServiceRolePolicy
	OpenSearch Service updates to Amazon managed policies

	Cross-service confused deputy prevention
	Fine-grained access control in Amazon OpenSearch Service
	The bigger picture: fine-grained access control and OpenSearch Service security
	Example

	Key concepts
	About the master user
	Enabling fine-grained access control
	Enabling fine-grained access control on existing domains
	About the default_role
	Migration scenarios

	Accessing OpenSearch Dashboards as the master user
	Managing permissions
	Creating roles
	Cluster-level security
	Index-level security
	Document-level security
	Field-level security
	Field masking

	Creating users
	Mapping roles to users
	Creating action groups
	OpenSearch Dashboards multi-tenancy

	Recommended configurations
	Limitations
	Modifying the master user
	Additional master users
	Manual snapshots
	Integrations
	REST API differences
	Tutorial: Configure a domain with an IAM master user and Amazon Cognito authentication
	Step 1: Create master and limited IAM roles
	Step 2: Create a domain with Cognito authentication
	Step 3: Configure Cognito users
	Step 4: Map roles in OpenSearch Dashboards
	Step 5: Test the permissions

	Tutorial: Configure a domain with the internal user database and HTTP basic authentication
	Step 1: Create a domain
	Step 2: Create an internal user in OpenSearch Dashboards
	Step 3: Map roles in OpenSearch Dashboards
	Step 4: Test the permissions

	Compliance validation for Amazon OpenSearch Service
	Resilience in Amazon OpenSearch Service
	Infrastructure security in Amazon OpenSearch Service
	Access Amazon OpenSearch Service using an OpenSearch Service-managed VPC endpoint (Amazon PrivateLink)
	Considerations and limitations for OpenSearch Service
	Provide access to a domain
	Create an interface VPC endpoint for a VPC domain
	Working with OpenSearch Service-managed VPC endpoints using the configuration API

	SAML authentication for OpenSearch Dashboards
	SAML configuration overview
	Considerations
	SAML authentication for VPC domains
	Modifying the domain access policy
	Configuring SP- or IdP-initiated authentication
	Step 1: Enable SAML authentication
	Step 2: Configure your identity provider
	If you're creating a new domain
	If you're editing an existing domain

	Step 3: Import IdP metadata
	Step 4: Configure SAML fields
	Step 5: (Optional) Configure additional settings
	Step 6: Update your IdP URLs
	Step 7: Map SAML users to roles

	Configuring both SP- and IdP-initiated authentication
	Configuring SAML authentication (Amazon CLI)
	Configuring SAML authentication (configuration API)
	SAML troubleshooting
	Disabling SAML authentication

	Configuring Amazon Cognito authentication for OpenSearch Dashboards
	Prerequisites
	About the user pool
	About the identity pool
	About the CognitoAccessForAmazonOpenSearch role

	Configuring a domain to use Amazon Cognito authentication
	Configuring Amazon Cognito authentication (console)
	Configuring Amazon Cognito authentication (Amazon CLI)
	Configuring Amazon Cognito Authentication (Amazon SDKs)

	Allowing the authenticated role
	Configuring identity providers
	(Optional) Configuring granular access
	User groups and tokens
	Rules

	(Optional) Customizing the sign-in page
	(Optional) Configuring advanced security
	Testing
	Quotas
	Common configuration issues
	Disabling Amazon Cognito authentication for OpenSearch Dashboards
	Deleting domains that use Amazon Cognito authentication for OpenSearch Dashboards

	Using service-linked roles for Amazon OpenSearch Service
	Using service-linked roles to create VPC domains
	Legacy Elasticsearch role
	Permissions
	Creating the service-linked role
	Editing the service-linked role
	Deleting the service-linked role
	Cleaning up the service-linked role
	Manually deleting a service-linked role

	Using service-linked roles to create OpenSearch Serverless collections
	Service-linked role permissions for OpenSearch Serverless
	Creating the service-linked role for OpenSearch Serverless
	Editing the service-linked role for OpenSearch Serverless
	Deleting the service-linked role for OpenSearch Serverless
	Supported Regions for OpenSearch Serverless service-linked roles

	Using service-linked roles to create OpenSearch Ingestion pipelines
	Permissions
	Creating the service-linked role for OpenSearch Ingestion
	Editing the service-linked role for OpenSearch Ingestion
	Deleting the service-linked role for OpenSearch Ingestion
	Cleaning up a service-linked role
	Delete the service-linked role for OpenSearch Ingestion

	Sample code for Amazon OpenSearch Service
	Elasticsearch client compatibility
	Compressing HTTP requests in Amazon OpenSearch Service
	Enabling gzip compression
	Required headers
	Sample code (Python 3)

	Using the Amazon SDKs to interact with Amazon OpenSearch Service
	Java
	Python
	Node

	Indexing data in Amazon OpenSearch Service
	Naming restrictions for indexes
	Reducing response size
	Index codecs
	Loading streaming data into Amazon OpenSearch Service
	Loading streaming data from OpenSearch Ingestion
	Loading streaming data from Amazon S3
	Prerequisites
	Create the Lambda deployment package
	Create the Lambda function
	Testing the Lambda Function

	Loading streaming data from Amazon Kinesis Data Streams
	Prerequisites
	Create the Lambda function
	Test the Lambda Function

	Loading streaming data from Amazon DynamoDB
	Prerequisites
	Create the Lambda function
	Test the Lambda function

	Loading streaming data from Amazon Data Firehose
	Loading streaming data from Amazon CloudWatch
	Loading streaming data from Amazon IoT

	Loading data into Amazon OpenSearch Service with Logstash
	Configuration
	Fine-grained access control configuration
	IAM configuration

	Searching data in Amazon OpenSearch Service
	URI searches
	Request body searches
	Boosting fields
	Search result highlighting
	Count API

	Paginating search results
	Point in time
	The from and size parameters

	Dashboards Query Language
	Custom packages for Amazon OpenSearch Service
	Package permissions requirements
	Uploading packages to Amazon S3
	Importing and associating packages
	Import and associate a package with a domain with the Amazon Web Services Management Console

	Using packages with OpenSearch
	Using custom dictionaries
	Using optional plugins
	Sudachi plugin

	Updating packages
	Update a package with the Amazon Web Services Management Console
	Update a package with the Amazon SDK

	Manual index updates for dictionaries
	Dissociating and removing packages
	Dissociate a package from a domain with the Amazon Web Services Management Console

	Querying your Amazon OpenSearch Service data with SQL
	Sample call
	Notes and differences
	SQL Workbench
	SQL CLI
	JDBC driver
	ODBC driver

	k-Nearest Neighbor (k-NN) search in Amazon OpenSearch Service
	Getting started with k-NN
	k-NN differences, tuning, and limitations

	Cross-cluster search in Amazon OpenSearch Service
	Limitations
	Cross-cluster search prerequisites
	Cross-cluster search pricing
	Setting up a connection
	Removing a connection
	Setting up security and sample walkthrough
	OpenSearch Dashboards

	Learning to Rank for Amazon OpenSearch Service
	Getting started with Learning to Rank
	Step 1: Initialize the plugin
	Step 2: Create a judgment list
	Step 3: Build a feature set
	Step 4: Log the feature values
	Step 5: Create a training dataset
	Step 6: Choose an algorithm and build the model
	Step 7: Deploy the model
	Step 8: Search with learning to rank

	Learning to Rank API
	Create store
	Delete store
	Create feature set
	Delete feature set
	Get feature set
	Create model
	Delete model
	Get model
	Get stats
	Get cache stats
	Clear cache

	Asynchronous search in Amazon OpenSearch Service
	Sample search call
	Asynchronous search permissions
	Asynchronous search settings
	Cross-cluster search
	UltraWarm

	Point in time in Amazon OpenSearch Service
	Considerations
	Create a PIT
	Point in time permissions
	PIT settings
	Cross-cluster search
	UltraWarm

	Semantic search in Amazon OpenSearch Service

	Using OpenSearch Dashboards with Amazon OpenSearch Service
	Controlling access to OpenSearch Dashboards
	Using a proxy to access OpenSearch Service from OpenSearch Dashboards

	Configuring OpenSearch Dashboards to use a WMS map server
	Connecting a local Dashboards server to OpenSearch Service
	Managing indexes in OpenSearch Dashboards
	Additional features

	Managing indexes in Amazon OpenSearch Service
	UltraWarm storage for Amazon OpenSearch Service
	Prerequisites
	Configure permissions

	UltraWarm storage requirements and performance considerations
	UltraWarm pricing
	Enabling UltraWarm
	Sample CLI command
	Sample configuration API request

	Migrating indexes to UltraWarm storage
	Automating migrations
	Migration tuning
	Cancelling migrations
	Listing hot and warm indexes
	Returning warm indexes to hot storage
	Restoring warm indexes from snapshots
	Manual snapshots of warm indexes
	Migrating warm indexes to cold storage
	Disabling UltraWarm

	Cold storage for Amazon OpenSearch Service
	Prerequisites
	Configure permissions

	Cold storage requirements and performance considerations
	Cold storage pricing
	Enabling cold storage
	Sample CLI command
	Sample configuration API request

	Managing cold indexes in OpenSearch Dashboards
	Migrating indexes to cold storage
	Automating migrations to cold storage
	Canceling migrations to cold storage
	Listing cold indexes
	Filtering
	Sorting
	Pagination

	Migrating cold indexes to warm storage
	Restoring cold indexes from snapshots
	Canceling migrations from cold to warm storage
	Updating cold index metadata
	Deleting cold indexes
	Disabling cold storage

	OR1 storage for Amazon OpenSearch Service
	Limitations
	How OR1 differs from UltraWarm storage
	Using OR1 instances
	Console
	Amazon CLI

	Index State Management in Amazon OpenSearch Service
	Create an ISM policy
	Sample policies
	Hot to warm to cold storage
	Reduce replica count
	Take an index snapshot

	ISM templates
	Differences
	ISM operations
	Cold storage ISM operations
	ISM settings

	Tutorial: Automating Index State Management processes
	Prerequisites
	Step 1: Configure the ISM policy
	Step 2: Attach the policy to one or more indexes

	Summarizing indexes in Amazon OpenSearch Service with index rollups
	Creating an index rollup job
	Step 1: Set up indices
	Step 2: Define aggregations and metrics
	Step 3: Specify schedules
	Step 4: Review and create
	Step 5: Search the target index

	Transforming indexes in Amazon OpenSearch Service
	Creating an index transform job
	Step 1: Choose indices
	Step 2: Choose fields
	Step 3: Specify a schedule
	Step 4: Review and monitor
	Step 5: Search the target index

	Cross-cluster replication for Amazon OpenSearch Service
	Limitations
	Prerequisites
	Permissions requirements
	Set up a cross-cluster connection
	Start replication
	Confirm replication
	Pause and resume replication
	Stop replication
	Auto-follow
	Create a replication rule
	Delete a replication rule

	Upgrading connected domains

	Migrating Amazon OpenSearch Service indexes using remote reindex
	Prerequisites
	Reindex data between OpenSearch Service internet domains
	Reindex data between OpenSearch Service domains when the remote is in a VPC
	Reindex data with the Amazon Web Services Management Console
	Reindex data with OpenSearch Service API operations

	Reindex data between non-OpenSearch Service domains
	Reindex large datasets
	Remote reindex settings

	Managing time-series data in Amazon OpenSearch Service with data streams
	Getting started with data streams
	Step 1: Create an index template
	Step 2: Create a data stream
	Step 3: Ingest data into the data stream
	Step 4: Searching a data stream
	Step 5: Rollover a data stream
	Step 6: Manage data streams in OpenSearch Dashboards
	Step 7: Delete a data stream

	Monitoring data in Amazon OpenSearch Service
	Configuring alerts in Amazon OpenSearch Service
	Getting started with alerting
	Notifications
	Differences
	Alerting settings
	Alerting permissions

	Anomaly detection in Amazon OpenSearch Service
	
	Prerequisites
	Getting started with anomaly detection
	Step 1: Create a detector
	Step 2: Add features to your detector
	Step 3: Observe the results
	Step 4: Set up alerts

	Tutorial: Detect high CPU usage with anomaly detection
	Prerequisites
	Step 1: Create a detector
	Step 2: Configure an alert
	Related resources

	Machine learning for Amazon OpenSearch Service
	Amazon OpenSearch Service ML connectors for Amazon Web Services
	Prerequisites
	Set up an Amazon SageMaker Domain
	Create an IAM role
	Configure permissions
	Map the ML role in OpenSearch Dashboards (if using fine-grained access control)

	Create an OpenSearch Service connector
	Sample Python client

	Amazon OpenSearch Service ML connectors for third-party platforms
	Prerequisites
	Create an IAM role
	Configure permissions
	Set up Amazon Secrets Manager
	Map the ML role in OpenSearch Dashboards (if using fine-grained access control)

	Create an OpenSearch Service connector
	Sample Python client

	Using Amazon CloudFormation to set up remote inference for semantic search
	Prerequisites
	Set up an OpenSearch Service domain
	Enable permissions on your Amazon Web Services account

	Amazon SageMaker templates
	Amazon Bedrock templates

	Unsupported ML Commons settings

	Security Analytics for Amazon OpenSearch Service
	Security analytics components and concepts
	Log types
	Detectors
	Rules
	Findings
	Alerts

	Exploring Security Analytics
	Configure permissions
	Troubleshooting
	No such index error

	Observability in Amazon OpenSearch Service
	Explore your data with event analytics
	Create visualizations
	Dive deeper with Trace Analytics
	Trace Analytics for Amazon OpenSearch Service
	Prerequisites
	OpenTelemetry Collector sample configuration
	OpenSearch Ingestion sample configuration
	Exploring trace data

	Querying Amazon OpenSearch Service data using Piped Processing Language
	

	Operational best practices for Amazon OpenSearch Service
	Monitoring and alerting
	Configure CloudWatch alarms
	Enable log publishing

	Shard strategy
	Determine shard and data node counts
	Avoid storage skew

	Stability
	Keep current with OpenSearch
	Improve snapshot performance
	Enable dedicated master nodes
	Deploy across multiple Availability Zones
	Control ingest flow and buffering
	Create mappings for search workloads
	Use index templates
	Manage indexes with Index State Management
	Remove unused indexes
	Use multiple domains for high availability

	Performance
	Optimize bulk request size and compression
	Reduce the size of bulk request responses
	Tune refresh intervals
	Enable Auto-Tune

	Security
	Enable fine-grained access control
	Deploy domains within a VPC
	Apply a restrictive access policy
	Enable encryption at rest
	Enable node-to-node encryption
	Monitor with Amazon Security Hub

	Cost optimization
	Use the latest generation instance types
	Use the latest Amazon EBS gp3 volumes
	Use UltraWarm and cold storage for time-series log data
	Review recommendations for Reserved Instances

	Sizing Amazon OpenSearch Service domains
	Calculating storage requirements
	Choosing the number of shards
	Choosing instance types and testing
	Step 1: Make an initial estimate
	Step 2: Calculate storage requirements per node
	Step 3: Perform representative testing
	Step 4: Succeed or iterate

	Petabyte scale in Amazon OpenSearch Service
	Dedicated master nodes in Amazon OpenSearch Service
	Choosing the number of dedicated master nodes
	Choosing instance types for dedicated master nodes

	Recommended CloudWatch alarms for Amazon OpenSearch Service
	Other alarms you might consider

	General reference for Amazon OpenSearch Service
	Supported instance types in Amazon OpenSearch Service
	Current generation instance types
	Previous generation instance types

	Features by engine version in Amazon OpenSearch Service
	Plugins by engine version in Amazon OpenSearch Service
	Optional plugins

	Supported operations in Amazon OpenSearch Service
	Notable API differences
	Settings and statistics
	Shrink

	OpenSearch version 2.11
	OpenSearch version 2.9
	OpenSearch version 2.7
	OpenSearch version 2.5
	OpenSearch version 2.3
	OpenSearch version 1.3
	OpenSearch version 1.2
	OpenSearch version 1.1
	OpenSearch version 1.0
	Elasticsearch version 7.10
	Elasticsearch version 7.9
	Elasticsearch version 7.8
	Elasticsearch version 7.7
	Elasticsearch version 7.4
	Elasticsearch version 7.1
	Elasticsearch version 6.8
	Elasticsearch version 6.7
	Elasticsearch version 6.5
	Elasticsearch version 6.4
	Elasticsearch version 6.3
	Elasticsearch version 6.2
	Elasticsearch version 6.0
	Elasticsearch version 5.6
	Elasticsearch version 5.5
	Elasticsearch version 5.3
	Elasticsearch version 5.1
	Elasticsearch version 2.3
	Elasticsearch version 1.5

	Amazon OpenSearch Service quotas
	UltraWarm storage quotas
	EBS volume size quotas
	Network quotas
	Shard size quotas
	Java process quota
	Domain policy quota

	Reserved Instances in Amazon OpenSearch Service
	Purchasing Reserved Instances (console)
	Purchasing Reserved Instances (Amazon CLI)
	Purchasing Reserved Instances (Amazon SDKs)
	Examining costs

	Other supported resources in Amazon OpenSearch Service

	Amazon OpenSearch Service tutorials
	Tutorial: Creating and searching for documents in Amazon OpenSearch Service
	Prerequisites
	Adding a document to an index
	Creating automatically generated IDs
	Updating a document with a POST command
	Performing bulk actions
	Searching for documents
	Related resources

	Tutorial: Migrating to Amazon OpenSearch Service
	Take and upload the snapshot
	Create a domain
	Provide permissions to the S3 bucket
	Map the snapshot role in OpenSearch Dashboards (if using fine-grained access control)

	Restore the snapshot

	Tutorial: Creating a search application with Amazon OpenSearch Service
	Prerequisites
	Step 1: Index sample data
	Step 2: Create and deploy the Lambda function
	Create the Lambda function

	Step 3: Create the API in API Gateway
	Create and configure the API
	Configure the method request
	Deploy the API and configure a stage

	Step 4: (Optional) Modify the domain access policy
	Map the Lambda role (if using fine-grained access control)
	Step 5: Test the web application
	Troubleshoot CORS errors

	Next steps

	Tutorial: Visualizing customer support calls with OpenSearch Service and OpenSearch Dashboards
	Step 1: Configure prerequisites
	Step 2: Copy sample code
	(Optional) Step 3: Index sample data
	Step 4: Analyze and visualize your data
	Step 5: Clean up resources and next steps

	Amazon OpenSearch Service rename - Summary of changes
	New API version
	Renamed instance types
	Access policy changes
	IAM policies
	SCP policies

	New resource types
	Kibana renamed to OpenSearch Dashboards
	Renamed CloudWatch metrics
	Billing and Cost Management console changes
	New event format
	What's staying the same?
	Get started: Upgrade your domains to OpenSearch 1.x

	Troubleshooting Amazon OpenSearch Service
	Can't access OpenSearch Dashboards
	Can't access VPC domain
	Cluster in read-only state
	Red cluster status
	Automatic remediation of red clusters
	Recovering from a continuous heavy processing load

	Yellow cluster status
	ClusterBlockException
	Lack of available storage space
	High JVM memory pressure

	Error migrating to Multi-AZ with Standby
	Creating an index, index template, or ISM policy during migration from domains without standby to domains with standby
	Incorrect number of data copies

	JVM OutOfMemoryError
	Failed cluster nodes
	Exceeded maximum shard limit
	Domain stuck in processing state
	Low EBS burst balance
	Can't enable audit logs
	Can't close index
	Client license checks
	Request throttling
	Can't SSH into node
	"Not Valid for the Object's Storage Class" snapshot error
	Invalid host header
	Invalid M3 instance type
	Hot queries stop working after enabling UltraWarm
	Can't downgrade after upgrade
	Need summary of domains for all Amazon Web Services Regions
	Browser error when using OpenSearch Dashboards
	Node shard and storage skew
	Index shard and storage skew
	Unauthorized operation after selecting VPC access
	Stuck at loading after creating VPC domain
	Denied requests to the OpenSearch API
	Can't connect from Alpine Linux
	Too many requests for Search Backpressure
	Certificate error when using SDK

	Document history for Amazon OpenSearch Service
	Earlier updates

	Amazon Glossary

